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NEW ASTROPHYSICAL PROBES OF DARK MATTER

Mei-Yu Wang, PhD

University of Pittsburgh, 2012

In my thesis, I present four studies to explore astrophysical methods for understanding

dark matter properties. To understand the nature of dark matter, I explore a few unstable

dark matter models that are invoked as ways to address apparent discrepancies between the

predictions of standard cold dark matter and observations of small-scale galactic structure.

My studies are aimed at developing independent large-scale constraints on these models. One

of the model is a decaying dark matter model such that one dark matter particle decays into

two relativistic non-interacting particles. In the second model, a dark matter particle decays

into a less massive, stable dark matter particle with a recoil kick velocity Vk and a relativistic

non-interacting particle. I consider two types of experiments: one is weak lensing cosmic

shear with future or forthcoming surveys like Dark Energy Survey (DES) and Large Synoptic

Survey Telescope (LSST); the other one is Lyman-α forest spectrum, which has contemporary

data from Sloan Digital Sky Survey (SDSS) and other observations. I found that large-scale

structure growth is sensitive to the change of dark matter properties due to these decay

processes, and they can provide competitive constraints comparing to other existing limits.

On small scale, the gravitational interplay of baryon and dark matter can affect the clustering

of dark matter. I examine adiabatic contraction (AC) models what are traditionally used to

parametrize the dark matter response to the cooling of baryons by investigating a suite of

numerical simulations. We found that the errors in AC reconstructions are correlated with

baryonic physics and certain halo properties. Our results indicate that existing AC models

need significant calibration in order to predicting realistic matter distribution.
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1.0 INTRODUCTION

Many and various astronomical observations indicate that ∼ 5/6 of the mass density of

the Universe is non-baryonic dark matter (reviews include [1, 2, 3] ). The simplest model

of so-called cold dark matter (CDM) can be successfully applied to interpret an enormous

amount of observational data, particularly those characterizing the large-scale (>∼ a few Mpc)

structure of the Universe and the gross properties of galaxies. In particular, the CDM model

is consistent with the cosmic microwave background (CMB) anisotropy spectrum measured

by the Wilkinson Microwave Anisotropy Probe (WMAP) and observations of the large-

scale (k<∼ 0.1h/Mpc) galaxy clustering spectrum measured by the Sloan Digital Sky Survey

(SDSS) [4]. Despite of the success of CDM model on large scales, the nature of dark matter

is still unknown.

On smaller scales, the situation is murkier. Several observations indicate possible dis-

crepancies between CDM theory and observations on smaller scales. Among these are the

well-known missing satellites problem [5, 6] and the steep rotation curves of low-surface

brightness galaxies [7, 8, 9]. Also, a recent analysis by [10] puts forward an additional chal-

lenge to the CDM model. The authors used simulated MW-like haloes in a CDM cosmology

to show that massive subhalos of MW-like haloes seem to be too dense to host the bright

MW dSphs. On the theoretical side, it is necessary to model highly nonlinear phenomena

to predict the properties of galaxies and the dark matter halos in which they reside. Nev-

ertheless, these potential shortcomings of CDM may point toward novel properties of dark

matter and many alternatives to CDM have been considered, including warm dark matter

(WDM) [11, 12, 13, 14, 15], self-interacting dark matter (SIDM) [16], and dark matter that

decays with long lifetime [17, 18, 19, 20, 21, 22]. These different models are invoked to solve

the small scale problem, and yet recently studies have shown that they solve the different
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small scale problems in different levels (for example, [23, 24, 25, 26]). As the observational

data and theoretical prediction accuracy improves, we will soon have the ability to determine

which one will provide the best solution. So many people are now putting efforts to explore

these models in details.

