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ABSTRACT

COMPLEXITY OF FAMILIES OF COMPACT SETS IN RN

Merve Kovan-Bakan, PhD

University of Pittsburgh, 2012

The space of all compact subsets of RN with the Vietoris topology, denotedK(RN), is a Polish

space, i.e. separable and completely metrizable. It is naturally stratified by dimension. In

this work, we study the zero and one dimensional compact subsets of RN , and two equivalence

relations on K(RN): the homeomorphism relation and the embedding relation induced by

the action of autohomeomorphisms of RN .

Among the zero dimensional compact subsets, Cantor sets are generic and form a Polish

subspace. We study the topological properties of this space as well as the structure with

respect to the embedding relation. Moreover, we show that the classification of Cantor sets

up to embedding relation is at least as complex as the classification of countable structures.

Next, we look into one dimensional compact subsets, particularly those that are con-

nected, i.e. curves. The curves also form a Polish subspace. We introduce a new connected-

ness property, namely strong arcwise connectedness. We study the complexity of curves with

this property using descriptive set theory tools, and show that the space of all curves which

are strong arcwise connected, is not Borel, and is exactly at the second level of the projec-

tive hierarchy. In addition, we examine the classification of curves up to either equivalence

relation and show that the curves are not classifiable by countable structures.

Keywords: Cantor sets, embedding, classification, turbulence, curves, Borel hierarchy, dif-

ference hierarchy, Projective hierarchy, strong arcwise connectedness, rational continuum,

dendrites, dendroids.
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0.0 INTRODUCTION

Embeddings of a space into another space is a major research topic in topology. Circles em-

bedded in R3 are knots. While Antoine’s famous necklace is an example of a wild embedding

of the Cantor set in R3. Most results on this topic has been achieved by studying examples

one–by–one. My research has been on a method of taking a big–picture view of all embed-

dings simultaneously. We use tools from topology and descriptive set theory, and actions

of Polish groups to understand how hard it is to characterize certain important classes of

embeddings.

A topological space X is Polish if it is separable and completely metrizable, and it is a

Polish group if it is a topological group and the topology is Polish. Lie groups, separable

Banach spaces, automorphism groups of certain countable objects (trees, groups, and so on)

are examples of Polish spaces or groups. In a Polish space the Borel sets are those that

can be defined from the open sets in countably many steps. These countable steps form a

hierarchy of Borel classes; at the first level are the classes of open and closed sets, at the

second level the classes of Fσ and Gδ sets, at the third level the classes of Fσδ and Gδσ and

so on. Intuitively, Borel sets are those that are ‘computable’, and the sets in higher levels of

this hierarchy are more complex (‘harder to compute’) than the sets in lower levels. Between

levels of the Borel hierarchy lies the difference hierarchy, which gives a construction of the

intersection of Borel classes of the same level.

Throughout this work, we study the hyperspace of RN consisting of all compact subsets

of RN , denoted K(RN), and its various subspaces. The topology of this hyperspace is the

Vietoris topology, which is the same as the topology induced by the Hausdorff metric. This

space is separable, and Hausdorff metric complete, hence K(RN) is Polish.
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On the hyperspace K(RN), there are two kinds of natural equivalence relations. One

is the homeomorphism relation, i.e. two compact sets are equivalent if and only if there

is a homeomorphism that takes one set to the other. The other is induced by the action

of the group of autohomeomorphisms of RN , denoted by Aut(RN), on K(RN). Under the

compact–open topology, Aut(RN) is a Polish group. The standard action of this group on

RN , defined by taking a homeomorphism and an element in RN to the image of this element

under the homeomorphism, is continuous. Moreover, this action extends in the obvious way

to the space of all compact subsets, K(RN), by taking a compact set to its image under the

homeomorphism.

Under this action there are two kinds of natural invariant subsets:

• KP(RN): the set of all compact subsets of RN with the topological property P ,

for example connectedness, perfectness, being m-dimensional, etc.

• KK(RN): all homeomorphic copies of compact set K in RN , where K is a specific

compact set like Cantor space C, circle S1, the unit interval I, etc.

Using the Borel hierarchy, we can give upper and lower bounds on the complexity of

these invariant sets. Thus we can prove that the problem, for example, of deciding if a given

compact subset of RN is homeomorphic to the circle is of a certain complexity (not higher,

and – provably – not lower).

It is clear that the space of all compact subsets of RN stratifies under this action by

dimension. So our strategy towards understanding the action of Aut(RN) on K(RN) is to

work our way up through the dimensions. We start with the zero–dimensional compact

subsets of RN , which we verify is a complete Gδ subset in K(RN). On the other hand,

we have shown that the class of one–dimensional compact sets is a little more complicated

than that, namely it is in the difference hierarchy of D2(Σ0
2) (for N ≥ 3). While the set of

N -dimensional compact subsets of RN , KN(RN), is a complete Fσ set. We also show that

for any m with 1 ≤ m < N , the space of m-dimensional compact subsets, Km(RN) is in the

same difference class.

Among the zero–dimensional compact subsets, the class of Cantor subsets, denoted

C(RN), form a Gδ subset of K(RN). We have unraveled topological properties as well as

2



Borel structure of this space. For example, we know that it is separable, completely metriz-

able, path connected and locally path connected but not locally compact. On the space

of Cantor subsets, the homeomorphism relation is not interesting since all Cantor sets are

homeomorphic. However, the action of Aut(RN) induces a non–trivial equivalence relation

on Cantor sets, which is the same as the equivalence relation defined in earlier studies of

Cantor sets, [2, 20, 21]. Two Cantor sets are equivalent if there is a homeomorphism of RN

which takes one Cantor set to the other. A Cantor set equivalent to the standard Cantor

set is called tame, and otherwise it is called wild. We have shown that tame Cantor sets are

generic in the space C(RN) in Theorem 3.2.3.

A very important class in K(RN) is the set of all compact connected subsets of RN ,

namely the space of all subcontinua, denoted C(RN). This is a closed subset of K(RN) and

hence it is Polish as well. Moreover, being an invariant subspace, the induced action also

stratifies C(RN) by dimension. In this case, the zero–dimensional compact connected sets

are exactly the one point sets, and this class is a closed set. One dimensional subcontinua

of RN are called curves. We show that the curves form a Gδ subset of C(RN), see Theorem

2.2.1.

For many subclasses of curves, including some homeomorphism classes, the Borel com-

plexity of the class has been determined, see [3]. These examples use descriptive set theory

methods to classify previously studied topological objects. In this work, we will examine

new classes of curves, namely the class of n–sac and ω–sac curves, and use both topological

and descriptive set theoretic methods to characterize them.

A continuum X is called n-sac (n strongly arc-connected) if for any n points x1, . . . , xn

X there is an arc in X that visits the points in the given order. It is called ω-sac if for

any n, X is n-sac. In the case of finite graphs, which is a subclass of curves, being 3-sac has

been characterized in section 4.1 and we know that no finite graph is 4-sac. Additionally,

we know that regular curves are never n-sac for all n. The next natural class is the rational

curves, and we prove that it is essentially impossible to characterize rational ω-sac curves

by showing that the subspace of rational ω-sac curves in K(RN) is very complex, indeed

not even Borel. This relies on being able to construct many widely different rational ω-sac

3



curves.

Throughout this work, we not only study the Borel complexity of classes of sets arising

from the two equivalence relations defined above but also the complexity of the classification

up to these equivalences. For example, the classification of curves up to either equivalence re-

lation is strictly more complex than that of classifying countable groups. While classification

of Cantor sets is at least as complex as the classification of countable groups.

Chapter 1 provides fundamental definitions and facts on the Polish spaces, Borel and

projective hierarchy as well as on Polish groups and actions, which will be needed in the

following chapters.

In Chapter 2 we develop the general setting for the complexity questions we will answer

later on. We prove that the class of m-dimensional compact subsets of RN is in the difference

hierarchy D2(Σ0
2) for 1 < m < N , and it is simpler for m = 0 or m = N . Additionally, in

Section 2.2 we introduce the space of all subcontinua of RN and some important examples

of continua.

Chapter 3 is on zero dimensional compact subsets of RN . It turns out most of these

are Cantor sets. We will examine the space of Cantor sets in R3 in detail, in Section 3.1.

Section 3.2 is devoted to complexity of classes of Cantor sets, whereas Section 3.3 is on the

complexity of classification of Cantor sets.

The natural successor to the zero dimensional compact subsets are the one dimensional

compact subsets in RN , which is discussed in Chapter 4. The organization of this chapter is

similar to the previous chapter. First we discuss the classes of n-strongly arc connected and

ω-strongly arc connected curves in Section 4.1 and their complexity in Section 4.2. Then

in Section 4.3, we discover complexity of classification problems of curves and some of its

subclasses.
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1.0 BOREL HIERARCHY AND BOREL EQUIVALENCE RELATIONS

This chapter gives some background in classical descriptive set theory and equivalence rela-

tions. This includes basic notions and facts about Polish spaces and groups. Most of these

can be found in [15] and [12], which are our main references on descriptive set theory and

equivalence relations.

1.1 POLISH SPACES

A topological space is Polish if it is separable and completely metrizable. R,C,RN , 2N,RN

are some examples of Polish spaces.

Given a topological space X, Borel sets is the smallest collection containing the open

sets that is closed under complements, countable unions and intersections, and is denoted

by B(X). For metrizable space X, this class can be analyzed in a transfinite hierarchy of

length ω1, called the Borel hierarchy. It consists of classes of subsets of the space and these

classes are defined inductively from the open sets with the following rules:

• Σ0
1 is the class of open subsets

• Π0
α consists of complements of Σ0

α

• A set A is in the class Σ0
α, α > 1 if there is a sequence of sets (Ai)i∈N such that

Ai is Π0
αi

for some αi < α and A =
⋃
iAi

In the first level are the open sets (Σ0
1) and closed sets (Π0

1), in the second level Fσ’s

(Σ0
2) and Gδ’s (Π0

2), in the third level we have Gδσ’s (Σ0
3) and Fσδ’s (Π0

3), etc. We can also

consider the ambiguous classes, denoted ∆0
α, where ∆0

α = Σ0
α ∩Π0

α. So the ∆0
1 is the class
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of both open and closed subsets, ∆0
2 is the set of both Gδ and Fσ sets, etc. Hence B(X)

ramifies as follows:

Σ0
1 Σ0

2 . . . Σ0
α . . . Σ0

γ . . .

∆0
1 ∆0

2 . . . ∆0
α . . . ∆0

γ . . .

Π0
1 Π0

2 . . . Π0
α . . . Π0

γ . . .

where every class is contained in any class to the right of it. We think of sets in higher levels

as more ‘complex’, as their definitions in terms of open sets are more complex.

Beyond the Borel sets we have projective sets, these are obtained by continuous images

and complementation from Borel sets. A subset A of Polish space X is analytic (denoted Σ1
1)

if it is the continuous image of a Borel subset of a Polish space. Borel subsets are analytic,

but the converse is not true. A set is co-analytic (Π1
1) if its complement is analytic. The

class of projective sets ramifies in an infinite hierarchy of length ω:

Σ1
1 Σ1

2 Σ1
n Σ1

n+1

B(X) . . . . . .

Π1
1 Π1

2 Π1
n Π1

n+1

where every class is contained in any class to the right of it. Moreover, a set A is in the class

Σ1
n if it is continuous image of a set from the class Π1

n−1, and Π1
n consists of complements

of the sets in Σ1
n.

Another hierarchy that is interesting is the difference hierarchy, which gives a construction

of the ambiguous class ∆0
α+1 from the class Σ0

α. We will only use the first levels of this

hierarchy, mainly D2(Σ0
α) and D̂2(Σ0

α). A set is in D2(Σ0
α) if it is the intersection of a Σ0

α

set and a Π0
α set. And a set is in D̂2(Σ0

α) if the complement is in D2(Σ0
α). Also note that

D1(Σ0
α) = Σ0

α and D̂1(Σ0
α) = Π0

α.

Example 1. Let Q2 =
{

(xn)n∈N ∈ 2N | ∃m,∀n ≥ m(xn = 0)
}

. It is a known Σ0
2 (Fσ) set,

hence the complement Qc
2 is Π0

2 (Gδ) in 2N. And thus the product Q2×Qc
2 is in the difference

hierarchy -D2(Σ0
2)- of 2N × 2N.

Note that a basic neighborhood of an element x = (xn)n∈N ∈ 2N is denoted by N(x � m)

for some m ∈ N, where it is the following set
{
y = (yn)n∈N ∈ 2N | yi = xi,∀i ≤ m

}
.
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It is important to know the hierarchy of a natural set, not only because it is a beautiful

result of descriptive set theory, but also because it can lead us to learn more about the

topological properties. So it is important to place a given set in the lowest possible level of

Borel or projective hierarchies.

1.2 WADGE HIERARCHY

Wadge hierarchy is another hierarchy of sets which extends the Borel hierarchy and gives us

a way to decide which sets belong to which level of the hierarchy. Knowing the exact level

for a certain set may lead to nicer characterizations.

Let X, Y be topological spaces and A ⊂ X, B ⊂ Y . A is Wadge reducible to B, denoted

A ≤W B, if there is a continuous reduction of A to B, i.e. there is a continuous map

f : X → Y with f−1(B) = A. We denote this continuous reduction by f : (X,A)→ (Y,B).

Intuitively, if A ≤W B, then A is ‘simpler’ than B. This reduction leads to an equivalence

relation: A ≡W B ⇐⇒ A ≤W B and B ≤W A

It turns out the Borel hierarchy forms the initial segment of the Wadge hierarchy given

by ≤W . If B is Σ0
α set and A ≤W B, then A is Σ0

α set. The same holds for Π0
α.

Let Γ be a class of sets like Σi
α and Y be a Polish space. Then a set B ⊂ Y is called

Γ-hard if A ≤W B for any A ∈ Γ(X), where X is a zero dimensional Polish space. If

additionally, B ∈ Γ(Y ), then B is called Γ-complete.

Let Γ̂ denote the class of sets which are complements of those in Γ.

Facts. 1. If Γ̂ 6= Γ on zero dimensional Polish spaces and Γ is closed under continuous

preimages, then no Γ-hard set is in Γ̂.

2. If A is Γ-hard then Ac is Γ̂-hard.

3. If B is Γ-hard and A ≤W B, then A is Γ-hard.

This gives us a very common method to show that a given set B is Γ-hard: choose a

known Γ-hard set A and show A ≤W B. Though for the Borel sets there is another good

way:

7



Theorem 1.2.1. Let X be a Polish space, and A ⊂ X. If A ∈ Σ0
α \ Π0

α, then A is Σ0
α-

complete. (Similarly, interchanging Σ0
α and Π0

α).

This theorem also holds for the difference hierarchy D2(Σ0
α) and its complement D̂2(Σ0

α),

[3].

Example 2. Q2×Qc
2 in Example 1 is actually D2(Σ0

2)-complete since Q2 is a Σ0
2-complete.

Example 3. Let S∗3 = {α ∈ 2N×N : ∃J ∀j > J ∃k α(j, k) = 0}, it is a known Σ0
3-complete set.

Also let P3 = {β ∈ 2N×N : ∀j ∃K ∀k ≥ K β(j, k) = 0}, which is known to be Π0
3-complete in

2N×N. Thus S∗3 × P3 is a D2(Σ3) subset of
(
2N×N)2

.

1.2.1 TREES

A tree is a basic tool in descriptive set theory. However, it is not the same notion as the one

used in graph theory.

Let A be a nonempty set, by A<N we denote the set of all finite sequences on A. Let

s ∈ A<N, so s = (a0, . . . , an−1) for some n ∈ N. Then we denote the length of s by length(s)

which is n, and for m ≤ n, the restriction is s � m = (a0, . . . , am−1). For finite sequences

s and t on A, we say s is initial segment of t if s = t � m for some m ≤ length(t).

The concatenation of the finite sequences s = (ai)i<n and t = (bj)j<m is the sequence

s_t = (a0, . . . , an−1, b0, . . . , bm−1).

A tree on a set A is a subset τ of A<N, which is closed under initial segments, i.e. if t ∈ τ
and s is an initial segment of t, then s ∈ T . An infinite branch of τ is a sequence x ∈ AN

such that x � n ∈ τ for all n ∈ N.

A tree is well-founded if it has no infinite branches. If, on the other hand, T has an

infinite branch then it is called an ill-founded tree. We will denote the space of all trees on

N by Tr, the space of all well-founded trees on N by WF and the space of all ill-founded

trees on N by IF. It turns out Tr is a Polish space, being a closed subset of the Polish space

{0, 1}N<N
, see [15].

For a tree T on a product of sets, for example in the form A = B × C, we will identify

elements of T with pairs of finite sequences. So if s ∈ T , then s = (si)i<n for some n, and

si = (bi, ci) ∈ B × C, and we will write s = (t, r) where t = (bi)i<n is a finite sequence on

8



B and r = (ci)i<n is a finite sequence on C. For such a tree T , and an infinite sequence

x ∈ BN, T (x) = {s ∈ C<N : (x � length(s), s) ∈ T} is called the section tree on C.

Fact. IF is Σ1
1-complete, hence WF is Π1

1-complete. (See [15])

1.3 POLISH GROUPS AND BOREL EQUIVALENCE RELATIONS

A topological group is Polish group if the topology is Polish. Countable groups with discrete

topology, separable Banach spaces and locally compact second countable groups are examples

of Polish groups.

Let G be a Polish group and X be a Polish space, X is called a Polish G-space if G acts

continuously on X, i.e. there is a continuous map a : G×X → X defined by a(g, x) = g · x
with the following properties:

• g · (h · x) = (gh) · x
• e · x = x, where e is identity of G

This action induces an equivalence relation on X - orbit equivalence relation, denoted

EX
G , given by:

xEX
G y ⇐⇒ ∃g ∈ G(g · x = y)

The orbit of x, denoted [x]G, is the set {g · x | g ∈ G}. The set Gx = {g ∈ G | g · x = x}
is the stabilizer of x.

For a subset A ⊂ X, g · A = {g · x | x ∈ A}, and A is invariant if for each g ∈ G,

g · A = A.

For a Polish space X, an equivalence relation E on X is Borel if it is Borel subset of

the product space X × X. For example, the equality relation on R, denoted id(R), is the

set {(x, x) ∈ R2 | x ∈ R} and it is a closed subset of R × R, thus it is a Borel equivalence

relation.

