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Controlled release formulations improve drug safety and address patient adherence, barriers that 

are responsible for 10% of hospitalizations and over $100 billion in annual medical expenses.  

These benefits apply to medications that require consistent dosing over days, weeks, or months, a 

category accounting for over 90% of prescription drugs sales.   Yet, the use of controlled release 

formulations remains comparatively sparse because their design requires months of costly 

experimentation.    

Significant scholarship has been devoted to facilitating formulation development and to 

understanding controlled release behavior, particularly in the realm of mathematical modeling.  

However, each modeling study to date has only focused on predicting the performance of an 

extremely limited number of “drug”-polymer combinations, vehicle geometries and excipient 

types.  Researchers have yet to arrive at one general theory of controlled release applicable to a 

wide range of drug delivery systems and have even begun to doubt that one will be developed.   

To define the underlying mechanisms of controlled release, we studied data from 

formulations encapsulating a wide variety of agents.  Analysis began with poly(lactic-co-

glycolic) (PLGA) acid microparticles, yielding a set of equations that predicted the release 

behavior of neutral or anionic, water-soluble agents from small molecule drugs (~300Da) to 

viruses.  Building from this foundation, new layers of diffusion/reaction equations were added to 

enable predictions for implant systems and sparingly soluble drugs.  These predictions compared 
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favorably to in vitro data from implants that underwent either dissolution-limited or degradation-

controlled release.  

The new predictive models of controlled release enable analytical interpretation of in 

vitro release data.   Their predictions have identified rates and durations of drug release in over 

20 systems to date.  Calculations of in vitro release also aid in targeting precise release behaviors 

ranging abrupt bursts to sustained, constant release.  These behaviors were realized in a delayed 

release vaccine, capable of masking antigen from the body until a specific point in time, and as a 

sustained release formulation that delivered the HIV entry inhibitor, enfuvirtide, for one month. 

The in vitro and in vivo data from these two proof-of-concept applications support the use of 

predictive modeling in the design of long-acting controlled release formulations. 
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1.0  INTRODUCTION: 

1.1 CONTROLLED RELEASE TECHNOLOGY 

Controlled release technology is a collection of tools, methods, or indeed technologies, for 

autonomously delivering an encapsulated payload at a desirable rate or with desirable timing. 

Products that rely on controlled release technology are found today in agricultural, food, 

consumables, personal-care, and pharmaceutical industries.  Examples of these products include 

hormone supplements for cattle, nutrient-enriched drinks, microencapsulated enzymes in laundry 

detergents, moisturizing creams, and pills with once-daily dosing.  These products range from 

the incredibly simple, like sandwiched layers of flavor in chewing gum, to the molecularly 

complex, like enyzme-degradable polymers for bio-responsive drug release.   

1.1.1 Application to Drug Delivery  

From the diversity of controlled release products, the drug delivery applications clearly represent 

the largest market segment with over $20 billion in annual sales
7
.  In this niche, salts, sugars, 

polymers and other excipients are used to prolong bioavailability of a drug enabling less frequent 

administration.  Successfully controlled release medications can command over $1 billion in 

annual sales
8
.  Controlled release pills frequently reduce dosing from 2, 3, or 4 times a day to 



2 

 

once-daily.  Biodegradable polymer matrices, such as nanoparticles, microparticles, film coatings 

and implants, allow dosing to be extended even further. A single injection of biodegradable 

polymer microparticles can provide weeks or months of dosing.  An example of this type of 

medication is Risperdol Consta®, which provides two weeks of treatment for schizophrenic 

patients of whom fewer than 50% consume oral medications as prescribed
9
.  In addition to 

improving adherence, long-acting formulations can also enable entirely new types of treatments.  

Gliadel wafer® a biodegradable disc that releases carmustine provides a hallmark example of 

such a treatment, by enabling the local treatment of neural glioblastoma after surgical resection.  

Use of this medication increased patient lifespan by 19-39% in clinical trials
10

.   

1.1.2 Potential and Limitations  

The potential of controlled release medications, and in particular the long-acting dosage forms 

that provide weeks to months of drug delivery, is actually far greater than the size of the present 

controlled release technology market ($28 billion) indicates
7
.  Controlled release technology 

addresses patient non-compliance (the failure to adhere to a prescription), which is a significantly 

larger market, accounting for $136 billion in annual medical expenses
11

.  In practice, the field 

has not yet realized this enormous potential because generating a specific controlled release 

formulation (i.e. one customized to the dosing schedule demanded by any given medication) is 

extremely time consuming and costly.  As such, only 11 controlled release formulations that 

extend dosing beyond 1 week have reached the market
12

.  In each case, the associated drugs have 

clear compliance risks (elevating the need for extended dosing) or wide therapeutic windows 

(relaxing the requirement for stringent control over release).   Yet, these medications represent 
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just a small fraction of drugs that could be improved with properly designed controlled release 

formulations.  By one estimate, at least 90% of the top 100 best-selling prescription medications 

could further advance patient quality of life if they offered reduced dosing frequency
13,14

.  From 

this viewpoint, the field can be said to have broad therapeutic applicability, but comparatively 

limited implementation.  

1.1.2.1 Quality Assurance Considerations 

In addition to being notoriously difficult to design, long-acting controlled release formulations 

are noted as being among the most complex of drug formulations to successfully consistently 

produce. The production of a biodegradable microparticles formulation brings into play a 

number of quality control considerations, including the properties of polymers and excipients, 

the removal of organic solvents, the lyophilization of powdered product, and the assessment of 

needle gauge
15

.  Current practice is to assess the quality of a product batch post production.  The 

most time consuming portion of this analysis is the in vitro release assay where a formulation’s 

rate of drug release is measured in real time in order to determine if it is consistent with the FDA 

approved performance requirements.  Research has been conducted on methods of accelerating 

the in vitro release assay by the means of elevated temperature
16

.  For common hydrolysable 

polymers, such as poly(lactic-co-glycolic) acid, formulation degradation and in turn drug release 

is accelerated by increasing ambient temperature from 37
o
C (standard) to values of between 

40
o
C and 60

o
C.  Once correlated to data from assays conducted at 37

o
C, an elevated temperature 

assay can produce comparable results in a fraction of the time. At best, this approach has 

shortened the 2 month quality control assaying of Risperidol Consta® down to 1 week
17

.  

However, product safety and production efficiency can be further improved by a Quality by 
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Design (QbD) approach to quality control.  In QbD knowledge of how variation in a 

formulations composition and production will affect its performance is used to determine if a 

given product is acceptable.  This requires mapping of a formulation’s performance across a 

design space spanning changes in both process parameters, such as mixing speed or 

lyophilization time, and material properties, such as polymer molecular weight or excipient 

concentration
18

.  The state of the art in conducting such analysis is known as Design of 

Experiments (DoE), where statistical metrics are used to minimize the number of experiments 

needed to fully explore the combined impacts of various formulation properties and 

manufacturing parameters on drug release
19,20

. Even with the efficiency ensured by DoE, QbD 

analysis is very time consuming and costly to perform on long acting parenteral formulations 

because many different variations of a basic microparticle or implant design must be produced 

and then assayed over weeks or months until the full extent of their release behavior is known.     

1.1.2.2 Summary of long acting controlled release formulations 

Long acting formulations that deliver drug over weeks or months before being safely resorbed by 

the body are an area of tremendous potential for the field of controlled release technology.  Such 

formulations have already made medical impacts addressing patient compliance and enabling 

entirely new types of treatments.  They also have the potential to improve the large majority of 

medications, if cost and time issues associated with design and production can be addressed.  

Specific challenges come from an iterative experiment-driven design process and new quality 

assessment demands to improve formulation safety.  Both of these challenges could be resolved 

with an in-depth quantitative understanding of parameters that effect formulation function.   
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2.0  PRIOR ART IN THE EMPIRICAL DESIGN OF CONTROLLED RELEASE 

FORMULATIONS 

2.1 INTRODUCTION 

Bulk eroding biodegradable polymer matrices have a track record of FDA approval that extends 

back more than 40 years.  This record of clinical safety and efficacy encompasses not only long-

acting controlled release formulations, but also surgical sutures and implantable devices, such as 

resorbable bone screws.  Accordingly bulk-eroding polymer matrices, such as poly(lactic-co-

glycolic) acid (PLGA) microparticles remain a first-choice in scenarios where drug must be 

autonomously released over weeks or months.  However, because bulk eroding polymers, such 

as PLGA, were first developed for orthopedic and surgical applications, they are not optimally 

engineered for drug delivery performance.   

Over the past two decades, a number of studies have aimed to increase the efficiency of 

designing degradable polymer drug delivery formulations.  The earliest studies sought to identify 

key physical properties of the polymer matrices that determine release behavior
21,22

. Twenty 

years later, researchers are still experimenting with a variety of new formulation compositions, 

polymer chemistries and processing conditions in an attempt to tune this release behavior
23-26

.  

Over time, a number of system properties and processing conditions have emerged as potential 

tools for tuning the kinetics of delivery systems
14,27

.  However, a standardized method of tuning 
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remains elusive due to the complexity that arises when factors, such as polymer chemistry, alter 

several properties that determine release simultaneously, such as matrix crystallinity, pH, 

degradation rate and hydrophobicity
24

. 

A review of empirical tools is essential in order to understand what is known about how 

biodegradable polymer matrices function as controlled release formulations. The most widely-

studied biodegradable polymeric materials (i.e. polyesters, polyanhydrides, poly-ortho esters, 

etc…) offer the largest wealth of information on such tools given their long history of use and 

similarity of fundamental release behavior, which encompassed both the underlying mechanisms 

and resulting kinetics.  Although the techniques that can be used to control release in these 

systems are generally applicable to any size, shape, and orientation of a degradable matrix, this 

chapter will most often refer to one of the most commonly reported configurations of these 

matrices, a spherical particulate system.(Figure 1)  Studies on microparticles have empirically 

varied independent system properties (such as matrix size, degradation rate or polymer molecular 

weight) or processing conditions (such as emulsion type, solution osmolality, or solvent choice)  

 

Figure 1: Microscopy images of particle matrix cross-sections and exteriors (insert).   

A) In homogenous systems (like single emulsion microparticles) the drug resides in-phase with the polymer matrix 

(adapted with permission from
1
).  B) In contiguous systems (like double or water-in-oil-in-water emulsion 

microparticles), the drug resides in pockets that are separated from the polymer matrix. 
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and documented their effects with in vitro assays.  Each of these experimental variations can be 

evaluated for its potential as a design tool that a engineer can use to tune release behavior. 

As a general rule, drug delivery vehicles can be tuned to provide a specific rate and 

duration of release independently.  However, biodegradable matrices have been commonly 

observed to produce up to three distinct phases:  1) an Initial Phase (a.k.a. “Initial Burst”) that is 

typically categorized by the rapid delivery of drug upon hydration, 2) a “Lag Phase” marked by a 

near-zero rate of release for some period of time. and 3) a “Final Phase” where measurable 

release resumes, typically in a Fickian fashion.  Therefore, it would be useful to classify tools by 

their suitability for tuning the magnitude and/or duration of each individual phase in order to 

gain complete control over release.(Figure 2)  Further, by analyzing the attempts to control these 

fundamental system phenomena and documenting their effects on release behavior, a picture of 

formulation function can be developed. 

 

 

 

Figure 2: Tri-phasic release profile  

Diagram of the A) Initial Burst, B) Lag Phase and C) Final Release.  Note that any one of these phases may or may 

not be apparent depending upon the properties of the release system. 
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2.2 TUNING THE INITIAL BURST 

Numerous studies have addressed the “Initial Burst” and a summary of findings have been the 

focus of two reviews in the past decade
28,29

. Both of these reviews discuss hypothetical 

mechanisms of “burst” release and potential strategies for preventing or eliminating it.  

Maintaining the theme of this review, we will focus on the impact that individual “design tools” 

have on the magnitude and/or kinetics of the initial burst.  

2.2.1 Modifying burst magnitude 

The initial burst can easily encompass all of release or even be completely eliminated.  However, 

no one method exists for precisely targeting values across this entire range.  Instead, studies put 

forth a variety of techniques that change burst magnitude with varying degrees of sensitivity. 

2.2.1.1 Dispersion of Drug in the Polymer Matrix 

Several studies have succeeded in creating dramatic reductions in burst magnitude by forcing 

hydrophilic proteins to disperse in the hydrophobic polymer matrix.  For example, Fu et al 

eliminated the initial release of a water-soluble protein (human Glial-cell line derived 

neurotrophic factor) by using an ionic surfactant to dissolve the hydrophilic protein in-phase with 

the polymer
30

.  In contrast, an equivalent double emulsion formulation (with polymer entrapping 

pockets of aqueous protein) produced more than 70% initial release
30

.  A similar approach was 

adopted to eliminate the burst release of insulin using PEGylation, which aided the dissolution of 
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the protein in dichloromethane
31

.  Practically, partitioning experiments can be used to determine 

if other agents will dissolve/disperse in the same phase as the polymer (e.g. organic phase) with 

the aid of surfactants or other modifications
32

.  Since this design tool simply involves the 

dispersion of drug and polymer in a matrix, it should readily apply to any number of systems. 

Interestingly, less predictable results are observed when a cosolvent is used to stabilize 

hydrophilic drugs in the same phase as the hydrophobic polymer matrix
33,34

.  Using this approach 

on insulin-loaded PLGA microparticles reduced burst magnitude from 65 to 20%
34

.  However, 

when applied to another protein (granulocyte colony stimulating factor), this technique actually 

increased the magnitude of the initial burst
33

.  Yet both of these studies produce single emulsion 

systems by dissolving a protein in the co-solvent, dimethylsulfoxide, before mixing it with a 

polymer-dichloromethane solution.  It is unknown as to the source of the disparity, but it may be 

possible that this process may cause protein molecules to aggregate into a separate phase, giving 

rise to a measurable burst magnitude.  

2.2.1.2 Manipulation of Osmotic Pressure 

Subtle changes in burst magnitude have also been achieved by changing the osmotic 

pressure during the processing of systems that are intentionally fabricated with an internal 

aqueous phase (e.g. double (water-in-oil-in-water) emulsion systems, see Figure 1B).   

Accordingly, Jiang et al tuned the initial burst of bovine serum albumin (BSA) to values between 

30% and 80% of total release by adding salt or sucrose to the outermost aqueous phase during 

microparticle fabrication
35

.  The same technique has been used in other macromolecule-loaded 

systems to reduce the magnitude of the initial burst
17,36

.  Within each study, the reduction in burst 

magnitude was proportional to the amount of NaCl added to the outermost aqueous phase, (i.e. 
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the strength of the osmotic pressure gradient driving water out of the microparticles).  Because 

osmosis is a fundamental process, this design tool should extend to a wide range of contiguous 

systems, and is particularly important to account for in systems where the drug itself 

dramatically affects the osmotic pressure (such as plasmid DNA)
37,38

.  

2.2.1.3 Manipulation of Matrix Size 

A number of studies have also varied matrix size to tune the magnitude of burst release in double 

emulsion systems
2,6,36,39

.  While this property is particularly easy to tune during fabrication, its 

effectiveness at controlling the magnitude of initial release varies from agent to agent.  For 

example, initial release of the small molecule, lidocaine from polymeric microparticles dropped 

30% as particle size increased 10 fold
2
.  This trend is echoed over a larger size span by 

polyanhydride particles loaded with Butorphanol
39

.  However, the release of insulin was more 

sensitive to changes in particle size, dropping 35% in magnitude from just a 3 fold change in 

particle size
36

(Figure 3).   Limitations arise as matrix size is reduced to below 5μm because such 

small bodies are readily cleared in vivo by the reticuloendothelial system (RES, consisting of 

phagocytic cells like macrophages)
40

 or above 500µm in diameter as matrix hydration begins to 

affect the kinetics of the initial burst
41,42

.  However, for median sizes, this method presents an 

effective approach to tuning the magnitude of initial burst release.   
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Figure 3: Comparison of burst magnitudes from microparticles of varying size.   

Analysis was conducted on data from three different studies: Small molecule Lidocaine
2
, Insulin protein

5
 and 

Melittin peptide
6
. The burst magnitude of each system was affected to different extents by changes in matrix size. 

 

2.2.1.4 Manipulation of Drug Loading 

Discrete changes in initial burst magnitude have also been produced by altering the drug loading.  

Working with a variety of model proteins (lysozyme, carbonic anhydrase, alcohol 

dehydrogenase), Sandor et al noted that decreasing drug loading from 7 to 1wt% reduced the 

initial burst from a high of roughly 80% to just 15-40% of total release
43

.  Equally dramatic 

reductions in burst magnitude have been observed following changes in peptide loading
6,36

.  

Studies on small molecule release from polyester and polyanhydride implants have also reported 
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similar trends
44-48

.  Limitations to this technique do arise at low loadings (lower payload) or high 

loading (breakdown of matrix structure, e.g. percolation)
49

.  However, the simplicity and broad 

applicability of this tool still make it very attractive for inducing measurable changes to burst 

magnitude.  

2.2.2 Tuning the kinetics of the initial burst 

Methods for altering the rate (kinetics) of the initial burst may also prove useful if it can be 

manipulated to benefit the delivery strategy.  For example, rapid delivery of an antigen might be 

necessary for the successful function of a controlled release vaccine.  Alternatively, slowing the 

initial burst rate may bring the initial delivery of a prescription in line with its optimal, constant 

(zero order) release profile.   

2.2.2.1 Controlling Drug Dissolution Rate   

One way to influence burst release kinetics is to alter the encapsulated agent's dissolution rate.  

This has been accomplished by co-encapsulating an agent with a variety of excipients
50,51

.  

Experimenting with different clycodextrin excipients, Wang et al was able to tune the duration of 

initial release of beta-lapachone (a hydrophobic chemotherapeutic) to values between 1 week and 

1 day by complexing it with hydrophilic cyclodextrin of varying size
50

.  This approach to 

increasing burst rate should also apply to other hydrophobic, small molecules, that readily 

complex with cyclodextrin or other hydrophilic agents
29

.   

Interestingly, reports describing the use of excipients to decrease the rate of early release 

(rendering hydrophilic molecules more hydrophobic) are absent from the literature, possibly 
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because evidence suggests that these types of systems exhibit little to no initial burst
30

.  Further, 

a study intending to reduce dissolution rate by switching from amorphous to crystalline drug 

reported a similar change in burst magnitude, but not kinetics
52

.  However, studies comparing 

agents with different intrinsic dissolution rates have noted a correlation to burst kinetics in 

polyanhydride implants
53,54

.  This suggests that methods for reducing an agent's dissolution rate 

could slow its burst release.  However, until such methods are realized, excipients remain a 

reliable tool for increasing burst release rate of hydrophobic agents. 

2.2.2.2 Effect of Radial Drug Distribution 

A number of different fabrication methods have been used to control the radial distribution of 

drug within biodegradable polymer matrices, thereby altering their initial burst kinetics.  Such 

heterogeneous distributions have been achieved with double-walled microparticles which are 

formed by using multiple immiscible solvents to separate polymers of differing solubility into 

core and shell phases.  These systems consistently show reduced protein burst kinetics when the 

drug is trapped in the matrix core rather than when it is in the shell or loaded throughout
55,56

.  

Further, the extent of this reduction is proportional to the thickness of the shell separating the 

drug-loaded core from the outside environment
55

.  Coated implants (tablets, discs, or spheres) 

made from polyesters or polyanhydrides have produced similar results
57-60

.  Mixed results were 

observed in some small molecule loaded matrices, which could be explained by the preferential 

partitioning of such agents into the coating shell instead of the matrix core
61-64

.  Fortunately, 

studies have reported controlling the radial distribution of small molecules through an 

electrospray fabrication process
3,65,66

.  Piroxicam and Rhodamine loaded microparticles produced 

by this method showed significantly slower initial release kinetics when drug was concentrated 
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at the matrix core than when it was distributed closer the particle surface
3
.(Figure 4)  This 

technique was also recently applied to macromolecule loaded (Rhodamine-BSA or FITC-

dextran), double emulsion microparticles, but only the magnitude of the initial burst was 

altered
67

, as discussed in section 2.2.1.  Between electrospray fabricated microparticles and 

systems such as double-walled particles or implants, radial drug distribution can successfully 

modified for a diverse array of active agents.   

2.2.3 Initial burst summary 

A number of different techniques make it possible to tune the magnitude and duration of the 

initial release phase.  By altering processing methods, matrix size, osmotic pressure, or drug 

loading, the magnitude of the initial release can be tuned to nearly any value between 0 and 

100%.  By altering the agent dissolution rate or radial drug distribution, it is possible to tune 

kinetics of initial release as well.  Despite the encompassing applicability and diversity of these 

tools for tuning burst release, future research into mechanism of the bust and its relation to drug 

chemistry is needed to tune it a priori.   

2.3 TUNING THE LAG PHASE 

Following the initial burst, a lag (or pause in release) may occur before the remaining 

encapsulated drug is released.  By definition, this phase lacks measurable kinetics, but may 

possess significant duration.  However, particularly slow initial release or, conversely, early 
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onset of final release may serve to disguise this phase.  Hence, for the purposes of this chapter, 

the duration of the lag phase is defined as time elapsed prior to the onset of final release (day 0 to 

the resumption of drug delivery).    

2.3.1 Tools for tuning the duration of the lag phase  

2.3.1.1 Setting of Initial Polymer Molecular Weight  

Many studies have shown that the duration of the lag phase can be altered by varying the 

polymer's initial molecular weight (Mwo).  For example, Friess et al. induced a 10 day lag phase 

in gentamicin loaded microparticles by switching from a 13.5kDa PLGA to a higher molecular 

weight of 36.2kDa
68

. Comparable results have been reported for small molecule loaded polyester 

implants
69

.  This relation also holds true in peptide loaded microparticles
5,70,71

.  Macromolecule 

release data from different studies also confirms a clear trend between lag phase duration and the 

molecular weight of the PLGA matrix (Figure 5) 
5,30,35,43,72-78

. This fundamental trend is only 

preserved with a given class of agents, suggesting that the effect of polymer molecular weight is 

dependent, at least in part, upon some property (or properties) of the encapsulated agent
68,70,75

.   
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Figure 4: Relationship between polymer molecular weight and lag duration.   

Duration of the lag phase (squares) was determined by analyzing macromolecule release data from a number of 

different studies
5,30,35,43,72-78

.  The results fit a power expression (line).  

 

2.3.1.2  Controlling Polymer Degradation Rate 

Another well-documented tool that can be used to alter the duration of the lag phase is the 

polymer's degradation rate.  For copolymers, this is simply controlled by altering the ratio of the 

two monomers, with degradation rate typically being inversely proportional to hydrophobicity of 

the resulting polymer chain.  For example, in work by Cui et al where 9.5kDa 50:50 PLGA 

microparticles produced a melittin release profile with an 8 day lag phase, 10kDa 75:25 PLGA 

microparticles presented a 14 day lag phase
6
.  Similarly, Wang et al tested ethacrynic acid loaded 

films of 110kDa 50:50 PLGA and PLA, which produced lags of 1 or 6 days, respectively
79

.  This 

trend has also been echoed by polyanhydride copolymer microparticles loaded with BSA
80

, 

PLGA and PLA fibers loaded with BSA 
81

 as well as other polyester implants loaded with small 
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molecule drugs
82,83

.  The consistent performance of the polymer degradation rate and initial 

molecular weight as tools for controlling lag phase duration suggests that the two may act in 

concert via a common property such as polymer lifespan.   

2.3.1.3 Use of Catalytic Excipients 

 When a specific polymer chemistry or molecular weight is desired (and therefore not accessible 

as a tool to tune release), the degradation rate and, in turn, duration of the lag phase can also be 

modified by using an excipient.  This is evident in one study where proteinase K increased the 

degradation rate of PLA fibers eliminating all lag from the release of paclitaxel and 

doxorubicin
84

.  This enzyme will also catalyze the degradation of l-lactic linkages in PLGA 

copolymers and consequently should shorten the duration of lag phase in said systems as well
85

.  

