Sorescu, DC and Lee, J and Al-Saidi, WA and Jordan, KD
(2012)
Coadsorption properties of CO <inf>2</inf> and H <inf>2</inf>O on TiO <inf>2</inf> rutile (110): A dispersion-corrected DFT study.
Journal of Chemical Physics, 137 (7).
ISSN 0021-9606
![[img]](http://d-scholarship.pitt.edu/style/images/fileicons/text_plain.png) |
Plain Text (licence)
Available under License : See the attached license file.
Download (1kB)
|
Abstract
Adsorption and reactions of CO 2 in the presence of H 2O and OH species on the TiO 2 rutile (110)-(1×1) surface were investigated using dispersion-corrected density functional theory and scanning tunneling microscopy. The coadsorbed H 2O (OH) species slightly increase the CO 2 adsorption energies, primarily through formation of hydrogen bonds, and create new binding configurations that are not present on the anhydrous surface. Proton transfer reactions to CO 2 with formation of bicarbonate and carbonic acid species were investigated and found to have barriers in the range 6.1-12.8 kcalmol, with reactions involving participation of two or more water molecules or OH groups having lower barriers than reactions involving a single adsorbed water molecule or OH group. The reactions to form the most stable adsorbed formate and bicarbonate species are exothermic relative to the unreacted adsorbed CO 2 and H 2O (OH) species, with formation of the bicarbonate species being favored. These results are consistent with single crystal measurements which have identified formation of bicarbonate-type species following coadsorption of CO 2 and water on rutile (110). © 2012 American Institute of Physics.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Metrics
Monthly Views for the past 3 years
Plum Analytics
Altmetric.com
Actions (login required)
 |
View Item |