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Abstract

Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+
cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional
erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A
distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and
decreasing cell volume that results in increased cell magnetophoretic mobility (MM) when exposed to high magnetic fields
and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free)
magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the
magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell
sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin
A), hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry) to test for mature
erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS) was used for magnetic
separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes) that
showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs.
The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived
cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes.
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Introduction

Red blood cells (RBCs) make up 40 to 50 percent of the average

human blood volume and are the most commonly transfused

blood product, with 40,000 RBC units (,220 mL) used in the

United States every day [1]. The difficulty in meeting the high

demand is related to the limited supply of the RBCs, lack of

availability of certain phenotypes and the possibility of infection,

which continue to create interest in RBC susbstitutes and

alternative sources of RBCs for transfusion. A number of recent

studies have suggested the possibility of ex vivo erythrogenesis from

hematopoietic stem cells (HSCs) isolated from peripheral blood,

bone marrow, and umbilical cord collected following delivery

[2,3]. This approach could provide the basis for large-scale RBC

production, in combination with a suitable protocol for HSC

expansion and staged erythrocytic differentiation. HSCs are

typically identified by a cluster of differentiation 34 (CD34)

surface marker and can be isolated immunomagnetically from

cord blood and placenta derived cell populations, then cultivated

using novel culture media formulations in standard culture systems

or bioreactors that can mimic bone marrow microenvironment

[4]. After substantial expansion, HSCs can be induced to

differentiate into mature, functional RBCs. Given the complexity

of mammalian erythropoiesis, it is difficult to constrain cultured

HSCs to commit exclusively to the erythroid line and homoge-

neously differentiate and mature into enucleated RBC popula-

tions. Thus, obtaining mature and functional erythrocytes from

cultured HSC populations with high purity remains a challenge.

Large scale RBC production in culture requires continuous

removal of the maturing erythroid cells from the cell culture

mixture. The conventional adult RBC separation methods based

on differential cell sedimentation rate (by centrifugation) or size (by

counter-current elutriation) do not work efficiently on maturing

erythroid cells because their physical characteristics is not
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sufficiently differentiated from those of the progenitor cells (Figure

S1). The known differences between the immunophenotype of the

differentiated erythroid cell and the progenitor cells lend

themselves to fluorescence-activated cell sorting (FACS) or

immunomagnetic nanoparticle tagging and magnetic separation,

however, considering the sheer cell volume required for large scale

RBC production and the cost limitations such methods may be too

lengthy, too costly and potentially prone to contamination because

of large volume of the labeling reagents required for practical

applications. In this study, we have tested feasibility of using

paramagnetic property of deoxygenated hemoglobin as a distin-

guishing feature of maturing erythroid cells in the mixture of

diamagnetic, early progenitor cells (as illustrated in Figure S1) for

label-free, magnetic separation. As early as 1936 Pauling and

coworkers described that deoxygenated hemoglobin and methe-

moglobin (metHb) are paramagnetic [5] because of the presence of

unpaired electrons in the four heme groups. In contrast, due to its

covalent bonds, oxygenated hemoglobin (oxy Hb) has no unpaired

electrons and is diamagnetic. High gradient magnetic separators

were used in the past to demonstrate feasibility of adult RBC

enrichment from whole blood deoxygenated by nitrogen gas

[6,7,8,9,10].

The magnetic composition of the cell culture mixture and the

enrichment of cells containing functional hemoglobin was

determined by measuring cell magnetophoretic mobility (MM)

distribution in the cell sample before and after separation. MM

analyses were performed using cell tracking velocimetry (CTV), an

analytical instrument developed in the course of previous studies

that is capable of generating MM histograms and 2-D plots of cell

MM against cell sedimentation rate (velocity) [11]. Other physical

RBC attributes that distinguish them from HSC and erythroblasts,

such as size, morphology, immunophenotype, and deformability,

were also assessed and compared before and after magnetic

separation.

Materials and Methods

Magnetophoretic mobility
Magnetophoretic mobility, m, (also denoted by MM in the text)

is defined as a ratio of the field-induced velocity, um, and the local

magnetostatic energy density gradient, Sm:

m~
um

Sm

ð1Þ

where Sm = 146 6 1 T.A/mm2 is nearly constant in the region of

interest (1.05 mm wide60.79 mm high). For paramagnetic and

diamagnetic cells, Eq. 1 reduces to an expression that depends

only on cell and the suspending fluid properties:

m~
(xc{xf )Vc

3pDcg
ð2Þ

where g = 0.9361023 kg/m-s is the aqueous solution viscosity, Vc

and Dc are cell volume and hydrodynamic diameter, xc and xf are

volume magnetic susceptibility of a cell and media, respectively.

Here xf = 29.0461026 (SI). Notably, xoxyRBC2xf,0 for the fully

oxygenated RBC, and xdeoxyRBC2xf .0, xmetHbRBC2xf .0 for the

fully deoxygenated and methemoglobinated RBC, respectively (see

File S1). Consequently, we expect that the oxy RBCs in solution

are pushed away by the magnet (with negative MM value), and the

deoxy RBCs and metHb RBCs are attracted by the magnet (with

positive MM value).