Equivalence relations give us a way to classify elements of the set we work on. Classifi-

cation of objects up to some notion of equivalence is an important problem in many areas
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of mathematics. However, it is also important to be able to understand how complicated

this classification is. For equivalence relations we have a way to compare them, namely the

Borel reduction.

A function f : X → Y is Borel if the inverse image of any open set in Y is Borel in X.

f is called a Borel isomorphism if it is a bijection and both f and f−1 are Borel maps.

Given equivalence relations E and F on X and Y , we say that E is Borel reducible to

F , denoted E ≤B F , if there is a Borel function f : X → Y so that for all x1, x2 ∈ X,

x1Ex2 ⇐⇒ f(x1)Ff(x2). We write E ≤c F if there is a continuous reduction and E <B F

if E ≤B F holds and F ≤B E fails. Intuitively, if E ≤B F , then E has a classification

problem which is at most as difficult as that of F .

An equivalence relation E is called smooth if E ≤B id(R). If E is a smooth equivalence

relation, and F is any other equivalence relation which is Borel reducible to E, then F is

also smooth.

Let LO be the set of all linear orderings, i.e. for any element α ∈ LO, there is a relation

<α on N which is a linear order. Two elements α, γ ∈ LO are equivalent if there is a bijection

f : N→ N with n <α m ⇐⇒ f(n) <γ f(m) for each m,n ∈ N, such an f is called an order

isomorphism. Let ∼LO denote the equivalence relation on linear orders. An equivalence

relation E is said to admit classification by countable structures if E ≤B∼LO. If additionally,

∼LO≤B E, then E is called S∞-universal.

Theorem 1.3.1 (Becker, Kechris). S∞ is the group of all permutations of N. Let G be

a closed subgroup of S∞ and X be a Polish G-space. Then EX
G admits classification by

countable structures.

It turns out there are classification problems that are beyond the level of countable

structures. A tool to show that a given classification problem is beyond this level or not

comparable is called turbulence.

Let G be Polish group and X be a Polish G-space. The action of G on X is called

turbulent if:

1. every orbit is dense

2. every orbit is meager
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3. for all x, y ∈ X, U ⊂ X, V ⊂ G open with x ∈ U , 1 ∈ V , there is y0 ∈ [y]G and

(gi)i∈N ⊂ V , (xi)i∈N ⊂ U with x0 = x, xi+1 = gi · xi and for some subsequence (xni)i∈N,

xni → y0

A turbulent orbit equivalence relation refuses classification by countable structures. Ac-

tually, turbulence is necessary for non-classification.

Theorem 1.3.2 (Hjorth, [12]). Let G be a Polish group and X a Polish G-space. Then

exactly one of the following holds:

1. the orbit equivalence relation is reducible to isomorphism on countable models

2. there is a turbulent Polish G-space Y and a continuous G-embedding from Y to X.

A common method for showing a given equivalence relation E is turbulent is to find a

known turbulent equivalence relation F and find a Borel reduction from F to E. One such

example is:

Example 4. The space c0 =
{

(xn)n∈N ∈ RN | xn → 0
}

with the sup norm acts on the am-

bient space RN by translation. RN is a Polish c0-space as the inclusion map from c0 to RN is

continuous. This action is one of the simplest examples of a turbulent action. (see [12], p.

52)
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2.0 SPACE OF COMPACT SUBSETS

In this chapter, we will define the space of all compact subsets of a metric space X and its

topology, and then we will study the case when X = RN .

Let X be a separable metric space, and K(X) be the space of all non-empty compact

subsets of the space X with the Vietoris topology. A basic open set in K(X) has the form:

B(U1, U2, . . . , Un) =

{
K ∈ K(X) | K ⊆

⋃
i

Ui and K ∩ Ui 6= ∅,∀i
}
,

where U1, . . . , Un are open sets in X.

The topology arising from the Hausdorff metric gives us the same topology [7], which is

defined as:

d(K,L) = max{sup
a∈K

d(a, L), sup
b∈L

d(b,K)}

where d is the metric on X. If the metric d is complete then so is the induced Hausdorff

metric on K(X). Moreover, K(X) is second countable metric space hence separable since X

is a separable metric space. Hence for a Polish space X, the space of all compact subsets,

K(X), is also Polish.

On the space of compact subsets of X we can talk about two kind of equivalence relations:

(∼H) The equivalence relation induced by homeomorphism defined by:

K ∼H L ⇐⇒ there is a homeomorphism h : K → L

(∼) The equivalence relation induced by the action of Aut(X) on K(X) defined by:

K ∼ L ⇐⇒ there is a homeomorphism h ∈ Aut(X) such that h(K) = L

12



We will look into Borel complexity of certain invariant subspaces as well as some classifi-

cation problems arising from these equivalence relations on some of the invariant subspaces

of K(RN).

2.1 COMPACT SUBSETS OF RN

In this section, we will examine certain subspaces of K(RN) for a fixed natural number N .

We will see that the space of at most m-dimensional compact subsets form a dense Gδ,

whereas the space of all m-dimensional subsets form a provably more complex class, and

they are in the difference hierarchy D2(Σ0
2).

The topological dimension of a space X is the minimal number n such that any finite

open cover of X has a finite open refinement in which no point of X is included in more

than n+ 1 elements.

Lemma 2.1.1 (Lebesgue Covering Lemma). Let (X, d) be a compact metric space. For any

open cover of X, there is a δ > 0 such that any subset of X with diameter < δ is contained

in some member of the cover. δ is called the Lebesgue number.

The space K(RN) stratifies with dimension. Let

K≤m(RN) =
{
A ∈ K(RN) | dimA ≤ m

}
Theorem 2.1.2. K≤m(RN) is a Gδ subset of K(RN).

Proof. Consider the sets:

Un =
⋃{

B(U1, . . . , Ur) | r ∈ N, diamUi < 1/n, Ui1 ∩ Ui2 . . . ∩ Uim+2 = ∅,∀i1 6= . . . 6= im+2

}
where Ui ⊂ RN are open sets. Obviously, each Un is an open set in K(RN). We will show

that the intersection of these Un’s is the set K≤m(RN).

Let A ⊂ RN be compact and dimA ≤ m. Fix s ∈ N arbitrary. Then {B(x, 1/(3s))}x∈A
covers A, so it has a finite subcover {B(xi, 1/(3s))}ki=1. Then since dimA ≤ m there is a finite
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open refinement {Vi}ti=1 of the finite cover {B(xi, 1/(3s))}ki=1 such that Vi1∩Vi2 . . .∩Vim+2 = ∅
for distinct ij’s and diamVi < 1/s for each i ≤ t. Thus A ∈ Us.

For the converse, suppose A ∈ ⋂s Us. Let {Vi}li=1 be a finite open cover for A. By

Lebesgue Covering Lemma, there is r > 0 such that for any E ⊂ A with diamE < r, there

is i such that E ⊂ Vi. Take s ∈ N so that 1/s < r. For this s, there is B(U1, . . . , Uk) in

Us with A ∈ B(U1, . . . , Uk). Let Ei = A ∩ Ui, so A =
⋃
iEi, and diamEi < 1/s < r, hence

there exists ji such that Ei ⊂ Vji . Set Wi = Ui ∩Vji for i = 1, . . . , k. {Wi}ki=1 is a finite open

refinement of {Vi}li=1 because A =
⋃
iEi ⊂

⋃
i(Ui ∩ Vji) =

⋃
iWi. Moreover, {Wi}ki=1 is of

order ≤ m as:

Wi1 ∩ . . . ∩Wim+2 = (Ui1 ∩ Vji1 ) ∩ . . . ∩ (Uim+2 ∩ Vjim+2
) ⊂ Ui1 ∩ . . . ∩ Uim+2 = ∅

for i1 6= i2 . . . 6= im+2. Hence dimA ≤ m.

Thus K≤m(RN) =
⋂
m Um.

Consider the m-dimensional subsets: Km(RN) = K≤m(RN) \ K≤m−1(RN).

Corollary. Km(RN) is dense, but not a Gδ.

Proof. Let B(U1, . . . , Uk) be a basic open set. Since each Ui 6= ∅, we can find open balls

Bi ⊂ Ui such that Bi ∩ Bj = ∅, i 6= j. Then take Fi a homeomorphic copy of Im in Bi. So

F =
⋃
i Fi meets each Ui, dimF = m and it is compact. Hence any basic open set meets

Km(RN).

If Km(RN) were a Gδ subset, then by Baire Category theorem, Km(RN)∩K≤m−1(RN) is

dense, but this intersection is empty.

Now since for each m ≤ n, Km(RN) is the difference of two Gδ sets, it is in the difference

hierarchy: D2(Σ0
2). However, some of these sets are simpler.

Corollary. • Kn(RN) is Fσ-complete.

• K0(RN) is Gδ.

It turns out the set of all m dimensional compact subsets Km(RN), for 1 ≤ m < n, is

not simpler.
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Theorem 2.1.3. Km(RN) is D2(Σ0
2)-complete, for n > 1 and 1 ≤ m < n.

Proof. We will use a known D2(Σ0
2)-complete set, Q2 ×Qc

2 which was described in Chapter

1 Example 1. We need a continuous reduction F : (2N × 2N, Q2 ×Qc
2)→ (K(RN),Km(RN))

so that:

(α, β) ∈ Q2 ×Qc
2 ⇐⇒ F (α, β) is m dimensional.

Recall that such a continuous reduction is a continuous map F : 2N× 2N → K(RN) with

F−1(Km(RN)) = Q2 ×Qc
2.

For any n > m, Rm+1 embeds in RN so it is enough to show this for n = m + 1. F will

still be continuous reduction from (2N× 2N, Q2×Qc
2) to (K(RN),Km(RN)) when considered

for other n.

Fix a sequence (Sn)n∈N of disjoint cubes (isometric copies of In) in RN that converge to

the origin. And let (Kn)n∈N be a sequence of curves that converge to a space filling curve

in the unit square I × I. And let (Cn)n∈N be a sequence of Cantor sets such that for each

n, Cn ⊂ Kn and dH(Cn, Kn) < 1/n. We can find such a sequence of Cantor sets, since the

Cantor sets are dense in K(RN).

Let Lpq be the isometric copy of Cp× Im−1 in the cube Sq and Mpq be the isometric copy

of Kp× Im−1 in the cube Sq. Since (Kn)n∈N and (Cn)n∈N both converge to the square I × I,

the sequences (Cn × Im−1)n∈N and (Kn × Im−1)n∈N converge to the unit cube Im+1.

(0, 0)

Lp11 Mp22
S3 S4

S5

Figure 2.1: F (α, β) for some α and β

We define F as follows:
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F (α, β) =
⋃
q



Sq if β(n) = 0,∀n ≥ q,

Lpqq if ∃m ≥ q 3 α(m) = 1 where pq = min {m ≥ q | α(m) = 1}

Msqq if ∀n ≥ q, α(n) = 0 and

∃m ≥ q 3 β(m) = 1 where sq = min {m ≥ q | β(m) = 1}

Claim 1. F is a reduction of Q2 ×Qc
2 to Km(RN).

If α ∈ Q2 and β ∈ Qc
2, then there is q ∈ N with ∀n ≥ q, α(n) = 0 and there is m ≥ q

with β(m) = 1. Thus F (α, β) is a disjoint union of finitely many Lpq’s, the origin and Mpq’s

in cubes after the qth cube. Hence it is m dimensional.

If α /∈ Q2, then for each q, there is m ≥ q with α(m) = 1, hence F (α, β) is a union of

disjoint sets Lpq and the origin. Hence it is m− 1 dimensional.

If β ∈ Q2, then there is q such that ∀n ≥ q, β(n) = 0, hence F (α, β) includes the cubes

after Sq, hence it is m+ 1 dimensional.

Claim 2. F is continuous.

Fix ε > 0 and (α, β) ∈ 2N × 2N. Take a neighborhood B = B(U1, . . . , Ur) of F (α, β),

where Ui = B(xi, ε) for some xi ∈ F (α, β). Without loss of generality suppose xr is the

origin. Since Sq → xr, there is m such that ∀q ≥ m, Sq ⊂ Ur. Also, for arbitrary q, there is

k such that ∀p ≥ k, dH(Lpq, Sq) < ε/2 and dH(Mpq, Sq) < ε/2.

We need to show that there is a neighborhood N of (α, β) such that F (N ) ⊂ B.

1. α, β ∈ Q2 implies that there are m1,m2 with ∀n > m1, α(n) = 0 and ∀n > m2, β(n) = 0.

Let m1,m2 be smallest such integers so that α(m1) = 1 and β(m2) = 1. Also let M =

max{m, k,m1,m2} and N = {α} × N (β � M), recall that the set N (β � M) is a basic

neighborhood of β which includes all the sequences that start with the same firstM values

in the sequence β. Let (α, θ) ∈ N . Then F (α, β) =
⋃
q>m2

Sq∪
⋃m2

q=m1+1 Msqq∪
⋃m1

q=1 Lpqq.

If q ≤ max{m1,m2}, then F (α, θ) ∩ Sq = F (α, β) ∩ Sq; if q > max{m1,m2}, then

F (α, β) ∩ Sq = Sq ⊃ F (α, θ) ∩ Sq. Hence F (α, θ) ⊂ ⋃i Ui.

We also need, F (α, θ) ∩ Ui 6= ∅ for each i. For xi ∈ F (α, β) ∩ Sq, we have the following

cases:
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- if q ≤ max{m1,m2}, then xi ∈ F (α, θ) ∩ Sq, hence Ui ∩ F (α, θ) 6= ∅.

- if q > max{m1,m2}, then F (α, θ)∩ Sq is either Mpq for some p > M , or it is the whole

cube Sq. In either case, dH(F (α, θ) ∩ Sq, Sq) < ε/2. Hence F (α, θ) ∩ Ui 6= ∅.

Thus F (α, θ) ∈ B and F (N ) ⊂ B.

2. α ∈ Q2 and β /∈ Q2 implies there is m1 with ∀n > m1, α(n) = 0.

Then F (α, β) =
⋃
q>m1

Msqq ∪
⋃m1

q=1 Lpqq.

Let M = max{m, k,m1} and N = {α} × N (β �M), and take (α, θ) ∈ N .

If q ≤ M , then F (α, θ) ∩ Sq = F (α, β) ∩ Sq; if q > M , then F (α, θ) ∩ Sq = Mrqq or Sq,

in either case F (α, θ) ⊂ Ur. Hence F (α, θ) ⊂ ⋃i Ui.

For xi ∈ F (α, β) ∩ Sq, we have the following cases:

- if q ≤M , then xi ∈ F (α, θ) ∩ Sq, hence Ui ∩ F (α, θ) 6= ∅.

- if q > M , then F (α, θ) ∩ Sq is either Mpq for some p > M , or it is the whole cube Sq.

In either case, dH(F (α, θ) ∩ Sq, Sq) < ε/2. Also, dH(Msqq, Sq) < ε/2, so dH(F (α, β) ∩
Sq, F (α, θ) ∩ Sq) < ε. Hence F (α, θ) ∩ Ui 6= ∅.

Thus F (α, θ) ∈ B and F (N ) ⊂ B.

3. α /∈ Q2 and β ∈ Q2 implies that there is m2 with ∀n > m2, β(n) = 0.

Then F (α, β) =
⋃
q Lpqq.

Let M = max{m, k,m2} and N = {α} × N (β � M), and take (α, θ) ∈ N . Then

F (α, θ) = F (α, β). Hence F (N ) ⊂ B.

4. α, β /∈ Q2. Then F (α, β) =
⋃
q Lpqq. Let M = max{m, k} and N = {α} × N (β � M).

For (α, θ) ∈ N , F (α, θ) = F (α, β). Hence F (N ) ⊂ B.
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2.2 SUBCONTINUA OF RN

In this section, we will introduce the space of all subcontinua of RN and some important

classes of continua, like Peano continuum, dendrites and dendroids. Later in Chapter 4 we

will see some complexity results on these classes.

The space of subcontinua of RN consists of all connected compact subsets of RN , denoted

C(RN). Being a closed subset of K(RN) it is also a Polish space with Vietoris topology.

Similar to K(RN), C(RN) also stratifies with dimension under the action of Aut(RN).

Let C≤m(RN) be the set of all subcontinua of dimension ≤ m and Cm(RN) be the set of all

subcontinua of dimension m. Then C0(RN) consists of all one point subsets of RN , which is

known to be a closed subset. And for m ≥ 1;

Corollary. • C≤m(RN) is a Gδ set.

• Cn(RN) is an Fσ set.

Proof. Now C≤m = K≤m ∩C(RN), so intersection of a Gδ (by Theorem 2.1.2) and a closed

set, hence is a Gδ.

Being the complement of the Gδ set C≤n−1(RN), Cn(RN) is Fσ.

Theorem 2.2.1. The class of curves in RN is a Gδ in C(RN).

Proof. The set of all curves is the difference of the sets C≤1(RN) and C0(RN), where the

first one is a Gδ and the second is a closed set. Hence the difference is Gδ.

Let K ⊂ RN be a non-degenerate continuum, i.e. it has more than one element, and let

H(K) =
{
X ∈ C(RN) | X is homeomorphic to K

}
. It is well known that H(K) is dense in

C(RN). In particular, Cm(RN) is dense in C(RN) for 1 ≤ m ≤ n.

A Peano continuum is a continuum which is locally connected. An arc is a continuum

homeomorhic to the closed interval.

A graph is a continuum which can be written as the union of finitely many arcs which

pairwise intersect only in their end points. A dendrite is a locally connected compact con-

nected set (continuum) which does not include a subcontinuum homeomorphic to the circle.
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A continuum is X a dendroid if it is arcwise connected and hereditarily unicoherent,

where X is arcwise connected if for all x 6= y ∈ X there is an arc contained in X with the

end points x, y and it is unicoherent if whenever it is written as the union of two subcontinua

then their intersection is a continuum.

It is known that dendrites form a Π0
3-complete set, whereas dendroids are more complex

and the class of dendroids is Π1
1-complete, see [3].

A continuum is regular if for every point there is a local base where each element of the

base has a finite boundary. A continuum is rational if for every point there is a local base

where each element of the base has a countable boundary.

