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This dissertation contains two parts focusing on regression analysis and diagnostic accuracy

analysis of competing risks data. In the first part, we propose a parametric regression

model for the cumulative incidence functions (CIFs) commonly used for competing risks

data. The model adopts a modified logistic model as the baseline CIF and a generalized

odds-rate model for covariate effects, and it explicitly takes into account the constraint

that a subject with any given prognostic factors should eventually fail from one of the

causes such that the asymptotes of the CIFs should add up to one. We hence model the

CIF from the primary cause assuming the generalized odds-rate transformation and the

modified logistic function as the baseline CIF. Under the additivity constraint, the covariate

effects on the competing cause are modeled by a function of the asymptote of the baseline

distribution and the covariate effects on the primary cause. The inference procedure is

straightforward by using standard maximum likelihood theory. We demonstrate desirable

finite-sample performance of our model by simulation studies in comparison with existing

methods. Its practical utility is illustrated in an analysis of a breast cancer data set to assess

the treatment effect of tamoxifen on breast cancer recurrence that is subject to dependent

censoring by second primary cancers and deaths.

Diagnostic accuracy studies progressed in the past decade to involve complicated survival

outcomes beyond the traditional dichotomous outcome. Another recent advance in diagnostic

medicine is the appearance of novel measures for accuracy improvement due to the addition



of new markers . In the second part of this dissertation, we intend to integrate these two

evolving areas and contribute a discussion on assessing accuracy improvement for censored

survival outcomes. Furthermore, we consider competing-risk censoring in addition to the

usual independent censoring and provide statistical procedures with inference details. In

particular, we consider fitting regression models based on the CIF for the primary event.

Parallel estimators are proposed using inverse probability weighting or based on the bivariate

CIF. Both estimators perform very well in simulation studies and in an application to another

breast cancer study.

Keywords: Area under the receiver operating characteristic curve, Cause-specific hazard

function, Competing-risk censoring, Cumulative incidence function, Diagnostic and prog-

nostic accuracy improvement, Integrated discrimination improvement, Long-term inci-

dence, Modified three-parameter logistic model, Net reclassification improvement, Para-

metric modeling.
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1.0 INTRODUCTION

Competing risks has been an active research area in survival analysis. In practice, when

there are composite outcomes, it is common to see that an event of interest is competing-

risk censored by other events. For example, in the first breast cancer study considered

in this dissertation, the primary event is local cancer recurrence that may be dependently

censored by other competing events such as death or distant metastasis. In the second

breast cancer study that motivated our work, the event of interest is metastasis which may

be dependently censored by death. In a competing-risk setting, some standard quantities

such as the survival function may not be well defined if the removal of competing events

is not conceptually realistic. Instead, the cumulative incidence function (CIF) has been an

established quantity to describe cumulative risks of an event of interest over time. Since the

limit of a CIF is less than one, CIF is often called a subdistribution.

Naturally all subdistributions should add up to one when time goes to infinity, as a sub-

ject should eventually fail from one of the events. We refer to this as an additivity constraint

among CIFs from all causes. In the first part of this dissertation, our primary goal is to

investigate how covariates affect the CIFs in a regression setting. However, after carefully

reviewing existing methods in the literature, we noticed that the additivity constraint had

been ignored in some commonly used regression models for CIFs. For example, Fine and

Gray (1999)’s and Scheike et al. (2008)’s semi-parametric models only work on one event

each time. They did not jointly model all competing risks simultaneously so they did not

clearly consider this constraint. Jeong and Fine (2007) also developed a new parametric

model on CIFs without considering the additivity constraint. Hence, we propose a para-

metric regression model that is based on Jeong and Fine (2007)’s framework but specifically
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takes into account this additivity constraint. Moreover, we update their model by intro-

ducing a more flexible baseline function – the modified three-parameter logistic model of

Cheng (2009). In Chapter 2, we will give futher justification for our model specifications

and will present extensive simulation studies. We will show that our parametric model has

good practical performance, and more importantly, what the consequences of ignoring the

additivity constraint by other methods would be in comparison with our model.

The focus of the second part of this dissertation is on evaluating the additional con-

tributions of new markers in a regression model that already includes other conventional

predictors. We consider an event outcome that is subject to random or competing-risk

censoring. Traditionally, the area under receiver operating characteristic curve (AUC) is

used to measure the added value of new markers. However, researchers have documented

the limitation of AUC. For example, Pencina et al. (2008) shed light on a study in which

AUC is not sensitive enough to capturing the additional contribution of HDL cholesterol in

predicting the risk of cardiovascular disease over other covariates, even though it is a signif-

icant independent predictor. Meanwhile, they introduced a new criterion called integrated

discrimination improvement (IDI). They demonstrated that it is more sensitive than AUC.

Uno et al. (2009) developed Pencina’s IDI by considering the distribution functions of the

difference in predicted risks with and without new markers, conditional on whether or not

patients have experienced the event of interest by time t. They showed the IDI is the area

between the two conditional distribution functions and proposed some estimators for them

using inverse weighting method. In Chapter 3, we will propose an alternative estimating

method for the distribution functions based on Dabrowska (1988)’s bivariate survival func-

tion estimators. Furthermore, we will extend these estimators to a competing-risk setting

and focus on predicting the risk of interest based on its cumulative incidence function (CIF).

Parallel estimators are developed to estimate the conditional distribution functions based on

the nonparametric estimator of the bivariate CIF (Cheng et al., 2007). The two estimating

methods are compared through extensive simulation studies. We will also apply these esti-

mators to the second breast cancer study to evaluate the added value of gene score, newly

derived from microarray gene expression data, in predicting the risk of metastases.
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2.0 CONSTRAINED PARAMETRIC MODEL FOR SIMULTANEOUS

INFERENCE OF TWO CUMULATIVE INCIDENCE FUNCTIONS

2.1 INTRODUCTION

In practice, Cox regression models (Cox, 1972) and accelerated failure time models (Wei

et al., 1990; Jin et al., 2003) are commonly used to analyze covariate effects on time-to-event

outcomes. Recently, practitioners have become more aware of competing-risk censoring

(Koller et al., 2012), where the event of interest may be dependently censored by some

competing events. Competing risks arise commonly in the analysis of composite endpoints.

For example, a breast cancer dataset used later in our data example (NSABP B-14) involves

treating breast cancer patients with a hormonal therapy in an adjuvant setting. Therefore,

patients first have a surgical procedure to remove tumors, are treated with tamoxifen, and

followed for many years. For the disease-free survival endpoint, patients can experience local,

regional, or distant recurrence of breast cancer, second primary cancer other than breast,

or death prior to any disease, whichever occurs first. In this setting, if we are interested in

breast cancer recurrence, other events such as second primary cancers and death prior to

any disease should be considered as competing events because the events of primary interest

are precluded from being observed once the competing events occur.

Fine and Gray (1999) extended the Cox model to competing-risk settings and proposed a

proportional hazard model for the hazard of a subdistribution. A perhaps more familiar name

for a subdistribution is cumulative incidence function (CIF), which describes the cumulative

probability of a target event occurring up to a certain time point. The Fine and Gray

(1999) model is appealing to practitioners as the CIF has a straightforward probability
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interpretation, although the plateau of the CIF is less than one as a subject may fail from

multiple causes. Regression analyses of univariate competing risks data based on CIFs have

been well studied in the literature. Fine (2001) extended the standard log-linear regression

model to competing-risk settings and proposed semiparametric regression models for the

CIF. Klein and Andersen (2005) presented an alternative regression model based on pseudo-

values of the CIF. Scheike et al. (2008) extended the Fine and Gray (1999) model to allow

for time-varying coefficients which relax the proportional hazards assumption for hazards of

CIFs. Scharfstein et al. (1998) investigated the efficiency of covariate coefficient estimators

under the generalized odds-rate regression model, which was extended to the competing-risk

setting by Jeong and Fine (2007), where they proposed a parametric regression model for the

primary cause and competing cause CIFs given covariates by using two-parameter Gompertz

models as baseline CIFs.

Without loss of generality, we consider in this dissertation only two causes k = 1, 2, one

for the event of interest and the other for the competing event. As one subject will eventually

fail from the event of interest or the competing event, the CIFs from both causes should add

up to one as time goes to infinity. In our application to the breast cancer study, if we had

followed all the patients long enough, we would have observed that each patient either had

breast cancer recurrence, or died without breast cancer recurrence. This relationship is well

observed in nonparametric and parametric estimations of CIFs without covariates. In the

presence of covariates z, a P × 1 vector, we should also expect that

P (K = 1|z) + P (K = 2|z) = 1. (2.1.1)

whereK is a random variable representing the cause type. However, this additivity constraint

has not been explicitly considered in previous regression analyses of CIFs. Fine and Gray

(1999), Fine (2001), Klein and Andersen (2005) and Scheike et al. (2008) focused on modeling

covariate effects on the cause 1 event only. If both causes 1 and 2 are of interest, one may

run their models twice, one for each cause. However, it is not clear how to interpret the

two sets of regression parameters when the two CIFs do not add up to one as time goes to
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infinity. The same dilemma also applies to Jeong and Fine (2007), which jointly modeled

both cause 1 and cause 2 events, assuming a generalized odds-rate model for each CIF.

Therefore, in this chapter we propose a parametric regression model that explicitly incor-

porates the constraint between the two CIFs. Gaynor et al. (1993) pointed out the difficulty

in extrapolating the nonparametric estimates beyond the range of observed failure times. In

contrast, a parametric model for the CIF provides an estimate of the upper-limit probability

without extrapolation (Jeong and Fine, 2007; Cheng, 2009). Hence a parametric model is

especially useful for handling the additivity constraint on two asymptotes. We adapt the

parametric model proposed in Jeong and Fine (2007) in two ways. First, we replace the

Gompertz model with a more flexible model for baseline CIFs. Though the Gompertz model

has a nice proportional subdistribution hazards interpretation, it cannot model a sigmoidal

CIF. Cheng (2009) developed a modified three-parameter logistic model for a one-sample

CIF without covariates, and showed that it performs better than the Gompertz model, par-

ticularly when the CIF curves have a sigmoidal shape. More importantly, when we jointly

model cause 1 and cause 2 CIFs, we incorporate the additivity constraint in (2.1.1) to the

asymptotes for which existing regression methods fail to account.

By using a flexible baseline function and a generalized odds-rate model, our parametric

model seems to enjoy flexibility similar to that of its semiparametric counterparts, as shown

via simulations. Standard maximum likelihood theory is readily applied. The semiparametric

models considered in Fine and Gray (1999) and Fine (2001) use inverse probabilities of

censoring as the weights which are estimated based on data. Their estimates of regression

coefficients may be biased if the censoring survival distribution is misspecified. In contrast,

our parametric model does not require modeling for censoring times.

The rest of this chapter is organized as follows. We introduce our parametric model in

the next section. Simulation studies are given in Section 2.3 to compare the performance of

our parametric model with the Fine and Gray (1999) method, the semiparametric model by

Scheike et al. (2008) and the parametric model in Jeong and Fine (2007). The methods are

applied to breast cancer data in Section 2.4. We conclude the chapter with some remarks in

Section 2.5.
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2.2 METHOD

Let T and C be the event time and censoring time and K = 1, 2 be the random variable

representing cause type. We observe Y = min(T,C) and η = KI{T < C}, where I is the

indicator function. Fine and Gray (1999) and Fine (2001) assumed that

gk{Fk(t; z)} = gk{F0k(t)}+ β
′

kz, (2.2.1)

where Fk(t; z), k = 1, 2 are the cause k CIFs at time t given covariates z; F0k(t) are the

baseline CIFs for cause k, that is, F0k(t) = Fk(t;0); and gk are some nondecreasing known

functions, and may have different forms for the two causes. Klein (2006) proposed an additive

model for CIFs by simply letting gk(x) be x, and estimated βk under the constraint that the

CIFs have to be between zero and one. The analysis will become more complicated when we

jointly model two CIFs. The Fine and Gray method considered the complementary log-log

transformation g(u) = log{− log(1 − u)} which gives a proportional hazards interpretation

for subdistribution hazards. In our application, we are interested in assessing the effect of

tamoxifen as compared to placebo on cancer recurrence while controlling for patients’ age and

initial tumor sizes. In Section 2.4, we will show that the proportional subdistribution hazards

assumption does not hold for age. Departures from the proportional hazards assumption have

led to a more general model. Scheike et al. (2008) proposed a more general model

gk{Fk(t; z)} = z
′

1αk(t) + hk(z2,γk, t),

for k = 1, 2, where gk and hk are known link functions, αk(t) are time-varying coefficients for

a sub-vector of covariates z1 of dimension Q (Q < P ), and z2 are the remaining covariates in

z with time-independent coefficients γk. This model allows for time-varying effects for some

covariates and is more flexible than the Fine and Gray model. However, there is no guarantee

that the two asymptotes would add up to one, if both causes 1 and 2 CIF satisfy the above

models. We hence propose a generalized odds-rate model with the modified logistic function

for baseline CIFs.
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Cheng (2009) modified a three-parameter logistic function and provided a flexible para-

metric model to characterize the CIF. For cause k = 1, 2, the CIF is expressed as:

Fk(s;ψk) =
pk exp{bk(s− ck)} − pk exp(−bkck)

1 + exp{bk(s− ck)}
, (2.2.2)

where ψk = (bk, ck, pk) is the vector of three parameters. The parameter pk corresponds to

the long-term probability of the cause k event, bk describes how fast the CIF approaches its

asymptote pk, and ck describes the “center” of the rising.