Settling velocity
Considering a simple model of spherical cell falling through a

motionless fluid, its immersed weight can be balanced by the drag

force which is given by the Stokes equation:

rc{rf

� �
gVc~3pDcgug ð3Þ

Here Dc is interpreted as the ‘‘equivalent hydrodynamic diameter’’

of the RBC that results from averaging of a large number of RBC

sedimentation velocity measurements to account for the complex

shape of the RBC (a biconcave disc). The particle sedimentation

coefficient, s, is defined as

s~
ug

g
~

rc{rf

� �
Vc

3pDcg
ð4Þ

where ug is the settling velocity, g = 9.81 m/s2 is the standard

gravitational acceleration, rc and rf are densities of the cell and

suspending medium.

Thus, the diameter of a sedimenting cell can be calculated by

measuring cell settling velocity, or its sedimentation coefficient:

Dc~
18gug

g rc{rf

� �
" #1=2

ð5Þ

CTV is capable of measuring m and ug (or s) simultaneously for

hundreds to thousands cells on a cell by cell basis, which allows us

to differentiate small, magnetic RBCs or RBC-like cells from

bigger, diamagnetic non-RBC cells or undifferentiated, erythroid

cells (compare Figures 1, 2 and Figure S1). The 2-D dot plots of

cell ug versus cell m and the associated quadrant statistics were

generated to calculate differences in fractional composition of

small, magnetically susceptible cells (putative mature RBCs and

reticulocytes) and large, non-susceptible cells (putative progenitor

cells with no functional hemoglobin) between the unsorted and

magnetically sorted fractions (Figure 2).

Estimation of intracellular Hb concentration in cultured
RBCs

The parameter m of a deoxy or metHb RBC is directly

proportional to cell magnetic susceptibility (Eqn (2)), which is a

linear function of the cell deoxy Hb or metHb content (File S1 and

Eqns (1) or (3) therein). When a deoxy Hb or metHb containing

RBC is placed in the CTV system, where the magnetic force is

orthogonal to gravity, the RBC moves in the horizontal direction

caused by magnetic energy density gradient, Eqn (1), as well as

vertical direction induced by gravitational acceleration, Eqn (3), as

illustrated in Figure 1. Dividing Eqn (4) by Eqn (2), one

eliminatesg, Dc, and Vc to obtain:

xRBC~
m(rc{rf )

s
zxf ð6Þ

Subsequently, combining File S1 Eqns (1) or (3) and (2) therein

with the above Eqn (6), one obtains expression for Hb

concentration for a single cultured RBC if density of RBC and

physical properties of medium are known:

cHb~
xRBC{xH2O

xm,metHbzxm,globin{Vm,HbxH2O

(mol=L) ð7Þ
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With the molecular weight of hemoglobin (Mw,Hb = 64,450 g/mol)

and the measured cell magnetic susceptibility and volume data,

one can obtain a value for mean corpuscular hemoglobin (MCH,

pg/RBC), which is the average mass of hemoglobin per RBC, or

mean corpuscular hemoglobin concentration (MCHC, g/dL

RBC), which is the concentration of hemoglobin in a given

volume of packed RBC. In this manner, the RBC magnetophor-

esis measurement by CTV is capable of providing information on

hemoglobin concentration in maturing, cultured RBC that is

accumulated gradually during erythropoiesis.

Cell sources
Ethics statement. Postpartum placentas were procured by

Celgene Cellular Therepeutics (CCT) under written informed

consent, including donor eligibility documentation. CCT’s pro-

curement program for the acquisition of placental tissue has been

reviewed by a leading NY area hospital’s IRB (Saint Barnabus

Hospital). The blood samples underwent a series of quality control

tests, including serology, bacteriology and HLA typing (results not

shown). Total nucleated cells as the source of HSCs were

generated by treating the donor matched umbilical cord blood

and placenta derived stem cells with ammonium chloride

(catalog# 07850, StemCell Technologies). The subsequent

purification of HSCs was performed using RoboSepH automated

cell isolation system and EasySepH Human Progenitor Cell

Enrichment Kit (catalog# 19056, StemCell Technologies).

Expansion and differentiation of HSCs into RBCs were performed

as previously described [3,12]. The cultures were shipped by

surface courier overnight to the laboratory of M.Z. Once received,

HSC-derived RBC cultures were centrifuged once at 250 g for

10 minutes. The cell pellet was then suspended in Ca2+, Mg2+-free

Dulbecco’s phosphate-buffered saline (PBS) containing 0.5%

Bovine Serum Albumin (BSA, Sigma, St. Louis, MO) and

2 mM Ethylene Diamine Tetraacetic Acid (EDTA, Sigma, St.

Louis, MO). The cell suspension was filtered by a 40 mm cell strain

(BD Biosciences, Durham, NC) to remove cell aggregates. The cell

concentration was determined and a desired concentration for

separation was prepared.