Any regular or rational continuum is a curve. Dendrites are regular, and dendroids are

rational curves. In [6], the authors show that the set of regular continua is a Π0
4-complete

set. Also, the set of rational continua is Π1
1-hard, however the complete classification is not

known.
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3.0 ZERO DIMENSIONAL COMPACT SUBSETS

For a given zero dimensional compact subset K of RN , by Cantor-Bendixson theorem, there

are unique subsets P and C of K where P is a perfect and C is countable such that K = P∪C
(see [15]). Furthermore, if K is uncountable then P is a Cantor set, since it is compact perfect

and zero dimensional. So the two natural classes of zero dimensional compact subsets are:

countable compact subsets and Cantor subsets.

The set of all countable compact subsets of RN is a Π1
1-complete set in K(RN) (see [15],

p.210). Moreover, it is an invariant subset of K(RN) under both equivalence relations ∼H
and ∼.

In the rest of this chapter, we will examine the class of Cantor subsets of R3, which is

denoted by C(R3). We will show that C(R3) is a Gδ subset of K(R3), hence it is a Polish

space itself. Since all Cantor sets are homeomorphic, we will only consider the equivalence

relation ∼ on C(R3).

3.1 CANTOR SETS IN R3

This section will introduce the space of Cantor subsets of R3 and its topology, which is

induced from K(R3).

A set C ⊂ R3 is a Cantor set if and only if it is totally disconnected, perfect, compact

metric space. For a Cantor set C in R3 a sequence (Cn)n∈N of compact 3-manifolds with

boundary is a defining sequence for C if and only if:

1. for each i ∈ N, Ci is the union of a finite number of mutually exclusive polyhedral cubes
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with handles,

2. for each i ∈ N, Ci+1 ⊆ Int(Ci), and

3. C =
⋂
nCn

Two Cantor sets K,K ′ ⊂ R3 are equivalent if there is a homeomorphism h : R3 → R3

such that h(K) = K ′. This is the equivalence relation induced by the action of Aut(R3). A

Cantor set K is tame if it is equivalent to standard Cantor set, E1/3. Otherwise, it is called

wild. A well known example for wild Cantor sets is the Antoine’s necklace, [1].

It is known that, every Cantor set has a defining sequence. Moreover, two Cantor sets K

and L are equivalent if and only if there are equivalent defining sequences {Mi} and {Ni} for

K and L respectively, where {Mi} and {Ni} are equivalent means that for each i, there is a

homeomorphism hi ∈ Aut(R3) such that hi(Mi) = Ni and hi+1 � (R3−Mi) = hi � (R3−Mi).

[Sher, [20]]

We will show below that the space of Cantor subsets of R3 is Polish itself, and then

we will discover that some of the natural subclasses are in the first few levels of the Borel

hierarchy of this space. The following lemma is a well-known result, we will include the proof

here for completeness.

Lemma 3.1.1. 1. KP (R3) = {K ∈ K(R3) | K is perfect} is a dense Gδ set in K(R3).

2. KC(R3) = {K ∈ K(R3) | K is a Cantor set} is a (dense) Gδ, and thus Polish.

Proof. 1. Let

Un =
⋃
{B(U1, . . . , Ur) | r ∈ N, diam(Ui) < 1/n, ∀i, ∃j 6= i, s.t. Ui ∩ Uj 6= ∅}

where Ui’s are open disks (ie homeomorphic to open ball in R3).

Claim 1.
⋂
Un = KP (R3)

Suppose K is not perfect, we will show it is not in the intersection. There is an isolated

point x ∈ K, so d(x,K\{x}) > 0. So there is N ∈ N with d(x,K\{x}) > 1/N > 0.

Let n = 2N , then K /∈ Un because, for each open disk U with x ∈ U , diam(U) < 1/n,

and for any open disk U ′ with diam(U ′) < 1/n & (K\{x}) ∩ U ′ 6= ∅, the intersection
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U ∩ U ′ is empty. (Since otherwise, there is y ∈ U ∩ U ′ and z ∈ K ∩ U ′, and d(x, z) ≤
d(x, y) + d(y, z) < 1/N contradicting the choice of N).

For the converse, suppose K is perfect compact set. Fix n. We need to show K ∈ Un.

Take the open cover {B(x, 1/(2n))}x∈K , then since K is compact there are finitely many

xi ∈ K such that {Ui = B(xi, 1/(2n))}ki=1 covers K. Now if for some i, Ui ∩ Uj = ∅, for

all j 6= i, then there exist x ∈ Ui such that x 6= xi, as otherwise K ∩Ui = {xi} and so xi

is an isolated point, which is not possible. Then take Uk+1 = B(x, 1/(2n)). Now for the

new finite open cover {Ui}k+1
i=1 if there is Uj which does not meet other Ui’s, then we can

repeat as above and add finitely many more open sets of diameter < 1/n. Hence after

finitely many steps we have {Ui}ri=1, such that K ∈ B(U1, . . . , Ur), diamUi < 1/n and

for any 1 ≤ i ≤ r, there is j 6= i with Ui ∩ Uj 6= ∅. Thus K ∈ Un.

For denseness, take a basic open set in K(R3), B(U1, . . . , Ur). Then for any i, take

xi ∈ Ui. Then there is ε > 0 with B(xi, ε) ⊂ Ui for each i. Take K =
⋃r
i=1 ClB(xi, ε/2).

Then K ∈ B(U1, . . . , Ur). Moreover, K is perfect, since otherwise an isolated point of

K would be isolated in one of the closed balls B(xi, ε), which can not happen. Thus

KP (RN) is dense in K(RN).

2. By 2.1.2, when m = 0, we get all zero dimensional subsets of R3, which is a Gδ and

C(R3) = KP (R3) ∩ K0(R3), hence it is a Gδ subset as well.

Lemma 3.1.2. If K ∈ C(R3) has defining sequence {Mn}n∈N, then K has the following as

a local base in K(R3):{
B(V n

1 , . . . , V
n
mn) | V n

1 , . . . , V
n
mn are interiors of the components of Mn

}
Proof. Let B(U1, . . . , Uk) be a basic open set containing K.

K =
⋂
nMn ⊂

⋃k
i=1 Ui, so for some l1 ∈ N, Ml1 ⊂

⋃k
i=1 Ui, since otherwise we get a

sequence of compact non-empty sets Cn = Mn −
⋃k
i=1 Ui, whose intersection is non-empty

subset of K but not a subset of
⋃k
i=1 Ui, hence gives us a contradiction.

Let S = {(i, j) : V `1
j ∩ Ui ∩ K 6= ∅, 1 ≤ i ≤ k, 1 ≤ j ≤ m`1}. For each (i, j) in S fix

xij ∈ V `1
j ∩ Ui ∩K.
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Then, for each (i, j) ∈ S, since xij is in open Ui, and using the definition of defining

sequence, there is an `ij such that the component of M`ij containing xij in its interior is a

subset of Ui.

Let ` = max(`1, `ij : (i, j) ∈ S).

We will show that K ∈ B(V `
1 , . . . , V

`
m`

) ⊆ B(U1, . . . , Uk) – as required.

As the V `
j are the interiors of the components of M`, by definition of defining sequence,

K is in B(V `
1 , . . . , V

`
m`

).

Now take any K ′ in B(V `
1 , . . . , V

`
m`

). Since ` ≥ `1, K ′ ⊆ ⋃ml
j=1 V

`
j ⊆M` ⊆M`1 ⊆

⋃k
i=1 Ui.

It remains to show that K ′ ∩ Ui 6= ∅ for all i. So fix i.

Since Ui ∩K 6= ∅, and K ⊆ ⋃j V
`1
j , for some ji we have Ui ∩ V `1

ji
∩K 6= ∅. Thus (i, ji)

is in S, and some component of M`iji
containing xiji in its interior is a subset of Ui. Since

` ≥ `iji , it follows that some V `
j′ is contained in Ui. As K ′ meets this V `

j′ it meets Ui.

From now on a basic open set for a Cantor set K will refer to a set B(U1, . . . , Um) where

each Ui is an open set and ClUi ∩ ClUj = ∅ when i 6= j.

3.1.1 PROPERTIES OF C(R3)

A Cantor set K in R3 is n-decomposable if there are n topological open balls U1, . . . , Un in

R3 with pairwise disjoint closures such that K ⊂ ⋃n
i=1 Ui and K ∩Ui 6= ∅ for all i. A Cantor

set which is n-decomposable for each n is ω-decomposable. Clearly, all tame Cantor sets are

ω-decomposable. A Cantor set which is not 2-decomposable is indecomposable.

Lemma 3.1.3. The orbit of a Cantor set K –under the equivalence relation ∼– is dense if

and only if K is ω-decomposable.

Proof. Suppose the orbit of K is dense in C(R3). Fix n ∈ N. Let K ′ be an n-decomposable

Cantor set, so there are n topological open balls U1, . . . , Un ⊂ R3 with B(U1, . . . , Un) a

basic open neigborhood of K ′. And there is a homeomorphism h : R3 → R3 such that

h(K) ∈ B(U1, . . . , Un). Then K ⊂ ⋃n
i=1 h

−1(Ui), and h−1(Ui) ∩ K 6= ∅, ∀i. Moreover

K ∈ B(h−1(U1), . . . , h−1(Un)), and h−1(Ui)’s are topological open balls with pairwise disjoint
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closures (as h is homeomorphism). Hence K is n-decomposable. Since n is arbitrary, K is

ω-decomposable.

On the other hand, let K be ω-decomposable. Let L be arbitrary Cantor set, and

let B(V1, . . . , Vm) be a basic open set containing L. Since K is ω-decomposable, it is m-

decomposable and there are topological open balls U1, . . . , Um such that B(U1, . . . , Um) is

a basic open neighborhood of K. Now there is a homeomorphism h : R3 → R3 such that

h(ClUi) ⊂ Vi. But then h(K) is in the orbit of K and in B(V1, . . . , Vm). Hence the orbit is

dense.

So the space of Cantor subsets of R3 is connected, as it contains a dense connected

subspace - the equivalence class of tame Cantor sets. Actually more is true:

Theorem 3.1.4. C(R3) is path connected.

Proof. We will prove a more general statement below:

Lemma 3.1.5. Let U ⊂ R3 be an open subset. And let K be a Cantor set in U . And let C

be a tame Cantor set in U . Then there is a path from C to K that lies in U .

Proof: K has a defining sequence (Kn)n∈N, where each Kn is finite disjoint union of handle-

bodies. Without loss of generality, Kn ⊂ U for each n. Let Kn have qn components.

We can cover C with q0 disjoint open balls, say B0
1 , . . . , B

0
q0

, which are subsets of U . Let

K0
1 , . . . , K

0
q0

be a listing of components of K0. There is an isotopy H0 : R3 × [0, 1/2]→ R3,

such that H0
t is an autohomeomorphism of R3 for each t ∈ [0, 1/2], and H0

0 = id and

H0
1/2(B0

i ) ⊂ Int(K0
i ). Let C0 = H0

1/2(C), so C0 ⊂ Int(K0) and is a tame Cantor set.

Now in each component K0
i of K0, there is a piece of C0, which is in the topological ball

H0
1/2(B0

i ). Since it is tame, we can cover the piece in H0
1/2(B0

i ) with q1-many disjoint open

balls, say B1,i
1 , . . . , B1,i

q1
, which are subsets of the interior of corresponding component K0

i

(hence of U). Let K1,i
1 , . . . , K1,i

q1
be a listing of components of K1 in K0

i . There is an isotopy

H1 : R3 × [1/2, 3/4]→ R3 such that H1
t is an autohomeomorphism of R3, H1 � (R3 −K0) =

idR3−K0
, H1

1/2 = id and H1
3/4(B1,i

j ) ⊂ Int(K1,i
j ). Let C1 = H1

3/4(C0), so C1 ⊂ Int(K1) and is

a tame Cantor set.
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Continuing this way we get an isotopy Hn : R3 × [1 − 1/2n, 1 − 1/2n+1] → R3, for each

n, where at each n, only points in Kn are moved.

Now let define a path as follows: p : [0, 1]→ C(R3),

p(t) =

 Hn(Cn−1, t), 1− 1/2n ≤ t ≤ 1− 1/2n+1

K, t = 1

This is a continuous path from C to K in U . p is obviously continuous for t < 1. We only

need to check continuity at t = 1. Take basic open neighborhood of K, B(U1, . . . , Ukn), where

Ui’s are interiors of the components of some Kn. So Cn = Hn
1−1/2n−1(Cn−1) ⊂ ⋃kn

i=1 Ui, and by

definition Cn∩Ui 6= ∅, for each i. And for each t > 1− 1
2n−1 , (t < 1) 1−1/2m ≤ t ≤ 1−1/2m+1

for some m ≥ n, p(t) = Hm(Cm−1, t) ⊂ Km ⊂
⋃kn
i=1 Ui, and by definition Cn ∩ Ui 6= ∅, for

each i. Hence for each t > 1− 1
2n−1 , p(t) ∈ B(U1, . . . , Ukn).

Now suppose K and L are Cantor sets, and let C be a tame Cantor set. Then by taking

U = R3, we get a path from K ⊂ R3 to C and a path from L to C. Now following the path

from K to C and then the second one backwards from C to L we get a path from K to

L.

Theorem 3.1.6. C(R3) is locally path connected.

Proof. Fix Cantor set K and basic open neighborhood B = B(U1, ..., Un). For each i select

a tame Cantor set Ci ⊂ Ui. Let C =
⋃n
i=1Ci. Then C is a tame Cantor set in the basic

neighborhood B.

Take any other L in B, we want to define a path inside B which takes K to L. Let

Li = Ui ∩ L = ClUi ∩ L, so it is a Cantor set. Then by Lemma 3.1.5 there are paths

pi from Ci to Li inside Ui. Now let p : I → C(R3) be defined as p(t) =
⋃n
i=1 pi(t), then

p(0) =
⋃n
i=1 pi(0) =

⋃n
i=1Ci = C, p(1) =

⋃n
i=1 pi(1) =

⋃n
i=1 Li = L and each p(t) is a

Cantor set in B = B(U1, ..., Un), as it is a finite union of Cantor sets. So we only need

to show p is continuous: To this end, fix t ∈ [0, 1], let B(V1, . . . , Vm) be a basic open set

including p(t) =
⋃n
i=1 pi(t). Now for each i, let Vi1 , . . . , Vik(i) be the ones that intersect

pi(t), so pi(t) ∈ B(Vi1 , . . . , Vik(i)). Now let U =
⋂n
i=1 p

−1
i (B(Vi1 , . . . , Vik(i))), then U is open

neighborhood of t. And p(U) ⊂ B(V1, . . . , Vm), as for any s ∈ U , pi(s) ∈ B(Vi1 , . . . , Vik(i)),
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and the union p(s) =
⋃
i pi(s) is a Cantor set which is a subset of

⋃m
i=1 Vi and meets each

one of Vi’s.

3.2 STRUCTURE OF CANTOR SETS

Recall that a Cantor set is called n-decomposable if there are n disjoint topological open

balls covering the Cantor set, where each of them intersects the Cantor set. We know that

such open balls will form a basic open neighborhood for a Cantor set in C(R3). Also, a

Cantor set is called ω-decomposable if it is n-decomposable for each n. Thus we have:

Proposition 3.2.1. • The set of n-decomposable Cantor sets form a dense open

subset of C(R3).

• The set of ω-decomposable Cantor sets form a dense Gδ subset of C(R3).

Proof. Let Dn =
⋃{B(U1, . . . , Un) basic open|Ui’s are topological open balls}. Then K ∈

C(R3) is n-decomposable if and only if K is in Dn, and clearly Dn is a dense open subset of

C(R3). Also let D =
⋂
nDn, then D is a dense Gδ. Moreover, K is in D if and only if K is

ω-decomposable.

Now consider the Cantor sets which can be decomposed with open sets homeomorphic

to the interior of solid n-tori. We call a Cantor set K to be (g,≥ n)-decomposable if there

are n open sets U1, . . . , Un each homeomorphic to the interior of g-tori with disjoint closures

such that K ⊂ ⋃n
i Ui and K ∩ Ui 6= ∅ for each i. K is (g, n)-decomposable if it is (g,≥ n)-

decomposable but not (g,≥ n + 1)-decomposable. And K is (g, ω)-decomposable if for

each n, it is (g,≥ n)-decomposable. A Cantor set which is not (g, 2)-decomposable is g-

indecomposable.

A Cantor set has genus less than or equal g if and only if it has a defining sequence so

that the genus of each component at each level is less than or equal to g. It has genus g if

and only if it has genus ≤ g but not ≤ (g − 1). Note that a genus zero Cantor set is tame,

[23].
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Let B(U1, . . . , Un) and B(V1, . . . , Vm) be basic open sets in C(R3). Write

B(U1, . . . , Un) ≺ B(V1, . . . , Vm)

if and only if for each Uj there is a Vi so that ClUj ⊆ Vi.

Lemma 3.2.2. The following statements are equivalent:

(a) A Cantor set K in R3 has genus g,

(b) it has a defining sequence where all the components in the sequence are genus-g handle-

bodies whose diameters → 0,

(c) K has a sequence of open neighborhoods (B(U1,
n , . . . , Un

mn))n such that

(i) for each n, j, ClUn
j is a genus g handlebody whose diameter → 0 with n,

(ii) the closures of distinct Un
j and Un

k are disjoint,

(iii) B(Un
1 , . . . U

n
mn) ≺ B(Un′

1 , . . . U
n′
mn′

) if n > n′, and

(iv) (B(Un
1 , . . . , U

n
mn))n is a local base at K.

Proof. K has genus-g if and only if it has a defining sequence so that the genus of each

component at each level is g if and only if (a).

(c) =⇒ (b): Let Kn =
⋃mn
i=1 ClUn

i , then (Kn)n∈N is a defining sequence for K where each

Kn is a disjoint union of genus-g handlebodies whose diameter → 0 (as n→∞).

(b) =⇒ (c): Conversely let (Kn)n∈N as in (a). Without loss of generality, we can assume

that for each n, diam( components of Kn) < 1
n
. (We can make sure this happens by removing

some levels from the original defining sequence)

Now let {Un
1 , . . . , U

n
mn} be a listing of interiors of the handlebodies at level n of the

defining sequence. So (B(Un
1 , . . . , U

n
mn)) is a sequence of basic open neighborhoods of K

which satisfies (i), (ii) and (iii) by definition of the defining sequence. Also by Lemma 3.1.2,

this forms a local base.