To avoid intensive computing which is common for most semiparametric or nonpara-

metric regression models, we adopt flexible parametric forms for our regression model on

the CIFs. Recently the generalized odds-rate model (Dabrowska and Doksum, 1998) was

extended to competing-risk settings by Jeong and Fine (2007), where

gk(u;αk) = log[{(1− u)−αk − 1}/αk], 0 < αk <∞. (2.2.3)

Here, αk is an extra parameter for each event type. As demonstrated in Cheng (2009), the

modified three-parameter logistic model is a flexible function that characterizes the CIF. In

contrast to the Gompertz model used in Jeong and Fine (2006, 2007), the model in (2.2.2)

is especially useful to capture CIFs that have a sigmoidal shape. In this chapter, we hence

assume that F0k satisfies the parametric form given in (2.2.2). By adopting parametric

forms for gk and F0k in (2.2.1), we sacrifice some flexibility. However, this parametric model

is flexible enough to handle a variety of situations and will substantially reduce computing

intensity.

Let fk(t; z) = Ḟk(t; z), k = 1, 2, where the superscript dot denotes a derivative. Similar

to Jeong and Fine (2007), we consider the following likelihood function

n∏
i=1

[{ 2∏
k=1

fk(yi; z)I{δi=k}
}{

1−
2∑

k=1

Fk(yi; z)

}I{δi=0}]
. (2.2.4)

The cause 1 and cause 2 CIFs are both assumed to satisfy the regression models in (2.2.3)

and to be fitted simultaneously based on the above full likelihood function. Ideally, we

would like to maximize the full-likelihood under the constraint in (2.1.1). This turns out to

be a difficult task. As an example, we consider the simple case g(u) = log{− log(1 − u)}.

7



Assuming the cause k = 1, 2 baseline CIFs satisfying (2.2.2) and the complementary log-log

link function, we have

Fk(t; z) = 1−
[
1− pk exp{bk(t− ck)} − pk exp(−bkck)

1 + exp{bk(t− ck)}

]exp(β′kz)
. (2.2.5)

At baseline, F01(∞) + F02(∞) = 1 results in p2 = 1− p1. For a subject with covariates z,

F1(∞; z) + F2(∞; z) = 1− (1− p1)exp(β
′
1z) + 1− pexp(β

′
2z)

1 = 1.

This gives exp(β
′

2z) = 1
log p1

log{1−(1−p1)exp(β
′
1z)}. That is, the covariate effects on the cause

2 event can be replaced by a function of the cause 1 covariate effects and the cause 1 baseline

asymptote. Under the constraint of two asymptotes adding up to one, only the parameters

for baseline logistic functions and the cause 1 covariate effects can vary freely. When there

are more than one covariate in the model, we lose more than one degree of freedom in the

maximization procedure with this single constraint. As commented in Grambauer et al.

(2010), specifying proportional subdistribution hazards model for all CIFs “implies rather

tedious algebraic complications.” To handle this difficulty, we explicitly model the cause 1

CIF as in (2.2.3); for the competing cause, we simply adopt the modified logistic function as

follows:

F2(t; z) =
p2(z)[exp{b2(t− c2)} − exp(−b2c2)]

1 + exp{b2(t− c2)}
, (2.2.6)

where p2(z) = 1−F1(∞; z) = (1−p1)exp(β
′
1z). That is, we do not explicitly model the covariate

effects on the competing cause. However, we allow the cause 2 asymptote to depend on

covariates. Here we are taking advantage of using the modified logistic function as baseline,

since the long-term probability of type k events is directly controlled by the asymptote

parameter pk, k = 1, 2. The likelihood function in (2.2.4) is similarly used to obtain the

maximum likelihood estimators for unknown parameters. The variance of the maximum

likelihood estimators will be computed from the observed Fisher information matrix.
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2.3 SIMULATION STUDIES

2.3.1 Cause 1 event

We performed extensive simulation studies to evaluate the finite-sample performance of our

parametric regression model (Log) as compared to the Gompertz parametric model by Jeong

and Fine (Gom), the Fine and Gray method (FG) and the time-varying coefficients model

proposed by Scheike et al. (Sch). Four scenarios were considered. We let the baseline

CIFs satisfy either a modified logistic function (LOG) or a Gompertz function (GOM).

The covariate effects follow either a proportional subdistribution hazards model (PSH) or a

generalized odds-rate model (GOR).

Below we give details on how we simulated the data with the modified logistic function

as baseline and the proportional subdistribution hazards for covariate effects (LOG+PSH).

Essentially we simulated the event times and cause indicators by directly inverting the cause

1 CIF or the cumulative distribution of the cause 2 event conditional on the cause 2 event

occurring first. The similar simulation strategy was used in Fine and Gray (1999) and

discussed in Beyersmann et al. (2012, Sec 5.3). We assume that the baseline CIF for the

primary cause follows (2.2.2) with k = 1. The regression model on the cause 1 CIF satisfies

g1{F1(t; z)} = g1{F01(t)} + β11z1 + β12z2, where z1 and z2 were drawn from the standard

normal distribution and g1(u) = log{− log(1− u)}.Then the cause 1 CIF conditional on the

covariates z
′

= (z1, z2) has the form of (2.2.5) with k = 1 and β
′

1 = (β11, β12). Therefore,

we simulated the event time by F−11 (U ; z), where U ∼ uniform(0, 1) and F−11 is the inverse

function of F1(t; z). Note that F1 is improper and may not be invertible. When U <

1− (1− p1)exp(β
′
1z), we simulated the event time by

T = F−11 (U ; z) = c1 +
1

b1
log

{
1− (1− U)exp(−β

′
1z) + p1 exp(−b1c1)

p1 − 1 + (1− U)exp(−β
′
1z)

}

with k = 1. When U ≥ 1 − (1 − p1)exp(β
′
1z), k = 2 and the event time T comes from the

cause 2 event. As mentioned in Section 2.2, one needs to keep the additivity constraint
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(2.1.1). Thus, for the competing cause (k = 2), we simply use (2.2.6) to model the CIF of

the competing cause (k = 2). In this case, the conditional distribution of T given k = 2 is

F (t|k = 2) = P (T ≤ t|k = 2) =
P (T ≤ t, k = 2)

P (k = 2)
=

exp{b2(t− c2)} − exp(−b2c2)
1 + exp{b2(t− c2)}

.

Then we simulated the event time T by F−1(V |k = 2), where V ∼uniform(0,1). We also

simulated independent censoring time C following uniform(a, b), where a and b are constants

greater than zero. The observable time is Y = min(T,C) and the corresponding cause

indicator is η = kI{T < C}. Different values of a and b are used and the percentage of

censoring is around 10-20% for all simulations reported in Tables 2.1 and 2.2.

In each run of our simulations, we generated 100 or 200 pairs of event times and associated

cause indicators (approximately 30% cause 1 events, 50% cause 2 events, and 20% censoring).

Next, we fitted the simulated data by using our proposed parametric model with the modified

logistic baseline and the complementary log-log transformation (Log) (the special case of the

generalized odds-rate transformation when α → 0), the Gompertz parametric regression

model by Jeong and Fine (2007) with the complementary log-log transformation (Gom), the

Fine and Gray semiparametric method (FG) and the more general semiparametric model

by Scheike et al. (Sch). For the parametric models, the regression coefficient estimates

were obtained by using the R function “nlminb” to minimize the minus likelihood function

(2.2.4). However, when we applied the Gompertz baseline model to the simulated data, the

optimization often failed to converge. This showed the limitation of the Gompertz model

in fitting sigmoidal CIF curves. For the semiparametric models, we used the R function

“crr” in the package cmprsk (Fine and Gray, 1999) and the R function “comp.risk” in

the package timereg (Scheike et al., 2008; Scheike and Zhang, 2011). The same procedure

was repeated 2,000 times and the results were summarized in the first panel of Table 2.1

(LOG + PSH). In the table, we listed the averages of the estimates (AVE), the model-based

standard errors (MSE) which were computed based on the observed Fisher information

matrices, the empirical standard errors (ESE), and the coverage (Cov) rates of the 95%

Wald confidence intervals for the regression coefficients β11 and β12. Since the Scheike et al.

(2008) method adopts time-varying coefficients for the two covariates, we reported the results

10



on coefficients from the other three models. To include the Scheike et al. method in our

comparisons, we also reported the results on predicted CIFs at times 3 and 5 from the four

models for individuals with covariates Z1 = −1 and Z2 = 2. Since the R package cmprsk

does not provide the variance estimators for the predicted CIFs and Scheike et al. (2008)

pointed out that their model includes Fine and Gray’s model as a special case by specifying

constant effects for all covariates, we used the R package timereg with constant covariates

for predicting CIFs from the Fine and Gray model. The proposed parametric model with

the modified logistic baseline has comparable or slightly better performance in estimating

regression coefficients and predicting CIFs as compared to Fine and Gray’s semiparametric

model. For the model by Scheike et al. (2008), the standard errors provided by their R

package seem to overestimate the true variability, where the MSEs are more than double

the ESEs in the scenario of LOG+PSH. We also observed inflated MSEs in the other three

scenarios below.

To evaluate the effect of mis-specifying baseline CIFs on estimating regression coef-

ficients and predicting CIFs, we generated the data based on a Gompertz baseline and

the proportional subdistribution hazards model (GOM+PSH). The Gompertz model was

used by Jeong and Fine (2006, 2007) to model the baseline CIF. Specifically, under the

Gompertz model the baseline CIF for cause 1 is F01(t) = 1 − exp[τ1{1 − exp(ρ1t)}/ρ1],

where ρ1 < 0. By using the complementary log-log link function, the CIF for the primary

cause is F1(t; z) = P (T ≤ t, k = 1; z) = 1 − exp[τ1{1 − exp(ρ1t)} exp(β
′

1z)/ρ1]. Similarly

with the LOG+PSH scenario, we simulated the event time T by F−11 (U ; z), where U ∼

uniform(0,1), if F1 is invertible. Otherwise we simulated the event time T based on the

conditional distribution F (t|k = 2) = P (T ≤ t|k = 2). Once again, in this set of simu-

lations, we simply used the Gompertz function to model the CIF for the competing cause

P (T ≤ t, k = 2) = 1 − exp[τ2{1 − exp(ρ2t)}/ρ2], ρ2 < 0. The effect of covariates on the

cause 2 CIF is through the constraint F2(∞; z) = 1−F1(∞; z) = exp[τ1 exp(β
′

1z)/ρ1]. Since

F2(∞; z) = 1− exp(τ2/ρ2), we have τ2 = ρ2 log{1− exp[τ1 exp(β
′

1z)/ρ1]} and the conditional

distribution F (t|k = 2; z) = 1−{1−exp[τ1 exp(β
′
1z)/ρ1]}{1−exp(ρ2t)}

exp[τ1 exp(β
′
1z)/ρ1]

. The other simulation settings

remain the same as in the first scenario, resulting in about 40% cause 1 events, 50% cause 2

11



Table 2.1: Simulation results where the data were simulated from our proposed modified logistic
(panel LOG + PSH) or Gompertz model (panel GOM + PSH) with complementary log-log trans-
formation or with generalized odds-rate transformation (panels LOG + GOR and GOM + GOR),
where AVE is the average of the estimates, MSE is the average of the model-based standard errors,
ESE is the empirical standard error, and Cov is the coverage rates of the 95% Wald CIs

LOG + PSH β̂11 β̂12 F̂1(3) F̂1(5)

DIM VAR Log Gom FG Log Gom FG Log Gom FG Sch Log Gom FG Sch

100
True 0.50 0.50 0.50 0.50 0.50 0.50 0.32 0.32 0.32 0.32 0.42 0.42 0.42 0.42
AVE 0.51 - 0.51 0.52 - 0.52 0.33 - 0.33 0.33 0.44 - 0.43 0.43
MSE 0.19 - 0.19 0.19 - 0.19 0.11 - 0.12 0.36 0.13 - 0.14 0.33
ESE 0.20 - 0.20 0.20 - 0.20 0.12 - 0.13 0.14 0.14 - 0.15 0.16
Cov 0.95 - 0.94 0.95 - 0.94 0.92 - 0.90 0.98 0.92 - 0.89 0.94

200
True 0.50 0.50 0.50 0.50 0.50 0.50 0.32 0.32 0.32 0.32 0.42 0.42 0.42 0.42
AVE 0.51 - 0.51 0.51 - 0.51 0.32 - 0.33 0.33 0.43 - 0.43 0.43
MSE 0.13 - 0.13 0.13 - 0.13 0.08 - 0.09 0.25 0.09 - 0.10 0.22
ESE 0.14 - 0.14 0.14 - 0.14 0.08 - 0.09 0.10 0.10 - 0.11 0.11
Cov 0.94 - 0.94 0.94 - 0.94 0.93 - 0.92 0.99 0.93 - 0.91 0.97