The whole blood (WB) was received from Cleveland Clinic

Blood Banking and Transfusion Medicine under an Institutional

Review Board (IRB) approved protocol for blood collection from

normal volunteers for research. A stock suspension was prepared

by diluting 0.1 mL whole blood with 10 mL PBS. An aliquot of

2.06106 RBCs from the stock suspension was used as the donor-

derived oxy RBC control (negative control).

Irreversible RBC magnetization
A 5 mM oxidant solution was prepared by dissolving sodium

nitrite (NaNO2, Sigma-Aldrich Co., Milwaukee, WI) in PBS at

room temperature. An aliquot of 2.56106 RBCs from the RBC

stock suspension prepared as described above was pelleted and

resuspended in 10 mL of 5 mM sodium nitrite solution, which was

Figure 1. Strong magnetic field gradient deflects sedimenta-
tion trajectories of high spin hemoglobin RBCs. Examples of the
computer screen output of the CTV software showing the trajectories of
A) oxygenated RBCs (low spin hemoglobin) and B) methemoglobin-
conatining RBCs (high spin hemoglobin). Note the horizontal compo-
nent of the cell trajectory due to cell magnetophoresis along the
horizontal lines of the magnetic force. The cell magnetophoretic
mobility, m, was defined as the horizontal distance traveled by the cell
divided by the time of the image sequence acquisition and by the local
magnetic energy density gradient (see Eqn 1 in text).
doi:10.1371/journal.pone.0039491.g001

Figure 2. Donor blood RBC magnetophoresis as a control for
the hematopoietic stem cell (HSC) culture analysis. MM
histograms (A) and dot plots of MM vs. cell sedimentation velocity (B)
of the oxygenated and the metHb containing donor RBCs used as
negative and positive controls, respectively, for the cell magnetophore-
tic mobility analysis. The cut-off mobility, mcut = 2.261026 mm3/T.A.s,
that separates the magnetic from non-magnetic fractions was
determined from the cumulative frequency distribution of oxyHb RBC
at 0.97 value.
doi:10.1371/journal.pone.0039491.g002
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then incubated for about 1.5 hours to achieve a 100% methemo-

globin oxidation. An aliquot of HSC-derived RBC cultures with

same cell number was oxidatively treated at the same way:

suspended in 10 mL of 5 mM NaNO2 solution, 1.5 hours. After

incubation, methemoglobinated RBCs or HSC-derived RBC

cultures were washed once and resuspended in 5 mL PBS

containing 0.1% Pluronic F-68 (Sigma-Aldrich, St Louis, MO)

for CTV analysis. Methemoglobinated donor-derived RBC was

regarded as positive control.

Reversible RBC magnetization by deoxygenation of HSC-
derived RBC cultures

A Glove-BagTM inflatable glove chamber (Cole Parmer, Vernon

Hills, IL), filled with nitrogen (MedipureTM nitrogen, concentra-

tion .99%, Praxair, Inc., Danbury, CT) was used to deoxygenate

HSC- derived RBC cultures (Figure S2). Before deoxygenation, all

materials and equipment including the separation system,

degassed sterile buffer (PBS +2 mM EDTA +0.5% BSA), and

sterile collection tubes were placed in the glove bag, which was

then tightly sealed. Additional details are provided in File S1.

Magnetic cell separation
A commercial magnetic separation system (QuadroMACSTM

Separator combining four MidiMACSTM separation units and LD

columns, Miltenyi Biotec, Auburn, CA) was used for magnetic

RBC enrichment from HSC-derived RBC cultures. Deoxygenated

cultures were loaded directly into a MACSH LD column which

was placed in the QuadroMACSTM separator kept under anoxic

conditions inside the inflatable glove chamber filled with N2 gas

(Figure S2). Cells which passed through the column contained

within the magnet are labeled as negative fraction and they are

expected to be ‘‘non-magnetic’’, including HSCs and erythroid

cells before final maturation. The cells retained in the separation

column are labeled as positive fraction, which is ‘‘magnetic’’ and

expected to consist of maturing RBC-like cells nearly full of

functional hemoglobin. They were eluted from LD column after

its removal from the magnet. Once separation was finished,

oxygenated cells were reversibly recovered by exposing the

collected cells to air.

CTV analysis
The CTV instrument previously developed and tested

[13,14,15] was used to measure magnetophoretic mobility and

settling velocity of the donor-derived RBC controls, oxy RBC and

metHb RBC. The cell number concentration was kept at 0.46106

cells/mL. The unsorted and sorted HSC- derived RBC cultures

were exposed to oxidative treatment to convert hemoglobin to

methemoglobin in order to identify the hemoglobin-containing

cells (the putative maturing RBCs) by CTV analysis, and to

evaluate the separation performance. More than 1,000 cells in

each sample were analyzed.

Cell concentration and size distribution
An automated cell counter, Z2TM Coulter CounterH (Beckman

Coulter Inc., Fullerton, CA, USA), with a 70 mm aperture, a

sample volume of 0.5 mL and a diameter range setting between 4

and 14 mm was used to measure cell concentration and size

distribution.