Theorem 3.2.3. For any genus g;

1. The set of genus-g Cantor sets are dense in (g − 1)-indecomposables.

2. The set of genus-g Cantor sets are a Gδ.

3. The set of (g,≥ n)-decomposable Cantor sets is an open (invariant) set.
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4. The set of (g, ω)-decomposable Cantor sets is a Gδ set, containing genus-g ones, hence

it is dense.

5. The set of all g-indecomposable Cantor sets is closed and nowhere dense in (g − 1)-

indecomposables.

Proof. We set all Cantor subsets to be −1-indecomposable.

1. Take any (g−1)-indecomposable Cantor set K, and a basic neighborhood B(V1, . . . , Vm),

without loss of generality Vi’s are interior of handlebodies.

Since K is (g − 1)-indecomposable, Vi’s must be linked.

Now shrink the handlebody Vi to a ‘skeleton’ Si, so Si’s are linked as Vi’s. On each Si,

add skeletons of tori, so that they are linked and they cover Si. Now replacing each torus

with a genus g, (g − 1)-indecomposable Cantor set, will give us a genus g Cantor set in

the basic neighborhood B(V1, . . . , Vm).

2. Let Tn =
⋃{B(U1, . . . , Um) basic : the closures of the Ui’s are handlebodies of genus

g with diameters < 1/n}. Let T =
⋂
n Tn. Then every genus g Cantor set is in T .

Moreover, we will show that every K ∈ T has genus g.

Since K is in T , for each n there is a B(Un
1 , . . . , U

n
mn) from Tn which contains K. We

will prove: (∗) given any basic neighborhood B(V1, . . . , Vm) of K, there is an n such

that B(Un
1 , . . . , U

n
mn) ≺ B(V1, . . . , Vm).

Applying this claim recursively we can easily find a subsequence (nk)k∈N such that

B(Unk
1 , . . . , Unk

mnk
) ≺ B(U

n′k
1 , . . . , U

n′k
mn′

k
) if and only if k > k′. Then Lemma 3.2.2 com-

pletes the proof.

To prove (∗) fix a basic neighborhood B(V1, . . . , Vm) of K. Let ε to be the minimum of

d(K,R3 \ ⋃i Vi) and d(ClVi,ClVj) for all i 6= j. Pick n so that 1/n < ε and, by the

Lebesgue Covering Lemma, so that if x, x′ are in K and d(x, x′) < 1/n then x and x′ are

in some Vi.

We check that each ClUn
j is contained in some Vi. To this end take any Un

j . Let

K ′ = K ∩ Un
j = K ∩ ClUn

j . Then (by the second condition on n) K ′ is contained in
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some Vi, and further ClUn
j meets only this Vi (otherwise Un

j would meet Vi and Vi′ ,

contradicting diam(Un
j ) ≤ 1/n < ε and d(ClVi,ClVi′) ≥ ε).

Suppose, for a contradiction, that ClUn
j 6⊆ Vi. Then there is a y in ClUn

j \Vi ⊆ R3\⋃i′ Vi′ .

So d(K ′, y) ≥ ε. Pick x in K ′ so that d(x, y) ≥ ε. Now we see that x and y are in ClUn
j ,

and the diameter of ClUn
j ≤ 1/n < ε, contradiction.

3. Let Dm =
⋃{B(T1, . . . , Tm) basic |Ti’s are open sets homeomorphic to the interior of

solid g-torus}. Then K is in Dm if and only if K is (g,≥ m)-decomposable. Clearly each

Dm is an open set.

4. Let D =
⋂
nDn, then D is Gδ and K is in D if and only if K is (g, ω)-decomposable.

A genus-g, (g− 1)-indecomposable Cantor set is necessarily (g, ω)-decomposable. Hence

(g, ω)-decomposable Cantor sets are dense in (g − 1)-indecomposables.

5. Let I =
⋂
nD

C
n (complements of Dn’s), hence I is a closed nowhere dense subset of

C(R3). Also K ∈ I if and only if K is g-indecomposable.

3.3 COMPLEXITY OF CLASSIFICATION

In this section, we consider the classification of Cantor sets up to the equivalence ∼ as

defined in Chapter 2. In the previous section, we have seen that there are many different

Cantor sets, but some of those may be equivalent. In this section we will show that there

are many inequivalent classes of Cantor sets by showing that there are at least as many as

the countable linear orders have.

Lemma 3.3.1. For a given linear order α, we can construct a sequence of pairwise disjoint

open intervals (pn, qn)n∈N with end points in (0, 1) and with the following properties:

1. The order of {pn | n ∈ N} is isomorphic to the order coded by α,
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2. infn pn = 0 if and only if the order has no smallest element,

3. supn qn = 1 if and only if the order has no largest element,

4. For any x /∈ ⋃n(pn, qn), sup {qn | qn ≤ x} = inf {pn | pn ≥ x} if and only if there is no

biggest qn below x and no smallest pn above x,

5. |pn − qn| < 1
n

Moreover, we can assign a collection of intervals {(pαn, qαn) | n ∈ N} to each linear order

α ∈ LO such that if α and β agree on the order of 1, . . . , N then (pαn, q
α
n) = (pβn, q

β
n) for all

n = 1, . . . , N .

See the proof in [11] by Gartside and Pejic, the only difference is that we use the interval

(0, 1) rather than (0, 1/2).

Note. Any Antoine’s necklace can be embedded into the closed standard double cone, which

is the set {(x, y, z) ∈ R3|
√
y2 + z2 + |x| ≤ 1}, such that the intersection of the Antoine

set and the boundary of the cone is precisely the set {(±1, 0, 0)}, which are called the end

points, (see Figure 3.1).

(1, 0, 0)(−1, 0, 0)

(0, 0, 1)

(0, 0,−1)

Figure 3.1: Standard double cone

Theorem 3.3.2. The classification problem of Cantor sets up to equivalence is at least as

complicated as classification of countable linear orders.

Proof. We will define a Borel map f : LO → C(R3) such that two linear orders α, γ ∈ LO
are equivalent if and only if f(α), f(γ) are equivalent Cantor sets.

Let A be a rigid Antoine necklace. Now given a linear order α, we will define a corre-

sponding Cantor set Cα as follows:

Let {(pαn, qαn)}n∈N be the intervals from the Lemma 3.3.1. For each n, let us put an

isometric copy of the closed standard double cone in (pαn, q
α
n) with end points being the end
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pn qn0 1pm qmpk qkps qs prqr

Aαs Aαn
Aαk Aαm Aαr

Figure 3.2: Cantor cones in the intervals

points of the interval, then we embed the Cantor set A into this cone, and will call it Aαn.

(see Figure 3.2)

Also for every consecutive m, k ∈ N with respect α, put an isometric copy of the closed

standard double cone in (qm, pk) with end points being the end points of the interval, then

we embed the Cantor set A into this cone, and will call it Aαm,k

0 1

Aαs Aαn
Aαk Aαm Aαr

Aαmr
Aαkm

AαnkAαsn

Figure 3.3: Construction of Cantor Set for given α

Then let Cα = f(α) =
⋃
nA

α
n ∪

⋃
m<αk

Aαm,k, where m, k in the second union are consec-

utive with respect to α. (see Figure 3.3)

Claim 1. Cα is a Cantor set.

Cα is obviously perfect, as none of the points will be isolated. It is bounded as it is a

subset of [0, 1]3.

Let x ∈ R3 \ Cα. If x /∈ [0, 1]3, then we can find an open ball including x and not

intersecting Cα. For x = (x1, x2, x3) ∈ [0, 1]3, (x1, 0, 0) is in at least one of the cones along

[0, 1], say the one including Aαn. Let Aαm,n be the necklace preceding Aαn, and Aαn,k be the

succeeding necklace. Since x /∈ Cα, x /∈ Aαn ∪ Aαm,n ∪ Aαn,k. Since these are compact sets,

ε = min(d(x,Aαm,n), d(x,Aαn), d(x,Aαn,k)) > 0. Hence Bε(x)∩Cα = ∅. Hence it is closed (thus

compact).

Suppose C ⊂ Cα is a connected component, let x ∈ C. Then without loss of generality

x ∈ Aαn for some n. If C ⊂ Aαn, then C must be a one point set. Suppose for a contradiction

that y 6= x in C and in some other Antoine necklace. Then:

• either y is in Antoine necklace right next to Aαn, so in one of Aαm,n, Aαn,k, say the
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second. Then there are open sets U ′, V ′ ⊂ R3 with Aαn,k ⊂ U ′∪V ′, Aαn.k∩U ′∩V ′ = ∅
and (qαn , 0, 0) ∈ U ′, y ∈ V ′.

Aαn AαkAαm

Aαmn
Aαnk

x y

V ′

U ′

Figure 3.4: Disjoint open sets containing x and y, case I

• or there is at least one Antoine necklace between Aαn and the Antoine necklace

including y, say Aαk . Without loss of generality, suppose n <α k are consecutive.

Then there are open sets U ′, V ′ ⊂ R3 with Aαn,k ⊂ U ′ ∪ V ′, Aαn,k ∩ U ′ ∩ V ′ = ∅ and

(qαn , 0, 0) ∈ U ′, (pαk , 0, 0) ∈ V ′.
Aαn AαkAαm

Aαmn
Aαnk

x
y

U ′ V ′

Figure 3.5: Disjoint open sets containing x and y, case II

Also in either case, U ′ does not intersect any Antoine necklace after Aαn,k and V ′ does

not intersect any Antoine necklace before Aαn,k. Take U = U ′ ∪ {x̃ ∈ R3 | x̃1 < qαn} and

V = V ′ ∪ {x̃ ∈ R3 | x̃1 > pαk}, then x ∈ U , y ∈ V , Cα ⊂ U ∪ V and U ∩ V ∩C = ∅. Hence C

is not connected. Thus C must be a one-point set.

Claim 2. f is Borel.

To show f is Borel, it is enough to work with subbasic open sets in C(R3), which are:

B1(U) = {K | K ⊂ U} and B2(U) = {K | K ∩ U 6= ∅}, where U ⊂ R3 is open.

We will show that S1 = f−1(B1(U)) is closed and S2 = f−1(B2(U)) open.

Consider S1 = {α ∈ LO | f(α) ⊂ U}, so Sc1 = {α ∈ LO | f(α) ∩ U c 6= ∅}. For α ∈ Sc1,

f(α) ∩ U c 6= ∅, hence for some n, U c ∩ Aαn 6= ∅.
Now take the basic open set M = {γ ∈ LO | α, γ agree on the order of 1, . . . , n} in LO.

Then (pαn, q
α
n) = (pγn, q

γ
n) for all γ ∈ M . In particular, Aγn = Aαn for all γ ∈ M , hence f(γ)
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meets U c, and thus M ⊂ Sc1 is a neighborhood of α. Thus S1 is closed. (If U c ∩ Aαn,m 6= ∅,
then take M to be linear orders that agree on the order of 1, . . . ,max(n,m)).

Consider S2 = f−1(B2(U)) = {α ∈ LO | f(α) ∩ U 6= ∅}. For α ∈ S2, f(α)∩U 6= ∅, hence

for some n, U ∩ Aαn 6= ∅.
Now take the basic open set N = {γ ∈ LO : α, γ agree on the order of 1, . . . , n} in LO.

Then (pαn, q
α
n) = (pγn, q

γ
n) for all γ ∈ N . In particular, Aγn = Aαn for all γ ∈ N , hence f(γ)

meets U , and thus N ⊂ S2 is a neighborhood of α. Thus S2 is open.

Claim 3. α, γ are equivalent if and only if Cα, Cγ are equivalent Cantor sets.

(⇒) Suppose α, γ are equivalent linear orders. Then there is an order preserving map

g : {pαn | n ∈ N} → {pγn | n ∈ N} (i.e. n <α m ⇐⇒ pαn < pαm ⇐⇒ g(pαn) < g(pαm) and g is

bijection). Now define h : Cα → Cγ as follows:

h|Aαn is homeomorphism of Aαn and Aγk where h(pαn) = g(pαn) = pγk, thus h(qαn) = qγk , and

h|Aαn,m is homeomorphism of Aαn,m and Aγk,l where h(pαm) = g(pαm) = pγl

Now h is a homeomorphism of the Cantor sets Cα and Cγ. The only problem can occur at

the intersection points, but for a sequence (xn)n∈N ∈ Cα converging to an intersection end

point pαn, without loss of generality for infinitely many n, xn ∈ Aαn, so h(xn) ∈ h(Aαn). h is a

homeomorphism on Aαn, hence h(xn) converges to h(pαn).

We can easily extend this homeomorphism to the cones including the Antoine necklaces,

which in turn can be extended to the whole R3.

(⇐) Suppose there is a homeomorphism h : R3 → R3 with h(Cα) = Cγ. Consider g =

h| {pαn | n ∈ N}. Since h is a homeomorphism and the points pαn, q
α
n are different from the

other points on the Antoine necklaces Aαn, A
α
n,m, A

α
n,k (as well as the corresponding ones for

γ), g({pαn | n ∈ N}) ⊂ {pγn, qγn | n ∈ N}. Moreover, it is a bijection.

Enough to show that: if n <α m (so pαn < pαm) then g(pαn) < g(pαm), hence γ is an

equivalent order. Suppose not, then g(pαm) < g(pαn) (they are not equal since bijection).

Then we have two cases:

(i) For each k 6= m,n either k <α n or m <α k (i.e. m,n are consecutive wrt α)

Then h(Aαn,m) is in the cone with end points h(qαn) and g(pαm) and should be right after

h(Aαn) but also right before h(Aαm), which is not possible since g(pαm) < g(pαn).
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(ii) There is k ∈ N with n <α k <α m, then by (i), the image of Antoine necklace

consecutive to Aαn should be consecutive to h(Aαn). Following each Antoine necklace in the

middle of Aαn and Aαm one by one, we get h(Aαm) should come after h(Aαn), but g(pαm) < g(pαn)

means h(Aαm) comes before.

Thus either case leads to a contradiction.

Now this tells us that the classification of all Cantor subsets is complicated, however the

following question remains:

Question 1. Is Cantor sets classifiable by countable structures?

We know, by the work of Curtis and van Mill in [5], that the problem of classifying

Cantor sets in R3 is the same as the problem of classifying open submanifolds of R3. Thus

by the above theorem, we have:

Corollary. Classifying open 3-manifolds is at least as complex as classifying countable

groups.

In comparison, the recently completed classification of compact 3-manifolds is a simpler

classification.
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4.0 ONE DIMENSIONAL COMPACT SUBSETS

The most interesting class in the space of all one dimensional compact subsets is the space of

curves. This includes many important classes of continua, like dendrites, dendroids, regular

and rational continua.

Let C (RN) denote the class of all curves in K(RN), N ≥ 2. Then C (RN) ⊂ C(RN) and

it is a Gδ set (see Theorem 2.2.1).

In this chapter we will explore curves with additional connectedness properties, namely

strongly arc connected (sac) curves. We will characterize 3-sac graphs, find the Borel com-

plexity and show that the ω-sac curves cannot be characterized simpler than the definition.

In the last section, we will look into the classification problem of dendroids and dendrites,

and show that the classification of dendroids up to equivalence is provably more complex

than classifying countable structures.

4.1 STRONGLY ARC-CONNECTED CURVES

A space X is n–strongly arc connected (n–sac) if for every distinct x1, . . . , xn in X there is

an arc α : [0, 1] → X such that α((i − 1)/(n − 1)) = xi for i = 1, . . . , n — in other words,

the arc α ‘visits’ the points in order. Further, call a space ω–sac if it is n–sac for every n.

Note that being 2-sac is the same as being arc-connected.

Lemma 4.1.1. Let X be a space.

If there is a finite F such that X \ F is disconnected, then X is not (|F |+ 2)–sac.

Proof. If F is empty then X is disconnected and hence not 2–sac. So suppose F has n
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elments, say x1, . . . , xn, for n ≥ 1. Let U and V be an open partition of X \F . Pick xn+1 in

U and xn+2 in V . Consider an arc α in X visiting x1, . . . , xn, and then xn+1. Then α ends

in U and cannot enter V without passing through F . Thus no arc extending α can end at

xn+2 — and X is not n+ 2–sac, as claimed.

Corollary. Let X be a space.

(1) If there is an open set U with non–empty but finite boundary, then X is not (|∂U |+2)–

sac.

(2) No regular continuum is ω–sac.

(3) A continuum containing a free arc is not 4–sac.

(4) No compact continuous image of an interval is 4–sac.

Proof. (1) is simply a restatement of Lemma 4.1.1. Then (2) is immediate from (1). For (3),

apply (1) to an open interval inside the free arc. While for (4) note that, by Baire Category,

a compact continuous image of an interval contains a free arc, so apply (3).

Call an arc α in a space X a ‘no exit’ arc if every arc β containing the endpoints of α,

and meeting α’s interior must contain all of α.

Lemma 4.1.2. If a space contains a no exit arc then it is not 4–sac.

Proof. Let x1 and x2 be the endpoints of α. Pick x3 and x4 so that x1, x3, x4, x2 are in order

along α. Suppose, for a contradiction, β is an arc visiting the xi in order. Since x3 and x4

are in the interior of α, by hypothesis, β contains α. Now we see that if β enters the interior

of α from x1 then it visits x3 before x2. While if β enters the interior of α from x2 it visits

x4 before x3. Either case leads to a contradiction.

Proposition 4.1.3. No planar continuum is 4–sac.

Proof. Let K be a plane continuum. If it is not arc connected then it is not 2–sac, so suppose

K is arc connected. Pick x− (respectively, x+) in K to have minimal x–coordinate (resp.,

maximal x–coordinate). If x− and x+ have the same x–coordinate, then X is an arc, and so

not 3–sac.
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Otherwise, translating the mid point between x− and x+ to the origin, shearing in the

y–coordinate only to move x− and x+ onto the x–axis, and then scaling, we can assume

without loss of generality that x− = (−1, 0), x+ = (+1, 0) and K ⊆ [−1, 1]× R.

There is an arc α in K from x− to x+. Some sub–arc, α′, of α meets {−1} × R and

{+1} × R in just one point (each). If for every x in (−1, 1) the vertical line {x} × R meets

α′ in just one point, then α′ is a free arc, and K is not 4–sac, as claimed.