Although these alternative dark matter models are aimed to solve the small scale problem,

so far some of the most robust constraints come from large-scale observations. In our work

we investigate two classes of decaying dark matter and their impact on large-scale structure

growth. One is a benchmark decaying dark matter model such that one dark matter particle

decays into two relativistic non-interacting particles [27]. Current best constraints on this

model come from WMAP experiment [28]. The sensitivity of this observable comes from

the change of universe expansion history and late integrated Sachs-Wolfe (LISW) effect

due to increment in relativistic energy budget. In our work [21], we explore the effect of

decaying dark matter on large-scale matter fluctuation growth by solving the full sets of

perturbation equations using CMBFAST. We also discuss the possible effect on dark matter

halo density profiles to account for the modification in nonlinear scale. In our following work

[22], we examine a another class of decaying dark matter model which has been considered

in a number of recent studies [17, 18, 19, 20, 29, 30, 31]. In such models, a dark matter

particle of mass M decays into a less massive daughter particle of mass m = (1 -f)M and

a significantly lighter, relativistic particle, with a lifetime on the order of the age of the

Universe. The mass difference will introduce an excess kick velocity Vk ∼ fc to the stable

daughter dark matter particles relative to their parent particles, where c is the speed of

light. The kick velocity at decay imparts upon the stable daughter particles the ability to

smooth gravitational potential perturbations on scales smaller than the classic free-streaming

scale. This behavior is similar to the cosmological influence of massive neutrinos or WDM.

This free-streaming effect of decaying dark matter has been explored by [31]. In our work,

we investigate this effect on cosmological perturbation evolution by solving perturbation

equations in the non-relativisitc kick velocity limits and look in details of their effects on

structure growth.

To consider constraints from large-scale structure growth, it was noted that the observa-

tions of power on the smallest linear scales in the Lyman-α forest may provide particularly
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stringent constraints. This technique is found to provide particularly stringent constraints on

WDM [32], one of the most motivated alternative dark matter model. The current Lyman-α

forest data can probe linear fluctuation up to a few Mpc around redshift z∼2-4 [33, 34, 35].

It has been point out recently [24, 25] that the allowed WDM mass from Lyman-α analy-

sis [36, 37]is not sufficient to explain the observed core size in dwarf galaxies. The tension

between large-scale and small scale observation in WDM may be able to find solutions in

baryonic feedback [38, 24, 39] or novel properties of WDM [40]. Following the results of re-

cent WDM study, it will be interested to see how other alternative dark matter models will

behave in these checks and understand whether they can provide a more reasonable solution

to this small and large-scale tension that can not be solved by WDM. We are thus motivated

to investigate the effect of decaying dark matter on Lyman-α forest observation. In our

work, we choose to look at the decay model that generate a kick to the daughter particle

[18, 19, 29]. The decay process also suppresses structure growth below the free-streaming

scale like WDM, but the free-streaming scale increases with time as the decaying happens,

which is opposite to WDM. We will utilize both the Lyman-α-forest-derived matter power

spectrum data set[33, 34, 41] and SDSS Lyman-α forest flux power spectrum [35]. The

approaches to analyze these two types of data are different, and the SDSS data set requires

running numerical simulations to calibrate it due to the small systematics error. We will

describe the details of the data and our approaches later in the methodology section.

Along with the Lyman-α forest method, weak lensing surveys can be used to probe further

clustering properties of dark matter particles on sub-galactic scales, as the next generation

of these surveys (such as e.g. LSST, WFIRST, Euclid) will be able to measure the matter

power spectrum at scales down to 1 - 10 h/Mpc with a few percent accuracy. Recently

[42] argued that future weak lensing survey can provide competitive constraining power for

WDM properties with the existing Lyman-α limits. However, the main challenge for the weak

lensing is to properly calibrate the nonlinear scale of matter power spectrum. The effect of

alternative dark matter model on nonlinear structure evolution can be calibrated numerically

[43, 44] and theoretically [45]. The effect from baryonic physics is also important at the

nonlinear scale. However, there are still debates about how baryonic physics affect matter

distribution. It is generally believed that as baryons cool and fall toward the center of a dark
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matter halo, their condensation pulls the host material along, increasing the central density

of the halo [46, 47, 48]. These effect can be modeled by a modified halo concentration-mass

relation and it will boost the weak lensing signal due to the increment in nonlinear power [49].

However, several recent studies that investigate the effect of baryonic feedback had found

that including different baryonic processes may have different impact on matter distribution.

It is possible to produce suppression of matter clustering through baryonic feedback [50, 51].

Thus it might be challenging to disentangle the effect from dark matter properties and baryon

physics in the modification of nonlinear matter power spectrum. Before we can come up with

a realistic way to model baryonic process, the power of future weak lensing measurement

should be quoted with caution when nonlinear scale is included. Nevertheless, we show in our

work that, even if we restrict to linear scale, forthcoming or future weak lensing experiment

can still provide some interesting constraints on some unstable dark matter models.