GOM + PSH β̂11 β̂12 F̂1(1) F̂1(5)

DIM VAR Log Gom FG Log Gom FG Log Gom FG Sch Log Gom FG Sch

100
True 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.56 0.56 0.56 0.56
AVE 0.52 0.51 0.51 0.53 0.52 0.52 0.52 0.52 0.52 0.52 0.57 0.57 0.57 0.57
MSE 0.17 0.17 0.17 0.17 0.17 0.17 0.13 0.12 0.14 0.22 0.13 0.13 0.14 0.20
ESE 0.18 0.17 0.18 0.18 0.17 0.18 0.13 0.13 0.15 0.16 0.14 0.13 0.15 0.17
Cov 0.94 0.95 0.93 0.94 0.94 0.94 0.91 0.91 0.90 0.91 0.90 0.90 0.90 0.88

200
True 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.56 0.56 0.56 0.56
AVE 0.52 0.51 0.51 0.52 0.51 0.51 0.52 0.52 0.52 0.52 0.57 0.57 0.57 0.57
MSE 0.12 0.11 0.12 0.12 0.11 0.12 0.09 0.09 0.10 0.15 0.10 0.09 0.10 0.14
ESE 0.12 0.13 0.12 0.12 0.13 0.12 0.09 0.10 0.10 0.11 0.10 0.10 0.11 0.11
Cov 0.94 0.91 0.94 0.94 0.92 0.94 0.94 0.92 0.92 0.94 0.93 0.91 0.92 0.91

LOG + GOR β̂11 β̂12 F̂1(3) F̂1(5)

DIM VAR Log Gom FG Log Gom FG Log Gom FG Sch Log Gom FG Sch

100
True 0.50 0.50 0.50 0.50 0.50 0.50 0.26 0.26 0.26 0.26 0.34 0.34 0.34 0.34
AVE 0.56 - 0.26 0.57 - 0.27 0.27 - 0.27 0.27 0.35 - 0.35 0.34
MSE 0.51 - 0.20 0.52 - 0.20 0.10 - 0.11 0.41 0.11 - 0.13 0.47
ESE 0.48 - 0.21 0.47 - 0.21 0.11 - 0.12 0.12 0.12 - 0.14 0.14
Cov 0.96 - 0.73 0.96 - 0.75 0.90 - 0.89 0.99 0.91 - 0.89 0.98

200
True 0.50 0.50 0.50 0.50 0.50 0.50 0.26 0.26 0.26 0.26 0.34 0.34 0.34 0.34
AVE 0.54 - 0.25 0.54 - 0.25 0.27 - 0.27 0.27 0.35 - 0.35 0.34
MSE 0.36 - 0.14 0.37 - 0.14 0.07 - 0.07 0.28 0.08 - 0.09 0.31
ESE 0.32 - 0.14 0.33 - 0.14 0.07 - 0.08 0.09 0.08 - 0.10 0.10
Cov 0.95 - 0.56 0.96 - 0.56 0.92 - 0.91 0.99 0.93 - 0.92 0.99

GOM + GOR β̂11 β̂12 F̂1(1) F̂1(5)

DIM VAR Log Gom FG Log Gom FG Log Gom FG Sch Log Gom FG Sch

100
True 0.50 0.50 0.50 0.50 0.50 0.50 0.41 0.41 0.41 0.41 0.45 0.45 0.45 0.45
AVE 0.50 0.49 0.21 0.52 0.50 0.22 0.42 0.41 0.41 0.41 0.46 0.46 0.45 0.45
MSE 0.44 0.45 0.17 0.44 0.44 0.17 0.11 0.11 0.13 0.27 0.11 0.11 0.13 0.25
ESE 0.33 0.32 0.18 0.32 0.32 0.18 0.10 0.10 0.13 0.14 0.11 0.10 0.14 0.14
Cov 0.97 0.97 0.57 0.97 0.97 0.60 0.95 0.96 0.91 0.96 0.95 0.95 0.91 0.95

200
True 0.50 0.50 0.50 0.50 0.50 0.50 0.41 0.41 0.41 0.41 0.45 0.45 0.45 0.45
AVE 0.52 0.50 0.21 0.52 0.50 0.21 0.41 0.41 0.41 0.41 0.45 0.45 0.45 0.45
MSE 0.32 0.32 0.12 0.32 0.32 0.12 0.08 0.07 0.09 0.19 0.08 0.08 0.10 0.17
ESE 0.27 0.26 0.12 0.27 0.26 0.12 0.07 0.07 0.09 0.10 0.08 0.07 0.10 0.10
Cov 0.95 0.95 0.33 0.96 0.95 0.32 0.95 0.96 0.92 0.98 0.96 0.96 0.92 0.97
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events and 10% censoring cases.

We applied our proposed modified logistic regression model to the simulated GOM+PSH

data and noticed that the parameter c can be any reasonable negative number with satis-

factory fitting to the baseline CIFs. The modified logistic function uses three parameters

to capture CIF curves that can be sigmoidal. When the data are generated from the Gom-

pertz model, the CIF curves only have one bend point. Hence the third parameter c is not

necessary. We simply fixed c = −5 in the model fitting and obtained the other unknown

parameters by maximizing the likelihood function (2.2.4). We also considered the Gompertz

regression model by Jeong and Fine (2007) with the complementary log-log link function. To

have a fair comparison, we modeled the cause 1 CIF under the proportional subdistribution

hazards model and used a simple Gompertz function with the constraint for the cause 2

CIF in just the same way as the data were simulated. We also applied the semiparamet-

ric Fine and Gray and Scheike et al. models to the simulated GOM+PSH data using the

aforementioned R packages.

The results from 2,000 simulations are summarized in the second panel of Table 2.1

(GOM + PSH). When the baseline CIFs are from the Gompertz model, the performance of

our proposed logistic model is almost identical to that of the modified Gompertz model and

of the Fine and Gray method. This is in line with the results reported in Cheng (2009) that

the model fit from the modified logistic function is close to those from a Gompertz model

and a nonparametric estimator of CIF when the true CIF is generated from a Gompertz

models. The more general method by Scheike et al. (2008) also performs well, though the

standard errors provided by the package are noticeably larger than the ones from the other

three models. The performance improves slightly when the sample size increases from 100 to

200. We also simulated the data with the sample size of 500 and 40% censoring and observed

similar results; see Table A1 in the appendix.

Next, we evaluated and compared the performance of the four models when the pro-

portional subdistribution hazards assumption does not hold. We adopted the generalized

odds-rate (GOR) transformation (Dabrowska and Doksum, 1998; Jeong and Fine, 2007)

for the cause 1 CIF. That is, g1{F1(t; z);α1} = g1{F01(t);α1} + β
′

1z, where g1{ν;α1} =
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log[{(1 − ν)−α1 − 1}/α1]. We set α1 = 5 in our simulations. We considered both the mod-

ified logistic function and Gompertz function for the baseline CIFs and simply used either

the modified logistic function or the Gompertz function with the constraint for the cause 2

CIF similar to the previous scenarios. Analogously, we fitted our modified logistic regression

and the modified Gompertz model with the generalized odds-rate transformation, the Fine

and Gray method and the semiparametric model by Scheike et al. (2008) to the simulated

LOG+GOR and GOM+GOR data. In both scenarios, there are around 30-35% cause 1

events, 50% cause 2 events and 20-15% censored events.

The results are summarized in the third and fourth panels of Table 2.1. Analogous to

the LOG+PSH, when the baseline CIFs satisfy the modified logistic function, the Gomperz

model often fails to converge. As the proportional hazards assumption is clearly violated, the

Fine and Gray method results in serious downward bias in estimating covariate effects. Their

standard error estimates are also systematically smaller than those from the modified logistic

model. However, the significance levels from the two models are similar. For example, the

average p values for both coefficients are around 0.19 from the modified logistic model and

around 0.17 from Fine and Gray’s model when the sample size of the LOG+GOR data is

200. The predictions of CIFs from both models are also comparable. As before, the Scheike

et al. model tends to overestimate the standard errors in their CIF estimators. Latouche

et al. (2007) and Grambauer et al. (2010) showed that the Fine and Gray model provides a

reasonable summary of covariate effects (least false parameters) even when the proportional

subdistribution hazards assumption does not hold. Moreover, since the Fine and Gray model

is a semiparametric approach, the misspecified covariate effects may be compensated by the

nonparametric estimation of the baseline CIF. Hence, the predicted CIF is close to the true

value despite the misspecified covariate effects. For the LOG+GOR data, our modified

logistic model clearly has the best performance among the four. In the last panel for the

GOM+GOR data, once again we fixed c = −5 when we applied our modified logistic model

to the simulated data. The other three methods were also implemented. The Fine and

Gray method again seriously underestimates regression coefficients though their predictions

of CIFs are satisfactory. When the true data are from the Gompertz model, the modified
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Gompertz model performs well. However, our modified logistic model performs just as well

as the Gompertz model does. Both work well for the sample of 100 and clearly outperform

the general semiparametric model by Scheike et al. (2008). The latter overestimates the

variability in predicting CIFs so its coverage rate is close to 1. On the other hand, the

coverage rates of regression parameters from the Fine and Gray method are much lower

than the nominal level and actually decrease when the sample size increases.

Next, we focused on our parametric model and the Fine and Gray method, and investi-

gated how the censoring distribution affects the prediction of CIFs. We simulated censoring

times from the log logistic model. That is, log(C) = γ0 + γ1Z1 + γ2Z2 + σε, where γ0 is a

constant and chosen so that the censoring rate is around 20%, γ1 = γ2 = 0.5, σ = 0.5, and

ε ∼ standard logistic distribution. Therefore, the censoring time depends on covariates in

a nonproportional hazards fashion. The simulation settings for the event times remain the

same. We applied our parametric model and the Fine and Gray method to each simulated

data set. For the Fine and Gray method, we used the R package timereg by specifying a

Cox model for estimating the censoring distribution. The results are generally consistent

with those reported in Table 2.1, and the coverage rates of the predicted CIFs from our

parametric model are slightly better than those from the Fine and Gray method (89-95%

versus 82-96%); see Table A2 in the appendix for more detail.

2.3.2 Cause 2 event

So far we have been focusing on the cause 1 event. In practice, both events may be of

interest. Since our parametric modeling specifies the expressions for both CIFs, we obtained

the predicted cause 2 CIFs along with the cause 1 quantities for each data set that we

simulated previously. For the Fine and Gray method, one may run the model twice, once

for each cause. Therefore, we also applied this method to our simulated data focusing on

the cause 2 event. As in the previous subsection, we considered the four scenarios, each

simulating 2,000 data sets of size 200. The estimated average, model-based standard errors,

empirical standard errors and the coverage rates of 95% confidence intervals of the cause 2
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Table 2.2: Simulation results on the cause 2 CIFs; the data were simulated from the modified
logistic or Gompertz base with a proportional subdistribution hazard transformation (LOG+PSH
and GOM+PSH) or with a generalized odds-rate transformation (LOG + GOR and GOM + GOR);
referring to Table 2.1 for the definition of AVE, MSE, ESE, and Cov

F̂2(3) F̂2(5) F̂2(1) F̂2(5)

DATA VAR Log FG Log FG DATA VAR Log FG Log FG

LOG+PSH

True 0.07 0.07 0.49 0.49

GOM+PSH

True 0.31 0.31 0.44 0.44

AVE 0.06 0.06 0.48 0.49 AVE 0.33 0.32 0.43 0.44
MSE 0.02 0.03 0.09 0.11 MSE 0.07 0.09 0.10 0.12
ESE 0.02 0.04 0.09 0.10 ESE 0.08 0.11 0.10 0.16
Cov 0.92 0.82 0.94 0.96 Cov 0.93 0.94 0.92 0.91

LOG+GOR

True 0.08 0.08 0.57 0.57

GOM+GOR

True 0.40 0.40 0.55 0.55

AVE 0.08 0.08 0.56 0.57 AVE 0.41 0.41 0.55 0.55
MSE 0.02 0.03 0.07 0.11 MSE 0.06 0.10 0.08 0.12
ESE 0.02 0.06 0.07 0.11 ESE 0.06 0.12 0.08 0.15
Cov 0.93 0.90 0.93 0.95 Cov 0.95 0.94 0.95 0.91

CIFs from both models are summarized in Table 2.2.

We can see that on average the Fine and Gray method can still predict the cause 2

CIF pretty accurately, though its empirical standard errors are often double the empirical

standard errors from our parametric model. When the data are simulated from a modified

logistic baseline with the complementary log-log transformation, the coverage rate of the

Fine and Gray model is noticeably worse than that from the parametric model. Since we

naively applied the Fine and Gray method to both causes, we actually assumed that both

CIFs satisfy (2.2.1) with the complementary log-log link function. Let p1 and p2 be the

asymptotes of baseline cause 1 and cause 2 CIFs, where p2 = 1 − p1. Under the log-linear

model in (2.2.1) with gk(u) = log{− log(1− u)} and by the additivity constraint in (2.1.1),

we have 1− (1− p1)exp(β
′
1z) = p

exp(β
′
2z)

1 , where β1 and β2 are regression coefficients for causes

1 and 2, respectively. When we have two covariates, the above relationship is not likely to

hold. This has also been noticed by Latouche et al. (2007) and Grambauer et al. (2010).