Cell morphology analysis by differential interference
contrast (DIC) microscopy

Ten mL samples were placed on slides and covered by covers

slip, which were then visualized by a Leica DMR upright

microscope equipped with a 406 objective lens and a CCD

camera provided by the Imaging Core of Lerner Research

Institute in Cleveland Clinic. The software, ImagePro Plus was

used to acquire and process the DIC images. Unsorted and sorted

samples were analyzed and compared. The RBC images from

donor blood were used as a control.

RBC deformability
An important step toward the large-scale application of the

cultured RBCs is characterization of their transport function,

especially their ability to enter and pass smallest capillaries which

depends on RBC deformability. Mature RBCs have the ability to

deform under the influence of externally applied shear stresses.

RBC deformability was directly assessed using Linkam CSS450

Optical Shearing System (Linkam Scientific Instruments Ltd,

United Kingdom) [16].

Positively and negatively separated cells were suspended in a

polyvinylpyrrolidone (PVP) solution (,106 cells in 80 mL) and

loaded in the sample unit of the Linkam CSS450 shearing stage.

The shearing stage was mounted to a microscope (Olympus BH2

upright microscope) sub-stage. A long distance objective with a

406 magnification was used to visualize the cells. Linkam

operation was controlled by an IBM PC generating shear rates

from 10 to 1500 s21. A PerkinElmer X400 stroboscope (Perki-

nElmer Corp., Waltham, MA, USA) was used as illuminator and a

PCO CCD camera (PCO Corp, Kelheim, Germany) was attached

to the microscope to capture the images and send them to PC.

Both the stroboscope and the camera were synchronized by a

pulse generator. An NIH software ImageJ was employed to

analyze the images and obtain cell deformation and orientation

data.

Results

Deoxygenation of whole blood
Deoxygenation of 5 mL whole blood in one 50 mL rotating

conical tube was tested in the N2 filled glove bag. After 3 hr

exposure to N2, blood oxygen partial pressure (pO2) dropped to

2.3 mmHg (the pO2 in room air is approximately 156 mmHg),

blood oxygen saturation (sO2) dropped to 3.9% (from the initial

value of 99%), as shown in Figure S3. The mean RBC number

concentration is 56109/mL of whole blood [17], which is much

higher than that expected in HSC-derived RBC cultures;

consequently, it was assumed that this method would deoxygenate

the cultures equally well or better. Five mL of HSC-derived RBC

cultures with a cell number concentration of (1–2)6108/mL were

placed in the same type of 50 mL, inclined, rotating conical tube

and exposed to N2 atmosphere for 3 hr, following which all

mature RBCs in HSC-derived RBC culture were considered to be

completely deoxygenated. After deoxygenation, cultures were

isolated by MACS separation in the glove bag (File S1 and Figure

S2).

Differences in MM between oxyHb RBC and metHb RBC
from donor blood

As presented previously, the magnetic susceptibility of erythro-

cyte is related to the hemoglobin magnetic susceptibility which, in

turn, depends on oxygen binding to the heme group. An

oxygenated RBC is more diamagnetic than the suspending,

aqueous physiologic electrolyte solution while a deoxygenated or

metHb-containing RBC is less diamagnetic due to paramagnetic

contribution of the metHb (File S1 and Eqns (4)–(6) therein)

resulting in a negative MM of the oxyHb RBC and a positive MM

of the metHb RBC (Eqn (2) above). These theoretical predictions

Erythrocyte Separation by Magnetic Susceptibility
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were experimentally validated using CTV measurements of

oxygenated and metHb suspensions of donor RBCs (obtained

from discarded blood from patients treated by therapeutic

phlebotomy, with the IRB approval). Figure 2A presents

histograms of the CTV determined MM of metHb containing

RBC and oxygenated RBC (equilibrated with air). As expected, a

clear difference between the populations can be observed. The

same data are replotted in Figure 2B as a scatterplot, with the

addition of the vertical axis showing cell sedimentation velocity, ug.

Again, the two data sets (metHb and oxyHb RBCs) are clearly

discriminated. The likely source of the data dispersion is the

heterogeneous nature of the normal RBC population and the

background noise introduced by CTV. Therefore, the cumulative

frequency plot for oxyHb RBC distribution, Figure 2A, was used

for the determination of a cut-off MM value, to discriminate

between the oxyHb RBCs and metHb RBCs. Here, the cut-off

MM was assumed as corresponding to 97% of the oxyHb RBC

cumulative frequency, mcut = 2.261026 mm3/T.A.s, Figure 2A. In

other words, less than 3% of oxyHb RBCs are expected to be

magnetically mobile, consistent with the low metHb RBC fraction

known to be present in donor blood. Subsequently, the cut-off

MM was used to divide the scatterplot shown in Figure 2B into

quadrants, and to calculate the quadrant statistics (Figure 2B). The

cut-off sedimentation velocity value, 0.0022 mm/s, used to draw

the horizontal line of the quadrants in Figure 2B, was likewise

selected based on the statistics of the sedimentation velocity

distribution, and was set at 99.5% cumulative frequency of that

distribution, Figure 3. This is consistent with the expected nearly

100% cell population viability in the donor RBCs.