An anhydride (acid) has also been used as a catalyst to hasten the degradation of poly-ortho-ester 

matrices, completely eliminating a 2-day lag phase
86

.  This mechanism should apply equally well 

to polyester or polyanhydride matrices whose hydrolysis is also affected by the presence of 

acid
41

.  Future work is needed to determine if acidic excipients will cause measurable damage to 

peptides or proteins. 

2.3.1.4 Post Fabrication Irradiation 

The duration of the lag phase can also be reduced by gamma irradiation
87,88

.  The most dramatic 

changes produced by this method were reported for the release of progesterone from PLA 

microspheres, where 100kGY of radiation reduced the lag duration from nearly 200 days (prior 

to exposure) to just 50 days 
88

.  Working with small molecule loaded PLGA microspheres, 

Fasiant et al also reported a short lag duration when 5-Fluorouracil loaded PLGA microparticles 
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were irradiated (4-33kGy)
87

.  These changes in lag duration can likely be attributed to the 

cleavage of polymer chains in the encapsulating matrix (e.g. reduction in initial polymer 

molecular weight), a phenomena whose effects are described earlier in this section.  

Interestingly, both studies also noted an increase in burst rate, a phenomena not observed with 

other degradation-based methods of altering the duration of the lag phase.  While this method for 

altering lag phase should apply to a wide range of polyester matrices, its utility may be limited 

because: 1) it simultaneously alters the kinetics of the initial burst, 2) it appears to be only 

capable of shortening the lag phase (not lengthening it) and 3) it may degrade sensitive agents 

such as peptides and proteins.   

2.3.2 Lag phase summary:   

Controlling the duration of the lag phase can be simply a matter of tuning the encapsulating 

polymer’s lifespan.  This can be accomplished by adjusting polymer initial molecular weight or 

degradation rate, as well as by using a catalytic excipient or gamma irradiation.  By carefully 

tuning the lag phase it is possible to either merge initial and final release into one seamless phase 

or separate them by considerable delay.  As lag phases were rarely observed in system releasing 

small molecules (< 300Da), further study is warranted to determine how best to induce and tune 

this phase in such systems.     
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2.4 FINAL RELEASE 

Control over the final release phase can help extend drug delivery or even determine how 

pronounced the effects of the initial burst and lag phase will be on the overall release profile.  

Because this phase is responsible for the delivery of the remainder of drug in the polymer matrix, 

its magnitude is (by definition) predetermined by the magnitudes of the prior release phases.  

However, the kinetics of this phase can still be readily tuned by several methods. 

2.4.1 Tuning the rate of final release 

2.4.1.1 Use of Polymer Blends 

Firstly, the rate of final release can be reduced (or its duration extended) by blending together 

like polymers
68,70,89-92

.  For example, by adding together equal measures of 36.2kDa PLGA and 

13.5kDa PLGA, Friess et al was able to extend the final release of gentamicin (small molecule) 

from just 3 days to 7 days
68

.  Similar mixtures have also been used to extended the release of 

peptides and proteins
70,90

. This tool has even been used to sustain protein (lysozyme) release 

from polyanhydride microspheres
92

.  Interestingly enough, this method of reducing the final 

release rate extends directly from methods for tuning the lag phase duration (which also marks 

the time until final release).  For instance, mixing together polymers with different lag phases 

could stagger the onset of final release, yielding an overall slower final release rate than either 

polymer could achieve alone.  Hence this technique for modulating the rate of final release 

should prove effective for any matrix system with an adjustable lag phase. 
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2.4.1.2 Control via Copolymer Ratio  

Data also suggests that duration of final release in polyester systems is dependent on the 

copolymer ratio of PLGA.  Studies on melittin release show that 50:50 PLGA microparticles 

complete final release in just 2 weeks, while comparable 75:25 PLGA microparticles take 3 

weeks to deliver nearly the same amount of drug
6
.  A similar observation can be made for the 

ethacrynic acid loaded films
79

.  (Note, in all aforementioned cases altering copolymer ratio also 

adjusted the duration of the lag phase via the polymer degradation rate, as described in section 

2.3.1)  While, this effect appears consistent across PLGA copolymers, further research is needed 

to better understand its mechanism and the breath of its applicability.  Tuning common factors 

such as polydispersity in the polymer molecular weight or semicrystallinity of the polymer 

matrix (which can lead to variance in the polymer lifespan
93

) may produce comparable effects in 

other polymer types
94

. 

2.4.2 Final release summary:  

A relatively limited number of techniques are able to alter the kinetics of the final release phase 

for a number of different systems.  Both blending like polymers and altering copolymer 

chemistry (for greater lactic content) decreases the rate of final release, allowing for more 

extended delivery.  Similarly reducing the polydispersity in polymer initial molecular weight or 

reducing the copolymer’s lactic acid content can increase the rate of final release.   
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2.5 CONCLUSIONS:   

Many methods for tuning the release kinetics of biodegradable polymer matrices have been 

tested in carefully designed experiments on a variety of different drugs.  The result is a set of 

independent methods for tuning the magnitude or kinetics of the initial burst, the duration of the 

lag phase and the rate of final release.  When used in combination, these design tools can 

produce release profiles ranging pure the Fickean diffusion to complex tri-phasic behaviors.  

Further progress can be made towards quantifying the changes in release produced by these tools 

with mathematical modeling. 
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3.0  DEVELOPING A PREDICTIVE MODEL OF RELEASE FROM BULK 

ERODING POLYMER MATRICES 

3.1 INTRODUCTION 

Spurred by a desire to hasten the development of new formulations, many efforts have been 

made to model degradation-controlled release profiles based on the physical properties of the 

matrix, drug, and polymer
4,95-101

.  The most notable of these models not only accurately describe 

release data, but also provide a means of predicting how to control it (i.e. predicting how changes 

in system properties will affect the release of a given drug).  This is an important distinction, as 

many models, through regression, will fit tri-phasic release data, while only predicting how one 

or two system properties will affect release.  As most system properties only alter a single aspect 

or phase of release kinetics, this would limit a model's ability to tailor release kinetics.  On the 

other end of the spectrum, when a model accounts for too many system properties, its utility for 

formulation design is limited by the number of properties that can actually be tuned during 

matrix fabrication.  Common ground for more specific characterization of mathematical models 

as design tools can be found in the phase or phases of release that they effectively be used to  

tune.  Compared on the basis of the phases that they describe, models can be evaluated for their 

accuracy, applicability to formulation design, and ease of implementation.   
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3.1.1 Evaluation of models addressing the initial burst by critical properties 

3.1.1.1 Agent Loading and Copolymer Ratio:  

Wong et al. modeled the initial burst release of Immunoglobulin G from PLGA microparticles 

with varying drug loading and copolymer composition
102

.  Analytical solutions to this diffusion-

dissolution model revealed a strong agreement to the first 50 days of release data when values for 

the agent diffusivity and dissolution rate constant were optimized to minimize sum-squared 

error.  The low variance in these optimized values may allow for the prediction of burst release 

in systems with different loadings or copolymer ratios.  (As some of the collected data was 

lacking a lag phase, at times, both of these properties appeared to impact the initial burst 

kinetics.)  Further work is required to determine if values for agent diffusivity and dissolution 

rate will have to be calculated anew when attempting to predict the burst kinetics of other 

proteins or polymer chemistries.   

3.1.1.2 Agent Loading, Solubility:   

Small molecule release from PLGA has been captured by a model that combines a Monte Carlo 

description of dissolution and erosion with partial differential equations describing pore-

mediated diffusion
100

.  This model was successfully applied to 5-fluorouracil release data from 

104kDa PLGA microspheres by optimizing values for mean polymer lifespan and agent 

diffusivity.  Importantly, values for loading, drug solubility and matrix size were specified for 

the given microparticle system instead of being computed by regression from release data.  This 

should allow the model to predict how changes in these system properties affect release, 

provided that their perturbation does not significantly alter the optimized values for mean 
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polymer lifespan and agent diffusivity.  While this predictive ability has yet to be tested, 

experimental studies suggest that altering the loading will affect the magnitude of the initial burst 

(section 2.2.1) and varying drug solubility will affect burst kinetics (section 2.2.2).  (In like 

systems, matrix size has been reported to affect the polymer degradation rate and, in turn, its 

lifespan, while having little impact on release kinetics
1
.)  Future implementation of this model on 

single emulsion systems (where agent solubility and loading have been experimentally varied) 

would promote its utility as a design tool.     

Zhang et al. have derived a detailed model for describing mono-, bi-, and tri-phasic 

protein release profiles
103

.  To account for this diversity in release behavior, this model actually 

contains three different versions of its core equations optimized to approximate a diverse range 

of experimentally observed erosion behavior.  Each version of the model's equations was tested 

on release data from systems with different erosion profiles.  By fitting the model first to mass 

loss (erosion) data, the most appropriate version of its equations was determined and values were 

computed for erosion rate constants.  Then release data was described by optimizing values for 

the initial tortuosity and dissolution rate constant.  Values for the remaining system properties 

(agent solubility limit, initial diffusivity, microparticle radius, drug loading, initial tortuosity and 

initial porosity) were taken from the literature.  Because sensitivity analysis shows that the 

erosion mechanism can have a dramatic effect on release kinetics, matrix-specific properties that 

are likely to affect erosion (e.g. microparticle radius, initial porosity or initial tortuosity) may 

prove a difficult means of precisely altering release.  Fortunately, this model still accounts for 

agent-specific system properties such as agent loading and solubility which can be used to tune 

the magnitude and kinetics of the initial burst, respectively (sections 2.2.1 and 2.2.2).  
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3.1.2 Evaluation of models addressing the burst and lag phases by critical properties 

3.1.2.1 Initial Polymer Molecular Weight, Irradiation:  

Diffusion-erosion equations have been combined with empirical correlations to predict the 

effects of post-fabrication, gamma irradiation on release
104

.  This model accurately fit bi-phasic 

release data from aclaribicin or progesterone-loaded, polyester PLA microparticles of varying 

molecular weight or irradiation exposure, respectively.  Optimized parameter values for agent 

diffusivity, degradation rate, lag-phase duration, erosion and auto-catalysis were successfully 

correlated to irradiation exposure. Based on these correlations a further regression-free prediction 

was made for a more heavily irradiated set of PLA microparticles.  This demonstrates that the 

model can successfully predict the experimentally observed effects of irradiation exposure on 

release, namely increased burst rate and decreased lag duration.  It is likely that similar 

predictions could be made for other agents and polyester matrix formulations if their system-

specific parameters (agent diffusivity, erosion half-life and degradation rate) are recalculated.  

With such adjustments, this model could aid in the prediction of initial burst kinetics and lag 

phase duration following irradiation exposure.  It is possible that equivalent correlations could be 

developed and used to predict the effects of varying initial polymer molecular weight as well.   

3.1.2.2 Polymer Initial Molecular Weight, Agent Distribution:  

Raman et al modeled the effects of polymer initial molecular weight and drug dispersion on 

piroxicam release from single emulsion microparticles
101

.  The model combines diffusion-

reaction expressions with a correlation relating piroxicam diffusivity to polymer molecular 

weight (D(Mw)) in order to predict release while only needing to optimize one constant (initial 
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drug diffusivity), which accounts for the kinetics of initial release.  Its descriptions of release 

were accurate for the initial burst and the lag phase, but deviated from the data as much as 15% 

at later points in time.  This likely occurred because the D(Mw) correlation requires extrapolation 

for polymer molecular weights less than 5kDa, an issue which could be resolved by gathering 

data from lower molecular weight polymer matrices.  As implemented, this model can predict 

changes in burst kinetics arising from drug distribution and changes in the lag phase duration due 

to polymer initial molecular weight. With an agent specific D(Mw) correlation and recalculated 

values for initial diffusivity in place, this model could be used to predict the performance of 

different drugs as well.    

3.1.3 Evaluation of models of triphasic release by their critical properties 

3.1.3.1 Microparticle Combinations:   

The aforementioned model of piroxicam release has recently been extended by Berchane et al 

with an algorithm for tuning release kinetics by mixing together different microparticle 

formulations at different ratios
105

.  This algorithm was used to optimize (using weighted sum 

squared error) the component mass fractions in a mixture of piroxicam loaded microparticles 

with different release behaviors to produce entirely new profiles, from linear to multi-phasic 

patterns.  This technique could readily be adapted to generating specific release profiles for any 

number of drugs provided that a library of formulations with suitably diverse release behaviors 

could be developed. 
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3.1.3.2 Erosion, Degradation, Drug Loading, Posority, Particle Size, Solubility, and 

Polymer Chemistry:  

Batycky et al modeled tri-phasic protein release by piecing together a number of analytical 

equations
4
. This model successfully predicted the release of glycoprotein 120 from PLGA 

microspheres based on measured values for 19 different parameters (Figure 5A).  Less rigorous 

predictions (using a number of estimated parameters) for tetanus toxin release captured the initial 

burst and lag phases but showed systematic deviations arising at just 15 to 45% of completion 

(Figure 5B).  This suggests that it is important to precisely measure or derive values for all model 

parameters if accurate predictions are to be made.  Eight of these parameters, such as effective 

drug diffusivity, rate of mesopore formation or burst release fraction, can only be determined 

through observation of the polymer matrix during in vitro degradation, erosion and release 

assays.  However, the remaining eleven parameters correspond to system properties that are 

commonly known or readily measured, namely microparticle radius, initial porosity (micro, 

meso, and occlusion), pore size distribution, polymer degradation rate, monomer molecular 

weights, soluble oligomer number, drug radius, drug molecular weight, and drug loading. 

Parametric sensitivity analysis, where each of these parameters is independently varied, will help 

determine which system properties specified in this model can be used to tune release
106

. 
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Figure 5: Protein release predictions for PLGA & PLA particles. 

A) Model's prediction (solid line) compares favorably with Glycoprotein release data (diamonds).  B) Estimations of 

tetanus toxin release (solid line) capture the initial burst and lag phase of the data from PLGA (crosses) and PLA 

(diamonds) microparticles.  Reproduced with permission of ref. 
4
 



29 

 

3.1.4 Summary of Mathematical Models:   

Each of the aforementioned models takes steps towards enabling the rational design of 

biodegradable controlled release matrices. In order to supplant the need for exploratory in vitro 

release experiments in the design of controlled release therapeutics, though, a model must satisfy 

three requirements. 1) The model must apply to a wide range of agents because each new 

therapeutic must deliver a unique drug
11,23

.  2) The release of such agents must be described 

entirely from readily attainable design parameters, thereby allowing researchers to acquire 

specifications for a matrix from a given release profile or dosing schedule
107

. 3) The model must 

be robust enough to capture the breadth of release behaviors that have been documented for the 

system in question, in this case, bulk eroding polymer matrices
5,6,30,43,68,70,72,73,79,80,108-111

.  

This chapter documents the development and implementation of a new controlled release 

model designed to meet the criteria specified above. This work was summarized in a manuscript 

by Rothstein et al. that was published in the Journal of Materials Chemistry in 2008{Rothstein 

2008}.  This model uses new methods to describe the release of water-soluble agents that are 

discretely encapsulated in bulk eroding, polymer matrices and that dissolve rapidly, relative to 

the time scale of release. In addition fundamental descriptions of release, the model includes two 

correlations that enable predictions with knowledge of just five parameters, all commonly known 

or easily measured prior to release. These parameters are microsphere radius Rp, occlusion radius 

Rocc, polymer degradation rate kCw, polymer initial molecular weight Mwo, and agent molecular 

weight MwA. As a test of the model, regression-free predictions were compared to multiple sets 
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of published experimental data. Furthermore, the range of attainable dosing schedules is explored 

by varying the matrix-specific parameters.   

3.2 MODEL DEVELOPMENT  

3.2.1 Release paradigm 

Consider an initially uniform matrix of known geometry comprised of a biodegradable polymer, 

such as a polyester or polyanhydride, and with randomly distributed entrapped release agent (e.g. 

drug of concentration CAo), loaded below its percolation threshold (such that agent remains 

discrete) to ensure matrix mediated release. This agent can either be dispersed as crystals (such 

as in the case of uniformly loaded systems, e.g. single emulsion-based particulates) or housed as 

a solution in occlusions (e.g. double emulsion-based particulates).
107

 At time zero, an aqueous 

reservoir begins to hydrate the matrix, a process which happens quickly for the bulk eroding 

polymers matrices considered herein
4,41

.  As the matrix hydrates, encapsulated agent adjacent to 

the matrix surface (with a direct pathway for egress) diffuses into the reservoir in a phase 

typically dubbed the initial burst  (Figure 6, phase 1). The relative size of the occlusion (Rocc) 

occupied by the encapsulated agent is proportional to the magnitude of the initial burst as 

illustrated in  Figure 7.  

http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig2
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig2
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Figure 6: Schematic depiction of a paradigm that can account for four-phase release.  

A) Cross section diagrams depicting the four phases of release for a double emulsion microparticle with agent 

encapsulated heterogeneously in occlusions. Initially, agent abutting the matrix surface is released (1). The 

remaining agent requires the growth and coalescence of pores for further egress (2–4). B) Release profile for 

macromolecular drug encapsulated in biodegradable polymer matrix with four phases of release labeled. The 

numbers associated with each cross section diagram (A) indicate which phase of the release profile is illustrated. 

These phases are 1) initial burst, 2) lag phase, 3) secondary burst and 4) final release. 
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As the initial burst release commences, degradation of the polymer begins, increasing 

chain mobility and effectively leading to the formation of pores in the polymer matrix
32

 (Figure 

6, phase 2). Although a number of mechanisms have been proposed for this heterogeneous 

degradation profile, one hypothesis, which has been reinforced by experimental data, is based 

upon regions of varying amorphicity and crystallinity
93,112,113

.  It is believed that amorphous 

regions of polymer erode first, leaving behind pores (as shown using scanning electron 

microscopy)
1
. These pores appear to be essential for subsequent release

114
(Figure 6, phase 3). 

 

 Figure 7: Schematic depiction of the initial burst as it relates to occlusion size.  

A) The double emulsion particle contains large occlusions filled with drug solution and produces a significant initial 

burst. B) The more uniformly loaded (e.g. single emulsion particle, melt cast matrix) contains small granules of drug 

and has minimal initial release 

http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig1
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig1
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig1
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With the cumulative growth and coalescence of these pores, agents are able to diffuse 

towards the surface of a polymer matrix that would otherwise be too dense to allow their 

passage
114

 (Figure 6, phase 4). Thus, a pore is defined as a region of polymer matrix with an 

average molecular weight low enough to allow the release of encapsulated agent. (This is in 

contrast to the occlusion, which is defined as a region occupied by dissolved or solid agent, 

marked by the absence of polymer matrix.) Further, the molecular weight associated with release 

may vary for each encapsulated agent type (small molecule, peptide, protein, etc.), leading to a 

size-dependent restriction for agent egress. 

With a size-dependent restriction on egress established, the degradation controlled release 

of any encapsulated agent can only occur when the following four conditions are satisfied. 1) 

The release agent must be present in the polymer matrix. 2) A pore must encompass the release 

agent. 3) That release agent must be able to diffuse through the encompassing pore. 4) The pore 

must grow and coalesce with others to create a pathway for diffusion to the surface. 

3.2.2 Model Equations 

Agent concentration within a matrix (such as a microsphere, rod, or thin film) can be calculated 

from Fick's second law (Equation 1) for any point in time (t) or space (r), provided that the agent 

is not generated or consumed in any reactions while within the matrix
96-98,100

.  

  
Aeff

A CD=
t

C





 (1) 
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Here Deff is an effective diffusivity term. Integrating CA/CAo over the entire matrix volume yields 

the cumulative fraction of agent retained in the matrix (P(t)) (Equation 2). 

For a sphere:   

P(t) = V
−1

CA/CAodV  (2) 

 

 

 

In turn, the cumulative fraction of agent released (R(t)), a metric commonly used to document 

formulation performance, is simply (Equation 3): 

  

R(t) = 1 − P(t)  (3) 

 

At the center point, line, or plane of the matrix (r = 0) symmetry conditions are defined such that 

dCA/dr = 0. At the matrix surface (r = Rp) perfect sink conditions are specified. (The impact of 

sink conditions has been explored in prior experimental work {Klose 2011}.)  A boundary also 

exists at a depth of Rocc in from the matrix surface (r = Rp − Rocc) where continuity conditions are 

defined. In the subdomain from Rp to Rp − Rocc (terminating one occlusion radius in from the 

particle surface), agent is subject to the initial release, such that Deff is simply a constant (D), 

reflecting the movement of agent through the hydrated occlusions abutting the matrix surface. In 

the subdomain from 0 to Rp − Rocc, agent is subject to pore-dependent release, such that Deff = D  

where D is the diffusivity of the agent through the porous matrix and is the matrix porosity. 

For a system of like matrices, such as microspheres or sections in a thin film, that degrade 

randomly and heterogeneously, the accessible matrix porosity is simply a function of time as a 

discrete pore has, on average, an equal probability of forming at any position in the polymer 
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matrix. Hence, the time until pore formation can be calculated from the degradation of the 

polymer matrix, as any differential volume containing a pore would have a lower average 

molecular weight than its initial value. Assuming that the polymer degradation rate is normally 

distributed,
112

 the induction time for pore formation will also follow a normal distribution. As 

this pore formation is cumulative, the time-dependent matrix porosity ( (t)) can be described 

with a cumulative normal distribution function (Equation 4). 

   (4) 

 

Here,  is the mean time for pore formation and 
2
 is the variance in time required to form pores. 

3.2.2.1 Pore induction time distribution  

Calculating the cumulative normal induction time distribution ( (t)) requires values for  and 
2
. 

For polymers that obey a first order degradation rate expression, the mean time for pore 

formation ( ) can be determined as follows: 

  

 

(5) 

where kCw is the average pseudo-first order degradation rate constant for the given polymer type, 

Mwo is the initial molecular weight of the polymer, and we define Mwr as the average polymer 

molecular weight in a differential volume of matrix that permits the diffusion of the encapsulated 

agent. For blended polymer matrices, the value for  was calculated by averaging the results 

obtained from equation 5 for each component.  
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It is reasonable to believe that the matrix molecular weight at release (Mwr), which 

dictates how much degradation is required before release can occur, would vary depending on 

the size of the encapsulated agent. Macromolecules or larger agents can only diffuse through a 

section of matrix if it is almost entirely free of insoluble polymer chains. Hence the Mwr for such 

agents is considered the polymer solubility molecular weight (668 Da for 50:50 PLGA as 

provided by Batycky et al.)
4
. As agent size decreases (as indicated by MwA), however, egress can 

occur through more intact sections of polymer matrix (higher Mwr), as less free space is needed to 

allow their passage. 

The distribution of polymer degradation rates (kCw(n)) attributed to matrix crystallinity is 

needed to calculate the variance (
2
) in the induction time distribution for pore formation 

( (t))
93

. To determine kCw(n), the first order degradation rate equation Mw = Mwoe
−kCw∙t

 was 

linearly fitted at three different time periods to published degradation data for the desired 

hydrolysable polymer. Fitting the initial slope of the degradation profile provides the degradation 

rate constant of amorphous polymer as degradation occurs faster in amorphous regions of the 

matrix
93

. Fitting data from the final weeks of degradation produces a rate constant for the 

crystalline material, as amorphous regions are largely eroded by this point. Finally, a fit of the 

entire degradation profile yielded a rate constant indicative of the overall morphology. 