Hence the performance of the Fine and Gray method is not satisfactory under this setting.

Under the other three scenarios, the effects of ignoring the additivity constraint between two
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CIFs on predicting CIFs appear to be less severe.

2.4 BREAST CANCER STUDY

We applied our proposed modified logistic model along with the other three to the National

Surgical Adjuvant Breast and Bowel Project Breast Cancer Study (NSABP B-14). This

study investigated the effects of tamoxifen for node negative and hormonal receptor positive

patients. The data contain information on time (in years), event (0=censored, 1=recurrence,

2=other events), treatment group (trt=1,placebo; trt=2, tamoxifen), age, and tumor size

(=tsize), for 2,582 eligible patients who had follow-up and known tumor sizes. Recurrence

is the event of interest and other events are treated as competing ones. Before fitting the

data, we coded trt=0 for placebo and trt=1 for tamoxifen, and centered the age at mean

55 and tumor size at mean 22. We first ran the Kolmogorov-Smirnov test and the Cramer

von Mises test for time invariant effects of treatment group, age and tumor size (Scheike

et al., 2008). The assumption of proportional hazards for subdistribution did not hold for

age. Figure 2.1 shows the estimated time-varying coefficient for age α(t) in the Breast cancer

Study using Scheike et al.’s model. On the left, we show the time-varying coefficient estimate

for age (solid line) along with its 95% pointwise confidence intervals (broken lines) and 95%

confidence bands (dotted lines). The age effect is time varying, though the confidence bands

generally cover 0. The package timereg also outputs the test process for the null hypothesis

α(t) being a constant. The solid line on the right panel of the figure represents the test

process based on the estimated time-varying coefficient T (t, α̂) = α̂(t) − 1
τ

∫ τ
0
α̂(t)dt, where

τ is some reasonably large time point. The gray area corresponds to the simulated test

processes under the null hypothesis. There is a clear departure from the null in the observed

test process.

To handle the departure of the proportional subdistribution hazards assumption for age,

we ran two additional models. One is a stratified Fine and Gray model (SFG) proposed
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Figure 2.1: The estimates of time-varying coefficient for age in the Breast cancer Study

by Zhou et al. (2011) (R package crrSC) for treatment and tumor size stratified on age

(dichotomized at mean). The other is the standard Fine and Gray model including terms

of treatment, tumor size, age as well as the time by age interaction (FGt). The estimated

coefficients are summarized in Table 2.3. The coefficient estimates for treatment and tumor

size are almost identical under these three models. The coefficient estimates for age are very

similar in the Fine-Gray model with or without the age by time interaction. The coefficient

for the interaction term is not significantly different from zero.

Hence we applied our modified logistic model and the modified Gompertz model with the

generalized odds-rate transformation, as well as the semiparametric model by Scheike et al.
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Table 2.3: The estimates of the regression coefficients for the Breast cancer Study based on the
Fine-Gray model (FG), the Fine-Gray model with age by time interaction (FGt), and the stratified
Fine-Gray model (SFG), where we list the coefficient estimates (Est), standard deviations (STD),
the values of the Wald statistics (z value) and corresponding p values

β̂1 trt β̂1 age β̂1 tsize β̂1 age∗t

VAR FG FGt SFG FG FGt SFG FG FGt SFG FGt

Est -0.48 -0.48 -0.48 -0.01 -0.02 - 0.02 0.02 0.02 0.001
STD 0.09 0.09 0.09 0.004 0.007 - 0.003 0.003 0.003 0.001
z value -5.60 -5.59 -5.62 -2.58 -2.67 - 7.40 7.41 7.52 1.36
p value <0.001 <0.001 <0.001 0.01 0.01 - <0.001 <0.001 <0.001 0.16

(2008) to the breast cancer data. The original Fine and Gray (1999) model without the age

by time interaction was also included for comparison because our simulations suggest that

this model can have good prediction on CIFs even though the estimates of the regression

coefficients may be biased.

Since the proportional hazards assumption does not hold for age, we specified a time-

varying coefficient for age in Scheike’s model and did not include the coefficient estimate for

age from this model in Table 2.4. For the remaining three models, the coefficient estimates

and standard errors from the modified logistic model and the modified Gompertz model are

generally close to each other, and the values from the Fine and Gray model and the Scheike

et al. model are consistently smaller than those from the parametric models. This is in line

with the simulation studies which suggest that the parametric models and semiparametric

models may have different covariate coefficients when there is a departure from proportional

subdistribution hazards assumption. However, the p values from the three models are com-

parable and fairly small for all three prognostic factors. The coefficients for treatment and

age are all negative while those for tumor size are all positive across the four models. This

suggests that the patients who were older, received Tamoxifen treatment and had smaller

tumor sizes were less likely to have cancer recurrence. This also implies that these patients

would have higher long-term incidences from competing events such as deaths or second

primary cancers.

Next, we selected two patient cases to compare the predicted CIFs from the four models.
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Table 2.4: The estimates of the regression coefficients for the Breast cancer Study based on our
proposed modified logistic (Log) and the modified Gompertz model (Gom) with generalized odds-
rate transformation, the Scheike et al. model (Sch) and the Fine-Gray model (FG); referring to
Table 2.3 for the definitions of Est, STD, z value, and p value

β̂1 trt β̂1 age β̂1 tsize

VAR Log Gom FG Sch Log Gom FG Sch Log Gom FG Sch

Est -0.82 -0.68 -0.48 -0.48 -0.02 -0.03 -0.01 - 0.04 0.04 0.02 0.02
STD 0.16 0.16 0.09 0.09 0.01 0.01 0.004 - 0.01 0.01 0.003 0.003
z value -5.15 -4.19 -5.60 -5.47 -3.22 -4.59 -2.58 - 6.05 5.37 7.40 5.95
p value <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.01 - <0.001 <0.001 <0.001 <0.001

Patient I has good prognostic factors: Tamoxifen (trt = 1), 65 years old (age = 10) and

tumor size 12 (tsize = -10), while patient II has poor prognostic factors: placebo (trt = 0),

45 years old (age = -10) and tumor size 32 (tsize = 10). The four predicted CIFs for each

patient are plotted in Figure 2.2. The solid lines are the estimated CIFs from 0 to 20 years

from the modified logistic model, the broken lines are for the modified Gompertz model

and the dotted lines are from Fine and Gray’s model. The Scheike semiparametric model is

represented by the gray lines. We first observe that the predicted CIF curves have only one

bend point. In this case, the two parametric models have similar coefficient estimates. The

predicted CIFs from the two parametric models, Fine and Gray’s model and the Scheike et

al. model are really close, which is consistent with our simulation results. The predicted

20-year recurrence rate is about 0.1 for patient I and about 0.4 for patient II based on the

four models. In the figure, we also include the confidence bands (gray broken lines) from the

Scheike et. al. model, which is available from the R package timereg.

2.5 DISCUSSION

In this chapter, we have proposed a simultaneous inference for the CIF of a primary event and

the CIF of a competing event using a flexible baseline function and a generalized odds-rate
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Figure 2.2: Breast Cancer Study

model, for which standard maximum likelihood theory is readily applied. This parametric

model provides a robust alternative to its semiparametric counterparts: it not only accounts

for nonproportionality but also provides a reliable variance estimator. It does not require

modeling for censoring times. In addition, the parametric method can easily be extended to

the case where the event time is interval-censored or left-truncated. More importantly, this

parametric model explicitly incorporates the additivity constraint between the asymptotes

of the CIFs from both causes for any given covariates.

To the best of our knowledge, this is the first attempt to address the interrelationship
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between two CIFs in regression analysis, a circumstance for which other methods fail to

account. Ignoring the additivity constraint clearly results in interpretation issues, since in

reality subjects with certain characteristics would fail from one of the competing events

eventually. We have also shown through simulations that ignoring the constraint may lead

to larger variability and lower coverage rates in estimating CIFs.

As illustrated in our example in (2.2.5), it is difficult to explicitly incorporate the ad-

ditivity constraint in (2.1.1) in the joint modeling of CIFs. Instead of explicitly modeling

covariate effects on the competing cause, we let the covariates influence the cause 2 event

through the relationship between the causes 1 and 2 plateaus. This may be a potential limi-

tation of the method. In contrast, for models based on cause-specific hazard (CSH) functions

(Korn and Dorey, 1992; Cheng et al., 1998; Hyun et al., 2009), we do not have this problem,

as the hazard functions from two causes can vary from zero to infinity. In addition, model-

ing one cause hazard function will not affect modeling for the other. However, covariates’

effects on CSH functions do not directly translate into the effects on CIFs (Gray, 1988; Pepe

and Mori, 1993; Fine and Gray, 1999). As CIFs have appealing probability interpretations,

there is substantial interest in developing regression analysis based on CIFs. Hence, we have

proposed a parametric regression method which explicitly models the cause 1 CIF through

a generalized odds-rate model and a modified logistic function as baseline, and models the

cause 2 CIF using a modified logistic baseline with the asymptote determined by the additiv-

ity constraint. This parametric model allows joint modeling two CIFs and clearly specifies

how the two CIFs interplay with one another among subjects with certain characteristics.

22



3.0 ASSESSING ACCURACY IMPROVEMENT FOR COMPETING-RISK

CENSORED OUTCOMES

3.1 INTRODUCTION

Diagnostic tests are applied to detect the disease status in clinical research. Statistical

problems arising from such practices include how to assess the accuracy of the test and

how to design tests with adequate sensitivity and specificity. In the past decade, diagnostic

accuracy studies have progressed to involve complicated survival outcomes (Heagerty et al.,

2000) beyond the traditional dichotomous outcome. When time-to-event data are concerned,

the test becomes prognostic, since it is used in a population that is yet event free to decide

who will or will not develop the event of interest at some later time. In particular, time-

dependent receiver operating characteristic (ROC) curves and area under the ROC curve

(AUC) are proposed for right-censored (Heagerty et al., 2000; Heagerty and Zheng, 2005)

and interval-censored failure times (Li and Ma, 2011).

Very often more than one tests are used to build a stronger marker with higher accuracy

for the outcome. We intend to investigate the accuracy improvement over the course of

variable addition. AUC or other ROC-based measures are well-known to be insensitive to

detecting the added values of new markers (Greenland and O’Malley, 2005; Pepe et al.,

2004; Ware, 2006). Based on such observations, new indicators have been developed to

complement the AUC measure. Among others, Pencina et al. (2008) developed two very
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useful criteria: the net reclassification improvement (NRI) and integrated discrimination

improvement (IDI). NRI is constructed by re-distributing membership of disease categories.

It was originally proposed for categorical outcomes only and has been recently extended to

survival outcomes (Pencina et al., 2011). IDI is the sum of the improvement in the integral of

sensitivity and that in the integral of specificity over all possible cutoff values from the model

without the new biomarkers to the model with the new biomarkers. For more discussion on

IDI, see Chi and Zhou (2008), Cook (2008), Greenland (2008), Kraemer (2008), Pepe et al.

(2008) and Ware and Cai (2008).

Our goal in this chapter is to integrate the time-dependent diagnostic accuracy study and

the IDI statistic. From our review of the literature, the closest development to this goal is Uno

et al. (2009) where the authors focused on distribution functions of the difference in predicted

risks, conditional on either that subjects have developed the disease or that they have not

yet by a specific time point. The two conditional distribution functions were estimated by

an inversely weighing method and the inference was carried out based on a perturbation-

resampling method (Uno et al., 2009). In this chapter, we adopt the same definition of IDI

but will propose a set of alternative estimators to the conditional distributions based on a

two-dimensional Kaplan-Meier estimator (Dabrowska, 1988).

Furthermore, we consider competing-risk outcomes which are more general than a single

event with random censoring and also more challenging due to dependence among competing

events. There has been extensive research in handling competing-risk censoring including

Tsiatis (1975), Prentice et al. (1978), Gray (1988), Gaynor et al. (1993), Pepe and Mori

(1993) and Fine and Gray (1999), among many others. However, the work on evaluating

discrimination ability of biomarkers on an outcome that is subject to competing-risk cen-

soring is limited. Foucher et al. (2011), Saha and Heagerty (2010) and Zheng et al. (2011)

extended some of the existing methods to handle an outcome that is subject to competing-

risk censoring. However, these methods used AUC to evaluate the overall accuracy of the

marker of interest and did not focus on evaluating the added values of the new markers.

With the presence of competing-risk censoring, at a fixed time point, the whole pop-

ulation will be divided into two groups: the “disease” group including subjects who have
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developed the event of interest and the “healthy” group including not only those who have

not had any event but also those who have experienced competing events. It is worth point-

ing out that the “disease” and“healthy” groups are defined based on following-up an event

prospectively which differ from a retrospective case-control study. Consequently, a “healthy”

subject at one time may become “diseased” at a later time point. We adapt the conditional

distributions considered in Uno et al. (2009) to this new “disease” and “healthy” grouping,

and also propose two sets of estimators based on the inverse probability weighting and the

bivariate cumulative incidence function (CIF) estimator which was developed by Cheng et al.

(2007). Some summary statistics are extended to the competing-risk setting for evaluating

the overall improvement by new biomarkers in risk prediction. In addition, we re-sample

the difference in risks based on the two conditional distribution functions and display the

two conditional density curves to better illustrate the added predictive value of the new

biomarkers.