Baryons interact with the dark matter gravitationally, so it is necessary to determine

how baryonic processes alter the distribution of dark matter in the Universe. It is known

that if the baryonic gravitational potential changes slowly, the corresponding dark matter

distribution can be modeled by adiabatic contraction (AC) process [46, 47, 48]. However, this

approach has been shown to have about 10-20 % difference in matter distribution prediction

in numerical simulation tests that have been performes. Despite the inadequacies of theory,

the process of adiabatic contraction has long been considered a part of standard galaxy

formation lore and has been used extensively in the mass modelling of galaxies and clusters.

AC models have also been used to study the origin of the Tully-Fisher relation for spiral

galaxies [52, 53, 54], the expected γ-ray signal from secondary dark matter annihilation in the

centers of galaxies [55, 56, 57, 58, 59], strong lensing [60, 61], and calibrations of the initial

mass function [62]. Although adiabatic contraction provides a simple scheme for predicting

dark matter distributions in the context of baryonic co-evolution, without the expensive need

for fully hydrodynamical computations, the modelling of AC theory has become a source of

uncertainty itself and must be carefully checked against the various input physics given to

cosmological simulations. The problems arising in numerical simulation tests are likely due to

the fact that the baryon potential change is too rapid to obey an adiabatic process. Not until

recently the implementation of AGN in a wide range of numerical simulations, all simulations
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suffered from the ”overcooling problem.” Baryons cool too rapidly, coalesce at the centers

of halos, and form stars at a rate such that most simulations predict significantly greater

amounts of stars than there are in observed galaxies. Adiabatic contraction models have

been found to overestimate the actual dark matter distribution [47]. It is generally believed

that including AGN feedback can prevent the overcooling of the baryonic component by

ejecting large quantities of gas at high redshift, when the supermassive black holes were

growing rapidly [63, 64]. Some studies found that in such strong feedback systems adiabatic

contraction models can underestimate matter density distributions [65]. In our work, we

show that with moderate AGN feedback, the adiabaticity of the system can be restored and

thus the AC model prediction accuracy is improved. We also look for correlations between

AC model behaviors and halo properties such that it can be linked to the effect of baryon

physics to the environment. We will discuss the results and limits due to resolution issues

in the conclusion section.

In this thesis, I present the results of three studies and one work on progress. The first

two of these explore the effects of unstable dark matter on large-scale structures. In §2.1, I

begin with the simple model of dark matter particles decay into purely relativistic species,

then I also consider another class of model that dark matter particles decay into a massive

daughter particle that is stable and had gained excess kick velocity during the decay process.

The details of modified perturbation equations are described in §2.1.1 which are related to

the evolution of linear structure growth. In §2.1.2 I use analytical methods to explore the

impacts on dark matter halo. In these studies, I compute the effects of unstable dark matter

on lensing power spectrum observables. I then estimate the precision of these observables

to be measured with forthcoming data and the resulting constraints that can be placed on

unstable dark matter models. The methods of weak lensing forecasting is described in §2.2.

I present the results in §3.1 and conclusions in §4.

In §2.3, I move to contemporary constraints. The contemporary constraints that are least

subject to specific assumptions about nonlinear effects are likely to come from the Lyman-

α forest. This is because the Lyman-α forest is observed at high-redshift, when structure

on relevant scales was more securely in the linear regime. Nevertheless, current and future

data are sufficiently precise that numerical simulations are necessary to address this issue.
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I will shortly explain the data that I adopt in my analysis in §2.3.1. I will also describe

my simulation program in §2.3.2 to calibrate the effects from various model parameters and

present my preliminary constraints on unstable dark matter from the Lyman-α forest in §3.2.