With values for kCw(n) defined, a distribution of induction times ( (n)) was calculated 

using equation 5. For blended polymer matrices this (n) includes values calculated at all 

component kCw(n) and Mwo. The standard deviation was taken for (n), then divided by a 

crystallinity-based factor and squared, yielding an adjusted variance (
2
), which conforms with 

lamellar size data. 
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This crystallinity-based factor adjusts the probability of finding pores formed from the 

fastest degradation rate in kCw(n) to match the probability of finding a differential volume of 

matrix containing purely amorphous polymer. For all modeled cases, this differential volume is 

defined as a region large enough to allow the passage of a small virus or protein complex (20 nm 

diameter). As multiple lamellar stacks can fit into this differential volume, the probability that 

such a volume is purely amorphous can be calculated from of the number of stacks per 

differential volume and the average crystallinity of the matrix. From crystallinity data on 50 : 50 

PLGA matrices, 
93,112

 the probability of finding a purely amorphous differential volume is 

calculated as 0.05%. Thus, to ensure that the probability of finding a pore formed from the 

fastest degradation rate in kCw(n) also equals 0.05%, the standard deviation in the induction time 

distribution for pore formation was adjusted by a factor of 5. Similarly, factors of 4 and 2 were 

calculated from crystallinity data for 75:25 PLGA and polyanhydride matrices, 

respectively
112,115,116

.   Because each of these parameters is calculated from published x-ray 

diffraction crystallinity data, it provides a materials-based input (independent of encapsulated 

drug) for the model’s for solution  

3.2.3 Solution and Regression 

With values for and 
2
 selected (defining (t)), a finite element solution to equation 1 was 

calculated (Comsol®, v3.3) for the given matrix geometry, using default solver settings. (To 

decrease computation time, the matrix geometry was simplified to one dimension based on 

symmetry, for a sphere, or high aspect ratio, for a thin film.) The resulting concentration profiles 

were numerically integrated to calculate the cumulative fraction of agent released (equations 2 
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and 3). For validation, the numerical solutions of the model were fit to experimental data sets by 

varying Mwr and D. (It should be noted that data points charting the kinetics of the initial burst 

were omitted from these regressions, as the model only predicts the magnitude of this phase.) 

Each fit was optimized using the fminsearch function (Matlab®, R2007a), which minimized 

sum-squared error (SSE) or weighted sum-squared error (wSSE) when error bars were provided. 

3.2.4 Validation of math model 

As derived above, values for D and Mwr, while not easily quantifiable, are needed to solve the 

fundamental model equations 1–5. Hence, to further develop the model, regressions to multiple 

data sets were conducted to relate these parameters to more readily attainable system 

properties
5,6,30,43,68,70,72,73,79,80,108-111

.  For these regressions, values for the readily attainable model 

parameters, Mwo and Rp, were taken from the published data sets
5,6,30,43,68,70,72,73,79,80,108-111

.  

kCw(n) was calculated and averaged from several different sources
78,101,117-119

 as described above. 

Data points documenting the kinetics of the initial burst were not included for fitting, as the 

model, in its current form, only predicts the magnitude of this phase. (This current limitation is 

discussed further in Section 3.4.) Properties for the experimental systems described by these 

regressions are listed in Table 1.  Each fit to published data yielded optimized values for D and 

Mwr that were subsequently correlated to Mwo and Rp (Figure 8). 
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Table 1: List of experimental systems used for model validation 

Agent MwA/Da Polymer Mwo/kDa Rp/μm Ref. 

Metoclopramide 297 50:50 PLGA 98 75 
111

 

Ethacrynic acid 303 50:50 PLGA 110 35 (film) 
79

 

Betamethasone 392 50:50 PLGA 41.8 19.5 
110

 

Gentamicin 477 50:50 PLGA 13.5, 36.2 133, 276 
68

 

Leuprolide 1 209 50:50 PLGA 18, 30 20 
70

 

Melittin 2 860 50:50 PLGA 9.5 2.15, 3.5 
6
 

SPf66 4 700 50:50 PLGA 100 0.6 
109

 

Insulin 5 808 50:50 PLGA 6.6, 8 1.5 
5
 

Neurotrophic factor 12 000 50:50 PLGA 9.3 8.85 
30

 

BSA 69 000 PSA 37 10 
80
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Figure 8: Correlations for D and Mwr developed from regressions to experimental data in Table 1. 

A) Plot of polymer molecular weight at the onset of drug release (Mwr) vs. release agent molecular weight (MwA), 

(equation in insert). The data used to form this correlation comes from 50:50 PLGA systems. B) Plot of D versus Rp. 

The line indicates the power expression, D = 2.071 × 10
−19

 Rp
2.275

 which fits the estimations with an R
2
 = 0.95. 
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3.2.5 Regression-free predictions 

To test the model, regression-free predictions were made for a variety of biodegradable matrix 

systems, each with published controlled release data
6,68,80

. Values for the parameters needed to 

make these predictions were all taken from the literature
5,6,30,43,68,70,72,73,79,80,108-111

.  Values for 

kCw were kept consistent with values used in the validation optimizations, as these were 

assumed to depend wholly on polymer chain chemistry.  Values for Mwo, MwA, and Rp were 

taken directly from the published work under consideration.  The occlusion radius (Rocc) was 

found by averaging the sizes of 10 occlusions, randomly selected from scanning-electron or 

fluorescence microscopy images of the microspheres.  

The model's predictive capabilities were explored by specifying a priori conditions such 

as occlusion (Rocc) and matrix (Rp) sizes as well as the mean polymer molecular initial weight 

(Mwo) and its distribution. Specifically, occlusion size was varied from that of a matrix with a 

homogeneously loaded, small molecule (Rocc < 1 nm) to a larger occlusion containing drug (800 

nm), as could be found in double emulsion formulation, Rp was set between 8 and 150 μm and 

Mwo was varied from 7.4 to 100 kDa. In addition, blends of common polyesters were considered 

such as a 2:1 ratio of 7.4 kDa 50:50 PLGA and 60 kDa PLA or a 1:1 ratio of 10 kDa and 100 

kDa PLGA. To provide continuity all predictions were generated for a short peptide (900 Da) 

encapsulated in a spherical matrix.  
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3.3 MODELING RESULTS 

3.3.1 Validation 

Solving the fundamental model equations requires values for D and Mwr, which are difficult to 

directly measure. Fitting the model to release data for a wide range of agents generated values 

for molecular weight of release (Mwr) that display a strong correlation with agent molecular 

weight (MwA) as shown in Figure 8A.  Fitting a power expression (y = ax
b
) to the plot of the 

regressed diffusivity values versus particle size data (Rp), as suggested by Siepmann et al.,
1
 

resulted in a = 2.071 × 10
−19

 and b = 2.275 (R
2
 = 0.95) (Figure 8B). These correlations compile 

data from multiple agents, polymer molecular weights and matrix sizes (Table 1).  

3.3.2 Predictions 

3.3.2.1 Predictions of Release Data 

Regression-free model predictions for experimental data capture the magnitude of the initial 

burst, the duration of the lag phase, the onset of the secondary burst and the final release phase. 

Figure 9 displays one set of predictions for peptide release from various PLGA copolymer 

microspheres
6
. These predictions appear to extend to polymer matrices other than PLGA, such as 

polyanhydride microspheres (which, if sized less than 75 μm, are theorized to be entirely 

hydrated for the duration of release)
41

. The prediction for BSA release from 20:80 CPH:SA 

polyanhydride microspheres (Rp = 10 μm)
80

 illustrates this broader applicability ( Figure 10). In  

http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig3
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig3
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig4
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig4
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig5
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig5
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Figure 9: Regression-free prediction for peptide release from PLGA microspheres.  

The Mwr for melittin (MwA = 2.86kDa) was calculated at 4.68kDa from the correlation in Figure 8. A) For the 9.5kDa 

50:50 PLGA microsphere (Rp = 3.7μm, Rocc = 0.52μm) D was correlated at 4.06 × 10
−18

m
2
/s. B) The D for 9.3kDa 

75:25 microspheres (Rp = 4.5μm, Rocc = 0.54μm) was calculated at 6.34 × 10
−18

 m
2
/s. 
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 Figure 10: Regression-free prediction for BSA release from polyanhydride microparticles. 

 System is composed of 20:80 CPH:SA polyanhydride (Mwo = 18 kDa, Rp = 10 μm and Rocc = 1.54 μm). As the Mwr 

values presented in Figure 8A are specific to PLGA copolymers, the Mwr for this prediction (940 Da) was acquired 

by fitting the model to data from microparticles fabricated in an identical manner using polysebacic acid (data not 

shown). In accordance with the correlation in Figure 8B, D was set at 3.67 × 10
−17

 m
2
/s. 

 

addition, release predictions have also been made for matrices formulated from a blend of two 

different polymers
68

 (Figure 11). All of these predictions serve to confirm that the model can 

describe: 1) the magnitude (but not the kinetics) of the initial burst from known occlusion size; 2) 

the duration of the lag phase from known polymer initial molecular weight, degradation rate and 

release agent molecular weight; 3) the onset of the initial burst from the matrix crystallinity 

derived rate distribution; and 4) the rate of subsequent release from the agent diffusivity (D) 

correlated to the matrix size.  

http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig6
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig6
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Figure 11: Release predictions compared to in vitro data from blended PLGA polymer microspheres. 

Gentamicin was release from microspheres (Rp = 374.6 μm and Rocc = 24.7 μm) composed of a 1:1 blend of 13.5 and 

36.2 kDa 50:50 PLGA (asterisks). As the Rocc could not be determined from the published SEM images, the value of 

24.7 μm was acquired from different sized gentamicin-loaded microspheres fabricated under like conditions. The 

Mwr and D were correlated at 13.3 kDa and 1.48 × 10
−13

 m
2
/s, respectively. Bounds of the predictions reflect inherent 

error, propagated from variances in the model’s input parameters (dashed lines).    
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3.3.3 Theoretical Predictions 

By varying the readily attainable model parameters within physically relevant bounds for 

controlled release formulations, it was possible to predict behaviors ranging from a four phase 

release profile to zero order release (Figure 12). Changing the ratio of occlusion size (Rocc) to 

particle size (Rp) (representing the fraction of matrix volume defined as near the surface ) 

affected the magnitude of the initial burst ( Figure 7). The ratio of the polymer molecular weight 

at release (associated with the molecular weight of the release agent) to its initial molecular 

weight (Mwr/Mwo) and the mean reaction rate (associated with polymer type) were collectively 

found to be responsible for the duration of the lag phase. Lastly, modifying the distribution of 

degradation rates (kCw(n)) or incorporating an Mwo distribution (used to calculate the induction 

time distribution for pore growth) influenced the rate of onset for the secondary without affecting 

the initial burst. Tuning these parameters in combination can minimize the magnitude of the 

initial burst and the duration of the lag phase, while simultaneously slowing the rate of onset of 

the second burst, leading to a more linear release profile.  

http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig7
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig7
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig2
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Figure 12: Theoretical release profiles for obtained by varying model parameters: Rp, Rocc, Mwo, kCw(n).  

The profiles progress from a typical four phase release pattern (solid) to zero order release (dotted). For the solid 

line a 13kDa 50:50 PLGA matrix was considered with Rp = 150μm, and Rocc = 23.5μm. The dashed line was 

generated based on a 1:1 blend of 10kDa and 100kDa 50:50 PLGA (Rp = 20μm, Rocc = 1μm). For the dotted line a 

2:1 ratio of 7.4kDa 50:50 PLGA and 60kDa PLA was considered in a single emulsion matrix with Rp = 8μm. 
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3.4 DISCUSSION 

In the effort to hasten the development of biodegradable matrix-based, controlled release 

therapeutics, many models have been developed to describe the release of specific classes of 

agents, such as small molecules or proteins
4,95,97-101

. In general, these models require parameters 

that can only be obtained by fitting controlled release data,
99,100

 or otherwise by carefully 

observing controlled release experiments
4
. In order to eliminate the need for exploratory in vitro 

experiments, which investigate the drug dosing schedules supplied by controlled release 

formulations, a model must be able to predict, without regression, a broad range of release 

behaviors for a wide array of agents, entirely from tunable matrix properties. To meet this goal, 

the model developed in the chapter includes new methods of calculating the magnitude of the 

initial burst release and the duration of the subsequent lag phase, which allow these features to be 

predicted with commonly known parameters regardless of the encapsulated agent type, be it 

small molecule, peptide or protein. This model was also applied to numerous sets of published 

data to generate values for two correlations. These correlations complete a set of readily 

attainable parameters for making regression-free predictions of drug release from uniformly 

hydrated biodegradable matrices. Finally, by varying the tunable parameters over rational 

bounds, the range of potential release behaviors attainable with such systems were explored. 

The comparison of model predictions and experimental data strongly suggests that the 

magnitude of the initial burst is directly proportional to the amount of agent localized to 

occlusions residing just inside the matrix surface. This region is defined over the entire surface of 
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the matrix to a depth of Rp − Rocc, such that any occlusion localized to this region would abut the 

matrix–reservoir interface. Prior models attributing the initial burst to the amount of agent 

adsorbed to the matrix surface required the fitting of empirical parameters for the 

absorption/desorption of each new drug type
4,95

. Further, results from several studies examining 

release from particles of uniform size and surface morphology, but varying occlusion size (based 

on the formulation method), suggest that it is unlikely that desorption from the surface (with 

surface area being proportional to the magnitude of the initial burst) is responsible for the initial 

burst phase of release
30,70

.  

Regression-free predictions of published experimental data also suggest that the model 

consistently calculates the duration of the lag phase for release agents ranging from small 

molecules to proteins. Prior models have only accurately predicted the duration of the lag phase 

for either small molecules
100,101,120

 or proteins
4
. The current model establishes a polymer 

molecular weight associated with release (Mwr) and inversely correlates it to agent molecular 

weight (MwA) (Figure 8A). The concept that small molecules can diffuse more readily through a 

higher molecular weight polymer matrix than larger molecules is supported by both diffusion 

flow cell studies
114

 and careful analysis of release data
5,6,30,43,68,70,72,73,79,80,108-111

.  In addition, 

scanning electron microscopy
1,119

 and other morphological
121

 studies have shown that with 

degradation, PLGA matrices become increasingly porous solids. The current model attributes 

this heterogeneous degradation to matrix crystallinity, a mechanism also supported by previous 

models
120,122

.  

The model predicts the onset of the secondary burst (Figure 6) using expressions that 

have both similarities and fundamental differences with those presented in the literature
4,95-101

. 

Like prior models, the current work employs Fick's second law with an Deff dependent on matrix 

http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig1
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig1
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porosity. Saltzman and Langer first derived this expression to predict protein release from non-

degradable porous polymers
98

. Their lattice-based percolation calculations yield an accessible 

porosity that fits a cumulative normal distribution, a feature that our model is able to implement 

without estimated parameters. Recent controlled release models based on stochastic methods 

have also successfully employed a version of this equation to describe the egress of small 

molecules from regressed degradation rate constants
99,100

. The current work is, however, 

fundamentally different from these prior models
99,100

 as it describes pore formation in 

biodegradable matrices entirely from known parameters and applies to a broad range of agents, 

including small molecules, peptides, and proteins. 

As mentioned in section 3.3, the diffusivity values calculated for Figure 8B are consistent 

with those found in the literature
1,4,100,114

. These diffusivities display a power dependence on the 

size of the encapsulating matrix, where D = aRp
b
. This expression was originally developed by 

Siepmann et al.
1
 to compensate for the size-dependent increase in degradation rate that occurs in 

autocatalytic polymers such as PLGA
123

. Notably, this effect would be more realistically 

represented with a degradation rate expression that correctly accounts for the impact of size 

dependent autocatalysis on pore formation.  However, the present relation has proven very useful 

for the broad range of matrix sizes, polymer molecular weights, and agent types examined 

herein, even though it was originally developed for lidocane release from 45 kDa PLGA 

microspheres,
1
 (Figure 8B, Table 1). The diffusivity coefficients ranging from 10

−14
 to 10

−16
 m

2
/s 

calculated in prior models also support this finding
98,100

. Our regression-free predictions (Figure 

10–12) help to confirm that this power expression will relate D to matrix size for many different 

polymers with an acid-based, autocatalytic, first-order rate expressions, including both 

polyesters
124

 and polyanhydrides
118

.  
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Even though the mathematical framework presented herein provides broader applicability 

than prior models,
4,95,97-101

 it still requires several assumptions. Specifically, the model considers 

a water soluble agent that dissolves rapidly, relative to the duration of release, and that is loaded 

discretely in a bulk eroding, biodegradable polymer matrix. Efforts are currently under way to 

relax these assumptions in order to describe more complicated systems. For instance, we 

speculate that systems exhibiting slower kinetics during the initial burst may be subject to 

dissolution effects. Other efforts will focus on replacing the correlation of D to Rp with a 

physically relevant degradation rate expression that inherently accounts for size dependent 

autocatalysis to provide greater accuracy when examining matrices with extreme sizes (<100 nm 

or >1 mm). Furthermore, simple diffusion reaction equations can be added to the current model 

framework, extending its predictive capabilities to slowly hydrating or surface eroding systems, 

such as large polyanhydride implants. However, even prior to these additions, the model still 

predicts published data on agent egress from bulk eroding biodegradable matrices (Figure 10–

12), which can provide a range of release profiles (Figure 12). 

Finally, having confirmed the model's predictive capabilities, the range of release 

behaviors that can potentially be attained from bulk eroding matrices were explored. Predictions 

for such matrices cover a continuum of behaviors ranging from abrupt burst–lag–burst profiles to 

sustained linear release (Figure 12). These profiles satisfy the dosing schedules for numerous 

therapeutic applications, such as the constant delivery of a chemotherapy agent or the replication 

of multiple vaccine doses with a single injection
11,125

.  Along with (1) the model's applicability to 

a wide array of agents and (2) its use of physically relevant parameters, its ability to capture a 

broad range of release behaviors (3) completes the set of three specifications required for any 

framework that supports a rational design methodology. 

http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig7
http://www.rsc.org/delivery/_ArticleLinking/ArticleLinking.cfm?JournalCode=JM&Year=2008&ManuscriptID=b718277e&Iss=Advance_Article#fig7
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3.5 CONCLUSIONS 

A simple, deterministic model was developed for the prediction of release for hydrophilic, agents 

encapsulated in bulk eroding biodegradable polymer matrices. Model development required 

application of diffusion-reaction mathematics and the development of two new correlations in 

order to extend predictive capabilities to the broad range of agents investigated.  Further, 

regression-free predictions from this model provide strong support for the alternative 

explanations developed to account for the magnitude of the initial burst and the duration of the 

lag phase. The current diffusion-reaction-correlation framework can also be expanded to cover 

poorly-soluble drugs, polymer types, and device geometries, including centimeter scale matrix 

implants, which are all affected by matrix hydration. 
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4.0  MATHEMATICS FOR HYDRATION LIMITED SYSTEMS 

4.1 INTRODUCTION 

The bulk eroding polymer systems discussed in Chapter 3.0  do not typically deliver drug at a 

constant rate, the release behavior required for the safe delivery of most prescription 

medications.  For this reason, scientists developed surface eroding drug delivery matrices whose 

degradation and erosion behavior naturally produce sustained release.  Surface eroding systems, 

as their name suggests, erode preferentially from the surface inward.  This behavior is a function 

of polymer hydrolysis rate, which is much higher than in bulk eroding systems, and their 

millimeter/centimeter scale sizing.  The rapid consumption of water by hydrolysis and the large 

volume of water required to fill the matrix (mm
3
 vs µm

3
) work to keep water out of the bulk of 

the polymer matrix.  This limits the processes of drug dissolution and pore formation, which 

mediate diffusive release, to the surface of the polymer matrix.    

The gradual formation of pores in or erosion of the matrix surface is thought to be the 

rate limiting step in release from systems, such as polyanhydride implants.  Theoretical 

descriptions of this process are found in most models of surface eroding systems.
15-17

 Of note is 

work by Gopferich et al on the development of a stochastic model of surface erosion that has 

been featured in several articles examining controlled release of different small molecules.
15, 18-21

  

Similar models of surface erosion have also been developed using non-stochastic approaches, 
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although these models have only been tested on select sets of mass loss or small molecule release 

data.
16, 17

     

Recent data by Burkersroda et al reveals that systems which begin drug release under 

surface erosion most likely transition to a bulk eroding mechanism as mass is lost from the 

surface and the matrix size shrinks (i.e. the characteristic length scale of diffusion decreases) 
22

.  

The matrix size at this transition from surface to bulk erosion has been dubbed the “critical 

length”.  Conversely, this critical length can also be viewed as the distance water can penetrate 

into a matrix before it is entirely consumed by hydrolysis.  Calculations using an average 

degradation rate and initial molecular weight placed this length at 75µm for polyanhydrides
22

, 

which suggests that many implants made from these polymers will undergo a transition from 

surface to bulk erosion while release is still occurring.  

This chapter describes the first model suitable for predicting a broad array of release 

behaviors from surface eroding matrices that transition from surface erosion to bulk erosion 

during the course of their lifespans.  This work was summarized in a manuscript by Rothstein et 

al. that was published by the journal Biomaterials in 2009
126

.  This model builds off of the model 

in Chapter 3.0 that focused on predicting release for a wide array of agents from bulk eroding 

systems
12

.  Specifically, the current model combines diffusion/reaction equations, which account 

for the system’s hydration kinetics, along with sequential descriptions of dissolution and pore 

formation to compute drug release.  Further, all parameters required to solve these equations can 

be obtained prior to controlled release experiments, allowing predictions to be made without 

regression.  In support of prior work reporting empirically obtained critical lengths 
22

, the 

diffusion/reaction equations employed by the current model are used to compute this 

characteristic parameter from rate expressions
23

.  To test the model’s accuracy, regression-free 
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predictions were compared with published controlled release data from several different 

polyanhydride and poly(ortho-ester) implants.   

4.2 METHODS 

4.2.1 Release Paradigm 

Consider a hydrolysable polymer matrix loaded with a finite amount of release agent or drug.  

This agent is randomly dispersed throughout the matrix in a powdered or crystalline form.  

Further the agent is loaded discretely (below its percolation threshold), occupying either small 

granules or larger occlusions, as dictated by the matrix fabrication method.  These occlusions or 

granules are distributed randomly throughout the polymer matrix, such that the probability of 

finding drug at any point in the polymer matrix is constant at all positions within the matrix.
12

  

At time zero, water or buffer begins to hydrate the matrix.  Specifically, water diffuses 

into the matrix and is simultaneously consumed through the hydrolysis of the polymer matrix 
22

.  

Hence, a larger matrix with a faster hydrolysis rate, such as a polyanhydride implant, will have a 

sharper concentration gradient of water than a smaller matrix (microsphere) or one with a less 

labile polymer, such as a poly(lactic-co-glycolic) acid.   

Following the hydration of a region of matrix, release of drug can be limited by its 

solubility or dissolution kinetics. The dissolution rate expression for this process depends upon 

the agent’s solubility and concentration
15

 as well as the concentration of solvent.  If an agent is 

highly soluble in water, dissolution may happen on a time scale that is much shorter than the 
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duration of release.  In systems where hydrophobic molecules have been encapsulated, however, 

dissolution can occur over a considerable amount of time, dramatically affecting the release 

profile.
15, 24

  

After an agent has dissolved, its diffusive egress may be further restricted by the 

encapsulating matrix.   In this case, the matrix needs to degrade to the point where a network of 

pores is formed, permitting egress of encapsulated agent
12, 25

.  This degradation is assumed to 

happen randomly and heterogeneously throughout hydrated regions of the matrix.  Further, the 

degradation of the matrix occurs in tandem with the dissolution of the agent, and both are 

dependent upon the hydration kinetics of the system.  The interplay between these factors can be 

translated into a framework of coupled equations for describing release.  

4.2.2 Model Development 

The time and space-dependent concentration profile of water within a hydrolysable polymer 

matrix of initial molecular weight (Mwo) can be calculated from competing diffusion-reaction 

equations.  As water diffuses into a matrix, a process described by Fick’s second law, it is also 

consumed in hydrolysis of the polymer matrix, (written below as a second order reaction, which 

applies to polyesters and polyanhydrides
8, 26

).  Hence, equation 1 below describes the presence of 

water within the polymer matrix. 

MwkCCD=
t

C
wWW

W 



  (1) 
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Where CW is the time and space dependent concentration of water, DW is the diffusivity of water 

in the polymer matrix (found to be on the order of 10
-12

 m
2
/s for a broad array of systems 

22
), k is 

the degradation rate constant, and Mw is the polymer molecular weight.   