Otherwise there is an x0 ∈ (−1, 1) such that there are two distinct points x3 and x4 in

K ∩ ({x0} × R). We can suppose x3 has minimal y–coordinate, y3, while x4 has maximal

y–coordinate, y4. Assume, for a contradiction, that there is an arc β from x1 = x− to x4

visiting x2 = x+ and x3 in order. Let β1 be the sub–arc from x1 to x2 and β3 be the sub–arc

from x3 to x4. Note that β1 ∩ β3 = ∅, and so β1 meets {x0} × R only inside {x0} × (y3, y4).

Hence the line L = (−∞,−1)×{0} ∪ β1 ∪ (+1,+∞)×{0} splits the plane into two disjoint

open sets, U3 containing x3, and U4 containing x4. However β3 is supposed, on the one hand,

to be an arc from x3 to x4, and so must cross L, and on the other hand, is forced to be disjoint

from each part of L: β1 (by choice of β) and both (−∞,−1) × {0} and (+1,+∞) × {0}
(since K ⊆ [−1, 1]× R) — contradiction.

So many continua are not even 4–sac. But some curves are ω–sac.

Example 5. The Menger curve is ω–sac.

Since graphs are never 4-sac, regular continua are not ω-sac and the Menger curve is not

rational, the following questions are natural.

Question 2. 1. Which graphs are 3-sac? Can we characterize them?

2. Is there a rational ω-sac curve? Can we characterize ω-sac continua?

The circle and theta curve are 3-sacs. Three points, p, q, r, on the theta curve below in

figure 4.1 do not lie on any simple closed curve.

It turns out, these characterize the 3-sac graphs:

Proposition 4.1.4. Suppose G is a finite graph. Then the following are equivalent:

1. G is 3-sac.

2. G has no cut point.
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p q

r

p qr

Figure 4.1: Circle and Theta curve with points p, q, r

3. Any three points in G are contained in either a simple closed curve or a theta curve.

Notation: If α : [0, 1] → G is an arc, then for t < l, t, l ∈ [0, 1], αt,l will denote a sub-arc of

α from α(t) to α(l).

Lemma 4.1.5. Suppose G is a finite graph with possibly a vertex taken out. Suppose K and

L are non-empty, disjoint (connected) subgraphs of G. Then there is an arc α : [0, 1] → G

such that α(0) ∈ K, α(1) ∈ L, α((0, 1)) ∩ (K ∪ L) = ∅.

Proof. Pick a ∈ K, b ∈ L. Since G is arc-connected there is an arc β : [0, 1] → G such that

β(0) = a, β(1) = b. Since K,L,G are finite graphs, there are vertices c = β(t1) ∈ L and

d = β(t0) ∈ K, such that β([0, t1)) ∩ L = ∅ and β((t0, t1)) ∩K = ∅. Since K,L are disjoint

t0 6= t1. If s is a homeomorphism from [0, 1] to [t0, t1] mapping 0 to t0, then α = βt0,t1 ◦ s is

desired arc.

Lemma 4.1.6. Suppose G is a finite graph without any cut points. Suppose K and L

are non-empty, disjoint (connected) subgraphs of G. Then there exist disjoint arcs α, β in

cl(G−(K∪L)) with endpoints a1, a2 and b1, b2 respectively such that a1, b1 ∈ K and a2, b2 ∈ L.

If K (L) contains only one point then a1 = b1 (a2 = b2).

Proof. Induction on n, number of edges in cl(G− (K ∪ L)).

If n = 1 then the only edge in cl(G− (K ∪L)) will be connecting K and L and any point

on it will be a cut point. Hence n > 1.
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If n = 2, suppose α, β are the two edges in cl(G − (K ∪ L)) with endpoints a1, a2 and

b1, b2 respectively. Then without loss of generality we have the following cases:

• a1 ∈ K, a2 = b1, b1 6∈ K ∪ L, b2 ∈ L and all points on α and β are cut points.

• a1 ∈ K, a2, b1, b2 ∈ L and any point on α is a cut point.

• a1, b1 ∈ K, a2 ∈ L, b2 6∈ L, then there is a cut point on α.

• a1, b1 ∈ K, a2, b2 ∈ L and without loss of generality a1 = b1. If K is a point then

Lemma 2 holds otherwise a1 is a cut point.

• a1, b1 ∈ K, a2, b2 ∈ L and a1, b1, a2, b2 are distinct points. Then we have two

disjoint arcs starting at K and ending at L.

So Lemma 4.1.6 holds for n = 2.

Now suppose the lemma holds for n and cl(G − (K ∪ L)) has n + 1 edges. Then there

are the following cases:

1. Each edge starts in K and ends in L: if there are two edges that start at distinct points

and end at distinct points then lemma holds. If without loss of generality all edges end

at the same point of L, say c, then either L is a point and Lemma 4.1.6 holds or c is a

cut point.

2. There is an edge, say γ that starts at c ∈ K and ends at d 6∈ L (so it does not intersect

L). Then let K ∪ γ = K ′ and γ ∪ α′ = γ′, which is an arc starting at c and ending at

a2. Then K ′, L satisfy hypothesis of Lemma 4.1.6 and cl(G − (K ′ ∪ L)) has n edges.

Hence by induction hypothesis there exists a pair of disjoint arcs α′, β′ with endpoints

a′1, a2 and b′1, b2 such that a′1, b
′
1 ∈ K ′ and a2, b2 ∈ L and if L contains only one point

then a2 = b2. Subcases:

2.1. If a′1, b
′
1 ∈ K then let α = α′, β = β′ and Lemma 4.1.6 holds.

2.2. If without loss of generality a′1 ∈ K ′ −K, b′1 ∈ K − {c} then only possibility is

a′1 = d. If we let α = γ′, β = β′, Lemma 4.1.6 holds.

2.3. Say a′1 = d, b′1 = c. Since c is not a cut point G−{c} is arc-connected (G is a finite

graph). Apply Lemma 4.1.5 to K−{c} and (L∪γ′∪β′)−{c} to obtain an arc δ : [0, 1]→
G−{c} such that δ(0) ∈ K−{c}, δ(1) ∈ (L∪γ′∪β′)−{c}, δ((0, 1))∩(K∪L∪γ′∪β′) = ∅.
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Now if δ(1) ∈ L, let α = δ and β = β′ or α′ whichever does not have δ(1) as an endpoint,

Lemma 4.1.6 holds.

If δ(1) ∈ β′, hence δ(1) = β′(t) for some t ∈ (0, 1]. Let α = γ′, β = δ ∪ β′t,1 and Lemma

4.1.6 holds.

If δ(1) ∈ γ′, hence δ(1) = γ′(t) for some t ∈ (0, 1]. Let α = δ ∪ γ′t,1, β = β′ and Lemma

4.1.6 holds.

Proof. (Proposition 4.1.4)

“(1)⇒ (2)” follows immediately from Lemma 4.1.1.

“(2)⇒ (3)” let p, q, r ∈ G be any three points. Apply Lemma 4.1.6 to {p} = K, {q} = L

and resulting α ∪ β gives a simple closed curve containing p, q. If r ∈ α ∪ β then all three

lie on a simple closed curve. If r 6∈ α ∪ β then apply Lemma 4.1.6 to K = α ∪ β, L = {r}
to obtain two disjoint arcs connecting α ∪ β and r, say α′, β′ then α ∪ β ∪ α′ ∪ β′ is a theta

curve that contains all three of p, q, r.

“(3)⇒ (1)” obvious.

Lemma 4.1.7 (Finite Gluing). If X and Y are 2n− 1-sac, and Z is obtained from X and

Y by identifying pairwise n − 1 points of X and Y , then Z is n-sac (but not n + 1–sac by

Lemma 4.1.1).

Proof. Pick any z1, z2, . . . , zn in Z. For each i, if zi ∈ X−Y and zi+1 ∈ Y −X or zi ∈ Y −X
and zi+1 ∈ X − Y , pick z(i,i+1) ∈ (X ∩ Y ) − {z1, z2, . . . , zn, z(1,2), z(2,3), . . . , z(i−1,i)} (if these

z(1,2), z(2,3), . . . , z(i−1,i) were picked). This is possible since |X ∩ Y | = n − 1. Let Z be a

sequence of zj’s with z(i,i+1)’s inserted between zi and zi+1 whenever they exist. And let ZX
be a sequence derived from Z by deleting terms that do not belong to X. Define ZY similarly.

Since elements of ZX come either from {z1, z2, . . . , zn} or fromX∩Y , |ZX | ≤ 2n−1. Similarly,

|ZY | ≤ 2n − 1. Let β be an arc in X going through elements of ZX in order and γ be an

arc in Y going through elements of ZY in order. Let a1, a2, . . . , ak be z(1,2), z(2,3), . . . , z(n−1,n)

whenever they exist, respectively. Without loss of generality, suppose z1 ∈ X. Define α to

be the arc consisting of the following parts:
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• part of β from z1 to a1;

• part of γ from a1 to a2;

• part of β from a2 to a3 . . .

• part of β or γ (depending on whether k is even or odd) from ak to zn.

Now we turn to our second question, and give an example of a rational ω-sac curve.

Theorem 4.1.8. There is a rational continuum which is ω–sac.

Proof. Write B(x, r) for the open disk in the plane of radius r centered at x. Write S(x, r)

for the boundary circle of B(x, r). Pick any sequence (xn)n∈N∪{0} in (0, 1) increasing to 1.

Let c0 = 0, r0 = x0 and cn = (xn + xn−1)/2, rn = (xn− xn−1)/2 for n ≥ 1. Let θ be rotation

of the plane by 90o clockwise.

Let U =
⋃3
i=0 θ

i (
⋃∞
n=0B((cn, 0), rn)), and T = [−1,+1]2 \ U .

Let S be the geometric boundary of T , so S =
⋃3
i=0 θ

i (
⋃∞
n=0 S((cn, 0), rn)). Let S−

and S+ be the two circles in S immediately to the left and right of the center circle, i.e.

S− = S((−x1, 0), r1) and S+ = S((x1, 0), r1). For i=0 (respectively, i=1) pick a two sided

sequence of points, (p−m,i)m∈Z, on the top (respectively, bottom) edge of S− converging on the

left to (−x1−r1, 0) (the leftmost point of S−) and on the right to (−x1 +r1, 0) (the rightmost

point of S−). Find a corresponding pair, (p+
m,i)m∈z for i = 0, and 1 of double sequences on

the top and bottom edges of S+ converging to the leftmost and rightmost points of S+. Let

Ti = θi ([0, 1]2 ∩ T ) for i = 0, 1, 2, 3. Note that each Ti is a topological rectangle with natural

‘corners’ and ‘midpoints’ of the sides.

Let X1 = T , R(i) = Ti and S1 = S. Let h(0) be a homeomorphism of [−1,+1]2 with T0

carrying top–right corner to top–right corner etc, and midpoints to midpoints. Let h(i) =

θi ◦ h(0) for i = 1, 2, 3.

Inductively, suppose we have continuum Xn, geometric boundary Sn, and for each σ ∈
Σn = {0, 1, 2, 3}n a rectangle Rσ and a homeomorphism hσ of [−1,+1]2 with Rσ. Fix a

σ for a moment. Then Rσ has four subrectangles hσ(Ti). For i = 0, 1, 2, 3 let hσai be a
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S− S+

p−0,0
p−1,0p−−1,0

p−0,1

p−1,1p−−1,1

p−∞p−−∞
T0

R0,0

R0,3

R0,1

R0,2

Figure 4.2: T and X2

homeomorphism of [−1,+1]2 with hσ(Ti) taking corners to corners etcetera. Let Rσai =

hσ(Ti) = Rσ \hσai(U). Let Xn+1 =
⋃
σ∈Σn

⋃3
i=0Rσai =

⋃
σ∈Σn+1

Rσ. Let Sn+1 be the natural

geometric boundary.

Let X =
⋂
nXn. Then X is a variant of Charatonik’s description of Urysohn’s locally

connected, rational continuum in which every point has countably infinite order, see [4].

Thus X is rational (and locally connected). Since it is planar it is not 4–sac. Note that each

Rσ ∩X has a countable boundary contained in the sides of Rσ. Call a side of Rσ ‘finite’ if

it contains only finitely many boundary points. A side containing infinitely many boundary

points, is said to be ‘infinite’.

For each n and σ in Σn, there are two circles, hσ(S−) and hσ(S+). Identify, for all m ∈ Z

and i ∈ {0, 1}, the points hσ(p−m,i) and hσ(p+
m,i) (creating a ‘rational bridge’ between the

circles). Note that the diameters of the circles shrink to zero with n. It follows that the

resulting quotient space, Y , is a locally connected, rational continuum. We show that Y is

ω–sac.

Fix distinct points x1, . . . , xn in Y . The diameters of the rectangles, Rσ for σ ∈ Σm,

shrink to zero with m, so we can find an N such that if i 6= j, xi ∈ Rσ, and xj ∈ Rτ where

σ, τ ∈ ΣN then Rσ and Rτ are disjoint. For each i, let Ri be the unique Rσ containing xi.

Subdivide the square r = [−1,+1]2 into four subsquares r(i) = θi ([0, 1]2). And continue
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subdividing to get a final subdivision of [−1,+1]2 into subsquares rσ for σ ∈ ΣN . Note that

two squares rσ and rτ are adjacent if and only if the corresponding rectangles Rσ and Rτ are

adjacent. For each σ in ΣN , consider Rσ. It has four sides, at most two are ‘finite’ sides. For

each finite side remove the line segment in r which is the corresponding side in rσ. The result

r′ is an open, connected subset of the plane. It follows that r′ is ω–sac. Hence there is an arc

α′ which visits the interior of the squares ri in order: r1, r2, . . . , rn (indeed we can suppose

α′ visits the centers of the ri in turn). Further, we can suppose that α′ consists of a finite

union of horizontal or vertical line segments of the form {p/q}×J or J×{p/q} where p ∈ Z,

q ∈ N and J is a closed interval. Let M be a common denominator of all the denominators

(q’s) used. Then α′ is an arc on the grid r′ ∩
((⋃

p∈Z{p/M} × R
)
∪
(⋃

p∈ZR× {p/M}
))

.

Consider X1. There is a connected chain of circles, V0, in X1 from the bottom edge to

the top, and a connected chain of circles, H0, from the left side to the right. Note that V0

and H0 are in X. Now consider X2. There is a connected chain of circles to the right of V0

from the top edge to a circle in H0, and another to the right of V0 from the bottom edge to

a circle in H0. By construction, both chains end at the same circle of H0. Call the union of

these two chains, along with the circle they connect to, V1. It is a vertical connected chain

of circles from the top edge to the bottom. Similarly, there is a vertical connected chain

of circles, V−1 from the top edge to the bottom, lying to the left of V0. Further there are

two horizontal connected chains of circles, H1 and H−1, above and, respectively, below, H0.

Observe that V0 and V±1 are disjoint, as are H0 and H±1. Together these six chains form a

three–by–three ‘grid’ in X. Repeating, we find a ‘grid’ of horizontal, H±n and vertical, V±n,

chains, all in X, where the H±n converges to the left and right sides, {±1}× [−1, 1] and V±n

converges to the top and bottom edges [−1, 1]× {±1}.

Now consider a rectangle Rσ for some σ in ΣN . It has at least two ‘infinite’ sides. For

concreteness let us suppose that the bottom and right sides of Rσ are infinite, with the limit

point on the bottom edge being to the right, and the limit along the right edge being at

the top (all other cases are very similar). The vertical chains, Vn in X, for n ∈ N, have

analogues in Rσ. By construction, each Vn meets the bottom edge of Rσ in an arc of a circle

whose ends are points in the Rτ ‘below’ Rσ. Extend Vn to include this arc. Repeat at the

top edge, if it is infinite. Apply the same procedure to the horizontal chains, Hn for n ∈ N.
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The horizontal chains, and respectively the vertical chains, remain disjoint. Note that, by

construction, if Rτ is the rectangle ‘below’ Rσ, then the nth vertical chain in Rσ connects

to the nth vertical chain in Rτ (and similarly for the rectangle to the right of Rσ). If xi is

in Rσ but not on the geometric boundary of Rσ, then let Pi be sufficiently large that xi is

to the left of VPi and below HPi .

Now let P be the maximum of the Pi. Return to an individual rectangle, Rσ, as in the

previous paragraph. Take the union of the vertical chains, VP , . . . , VP+M , and the horizontal

chains, HP , . . . , HP+M . Take the union now over all σ in ΣN . This gives a ‘grid’, G, naturally

containing an isomorphic copy of the grid G′ in r′. Think of the grid, G′, as a graph, and α′

as an edge arc in this graph. Then we can realize the arc α′ in G′ as a connected chain of

circles in X. Evidently (by traveling along the ‘top’ or ‘bottom’ edges of the circles in the

union) we can extract an arc, α∗, contained in this union. The arc α∗ visits the Ri in order.

Note that α∗ is not (necessarily) an arc in Y , but it can easily be modified to be so, call this

arc, α0.

To complete the proof, we modify α0, to another arc α in Y , which visits the points xi

in order. As α0 visits the Ri in turn, there are sub–arcs βi of α0, where βi comes before βj if

i < j, such that βi crosses from one infinite edge of Ri to another (along the ‘grid’ G inside

Ri). We will replace βi in α0 by another sub–arc, visiting xi, contained inside Ri, with the

same start and end as βi, but otherwise disjoint from the ‘grid’ G. Doing this for all i, gives

the arc α in Y .

Fix i. Again for concreteness, orient Ri = Rσ as above. Suppose that βi enters Ri at yi, a

point on the bottom edge, and exits at zi, a point on the right edge. Pick Q in N sufficiently

large that, VQ is to the right of the rightmost vertical chain in G ∩ Ri, above the highest

horizontal chain in G ∩ Ri (i.e. Q > P + M) and if xi is not on the geometric boundary of

Ri, the vertical chain V−Q is to the left of xi and the horizontal chain H−Q is below xi. The

union of V±Q and H±Q contains an obvious ‘ring’, a connected cycle of circles, just interior to

the geometric boundary of Ri. Observe that this ring meets each arc component of α0∩Ri in

two circles, which are bridges. Select a simple closed curve (in Y ), S, contained in this ring,

which connects with βi at two points (one, call it y′i, near yi, and another, call it z′i, near zi),

but which uses the bridges to prevent intersection with any other (arc component of) α0.
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We will modify S so that it visits xi. If this is possible then either the arc ‘travel along βi

from yi to y′i, then clockwise along S until we reach z′i, followed by traveling along the arc βi

to zi’; or the arc obtained by following S anti–clockwise, is the required modification of βi.