The rest of the chapter is organized as follows. In Section 3.2, we provide details on

the two sets of estimators for the conditional distributions, the summary statistics and the

graphic displays. It is followed by simulation studies in Section 3.3 to evaluate and compare

the two sets of estimators for the conditional distribution functions. In Section 3.4, we apply

these estimators to a breast cancer dataset to assess whether or not adding a new marker,

gene score, into a model can improve the prediction over conventional markers. We conclude

with some remarks in Section 3.5.

3.2 METHODS

In this chapter we discuss both typical survival outcomes and competing-risk outcomes. In

a competing-risk setting, there are usually two or more types of events. Without loss of

generality, we consider only two events, the primary event with the event type indicator

k = 1, and the competing event with k = 2, as multiple competing events can be grouped
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together. We define T as the time to first event, whichever occurs first. When we consider

the composite endpoint T , it may also be subject to independent censoring by C. As in a

typical survival study, we observe X = min(T,C) and the censoring indicator ∆ = I(T ≤ C),

where I(·) is an indicator function. Let z1, a p × 1 vector, denote conventional predictors

and let z2, a q×1 vector, denote the new biomarkers. At any pre-specified time t0, we define

P10(z1; t0) = Pr(T ≤ t0|z1), and P20(z1, z2; t0) = Pr(T ≤ t0|z1, z2),

where P10 and P20 are the cumulative risks of developing the composite event by time t0, given

the conventional markers only and given both the conventional and new biomarkers. Though

survival functions are more commonly used in survival analysis, we adopt the cumulative

distribution functions of the composite event, since they are simply the survival functions

subtracted from 1, and they are more closely related to the following CIFs. When we focus

on a specific event, say k = 1, we are interested in

P1(z1; t0) = Pr(T ≤ t0, k = 1|z1), and P2(z1, z2; t0) = Pr(T ≤ t0, k = 1|z1, z2),

which correspond to cumulative risks of the primary or cause 1 event by time t0. With the

presence of censoring due to a competing event, the survival function of the latent failure time

of cause 1 event is not well defined. Instead, the CIF and the cause-specific hazard function

have been widely used in the competing-risk literature (Kalbfleisch and Prentice, 2002). We

adopt the CIF in our current study as it has an appealing probability interpretation.

The above probabilities are functions of the markers (or covariates) and therefore are

random variables. Treating probabilities as random variables might be like a surprise for

some practitioners. However, such an idea is not new and has emerged in quite many areas.

For example, the commonly used P-values are treated as random in microarray studies

(Efron, 2010). The risks are unobservable and must be evaluated indirectly through data.

In practice, we usually construct a regression model that helps calibrate the values of these

probabilities and treat them as observations of the random variables. Conventionally, we

still call the calibrated values as risks. For binary outcomes, the logistic regression model

and other appropriate binary regression models may be used (Pfeiffer and Gail, 2011). For
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typical survival and competing-risk outcomes, one can usually adopt the Cox proportional

hazards model or the Fine and Gray model (Fine and Gray, 1999).

3.2.1 Estimating conditional distributions of the composite event time

Uno et al. (2009) estimated P10 and P20 based on a random sample {(Xi,∆i, z1i, z2i), i =

1, . . . , n} using the Cox model. More specifically, two Cox models were fitted to the data,

without and with the new biomarkers z2. Then for each subject the predicted risks of

developing an event at time t0, P̂10 and P̂20, were calculated based on the two models as

P̂10(z1; t0) = 1− Ŝ10(t0)
exp(zT1 β̂1),

P̂20(z1, z2; t0) = 1− Ŝ20(t0)
exp(zT1 β̂2+zT2 β̂

∗
2),

where Ŝj0(t) (j = 1, 2) are the estimated baseline survival functions for the two Cox models,

β̂j are the estimated regression coefficients for z1 under two models, and β̂
∗
2 is the estimated

regression coefficients for z2 in the second model. We note that P̂10 and P̂20 may themselves

be of interest to practitioners and their distributions could provide some insight on risk man-

agement. In fact, Pfeiffer and Gail (2011) studied distributions of such quantities for binary

outcomes and defined some criteria for risk prediction based on a Lorenz transformation and

an inverse Lorenz transformation. The same criteria can be defined for survival outcomes

easily by introducing I(T ≤ t0) as a binary outcome.

We are interested in evaluating whether the model with new markers better discriminates

subjects who will develop the outcome of interest by time t0 from those who will not across

various levels of z1 and z2. To this end, we adopt the definitions proposed in Uno et al.

(2009), and focus on the difference in predicted risks between the models with or without

the markers, D̂(t0) = P̂20(z1, z2; t0)− P̂10(z1; t0), and the conditional distributions of D̂:

F (s; t0) = Pr(D̂(t0) ≤ s|T ≤ t0) and G(s; t0) = Pr(D̂(t0) ≤ s|T > t0),

where s ∈ [−1, 1]. We provide a few insights here. For a good biomarker, we expect an

increase in the predictive risk of the event for subjects who have the event and a decrease
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in the predictive risk for the non-event population. Hence, its corresponding F (s; t0) should

be close to 0 for s < 0 and rise fast for s > 0 while its corresponding G(s; t0) should rise fast

for s < 0 and stay flat for s > 0. These two distribution functions act similarly to sensitivity

and specificity widely used in diagnostic medicine and therefore can be used to describe

the prediction accuracy for survival outcomes. Adopting the terminology therein, we call

F as the true positive probability (TPP) and G as the false positive probability (FPP) for

the estimated risk difference. The focus of this chapter is to estimate these two conditional

probabilities as well as their extensions to competing-risk settings, and to develop accuracy

improvement diagnostics based on these two distribution functions.

Uno et al. (2009) proposed the following inversely weighted estimators:

F̂ (s; t0) =

∑n
i=1 ∆i{Ĥ(Xi)}−1I{D̂i ≤ s,Xi ≤ t0}∑n

i=1 ∆i{Ĥ(Xi)}−1I(Xi ≤ t0)

and

Ĝ(s; t0) =

∑n
i=1 I{D̂i ≤ s,Xi > t0}∑n

i=1 I(Xi > t0)
,

where Ĥ(·) is the estimator for the survival function of censoring, i.e. H(t) = Pr(C > t),

and D̂i = P̂20(z1i, z2i) − P̂10(z1i) is the difference in the estimated risk probabilities of the

two models given covariates for the i-th subject. We call these estimators as the inverse

probability weighting (IPW) estimators. The inference of these estimators is based on a

perturbation-resampling method (Uno et al., 2009).

We now propose a new set of estimators for F (s; t0) and G(s; t0). Our new estimators

are based on the fact that the two conditional distribution functions can be written as

F (s; t0) =
Pr(D̂ ≤ s, T ≤ t0)

Pr(T ≤ t0)
and G(s; t0) =

Pr(D̂ ≤ s, T > t0)

Pr(T > t0)
.

That is, the conditional distribution functions can be expressed in terms of the joint survival

function of D̂ and T , SD̂,T (s, t0) = Pr(D̂ > s, T > t0) and the marginal quantities, SD̂(s) =

P (D̂ > s) and ST (t0) = P (T > t0). We adopt the Dabrowska (1988) estimator for the

bivariate survival function, ŜD̂,T (s, t0), since it has good practical performance and is easy

to implement. The marginal quantities can be estimated by the Kaplan-Meier estimator

ŜT (t0) or one minus the empirical cumulative distribution function ŜD̂(s). Plugging in these
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nonparametric estimators for the bivariate and univariate quantities, we provide alternative

estimators for F (s; t0) and G(s; t0) as follows:

F̂ ′(s; t0) =
1− ŜT (t0)− ŜD̂(s) + ŜD̂,T (s, t0)

1− ŜT (t0)

and

Ĝ′(s; t0) =
ŜT (t0)− ŜD̂,T (s, t0)

ŜT (t0)
.

We call our estimators as Dabrowska’s estimators (Dab) and use the bootstrap method

for inference. More specifically, after we fit the two models with and without the new

biomarkers, we obtain the data {(D̂i, Xi,∆i), i = 1, . . . , n}. Then we treat the data as the

“raw” data and resample with replacement to obtain B bootstrap samples {(D̂b
i , X

b
i ,∆

b
i), i =

1, . . . , n}, b = 1, . . . , B. For each bootstrap sample, we obtain the estimators F̂ ′b(s; t0) and

Ĝ′b(s; t0), yielding B replications for each estimator based on which the bootstrap standard

deviation is calculated.

Since the Dabrowska estimator was developed for bivariate events both subject to random

censoring, our estimator has the potential to handle the case where the risk difference is

censored. For example, the biomarkers of some subjects may be beyond the detection limit,

hence the predicted risk is right censored by the risk at the detection limit. When the risk

difference is observed for each subject, our estimators and the inverse weighting estimators

have comparable performance based on our simulation studies; see Section 3.3 for more

details. The exact computation formula for our estimator may look complicated and need

rather lengthy description of notation. We refer to Dabrowska (1988) for more details. To

facilitate applications, we have made our code downloadable at the following website:

http : //www.stat.pitt.edu/yucheng/software.html

and readers with a basic understanding of R should have no difficulty in implementing our

code.
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3.2.2 Estimating conditional distributions in a competing-risk setting

We now consider a more general setting where the primary event of interest may be depen-

dently censored by competing events. With the presence of competing events, we are inter-

ested in predicting cumulative risks of the primary event over time given conventional predic-

tors P1(z1; t0) and additionally new markers P2(z1, z2; t0). To estimate P1 and P2, we may use

the multistate model proposed by Andersen et al. (2002) and the proportional subdistribu-

tion hazards model by Fine and Gray (1999), which are the two popular methods among CIF

regression models. In the following we provide some details on the multistate model and will

give some discussion on the Fine and Gray model in the data analysis for the risk of metasta-

sis. Since the likelihood function for univariate competing risks data factors into a separate

component for each cause-specific hazard function (Kalbfleisch and Prentice, 2002), we can

apply the Cox model to a specific cause while treating the other event as if it were indepen-

dent censoring. The multistate model essentially is to run the Cox model twice, one for each

event type. For the model with conventional predictors only, the cumulative cause-specific

hazard functions can be estimated through Λ̂k(u; z1) = Λ̂k0(u) exp(zT1 β̂
k

1), where Λ̂k0(u) are

the estimated baseline cumulative cause-specific hazard functions and β̂
k

1 are the estimated

coefficients of traditional predictors from the Cox model for the cause k event, k = 1, 2. Then,

the overall survival function is estimated as Ŝ(u; z1) = exp{−Λ̂1(u; z1)− Λ̂2(u; z1)}. The CIF

at t0 is then estimated through its relationship with the cause-specific hazard function and

the overall survival function. That is, P̂1(z1; t0) =
∫ t0
0
Ŝ(u−; z1)dΛ̂1(u; z1). Following the

same method, for the model with both conventional predictors and new biomarkers we ob-

tain an estimator P̂2(z1, z2; t0). The difference in predicted risks for the cause 1 event is

D̂∗(t0) = P̂2(z1, z2; t0)− P̂1(z1; t0).

Focusing on the cause 1 event, we divide the population into those who have developed

the cause 1 event by t0 and those who have not. We define the conditional distributions as

F1(s;t0)=Pr{D̂∗(t0)≤s|T ≤ t0, k=1} and G1(s;t0)=Pr{D̂∗(t0)≤s|(T ≤ t0, k=1)c}. (3.2.1)

As we have mentioned in the introduction, the “healthy” group in G1 includes all patients

who have not experienced any disease and those who have experienced the competing event.
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This definition of a disease-free status is consistent with the augmented at-risk set used in

Fine and Gray (1999) and Fine (2001), where subjects who have failed from cause 2 event

before or at t are included in the at-risk set for cause 1 event. Foucher et al. (2011) considered

the set {T > t0, k = 1} which is less intuitive as Pr(T > t0, k = 1) is nonparametrically

nonidentifiable. However, if the new biomarkers are expected to significantly improve the

prediction of cause 2 event, it may not be reasonable to include those subjects who have

failed from cause 2 event by t0 in the disease-free group. In this case, we may consider

computing two F functions for each event, F1(s; t0) = Pr(D̂∗ ≤ s|T ≤ t0, k = 1) and

F2(s; t0) = Pr(D̂∗ ≤ s|T ≤ t0, k = 2), and comparing with the “control” group that only

includes those who have not failed from any event yet, G∗(s; t0) = Pr(D̂∗ ≤ s|T > t0), as

suggested in Pepe et al. (2008) and considered in Saha and Heagerty (2010) and Zheng et al.

(2011). We will focus on the definitions in (3.2.1) in this chapter and note that the proposed

estimating strategy in the following can easily be adapted to the alternative definitions.