As part of the hydrolysis reaction, polymer bonds are also broken leading to a decrease in 

the molecular weight of the polymer matrix. The kinetics of this process can be described by the 

standard second order rate expression commonly used for both polyesters and polyanhydrides.
8, 

26
  (Equation 2) 

MwkC=
t

Mw
w




 (2) 

It is assumed that components of the polymer matrix (e.g. initially high molecular weight 

polymer degradation products) do not diffuse considerably before the onset of erosion (Mw ≈ 4 

kDa), by which time the release of most types of agents will have commenced. In line with 

previous models, a “degradation front” can be defined at a point in the polymer matrix where the 

gradient of the polymer molecular weight (dMw/dr vs. r) is at a minimum
19, 27

.  This minimum is 

defined as the inflection point of the continuous function, Mw(r), such that the initial average 

molecular weight at this front is ½ Mwo, provided that the core of polymer matrix is still at its 

initial molecular weight.   

With the hydration kinetics defined, the dissolution of the drug can be calculated, which 

is normally done with a second order rate expression.
28

  Unlike the standard systems used to 

derive this second order expression, the solvent concentration of the present system varies with 

position and time, and hence must be considered as well.  The standard expression is also written 

in terms of the solute surface area and mass transfer coefficient which have been translated into 

equivalent, readily measurable parameters.(Equation 3) 
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WnAnSndis
S CCCk=

t

C





 (3) 

where kdis is the intrinsic dissolution rate constant, CSn, is the normalized concentration of solid 

drug in the polymer matrix, CAn is the difference between the aqueous agent concentration and its 

maximum solubility (CAmx), normalized by CAmx, and CWn is the normalized concentration of 

water.  Boolean expressions were used to ensure that CSn, CAn, and C\Wn were bounded by 0 to 1, 

ensuring a physically relevant model solution.  Next, the position-(r) and time- (t) dependent 

concentration of dissolved agent in a polymer matrix can be calculated from Fick’s second law 

and the dissolution rate expression. (Equation 4)   

WnAnSndisAeff
A CCCk+CD=

t

C





     (4) 

where Deff is an effective diffusivity term.  Integrating the total normalized concentration of 

agent in the matrix over all space yields the cumulative fraction of agent remaining in the matrix 

at each point in time (Equation 5) 

dV
C

C+C
V=P(t)

So

AS1


       (5) 

dr
RL

r

C

C+C
=P(t)

PSo

AS







2

2
 (For a rod or disc) 

And the cumulative fraction of agent release (R(t)) is:  (Equation 6)   

 P(t)-1 = R(t)        (6) 

As in Chapter 3.0  the Deff term in Equation 4 is dependent on the matrix porosity (ε) and the 

diffusivity of the agent through the porous matrix (DA).  However, in the hydration-limited 

systems covered by this model, porosity is time- and space-dependent and is therefore based 
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directly on the molecular weight of the polymer instead of degradation time as done in Chapter 

3.0 . (Equation 7) 

























 
 1

2σ2

1
1

2
+

MwMw
erf=ε r      (7) 

This means that the molecular weight of the polymer matrix during release (Mwr) is used directly 

in the porosity expression.  Changes are also made in the calculation of agent diffusivity (DA), 

which correlated directly to matrix size for bulk eroding systems.  For a surface eroding matrix, 

autocatalytic degradation only occurs in the region of matrix that is hydrated, thus the system’s 

critical length is used to determine the diffusivity from the correlation in Figure 8.   

The boundary conditions for the polymer phase, as well as the aqueous and solid release 

agent phases, match those defined in a prior model for bulk eroding matrices
12

.  Briefly, 

symmetry conditions (dCn/dr = 0) are defined at the matrix center and perfect sink conditions 

(Cn = 0) are set at the matrix surface (at radius Rp and length L in a cylinder or disk).  For water 

concentration, the same internal symmetry conditions still apply, but the concentration of water 

at the matrix surface is set to match that of an infinite reservoir, with a concentration of Cwo 

calculated as the density of water over its molecular weight.  Further, when the encapsulated 

agent is gathered in large occlusions or pockets (relative to the size of the entire matrix), such as 

would be found in a double emulsion fabricated microsphere, the matrix should be represented 

with two sub-domains, as demonstrated previously,
12

 to account for the resulting initial burst.   

4.2.2.1 Limiting Cases 

Depending on the nature of the encapsulated agent, it may be possible to simplify the 

mathematical description of release.  If an agent possesses a high aqueous solubility and 
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dissolves rapidly, such that the rate of dissolution is at least 2 orders of magnitude faster than the 

rate of diffusion, the timescale of dissolution is negligible.  When modeling such cases,
30-32

 the 

drug was assumed to dissolve instantaneously in water.  Hence, Equation 3 can be neglected 

entirely and Equation 4 can be simplified to the following form. (Equation 8) 

Aeff
A CD=

t

C





        (8) 

where CAo becomes the initial concentration of agent.  In total, these simplifications reduced the 

model to three sets of diffusion-reaction equations instead of four and eliminated three input 

parameters (CSo, kdis, and CAmx).   

Alternatively if an agent has a Mwr > Mwo, by definition, it can diffuse freely through the 

newly hydrated polymer matrix and does not require degradation of the matrix for egress.  

Specifically, the agent is small enough to pass freely through the matrix and, as such, pores 

formed during degradation are no longer needed to provide a pathway for diffusive egress; hence 

Deff = DA. In this case the expression for matrix porosity (Equation 7) can be neglected.   

 

4.2.3 Model Implementation 

By adopting the proven approach to calculating release as detailed in section 3.2.5, existing 

correlations
12

 can be used along with the model to generate regression-free predictions. To 

calculate such predictions, the model was coded in Matlab® (Mathworks, r2007a) and computed 

using the finite element method on Comsol® (v3.1).   Meshing was successively refined, until 
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node-density independent results were observed.  Otherwise, default solver settings were 

maintained.   

4.2.3.1 Critical length 

To investigate the effects of polymer molecular weight (Mwo) and degradation rate (k) on the 

transition from surface to bulk erosion, only equations 1 and 2 were considered.  This transition 

occurs at a set matrix size, dubbed the critical length.
22

  Burkersroda et al originally defined the 

critical length as the distance water can travel through a matrix before the rate of diffusion equals 

the rate of degradation, such that in a surface eroding system, the rate of degradation surpasses 

the rate of diffusion.
22

  However, when mathematically accounting for these two rates with 

Fick’s second law and a second order rate expression (applicable to autocatalytic hydrolysable 

polymers) this original definition becomes physically untenable because the Cw term in the 

hydrolysis rate expression prevents the reaction rate from ever surpassing the diffusion rate.  

Thus, in order to determine the erosion mechanism of the matrices examined herein, we defined 

critical length as the matrix size where the polymer residing in the degradation front hydrolyzes 

at its most rapid rate, as noted by a minimum in ∂Mwf /∂t vs. t.  In other words, during surface 

erosion, this front moves progressively inward, slowing its traverse only as the matrix begins to 

uniformly hydrate.   With the onset of bulk erosion, the hydrolysis reaction taking place 

throughout the matrix can no longer consume the water before it penetrates to the matrix core.  

This leads to a matrix where the water concentration is at a maximum and the polymer molecular 

weight has not significantly decreased from its initial value. Together, these conditions maximize 

the degradation rate (-kCwMw), resulting in the fastest possible drop in the average polymer 

molecular weight.  Hence, it can be said that the matrix size, where degradation proceeds (on 
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average) at its fastest average rate, denotes the end of surface erosion and the onset of bulk 

erosion, and therefore can be defined as the critical length.   

Using this definition, the critical length was calculated for a variety of polymers, 

including PLA, PLGA, PFAD:SA, and PSA, at initial molecular weights ranging from 5kDa to 

130kDa.  The results of these calculations were used to determine if published release data 
1, 30, 32

 

was generated by surface eroding, bulk eroding, or transitioning phenomena.  Specific 

calculations were also performed to check the erosion mechanism of matrices used in other 

modeling literature.
20, 31

   

 

4.2.4 Release Predictions 

The simplified forms of the model described in section 4.2.2.1 were validated against release 

data from matrices that could be represented in 2-dimensions using axial symmetry.  Values for 

common model parameters Rp, L (for a cylinder), Mwo, MwA, CWo, CSo, CAmx, k, Dw, and kdis were 

specified directly from, or calculated using parameters specified in, the materials and methods 

sections of published literature 
30-33

.  The correlations developed in Chapter 3.0 were used to 

calculate values for DA and Mwr.  

It is important to note that the poly(ortho-ester) matrices investigated herein are unique in 

the field of controlled release because they contain a small molecule anhydride excipient.  This is 

proposed to alter the degradation mechanism of the polymer by increasing the rate of 

autocatalysis in the system.
34

   Fortunately, data on the hydrolysis of this anhydride excipient 

was published for these matrices and was used to enhance model caculations.
31

 Specifically, this 



63 

 

data was used to calculate the amount of water diverted from polymer degradation into anhydride 

hydrolysis as a function of time. The newly calculated rate expression was amended to the 

hydrolysis reactions to adjust for the additional consumption of water by the excipient.   

4.3 RESULTS 

4.3.1 Matrix degradation kinetics 

Solutions to equations 1 and 2 generate hydration and degradation profiles for a specified 

polymer matrix.   Figure 13 shows degradation profiles (Mw/Mwo as a function of r and t) for 

matrices composed of a single polymer where the dominate erosion mechanism has clearly been 

predetermined by carefully selecting the matrix size.  In a system undergoing surface erosion, the 

degradation-erosion front will move inward toward the center of the matrix as both degradation 

and erosion are confined to the periphery ( Figure 13A).  In bulk eroding systems, in which 

degradation occurs randomly throughout the matrix, the matrix size remains constant as its 

average molecular weight decreases ( Figure 13C).  This change in average molecular weight 

begins at the most rapid rate possible, with water concentration and polymer initial molecular 

weight both being at maximal values, and decreases as the number of hydrolysable bonds is 

depleted.  Hence, average degradation rate in the polymer matrix should be at a maximum with 

the onset of bulk erosion (or in other words, during a transition from surface to bulk erosion) 

(Figure 14A).  In turn, the critical length is calculated as the matrix size (marked at the center of 

the degradation front) when this transition occurs.  Increasing the polymer degradation rate, 
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indicating a more labile hydrolysable bond type, correspondingly decreases the critical length, 

indicating more dominate surface eroding behavior.  Likewise, increasing the polymer initial 

molecular weight also decreases the critical length (Figure 14B).   
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 Figure 13:  Degradation profiles (Mw relative to Mwo as a function of distance and time) for various spherical 

matrices of 10kDa PSA. 

 Matrix size is varied (X axis) to explore the various erosion schemes: A) surface erosion, B) a transition from 

surface to bulk erosion and C) bulk erosion.  The lifetime of each matrix changes with its size, such that each line in 

A) represents 1 month, B) represents 1 day and C) represents 2 hours.    In each figure, the line furthest to the right 

and top indicates the earliest time point.  

B)

C)

A) 
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Figure 14:  Calculation of critical length  

Calculations used a 2
nd

 order rate expression as a function of both the initial molecular weight of polymer and 

hydrolysis rate constant.  A) Critical length (point 2) was calculated as the matrix size (dashed line) in which the 

average molecular weight of polymer at the degradation front (solid line) decreases most rapidly (point 1), indicating 

the onset of bulk erosion.  B) Values for critical length as a function of initial molecular weight for a variety of 

polymer matrices: PLA (diamond), 50:50 PLGA (square), 50:50 PFAD:SA (triangle) and PSA (circle).  Linear 

interpolations have been added between data points of the same set to aid in interpretation 

A)

B)
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Having determined the matrix specifications required to maintain surface erosion, the 

model’s ability to predict controlled release from matrices with a variety of different erosion 

mechanisms was examined.  Further, systems with different hypothesized, release rate-limiting 

steps were also examined.  The tested systems range from bupivacaine release from FAD:SA 

polyanhydride disks (dissolution limited, bulk eroding), to gentamicin release from FAD:SA 

polyanhydride rods (degradation limited, surface eroding), to amaranth release from POE disks 

(degradation limited, surface and bulk eroding).
30-32

  

4.3.2 Dissolution controlled release 

Work by Park et al.
30

 examines the release of a small molecule, bupivacaine, from a 50:50 

FAD:SA polyanhydride disk with a 4 mm radius and 1 mm thickness sized at slightly below the 

calculated critical length for this system  (~1.7mm).  This suggests that the system would exhibit 

bulk eroding behavior and, as such, model predictions made with and without taking into account 

the hydration kinetics should both match the bupivacaine release data with comparable accuracy 

( Figure 15).  In line with this result, both predictions follow the trend set by the in vitro data with 

the prediction from the surface erosion model producing a slightly more accurate result than the 

simplified version of the model that neglected hydration kinetics.  As error in the measurement 

of in vitro release is cumulative greater deviation between model predictions and experimental 

data is expected at later time points.  It was also hypothesized that dissolution kinetics were an 

important factor in determining the release rate of bupivacaine and failing to consider them 

increased the SSE by a factor of 25 (SSE = 4.9004, data not shown).  
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 Figure 15: Predictions of dissolution-controlled, release of drug.   

The experimental data (asterisks) was generated from polyanhydride disks releasing the sparingly soluble 

agent, bupivacaine. 
30 

Model predictions were generated without regression while considering surface eros ion 

(solid, SSE = 0.0204), and assuming bulk erosion (dashed, SSE = 0.0691). To make these regression -free 

predictions, system-specific parameters were set as follows:  Rp = 4mm, L = 1mm, Mwo = 50kDa, CSo = 

288.42mol/m
3
 and CAmx = 2.184mol/m

3 
kdis = 0.046mol/m

3
s.  D was calculated as 4.61x10

-12
m

2
/s from a 

correlation published previously.
12

 Model solutions were computed at times corresponding to each 

experimental data point. 
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4.3.3 Degradation controlled release 

Stephens et al 
32

 documented gentamicin release from a 35.8kDa Mwo 50:50 FAD:SA 

polyanhydride bead with a 4mm diameter and a 12mm length, a matrix on the same order of 

magnitude as, but still slightly larger than the calculated critical length of 1.9mm.  Based on the 

calculations of critical length presented in Figure 14B and the those made by Burkersroda et 

al.,
22

 this system should exhibit surface eroding behavior, and any attempt to accurately model it 

should account for hydration kinetics.
22

  If a prediction for release is made without accounting 

for hydration kinetics, as detailed in
12

, a relatively poor fit to the data is observed (SSE = 

0.4350).  However, when accounting for hydration kinetics, using equations 1 and 2, the model’s 

prediction improved dramatically (as expected), resulting in an SSE of 0.0657 (Figure 16).   
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Figure 16: Predictions for degradation-controlled release of drug.   

The experimental data (asterisks) charts gentamicin release from FAD:SA matrix rods.
32

 Model predictions were 

generated without regression while considering surface erosion (solid, SSE = 0.0657) and assuming bulk erosion 

(dashed, SSE = 0.4350). To generate these regression-free predictions, the following values were used: Rp = 2mm, 

L = 12mm, Mwo = 35.8kDa, Mwr = 13.3kDa, DA = 5.94x10-12m
2
/s.  Model solutions were computed at times 

corresponding to each experimental data point and linearly interpolated. 
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Work by Joshi et al examined amaranth dye release from POE disks (10mm diameter, 

1.4mm thick), which had their erosion mechanism controlled by the addition of phthalic 

anhydride.  When a low amount of anhydride (0.25w/w%) was present in the disk, a bulk 

eroding mechanism was postulated to dominate, a point confirmed by our own critical length 

calculations (data not shown).  In contrast, with the addition of just 1% anhydride excipient, the 

critical length dropped to 684µm, a value slightly below the shortest matrix dimension, 

suggesting that surface erosion should dominate (at least at early times).
31

 Predictions of drug 

release from both of these systems take into account both the increase degradation rate from and 

the consumption of water by the anhydride excipient.  Because these predictions were only 

computed at experimentally measured time points and linearly interpolated, abrupt changes in 

the rate of release seem to occur.  Predictions made without considering the presence of 

anhydride increased error is observed in the predictions (data not shown).  Accounting for these 

effects significantly improved prediction for both the 0.25% anhydride matrix, reducing error by 

a factor of 4, and the 1% anhydride matrix, reducing error by a factor of 6, when compared to 

previously published results.
31
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Figure 17:   Predictions of release from (A) bulk eroding and (B) surface eroding POE matrices.   

Predictions have been made for the experimental data for dye release (astricks), while accounting for the hydrolysis 

of the anhydride excipient, with the complete model (solid line, (A) SSE = 0.0237 and (B) SSE = 1.1539) and the 

simplified version which assumes bulk erosion (dashed line, (A) SSE = 1.0077 and (B) SSE = 0.0061).  For 

calculations in both A and B, the following parameters were used:  Mwo =  28.2kDa, Mwr = 10.2kDa, Rp = 5mm, 

and L = 1.4mm.  Based on their differing anhydride contents, values of DA were unique to A and B, with DA = 1.44 

x 10
-12

 m
2
/s in A and DA = 9.75 x 10

-12
 m

2
/s in B. 
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4.4 DISCUSSION 

Biodegradable matrices for controlled release have been traditionally classified as either surface 

or bulk eroding and mathematical models of drug delivery from these systems have often 

reflected this classification in their assumptions.
7-10

  Recent data suggests that many surface 

eroding systems actually transition to a bulk eroding mechanism while drug release is 

occurring.
22

  With this in mind, a new model was developed to predict drug release from 

matrices undergoing multiple different erosion schemes, the first of its kind to describe the 

release of a wide array of agents without regression.  This model uses diffusion-reaction 

equations to describe the hydration kinetics, drug dissolution and degradation controlled release.  

Using the equations governing matrix hydration, a mechanistically accurate method for 

calculating a system’s critical length was developed, and then applied to a range of common 

systems.  Regression-free predictions (which use parameters that can be obtained prior to release 

experimentation) were made including and (for validation purposes) ignoring the effects of 

matrix hydration in both smaller and larger than their respective critical lengths.  Specifically, the 

model has been used here to predict bupivacaine release from polyanhydride disks
30

 and 

gentamicin release from polyanhydride cylinders
32

 as well as amaranth red release from 

poly(ortho-ester) disks
31

.   The model’s applicability is not, as shown previously, limited to small 

molecules and should apply with comparable accuracy to systems that encapsulate and release 

macromolecules.
12

   

Several of the fundamental concepts from the current model’s paradigm have been 

separately employed in prior models.
12-17

  However, the equations used to translate these 

concepts into mathematical predictions for drug release have, however, been altered in some way 
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from their previous forms.  For example, a dissolution rate expression has been used in prior 

published work.
15

  Unlike this previously published expression
15

, the form in equations 3 and 4 

include a term for the dimensionless concentration of water that accounts for potential solubility 

limitations associated with partially hydrated systems.  Another example comes from the 

porosity expression, which has been translated from a time-dependent form that assumes a 

uniform degradation rate 
12

 to a version with broader applicability, based on the local molecular 

weight of the polymer matrix.  Finally, the concept of using diffusion/reaction equations to create 

a model that uniformly captures different erosion schemes has also been investigated before.  

One prior model based on species-dependent, diffusion/reaction equations was successfully 

developed and applied to data for dye release from POE disks (Figure 17). This model made 

predictions using system-specific parameters that could not be directly measured.  In contrast the 

model derived in this Chapter uses a far simpler diffusion-reaction description of release that still 

provides comparable predictive power.  This is confirmed by regression-free predictions of the 

amaranth red release data made with a greater degree accuracy (i.e. lower error in the prediction 

of data) that with prior models.
31

   

An examination of hydration and degradation profiles based on Equations 1 and 2 show 

that the model derived in this Chapter can produce profiles that resemble surface erosion, bulk 

erosion and the transition between the two based on a careful selection of matrix size.  Further, 

these degradation profiles ( Figure 13A, B) provide a direct means for calculating a theoretical 

critical length (i.e. where a given polymer transitions from surface to bulk erosion) (Figure 14). 

In contrast to the original calculations of critical length, which used an Erlang distribution to 

represent the degradation rate,
22

 this new calculation relies on a second order rate expression that 

can directly account for radial gradients in polymer molecular weight within the matrix.  When 
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accounting for the different degradation rates used in these two expressions, both sets of 

calculated values for critical length agree within order of magnitude for all systems tested.     

Comparison of predictions from the model to experimental data from biodegradable 

matrices serves to validate elements of its release paradigm.  The bupivacaine-loaded disks 

modeled in  Figure 15 showcase the importance of the dissolution and hydration rate expressions 

in generating accurate (SSE = 0.0172)  predictions for the release of a sparingly soluble agent 

from a polyanhydride matrix.
30

 ( Figure 15)  Attempting to predict the release of bupivacaine 

without considering its slow dissolution produced inaccurate predictions.  Conversely, 

predictions made without considering the system’s hydration kinetics show only a slight decrease 

in model accuracy.  Prima facie, it may be surprising that a slight drop in accuracy is observed 

with this system which, being a bulk eroding system, is most often characterized by rapid, 

uniform hydration.
11

  However, prior work indicates that, while bulk eroding systems in the 

micron size-range hydrate in minutes, bulk eroding implants (as defined by diffusion rate > 

degradation rate) on the order of millimeters can take days to become uniformly hydrated.
13

  

When such an implant only delivers drug over several days or weeks, this longer hydration time 

can significantly delay release, even though the system can be technically considered “bulk 

eroding”.  

Regression-free predictions for the POE matrix (Figure 17A) provide a different view for 

the importance of accounting for various mechanisms of matrix dynamics and physical agent 

egress.  Like the bupivacaine-loaded matrix featured in  Figure 15, predictions for this system 

were also significantly better when hydration kinetics were accounted for by the model.  This 

provides additional support for the conclusion that hydration kinetics can significantly influence 

the rate of drug release from bulk eroding implants.  Unlike dissolution-limited release of 
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bupivacaine, though, the readily-soluble amaranth red being released from this system is thought 

to only be restricted by the POE matrix.  This system contained an anhydride excipient which 

had to be accounted for in the model’s description of matrix degradation. 
31

  Attempting to 

predict release from this system without accounting for the diversion of water into the hydrolysis 

of the anhydride led to increased error during day 1 to 3, when the anhydride excipient is 

postulated to be hydrolyzing.
31

 (data not shown)  Even with this increased error, predictions from 

the current model still offer an improvement in accuracy (lower SSE) over prior modeling 

work.[31]   

The implants examined in Figure 16 are slightly larger than the calculated critical length, 

and gentamicin is large enough to be readily restricted by the polymer matrix, making this a 

prime example of how release occurs in a system that transitions from surface to bulk erosion.
32

  

Support of the model paradigm for release from a transitioning system is found in the accurate 

regression-free prediction (SSE = 0.0821) data from this system
32

 (Figure 16).   Failing to 

consider matrix hydration kinetics greatly (8-fold) decreases the accuracy of this prediction, as 

would be expected for a system that begins under surface erosion.  This change is much more 

dramatic than the one observed for comparable bulk eroding systems (e.g.  Figure 15), which 

provides a perspective on the crucial that role hydration kinetics play in systems that transition 

from surface to bulk erosion.  