Two cases arise. If xi is on the geometric boundary of Ri, we can find two arcs starting

at xi, and otherwise disjoint, both meeting S (but disjoint from the grid G). The required

modification of S is now obvious (follow S, then the first arc met, to xi, back to S along the

second arc, and finish following S). If xi is not on the geometric boundary, then it is to the

left and below the grid. It is also in some rectangle, Rτ , τ from some ΣN ′ where N ′ > N ,

where Rτ is disjoint from the geometric boundary of Ri. Following S anticlockwise we can

get to a point, ai, below the lowest horizontal line of the grid, but above and to the left of

the top–left corner of Rτ . Following S clockwise we can get to a point, bi, left of the leftmost

vertical line of the grid G ∩ Ri, but below and to the right of the bottom–right corner of

Rτ . We can now find disjoint arcs from ai to the top–left corner of Rτ , and from bi to the

bottom–right corner of Rτ . And these can be extended to disjoint (except at xi) arcs ai to

xi and bi to xi. Again, using these arcs, we can modify S to detour through xi.

4.2 COMPLEXITY OF 3-SAC GRAPHS AND ω-SAC CONTINUA

In this section we will examine the complexity of 3-sac graphs and ω-sac rational curves.

4.2.1 3-SAC GRAPHS

Lemma 4.2.1. Let G be any collection of graphs and N ∈ N a fixed number. Then H(G),

the set of all subcontinua of IN homeomorphic to some member of G, is Π0
3–hard and in the

difference hierarchy D2(Σ0
3).

Proof. That H(G) is Π0
3–hard is immediate from Theorem 7.3 of [3]. It remains to show it

is in D2(Σ0
3).

For spaces X and Y , write X ≤ Y if X is Y –like, which means that for each ε > 0 there

is a continuous map f : X → Y such that f is onto and {x ∈ X | f(x) = y} has diameter
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less than ε for each y ∈ Y . We also write X < Y if X ≤ Y but Y 6≤ X and X ∼ Y if X ≤ Y

and Y ≤ X. Further write LX = {Y : Y ≤ X} and Q(X) = {Y : X ∼ Y }.
Up to homeomorphism there are only countably many graphs. So enumerate G = {Gm :

m ∈ N}. According to Theorem 1.7 of [3], for a graph G and Peano continuum, P , we have

that P is G–like if and only if P is a graph obtained from G by identifying to points disjoint

(connected) subgraphs. For a fixed graph G, then, there are, up to homeomorphism, only

finitely many G–like graphs. For each Gm in G pick graphs Gm,i for i = 1, . . . , km such that

each Gm,i is G–like but G is not Gm,i–like, i.e. Gm,i < G, and if G′ is a graph such that

G′ < G then for some i we have H(G′) = H(Gm,i).

For a graph G, H(G) = Q(G) ([14]). Hence, writing P , for the class of Peano continua,

we have that H(G) =
⋃
mQ(Gm) = P ∩ (

⋃
mRm), where Rm = LGm \

⋃km
i=1 LGm,i = LGm ∩(

C(IN) \⋃km
i=1 LGm,i

)
.

By Corollary 5.4 of [3], for a graphG, the set LG is Π0
2. Hence each Rm, as the intersection

of a Π0
2 and a Σ0

2, is Σ0
3, and so is their countable union. Since P is Π0

3, we see that H(G)

is indeed the intersection of a Π0
3 set and a Σ0

3 set.

Proposition 4.2.2. Let SG3 be the set of subcontinua of IN which are 3–sac graphs. Then

SG3 is D2(Σ0
3)–complete.

Proof. According to Lemma 4.2.1 SG3 is D2(Σ0
3), so it suffices to show that it is D2(Σ0

3)–

hard. To show that SG3 is D2(Σ0
3)–hard it suffices to show that there is a continuous map

F :
(
2N×N)2 → C(IN) such that F−1(SG3) = S∗3 × P3. We do the construction for N = 2.

Since R2 embeds naturally in general RN , the proof obviously extends to all N ≥ 2.

For x, y in R2, let Clxy be the straight line segment from x to y. Set O = (0, 0), T =

(3, 1), B1 = (1, 0), B2 = (4/3, 0), B3 = (5/3, 0), B4 = (2, 0) and T1 = (1, 1), T2 = (4/3, 1),

T3 = (5/3, 1), T4 = (2, 1). Let K0 = ClOB4∪ClB4T ∪ClTT1∪ClT1O∪∪ClB2T2∪ClB3T3.

Then K0 is a 3–sac graph. Define bj = (1/j, 0), tj = (1/j, 1/j), tkj = (1/j, 1/j − 1/(kj)) and

skj = (1/j − 1/(kj(j + 1)), 0). Then KJ = K0 ∪
⋃J
j=1 Cl bjtj — for each J — is also a 3–sac

graph.

Let K ′0 be K0 with the interior of the line from O to B1, and the interior of the line from

T4 to T , deleted.
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Figure 4.3: Graph of F (α, β)

We now define F at some α and β in 2N×N. Fix j. If α(j, k) = 1 for all k, then

let Rj = Cl bjtj ∪ Cl bjbj+1. Otherwise, let k0 = min{k : α(j, k) = 0}, and let Rj =

Cl bjt
k0
j ∪ Cl tk0j s

k0
j ∪ Cl sk0j bj+1.

For any j, k set pj = 3 − 1/j, qkj = 1 − 1/(j + k), `j = pj + (1/8)(pj+1 − pj) and

rj = pj + (7/8)(pj+1 − pj). Fix j. Define

Sj = Cl (pj, 1)(pj, q
1
j ) ∪ Cl (pj, q

1
j )(`j, q

1
j ) ∪ Cl (`j, 1)(pj+1, 1)

∪
⋃
{Cl (`j, q

k
j )(`j, q

k+1
j ) : β(j, k) = 0}

∪
⋃
{Cl (`j, q

k
j )(rj, q

k
j ) ∪ Cl (rj, q

k
j )(`j, q

k+1
j ) : β(j, k) = 1}.

Let F (α, β) = K ′0 ∪
⋃
j(Rj ∪ Sj). Then it is straightforward to check F maps

(
2N×N)2

continuously into C([0, 4]2).

Take any α. For any j, the set Rj connects the bottom edge ClOB1 with the diagonal

edge ClOT1 if α(j, k) = 1 for all k, and otherwise is an arc from bj to bj+1. Hence
⋃
j Rj is

a free arc from B1 to O if α is in S∗3 , and otherwise can’t be a subspace of a graph (because

it contains infinitely many points of order 3).

Take any β. For any j, Sj is an arc from (pj, 1) to (pj+1, 1) if β(j, k) = 0 for all but

finitely many k, but contains a ‘topologists sine curve’ if β(j, k) = 1 for infinitely many k.

Thus
⋃
j Sj is a free arc from T4 to T if β is in P3, and otherwise can’t be a subspace of a

graph (because it contains a ‘topologists sine curve’).
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Hence if (α, β) is in S∗3 ×P3, F (α, β) is homeomorphic to some KJ , which in turn means

it is a graph which is 3–sac. On the other hand, if either α is not in S∗3 or β is not in P3, then

F (α, β) contains subspaces which can’t be subspaces of a graph — and so is not a graph.

Thus F−1(SG3) = S∗3 × P3 as required.

4.2.2 ω-SAC CONTINUA

From now on we will look into ω-sac curves. First we will define examples of rational ω-sac

curves, then we will show that the set of such curves is very complex - not Borel.

We will build examples of spaces by laying out ‘tiles’. A ‘tile’ is simply any space T

which is (i) a subspace of the solid square pyramid in R3 with base S = [−1,+1]2×{0} and

vertex at (0, 0, 1) (so it has height 1) and (ii) contains the four corner points of the base, (i, j)

for i, j = ±1. Call the intersection of a tile T with S, the base of T . Call the intersection of

T with the boundary B = ([−1, 1]× {−1, 1} × {0}) ∪ ({−1, 1} × [−1, 1]× {0}) of the base

S, the boundary of T . Call the point (−1, 1, 0) the top–left corner of the base.

Lemma 4.2.3. There are (homeomorphic) subspaces T0 and T1 of [−1,+1]2 × R such

that: (i) T0 and T1 are ω-sac rational curves, (ii) T0 and T1 are contained in the pyra-

mid with base [−1,+1]2×{0} and with height 1, (iii) T0 contains the boundary of the square

[−1,+1]2×{0}, and (iv) the intersection of T1 and the boundary of the square [−1,+1]2×{0}
is (A× {−1, 1} × {0})∪ ({−1, 1} × A× {0}) where A is a sequence on [−1, 0] converging to

0 along with −1 and 0.

Proof. The example, Y , of an ω-sac rational curve given in Theorem 4.1.8 is derived from

a space X. This space X is a subspace of [−1,+1]2. We may suppose that X is in fact

a subspace of the square S = [−1,+1]2 × {0} ⊆ R3. The space Y is obtained from X by

identifying a sequence of pairs of double sequences. These double sequences all are disjoint

from the boundary, B, of the square S, and the diameters and distance between pairs of

sequences converges to zero. This identification process can be repeated in (−1,+1)2 × R,

keeping the boundary, B, of the square, S, fixed, to get a space T ′0 homeomorphic to Y .

Applying a homeomorphism of [−1,+1]2 × R fixing B, the boundary of the square, and

changing only the z–coordinates, to T ′0, we get a space T0, also homeomorphic to Y and
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containing B, and which is contained in the pyramid with base [−1,+1]2 × {0} and height

1.

Scaling R3 around the center point of the the base square, S, we can shrink T0 away from

the boundary B of S and still have it inside the required pyramid. Instead of doing this trans-

formation, shrink T0 while keeping fixed the set (A× {−1, 1} × {0})∪ ({−1, 1} × A× {0}).
This gives T1.

Let X be a space and A an infinite subset. We say that X is ω–sac+ (with respect to A)

if for any points x1, . . . , xn in X there is an arc α in X visiting the xi in order, such that α

meets A only in a finite set. Observe that if X is ω–sac+ with respect to A, and A′ is an

infinite subset of A, then X is ω–sac+ with respect to A′.

Lemma 4.2.4 (ω–Gluing). Let Z = X ∪ Y , where X, Y and A = X ∩ Y are infinite. If X

is ω–sac+ with respect to A, and Y is ω–sac, then Z is ω–sac.

Proof. Take any finite sequence of points z1, . . . , zN in Z. By adding points to the start

and end of the sequence, if necessary, we can suppose that z0 and zN are in X. Group

the sequence, z1, . . . , zn1 , zn1+1, . . . , zn2 , . . . , znk−1
, znk−1+1, . . . , znk , where z1, . . . , zn1 are in X,

zn1+1, . . . , zn2 are in Y \X, and so on, until znk−1+1, . . . , znk = zN are in X. Pick t±1 , . . . , t
±
k

in A \ {zi}i≤N .

Using the fact that X is ω–sac+, pick arc α− in X visiting in order, z1, . . . , zn1 , t
−
1 , t

+
1 ,

zn2+1, . . . , zn2+1, . . . , zn3 , t
−
2 , t

+
2 and so on, ending with znk , such that α− meets A only in a

finite set F .

Using the fact that Y is ω–sac, pick an arc α+ in Y visiting in order the points, t−1 , zn1+1,

. . . , zn2 , t
+
1 , t
−
2 and so on, avoiding F \ {t±1 , . . . , t±k }.

Now we can interleave α− and α+ to get an arc, α, visiting all the specified points in

order. So we start α by following α− to visit z1, . . . , t
−
1 , then pick up α+ at t−1 to visit

zn1+1, . . . , zn2 , t
+
1 , and back to α− from t+1 , and so on.

Lemma 4.2.5.

(i) The tile T0 is ω-sac+ with respect to any infinite discrete subset of its boundary.

(ii) The tile T1 is ω-sac+ with respect to its boundary.
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Proof. Recall that T0 and T1 are both homeomorphic. In turn, T0 is a homeomorph of Y

from Theorem 4.1.8 with the boundary square for both not just homeomorphic but identical

(when we identify the plane, R2, with R2×{0}). So we argue this for Y only. Looking at the

proof that Y is ω–sac it is clear that the arc, α0, visiting some specified points, x1, . . . , xn,

in order, need only touch the boundary in an arbitrarily small neighborhood of any xi which

happens to be on the boundary. This immediately gives the first claim — Y (and so T0) is

ω-sac+ with respect to infinite discrete subsets of the boundary square.

Further, the point (0,−1) can be reached from the interior of Y (away from the boundary

square) by two disjoint arcs which meet the set (A× {−1, 1})∪({−1, 1} × A) only at (0,−1)

— for one arc, α−, follow one side of the sequence of circles converging to (0,−1) and for

the other, α+, start at (0,−1) go right along the boundary edge a short way, and then go

into the interior. The same is true for the points (0, 1), (−1, 0), and (1, 0).

Now to get the desired arc, if every xi is not one of (0,−1), (0, 1), (−1, 0), or (1, 0), then

just use α0. While if xi, is say, (0,−1), then pick α0 to visit x1, . . . , xi−1, t
−, t+, xi+1, . . .,

where t−, t+ are points close to (0,−1) on α− and α+ respectively. Now let α be the arc that

follows α0 to t−, then follows α− to xi = (0,−1), then α+ to t+, and then resumes along

α0.

For any tile T , x = (x, y) in R2 and a, b > 0, denote by T (x, a, b) the space T scaled in

the x and y coordinates so its base has length a and width b, then scaled in the z coordinate

so that the pyramid containing it has height no more than the smaller of a and b, and then

translated in the x, y-plane so that the top–left corner is at (x, y, 0).

From Lemma 4.2.4, part (ii) of Lemma 4.2.5, and an easy induction argument, the

following is clear.

Lemma 4.2.6. Any space obtained by gluing along matching edges a finite family of trans-

lated and scaled copies of T1 is a rational ω-sac curve.

Proof. Let S be a space obtained by gluing along matching edges a finite family of translated

and scaled copies of T1. Fix a point x ∈ S, then x is in one of the tiles say t1. Then there

are two cases, either there is another tile t2 which meets t1 at one side of its base, and x is

in this intersection. Then since each ti is rational, there is a neighborhood base Bi for x in
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ti, for each i = 1, 2. Let B = {B1 ∪B2 | Bi ∈ Bi}. Then B is a neighborhood base at x in

t1 ∪ t2, since for any open set U including x, U ∩ ti is open in ti and includes x, so there

is Bi ∈ Bi with Bi ⊂ U ∩ ti, and thus x ∈ B1 ∪ B2 ⊂ U . Also each B ∈ B has countably

many boundary points, because when we combine two sets we add at most countably many

more points to the boundary as the intersection of two tiles is a sequence of points in the

boundary. Otherwise, there is a neighborhood base of x in t1 such that all elements of this

base has countably infinite boundary.

Let now, {x1, . . . , xn} ⊂ S. We want to find an arc α through these points in order. If

all of these points are in one tile, we have such an arc since each tile is ω-sac. Otherwise,

there are at least two different tiles in which the points lie, and we need a finite number of

tiles from S to have a connected subset of it including the points. Say we need at least m

tiles, then we will proceed by induction on m:

m = 1 is the first case. Suppose m = 2, so the points lie in two tiles t1 and t2, and the

tiles intersect along one edge of their bases. Then by using ω-gluing lemma, t1 ∪ t2 is also

ω-sac, hence we can find an arc through the points in the given order. Suppose now, for

any m − 1 tiles that form a connected subset of S, this subset is ω-sac. Then for m tiles

that form a connected subset, there is at least one tile t such that when we remove this tile

the rest of them are still connected, call the union of the rest Y . Then again using ω-gluing

lemma for X = t and Y , we get that the union is ω-sac.

We define recursively a sequence of tiles. The first in the sequence is T1 from above. Given

tile Tn, where n ≥ 1, define Tn+1 to be Tn((−1, 1), 1, 1) ∪ Tn((−1, 0), 1, 1) ∪ Tn((0, 1), 1, 1) ∪
Tn((0, 0), 1, 1) scaled in the z–coordinate only so as to fit inside the pyramid with base S

and height 1. Then all the tiles Tn are rational ω-sac continua.

Theorem 4.2.7. Fix N ≥ 3. For n ≥ 2 or n = ω, let Rn be the set of rational n-sac

continua, and let Rn,¬(n+1) be the set of rational continua which are n-sac but not n+ 1-sac.

Then all the sets Rn and Rn,¬(n+1) are Σ1
1-hard subsets of the space K(RN).

Proof. We prove that there is a continuous map K of the space T of all trees on N into the

space K(R3) such that: if the tree τ has no infinite branch then Kτ is a rational continuum

which is not arc-connected (in other words, 2-sac), while if τ has an infinite branch, then Kτ
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Figure 4.4: Examples of Tiles

is an ω-sac rational continuum. The claim that Rn is a Σ1
1-hard subset of the space K(RN),

follows simultaneously for all n and N . We then give the minor modifications necessary to

have that Kτ is n-sac but not n+1-sac when τ has an infinite branch. The remaining claims

follows immediately.

A basic building block for Kτ is S(T ) a variant of the topologist’s sine-curve based on a

tile T . This sine-curve lies in the rectangular box

{(x, y, z) ∈ R3 : 0 ≤ x ≤ 13/3, 0 ≤ y ≤ 5/2, 0 ≤ z ≤ 1}.
We call the point (0, 5/2, 0) the top left corner of S(T ).

Explicitly S(T ) is (D0 ∪ AB0 ∪ U0 ∪ AT0) ∪⋃n≥1(Dn ∪ Cn ∪ ABn ∪ Un ∪ ATn) where

Dn =
2·4n⋃
i=1

T (10/(3 · 4n), 1/2 + i/4n, 1/4n),

Cn = T (10/(3 · 4n), 1/2− 1/4n, 1/4n) ∪ T (10/(3 · 4n), 1/2, 1/4n) (n ≥ 1),

ABn = T ((7/(3 · 4n), 1/2 + 1/4n), 1/4n),

Un =
2·4n−1⋃
i=1

T ((4/(3 · 4n), 1/2 + i/4n), 1/4n)

∪T ((4/(3 · 4n), 5/2− 1/4n+1, 1/4n, 3/4n+1)

∪T ((4/(3 · 4n), 5/2, 1/4n, 1/4n+1), and

ATn = T ((4/(3 · 4n)− 1/4n+1, 5/2, 1/4n+1, 1/4n+1).