Parallel to the inverse probability weighting estimator and Dabrowska estimator for the

outcome with independent censoring, we develop the following two sets of estimators of

F1(s; t0) and G1(s; t0) for the outcome with competing-risk censoring. We first extend the

inversely weighted estimators to the competing risks setting as follows:

F̂1(s; t0) =

∑n
i=1 ∆i{Ĥ(Xi)}−1I{D̂∗i ≤ s,Xi ≤ t0, ki = 1}∑n

i=1 ∆i{Ĥ(Xi)}−1I(Xi ≤ t0, ki = 1)

and

Ĝ1(s; t0) =

∑n
i=1[I{D̂∗i ≤ s,Xi> t0}{Ĥ(t0)}−1 + ∆i{Ĥ(Xi)}−1I{D̂∗i ≤ s,Xi≤ t0, ki= 2}]∑n

i=1[I(Xi > t0){Ĥ(t0)}−1 + ∆i{Ĥ(Xi)}−1I(Xi ≤ t0, ki = 2)]
,

where, ki is the observed event type for ith observation, and D̂∗i (t0) = P̂2(z1i, z2i; t0) −

P̂1(z1i; t0) is the difference in the estimated cause 1 CIFs for the i-th subject. For the

F̂1(s; t0), we still use the same weight as the IPW estimators except that we concentrate

on the cause 1 event. Ĝ1(s; t0) is more complicated here because it consists of two sets

of people. The first set contains those who have not had any event by time t0. They are

weighted by Ĥ(t0) to compensate for those who are censored at or after t0. For those who

experienced cause 2 event at Xi ≤ t0, we use Ĥ(Xi) as their weights to account for those
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who were censored at Xi. By taking expectation, we can see that the numerator of Ĝ1(s; t0)

is the joint function of D̂∗, T , and k, and the denominator is the joint function of T and k.

Hence we can develop consistency and weak convergence of these estimators following similar

arguments for the IPW estimator. The inference is based on bootstrap. In the following we

refer to these estimators as the modified IPW (mIPW) estimators.

Moreover, we propose another set of estimators for the conditional distribution functions

F1(s; t0) and G1(s; t0). Like our alternative estimators in the one-event setting, we can

rewrite

F1(s; t0) =
Pr(D̂∗ ≤ s, T ≤ t0, k = 1)

Pr(T ≤ t0, k = 1)

and also

G1(s; t0) =
Pr{D̂∗ ≤ s, (T ≤ t0, k = 1)c}

Pr{(T ≤ t0, k = 1)c}
=

Pr(D̂∗ ≤ s)− Pr(D̂∗ ≤ s, T ≤ t0, k = 1)

1− Pr(T ≤ t0, k = 1)
.

Then, applying the bivariate CIF estimator F̂11 for F11(s, t0) = Pr(D̂∗ ≤ s, T ≤ t0, k = 1)

(Cheng et al., 2007) and the univariate CIF estimator F̂T for FT (t0) = Pr(T ≤ t0, k = 1), we

propose the following alternative estimators:

F̂ ′1(s; t0) =
F̂11(s, t0)

F̂T (t0)

and

Ĝ′1(s; t0) =
n−1

∑n
i=1 I{D̂∗i ≤ s} − F̂11(s, t0)

1− F̂T (t0)
.

In the following we will refer to our alternative estimators as the CFK estimators. Due to

page limit we omit the exact form of F̂11 which requires a lengthy introduction of notation.

The R code will be available at the website mentioned earlier. The statistical inference

procedure relies on the bootstrap method.
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3.2.3 Evaluating the added predictive ability of new markers

3.2.3.1 Extending existing criteria After obtaining the above estimators for the con-

ditional distributions, we compute three criteria considered in Uno et al. (2009) to evaluate

the added value of new markers. For a single-event outcome evaluated at t0, the IDI pro-

posed in Pencina et al. (2008) corresponds to the area between the two distribution functions,

F (s; t0) and G(s; t0). That is,

IDI (t0) =

∫ 1

−1
G(s; t0)ds−

∫ 1

−1
F (s; t0)ds.

It can be readily estimated by plugging in the estimated functions for G and F . The

integration can be carried out via trapzoid approximation or the Monte Carlo method. We

note that in the absence of censoring our estimation formula for IDI reduces to a simple

difference in means.

The vertical distance between two distribution functions at s = 0 is called improvement in

the AUC (IAUC) in Uno et al. (2009). That is, IAUC=Pr(D̂ ≥ 0|T ≤ t0)−Pr(D̂ ≥ 0|T > t0).

We can show that the IAUC is exactly two times the extended NRI (Pencina et al., 2011)

for survival data, and can be estimated by using the empirical distribution for D̂.

The third criterion is the difference in the medians of the two conditional distribution

functions, i.e. argmins{F (s; t0) ≥ 0.5}−argmins{G(s; t0) ≥ 0.5}. Again, it can be estimated

by plugging in the distribution estimators.

These three criteria can be analogously extended to competing-risk settings where D̂ is

replaced by D̂∗ which is the difference in predicted risks of developing cause 1 event, and the

“disease” and “healthy” groups contain those who have developed the cause 1 event by t0,

and the remaining subjects. The three extended criteria can be estimated similarly as those

in the composite-event setting.

The inference procedure is based on bootstrapping. As described in Section 3.2.1, we

generate B bootstrap samples and obtain B estimates of the IDI, IAUC and difference in the

medians. Kerr et al. (2011) and Demler et al. (2012) pointed out that asymptotic normality

may not hold for the estimated IDI or AUC if the added new biomarkers are not statistically

significant. Therefore, instead of obtaining the bootstrap standard deviation based on the B
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replications and constructing inference procedures based on asymptotic normality, we report

the lower 2.5 percentile and upper 2.5 percentile of the B estimates as the 95% bootstrap

confidence intervals in our data analysis.

3.2.3.2 Comparing density curves The above three criteria are based on the cumula-

tive distribution functions for event and non-event populations. However, it is often not easy

to visually inspect the difference in cumulative distribution functions. Hence we sample data

from the estimated cumulative distribution functions F (s; t0) and G(s; t0) for a composite-

event outcome, or from F1(s; t0) and G1(s; t0) for a competing-risk outcome, following the

idea of Wei (2008). Then we display the smoothed density curves of the two distributions

side by side in a single graph; see Figure 3.3 for an example. The plot often provides a better

illustration of the added values of the new biomarkers in separating the event and non-event

populations.

3.3 SIMULATION STUDIES

The goal of the simulation studies is to evaluate and compare the Uno estimators and our

proposed Dabrowska estimators of the conditional distribution functions F (s; t0) and G(s; t0)

in the composite-event setting, and the modified Uno estimator and the CFK estimator of

F1(s; t0) and G1(s; t0) in the competing-risk setting. We first considered the composite

outcome with independent censoring. In this setting, we simulated the event time from a

Weibull model with three hypothetical covariates, Z1, Z2, and Z3 as follows:

log(T ) = β0 + β1Z1 + β2Z2 + β3Z3 + σW,

where Z1 and Z3 were generated from a standard normal distribution and Z2 was generated

from a Bernoulli (0.7) distribution, and W has the standard extreme value distribution.

This error distribution gives the proportional hazard interpretations for all covariates. We
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selected β0 = 2.25, β1 = 0.05, β2 = −0.05, β3 = 0.25, and σ = 0.1 so that the simulated event

times are not very skewed. Note that β3, the coefficient for the new marker, is five times of

β1 and β2 which are the coefficients for two conventional predictors. Therefore, we expect

that the new model including Z1, Z2, Z3 would have improved predictive ability than the old

model with Z1 and Z2 only. The censoring time was simulated from a uniform [a, b], where

a and b were selected to control the censoring rates at 10% or 50%.

For each simulated dataset containing 100 or 200 observations of (X,∆, Z1, Z2, Z3), we

ran the Cox regression model without or with the new marker Z3, upon which we computed

P̂10 and P̂20, and D̂ = P̂20 − P̂10 for each subject. The R function “coxph” in the package

survival was used for the Cox model. We then obtained the Uno estimates F̂ (s; t0) and

Ĝ(s; t0) and the Dabrowska estimates F̂ ′(s; t0) and Ĝ′(s; t0) at s = −0.1, 0, 0.1 and t0 = 8, 10,

following the estimation procedures described in Section 3.2.1. We considered two sample

sizes (n = 100 or n = 200) and two censoring rates (10% and 50%) and did 1,000 simulations

for each of four combinations. The simulation results are summarized in Table 3.1.

The true values were computed based on a large sample (n = 1, 300, 000) without cen-

soring. AVE and BSE are the averages of the 1,000 point estimates and bootstrap standard

errors. Though the perturbation method may be used for the Uno estimator, we apply the

bootstrap approach to both estimators for a fair comparison, since the Dabrowska estimator

usually relies on bootstrap for inference. ESE is the empirical standard error calculated from

the 1,000 point estimates. Cov is the coverage rate of 95% confidence intervals constructed

based on the bootstrap standard errors and asymptotic normality. When the censoring pro-

portion is low and n = 100, the two estimators perform equally well on predicting the risk

probabilities, except for G(0.1; 10) where the coverage rates for both estimators are as low

as 70%. This is expected as for larger t0, the number of “healthy” subjects is small. The

coverages are again close to 0.95 when the sample size increases to 200. When there is

heavy censoring (50%), the estimation on the boundary becomes more problematic. Both

estimators have low coverage rates at G(·; 10). However, our proposed Dabrowska estimator

seems to be more robust to extremely small number of subjects than the IPW estimator

(e.g., coverages 0.64 vs. 0.31 for G(0.1; 10) with n = 100 and 0.73 vs. 0.58 for n = 200).
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Table 3.1: Simulation results comparing the inversely weighted estimators (IPW) to the Dabrowska
estimators (Dab) of the conditional distributions for the outcome with independent censoring

10% F (−0.1; 8) F (0; 8) F (0.1; 8) F (−0.1; 10) F (0; 10) F (0.1; 10)

DIM VAR IPW Dab IPW Dab IPW Dab IPW Dab IPW Dab IPW Dab

100

True 0.12 0.17 0.22 0.12 0.16 0.21

AVE 0.12 0.11 0.17 0.16 0.22 0.21 0.12 0.11 0.16 0.15 0.22 0.21
BSE 0.05 0.05 0.06 0.06 0.07 0.07 0.04 0.04 0.05 0.04 0.05 0.05
ESE 0.04 0.04 0.05 0.05 0.06 0.06 0.04 0.04 0.04 0.04 0.06 0.06
Cov 0.95 0.93 0.96 0.94 0.96 0.95 0.95 0.92 0.96 0.93 0.93 0.90

200

True 0.12 0.17 0.22 0.12 0.16 0.21

AVE 0.12 0.11 0.17 0.16 0.22 0.21 0.12 0.11 0.16 0.15 0.21 0.21
BSE 0.04 0.04 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.04 0.04
ESE 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.04
Cov 0.95 0.94 0.97 0.96 0.97 0.96 0.96 0.94 0.96 0.94 0.94 0.93

10% G(−0.1; 8) G(0; 8) G(0.1; 8) G(−0.1; 10) G(0; 10) G(0.1; 10)

DIM VAR IPW Dab IPW Dab IPW Dab IPW Dab IPW Dab IPW Dab

100

True 0.81 0.87 0.92 0.87 0.92 0.95

AVE 0.81 0.81 0.87 0.87 0.92 0.92 0.87 0.87 0.92 0.92 0.96 0.96
BSE 0.05 0.05 0.04 0.04 0.04 0.03 0.06 0.06 0.05 0.05 0.03 0.03
ESE 0.05 0.05 0.04 0.04 0.03 0.03 0.06 0.06 0.05 0.05 0.04 0.04
Cov 0.94 0.94 0.96 0.95 0.93 0.94 0.93 0.93 0.92 0.91 0.72 0.73

200

True 0.81 0.87 0.92 0.87 0.92 0.95

AVE 0.81 0.81 0.87 0.87 0.92 0.92 0.87 0.87 0.92 0.92 0.95 0.96
BSE 0.04 0.04 0.03 0.03 0.03 0.03 0.05 0.05 0.04 0.04 0.03 0.03
ESE 0.03 0.03 0.03 0.03 0.02 0.02 0.04 0.04 0.03 0.03 0.02 0.02
Cov 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.92 0.92

50% F (−0.1; 8) F (0; 8) F (0.1; 8) F (−0.1; 10) F (0; 10) F (0.1; 10)

DIM VAR IPW Dab IPW Dab IPW Dab IPW Dab IPW Dab IPW Dab

100

True 0.12 0.17 0.22 0.12 0.16 0.21

AVE 0.11 0.12 0.17 0.16 0.22 0.21 0.12 0.12 0.16 0.15 0.24 0.22
BSE 0.06 0.06 0.07 0.07 0.07 0.07 0.06 0.05 0.06 0.06 0.07 0.07
ESE 0.05 0.05 0.06 0.06 0.07 0.07 0.05 0.06 0.06 0.07 0.09 0.10
Cov 0.93 0.92 0.96 0.92 0.96 0.94 0.92 0.87 0.95 0.89 0.88 0.82

200

True 0.12 0.17 0.22 0.12 0.16 0.21

AVE 0.12 0.12 0.17 0.16 0.22 0.21 0.12 0.12 0.16 0.15 0.22 0.22
BSE 0.04 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.05
ESE 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.06 0.06
Cov 0.95 0.92 0.97 0.94 0.97 0.95 0.94 0.91 0.94 0.92 0.90 0.88

50% G(−0.1; 8) G(0; 8) G(0.1; 8) G(−0.1; 10) G(0; 10) G(0.1; 10)

DIM VAR IPW Dab IPW Dab IPW Dab IPW Dab IPW Dab IPW Dab

100

True 0.81 0.87 0.92 0.87 0.92 0.95

AVE 0.81 0.80 0.88 0.88 0.92 0.92 0.87 0.87 0.92 0.92 0.96 0.96
BSE 0.06 0.06 0.05 0.05 0.04 0.04 0.10 0.08 0.07 0.06 0.04 0.04
ESE 0.06 0.06 0.05 0.04 0.04 0.03 0.11 0.09 0.09 0.08 0.06 0.05
Cov 0.94 0.92 0.93 0.95 0.89 0.92 0.72 0.83 0.53 0.74 0.31 0.64

200

True 0.81 0.87 0.92 0.87 0.92 0.95

AVE 0.81 0.81 0.87 0.87 0.92 0.92 0.87 0.87 0.92 0.92 0.96 0.96
BSE 0.04 0.04 0.04 0.03 0.03 0.03 0.08 0.07 0.06 0.05 0.04 0.04
ESE 0.04 0.04 0.03 0.03 0.03 0.02 0.07 0.06 0.06 0.05 0.04 0.04
Cov 0.96 0.95 0.95 0.96 0.94 0.94 0.92 0.94 0.80 0.87 0.58 0.73
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Next, we focus on the outcome that is subject to competing-risk censoring. We used the

same Weibull model to generate the event times and the covariates were the same as those

in the one-event setting. The cause indicators, k, were generated by randomly assigning to

one of the two causes with probability 0.5. The other simulation settings remained the same.