This experimental, statistical, and theoretical analysis of the cell

motion in the CTV apparatus allows us to interpret the cell MM

and sedimentation velocity data in terms of the cell physical

properties: its functional Hb content and size, characteristic of the

cell differentiation stage (Figure S1). According to this interpre-

tation, Quadrant 1 in Figure 2B comprises large cells with

functional Hb (putative reticulocytes and some normoblasts);

Quadrant 2 comprises large cells with no functional Hb

(progenitor cells); Quadrant 3 comprises small cells with no

functional Hb (putative cell ghosts, cells that do not belong to the

erythroid lineage, expelled nuclei and other artifacts of the cell

culture), and Quandrant 4 comprises mature RBCs.

The type of analysis illustrated in Figure 2 allows us to establish

reference quandrants based on cut-off values for negative control

(oxyHb RBCs) and a positive control (metHb RBCs) for normal

donor blood. The establishment of these quandrants subsequently

allows us to functionally characterize RBC produced from cultures

of hematopoetic stem cells and make predictions about cellular

composition of the magnetically separated fractions. It is worth

noting here the high sensitivity of the CTV instrument, sufficient

to detect changes in the individual cell motion caused by changes

in the hemoglobin iron spin state. This allowed us to develop type

of quadrant statistics for cell data interpretation similar to that

used routinely in flow cytometry [18].

CTV as a tool for determination of RBC-like cells in HSC
cultures

Prior to separation of HSC-derived RBC cultures in deoxygen-

ated condition, the presence of the hemoglobin-containing cells

was established by oxidative treatment with NaNO2 of the cell

sample aliquot to convert the hemoglobin to methemoglobin.

These cell preparations were then analyzed by CTV for MM and

sedimentation rate. Figure 4A shows the MM histograms of the

cell culture before and after oxidative treatment. Note shift in the

mobility distribution to the right, as expected, of a sample

preparation with cells that contain metHb. Compared with the

normal donor RBC negative (oxyHb RBC) and positive (metHb

RBC) controls (Figure 2), the MM distribution of the cell from the

oxidatively treated HSC- derived RBC cultures suggests the

presence of cells with a whole spectrum of hemoglobin concen-

tration, from none to a maximum concentration characteristic of

mature RBCs. Compared with Figure S1, the MM distribution

indicated significant presence of cells with hemoglobin content

equivalent to mature RBCs, reticulocytes and normoblasts in the

HSC-derived RBC cultures. An estimate of the percent of cells

containing functional hemoglobin was determined from the

cumulative frequency plot in Figure 2A; at a

mcut = 2.261026 mm3/T.A.s, resulting in the value of 52%.

Replotting the data as a scatterplot by the addition of the cell

sedimentation velocity axis, Figure 4B, revealed that a significant

fraction of cells containing the functional hemoglobin are larger

than the mature RBCs, compare Quadrant 1 in Figure 4B with

Quandrant 1 in Figure 2B. Thus from Figure 4B, the cell culture

sample comprised 22.2% reticulocytes (Quadrant 1), 25.9%

progenitor cells (Quadrant 2), 20.8% unidentified cells (Quadrant

3) and 31.2% putative, mature RBCs (Quadrant 4).

CTV analysis of magnetically fractioned, deoxygented
HSC cultures in MACS LD columns

The same CTV analysis was repeated on cell fractions collected

from the magnetic column after magnetic separation of the HSC

cultures using a MACS LD column. Representative examples of

dot plots of sorted fractions are shown in Figure 5A and 5B. Most

cells retained in the column (the ‘‘positive’’ fraction) are magnetic,

Figure 5A, as suggested by the shift of the data distribution

towards the right when compared with the original sample,

Figure 4B. The dot plot statistics of Figure 5A shows an increase in

percentage of cells in Quadrants 1+4 as compared to the original

sample, from 53.4% to 83.8% suggesting enrichment of the

hemoglobin containing cells in the magnetically retained (‘‘posi-

tive’’) cell fraction. When limited to changes in Quadrant 4

(representative of the mature RBCs only) the increase was from

31.2% to 51.4% indicating enrichment of the mature RBCs.

Notable is significant depletion of large cells without hemoglobin

in the magnetically retained fraction, compare Quadrants 2 in

Figure 3. Donor blood oxyHb RBC settling velocity as a control
for HSC culture analysis. The blood settling velocity histogram and
its cumulative frequency distribution are shown. The cut-off settling
velocity was set at 0.995 cumulative frequency for the subsequent HSC
culture analysis.
doi:10.1371/journal.pone.0039491.g003

Erythrocyte Separation by Magnetic Susceptibility
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Figures 4A and 5A, from 25.9% to 5.1%, as would be expected.