For each m ≥ 1, let cm = T (10/(3 · 4n), 1/2 − 1/4n, 1/4n) be the tile in S(T ) at the

bottom of the mth connector, Cm.

For any point y in R, and any a > 0, let S(y, a, T ) be the sine curve S(T ) scaled (in all

directions) by a, and translated so that its top left corner is at (0, y, 0).

52



x

y

4/3 7/3 10/3 13/37/12 13/12
4/12 10/12

1/2

3/2

5/2

0

1

2

1/4

3/4

5/4

7/4

9/4

c1c2c3

Figure 4.5: Sine-curve made of tiles

Next, given a tree τ and a tile T , we define a ‘branch space’, B(T, τ), lying in the

rectangular box,

{(x, y, z) ∈ R3 : 0 ≤ x ≤ 13/3, 0 ≤ y ≤ 10/3, 0 ≤ z ≤ 1},
which is

⋃{Ss : s ∈ τ}, where each Ss is defined with the aid of some connecting tiles, cs,

and numbers, ys, by induction on the length of s, as follows:

Step 1: Let y() = 5/2 + 5/6 = 10/3, and let S() = S(y(), 1, T ) (i.e. the sine-curve defined

above based on T , translated along the y-axis by 5/6).

Step 2: The sine curve, S() has a family of connecting tiles cm. Set c(m) = cm. Let

y(m) = y() − 2/40 − 2/4m, and let S(m) = S(y(m),
1

4m
, T ). Note, critically, that the

top–right tile of this sine-curve, S(m), is such that its top edge coincides with the

bottom edge of c(m).

Step n+ 1: Fix an s ∈ τ with length n. We again will have connecting tiles, cm, from the

sine-curve Ss. Set cs_m = cm. Let ys_m = ys− 2/4L− 2/4L+m where L =
∑n

i=1 si,

and let Ss_m = S(ys_m, 1/4
L+m). Again note that the top–right tile of Ss_m has

its top edge coinciding with the bottom edge of cs_m.
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Assume, for this paragraph only, that τ = τc is the complete tree, and T is the solid tile.

For any s in τ , let τs = {s′ ∈ τ : s′ extends s}, and let Bs =
⋃{Ss : s ∈ τs}. By construction,

B(1) is a 1/4th copy of B(T, τ) = B(), and B(2) is a 1/16th copy. It is easy to check that the

height (in the y-coordinate) of B() is exactly 10/3. So the height of B(2) is 1/16th of this,

which is 5/24. The gap between the top edge of B(1) and the top edge of B(2) is 9/24. Thus

B(2) is disjoint from B(1). By self–similarity it follows that Bs and Bt meet if and only if one

of s and t is an immediate successor of the other. This all shows that, for any tree and any

tile, B(T, τ) is well defined, and is the edge connected union of tiles meeting along matching

edges.

x

y

4/3 7/3 10/3 13/37/12 13/12
4/12 10/12

0

4/3

10/3

5/6

1

29/24

Figure 4.6: Branch space B(T, τ)

We call the point (0, 10/3, 0) the top left corner of B(T, τ). For y in R and a > 0, let

B(y, a, T, τ) be B(T, τ) scaled in the y-coordinate only by a, and translated so its top left

corner is at (0, y, 0).

Now our Kτ will consist of
⋃
n≥0Bn ∪ L ∪ S, where Bn = B(yn, 1/2

n, Tn+1, τ), for yn =

7/2n, and the two pieces L and S are defined as follows.

The set L is a homeomorphic copy of the tile T0, bent in the middle so that its base is
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contained in the L-shaped area

{(x, y, 0) ∈ R3 : −2/3 ≤ x ≤ 0,−1 ≤ y ≤ 7 or 0 ≤ x ≤ 22
3
,−1 ≤ y ≤ 0}

and the boundary of the base of the tile is the boundary of this area.

The set S is a sine curve variant based on the tile T1, which connects the branch spaces

Bn, and converges down to the x-axis. Concretely, S =
⋃
n≥0(ARn ∪Dn ∪ALn ∪Cn) where

ARn =
3·4n−1⋃
i=0

T1((13/3 + i/4n, 7/2n), 1/4n),

Dn =
3·2n−1⋃
i=1

T1((13/3 + 3− 1/4n, 7/2n − i/4n), 1/4n),

ALn =
2·4n−2⋃
i=1

T1((13/3 + 1 + i/4n, 7/2n + 1/4n − 3/2n), 1/4n, 1/4n)

∪T1((13/3 + 1, 7/2n + 1/4n − 3/2n), 1/4n+1, 1/4n)

∪T1((13/3 + 1 + 1/4n, 7/2n + 1/4n − 3/2n), 3/4n+1, 1/4n), and

Cn =
2n+1⋃
i=1

T1(13/3 + 1, 7/2n+1 + i/4n+1, 1/4n+1).

Claim 1. Kτ is a rational continuum.

Proof: Let R =
⋃
nBn ∪ S.

Let L′ = {(x, y, 0) ∈ R3 : x = 0,−1 ≤ y ≤ 7 or − 2/3 ≤ x ≤ 22/3, y = 0}, be the inner

boundary of the base of L.

Since cl(R) ⊆ R ∪ L′, Kτ is clearly compact. Since L and R are connected, and S is a

variant topologists sine curve, clearly Kτ is connected.

For all the points of Kτ except those on L′, we have a natural neighborhood base at the

point for which each element has a countable boundary (which comes from the tile(s) the

point is in).

Take any point x in L′. We suppose now, x = (x0, 0, 0) (the other case is similar).

Because Bn is based on the tile Tn, combined with the fact that the T1’s in the connecting

sine curve, S, have size shrinking to zero, the set M of all x-components of the left and right

edges of the base of tiles in R is dense in [0, 22/3].
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Figure 4.7: Construction of rational continuum Kτ

Let U be a rectangular neighborhood of x in R3, and rmin = min{x : (x, 0, 0) ∈ U}
and rmax = max{x : (x, 0, 0) ∈ U}. Without loss of generality, if ymax is the value of the

maximum y-component in U then {(x, y, z) ∈ U | y = ymax} do not intersect with any of the

Bn, i.e. the top of U is in between Bn and Bn+1 for some n.

The set U ∩ L includes a neighborhood N of x which has countable boundary. Let

a = min{x : (x, 0, 0) ∈ N} and b = max{x : (x, 0, 0) ∈ N}. Since M is dense there are

sequences (an)n∈N and (bn)n∈N in M such that an increases to a, bn decreases to b, and for

each n, rmin ≤ an ≤ a < b ≤ bn ≤ rmax. Let m1 ≥ n be such that both of the lines x = a1

and x = b1 intersect the xy-projection of Bm1 ∪ {(x, y, z) ∈ S : y ≤ 7/2m1} along edges of

tiles only. Let Sn = {(x, y, z) ∈ S : y ≤ 7/2n}. And inductively, let mi ≥ mi−1 such that

the lines x = ai and x = bi intersect the xy-projection of Bmi ∪Smi along edges of tiles only.

Now take N ′ =
⋃
i((Smi \ Smi+1

∪⋃k+mi<mi+1
Bmi+k) ∩ {(x, y, z) : ai ≤ x ≤ bi}).

Here for each i, we cut Bmi+k along edges of finitely many tiles, hence the boundary is
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Figure 4.8: A neighborhood with countable boundary in Kτ

at most countable. And similarly for Smi \ Smi+1
, we cut along the edges of finitely many

tiles. Thus N ′ has countable boundary. Moreover, N ∪N ′ ⊂ R is a neighborhood of x with

countable boundary.

Claim 2. If τ has an infinite branch (i.e. τ ∈ IF) then Kτ is ω-sac.

Proof: Suppose τ has an infinite branch. Note that if T is any tile, then there is a branch

of edge connected tiles in B(T, τ) which converges to a point yτ on the y-axis.

We first show that for any m ≥ 1, the branch space B(Tm, τ) ∪ {yτ} is ω-sac. To do

so we only need to check that if yτ is one of the n-points x1, . . . , xn in B(Tm, τ) ∪ {yτ},
then we can find an arc joining them in that order. Suppose xk = yτ . Then the points

x1, . . . , xk−1, xk+1, . . . , xn are in some finite family of edge connected tiles of B(Tm, τ). Let

t be a tile in the branch space B(Tm, τ) such that none of the xi’s is in the tiles to the left

and bottom of this tile except for xk = yτ . Let y1 be the bottom left corner of t, and y2 be

the top left corner of t. Then by Lemma 4.2.6 there is an arc α0 in B(Tm, τ) through the
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points x1, . . . , xk−1,y1,y2, xk+1, . . . , xn in the given order. Let α1 be the part of α0 through

x1, . . . , xk−1,y1. Let β1 be the arc starting at y1 and ending at yτ obtained by traveling

along the right and bottom edges of tiles of the branch converging to yτ . Similarly, let α2 be

the part of α0 through y2, xk+1, . . . , xn. And let β2 be the arc starting at yτ , and following

the left and top edges of tiles of the branch converging to yτ , back to y2. Then the arc α

obtained by following α1, β1, β2 and then α2, is the desired arc through the points x1, . . . , xn

in the given order.

Back now to Kτ , when τ has an infinite branch. For each n, Bn a has a corresponding

branch converging to a point yn on the y-axis. An easy modification of the argument for

B(Tm, τ) ∪ {yτ} shows that the space R ∪ {yn : n ∈ N} is ω-sac.

Since R ∪ {yn}n is ω-sac, (R ∪ {yn}n) ∩ L = {yn}n, and L is ω-sac+ with respect to

discrete sets (Lemma 4.2.5, part (i)), it follows from the ω–Gluing Lemma that Kτ = R∪L
is indeed ω-sac.

Claim 3. If τ has no infinite branch (i.e. τ ∈WF) then Kτ is not 2-sac.

Proof: If τ does not have any infinite branches, then there are no arcs connecting L to R.

This is clear because, without infinite branches, any path starting in R and attempting to

reach L is forced to travel along a topologist’s sine curve variant — which is impossible.

Claim 4. The map τ 7→ Kτ is continuous.

Proof: Let K : Tr→ K(R3) given by K(τ) = Kτ . Let s be in N<N, and write [s] for the set

of all trees containing s. Then [s] is a closed and open subset of Tr. Subbasic open sets in

K(R3) are of one of two forms: (i) 〈U〉 = {C : C ⊆ U} and (ii) 〈X;V 〉 = {C : C ∩ V 6= ∅},
where U and V are open subsets of R3. We show inverse images under K of both types of

subbasic open set are open in Tr, thus confirming continuity of the map τ 7→ Kτ .

For subbasic sets of type (ii), the sets V may be taken to come from any basis for R3; we

will take for V open balls in R3 which either meet, or have closure disjoint from, L∪ S. Fix

such a V . If V meets L ∪ S, then K−1〈X;V 〉 = Tr. If the closure of V is disjoint from L,

then for any tree τ , V meets only finitely many Bn(τ), and in each of these branch spaces,
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meets only finitely many sine curves. Suppose V meets sine curves labelled by s1, . . . , sk.

Then K−1〈X;V 〉 =
⋃{[si] : 1 ≤ i ≤ k}, which is open (each [si] is open).

For subbasic sets of type (i), if L ∪ S is not contained in U , then K−1〈U〉 = ∅. So

suppose, L ∪ S ⊆ U . Let τc be the complete tree. Then all but finitely many of the sine

curves making up the Bn(τc)’s are contained in U . Let them be labelled by s1, . . . , sk. Then

K−1〈U〉 = K(R3) \⋃{[si] : 1 ≤ i ≤ k}, which is open (each [si] is closed).

Claims 1–4 show that τ 7→ Kτ is a continuous reduction (T , IF) → (K(R3), Rω) where

Kτ is a rational continuum which is ω-sac if τ has an infinite branch, but is not even 2-sac

when τ has no infinite branches.

We now turn to the case for Rn,¬(n+1). To start fix n ≥ 2. Select n−2 points a1, . . . , an−2

from the interior of the right hand edge of the base of T0. Similarly to the definition of T1,

shrink T0 while keeping fixed the set {a1, . . . , an−2} and the top edge of the base. This gives

a tile T̂n. Now consider the map τ 7→ Kn
τ where Kn

τ is Kτ along with the tile T̂n(22/3, 0, 1).

Then it is easy to see (given our previous work) that Kn
τ is a rational continuum and the

map τ 7→ Kn
τ is continuous. Because the extra tile, T̂n(22/3, 0, 1), meets the rest of Kn

τ in

exactly n− 1 points (namely a1, . . . , an−2 and the topleft corner of the base of the tile), Kn
τ

is never n + 1-sac. When τ has no infinite branch, then Kn
τ is not 2-sac, so definitely not

in Rn,¬(n+1). But when τ has an infinite branch, both T̂n(22/3, 0, 1) and the rest of Kn
τ are

ω-sac, and (again) meet in n− 1 points — so by Lemma 4.1.7, Kn
τ is n-sac.

Theorem 4.2.8. The sets Sn of n-sac continua, for a natural number n ≥ 2 or n = ω, are

Π1
2-complete subsets of the space K(RN), where N ≥ 4.

Proof. First note that the definition of n-sac is a Π1
2 statement. Thus each Sn is a Π1

2 set.

Also, note that in the case of n = 2, Sn is the set of all arc connected continua, and this was

proved to be Π1
2-complete by Ajtai and Becker, see [15] for details.

We prove the claim, for all n and N simultaneously, by proving that there is a continuous

map Φ from the space NN into the space K(R4) such that: given a Π1
2 set A ⊂ NN, if x ∈ A

then Φ(x) = Px is a continuum which is not arc–connected (i.e. 2–sac), while if x ∈ A, then

Px is an ω–sac continuum. (See [15] 37.11 for a similar argument).
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Let A be a Π1
2 subset of NN and B be a Σ1

1 subset of NN × 2N with x ∈ A if and only if

for each y ∈ 2N, (x, y) ∈ B. Now let τ be a tree on N× 2× N with

B =
{

(x, y) | ∃z ∈ NN(x, y, z) is a branch of τ
}

= {(x, y) | τ(x, y) /∈WF}. Recall that

τ(x, y) = {s : (x � length(s), y � length(s), s) ∈ τ} is a tree on N.

Now for each x ∈ NN, we will construct a continuum Px ⊂ R4 as follows:

First, we identify the Cantor space 2N ⊂ NN with the standard Cantor set in [0, 1]. Then

for each y ∈ 2N, let Lx,y = Kτ(x,y), as described in Theorem 4.2.7, placed in the cube{
(a, b, c, d) | − 2

3
≤ a ≤ 22

3
,−1 ≤ b ≤ 7, c ≥ 0, d = y

}
. Thus the outside edges of the tile L

in Kτ(x,y) is on a = −2
3

or b = −1. Now we will connect the continua Lx,y along the edges on

a = −2
3

with Menger cube M which is placed in the cube {(a, b, c, d)| − 2 ≤ a ≤ −2
3
,−1 ≤

b ≤ 7, c = 0, 0 ≤ d ≤ 1}.
Now let Px =

⋃
y∈2N Lx,y ∪M .

Then, Px is a continuum and the map x 7→ Px from NN → K(R4) is continuous. Moreover,

x ∈ A if and only if for each y ∈ 2N, τ(x, y) ∈ IF. Thus if x /∈ A, then there is y ∈ 2N

with τ(x, y) ∈WF, so the corresponding rational ω-sac continua Lx,y = Kτ(x,y) is not 2-sac,

hence the union Px = M ∪⋃y∈2N Lx,y is not 2-sac.

On the other hand, if x ∈ A, then for each y ∈ 2N, Lx,y is ω-sac by Theorem 4.2.7.

We also know that the cube M is ω-sac. To show Px is ω-sac, we will only go through one

example, all other cases will be similar:

Let x1, . . . , xn be points in Px. Suppose that for all odd indices k ≤ n, xk ∈ Lx,y0 for

some fixed y0 ∈ 2N. Also suppose that for each even index m ≤ n, xm ∈ Lx,ym for some

ym ∈ 2N so that yi 6= yj for i 6= j. Then choose distinct zk ∈ Lx,y0 ∩M for odd numbers

k ≤ n and choose distinct z1
m, z

2
m ∈ Lx,ym ∩M for even numbers m ≤ n. Since Lx,y0 is ω-sac,

there is an arc α through the points x1, z1, x3, z3, . . . , xK , zK (where K is the largest odd

integer less than or equal to n). Similarly, for each even m less than or equal to n, there

is an arc αm through the points z1
m, xm, z

2
m. Additionally, as M is ω-sac there is an arc β

through the points z1, z
1
2 , z

2
2 , z3, z

1
4 , z

2
4 , z5, . . . , zK , z

1
n, z

2
n (without loss of generality n is even).

Now we define an arc in Px as follows:

Starting at x1 follow α until z1, then we switch to β and follow until z1
2 , then switch to

α2 and follow until z2
2 , then switch back to β until z3, and switch to α to follow until z1

4 ,
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etc. In this way, we will go through all xi’s in the given order, which gives us an arc inside

Px.

4.3 COMPLEXITY OF CLASSIFICATION

In [3], Camerlo, Darji and Marcone have shown that the classification problem for homeo-

morphism on dendrites is S∞-universal, hence classifiable by countable structures.

Question 3. Are dendrites up to equivalent embedding classifiable by countable structures?

In this section we show that the dendroids have very complicated classification problem,

hence the classification of all curves is very complicated.

4.3.1 DENDROIDS

Since the dendroids include all dendrites, the classification problem of dendroids up to home-

omorphism is at least S∞-universal. However, it is not classifiable by countable linear orders,

in fact it is strictly more complex than the classification of any countable structures. Let D

denote the set of all dendroids.

Theorem 4.3.1. Homeomorphism on dendroids is a turbulent equivalence relation.