For each simulated dataset, we first applied the multistate model to predict CIFs without or

with Z3, P̂1 and P̂2, and computed D̂∗ = P̂2 − P̂1. Then we obtained the modified inversely

weighed estimates (mIPW) F̂1(s; t0) and Ĝ1(s; t0) and our proposed alternative estimates

(CFK) F̂ ′1(s; t0) and Ĝ′1(s; t0), as we described in Section 3.2.2. The simulation results are

summarized in Table 3.2.

In Table 3.2, we add the subscript 1 to all quantities to emphasize that we are only

interested in the cause 1 event. Recall that F1(s; t0) = Pr(D̂∗ ≤ s|T ≤ t0, k = 1) and

G1(s; t0) = Pr{D̂∗ ≤ s|(T ≤ t0, k = 1)c}. The estimation of P̂1 and P̂2 involves running

the Cox model twice for the two causes. Due to the memory limitation in R, the true

values in Table 3.2 were computed based on a sample of size 500, 000. Like Table 3.1, the

top two panels in Table 3.2 show the estimates of F1(s; t0) and G1(s; t0) at s = −0.1, 0, 0.1

and t0 = 8, 10 for a sample of 100 or 200 with 10% censoring. The bottom two panels are

for the 50% censoring. Since we have roughly half the cause 1 events as compared to the

overall number of events, in some cells the coverage rates are not satisfactory. However, the

coverage rates generally increase with the increase in the sample size and the decrease in the

censoring proportion, except for F1(0.1; 10) and G1(0.1; 10), where the “true” values may

not be accurate due to the relatively small sample in computing the true values. In general,

the two sets of estimators perform well with moderate sample size and light censoring.

3.4 A BREAST CANCER STUDY

We applied the estimators of the conditional distribution functions and summary measures

to the breast cancer study data used in Uno et al. (2009). The original gene expression
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Table 3.2: Simulation results comparing the modified inverse weighted estimators (mIPW) and the
alternative estimators (CFK) in a competing-risk setting

10% F1(−0.1; 8) F1(0; 8) F1(0.1; 8) F1(−0.1; 10) F1(0; 10) F1(0.1; 10)

DIM VAR mIPW CFK mIPW CFK mIPW CFK mIPW CFK mIPW CFK mIPW CFK

100

True 0.07 0.17 0.28 0.09 0.16 0.32

AVE 0.07 0.07 0.17 0.17 0.28 0.28 0.09 0.09 0.17 0.17 0.37 0.37
BSE 0.05 0.05 0.08 0.08 0.11 0.11 0.05 0.05 0.07 0.07 0.08 0.08
ESE 0.05 0.05 0.08 0.08 0.10 0.10 0.05 0.05 0.06 0.06 0.13 0.13
Cov 0.73 0.73 0.93 0.93 0.94 0.95 0.92 0.92 0.94 0.94 0.80 0.81

200

True 0.07 0.17 0.28 0.09 0.16 0.32

AVE 0.07 0.07 0.16 0.16 0.28 0.28 0.09 0.09 0.16 0.16 0.36 0.36
BSE 0.04 0.04 0.06 0.06 0.07 0.07 0.03 0.04 0.05 0.05 0.06 0.06
ESE 0.04 0.04 0.05 0.05 0.07 0.07 0.03 0.03 0.04 0.04 0.10 0.10
Cov 0.92 0.92 0.95 0.95 0.96 0.96 0.94 0.95 0.97 0.97 0.74 0.74

10% G1(−0.1; 8) G1(0; 8) G1(0.1; 8) G1(−0.1; 10) G1(0; 10) G1(0.1; 10)

DIM VAR mIPW CFK mIPW CFK mIPW CFK mIPW CFK mIPW CFK mIPW CFK

100

True 0.55 0.70 0.79 0.42 0.51 0.63

AVE 0.51 0.51 0.71 0.71 0.80 0.80 0.43 0.43 0.54 0.54 0.70 0.70
BSE 0.06 0.05 0.05 0.05 0.05 0.04 0.06 0.06 0.06 0.06 0.06 0.06
ESE 0.12 0.12 0.05 0.05 0.04 0.04 0.07 0.08 0.07 0.07 0.06 0.07
Cov 0.70 0.69 0.94 0.94 0.94 0.94 0.89 0.88 0.90 0.90 0.77 0.75

200

True 0.55 0.70 0.79 0.42 0.51 0.63

AVE 0.53 0.53 0.71 0.71 0.79 0.79 0.43 0.43 0.52 0.52 0.68 0.68
BSE 0.04 0.04 0.04 0.04 0.03 0.03 0.05 0.04 0.05 0.04 0.04 0.04
ESE 0.07 0.08 0.04 0.04 0.03 0.03 0.06 0.06 0.05 0.05 0.05 0.05
Cov 0.72 0.72 0.92 0.93 0.94 0.94 0.89 0.88 0.91 0.89 0.74 0.74

50% F1(−0.1; 8) F1(0; 8) F1(0.1; 8) F1(−0.1; 10) F1(0; 10) F1(0.1; 10)

DIM VAR mIPW CFK mIPW CFK mIPW CFK mIPW CFK mIPW CFK mIPW CFK

100

True 0.07 0.17 0.28 0.09 0.16 0.32

AVE 0.07 0.07 0.17 0.16 0.28 0.28 0.09 0.08 0.17 0.17 0.36 0.35
BSE 0.05 0.05 0.09 0.09 0.12 0.12 0.06 0.06 0.09 0.09 0.10 0.11
ESE 0.06 0.06 0.08 0.09 0.11 0.11 0.06 0.06 0.08 0.08 0.15 0.14
Cov 0.65 0.65 0.92 0.92 0.95 0.95 0.78 0.79 0.91 0.90 0.83 0.85

200

True 0.07 0.17 0.28 0.09 0.16 0.32

AVE 0.07 0.07 0.17 0.17 0.28 0.28 0.09 0.09 0.17 0.16 0.37 0.37
BSE 0.04 0.04 0.07 0.07 0.08 0.08 0.05 0.05 0.06 0.06 0.08 0.08
ESE 0.04 0.04 0.06 0.06 0.08 0.08 0.04 0.04 0.06 0.06 0.12 0.12
Cov 0.88 0.88 0.95 0.95 0.96 0.96 0.91 0.90 0.96 0.96 0.76 0.80

50% G1(−0.1; 8) G1(0; 8) G1(0.1; 8) G1(−0.1; 10) G1(0; 10) G1(0.1; 10)

DIM VAR mIPW CFK mIPW CFK mIPW CFK mIPW CFK mIPW CFK mIPW CFK

100

True 0.55 0.70 0.79 0.42 0.51 0.63

AVE 0.49 0.49 0.71 0.71 0.80 0.81 0.42 0.43 0.55 0.55 0.71 0.71
BSE 0.06 0.06 0.06 0.05 0.05 0.05 0.10 0.07 0.09 0.08 0.07 0.08
ESE 0.13 0.13 0.06 0.06 0.05 0.05 0.11 0.11 0.09 0.10 0.08 0.10
Cov 0.66 0.59 0.92 0.90 0.90 0.90 0.89 0.79 0.89 0.83 0.76 0.74

200

True 0.55 0.70 0.79 0.42 0.51 0.63

AVE 0.52 0.52 0.71 0.70 0.79 0.79 0.43 0.43 0.53 0.53 0.69 0.69
BSE 0.05 0.04 0.04 0.04 0.04 0.03 0.07 0.05 0.06 0.05 0.05 0.05
ESE 0.09 0.09 0.05 0.04 0.04 0.03 0.08 0.07 0.07 0.07 0.06 0.08
Cov 0.70 0.63 0.91 0.90 0.92 0.93 0.89 0.82 0.90 0.85 0.71 0.70
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data were collected at the Netherlands Cancer Institute by van’t Veer et al. (2002) and

van de Vijver et al. (2002). The data contain the clinical and demographic information of

295 breast cancer patients including age, tumor diameter, number of positive lymph nodes,

tumor grade, vascular invasion, estrogen receptor status, chemo/hormonal therapy or not,

and mastectomy. These conventional clinical markers were collected at baseline and used to

predict patients’ risk of metastasis or death. Chang et al. (2005) developed a new biomarker,

gene score, from the original microarray gene expression data. Uno et al. (2009) evaluated

the added value of the gene score in predicting risks of metastasis or death. Here the outcome

is time to either metastasis or death which is subject to random censoring.

We first replicated Uno et al. (2009)’s results on the breast cancer data by using their

estimators of the conditional distribution functions, F̂ (s; 10) and Ĝ(s; 10). Then we applied

our alternative estimators, F̂ ′(s; 10) and Ĝ′(s; 10), based on the Dabrowska estimator for

bivariate survival function. These two sets of estimates for the conditional distributions are

given in Figure 3.1. The left panel shows the Uno estimates of the distribution functions.

The dark solid line represents F̂ (s; 10), the distribution function of D̂ conditional on that

patients have experienced the outcome event by 10 years, either metastasis or death. The

dashed line is for Ĝ(s; 10), the distribution function conditional on that patients have not

experienced any event. The added value of gene score was evaluated using the three criteria,

the IDI, IAUC, and the difference in the medians of the two distributions. In the left panel

of Figure 3.1, the area between the two distributions 0.05 is the estimated IDI, the vertical

distance between the two gray dots is the estimated IAUC, which is 0.27, and the horizontal

distance between the two dark dots (medians) is 0.07. We also ran 1,000 bootstrap samples

to obtain 95% bootstrap confidence intervals (0.02, 0.08) for the IDI, (0.12, 0.42) for the

IAUC and (0.02, 0.09) for the difference in the medians. The right panel of Figure 3.1 gives

our alternative estimates for the conditional distribution functions. Upon close inspection,

the two estimates of F (s; 10) are almost identical, and our alternative estimate of G(s; 10) is

slightly lower and more smoother than Uno’s estimate. Therefore, we obtained sightly lower

values for the three criteria. The IDI index is 0.04 with a 95% bootstrap confidence interval

(0.02, 0.07), the IAUC is 0.20 with a 95% confidence interval (0.07, 0.35) and the difference in
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Figure 3.1: Breast Cancer Study, one-event setting

two medians is 0.04 with a 95% confidence interval (0.01, 0.07). However, none of the three

confidence intervals contains zero, indicating that the gene score does significantly improve

the predictive ability of the model.

Metastasis and death are actually two competing events. In the study, 101 patients

had metastasis, 5 patients died without metastasis, and the remaining 189 patients survived

by the end of study without metastasis. When we focused our interest on the event of

metastasis, which was subject to dependent censoring by death, we applied our modified

Uno estimators and the CFK estimators to evaluate the improvement on predicting the risk

of metastasis using the gene score. However, in this application, the multistate model did

not provide good estimates for P1 and P2, since the Cox model for death did not fit well

with only five events and multiple covariates. To address this issue, we actually modeled

the cause 1 CIF directly using the semiparametric model of Fine and Gray (1999). The R

function “crr” from the package cmprsk was used and the regression coefficients from the

old and new models are summarized in Table 3.3. The values of these estimators are quite
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Table 3.3: Estimates of regression coefficients for Fine and Gray (1999)’s models with breast cancer

study

Model without gene score Model with gene score

Est. SE p Est. SE p

Age/10[yrs] -0.50 0.19 0.01 -0.59 0.19 0.002

Diameter of tumor [cm] 0.20 0.12 0.09 0.20 0.12 0.10

Lymph nodes 0.01 0.08 0.88 0.00 0.09 0.99

Grade = 2 vs 1 0.91 0.33 0.01 0.69 0.35 0.05

Grade = 3 vs 1 1.13 0.34 <0.001 0.73 0.38 0.06

Vascular invasion 1-3 vs 0 0.13 0.43 0.77 -0.02 0.43 0.96

Vascular invasion >3 vs 0 0.81 0.67 0.23 0.68 0.68 0.32

Estrogen Status=Positive -0.20 0.27 0.45 0.01 0.27 0.96

Chemo or Hormonal=Yes -0.55 0.38 0.15 -0.51 0.39 0.19

Mastectomy=Yes 0.11 0.23 0.61 0.17 0.23 0.45

Gene score - - - 2.17 0.70 0.002

similar to those from the Cox regression model in Uno et al. (2009).