With respects to the POE controlled release data in Figure 17, it is apparent that the 

simplified form of the model, assuming bulk erosion, generates a more accurate prediction of the 

amaranth red release data from the disk with 1% anhydride content than the full version of the 

model, even though the matrix should theoretically begin release under a surface eroding 

mechanism. However it is important to note that published empirical evidence, from time-lapse 
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images of matrix cross-sections, clearly shows a distinct change in internal morphology, between 

5 and 8 hours of incubation, that suggests water has already perfused into the matrix core.
35

  This 

hydration appears to occur much more rapidly than is predicted by equations 1 and 2 (data not 

shown).  During the time period between 5 and 8 hours, the initially rapid, average hydrolysis 

rate also transitions to a near zero value
31

, which is inconsistent with published predictions based 

on random chain scission theory.
31

  Taken together, this evidence suggests that another process, 

beyond the diffusion/reaction kinetics considered herein, causes water to perfuse the matrix 

earlier than expected by simple diffusion and hydrolysis for this system.   It is possible that the 

unaccounted driving force could come from an increase in matrix osmotic pressure, brought 

about by the 1w/w% of anhydride excipient.
36

  Regardless, this data serves an example of how 

actual phenomena can create situations with dynamics that extend beyond model assumptions.  

However, once the correct physical phenomenon has been determined (using cross sectional 

analysis here), the model will accurately predict release if constrained accordingly. 

Together, the validations performed on published release data sets (Figures 16-18) 

confirm that the regression-free predictions appear accurate when the systems in question 

conform to the model’s fundamental assumptions.  System attributes, such as high loading 

(above the percolation threshold) or the presence of excipients, can cause the experimental data 

to deviate from model predictions. Future work could further expand the applicability of the 

model developed herein with addition of equations accounting for such phenomenon such as 

system osmotic pressure or drug percolation.   
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4.5 CONCLUSIONS 

A new model for predicting release from surface eroding biodegradable matrices has been 

developed.  This model attributes egress to matrix hydration, agent dissolution, and polymer 

degradation instead of relying on the traditional assumption that release is solely erosion 

controlled.  Further, accounting for matrix hydration with diffusion/reaction equations captures 

the transition from surface to bulk erosion in common polymer systems. Strong agreement with 

multiple published data sets supports future use of the model as a design tool, allowing 

researchers to rapidly acquire the matrix specifications that will yield a desired release profile.   
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5.0   IMPACT OF PREDICTIVE MATHEMATICAL MODELS ON IN VITRO 

CONTROLLED RELEASE ASSAYS 

5.1 INTRODUCTION 

One direct application of the models developed in Chapters 3.0 and 4.0  is to collection and 

interpretation of in vitro release data.  This drug release data is generated by simply suspending 

and incubating microparticles in buffer at body temperature over time.  Ideally this data provides 

a cost-effective means of gauging if a formulation’s release kinetics will be suitable for a given 

application.  However, interpreting in vitro data or, moreover, designing a study to efficiently 

capture unambiguous data can be non-trivial.   As discussed in prior Chapters, a formulation's 

rate of drug release can fluctuate dramatically over the course of an assay (Figure 2), often in 

ways that are difficult to intuit.  Incorrectly timing the collection of release data can mask key 

fluctuations in release rate or even make it appear that release is in fact complete when it is not.    

The challenges faced in gathering and interpreting the data generated by in vitro release 

assays are similar to those encountered in analysis of pharmacokinetic (PK) data.  Like in vitro 

release assays, the data collected in PK studies provides evidence of drug concentration only at 

discrete points in time.  However, in PK studies today, it is now standard to employ proven 

mathematical models that allow researchers to accurately interpolate and extrapolate upon 

collected data
127

.  This type of analysis is essential for the accurate computation of important PK 
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processes adsorption, distribution, metabolism and excretion
33

.  If comparable model-driven 

analysis were regularly applied to in vitro release data as well, then key performance parameters 

such as the rate and duration of release could be determined for incomplete or sparse data sets.  

Further, model predictions could permit sample points to be optimally timed in subsequent in 

vitro or in vivo assays if these parameters need to be validated more fully.  Such analysis would 

be particularly valuable when designing formulations of PLGA, whose patterns of release drug 

are often difficult to anticipate
95

.   

Accordingly, this chapter will demonstrate how a mathematical model can be used to 

retrospectively evaluate existing sets of release data in order to generate additional insight into 

the formulations’ release behaviors.  Specifically, data sets for evaluation were selected to 

illustrate common issues, like lack of closure or widely spaced sampling times, that make their 

results difficult to definitively interpret.  The mathematical model from Chapter 3.0 will be used 

for this evaluation because its validated covered system similar to those considered herein
126,128

.  

When appropriate, additional in vitro release assays were also carried-out to validate sets of 

interpolative and extrapolative model predictions.  Overall, these mathematical evaluations of in 

vitro release data have the potential to yield useful information about formulation performance 

and insight that can guide the design of futures studies. The contents of this chapter have been 

summarized in an article title “A Retrospective Mathematical Analysis of Controlled Release 

Design and Experimentation” accepted for publication in Molecular Pharmaceutics.   
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5.2 MATERIALS AND METHODS 

5.2.1 Materials 

Poly(lactic-co-glycolic)acid (PLGA) RG502 (Mwo ≈ 9kDa) was purchased from Boehringer 

Ingelheim (Ingelheim, Germany).  Enfuvirtide (T-20) was obtained through the AIDS Research 

and Reference Reagent Program, Division of AIDS, NIAID, NIH from Roche.  Nitro oleic acid 

(NO2-OA) was composed by an equal mixture of 10-NO2-octadec-9-enoic acid and 9-NO2-

octadec-10-enoic acid and synthesized as previously described
129

. Solvents, assay reagents, and 

other chemicals were purchased from Thermo Fisher Scientific (Waltham, MA). 

5.2.2 Microparticle fabrication 

Microparticles were prepared using the emulsion processing technique as described
52

. Briefly, 

200 mg RG502 PLGA was dissolved in 4 ml dichloromethane (oil phase). One hundred μl of an 

agent stock solution (either 2mg/ml enfuvitide in 2.4mg/ml sodium carbonate solution or 1mM 

NO2-OA in methanol) was added to oil phase, which was then mixed for 10s using a probe 

sonicator (Sonics and Materials Inc., Danbury, CT).  This mixture was then homogenized at 

2,300 rpm for 1 minute in 60ml of 2% PVA (MW ∼ 25,000, 98% hydrolyzed) solution, using a 

homogenizer (Silverson L4RT-A). This emulsion was immediately poured into 80 ml of 1% 

PVA solution, and dichloromethane was allowed to evaporate. After 3 hours, the particles were 

centrifuged (1500g, 10 min, 4°C) and washed x4 in deionized water.  Microparticles were then 
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re-suspended in 5 ml of deionized water, frozen on dry ice and lyophilized (Virtis Benchtop K 

freeze dryer, Gardiner, NY; operating at 60mTorr). 

5.2.3 Microparticle characterization 

Microparticles were sized using the volume impedance method with a minimum of 10,000 

measurements on a Beckman Coulter Counter (Multisizer 3). Microparticle surface morphology 

and shape were examined using a scanning electron microscope (JEOL JSM-6330F, Peabody, 

MA).  The loading of the enfuvirtide microparticles was measured by dissolving 5mg of 

microparticles in 250 ul dimethylsulfoxide (DMSO).  Peptide was then extracted with the 

addition of 1 ml of 0.05M NaOH / 5% sodium dodecyl sulfate (SDS) and measured using the 

microBCA assay.   The loading of NO2-OA could not be measured by this method as the 

presence of SDS interfered with the detection of this agent.  

5.2.4 In vitro release assay 

Release data was measured accumulatively, as done previously
52

.  A known amount of 

microparticles was suspended in 500ul of phosphate buffered saline (DPBS, pH 7.4, GIBCO, 

Invitrogen) and placed on an end-to-end rotator at 37
o
C.   At regular intervals the microparticle 

suspensions were centrifuged, allowing the supernatant to be collected and particles to be 

resuspended in an equal volume of DPBS.   

Enfuvirtide concentration in the supernatant was detected either by microBCA or high 

pressure liquid chromatography (HPLC).  The microBCA assay was carried out using 
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Spectramax M5 microplate spectrophotometer (Molecular Devices, Sunnyvale, CA) as detailed 

in the manufacturer’s protocol (Pierce, Thermo Fischer).  For HPLC, detection was carried out as 

done previously
130

. A Dionex Ultimate 3000 HPLC system (Thermo Fisher Scientific, Waltham, 

MA)  was used with a XTerra RP18 5µm 3.0x15mm column (Waters Corporation, Milford, MA) 

and enfuvirtide was detected on a Dionex RF2000 fluorescence detector (ex = 280nm, em = 

350nm).  Solvents and gradients were kept consistent with previous work, yielding peaks for 

enfuvirtide at 4.86min and insulin (internal standard) at 2.6min.   

NO2-OA concentration was quantified using high-performance liquid chromatography-

electrospray ionization mass spectrometry (HPLC-ESI MS/MS) as previously reported
129,131

. 

Briefly, the released NO2-OA was chromatographically resolved using a 20 × 2-mm cartridge 

column (Mercury MS Gemini 3μm C18, 110 Å, Phenomenex, Torrance, CA) with a flow rate of 

0.75 ml/min using a water (A)/acetonitrile (B) solvent system containing 0.1 % acetic acid. A 

linear gradient of B from 11 to 100% was developed in 3.5 min and used to separate the ions, 

followed by their detection on a triple quadrupole mass spectrometer (API 5000, Applied 

Biosystems/MDS Sciex, Framingham, MA) using the specific 326.3/46 and 344.3/46 transitions 

for NO2-OA and 
13

C18-NO2-OA respectively.  For quantification, peak areas of NO2-OA and 

13
C18-NO2-OA were calculated using Analyst 1.4.2 quantification software (Applied 

Biosystems/MDS Sciex, Thornhill, Ontario, Canada), and the ratio of analyte to internal standard 

was calculated to determine the concentration.  
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5.2.5 Collection of published release data 

Published data was collected from the figures of manuscripts using Plot Digitizer software (v. 

2.4.1), as done previously
126,128

.   Release profiles in these figures were enlarged to a size of 600 

by 400 pixels allowing accurate measurement of the scales on their axes.   Data points were then 

manually targeted, yielding a numerical coordinate for each point.  All sets of published release 

data collected were assayed accumulatively, by measuring the concentration of drug or protein 

released into the media.   

5.2.6 Model predictions 

All mathematical predictions of controlled release were made using the model developed by 

Rothstein et al., as done previously
128

.  This model was coded in MATLAB(v7.12) and solved 

using the finite element method with COMSOL(v3.5a).  To initialize solutions, values for the 

drug's molecular weight (MwA), the polymer's initial molecular weight (Mwo) and the 

microparticle radius (RP) were assigned based on the published materials and methods of each 

system considered.  The value for occlusion size (Rocc) was calculated from SEM images of the 

microparticle internal morphology, when available, and otherwise was back-calculated from the 

average magnitude of the given system's initial burst as derived previously
128

. As Rocc only 

contributes to the prediction of initial burst magnitude, this back-calculation does not interfere 

with the model’s predictions regarding the timing or rate of the secondary burst, which are of 

primary focus in this work.  The polymer degradation rate (kCw) was held constant for each 

copolymer ratio as follows: 50:50 PLGA, kCw = 0.08636day
-1

; 75:25 PLGA, kCw = 0.0342day
-1

; 
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and PLA, kCw = 0.0169day
-1

.  With these input parameters, the model could then predict the 

given system’s release profile.  The results were then plotted against the respective set of 

experimental data for statistical analysis. 

As the mathematical model used currently does not account for kinetics of the initial 

burst (only the magnitude
128

), data points within the first 72 hours of release were omitted from 

this statistical analysis. The accuracy of mathematical predictions was quantified by the 

normalized residual squared error (nRSS = residual sum of squares divided by the number of 

data points compared) and used as a metric of prediction accuracy instead. For the results section 

on widely spaced data points, equivalent calculations were made to quantify the prediction’s 

deviation from linearity with a specified gap between two data points (nRSSi).  Both of these 

metrics, unlike the r
2
, do not unduly weight values near the mean.   

5.3 RESULTS 

Evaluation of published data reveals two major areas of opportunity where in silico predictions 

may be able to better inform the design and validation of degradable controlled release 

formulations.  First, if data is collected infrequently enough to produce a jump in cumulative 

release, the duration and kinetics of release can be difficult to resolve and an in silico prediction 

can help interpolate between widely spaced data points.   Second, release studies may also (for 

any number of reasons) be terminated prior to the completion of release, leaving subsequent 

kinetics undocumented and perhaps even leaving the impression that the partially documented 

profile is complete.  In this case, in silico predictions can be used to extrapolate upon the existing 
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release data. Both of these areas of opportunity are illustrated in more detail with the following 

examples:  

5.3.1 Interpolation of release data sets with widely spaced sample points 

A number of data sets include intervals in sampling that result in low resolution of the release 

profile. This can occur for a number of reasons, including an expectation that release will follow 

a different pattern, unavailability of the researcher for empirical sampling, or concern that more 

closely spaced intervals would not allow for enough drug release to permit detection. However, 

when data sampling is too infrequent, important changes in the rate of drug delivery may be 

difficult to identify.  This was the case when enfuvirtide release was measured from PLGA 

microparticles at 10 day intervals (Figure 18A).  The low sampling rate was selected to ensure 

detection of enfuvirtide, a therapeutic peptide, by the micro BCA (µBCA) protein assay, which 

had a detection limit of 980 ng/ml.  The resulting gaps in data accounting for 33 and 44% of drug 

release leave open many interpratations (broken lines, Figure 18A), which can be clarified by the 

model’s prediction (solid lines, Figure 18A).  Subsequently, release from these microparticles 

was measured using high pressure liquid chromatography (HPLC) which has a detection limit 

below 39.1ng/ml for enfuvirtide, despite being less cost and time efficient.  This detection 

method allowed enfuvirtide release to be measured every 1 to 2 days, filling in the gaps left by 

the prior study (Figure 18B) in order to validate any conclusions made through model 

predictions.  The resulting HPLC-detected release profile closely follows the profile predicted by 

the earlier mathematical analysis, providing strong evidence that the interpolation based on 

model predictions accurately describes the actual enfuvirtide release behavior.  
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Figure 18:  Testing model predictions for the interpolation of in vitro release data from enfuvirtide loaded 

9kDa 50:50 PLGA, 20µm particles.   

A) Initial release measurements using the µBCA assay with widely spaced intervals (triangles).  Broken lines are 

provided to illustrate the range of possible alternate interpretations that could be made for the release profile based 

on the standard error. An interpolative prediction was made using the mathematical model which would suggest that 

actual release profile (solid line). B) Release measurements made by highly sensitive HPLC experiments at short 

intervals confirms the accuracy of the interpolative prediction (circles). (nRSS = 0.0030)  
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As with our data, the literature includes a number of release data with significant gaps 

between sample points.  For instance, in one assay of lysozyme release, over 40% of the drug is 

delivered during a 28 day window where no data was collected (Figure 19A)
43

.  As a result, the 

timing of the transition from first burst to second burst is unclear and could follow any number 

of patterns within the range marked by green curves.  In this specific case, mathematical analysis 

of this data suggests that release is predicted to continue in a sustained manner between data 

points without a more prominent burst of drug with possible upper and lower bounds at 30 (or 

alternatively) 50 days (Figure 19B).  Importantly, the variation between this prediction and ideal 

linearity (a point-to-point interpolation in the gap; nRSSi = 3.0E-4) is similar to what is 

calculated as the overall model deviation from all other experimental data points (nRSS = 3.8E-

4).  In another study, superoxide dismutase release was measured at 6 points over 60 days 

(Figure 20A)
77

.  Because these sample points were spaced unevenly, significant gaps occur from 

days 3 to 29 and days 38 to 50, accounting for 15% and 40% of release, respectively.  This 

leaves the data open to a range of interpretations (indicated by green shading) including the 

possibility that release proceeds linearly over the 60 days (Figure 20A, broken line).  However, 

in this specific case, the model prediction suggests that release is not sustained for the duration of 

60 days.  In contrast, a lag-burst pattern is predicted through the first gap where little release is 

occurs between days 3 and 20, followed by rapid release from day 20 onward(Figure 20B).   

During this window (days 3 to 29), the prediction’s deviation from point-by-point linear 

interpolation (nRSSi1 = 1.27E-2) far exceeds the error inherent in the model’s prediction (nRSS 

= 4.7E-3; nRSSi1 > nRSS), suggesting that the predicted deviation from linearity in the gap is 

indeed statistically much greater than the collective deviation from other data points.  In the 

second gap (days 38 to 50), the prediction’s deviation from linearity (nRSSi2 = 4.9E-3) is 



89 

 

actually comparable to the error inherent in the model’s prediction (nRSSi2 ≈ nRSS), suggesting 

that no significant change in release rate is expected to occur during this gap.   

 

Figure 19: Evaluations of in vitro data for lysozyme encapsulated in 12kDa 50:50 PLGA
17

.  

A) In vitro release data points (circles) jump from 18% at day 28 to 66% by day 56, leaving a range of potential 

interpretations as to the formulation’s release kinetics (shaded area).  B) Mathematical results predict a specific a 

release profile for this formulation (line).  
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Figure 20: Evaluations of in vitro data for superoxide dismutase (SOD) 

SOD was encapsulated in 40-70kDa 50:50 PLGA microparticles (14µm)
18

.  A) Gaps in this data (circles) suggest 

that SOD release could proceed in a sustained, linear fashion (dotted line) following the initial burst.  B) 

Mathematical results indicate a non-linear release profile for this formulation (line).  

 

 

 



91 

 

Significant gaps also appear in release data from PLGA microparticles loaded with model 

enzymes
43

, hormone antagonists
70,132

, and anti-inflammatory agents
133

, among others
39,68

 (release 

behavior not shown, but summary statistics are included in Table 2).  In some cases, 

retrospective analysis predicts that release will not deviate from a sustained or linear manner 

during the gap between data points
39,132,133

 (Table 2, nRSSi < nRSS or nRSSi ≈ nRSS)
70,133

. 

However, in other cases significant changes in release rate occur during gaps (Table 1, nRSSi > 

nRSS)
43,68,70

.    

Table 2: Interpolative Predictions 

Encapsulated Rp Rocc Mwo kCw MwA Gap Size 

Overall 

Error 

Linear  

Error  Ref 

Agent (µm) (µm) (kDa) (day
-1

) (Da) (Day, %) (nRSS) (nRSSi) 
 

Carbonic 

anhydrase 0.533 0.205 12 0.08636 68900 28 45 0.0020 0.0246
  17 

Leuprolide 20 1.8 10 0.08636 1210 7 43 0.0014 0.0021
  19a 

Octreotide 10.5 0.525 28 0.08636 1020 7 45 0.0025 0.0029
  19b 

Dexamethasone 5.5 2.86 70 0.08636 392 13 37 0.0061 0.0061
 20  

Gentamicin 276 69 36.2 0.08636 477 8 45 0.0012 0.0030 
 21a 

Butorphanol 200 40 29.7 0.3278 327 1 44 0.0062 0.0035
  21b 
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5.3.2 Extrapolation of release data sets that terminate prior to completion 

Many sets of release data document only one burst when additional release would be 

expected
42,95,128

.  This is not surprising given that the additional release, often in the form of a 

secondary burst, may only occur after weeks, months or years, while of the most functional 

assays or animal models using these formulations require just days or weeks to complete. Indeed, 

our studies on the novel anti-inflammatory agent, NO2-OA, began with a single batch of particles 

and 1 week release assay to confirm that this novel agent could be encapsulated and delivered 

intact from microparticles (Figure 21A).  Specifications for this formulation, including size, 

polymer molecular weight, and internal matrix morphology were measured, and used to initialize 

a model prediction that extrapolates beyond the range of the preliminary data (Figure 21B).  In 

order to test the accuracy of this prediction, the preliminary formulation was reproduced and 

assayed in triplicate for the full predicted duration of its release profile, with a sampling 

frequency selected to capture key changes in the rate of release This second assay confirmed that 

the formulation’s release profile closely follows the model prediction (Figure 21C).   Notably, 

our initial release curve only captured less than 25% of the total release behavior, which was 

captured by the model prediction.  
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Figure 21: Testing an extrapolative prediction 

A) Data from preliminary in vitro assay of NO2-OA release from 9kDa 50:50 PLGA 20µm particles.  B) Predicted 

release behavior for the same formulation. C)  Release from formulations produced in triplicate closely followed the 

model prediction. (nSSR = 0.0020) 

 

C) 
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Like this prior example, the literature includes a number of examples where release assays are, 

for whatever reason, terminated prior to closure.  Indeed, one set of PLA microparticles loaded 

with the protein superoxide dismutase (SOD) was assayed for 50 days without showing 

additional release beyond the initial burst.  However, predictions indicate that SOD release will 

only reach completion in an additional 200 days (Figure 22)
77

.  Importantly, this will result in 

 

 

 

  

Figure 22: Extrapolated SOD release from 106kDa poly(lactide) microparticles.   

In vitro data (circles) only documents 60% of release
18

.  The 40% of encapsulated protein remaining is predicted to 

release between days 150 and 250. 
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release of 40% of the encapsulated drug following day 150 if this formulation were placed in 

vivo and not removed before this time.  In another study, recombinant human Growth Hormone 

(rhGH) release was measured for 28 days, recording delivery of 78% of the anticipated 

payload
134

. Mathematical predictions show that release, which appears to asymptote, actually 

began a secondary burst on day 20 (Figure 23).  This burst continues until day 40, whereas no 

additional information is provided past day 30 by the assay.  Predictions were also evaluated for 

data sets from PLA and PLGA formulations loaded with many other proteins, peptides and small 

molecules
72,84,90,135-138

  (Table 3).   For a number of these systems, the release is predicted to 

continue for more than 2 months beyond the end of in vitro data collection
90,137,138

.    

Figure 23: Release of rhGH from 45kDa 50:50 PLGA microparticles.  

In vitro data (circles) was only collected for 28 days
22

.  In silico predictions (line) shows a second burst of release 

starting at day 20 and continuing until day 45.  
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5.4 DISCUSSION 

Retrospective analysis of in vitro release is the use of modern technology and understanding of 

release phenomena towards the interpolation and exploration of prior studies to gain further 

information on a formulation’s performance in the absence of additional experimental data.  For 

instance, published release assays can terminate before drug release is complete or contain 

widely-spaced intervals of time between data points, complicating interpretation of a 

formulation's drug delivery kinetics.  While such data may be suitable for planning initial 

functional assays that evaluate a formulation’s activity, a more detailed understanding of a 

formulation's release kinetics would be useful when refining a formulation design or planning 

Table 3: Extrapolative Predictions 

 

Rp Rocc Mwo kCw MwA Assay End   

End of 

Release  Error Ref 

Agent (µm) (µm) (kDa) (day
-1

) (Da) (Day, %) (Day) (nRSS) 

 

VEGF 2.55 1.84 34 0.0864 21000 28 74 87 2.30E-04 
 3a 

BSA 22.5 5.85 18.9 0.0864 66500 34 26 74 2.20E-04 
 23a 

GM-CSF 25 1.23 40.4 0.0864 22000 7 5 91 2.66E-05 
 23b 

VEGF 2.2 1.05 110 0.0634 21000 30 51 113 9.64E-05 
 23c 

BSA 17.5 5.25 130 0.0864 66500 25 33 66 3.06E-04 
 23d 

Levofloxacin 1180 802.4 80 0.0169 361 46 69 91 7.39E-05 
 23e 

Paclitaxel 25 6.75 100 0.0169 854 30 27 340 1.70E-04 
 23f 
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animal studies, like those for long-term dosing or evaluating disease outcome.  Further, when 

translating formulations to human use, a full understanding of how a biodegradable polymer 

matrix releases an encapsulated agent is extremely important.  To most efficiently plan such 

studies or possibly even make the best decision as to whether or not the studies would be fruitful, 

prior information is needed on: a) how the expected rate of release varies between data points, 

and/or b) if or when additional release can be expected beyond the release assay’s termination. 

One possibility to obtain this information would be to iteratively conduct a series of long-term 

release assays.  However, mathematical analysis of existing release data may offer a tremendous 

time- and cost savings in obtaining this useful information.   

In order to be useful for retrospective analysis, a mathematical model must effectively 

describe or predict a formulation's release kinetics, particularly in the regions where data are 

sparse or non-existent.  The model used herein has an extensive record of validation that 

encompasses PLGA microparticles loaded with a wide variety of drugs (Section 3.3).  