Rather unexpected, however, were losses of the hemoglobin-

containing cells in the unretained (‘‘negative’’) fraction, seen in

Quadrants 1 and 4 in Figure 5B. This suggests that the magnetic

column was effective in retaining high magnetic susceptibility cells

(contributing to the right-hand tail of the magnetophoretic

mobility distribution shown in Figure 4A) but less so in capturing

the less susceptible ones (whose mobility is only moderately higher

than mcut = 2.261026 mm3/T.A.s in Figure 4A). Considering that

the cell MM frequency distribution decreases monotonically for

MM.mcut, Figure 4A, one indeed may expect to see significant

losses of weakly magnetic cells in the non-retained fraction, as

borne out by the experiment.

Qualitatively, the dot plot of positive fraction, Figure 5A, has a

similar distribution as that of the RBC positive control, Figure 2B,

Quadrant 4, except of the shift towards higher settling velocity

values. This indicates that the magnetically isolated cells contain

similar amount of hemoglobin as the donor-derived RBCs, but

have bigger size. This observation was further confirmed by the

Coulter counter and morphological analyses, described below. In

contrast, cells in the negative fraction are on average less magnetic

and are larger as compared to the positive fraction, Figure 5B.

Cell size analysis by Coulter counter and CTV
Cell size in the unsorted and sorted samples were evaluated by

Coulter counter and CTV. Figure S4 presents the cell volume

distribution of the HSC-derived RBC culture before and after

MACS separation. Notable is larger mean size of cells as

compared to the donor-derived RBC control (marked in grey in

Figure S4A) and a broader cell size distribution. The narrower

distribution of the positive fraction as compared to that of the

negative fraction, Figure S4B, suggests a more homogenous cell

composition in the positive fraction, consistent with the MM

results, discussed above. Also notable is the large mean cellular

volume (MCV, < 200 fL) of the positive fraction that is much

bigger than that of normal donor-derived RBCs, reported in the

literature, which is in the range of 80–100 fL [17]. This agrees

with the shift to the right of the positive cell fraction after magnetic

separation of the HSC-derived RBC culture, relative to the

positive RBC control, discussed above in reference to Figure S4A.

Figure 4. Conversion to methemoglobin by oxidative treat-
ment of HSC culture increases the magnetic cell fractional
concentration. MM histograms (A) and dot plots (B) of HSC culture
before and after the oxidative treatment used for conversion of Hb to
paramagnetic metHb and used to determine the fractional concentra-
tion of maturing RBCs in culture.
doi:10.1371/journal.pone.0039491.g004

Figure 5. Magnetic separation of HSC cultures increases
concentration of the hemoglobin containing cells. Dot plots of
sorted HSC culture under anoxic conditions (in N2 atmosphere). (A)
Positive fraction, (B) negative fraction showing shift towards more
magnetic, smaller cells (putative maturing RBCs) in the ‘‘positive’’
fraction.
doi:10.1371/journal.pone.0039491.g005
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While appreciating that the settling velocity is directly proportional

to cell volume (Eqn (4)), the phenomenon is further confirmed by

analyzing shifts in the settling velocity distributions measured by

CTV shown in Figure 6. Unsorted cells (Figure 6 A) and

magnetically unretained cells (‘‘negative’’ fraction, Figure 6C) have

a broader settling velocity distribution. The selected positive cells

(Figure 6B) sedimented a little faster in the gravity field than the

normal donor-derived RBCs, however. This again indicates that

the enriched cells are bigger than the donor-derived RBCs.

Hemoglobin content in enriched RBC-like cells
The data for hemoglobin containing cells, selected by the

condition that their MM.mcut = 2.261026 mm3/T.A.s (Quad-

rants 1 and 4 in Figure 5A) were used for the intracellular Hb

content calculation, using Eqn (7) as discussed above.

The mass density of these Hb containing cells was determined

by applying the mean cell diameter (7.26 mm) from the Coulter

counter analysis and the mean settling velocity (2.1261023 mm/s)

from CTV analysis to Eqn (4). A density of 1.070 g/cm3,

somewhat smaller than that of mature RBCs, was obtained,

which was then used to calculate the diameter and volume of Hb

containing cells from the settling velocity data. With this value of

density, and Eqn (6) and (7), the corpuscular hemoglobin

concentration was calculated for each cell in Quadrant 1 and 4

(Figure 5A). The corresponding corpuscular hemoglobin histo-

gram is presented in Figure 7. A mean corpuscular hemoglobin

(MCH) was determined to be 26.6 pg/cell, with a standard

deviation of 9.0 pg/cell. These values are very close to the

published MCH values of normal donor-derived RBC, which are

in a range of 27.5–33.2 pg/cell [17]. This confirms consistency of

the cell MM data and our CTV analysis with the published data

on intracellular iron in the mature RBCs.

Morphology and deformability analysis
DIC microscopy is an optical microscopy illumination tech-

nique used to enhance the contrast in unstained, transparent cell

samples in their natural milieu (aqueous solutions). The image has

a very realistic, clear, three-dimensional appearance almost

entirely free of the phase contrast artifacts of phase halo and

shading compared to a phase contrast image [19]. Figure 8

presents examples of DIC images of unsorted and sorted cell

samples. One can note that the original cell population of HSC-

derived RBC culture (panel B) is heterogeneous, with a very small

fraction of RBC-like cells, as compared to the blood donor RBC

control (panel A). In contrast, the morphology of the magnetically

separated positive cell fraction (panel C) is very homogeneous,

with increased frequency of the small, round, RBC like cells as

compared to the original sample and the magnetic negative

fraction (panel D). These results confirm the results of CTV and

Coulter counter analysis, presented above.