Proof. It’s known that the equivalence on ZN defined as (xn)n∈N and (yn)n∈N are equiva-

lent if
xn − yn

n
→ 0, is a turbulent one. We will reduce this equivalence relation to the

homeomorphism relation on dendroids.

We will define a Borel map f : ZN → D so that
xn − yn

n
→ 0 ⇐⇒ f(x) is homeomorphic

to f(y).

Let L be the following set: {0}×{0}×[−1, 1]∪[0, 1]×{0}×{0}∪⋃n{1/n}×{0}×[−1, 1].

It is a dendroid.

Fix two sequences of distinct prime numbers (pn)n∈Z and (qn)n∈N. Also fix a countable

dense subset (dn)n∈N of [−1, 1], say d0 = 0. Let g : [−π/2, π/2] → [−1, 1] be the map

g(x) =
2x

π
.
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Figure 4.9: Construction of L(xn)

Fix a sequence (xn)n∈N ∈ ZN and consider the following set:

On L put branches at the point xn = (1/2n, 0, g(arctan(xn))) so it is a branching point

of order pn, where the new branches meet the set L only at branching point xn.

Also put branches on the line x = 1/n, for n = 2k + 1, at the points xn,i = (1/n, 0, di)

for i = 1, . . . , k so that xn,i is of order qi. And the new branches meet the modified compact

set only at the branching point. Call this set L(xn). (See Figure 4.9)

Claim 1. L(xn) is a dendroid.

L(xn) is closed and bounded subset of R3, and it is a countable union of connected sets

with non-empty intersection. So it is a continuum.

It is arcwise connected as there are only finitely many branches at each branching point.

To show it is also hereditarily unicoherent, it is enough to show that L(xn) is unicoherent,

since the possible subcontinua are: points, arcs, finite trees or copies of L(xn). If A,B are

two subcontinua with A∪B = L(xn), then possible intersections are: a point, an arc, a finite

graph or a dendroid, which are continua.

Claim 2. (xn)n∈N is equivalent to (yn)n∈N if and only if L(xn) ∼H L(yn)
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Suppose there is a homeomorphism h : L(xn)→ L(yn). Since a homeomorphism should

map a branching point of order p to a branching point of the same order, h(xn) = yn and

h(xn,i) = yn,i. Hence the line l = {0} × {0} × [−1, 1] is fixed.

For a contradiction, suppose (xn)n∈N and (yn)n∈N are not equivalent, then
xn − yn

n
6→ 0,

so g(arctan(xn
n

))−g(arctan(yn
n

)) 6→ 0. So that xn−yn 6→ (0, 0, 0). So for some ε > 0 there is

a subsequence with |xnk−h(xnk)| ≥ ε, ∀k. But there is a convergent subsequence (xnki )i∈N of

(xnk)k∈N, say to x. Then h(xnki )→ h(x) = x, as the line l is fixed by any homeomorphism.

Thus we get a contradiction, as |h(xnki )− xnki | ≤ |h(xnki )− x|+ |xnki − x| < ε will be true

for sufficiently large i.

For the other direction, suppose (xn)n∈N and (yn)n∈N are equivalent sequences in ZN, i.e.
xn − yn

n
→ 0 ⇐⇒ g(arctan(xn

n
))− g(arctan(yn

n
)) → 0. Let xn and yn be as above. Define

h : R3 → R3 as follows:

h(xn) = yn, and h(xn,i) = yn,i. And h fixes the line I. To have h(L(xn)) = L(yn), we

can make sure h is defined continuously between branching points, as in both sets they are

copies of unit interval. We need to check continuity on the line l. Let z = (0, 0, z) ∈ l be

fixed, we know h(z) = z.

If z is a cluster point of (xn)n∈N, then there exist a subsequence (xni)i∈N that converges

to z. Then we have g(arctan(
xni
ni

)) → z and g(arctan(
xni
ni

)) − g(arctan(
yni
ni

)) → 0, hence

g(arctan(
yni
ni

))→ z. Thus h(xni) = yni → h(z) = z.

If z is not a cluster point of (xn)n∈N, then there is some ε > 0 so that B(ε, z) does

not include any of the branching points xn (n > 0) in the definition of L(xn). Suppose

for a contradiction z is a cluster point for yn, say yni → z. Then g(arctan(
yni
ni

)) → z

and g(arctan(
xni
ni

)) − g(arctan(
yni
ni

)) → 0, hence g(arctan(
xni
ni

)) → z. So for large enough i,

xni ∈ B(ε, z̃). Thus z can not be a cluster point of yn.

This proves that curves up to homeomorphism are not classifiable by countable structures

as well, since curves include all the dendroids.

Theorem 4.3.2. Equivalence of dendroids is a turbulent equivalence relation.

Proof. The construction in Theorem 4.3.1 works for equivalence as well. Also the proof with

minor modifications will work here. For a given sequence (xn)n∈N ∈ ZN, we use L(xn) as
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defined in previous proof. (See Figure 4.9).

If there is a homeomorphism h : R3 → R3 with h(L(xn)) = L(yn), then proving that

(xn)n∈N and (yn)n∈N are equivalent is exactly the same.

If on the other hand, we have equivalent sequences (xn)n∈N, (yn)n∈N, then we modify the

definition of the homeomorphism by extending continuously to all R3 (since the homeomor-

phism is defined inside the cube [0, 1]× [−1, 1]× [−1, 1], we can define h as identity outside

this cube and extend continuously in between). And the only set we have to check continuity

is still the line l, which follows from previous proof.

4.3.2 EQUIVALENCE ON AN ORBIT OF HOMEOMORPHISM

Let E be a set of curves all of which are homeomorphic. We know that this is a Borel subset

of K(In). Although they are all homeomorphic, they are not necessarily equivalent.

Question 4. How complex is the classification problem of E under equivalence?

One class we can look into is the class of all Warsaw circles, denoted W , i.e. all circles

homeomorphic to the standard Warsaw circle. It turns out this classification is very complex

as well. To prove that we will use a sequence of inequivalent prime knots. A prime knot is a

knot which can not be decomposed into non-trivial knots as a connected sum of knots. For

example, trefoil knot, figure-eight knot are prime knots. It is known that there are infinitely

many prime knots which are not equivalent under the equivalence relation ∼.

Theorem 4.3.3. The equivalence on W is a turbulent equivalence relation.

Proof. Will define a Borel map f : ZN →W so that
xn − yn

n
→ 0 ⇐⇒ f(xn) is equivalent

to f(yn).

For n ∈ Z, fix a prime knot Kn, which is not equivalent to any of the previous ones.

Let 0 < ε < 1/2. Also fix a countable dense subset (dn) of [−1, 1], say d0 = 0. Let

g : [−π/2, π/2]→ [−1, 1] be the map g(x) =
2x

π
.

Now fix a sequence z = (zn)n∈N ∈ ZN. Consider the set S = {(x, 0, sin(1/x)) | x ∈ (0, 1]}
and L = {(0, 0, t) | t ∈ [−1, 1]}. And let W be the usual Warsaw circle. Let

Sn =
{

(x, 0, sin(1/x)) ∈ S | 2
(2n+1)π

≤ x ≤ 2
(2n−1)π

}
and
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Figure 4.10: Tying a knot inside given ball

z′n ∈ [ (4n−1)π
2

, (4n+1)π
2

] be such that sin(z′n) = g(arctan(zn/n)), and

d′n,i ∈ [ (4n−3)π
2

, (4n−1)π
2

] for 1 ≤ i ≤ n be such that sin(d′n,i) = di−1

And then put a ball Bn with center at zn = (1/z′n, 0, g(arctan(zn/n))) ∈ S2n so that Bn∩Sm =

∅ for m 6= n and diamBn <
1

2(n+1)
. Also put balls Bk

1 , . . . , B
k
k on S2k−1 as follows: Bk

i has

center dk,i = (1/d′k,i, 0, di−1) so that Bk
i ∩ Sm = ∅ for m 6= k and diamBk

i <
1

2(i+k+1)
.

Now we will tie copies of knots in the following way (see Figure 4.10): The copy of the

knot will be in the interior of the ball specified. Cut the knot Kn at some point so we have

two end points and remove the piece S2n ∩ B(zn, ε
n+1) from S2n, which is in the interior of

the ball Bn, then identify the end points of the knot Kn with the end points in the line S2n.

We will call S2n with the attached knot Kn to be S ′2n

Also tie a copy of Ki to S2k−1 where i < 0 and 0 < |i| < k as explained above, denote it

as Kk
i , so that Kk

i lies inside the ball Bk
|i|. Let S ′2k−1 denote the set S2k−1 together with the

attached knots on it.

Now let C(z) = W ∪⋃n S
′
n (See Figure 4.11).

Claim 1. C(z) is a Warsaw circle.

Two knots are always homeomorphic, so adding knots to a standard Warsaw circle we

still get a Warsaw circle.

Claim 2. z and y are equivalent sequences if and only if C(z) ∼ C(y)
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Figure 4.11: Construction of curve C(z)

Suppose there is a homeomorphism h : R3 → R3 with h(C(z)) = C(y). Since each knot

Kn in the definition of these curves are inequivalent knots, h should map each to itself. So

in particular, h fixes L and |h(zn)− yn| → 0, where yn is defined accordingly.

For a contradiction, suppose z and y are non-equivalent sequences, so
zn − yn
n

6→ 0, and

g(arctan( zn
n

)) − g(arctan(yn
n

)) 6→ 0. Then zn − yn 6→ (0, 0, 0). So for some ε > 0 there is a

subsequence with |znk −ynk | ≥ ε, ∀k (*). But there is a convergent subsequence (znki )i∈N of

(znk)k∈N, say to z. Then h(znki )→ h(z) = z, as the line L is fixed by any homeomorphism.

Thus we get a contradiction, as |ynki − znki | ≤ |h(znki )− ynki |+ |h(znki )− znki | < ε will be

true for sufficiently large i, contradicting (*).

For the other direction, suppose z and y are equivalent sequences in ZN, i.e.
zn − yn
n

→ 0,

and thus g(arctan( zn
n

))− g(arctan(yn
n

))→ 0. Let z̃n and ỹn be as above. Define h : R3 → R3

as follows:

h maps corresponding knots as expected, and h fixes the line L, and the curves from
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the first knot to the point (0, 0,−1) is extended homeomorphically. Thus h(C(z)) = C(y).

Moreover, h is identity outside the box [−1, 1]× [−1, 1]× [−1, 1].

As the balls are disjoint we can make sure h is defined continuously outside C(z) and

inside the box (start with first and second balls of C(z) and C(y) we can extend definition

of h between the planes x = 1/z′1 and x = 1/z′2 using the definition of h given above,

and then proceed in order...). Thus we need to only check continuity on the line L. Let

z = (0, 0, z) ∈ L be fixed. We know h(z) = z. Moreover, since the corresponding knots are

mapped to each other, |h(zn)− yn| → 0 (**).

If z is a cluster point of (zn)n∈N, then there exist a subsequence (zni)i∈N that converges

to z. Then we have g(arctan(
zni
ni

)) → z and g(arctan(
zni
ni

)) − g(arctan(
yni
ni

)) → 0, hence

g(arctan(
yni
ni

))→ z. Thus yni → h(z) = z, hence by (**) h(zni)→ z.

If z is not a cluster point of (zn)n∈N, then there is some ε > 0 so that B(ε, z) does not

intersect any of the knots Kn (n > 0) in the definition of C(z). Suppose for a contradiction z

is a cluster point for h(zn), say h(zni)→ z. Then by (**), yni → z. Then g(arctan(
yni
ni

))→ z

and g(arctan(
zni
ni

)) − g(arctan(
yni
ni

)) → 0, hence g(arctan(
zni
ni

)) → z. So for large enough i,

Kni ∩B(ε, z̃) 6= ∅. Thus z can not be a cluster point of (h(zn))n∈N.

This theorem tells us that Warsaw circles are not classifiable by countable structures but

it might be true that they are not comparable.
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APPENDIX

EMBEDDINGS OF A COMPACT METRIC SPACE

Let K be a compact metric space, consider the following space of functions:

Emb(K,RN) = {e : K → RN |e is an embedding}.
It is known that the space of continuous functions from K to RN , C(K,RN) is a Polish

space, (see [15], p. 24). Moreover, Emb(K,RN) is a Gδ subset of C(K,RN) (see [13], p.56),

hence Emb(K,RN) is a Polish space.

A.1 RELATION OF Emb(K,RN) AND KK(RN)

Let Φ : Emb(K,RN) → KK(RN) - all copies of K in RN - be defined as Φ(h) = h(K).

Obviously, Φ is onto but not one to one.

Proposition A.1.1. Φ is continuous.

Proof. Fix e ∈ Emb(K,RN) and ε > 0. There are elements x1, . . . , xn ∈ 2N such that

{B(ε, e(xi))}ni=1 cover e(K). Let V = B(B(2ε, e(x1)), . . . , B(2ε, e(xn))) is an open neighbor-

hood of Φ(e) = e(K). Any open neighborhood of Φ(e) contains an open set in the form of

V .

Let γ < ε, and W = B(γ, e) =
{
g ∈ Emb(K,RN) | |g(x)− e(x)| < γ, ∀x ∈ K

}
, then

- for x ∈ K, there is i such that e(x) ∈ B(ε, e(xi)), for this i and any g ∈ W ,

|g(x)− e(xi)| ≤ |g(x)− e(x)|+ |e(x)− e(xi)| < 2ε
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- Since |g(xi)− e(xi)| < ε, Φ(g) ∩B(2ε, e(xi)) 6= ∅
Hence Φ(g) ∈ V . And since g is arbitrary, Φ(W ) ⊂ V .

Now, fix a compact set K ∈ K(RN). Consider the group G = Aut(K) acting on

Emb(K,RN) by (h, e) 7→ (e ◦ h). This is a continuous Polish group action.

Moreover, we have the continuous map Φ : Emb(K,RN) → KK(RN), which satisfies all

the requirements of a theorem by Ryll-Nardzewski in [19] as a level set of Φ is Φ−1(L) ={
e ∈ Emb(K,RN) | e(K) = L

}
, where L = e0(K) and the orbit of e0 is {e0 ◦ h | h ∈ Aut(K)}

are equal sets. The reverse inclusion is clear by definition of the action. Suppose e ∈ Φ−1(L),

then e(K) = L. Define h : L → L by h(x) = e−1
0 (e(x)), then h ∈ Aut(L) and e = e0 ◦ h.

Thus we have,

Theorem A.1.2. For any K ∈ K(RN), the set of all instances of K in RN , KK(RN) is an

absolutely Borel set.

Theorem A.1.3. Φ is an open map, for K = C and n = 3.

Proof. Fix e ∈ Emb(C,R3) and ε > 0. We will show that Φ(B(e, ε)) includes a neighborhood

of K = Φ(e).

Since K is a Cantor set, it has a defining sequence {Mn}n. And there is n ∈ N such that

the diameters of components of Mn < ε. Let F1, . . . , Fm be the components of Mn.

Now take L ∈ B(F1, . . . , Fm). Let Ki = K∩Fi and Li = L∩Fi, they are also Cantor sets.

Also let Ci = e−1(Ki), which is Cantor and clopen subset of C. Define fi on Ci as embedding

of Ci onto Li, and let f = fi on Ci. Then f(C) = L, Ci’s are disjoint, so f is a well defined

embedding. Morevoer, for x ∈ C, x ∈ Ci for some i, so |e(x)− f(x)| < diamFi < ε, as both

Ki and Li are subsets of Fi.

Now K ∈ B(Int(F1), . . . , Int(Fm)) ⊂ B(F1, . . . , Fm) ⊂ Φ(B(e, ε)).

Thus all the structure we have on Cantor sets can be moved to the embedding space

Emb(C,R3). In particular, most embeddings of Cantor set in R3 are tame. On the other

hand, it is known that most embeddings of the circle in RN (N ≥ 4) are unknotted (tame),

while most embeddings of circle in R3 are wildly knotted by Milnor [17].

Remark. Φ is not open when K = I- unit interval.
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Consider the embedding e(x) = (x, 0, 0) and fix 0 < γ < 1/4. Let W = B(γ, e). If Φ(W )

were open, then in particular it includes a basic open neighborhood of e(I). So there exist

ε > 0 so that x1 = (0, 0, 0) and xk = (1, 0, 0) are connected by a simple chain consisting of

open sets of the form B(ε, x), say U1, . . . , Um. So (Ui)
m
i=1 is a finite open cover for e(I) and

without loss of generality ε < γ. Let V = B(U1, . . . , Um) be that basic open neighborhood

in Φ(W ). Now consider the compact set C defined as follows: C = h(I), where

h(x) =

(2x, ε
2

√
1− 2x, 0) 0 ≤ x ≤ 1/2

(2− 2x,− ε
2

√
2x− 1, 0) 1/2 ≤ x ≤ 1

C ∈ V , but C /∈ Φ(W ): Note that the non-cut points 0, 1 of I should map to the non-cut

points of C and e(I). Suppose for a contradiction g ∈ W with g(I) = C, then without

loss of generality g(0) = (0, ε
2
, 0) and g(1) = (0,− ε

2
, 0). But then |g(1) − e(1)| > 1 > γ,

contradicting g ∈ W .

Question 5. What about when K = S1? K = I × I?

The Polish group G = Aut(R3) acts on X = Emb(C,R3) by h · e = h ◦ e. This is a

continuous action. The image of an orbit of this equivalence relation under the map Φ is an

orbit of the action of G on KC(RN).

Let K ⊂ R3 be a Cantor set, consider the fiber of K in Emb(C,R3),

FK =
{
e ∈ Emb(C,R3) | e(C) = K

}
Proposition A.1.4. FK is closed nowhere dense.

Proof. FK = Φ−1(K), so closed.

Suppose for a contradiction e ∈ Int(FK), so there is ε > 0 such that B(ε, e) ⊂ FK . If

K is wild, then since tame Cantor sets is dense there is g ∈ B(ε, e) with g(C) is tame, so

g 6∈ FK . If K is tame, then there is an ω-decomposable non-tame Cantor set in this open

set, hence in either case there is g ∈ B(ε, e) with g(C) 6= K.
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[9] D. Garity, D. Repovš, M. Željko, Rigid Cantor Sets in R3 with Simply Connected Com-
plement, Proc. Amer. Math. Soc. 134, no. 8, pp. 2447-2456, 2006.
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