Importantly for this study, the model has demonstrated consistent and accurate predictions of 

both the timing and rate of secondary burst release for small molecule-, peptide- and protein-

loaded microparticulate systems.  These predictive capabilities are essential for handling analysis 

of data sets that lack information about the second burst and therefore require extrapolation.  

Other models would be more suitable for  retrospective analysis of the kinetics of the initial 

burst, poorly soluble agents, or matrix implants, hydrogels, and novel controlled release 

systems
42,96,139

.   

The model-aided analysis used herein can help determine if a formulation actually 

provides an acceptable rate of drug delivery when widely spaced data points leave uncertainly as 

to its release kinetics.  One outcome of this analysis is the ability to use more cost-effective, 
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rapid detection techniques, which would otherwise be eliminated from consideration due to their 

poor sensitivity.  For instance, in the evaluation of enfuvirtide release, mathematical predictions 

can confirm the utility of a microBCA assay in the detection of release over a more expensive 

and lengthier HPLC protocol (Figure 18).  Without supporting model predictions, the 10 day 

sampling interval necessitated by the microBCA assay’s poor detection limit could result in 

missing key changes in release behavior, potentially leading researchers to misinterpret the 

formulation’s variable release rate as “sustained” or “linear”.  This misinterpretation could be 

extremely costly especially since true, sustained or linear release is the most critical desirable 

aspect of many modern release formulations. 

Indeed, the “linear release” design criterion applies to any formulation intending to 

produce constant serum concentration, encompassing well over 50% of the top 200 best-selling 

drugs on the market today
8
.   For example, Figures 2 and 3 contain data sets with gaps of at least 

20 days and more than 40% release that could be assumed to span intervals of sustained release. 

Indeed in the case of lysozyme release, mathematical predictions suggest that release is actually 

sustained from day 30 onward using the described formulation (Figure 19).  This predicted 

profile is consistent with those documented in other sets of release data from lysozyme-loaded 

PLGA microparticles of comparable chemistry and molecular weight
140,141

.  In evaluating release 

of superoxide dismutase, however, predictions suggest that SOD release follows a burst-lag-burst 

pattern, instead of a constant, sustained one, which would have been desirable for an antioxidant 

(Figure 20).   Similar behaviors are reported for a number of other protein loaded PLGA 

microparticles
42

.  Having the ability to evaluate protein release data as sustained or pulsatile, 

without frequent sampling, should become increasingly valuable as work on the controlled 

release of costly cytokines, chemokines, growth factors and other biomolecules continues to 
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expand
142-144

.  In the absence of plots, statistical metrics comparing a linear interpolation to the 

model prediction, such as the normalized residual sum of squares (nRSSi), can indicate if 

changes in the rate of release are indeed occurring between data points.  When assumed point-to-

point interpolation differs significantly from a model prediction, but the data points do not, 

changes in the rate of release are occurring during between sampling points. 

Mathematical analysis can also aid in the understanding of release kinetics when an 

experiment does not reach completion because it is (for whatever reason) terminated after just 

the initial burst phase of release.  Recording only this initial release data is often useful when 

exploring formulations for an entirely new drug candidate or when planning preliminary studies 

with cell functional assays which last for just days or weeks. However, the presence or absence 

of delayed release of drug could be extremely important when refining a formulation design or 

planning extended animals studies.  A case study is provided by a controlled release formulation 

of nitro-fatty acid, a novel anti-inflammatory lipid whose stability in the acidic microclimate of 

degrading PLGA microparticles remains unknown.  Accordingly, a short, 2 week release assay, 

revealed both NO2-OA’s stability and its initial rate of release.  However, this assay documented 

less than 30% of drug delivery.  Clues to the duration of release can come from data on erosion, 

which are responsible for governing release in many hydrolysable polymer systems
42

.  Similar 

polymer microparticles erode most significantly between days 8 and 30
6,41

, defining a window 

when pore formation and erosion-mediated release may occur.  Model predictions during this 

time period have the potential to provide further detail into the actual release behavior.  For 

instance, model predictions suggest that this formulation exhibits release continuing in a 

sustained manner through day 28, which is an appropriate delivery schedule for the eventual 
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clinical application of this active agent.   A subsequent release assay conducted in triplicate 

confirmed the accuracy of the model prediction, lending support for this type of analysis.    

For formulations without sustained release profiles, extrapolative predictions can also aid 

in setting the dosing frequency for subsequent animal studies and the duration of sampling in 

future release assays.  An example of how predictions can aid in setting dosing schedules is 

represented by the analysis illustrated in Figure 22.  The in vitro release data from this 

formulation shows 60% of superoxide dismutase SOD being delivered over 8 days, implying that 

a once-weekly dosing schedule would seem logical based on the experimental data.  Yet, 

mathematical predictions suggest a secondary burst of SOD is imminent at 30 days following the 

start of release.  Based on this information alone, the results may warn a user that repetitive 

administration at 1 week intervals could lead to unexpected release of drug that is over 5 times 

the desired dosing of SOD beginning at day 60.  Retrospective analysis suggests (alternatively) 

that adjusting the dosing interval to once every 8 weeks and repeating the release experiments 

could potentially minimize the simultaneous delivery of SOD from repeat administration while 

still producing the desired effect.  An example of how predictions can aid in setting release assay 

duration is represented by the analysis in Figure 23.  This in vitro data set could suggest that the 

rate of release slows from day 15 until the assay’s close at day 30.   In contrast, model 

predictions suggest that release may actually accelerate between days 20 and 30 instead of 

decelerating.  This behavior would warrant collection of data until day 40 when closure is 

predicted, if it was necessary to experimentally determine this formulation’s maximal rate or 

duration of release.  These information-loss examples are representative of release assays 

conducted on a number of other protein and peptide formulations. This suggests that 

extrapolative mathematical prediction may prove extremely useful when developing 
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formulations for a wide variety of applications and in particular for the delivery biologics or 

poorly soluble molecules, which are noted for often having lengthy release profiles
126,128

. 

However, it is important to note some limitations of the current model for this type of 

analysis.  For instance, the model equations (Section 3.2.2) do not provide a way to predict the 

rate (as opposed to the magnitude) of the initial burst, which is correspondingly over-predicted in 

10 of 19 simulations herein.  Existing mathematics
145,146

 (or future work on the current model 

construct) describing dissolution limitations or electrostatic interactions with polymer matrix 

may serve to account for any systematic, over-predicted release in these cases.   Cumulative 

release was also over-predicted during the last 10-20% of drug delivery in 6 out of the 10 

simulations that include data is this region.  This systemic deviation might be due to the model’s 

approximation of pore formation as a cumulative normal distribution
128

.  A comparison to 

experimental data reveals that this function begins to overestimate the rate of erosion (mass loss 

from the polymer matrix, responsible for pore formation) when just 20% of original mass 

remains
41

.  A more physically accurate description of erosion, perhaps accounting for 

crystallinity among oligomers, might correct this systemic overestimation of final release
93

. 

Regardless, this retrospective analysis (producing in silico data for 20 real-world in vitro 

release assays) is, to our knowledge, the first instance of such use of mathematical modeling 

technology for biodegradable matricesThere are similarities to this kind of analysis to previous 

nascent methods to compute specific pharmacokinetic drug properties (e.g. bioavailability and 

clearance route) in the 1960s
127

.  Since then, pharmacokinetic analysis has grown substantially 

both in the scope of its mathematics and impact of its results.  PK modeling analysis now 

regularly makes predictions for the processes of adsorption, metabolism, distribution, and 

excretion (ADME). It is also now an essential component of the US regulatory approval 
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process
33

.  Furthermore, PK modeling has most recently grown to encompass molecular 

simulations of drug-protein binding in order to predict ADME processes during drug 

discovery
147

.  In contrast, the role of predictive and data modeling has significant room for 

expansion in controlled release formulation development.  Indeed, since Higuchi first 

demonstrated the utility of mathematics for describing solubility limited drug release from a 

matrix system, models have been developed for a number of specific biodegradable polymer-

based drug delivery systems
139,148

.  In practice though, the systematic or statistical design of 

experiments (DoE) is still considered state of the art and is significantly faster than the trial-and-

error approaches used in past decades
20

.  Augmenting DoE with existing models of release 

would be a simple, inexpensive, and rapid way to achieve greater efficiency in the formulation 

development process.  In the future, even further gains could be derived from harnessing 

molecular scale simulations, as done in drug discovery, to predict drug-polymer interactions 

thought to influence release
24

.   We are currently exploring such methods to add power of 

prediction at some expense to the generalizability of the results produced. 

5.5 CONCLUSION 

Predictive modeling is of extreme potential value for the analysis of in vitro release data in much 

the same way that modeling is now considered an integral part PK studies.  The in vitro and in 

silico data presented herein demonstrate predictive modeling as a key for interpreting in vitro 

release assays and planning subsequent studies, either in vitro or in vivo.  By interpolating and 

extrapolating with predictions, the necessary duration of an assay can be determined, the timing 
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of sample points can be set and the suitability of different detection techniques can be evaluated.  

These benefits are not only of interest during formulation design, but also during the 

establishment of quality by design (QbD) manufacturing routines, when connections between a 

formulation’s attributes and performance are established. 
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6.0  CASE STUDY: DELAYED RELEASE VACCINE PLATFORM 

6.1 INTRODUCTION 

Vaccines have arguably had the greatest impact on public health of any known medical 

intervention 
149

.  Successful inoculation with several doses of “dead” or disabled pathogen 

produces long-term immunity from highly virulent diseases, some of which have no cure once 

they reach the point of mature pathogenesis 
11

.  Unfortunately, citizens of many developing 

countries frequently do not receive the 2
nd

 or 3
rd

 vaccine doses needed to establish immunity.  In 

fact, the World Health Organization (WHO) estimates that four to five million deaths could be 

prevented annually with complete vaccination 
150

 (“complete” in that patients receive all 

subsequent booster shots
11

). Over half of these deaths are children under age five 
150

.  These 

preventable deaths occur in spite of a long-standing global immunization program (GAVI) 

supported by a partnership between international organizations, national governments, industrial 

concerns and private donors 
24

.  A platform for delayed release vaccination could improve 

effectiveness by ideally allowing a single injection at birth to autonomously provide all requisite 

doses at the correct times.  Because this at-birth approach would target individuals when they are 

most likely to be at a medical facility, it would provide savings not only from reduction in 

number of injections needed but also from reduced reduce administrative costs for record 

keeping and logistics.   
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Figure 24: Comparison of dosing schedules  

Control injections (dark) and heuristically designed DRV(light) from Men et al.  The timing of the 2nd & 3rd doses 

from the best formulation dramatically differs from the optimal delivery times.  Dose magnitudes assume an equal 

distribution of agent between all microspheres. 

 

 

The design of a single shot vaccine has remained a challenge for over 25 years because of 

the complexities of how controlled release formulations provoke an immune response.  Early 

studies revealed that simply prolonging antigen delivery did not promote immunity, but rather 

tolerance 
151,152

.   This promoted development of formulations that mimic the dosing of proven 

vaccines autonomously releasing multiple bursts of antigen over time 
152

.  Researchers have 

produced single injection vaccines that deliver multiple bursts of antigens such as tetanus toxin, 

diphtheria and hepatitis B. 
11,153

. However difficulty arose in replicating the multi-dose 

administration schedules for these real-world antigens because of the trial-and-error methods 

used to tune the performance of the polymer carrier that controlled release 
154

.  As evidence, one 

of the most well thought out formulation design studies to date mimicked the immunization 
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schedule currently used for tetanus toxoid by combining particle sets that burst at different times.    

Out of 5 attempts, the timing of burst release from the best result was over 6 months later than 

suggested by the CDC immunization schedule (Figure 24)
155

.  Such a delay not only altered the 

immune response, but also complicated implementation of the assays needed to measure it.   

Many more studies have used simpler controlled release formulations, examining antibody titres 

elicited from single polymer microparticles documented to provide burst-lag-burst profiles in 

vitro.  However antibody titres are not a direct enough measurement of immune response to 

correlate in vitro release results to in vivo antigen release and in many cases such measurements 

were not extended much beyond the controlled release formulation’s lifespan
11,153

.  Interestingly, 

one of the few studies to extend titre measurements well beyond the duration of antigen delivery 

concluded that repeat administration 12 months after the original inoculation would be necessary 

to sustain protective immunity
156

. Fortunately, this research prompted further immunological 

exploration of microparticle vaccines by raising questions about the adjuvancy of microparticles 

and the impact of antigen stability.   

To compensate for a lack of long term immunity researchers have enhanced immune 

response by making use of a microparticle’s biomimetic adjuvant potential.  Specifically, 

particles that resemble bacteria in size are taken up by dendritic cells and macrophages at the site 

of injection and then transported to the lymph nodes
52

.  Injection of small (1-5µm) particles has 

been documented to produce strong immune responses to ovalbumin, diphtheria toxoid, tetanus 

toxoid,GP120 (HIV) and many other antigens
157

.  (Particles larger than 5-10µm are not readily 

phagocytized and show much less potential as adjuvants
52

.)  The immediate adaptive immune 

response to a single injection of small particles was in most cases comparable to that of complete 

Freud’s adjuvant or multiple does of protein-alum complex with strong type 1 and type 2 
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responses
11

.  Studies have also documented that the elevation of antibody titres provoked by 

these vaccines extends beyond 1 year, although the role of isotype is not investigated.  From this 

body of work, it is clear that single injection of antigen loaded microparticles can promote a very 

strong immune response, much stronger than can be achieved with conventional FDA approved 

adjuvants and antigens
11,158

.   

Extensive research has also focused on the stability of antigens delivered by microparticle 

vaccines with the view that it might be a major barrier to their clinical application.  During 

microparticle production, storage and administration protein antigens are subject to conditions 

that can cause them to denature or aggregate.  These conditions include high shear and organic 

solvents during production, lyophilization for storage, as well as elevated temperatures and 

acidic conditions following administration
11

.  Accordingly studies have focused on methods of 

protecting protein antigens from these conditions.  Success has been achieved with unique 

antigen-excipients combination such as tetanus toxoid paired with bovine serum albumin and 

trehalose or ovalbumin paired with polyethylene glycol, which have been correlated to higher 

antibody titres
159-161

.  The possibility of encapsulating and releasing intentionally aggregated 

antigen, such as a protein-alum complex, has yet to be investigated.   

When moving forward with proof-of-concept development of a new delayed release 

vaccine, the findings of prior research must be taken into account.  First, if a “boost” is desired, 

microparticles must be able to hide at least some portion of antigen from the body until 

predetermined times.  Proven immunization schedules encompass a number of dosing times 

between 0 and 18 months of life
154

.   Second, the antigen delivered by the microparticles must be 

in a stable and intact form.  Ensuring antigen stability will prevent alterations in the 

formulation’s release kinetics due to unintended aggregation or binding with the polymer matrix 
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as well as loss of antigenicity due to degradation by poly(lactic-co-glycolic) acid oligomers
11

.  

Third, the microparticles must be sized larger than 10µm in diameter, but still be small enough to 

be injected with standard syringes.  This will prevent uptake by antigen presenting cells, which 

not only alters the rate of antigen release, but also causes a prompt and potentially harmful 

adaptive immune response
158

.  

This chapters details the model-aided development and testing of delayed release vaccine 

microparticles.  Polymer stock materials were selected for the microparticles based on 

simulations and successful production of DRV microparticles was confirmed by microscopy.  

The in vitro release behavior of DRVs was subsequently measured and compared to model 

predictions.  In vivo, the DRVs were tested for the capacity to delay antigen release with the 

ovalbumin-specific type II T cell (OT-II) proliferation assay.  The type of immune response 

generated by DRV microparticle depots was further measured with the lysis of SIINFEKL 

pulsed spleenocytes and analysis of serum IgG response by ELISA.   

6.2 MATERIALS AND METHODS 

6.2.1 Materials 

Poly(lactic-co-glycolic)acid (PLGA) copolymers were purchased from Evonik Industries AG 

(Essen, Germany).  Specific types were as follows: RG502 (9kDa), and RG504 (30kDa). Grade 

V ovalbumin was purchased from Sigma Aldrich (St. Louis, MO). Alhydrolgel (alum), solvents, 
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assay reagents, and other chemicals were purchased from Thermo Fisher Scientific (Waltham, 

MA).  

6.2.2 Polymer Selection 

In vitro release profiles were predicted for the stock 50:50 PLGA and 75:25 PLGA 

copolymers available with acylated chain ends from Evonik Industries.  For these initial 

predictions, it was assumed that average occlusion size was significantly smaller than polymer 

size (Rocc << Rp).  (Acylated chain ends minimize the fraction of surface-associated occlusions 

and minimal the initial burst
142

.)  These potential release profiles were then compared to target 

windows for delayed release: days 7-12, days 14-19, and days 28-33.  Polymers with the least 

sum-squared error between their predicted release profiles and the targets windows for the DRV 

were selected for use in microparticle fabrication.   

 

 

Table 4: Production Conditions 

 

Sonication Homogenization 

 

Power Time (s) Rate (RPM) Time (s) 

DRV 30% 30 1000 60 

SRF 30% 10 3200 60 
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6.2.3 Formulation Production 

Ovalbumin was adsorbed to alum, as done previously 
162

.  Under sterile conditions, 10mg of 

OVA dissolved in 4.5ml of 0.01DPBS and mixed with 1ml of alum for 30 minutes.  OVA-alum 

was then collected by centrifugation at 10,000 RCF for 1 minute.  The concentration of OVA in 

the aspirated supernatant was measured by microBCA assay and used to calculate the loading of 

the OVA-alum.   

Microparticles were prepared by the double emulsion process detailed in Section 5.2.2.  

Dichloromethane and the dissolved polymer were added directly to the OVA-alum.  To help 

ensure encapsulation of the OVA-alum, the volume and mass of the polymer/DCM phase was 

doubled.  Dispersion of the high viscosity OVA-alum required a sonication time of 30s at 30% 

amplitude instead of 10s at 20% required a more homogeneous primary emulsion.  

Homogenization speed was also decreased to 1000 RPM to increase particles size, which was 

thought to reduce phagocytosis and the initial burst release of OVA-alum.  After preparation 

microparticles were washed for an additional 48 hours to further reduce the burst release of 

OVA-alum and stored at -80
o
C until use. 

6.2.4 Formulation Characterization 

Microparticles were sized using the volume impedance method with a minimum of 10,000 

measurements on a Beckman Coulter Counter (Multisizer 3). Microparticle surface morphology 

and shape were examined using a scanning electron microscope (JEOL JSM-6330F).  
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Formulations doped with OVA-Texas Red were examined with confocal microscopy to 

determine the occlusion size and distribution of active agent within the particles. The loading of 

antigen was measured by dissolving 5mg of microparticles in 250 ul dimethylsulfoxide (DMSO). 

Antigen was then extracted with the addition of 1 ml of 0.05M NaOH / 5% sodium dodecyl 

sulfate (SDS) and its concentration was measured using the microBCA assay.    

6.2.5 In vitro Release Assay 

Release data was measured accumulatively, as done previously13.  Briefly, a known amount of 

microparticles was suspended in 500ul of phosphate buffered saline (DPBS, pH 7.4, GIBCO, 

Invitrogen) and placed on an end-to-end rotator at 37
o
C.   At regular intervals the microparticle 

suspensions were centrifuged, allowing the supernatant to be collected and particles to be 

resuspended in an equal volume of DPBS.  OVA concentration in the supernatant was measured 

on a Spectramax M5 microplate spectrophotometer (Molecular Devices) using the microBCA 

assay as detailed in the manufacturer’s protocol (Pierce, Thermo Fischer).   

6.2.6 Mice 

Female C57BL/6 and B6.SJL-PtprcaPepcb/BoyJ (CD45.1+) mice were used at 6–12 weeks 

of age (Jackson Laboratory, Bar Harbor, ME) for immunization. OVA-specific type 2 T cells 

were harvested from C57BL/6 mice for the proliferation study.  Spleenocytes for the CTL 

lysis study were harvested from C57BL/6 mice. All animals were maintained under standard 

animal house conditions in accordance with Department of Laboratory Animal Research.   
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6.2.6.1 Immunization protocols 

For the OVA-specific CTL lysis and OT-II proliferation assays:  CD45.2 mice were injected in 

the footpads with 2 week delay microparticles containing 20µg of OVA at 4 or 22 days prior to 

the harvest of OT-II cells and spleenocytes.  Positive control mice were injected with OVA-alum 

4 days prior to harvest of OT-II cells and spleenocytes.   

For IgG titre assays:  C57BL/6 mice were injected intradermally with a 1:1 mixture of 2 and 4 

week delay microparticles containing a total of 40µg/300ul OVA-alum (50µl/footpad and 

200µl/abdomen).  As a positive control naïve B6 mice were inoculated with 20µg/150ul OVA-

alum (25µl/footpad and 100µl/abdomen) at days 14 and 28.   

6.2.6.2 OT-II Proliferation Assay 

CD4 T cells were harvested from the lymph nodes (LN) of OTII mice and were purified using 

anti-CD4 MACS microbeads (Miltenyi Biotec Ltd., Bisley, U.K.).  Five x 10
6
 T cells were 

labeled with 5 µM CFSE for 8 minutes then washed immediately 20ml HBSS (serum-free) 3 

times and resuspended 2.5 x 10
7
 for injection (i.v., s.c., and footpad) into recipients. Popliteal 

and inguinal lymph nodes harvested 96 hours after transfer and dispersed into cells through a cell 

strainer.  Harvested cells were labeled with Anti-CD45.1-PE (A20) and CD4-PerCP-Cy5.5 

(RM4-5) and analyzed for reduction CFSE concentration in CD4+ and CD45.1+ cells by flow 

cytometry on a BD LSRII with CellQuest software (BD Biosciences). Final analysis and 

graphical output were performed using FlowJo software (Treestar, Costa Mesa, CA). 
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6.2.6.3 Measurement of ova-specific CTL lysis  

Spleens were collected from naïve B6 mice and cells were collected in sterile PBS through a cell 

strainer.  Spleenocytes were isolated with red blood cell lysis buffer and washed 3x with PBS.  

Naive syngeneic spleenocytes were resuspended in RPMI and split into two equal populations.  

One set was pulsed with 100 µg/ml SIINFEKL for 1 hour at 37
o
C and labeled with 5µM Horizon 

V450 (V450hi).  The other set was incubated for 1 hour without SIINFEKL and labeled with 

either 0.5µM V450 (v450lo) (Molecular Probes, Eugene, OR, USA). Labeled and pulsed cells 

were subsequently mixed at a 1:1 ratio and approximately 10
7
 cells were injected intravenously 

into immunized mice. After 12h, mice were killed and spleenocytes were collected as done in 

Section 6.2.6.2.  Spleenocytes were then fixed and analyzed for the disappearance of V450 by 

flow cytometry on a BD LSRII with CellQuest software (BD Biosciences). The percentage of 

OVA-specific lysis was calculated as follows: % specific lysis = (1 - ((ratio of V450lo/V450hi in 

naive mice)/(ratio of V450lo/V450hi in immunized mice))) x 100. 

6.2.6.4 Titre measurement of IgG1a and IgG2c 

Two weeks after the completion of vaccination, serum concentrations of ova specific 

immunoglobulin was measured by ELISA as done previously
163

.  Blood was collected from each 

mouse by cardiac puncture and centrifuged to isolate serum. For the ELISA, OVA coated plates 

were washed (1:2200 tween), blocked with 10% FBS (1hr) and washed again prior to a 2hr 

incubation with serum samples. Plates were washed and secondary antibodies for IgG1 and 

IgG2c (1:20,000 dilutions, 10% FBS) were added for a 1hr incubation. Plates were washed and 

incubated with avidin-horseradish peroxidase conjugate (HRP, 1:1000 in 10% FBS) for 45min.  