Selected cell aliquots were shipped overnight for deformability

analysis by ektacytometry to the laboratory of Dr. Kameneva,

Figure 6. Magnetic separation of HSC cultures increases
concentration of fast sedimenting cells. Cell volume distributions
by settling velocity measurements with CTV: the unsorted cells (A),
‘‘positive’’ cell fraction (B), and the ‘‘negative’’ cell fraction (C) against
the donor RBC control. The comparison shows small increase in the fast
sedimenting cell fraction in the ‘‘positive’’ fraction, in agreement with
the Coulter counter results shown in the Figure S4.
doi:10.1371/journal.pone.0039491.g006

Figure 7. MCHC distribution of the magnetically enriched cells
falls within the range expected of the maturing RBCs (compare
with Figure S1).
doi:10.1371/journal.pone.0039491.g007
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University of Pittsburgh. Typical images produced by ektacyto-

metry are presented in Figure 9. The light absorption coefficient is

relatively high for RBCs containing hemoglobin, which is a red

pigment carrying protein, as compared to water, and relatively low

for other non-Hb containing cells and the suspending medium.

The use of a bandwidth interference filter (380–420 nm) made the

Hb containing cells appear as dark objects against the bright

background and other non-Hb containing cells. Therefore, one

can see a clear evidence of enrichment of Hb containing

deformable cells, characteristic for the mature RBCs, in the

positive fraction following magnetic separation. These results

agree with the findings of the CTV analysis, discussed above, and

are further proof of consistency of the CTV method with the

already established methods of physical cell analysis.

Throughput of separation of HSC-derived RBC cultures
on MACS columns

The maximum capacity of one LD column recommended by

the manufacture is 1.06108 magnetic cells from a total cell

population of 5.06108 cells. In order to obtain a separation

throughput (cell number separated per day) as high as possible,

different sample volumes from 1.06108 to 5.06108 total cells were

tested. It was found that the process of magnetic separation was

significantly hampered by column clogging when 5.06108 total

cells was applied to the column. Columns clogged occasionally

even for lower number of loaded cells of 2.006108 total. The

clogging was traced back to a large number of platelet-size cells

found in batches of HSC-derived RBC cultures, which greatly

reduced the column capacity. These platelet- size cells, likely

immature platelets and/or released cell nuclei, tend to adhere to

each other and are retained in the column, and subsequently are

collected in the positive fraction (Figure S5).

The separation results are summarized in File S2 as Table 1.

The typical flow rate of cell suspension through the column was

about 0.2–0.25 mL/min. The total cell sorting speed per column

could be estimated and is also listed. The best cell recovery in the

positive fraction was obtained for the feed of 1.006108 cells,

followed by 2 mL buffer rinse. The corresponding cell sorting

speed per column was the lowest, however. A relatively high

sorting speed and a reproducible cell recovery in the positive

fraction were obtained for separation conditions involving

2.506108 cells in the loaded sample followed by a rinse with

4 mL buffer.

Discussion

The potential of nearly unlimited amounts of RBCs production

from hematopoietic progenitor cell cultures for blood transfusions

without the need of donors is appealing [2,3]. Given the goal of

Figure 8. Magnetic separation of HSC cultures results in the improved morphology of the cells. The morphology of cells by differential
interefence contrast (DIC) microscopy. (A) The donor-derived RBCs as a control and the HSC culture before (B) and after separation: (C) ‘‘positive’’
fraction; (D) ‘‘negative’’ fraction. Note enrichment in smaller, denser cells in (C) consistent with the presence of maturing RBCs in the magnetically
separated ‘‘positive’’ fraction. (Their size and lack of evidence of the biconcave disk morphology suggests that these are reticulocytes rather than fully
mature RBCs.).
doi:10.1371/journal.pone.0039491.g008

Figure 9. Magnetic separation of HSC cultures improves
viscoelastic properties of the cells. Deformability of cells in positive
fraction (A) and negative fraction (B). Note increased frequency of dark,
elongated objects, associated with hemoglobin containing deformable
cells characteristic of mature RBC, in panel A.
doi:10.1371/journal.pone.0039491.g009
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producing RBCs for safe transfusions into humans, not only is it

desirable for the final product to contain functioning RBCs but

also that it is devoid of contaminating cells (such as nucleated,

immature hematopoetic cells). While centrifugation or filtration

can remove many such contaminating cells based on differences in

the characteristic cell density and size, the presence of paramag-

netic (deoxygenated) hemoglobin in the maturing RBC creates an

intriguing possibility of magnetically separatiing such cells. In

other words, the presence of the deoxygenated hemoglobin in the

maturing RBCs provides a natural (intrinsic) magnetic tag offering

a unique opportunity for a label-free magnetic separation of

maturing erythrocytes from the progenitor cell culture. In this

report, we have focused on determining the feasibility of such an

approach given the challenges of weak RBC magnetization by the

deoxygenated hemoglobin and the large number of cells required

for blood transfusion.