The estimates of the conditional distributional functions of D̂∗ given metastasis or free of

metastasis are showed in Figure 3.2. The left panel represents the modified Uno estimates,

F̂1(s; 10) and Ĝ1(s; 10). The area between two estimated distribution functions, i.e. IDI,

is 0.04 with a 95% bootstrap confidence interval (0.02, 0.07), the IAUC is 0.24 with a

95% confidence interval (0.10, 0.37), and the difference in two medians is 0.06 with a 95%

confidence interval (0.01, 0.08). The right plot is for the CFK estimates of the conditional

distribution functions, F̂ ′1(s; 10) and Ĝ′1(s; 10). The IDI here is 0.03 with a 95% confidence

interval (0.002, 0.06), the IAUC is 0.15 with a 95% confidence interval (-0.005, 0.29), and

the difference in medians is 0.04 with a 95% confidence interval (-0.007, 0.06). Compared to

modified Uno’s estimates, our alternative estimates are slightly closer to zero. However, the

IDI is still significantly greater than zero, and the lower bounds of the other two are very

close to zero. In summary, the three summary criteria consistently show that adding the

gene score into the model along with conventional markers would improve the prediction of

risks of metastasis for breast cancer patients.

It is more clearly seen in Figure 3.3. For those subjects who developed metastasis before
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Figure 3.2: Breast Cancer Study, competing-risk setting

or at 10 years, the density of the difference in the predicted risk of metastasis with and

without the gene score is more concentrated on s > 0. Hence, the inclusion of the gene score

in the prediction model improves the prediction of metastasis. In contrast, the density of the

difference is more clustered for s < 0 among those who did not have metastasis. That is, the

inclusion of the gene score in the prediction model improves the prediction of no metastasis

in this subpopulation. The two density curves are reasonably separated out.

3.5 REMARKS

For simulation studies, we used the multistate model to estimate the cause 1 CIFs given

conventional predictors and new biomarkers P1 and P2. However, this model may not work

when there are only few events from the competing cause as in the breast cancer study.
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Figure 3.3: Density plots generated from sampling from the estimated F1 and G1 functions

In contrast, the Fine and Gray (1999) model focuses on the cause 1 event only and avoids

modeling the competing event. However, our experience suggests that the Fine and Gray

(1999) model may not be computationally efficient for a large sample due to the need of

constructing an n by n covariance matrix. Therefore, we rely on the Cox regression model to

obtain the predicted risks, especially for obtaining the “true” values reported in Tables 3.1

and 3.2 from very large datasets. There are other regression models on CIFs such as Fine

(2001), Klein and Andersen (2005), Jeong and Fine (2007), Scheike et al. (2008) and Shi

et al. (2012) among others. The estimations of P1 and P2 will definitely affect the evaluations

of added values of the new biomarkers. However, they are not the focus of our research.

Similarly, for the composite outcome, we have been using the Cox model which may not be

proper if the proportionality assumption does not hold. Stratified Cox models or piecewise

Cox models may be used instead. We suggest using a well-calibrated regression model to

estimate P1 and P2, or P10 and P20, and performing model diagnosis before proceeding to

the proposed discrimination analysis.

It is worth pointing out that the discrimination ability of the new biomarkers may differ

at various time points. In our data analysis, we have been focusing on predicting metastasis
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or composite event at ten years. It may be of interest to evaluate the accuracy improvement

at some different time points or across a range of time points. How to combine accuracy

improvement measures across times may be a topic of future research.

Finally we wish to caution practitioners about the use of the proposed accuracy measures

when the increase of AUC is small. Even though AUC increment may be limited by its

construction to detect further accuracy improvement beyond certain accuracy level, there

may be other practical reasons. For example, if the model has already contained some

good predictors, additional markers may only provide better prediction for a sub-population.

Requiring more tests than are needed may lead to major increase in medical testing costs, and

more iatrogenic damage, since many of these tests (e.g., arteriography or biopsy) involve risks

to the patients. Under such situations, the crucial issue is to define what tests are essential

for which patients, not to seek methods that simply increase the number of tests for minimal

benefit.
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APPENDIX

Table A1 summarizes the simulation results for the four simulation scenarios when the sample

size is n = 500 and the censoring rate is 40%.

Table A2 summarizes the simulation results of how the censoring distribution affects the

prediction of CIFs. We focused on our parametric model and the Fine and Gray method, and

simulated censoring times from the log logistic model. That is, log(C) = γ0+γ1Z1+γ2Z2+σε,

where γ0 is a constant and chosen so that the censoring rate is around 20%, γ1 = γ2 = 0.5,

σ = 0.5, and ε ∼ standard logistic distribution. Therefore, the censoring time depends on

covariates in a nonproportional subdistribution hazard fashion.
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Table A1: Simulation results where the data were simulated from our proposed modified logistic
(panel LOG + PSH) or Gompertz model (panel GOM + PSH) with complimentary log-log trans-
formation or with generalized-odds rate transformation (panels LOG + GOR and GOM + GOR)
with sample size n=500 and 40% censoring rate; referring to Table 2.1 for the definition of AVE,
MSE, ESE, and Cov

LOG + PH β̂11 β̂12 F̂1(3) F̂1(5)

DIM VAR Log Gom FG Log Gom FG Log Gom FG Sch Log Gom FG Sch

500

True 0.50 0.50 0.50 0.50 0.50 0.50 0.32 0.32 0.32 0.32 0.42 0.42 0.42 0.42

AVE 0.50 - 0.50 0.50 - 0.50 0.32 - 0.32 0.32 0.43 - 0.42 0.43

MSE 0.09 - 0.09 0.09 - 0.09 0.05 - 0.05 0.15 0.06 - 0.07 0.15

ESE 0.09 - 0.09 0.09 - 0.09 0.05 - 0.06 0.06 0.06 - 0.07 0.09

Cov 0.95 - 0.95 0.95 - 0.95 0.95 - 0.94 1.00 0.94 - 0.94 0.99

GOM + PH β̂11 β̂12 F̂1(1) F̂1(5)

DIM VAR Log Gom FG Log Gom FG Log Gom FG Sch Log Gom FG Sch

500

True 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.56 0.56 0.56 0.56

AVE 0.52 0.52 0.50 0.52 0.52 0.50 0.53 0.52 0.51 0.51 0.60 0.58 0.53 0.53

MSE 0.08 0.08 0.09 0.08 0.08 0.09 0.07 0.06 0.08 0.13 0.08 0.07 0.08 0.14

ESE 0.08 0.11 0.09 0.09 0.11 0.09 0.07 0.09 0.08 0.09 0.08 0.09 0.08 0.11

Cov 0.94 0.88 0.95 0.93 0.88 0.94 0.92 0.87 0.94 0.95 0.89 0.86 0.90 0.97

LOG + GOR β̂11 β̂12 F̂1(3) F̂1(5)

DIM VAR Log Gom FG Log Gom FG Log Gom FG Sch Log Gom FG Sch

500

True 0.50 0.50 0.50 0.50 0.50 0.50 0.26 0.26 0.26 0.26 0.34 0.34 0.34 0.34

AVE 0.52 - 0.27 0.52 - 0.26 0.27 - 0.26 0.26 0.34 - 0.34 0.34

MSE 0.21 - 0.09 0.21 - 0.09 0.05 - 0.05 0.18 0.05 - 0.06 0.18

ESE 0.21 - 0.09 0.21 - 0.09 0.05 - 0.05 0.05 0.05 - 0.06 0.08

Cov 0.94 - 0.26 0.95 - 0.25 0.94 - 0.93 1.00 0.95 - 0.94 1.00

GOM + GOR β̂11 β̂12 F̂1(1) F̂1(5)

DIM VAR Log Gom FG Log Gom FG Log Gom FG Sch Log Gom FG Sch

500

True 0.50 0.50 0.50 0.50 0.50 0.50 0.41 0.41 0.41 0.41 0.45 0.45 0.45 0.45

AVE 0.52 0.51 0.24 0.52 0.51 0.24 0.41 0.41 0.41 0.41 0.45 0.45 0.43 0.42

MSE 0.20 0.20 0.09 0.20 0.20 0.09 0.05 0.05 0.07 0.14 0.06 0.06 0.07 0.15

ESE 0.20 0.20 0.09 0.20 0.19 0.09 0.05 0.05 0.07 0.07 0.06 0.06 0.07 0.09

Cov 0.94 0.93 0.18 0.94 0.94 0.17 0.94 0.94 0.95 0.99 0.94 0.94 0.92 0.99
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Table A2: Simulation results on censoring time following a proportional odds model; the data were
simulated from the modified logistic or Gompertz base with a proportional subdistribution hazard
transformation (LOG+PSH and GOM+PSH) or with a generalized odds rate transformation (LOG
+ GOR and GOM + GOR); referring to Table 2.1 for the definition of AVE, MSE, ESE, and Cov

F̂1(3) F̂1(5) F̂2(3) F̂2(5)

LOG+PSH VAR Log FG Log FG Log FG Log FG

DIM True 0.32 0.32 0.42 0.42 0.07 0.07 0.49 0.49

100
AVE 0.33 0.33 0.44 0.43 0.06 0.06 0.48 0.49
MSE 0.11 0.12 0.13 0.14 0.02 0.04 0.12 0.15
ESE 0.12 0.14 0.14 0.16 0.02 0.05 0.12 0.14
Cov 0.92 0.89 0.91 0.88 0.91 0.82 0.91 0.93

200
AVE 0.33 0.33 0.43 0.43 0.06 0.06 0.48 0.49
MSE 0.08 0.09 0.09 0.10 0.02 0.03 0.09 0.11
ESE 0.08 0.10 0.10 0.11 0.02 0.04 0.09 0.10
Cov 0.93 0.91 0.93 0.92 0.92 0.82 0.94 0.96

F̂1(1) F̂1(5) F̂2(1) F̂2(5)

GOM+PSH VAR Log FG Log FG Log FG Log FG

DIM True 0.51 0.51 0.56 0.56 0.31 0.31 0.44 0.44

100
AVE 0.52 0.52 0.57 0.57 0.32 0.32 0.43 0.44
MSE 0.13 0.14 0.14 0.14 0.10 0.13 0.14 0.15
ESE 0.13 0.15 0.14 0.15 0.11 0.13 0.14 0.17
Cov 0.91 0.91 0.90 0.90 0.91 0.93 0.90 0.89

200
AVE 0.52 0.52 0.57 0.57 0.33 0.32 0.43 0.44
MSE 0.09 0.10 0.10 0.10 0.07 0.09 0.10 0.12
ESE 0.10 0.10 0.10 0.11 0.08 0.11 0.10 0.17
Cov 0.93 0.93 0.92 0.92 0.93 0.94 0.92 0.91

F̂1(3) F̂1(5) F̂2(3) F̂2(5)

LOG+GOR VAR Log FG Log FG Log FG Log FG

DIM True 0.26 0.26 0.34 0.34 0.08 0.08 0.57 0.57

100
AVE 0.27 0.27 0.35 0.35 0.07 0.08 0.56 0.57
MSE 0.10 0.11 0.11 0.13 0.02 0.04 0.10 0.15
ESE 0.11 0.13 0.12 0.15 0.02 0.05 0.11 0.14
Cov 0.89 0.89 0.91 0.90 0.91 0.87 0.92 0.93

200
AVE 0.27 0.27 0.35 0.35 0.08 0.08 0.56 0.57
MSE 0.07 0.08 0.08 0.09 0.02 0.03 0.07 0.11
ESE 0.08 0.09 0.08 0.11 0.02 0.06 0.07 0.11
Cov 0.93 0.91 0.93 0.91 0.93 0.90 0.93 0.95

F̂1(1) F̂1(5) F̂2(1) F̂2(5)

GOM+GOR VAR Log FG Log FG Log FG Log FG

DIM True 0.41 0.41 0.45 0.45 0.40 0.40 0.55 0.55

100
AVE 0.42 0.41 0.45 0.45 0.40 0.42 0.54 0.54
MSE 0.11 0.13 0.12 0.14 0.09 0.13 0.12 0.16
ESE 0.11 0.14 0.11 0.15 0.08 0.14 0.11 0.17
Cov 0.95 0.90 0.95 0.89 0.95 0.93 0.95 0.90

200
AVE 0.41 0.41 0.45 0.45 0.41 0.41 0.55 0.56
MSE 0.08 0.09 0.08 0.10 0.06 0.10 0.08 0.12
ESE 0.08 0.10 0.08 0.11 0.06 0.12 0.08 0.15
Cov 0.95 0.93 0.95 0.93 0.95 0.94 0.95 0.91
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