Plates were washed and then developed with alternate exposure to TMB and 0.01M sulfuric acid.  
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Titres were determined by calculating the dilution required to achieve a cut-off o.d. reading of 

0.2, and were expressed as the reciprocal of that dilution. 

6.3 RESULTS 

Literature includes a wealth of articles documenting the development of microparticle vaccines 

via experimental methods
11,152,155,161,164-173

.  These articles often include tables listing varied 

manufacturing parameters or material properties and figures documenting each variant’s in vitro 

release behavior. In this chapter formulation development began with in silico predictions to 

calculate which materials would be best for production of the required delayed release 

formulations.  Each DRV was then produced and tested in vitro for its release profile.  In vivo 

studies were then performed to determine how the immune response compared to controls 

including manual administration of unencapsulated antigen and adjuvant at specified times. 
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Figure 25: In vitro release of OVA from delayed release microparticles measured by spectraphotometry.  

 Model predictions appear as blue lines, dissolution of OVA-alum is shown with green dots and release from 

microparticles is shown with red circles.  Microparticles of A) RG502H displayed a significantly burst B) RG502.  

SEM inserts show internal morphology of each microparticle set.  
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6.3.1  Formulation Designs and In vitro Release 

Simulations were performed to determine the best materials for the DRV applications.  

Computations were initialized based on the rate of OVA dissolution from OVA-alum and a delay 

of 1, 2, or 4 weeks.   Calculations identified 50:50 PLGA copolymers with molecular weights of 

12kDa, 21kDa, and 53kDa as the most suitable materials production of the DRVs.   Acylated and 

acid end capped versions of the 12kDa polymers both tested for their effect on release (Figure 

25).  Results were also compared both to dissolution data from OVA-alum and model 

predictions.    Because the acylated polymer yielded a lower initial burst than the acid end 

capped, this type chemistry was used for the 21kDa and 53kDa polymers as well.  In vitro 

release assays confirmed that formulations produced from these model-identified materials 

yielded release profiles in line with both model predictions (Figure 26).   
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Figure 26:  Microparticle formulations tailored for 2 and 4 week lag phases.   

Vertical dotted lines indicate the start of weeks 2 and 4.  In vitro release data appears as points and corresponding in 

silico predictions appear as lines. The loading 2 week (blue) and 4 week (red) formulations were measured at 

19.2µg/mg and 26.0µg/mg, respectively.   

6.3.2 Formulations Properties  

The DRV microparticles were produced by double emulsion and analyzed by SEM.  

Microparticles lyophilized immediately following fabrication were found to have a rough surface 

morphology that became significantly smoother following the 48hours of washing used to 

remove the initial burst (Figure 27).  Confocal microscopy across microparticles’ widest plane of 

focus shows that the majority of OVA-alum is encapsulated within the DRV in discrete 

occlusions (Figure 28).  This internal distribution of antigen is similar to the pattern discrete 

occlusions surrounded by dense a polymer matrix imaged via SEM (Figure 25B, insert).  Sizing 

by the volume impedance method yielded volume-averaged diameters of 25.4±7.8µm and 

19.2±7.4 for DRV and SRF particles respectively (Figure 29).  This ensures that 99.6% of the 

DRV particles are greater than 5µm in diameter.   

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 R

e
le

a
s
e
d

Time (day)



118 

 

Figure 27:  Comparison of OVA-alum microparticles A) pre- and B) post- wash. 

A) Post fabrication lyophilized microparticles display a rough morphology.  B) After washing in PBS for 48 hours, 

microparticle morphology becomes significantly smoother.  Scale bars are 10μm.   

 

Figure 28: Confocal microscopy analysis of 4 week DRV formulation. 

 Doping of particles with OVA-alexa fluor 647 conjugate shows antigen grouped in well-defined occlusions and 

scattered on the particle surface.  Select microparticles in the plane of focus have been ringed with dashed yellow 

lines under higher contrast to highlight their boundaries.  Scale bar is 10µm.   

A) B) 
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Figure 29: Sample sizing result from DRV particles.   

Almost all of the antigen (99.5%) is found in particles that are too large to phagocytose (> 5um diameter). 

 

6.3.3 In vivo testing of the DRV 

The alum adjuvant used in the DRV formulation is noted for promoting an Th2 immune 

response, but phagocytized microparticles are noted for promoting a strong CTL immune 

response.  Assays of both Th2 and CTL responses to antigen presentation throughout the 

duration of antigen release will be needed to assess how model-designed microparticles perform 

in vivo.  An attempt was also made to isolate and evaluate dendritic cells for the uptake of 

fluorescently labeled OVA.  However, this cell population proved too scarce to provide a 

sensitive measure of antigen presentation. (Data not shown) 
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6.3.3.1 OT-II proliferation 

The day 4 and 22 sample points used in the OT-II proliferation assay capture both periods of lag 

and periods of active antigen release from the DRV microparticles shown in Figure 26.  The OT-

II response to the DRV microparticles at day 4 was significantly lower than the positive OVA-

alum control or microparticles, post-burst at day 18 (p<0.001).  OT-II proliferation at the later 

time points rivaled the maximal response to an equal injection of OVA-alum, reported to occur 

four to six days post immunization (Figure 30). 
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Figure 30: Comparison of OT-II cell proliferation from DRV microparticles and control vaccines 

Proliferation of OT-II cells was charted by reduction in CFSE concentration and gates were drawn based on naïve 

mice.  Typical OT-II proliferation results for A) OVA-alum 4 days post injection, B) DRV microparticles 4 days 

post injection and C) DRV microparticles 22 days post injection appear as shaded lines.  In each histogram (A, B, C) 

proliferation results for a characteristic naïve mouse appear as a solid red peak.   B) Fold increase in proliferation 

results from the DRV microparticles at day 22 and OVA-alum group are significantly higher the DRV microparticle 

at day 4 (p < 10
-5

, n=3).   
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6.3.3.2 OVA-specific CTL lysis 

Protein alum vaccines are not typically associated with strong cellular immunity.  However, 

microparticle phagocytosis can generate a prompt CTL response.  Two injections of OVA-alum 

(days 0 & 7) only reduced SIINFEKL-pulsed spleenocyte populations by as much as 18.4±3.1%.  

An equivalent two dose ovalbumin microparticle vaccine (one injection, Figure 25A) produced 

comparably low killing of pulsed spleenocytes (max = 20.6±5.4, Figure 31).  In contrast, this 

CTL activity assay produce killing of more than 90% for a single dose gene-gun vaccine.   

 

Figure 31: OVA-specific CTL lysis 

The two injection ova-alum vaccine and two dose microparticles generate CTL responses at 19 and 26 days post 

inoculation that are not statistically different at p < 0.15. 
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6.3.3.3 IgG1 and IgG2c titre 

 Antibody titres are not as immediate (or sensitive) a measurement of immune response as CTL 

lysis or OT-II proliferation.  However, they do offer a means of determining if the overall isotype 

of a delayed release vaccine differs from that of a matching OVA-alum vaccine.  This chapter 

compared IgG responses from an ova alum vaccine with doses at day 0 and day 14 (positive 

control) to a DRV that release OVA-alum at two and four weeks post injection (Figure 26).  For 

both vaccines IgG1 titres were 3-5 times higher than the IgG2c titres (Figure 32).  Also the titres 

generated by the OVA-alum and delayed release vaccines are indistinguishable at alphas up to 

0.5 or higher.  ELISA titres measured 8 weeks after inoculation were negligible in all groups 

(data not shown). 
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Figure 32:  Titres of OVA-specific IgG2c and IgG1 antibodies.  

Serial dilutions of serum samples were performed to ensure detection of A) IgG2c and B) IgG1.  Serum from mice 

immunized with OVA adsorbed to 1-5µm iron beads (IgG+) was used as an internal control to confirm successful 

completion of the assay.  Based on the dilution data, the 1x groups were selected for further evaluation.  C) OVA-

alum and DRV produced comparable fold increase in antibody titres over naïve.  As expected for alum adjuvant, 

IgG1 titres were significantly higher than IgG2c for both groups. (p  < 0.006) 

B) 

A) 

C) 
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6.3.4 Results Summary 

Microparticles engineered for delayed antigen delivery displayed in vitro release profiles that 

match model predictions.  In vivo these particles elicit a strong OT-II response following antigen 

release, but not before it.  Antibody titres and CTL lysis results also show that the microparticles 

do not skew the response to the OVA alum antigen.  These results are comparable to 

unencapsulated OVA-alum, which generates immunity where the humoral (type 2) response is 

characteristically stronger than the cellular (type 1) response.   

6.4  DISCUSSION 

Testing of the delayed release vaccine (DRV) platform from this chapter demonstrates that 

antigen can be masked from the adaptive immune system by microparticle carriers and then 

revealed at set times to provoke a specific immune response.  Generating this proof-of-concept 

data required new microparticles designed specifically to suppress the initial burst and provide a 

set lag or delay prior to antigen release.   These particles delivered ovalbumin antigen co-

encapsulated with alum, a common vaccine adjuvant known to promote a strong type II immune 

response.  Because microparticles can prompt a type I response, this DRV design allowed 

changes in vaccine adjuvancy to be documented clearly though T cell activity studies and 

antibody titres.  These studies add new information on how formulations can be custom-designed 

to tune the timing of vaccine delivery without changing the type of the immune response.   
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All four DRV formulations (burst-lag-burst in Figure 24A, 1 week delay in Figure 24B, 2 

week delay in Figure 25, and 4 week delay in Figure 25) designed in this chapter produced in 

vitro release profiles conforming to model predictions, a prerequisite for animal studies.  Early 

work on microparticle vaccines produced designs with burst-lag-bursts or continuous release 

profiles, but yielded no clear metric for controlling in vitro antigen release and the need for 

delivery systems whose release kinetics can be precisely tuned continues to be cited today
157,174

.  

When evaluated for specifically timed, delayed antigen release, the 30 year body of literature on 

controlled release vaccines includes numerous examples where the timing antigen release has 

been altered or the initial antigen release suppressed, but none where both features are found 

together
157,169,174

.  As evidence, researchers developing depot formulations with timed bursts of 

antigen release typically tested 7 designs in order to discover the one or two where the duration 

of release was suitable for animal study
155,156,164,170,172,175

.  Similarly, in one of the few studies to 

demonstrate delayed release (less than 7% initial burst) the five different designs tested all 

released Hepatitis B antigen between days 40 and 50
161

.  More recent work has shifted from the 

design of specific antigen release profiles and towards the enhancement of vaccine adjuvancy 

with microparticles that are designed to be taken up by the antigen presenting cells (APCs)
174,176-

182
.  In the low pH environments of APCs lysozomal compartments microparticles rapidly 

degrade instead of producing burst-lag-burst or delayed release profiles
38,52

.  In contrast, larger 

microparticles (>5μm diameter), like the DRV formulations tested in this chapter, establish 

depots once injected and can be engineered deliver multiple, delayed antigen doses, 

autonomously replicating the administration schedules for vaccines such as DPT, Hep. B, 

Rotavirus, Hib, and inactivated Polio.  However, the success of this depot-based immunization 
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strategy depends, not only the microparticle vaccine’s release profile, but also its ability to 

deliver antigen and adjuvant intact.   

Many reviews on microparticle vaccines cite antigen stability as a major hurdle to 

establishing protective immunity with a single injection and the strategies adopted for increasing 

antigen stability are diverse
11,152,157,174

.  Researcher have co-encapsulated sugars, synthesized 

novel materials, and even produced formulations with surface-bound, instead of encapsulated, 

antigens
11

.  These approaches, however, are not easy to integrate into a delayed release vaccine.  

Both novel materials, such as polyethylene glycol copolymers, and surface adsorption strategies, 

would alter the antigen’s release profile from the desired lag-burst pattern
183,184

.  Similarly small 

molecule excipients, like mannitol, release from formulations much more rapidly than proteins 

and show correspondingly less protection at late points in time, specifically when a DRV 

delivers antigen
77,185,186

.  Instead of taking one of these approaches, the strategy adopted for 

stabilizing antigen in this chapter comes from a non-vaccine protein controlled release 

formulation.  Nutropin® Depot, the only protein-loaded PLGA microparticles ever to achieve 

FDA approval, stabilized human growth hormone in complexes with zinc salts
74,187,188

.  This 

payload bears resemblance to protein-alum complexes found in diphtheria, tetanus toxoid and 

other vaccines
149

.  Accordingly the present work microencapsulated OVA-alum using a double 

emulsions process similar to the one used in the production of Nutropin® Depot and 

demonstrated immunogenicity. 

An immunologically successful DRV design was defined as one that would match the 

strong type II immune responses generated by OVA-alum, without also generating the 

measureable type I cell mediated immune attributed to the phagocytosis of 

microparticles
11,189,190

.  In the present work, OVA-specific Th2 proliferation and IgG1 ELISA 
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assays detect measureable type II immune responses from the DRV microparticles following 

antigen release.   Prior use of the OT-II proliferation assay on OVA-alum vaccines has generated 

comparable proliferation responses to the unencapsulated OVA-alum positive control used in 

this chapter
189

. Other microparticle vaccines have also been tested with the OT-II cell 

proliferation assays, but these formulations were not designed to mask antigen as done in the 

present Chapter
168,181

.  Instead, this prior work documents a strong immediate response to < 5µm 

microparticles that act as adjuvants by passively targeting antigen presenting cells
168,181

.  These 

adjuvant-sized particles have also been documented generate a strong type 1 immune response 

through the lysis of SIINFEKL-pulsed spleenocytes and levels IgG2c titres, the two metrics used 

in this Chapter
11

.  Because no Type-I response was anticipated from OVA-alum, or indeed 

detected, gene gun and OVA adsorbed to iron beads were used as also positive controls in 

addition to OVA-alum.  Results from these controls are consistent with well-functioning CTL-

lysis and ELISA assays of other gene gun and particle vaccines
190,191

.   These studies of type I 

response, along with the positive OT-II and IgG1 results confirm that the DRV formulations 

tested do not alter alum’s intrinsically Type 2 adjuvancy.   

While the ability to autonomously deliver antigen is essential, the issue of payload size 

must be considered as well if moving forward with the development of the delayed release 

vaccine platform.  In the OVA mouse model, doses of at least 10µg OVA (with alum)/50µl/hind-

footpad are required to generate significant T cell proliferation, which is among the most 

sensitive metrics immune responses
189

.  This dosing level of approaches the upper concentration 

limit for the delivery of microparticles via a 25G needle (25mg of particles per mL).   Doses 

more than 7 times higher than this level are used in assays that test protective immunity
190

.  

Clinical vaccines offer more leeway with doses as low as 10µg of antigen per ml for the 
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Hepatitis B vaccine, but significant improvements to loading or administration are still required 

for further testing in the OVA mouse model.  This may be achieved with a different 

microencapsulation process where a core of lyophilized antigen-adjuvant is coated with 

biodegradable polymer
192

.   

6.5 CONCLUSIONS 

The aim of the chapter was to design PLGA microspheres that would mask the injection of 

antigen for a specific period of time without otherwise skewing the immune response.  Insights 

from the mathematical model developed in Chapter 3.0 guided the selection of polymers that 

would delay release of antigen release for 1, 2 or 4 weeks.  Testing of these DRV microparticles 

in the OVA mouse model strongly suggests that microparticles do indeed hide antigen.   Results 

also show that the depot-sized microparticles do not skew the type II response provoked by the 

alum adjuvant towards a type I response, which would be indicative of microparticle 

phagocytosis.  This DRV platform, if successful in disease relevant animal models, may provide 

a template for autonomously delivering common vaccines through a single injection at birth.   
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7.0  CASE STUDY: A SUSTAINED RELEASE FORMULATION  

7.1 INTRODUCTION 

Developing a platform that sustains a constant rate of drug release over weeks or months without 

a permanent implants has continued to challenge controlled release engineers since the early 

1980s
193

.  Successes achieved thus far typically involve large synthetic drugs with wide 

therapeutic windows
194

.  The one exception, Nutropin® Depot, had its FDA approval withdrawn 

in 2004 for financial reasons.  A study of the literature on macromolecule formulations reveals 

that peptide and protein release from PLGA microparticles typically begins with a significant 

initial burst (>20%) and often includes a lag before any subsequent release 

5,6,30,43,68,70,72,73,80,100,104,108,109,195
.  Methods of altering this naturally triphasic release profile 

abound (as reviewed in Chapter 2.0 ), but all still require extensive experimental work to 

initialize mathematical models or otherwise precisely tune release.   

Beyond PLGAs a number of other biodegradable and bioresobable polymers have been 

developed specifically for controlled release.  A case example is polyanhydrides, which were 

designed to degrade much faster than their polyester counterparts.  The rapid degradation of 

polyanhydrides was postulated to cause erosion preferentially from the surface inward, thereby 

releasing drug at a much more constant rate than bulk eroding PLGA microparticles
53,196,197

.  

Experiments on the release of hydrophobic drugs from large polyanhydride matrix implants did 
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confirm their ability to sustain release. Recent mathematical models, including our own in 

Chapter 4.0 , show that this linear or sustained release behavior is not maintained for smaller 

matrices or very hydrophilic, small molecule drugs
41,126

. Even without this limitation, the design 

of polyanhydride matrices has remained limited by the absence of a predictive model.  The same 

is true for new biodegradable polymers designed specifically for even better sustained release, 

the stabilization of protein cargos, or ease of injection.  Hydrogels of polyethene glycol or 

polyaminoacids, polyphosphoazines, cross-linked dextrans and drug-polymer conjugates all must 

be tuned through iterative experiments and in many cases require modification of the materials’ 

chemistry to achieve the desired release behavior
187,198

.  Further, the library of data on these 

newer polymers is not yet complete enough to support the development and validation of a 

predictive mathematical model.  Simply put, literature does not include any case of ab initio 

mathematically engineering a formulation that sustains a constant rate of release over weeks or 

months.   

As demonstrated in Chapter 6.0 , the math model developed in Chapter 3.0  can be used 

to predict the release profiles of theoretical polymer matrices.  Data in Figure 12 even suggests 

that a combination of PLGA polymers can be used to sustain release.  Testing of the sustained 

release concept could focus on development of formulation that delivers a water-soluble 

macromolecule for as little as one month.  This goal would provide a proof of concept challenge 

on par with the develop of nutropin depot
199

.  Macromolecules therapeutics also provide a very 

clinically relevant scenario for testing the benefits of controlled release because they are not 

noted for naturally releasing at a constant rate and their delivery currently requires frequent 

injections, which makes them A) painful to administer and B) a high non-adherence risk
12,42,200

.   
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When considering pharmaceutically relevant macromolecules for a case study, the 

peptide drug enfuvirtide (T20) is of the utmost interest.  The drug is currently delivered in two 

daily 90mg bolus injections which sustain a 2.94 mg/L serum concentration in highly infirmed 

patients
201

. This administration schedule makes adherence to enfuvirtide prescriptions 

challenging
202

. In the body, enfuvirtide is rapidly metabolized by proteases that consume nearly 

90% of each injection 
201

. Encapsulation in PLGA microparticles may protect this peptide from 

degradation and lower treatment costs by using the peptide more efficiently.  Finally, as one of 

the only approved HIV fusion inhibitors, which prevents viral entry into T cells, a sustained 

release formulation of enfuvirtide could be used to treat HIV prophylactically and may prove 

more successful than oral prophylactics, which have been significantly hampered by poor 

adherence in clinical trials
203

.   

To the best of our knowledge, a FDA-approved, controlled release formulation of 

enfuvirtide has yet to be realized. Recent efforts by the pharmaceutical company Trimeris Inc. 

have focused on developing controlled release versions of similar anti-HIV peptides in their 

product pipeline (TRI-1144 and TRI-999), using novel technologies, such as entrapment in an 

organic salt complex or in situ forming gel
204

.  At its best, the organic salt formulation 

maintained near-constant rate of drug delivery over two weeks following a distinct initial burst 

(Figure 33).  However, noticeable fluctuations also occurred in the in vitro release rate before the 

assay was terminated on day 16, with just 50% of drug being released.  Results from the gel 

formulation showed even more variability in release data (data not shown)
204

.   Although both of 

these formulations offer improvements over the rapidly metabolized peptide solution delivered 

by bolus injection, resorting to these novel technologies has not necessarily brought researchers 

significantly closer to obtaining desirable release profiles with a formulation that will swiftly 
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progress through US regulatory mechanisms. In PLGA formulations, enfuvirtide sustained 

release has only been documented for 72 hours before ceasing 
205

. However, longer, more linear 

release of this drug holds the potential to improve patient quality of life both through less-

burdensome administration and reduced treatment cost. 

Figure 33: In vitro and in vivo enfuvirtide delivery profiles from a controlled release formulation.[78]   

The novel peptide-organic salt complex formulation fails to maintain constant plasma concentrations of the anti-HIV 

peptide or provide a constant rate of drug delivery. 
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In this chapter, we develop a sustained release formulation engineered for the month-long delivery of enfuvirtide 

and other macromolecules.  The model from Chapter 3.0 was employed to identify a suitable combination of 

polymers for this application.  The resulting formulation contained three microparticle components whose in vitro 

release profiles were assayed with either a dextran Texas Red conjugate or enfuvirtide.  The enfuvirtide formulations 

that performed in accordance with model predictions of in vitro release were tested for activity using a cell-based 

HIV infectivity assay.   

7.2 MATERIALS AND METHODS 

7.2.1 Materials 

Acylated poly(lactic-co-glycolic) acid (PLGA) copolymers RG502 (Mwo ≈ 9kDa) and RG504 

(Mwo ≈ 30kDa) were purchased from Boehringer Ingelheim (Ingelheim, Germany).  Acid end-

capped 50:50 poly(lactic-co-glycolic) acid (4.6kDa) was purchased from Lakeshore Biomaterials 

(Surmodics, Inc.).  Enfuvirtide (T-20) was obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAID, NIH from Roche. Solvents, assay reagents, and 

other chemicals were purchased from Thermo Fisher Scientific (Waltham, MA). 

7.2.2 Microparticle Production 

Microparticles were produced by the double emulsion process as done in Section 5.2.2  (Table 

4).  Enfuvirtide was dissolved at 2mg/ml in a solution of 22.55 mg/ml of mannitol and 2.39 

mg/ml of sodium carbonate.  200ul of enfuvirtide solution was sonicated in 4ml of 

dichloromethane with 200mg of PLGA.   This mixture was homogenized in 2% PVA and the 
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dichloromethane was allowed evaporate over 4 hours before microparticles were collected by 

centrifugation.   

7.2.3 Microparticle Characterization 

Microparticles were characterized by size, loading, surface morphology and internal morphology 

as done in Section 6.2.4.  Microparticle size distribution was measured by the volume impedance 

method.  The loading of enfuvirtide was measured by dissolution in DMSO and extraction in 

50mM NaOH / 5% SDS.  Scanning electron microscopy was used to evaluate particle surface 

morphology and laser confocal microscopy was used to determine the internal distribution of 

drug within the microparticles.  

7.2.4 HPLC detection 

High pressure liquid chromatography (HPLC) was used to measure the concentration and 

stability of T20 released from microparticles as done in Section 5.2.4.  Samples of releaste from 

T20 microparticles were diluted 1:20 with 35:65 ACN:H2O containing 175µg/ml porcine insulin.  

Standards of T20 (serial dilutions: 20-0.04µg/ml) were assayed at a 1:20 dilution with 35:65 

ACN:H2O as well.  A standard curve was calculated from the ratio blanked peak areas for the 

two T20 peaks and one peak for insulin.   
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7.2.5 Enfuvirtide (T20) Stability Calculations 

Unencapsulated enfuvirtide possessed two HPLC peaks that changed magnitude following 

encapsulation and release.  To calculate stability, the heights of these two peaks were set relative 

to a 100% scale for both the released (post-encapsulation) and unencapsulated enfuvirtide.  The 

percent stability was then calculated based on the ratio of the pre- and post- encapsulation peaks 

for “active” enfuvirtide.   