In order to better characterize the effect of the intrinsic cell

magnetization on separation, we applied the cell magnetophoretic

mobility analysis to measure changes in the magnetic cell

fractional composition in cultures used for separation, combined

with the cell size distributions analysis. The results showed that the

hematopoietic progenitor cultures contained cells with sufficient

amount of Hb to effect their separation using a commercial, high-

gradient magnetic separator (MACSTM system). Interestingly, it

was also observed that these putative RBCs and reticulocytes were

bigger than the adult donor RBCs. Furthermore, the heterogene-

ity of the sorted cell product was confirmed by other methods used

as a reference standard, namely cell size distribution analysis by

Coulter counter, DIC microscopy, and RBC deformability assay.

The combination of physical methods probing different aspects of

cell physical properties produced a self-consistent picture of the

cell culture product as a mixture of cells with the intracellular

hemoglobin concentration comparable to that of mature RBCs

but being greater in size, more typical of reticulocytes. This type of

purely physical analysis, demonstrating that the cells contain

nearly normal concentrations of functioning hemoglobin yet are

larger than normal, adult RBCs, provides important information

about the biophysical characteristics of the hematopoietic progen-

itor cell culture system, important for further refinement of the

method.

The results summarized in File S2 (as Table 1) served the

purpose of illustrating the technical challenges of label-free,

magnetic RBC sorting using current, commercially available

HGMS columns in application to collecting an equivalent of one

unit of blood. Assuming 2.56108 cells sorted per run per column

without clogging the column and the availability of an automated

process capable of operating 1,000 columns in parallel 24 hours

per day (or fewer, larger columns of equivalent total capacity) we

estimate that it would take approximately 7 days to produce one

unit of blood (261012 RBCs) from the starting mixture containing

14% maturing RBCs in the HSC culture in a production facility.

In the final analysis, the time required for accomplishing the

separation demonstrates the limitation of the batch processing of

the HSC cultures using magnetic HGMS columns, and challenges

associated with scaling up of such a process.

An alternative is a continuous magnetic RBC sorting process, in

which the flow-through, magnetic RBC sorter (with the associated

deoxygenator) is operated at the volumetric flow rates matching

the RBC production rate in the HSC culture. We have

demonstrated feasibility of the continuous, flow-through magnetic

cell sorting process in the past, albeit in applications to the

magnetically labeled cells characterized by much higher magne-

tophoretic mobility than the deoxygenated RBCs [20]. Neverthe-

less, the current results provided a rational basis for design of flow-

through magnetic sorter for label-free RBC separation, as well as

suggested new utilization of the cultured RBCS, such as drug

delivery that requires small volumes of the modified RBCs [21].

Thus, a continuous magnetic cell separation system integrated

with the in-line deoxygenator could be a promising option for

production of the cultured RBCs intended for therapeutic

applications.

Supporting Information

File S1 Supplemental information for Materials and
Methods section.

(DOC)

File S2 Table 1: MACS separation results.

(DOC)

Figure S1 The physical properties of the cell change in
the course of erythropoiesis. Cell mean corpuscular hemo-

globin concentration (MCHC), magnetophoretic mobility (MM),

m, and hydrodynamic diameter are shown at different stages of

mammalian erythropoiesis. (A) The mean m value increases with

the RBC maturation was calculated from known cell MCHC and

diameters found in the literature [12,13] as described in the text.

(B) The broad distribution of the magnetophoretic mobilities at

different stages of the RBC maturation determines the mixed

composition of the magnetically separated fraction – note

significant overlap between RBC and reticulocyte distributions

leading to the expected presence of both types of cells in the

magnetic fraction (with appreciable admixture of normoblasts).

(TIF)

Figure S2 Magnetic separation experimental setup
under low oxygen conditions. Photograph of the deoxygen-

ation and magnetic cell separation system and its components.

The cells were kept in N2 gas (humidified) atmosphere inside a

polyethylene bag compartment in open 50 mL conical tubes

rotated on an inclined rotator for 3 hours prior to separation,

together with other system components, including media and the

magnetic HGMS columns.

(TIF)

Figure S3 Changes in the partial oxygen pressure, pO2,
and oxygen saturation, SO2, of the whole blood with
time under experimental conditions shown in Figure S2.

(TIF)

Figure S4 Magnetic separation of HSC cultures increas-
es concentration of small cells, by Coulter counter
method. Cell volume distributions of (A) unsorted and (B) sorted

cell samples by Coulter counter method. The donor blood RBC

size distribution is also shown in (A) for reference. Note

enrichment in small cells in the ‘‘positive’’ fraction in (B) indicating

enrichment in putative maturing RBCs.

(TIF)

Figure S5 Evidence of platelet-like cells in the positive
fraction of the magnetically separated HSC cultures.

(TIF)
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