7.2.6 T20 Activity Testing 

The activity of enfuvirtide was tested using a single replication cycle infectvivty assay as done 

previously
206

.  Briefly, TZM cells cultured in DMEM (90%), 10% FBS, 100 units of Penicillin 

and 0.1 mg/ml of Streptomycin, were plated in 96 well tissue culture plates at 2.5 x 10
3
 

cells/well. Five-fold dilutions of releaste from t20 loaded or 3 fold dilutions of releasate from 

blank microparticles were added plated cells.  Standard curves were prepared with serial 

dilutions of T20 spanning 10,000 to 0.01ng/ml.  All groups described above were prepared and 

tested in duplicate.  Following a 24 hour incubation, virus stock (at 50%ID, as determined 

previously 
207

) was added to all wells and 37°C incubation was continued for 2 days.   Then cells 

were lysed and analyzed with a luciferase assay (Promega).  As a control, standard curves of T20 

(10,000 to 0.01ng/ml and 0ng/ml) were incubated with plated cells (no virus), which were lysed 

after 72hours and measured luciferase baseline and cell health (via MTS assay).   
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7.3 RESULTS 

The performance goal for the design of the sustained release formulation (SRF) platform 

is the month long delivery of a peptide of protein.  Based on this goal, predictions made using the 

model in Chapter 3.0  identified a mixture of three microparticles types that sustain release of 

T20 for one month (Table 5).  Because detection T20 release required implementation of a new 

HPLC protocol, a preliminary formulation was created using 3kDa dextran-Texas Red (dexTR) 

conjugate, which was predicted to have the same release kinetics as T20.  Imaging of these 

particles by SEM revealed these particles to have uniformly smooth surfaces and a spherical 

shape (Figure 34A). A similar morphology was observed for T20 loaded microparticles as well 

(data not shown).  Confocal microscopy of the dexTR microparticles revealed drug occluded in 

small pockets scattered randomly throughout the polymer matrix (Figure 34B).   This 

microscopy data is indicative of a formulation that supplies little initial burst release as detailed 

in Section 3.2.1,  Figure 7.   

 

Table 5:  Composition  of 

50:50 PLGA Mixture 

Mw (kDa) Amount (%) 

5.8 ± 1.5 20.1 

10.2 ± 1.4 31.8 

31.8 ± 2.3 48.1 
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Figure 34: Scanning electron and confocal microscopy images of particles from SRF formulation.   

SEM images of A) RG502 and B) RG504 particles show uniform shape and smooth surface morphology.  Confocal 

images of C) DLG1A, D) RG502 and E) RG504 microparticles show Dex-TR (representative of T20) dispersed 

throughout the matrix. (Scale bars are 10µm) 

A) B) 

C) D) E) 
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In vitro release testing from the dexTR loaded formulation confirmed that each component 

microparticle of the formulation released according to model predictions and, in combination, 

produced a linear release profile (Figure 35).  Comparable results were achieved with particles 

mixed in model prescribed ratio prior to in vitro testing (Figure 36).  This successful validation 

of the formulation design with dexTR provided grounds for testing the design with the 

therapeutic peptide enfuvirtide.   

 

Figure 35: In vitro release of DexTR from SRF microparticles.  

A) In vitro release (dots) follows model prediction (line) release for each formulation. B) When combined at the 

model-defined ratio these individual release profiles continue at a near-constant rate for 30 days. 

A) B) 



140 

 

Figure 36: In vitro release from the model defined mixture of DexTR microparticles.  

Experimental data is shown with green dots. Predicted release for the microparticle mixture appears as a dashed red 

line. Model solutions were computed at times corresponding to each experimental data point and linearly 

interpolated.  The target rate of release is indicated with a solid blue line.   

 

Because enfuvirtide lacked the fluorescent label of dexTR, measurement of its in vitro 

release was slightly more complicated.  Implementation of the HPLC protocol for detecting T20 

in serum described in Section 7.2.4, yielded a standard curve that followed a power expression 

from 0.04µg/ml to 20.00µg/ml (Figure 38).  This detection range allowed the successful 

detection of T20’s in vitro release (Figure 37).  A comparison of the predicted and in vitro 

release profiles yielded mixed results.  Both the 9kDa and 30kDa formulation performed in 

accordance with model predictions.  However, release from the 4.6kDa polymer matrix was 

significantly slower than predicted.  In fact, the measured in vitro release profile more closely 

mimicked the predicted behavior of larger macromolecule, such as a protein, rather than that of 
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the 4.5kDa peptide, T20.  Because 4.6kDa polymer was the only one with acid-terminated chain 

ends, matrix charge may play a role in the observed deviation.  This speculation aside, the in 

vitro release data from the T20 formulation confirms that 2 of the 3 component microparticles 

tested do indeed follow model predictions, making them suitable for activity testing.   

 

Figure 37: In vitro release of T20 from three model-defined component microparticles of SRF  

Experimental data measured by HPLC are shown as triangles and predictions are shown with lines.  A) T20 release 

from DLG1A polymer microparticles more closely followed behavior anticipated for protein (dashed  line) than for 

the 4.5kDa peptide, enfuvirtide (solid line).  B)   Data from RG502 (green) and RG504 (red) polymer microparticle 

closely matched model predictions.    

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 R

e
le

a
s
e
d

Time (day)

Peptide 

Prediction 

Protein 

Prediction 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 R

e
le

a
s
e
d

Time (day)

A) B) 



142 

 

7.3.1 Enfuvirtide Activity Results 

Microparticles of PLGA produce an acidic microclime as they hydrolyze, which can denature or 

degrade sensitive peptide and protein cargos.  If these changes occur, the rate of active agent 

release can be altered from model predictions.  Because of this, released enfuvirtide was assayed 

both for stability and activity.  

 

Figure 38: Detection of T20 by HPLC.  

Area of T20 peak was zeroed against blank and then normalized by an insulin internal standard. The trend line is y = 

0.0191x
0.8700

; r
2
 = 0.944.  Data point size is indicative of error (n = 3). 
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7.3.1.1  Measurement of T20 stability 

When a peptide is degraded, in a complex with the polymer or aggregated, it exhibits a shift in 

retention time that can be detected with HPLC.  Prior to encapsulation, T20 exhibited two minor 

peaks accounting for 5% and 0.5% of the overall composition.  At lower T20 concentrations 

(more likely to be found in releasate) the smallest peak was undetectable. Further, the main and 

minor peaks accounted for 90±7% and 10±7% of T20 respectively due to the sensitivity of 

HPLC measurements. Following encapsulation and release, peptide stability was largely 

maintained for each of the component formulations in the SRF.  Table 6 lists the % of peptide 

remaining intact for each formulation during periods of measurable release (i.e. when release 

was consistently above the detection limit).    

Table 6: T20 Stability via Analysis of HPLC Peak Areas 

Formulation A (4.6kDa) B (9.0kDa) C (30kDa) 

Window (day) 10-19 8-18 23-30 

T20 Intact (%) 83 ±  4% 83 ± 19% 72 ± 23% 
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7.3.1.2 Measurement of T20 inhibition of viral replication 

When examining the potential of using the sustained release formulation of T20 for HIV 

prophylaxis depends on both release kinetics and the activity of the released drug.  Assessment 

the T20 releasate’s ability of prevent HIV infection was made using the TZM cell functional 

assay.  Sensitivity was documented over a range of 0.027ng/ml to 330ng/ml below which <5% of 

cells were uninfected and above which >95% of cells were uninfected (Figure 39).  A sigmoidal 

fit to this data, yields IC-50 and IC-90 values of 11.1ng/ml and 139ng/mL, respectively.  An 

MTS assay conducted on TZM cells exposed to microparticle releasate or stock enfuvirtide 

showed no significant change from naïve cells, confirming that the infectivity assay results are 

not an artifact of diminishing cell health (data not shown).   

Figure 39: Luciferase expression of TZM cells exposed to HIV in the presence of T20. 

 Infectivity data (red dots) were fit by a sigmoid function (solid blue line) scaled to average max and min luc 

expression, as shown on graph.  Least squares optimization yielded a = 2.0±0.7 and b = -1.7±0.2 (bounds of a 95% 

confidence interval, dotted blue lines). Goodness of fit: SSE = 5955 and r
2
 = 0.993. (Prior to analysis, data was 

normalized by the baseline expression of luc, 528.5 data not shown.)   
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With the sigmoidal fit standard curve, the concentration of active enfuvirtide in releasate 

samples was back calculated.  The cumulative release of active T20, as measured by the TZM 

assay, closely follows overall T20 release as measured by HPLC for formulations B and C 

(Figure 40).   Formulation A was not tested for activity because its release kinetics did not follow 

model predictions.  

 

Figure 40:  The rate of active T20 release (green circles) follows model predictions (red lines).   

Active and stable (HPLC, blue triangles) T20 also release at the comparable rates.  The cumulative release of active 

T20 (green circles) was calculated from infectivity assay results and standard curve in Figure 39.  Loss of T20 

activity at later times (lower concentration) may lead to higher than predicted initial release in A. 
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7.3.2 Results Summary 

The model-guided development of a platform for sustained macromolecule release 

produced a unique formulation composed of three microparticle components.  When tested with 

a model agent, dexTR, all three of these component matrices performed as predicted.  However, 

when T20 was supplemented for dexTR, only 2 of the 3 formulation performed as predicted.  

These two successful designs were tested for activity, which was found to vary little over the 

duration or release.  

7.4 DISCUSSION 

The design of a platform for the sustained delivery of macromolecules could improve patient 

adherence by as much as 85%.  This chapter generated proof-of-concept data for its sustained 

release formulation on the delivery of enfuvirtide for 1 month.  Polymers were selected for this 

formulation based on predictions from the model in Chapter 3.0  as opposed to a variation-of-

parameters, experimental approach that is the current state of the art
19,20

.  With the exception of 

the 4.6kDa acid end-capped polymer, release profiles were comparable for enfuvirtide and a 

texas-red labeled dextran “peptide” surrogate.  An addition to the current model quantifying how 

changes to polymer chemistry affect release might resolve this exception.  However, the accurate 

performance of acylated (ester end-capped) polymer microparticles still provides opportunity for 

the activity analysis of released enfuvirtide with viral infectivity assay.  This single replication 
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cycle infectivity assay confirmed that the delivery of active enfuvirtide was consistent with the 

overall rate of enfuvirtide release.  

The sustained release formulation bypasses the natural tendency of PLGA copolymers to 

provide triphasic release profiles (as described in Section 2.1) by using three such copolymers in 

combinations.  Interestingly a similar strategy was adopted in a recent article where two of 

piroxicam loaded microspheres were combined to extend release, although creation of a linear 

release profile was hampered by limited control over the release behaviors of the building 

blocks
208

.  Sustained release has also been achieved by polymer blends or reduced drying rates, 

which served to broaden PLGA’s polydisperisty
68,209

.  However, these have proven difficult to 

control and adapt to new manufacturing or performance requirements.  In contrast, the three 

build-blocks used herein work together in unison to sustain macromolecule release.  Further, the 

extensive validation model conducted in Section 3.3.1 suggests that modeling results should 

apply equally well to many other water-soluble peptides or macromolecules in the 3-5kDa range.  

However, one of the three T20 formulations tested deviated from model predictions and requires 

additional discussion. 

The only formulation whose release deviated from predictions during in vitro release 

testing suggests that an additional factor or factors might affect drug release under specific 

conditions.  The most likely explanation is that release of the enfuvirtide peptide (T20) was 

slowed by interacts with the 4.6kDa polymer used in matrix, not accounted for in the initial 

prediction.  In environments of pH < 4.1 enfuvirtide become positively charged, which would 

allow it to interact electrostatically with the carboxylic acid chain ends of the encapsulating 

polymer matrix.  This is supported by the fact that 4.6kDa polymer matrix, which had by far the 

highest concentration of acidic chain ends of all T20 formulations produced, was the only one to 
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show deviation.  If T20 is bound irreversibly to the polymer matrix, it might behave like a large 

protein complex that is predicted to release when the polymer matrix degrades into soluble 

oligomer.  However, T20’s release rate falls in between the predictions for the bound and 

unbound systems (Figure 37A). This behavior is not presently covered by model from chapter 3.  

Retrospective analysis of the model’s correlation between D and Rp points to two outliers, SPF66 

(isoelectric point at pH = 4.8) and leuprolide (isoelectric point at pH = 9.9), that may be affected 

similar interactions.  Further study of peptides with isoelectric points at pH of 4 or greater should 

provide the data needed to better understand how reversible electrostatic interactions effect drug 

release.   

The activity of enfuvirtide, an HIV fusion inhibitor, was quantified in terms of its 

stability and ability to block viral infection. The present work assesses the stability of the peptide 

through analysis of HPLC peaks.  As enfuvirtide degrades, new peaks appear in the HPLC 

chromatograph preceding the original peptide peak and grow in proportion to the concentration 

of each new form of the peptide. Prior work on the detection of enfuvirtide by HPLC has 

identified two truncated forms of enfuvirtide, which also appear in the our data
210

.  The fact that 

these peaks only grow by 10-30% following encapsulation and release is surprising for such a 

large peptide. In literature, peptides and proteins ranging from octreotide acetate to stromal-

derived factor-1 alpha are typically denature, degraded or otherwise inactivated by the double 

emulsion encapsulation process or by the prolonged incubation within the microparticles before 

release
76,94,132,159

.   For example, the stability of octreotide peptide was reduced to 59% and 34% 

of the original following its release from 10kDa and 30kDa 50:50 PLGA microparticles, 

respectively 
132

.  Enfuvirtide’s comparative stability of 83% in the 4.6kDa and 9.0kDa PLGA 

microparticles may arise from its insolubility under the acidic conditions that arise as these 
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polymers degrade
211,212

.  (For the less acidic 33kDa microparticles, a stability of 72% was 

measured upon release.)  Similarly strong stability data have been achieved with solid-in-oil-in-

water (S/O/W) emulsions, where peptides or proteins were encapsulated as dry powders
94,213

.  

However, release from these S/O/W systems is dominated by large initial burst (>60%) because 

the dry powders are difficult to mix uniformly during production and remain near the particle 

surface
94

.  In contrast, the enfuvirtide microparticles developed herein delivered less than 10% 

their payloads in the initial burst because the enfuvirtide was encapsulated in a soluble form and 

is thought to only solidify as the microparticles degrade and become acidic.  These details on 

enfuvirtide stability, however, are only an indicator of activity or the drug’s ability to prevent 

HIV from entering CD4+ cells, which itself can be tested in cell-based assays.    

The single replication cycle cell infectivity assays offer a convenient and sensitive way to 

quantify enfuvirtide activity as well as many other potentially prophylactic drugs that can 

prevent a virus from integrating its DNA into a host chromosome.  The present work used this 

type of assay to measure the infectivity of HIV in the presence of releasate from enfuvirtide 

loaded microparticles and known concentrations of unencapsulated enfuvirtide, which served as 

a control.  Both sample and control groups were pre-incubated with the target TZM cells (HeLa 

cells that expresses CD4, CXCR4 and CCR5 and contains Tat-inducible luciferase reporter) to 

simulate the prophylactic use of enfuvirtide.  A comparable prophylactic assay setup has not 

been previously attempted, but co-incubation of enfuvirtide and HIV-1 isolates with TZM cells 

in prior studies yielded IC-50 ranges of 0.45-22.5ng/ml and IC-90 ranges of 2.25-802ng/ml from 

an assortment of HIV-1 isolates
214

.  The enfuvirtide standards of present work were assayed with 

mixed HIV-1 isolates instead of single isolates.  The resulting IC-50 (11.1 ng/ml) and IC-90 

(139ng/ml) values from this mixture are comparable to the average IC-50 (7.2±8.1ng/ml) and IC-
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90 (312±346ng/ml) of the single isolates tested previously
214

. This result is also consistent with 

data from other HELA cell-based HIV infectivity assays, which establish enfuvirtide IC-50 and 

IC-90 ranges at 4-31.2ng/ml and 67-342ng/ml, respectively, 
215,216

.   

To the best of our knowledge, the present work represents the first instance of a cell-

based assay being used assess the activity of enfuvirtide released from a drug formulation in 

vitro or in vivo.  Prior work on enfuvirtide formulations typically moves directly from in vitro 

release testing to in vivo pharmacokinetic studies where enfuvirtide concentration in serum is 

measured by HPLC
204,205

.  This measurement of intact or stable enfuvirtide is not necessarily the 

same as concentration of active enfuvirtide. The present work uses the TZM cell assay to 

measure the rate of active enfuvirtide release and confirms that it closely follows its in vitro 

release rate as measured by HPLC. This suggests that the enfuvirtide activity also remains 

constant for the duration of release. However, to conclusively determine if stable enfuvirtide is 

active, an infectivity assay (TZM cell or other) would need to be used on enfuvirtide isolated by 

chromatography of in vitro releasate or in vivo serum samples.   

7.5 CONCLUSIONS 

Using enfuvirtide as a representative peptide drug, the sustained release formulation developed 

herein has been evaluated as a platform for the month-long delivery of active agent.  The design 

of the formulation was aided by predictions from the model developed in Chapter 3.0 that 

identified commercially available PLGA polymers which would provide acceptable rates and 

durations of release.  The building-block solution to sustained release by this approach affords 
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flexibility in compensating for the stability of drug in each polymer microparticle component of 

the formulation.  Cell culture testing of enfuvirtide’s ability to prevent infection also confirmed 

the rate of active agent release.  As this result may be due to enfuvirtide’s insolubility in acidic 

environments, further investigations of agent activity would be warranted if this formulation 

were used with other peptides or proteins.   

 



152 

 

8.0  FUTURE WORK  

The studies reported in Chapters 3.0 - 7.0 establish that mathematical models can predict the in 

vitro performance of long-acting controlled release and even be used to expedite their design.  

The utility of this finding is limited by the availability of system-specific predictive models and, 

in the case of formulation design, sensibly defined algorithms that return physically relevant 

critical quality attributes and process parameters.  To this end, significant work remains to be 

done.  The predictive models derived in Chapters 3.0 and 4.0  do not include mathematics for 

describing hydrophobicity or electrostatic interactions.  For instance, the data in Figure 37 

suggests that peptide charge alters release from select polymer matrices.  This effect might be 

difficult to document because the acid environment that arises as microparticles degrade may 

alter the charge of agents with sufficiently high pKa(s).  Mathematics accounting both for 

microparticle acidification and the impact of electrostatic interactions on agent diffusion would 

be needed to predict the release behavior of affected systems.  Another limitation comes from 

matrix size, the lower limit of which has yet to be fully explored.  At nano-scale sizes, the linear 

correlation used to handle autocatalysis may breakdown due to quenching the autocatalytic 

acidic microclime by buffer salts.  When widely accepted and consistent methods of nanoparticle 

manufacture and characterization are developed, it should be possible to conduct mathematical 

validations of their in vitro release behavior and extend existing correlations to cover these 
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systems.  Alternately, it might become practical to integrate expressions describing role of acidic 

catalysts in the degradation of the microparticles.  This would allow changes in particle size and 

agent charge (a function of pH) to be accurately accounted for in future predictions of in vitro 

release and extend the gains in efficiency realized with the current models to a much broader 

range of pharmaceuticals scenarios. 

Certain pharmaceutical scenarios are not effectively represented by in vitro release data. 

Cases that do not involve water-soluble agents being delivered locally (as done in Chapters 6.0 

and 7.0 ) fall into this category. These cases include the large majority of drugs not presently 

delivered by injection and many sparingly or even highly insoluble drugs as well.  Designing 

useful formulations for such drugs requires predictions of systemic drug concentrations in serum 

(i.e. in vivo pharmacokinetic data).  Making accurate in vivo predictions would require a model 

with an extensive record of validation against pharmacokinetic data from controlled release 

formulations.  In developing the models in Chapters 3.0 and 4.0 , nearly 50 data sets from a 

library of over 300 research articles were ultimately used in validation testing.   Building an 

accurate “in vivo” model would also likely require increased knowledge of how the physiological 

environment affects drug release and transport or distribution from depot medications.   Live 

animal imaging (LAI) techniques, such as magnetic resonance imaging, may offer a means of 

monitoring how a dynamic physiological environment spatially and temporally impacts drug 

release. A model developed based on insights from LAI studies could be validated against 

published sets of in vitro and in vivo release data to confirm the accuracy of its predictions.     

Beyond design, predictions of in vitro behavior are useful for the Quality by Design 

manufacturing of controlled release formulations.  Documentation of how manufacturing 

conditions affect in vitro release can help engineers determine if a formulation will be safe to 
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use.  For application to QbD, the system properties used by predictive mathematical models must 

be correlated to the performance of specific manufacturing technologies or facilities.  This may 

prove complicated because tuning occlusion size, matrix geometry and other system properties 

requires experience with specific manufacturing equipment and protocols.  It may also prove that 

multiple aspects of the manufacturing process affect the system properties computed by the 

predictive model.    This is likely the case for polymer molecular weight, which may be altered 

by shear during emulsification or slow drying during lyophilization.  Establishing correlations 

between system properties now computed and the process parameters that affect them will be an 

essential next step in the application of current predictive models to QbD.  This quasi-empirical, 

model-driven approach should prove significantly more efficient than the entirely empirical, 

design of experiments approach now used to generate quality assessments of formulations.  

Beyond the derivation, implementation and application of a model of release for 

hydrolysable polymer matrices, this thesis serves to highlight how a math model can provide 

new ways of addressing challenges in drug delivery.   The increasingly complex scenarios 

presented by environmentally responsive materials, zero-dimensional nanotubes and others as 

well as by new treatment goals may be better resolved by a similarly math model-rich approach.  

Models may prove essential for a number of applications requiring precise temporo-spatial 

control, including the delivery of growth factors for regenerative medicine and the delivery of 

cytokines or chemokines for immunotherapy.  Furthermore, to better incorporate controlled 

release behavior into new therapeutics, models will also be needed for predicting in vivo 

performance of hydrolysable polymer matrices.  Fortunately new techniques, such as live animal 

imaging, may make it easier to measure and compare in vivo release kinetics, helping researchers 

understand how in vitro design tools might be applied to precisely control the concentration of 
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drug in a specific physiological compartment over time.  With continued advances to the design 

“tool-box”, future scientists and engineers may someday tailor controlled release formulations to 

provide specific dosing kinetics to any given physiological compartment by simply selecting 

correct materials and processing methods.  This would pave the way not only to the broad-scale 

production of custom release systems for any application, but perhaps even to patient-specific, or 

“individualized”, controlled release systems that can accompany individualized medicine in the 

future. 
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APPENDIX 

GLOSSARY OF ABBREVIATIONS 

A.1 MODEL VAIRABLES 

CA Concentration of dissolved agent in the polymer matrix 

CAmax Maximum concentration of dissolved agent (solubility limit) 

CAo Initial concentration of dissolved agent 

CS Concentration of solid, crystalline or powdered, agent 

CSo Initial concentration of solid agent in the polymer matrix 

CW Concentration of  water in polymer matrix 

CWo Concentration of  water in the reservoir 

DA Diffusivity of agent through the polymer matrix  

DW Diffusivity of water through the polymer matrix 

ε Matrix porosity 

k Polymer degradation rate 

kdis Agent dissolution rate 

L Length of cylindrical matrix 

Mw Polymer molecular weight 
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Mwo Average initial polymer molecular weight 

Mwr Molecular weight of release 

P(t) Cumulative fraction of agent retained in the matrix at time t 

R(t) Cumulative fraction of agent released from the matrix by time t 

Rocc Occlusion radius 

Rp Matrix dimension(s) across which diffusive release occurs, e.g. 

particle radius, film thickness, or critical length 

σ Variance in Mwr 

t Time 

A.2 POLYMER CHEMISTRIES 

PLGA   poly(lactic-co-glycolic acid) 

PLA   poly(lactic acid) 

SA   sebacic ahydride 

CPH   1,6-bis-p-carboxyphenoxy hexane 

PSA   poly sebacic anhydride 

PFADSA 1:1 Poly(fatty acid dimer-co-sebacic acid) anhydride  

POE  Poly(ortho-ester) 
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