Finally, in §2.4, I will describe halo contraction in the presence of baryons. In this study

I compared halo properties and test adiabatic contraction models in a suite of simulations

that are implemented with different baryonic process. I will shortly describe some of the

simulation features in §2.4. The details of the simulations are described in [66]. A few adia-

batic contraction models have been proposed, and I will illustrate in §2.4.2 how I tested them

in simulations. I will present my findings of how adiabatic contraction model predictions

behave with baryon and halo properties in §3.3 and conclusions in §4.
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2.0 METHODOLOGY

2.1 EFFECT OF DECAYING DARK MATTER MODELS ON

STRUCTURE GROWTH

2.1.1 Linear perturbation evolution in decaying dark matter models

For the first unstable dark matter model, we explore a restricted set of models in which

a massive parent dark matter particle decays into a significantly lighter pair of daughter

particles. For the sake of specificity, we adopt a decaying dark matter (DDM) scenario in

which massive majorana parent particles decay into relativistic daughter (RD) particles via

two-body decay and use this scenario to benchmark observational constraints. In such a

scenario, the lifetime of the unstable dark matter particle lifetime (Γ−1) is the only non-

standard free parameter. Here Γ is the decay rate and it is equal to inverse of the lifetime.

The distribution functions of DDM (fDDM) and RD (fRD) evolve according to the coupled

Einstein-Boltzmann equations. In particular (e.g., [67, 27]),

dfDDM

dτ
= −a

2mDDMΓ

εDDM

fDDM ' −aΓfDDM (2.1)

dfRD

dτ
=

a2mDDMΓ

εDDM

fDDM ' aΓfDDM, (2.2)

where τ is the conformal time and εDDM , and mDDM are the energy, and mass of decaying

dark matter. Following established procedure, we express the distribution function of species

X as a zeroth-order distribution plus a perturbation,

fX(~x, ~q, τ) = f 0
X(q, τ)[1 + ΨX(~x, ~q, τ)] (2.3)
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The evolution of the mean energy density for DDM and its RD particles follow from the

zeroth-order integrals of Eq. (2.1) and Eq. (2.2),

ρ̇DDM + 3HρDDM = −aΓρDDM (2.4)

ρ̇RD + 4HρRD = aΓρDDM (2.5)

Here and throughout, we designate ẏ as the time derivative of y. In the limit of a massive

DDM particle, evolution of the comoving density ρDDMa
3 approaches exp(−Γt).

We have modified the publicly-available CMBFAST code of Seljak and Zaldarriaga [68]

to compute the potential or matter power spectra. As we noted in § 2.2, we quote the

perturbation equations explicitly in synchronous gauge simply because CMBFAST is written

in terms of the synchronous gauge perturbations. Gauge transformations can be made

straightforwardly [67].

In the synchronous gauge, the Fourier transform of the Boltzmann equation can be

written
∂Ψ

∂τ
+ i

q

E
(~k · n̂)Ψ +

d ln f0

d ln q

[
η̇ − ḣ+ 6η̇

2
(k̂ · n̂)2

]
=

1

f0

(
∂f

∂τ

)
C

(2.6)

The collision term, which is on the right hand side of Eq. (2.6) and describes the DDM

decays, is proportional to f 0
DDM, rendering the equations describing the evolution of DDM

perturbations identical to those of standard, stable cold dark matter at the lowest order in

perturbation theory. The perturbation equations describing the daughter particles are less

trivial. Following [27] and [67], we expand the perturbation equations for RD particles in a

series of Legendre polynomials Pl(x), yielding

FRD(~k, n̂, τ) =

∫
dqq3f 0

RD(q, τ)ΨRD∫
dqq3f 0

RD(q, τ)
=
∞∑
l=0

(−i)l(2l + 1)FRD,l(~k, τ)Pl(k̂· n̂), (2.7)

where FRD,l(~k, τ) are the harmonic expansion coefficients. The orthonormality of Legendre

polynomials allows the evolution equations to be written as

δ̇RD = −2

3
(ḣ+ 2θRD) + aΓ

ρDDM

ρRD

(δDDM − δRD) (2.8a)

θ̇RD = k2(
δRD

4
− σRD)− aΓ

ρDDM

ρRD

θRD (2.8b)

σ̇RD =
2

15
(2θRD + ḣ+ 6η̇ − 9

2
kFRD,3)− aΓ

ρDDM

ρRD

σRD (2.8c)
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ḞRD =
k

2l + 1
[lFRD,l−1 − (l + 1)FRD,l+1]− aΓ

ρDDM

ρRD

FRD,l, l ≥ 3 (2.8d)

at first order, where δRD ≡ FRD,1, θRD ≡ 3/4kFRD,1, σRD ≡ FRD,2, and h is the scalar trace

of the metric perturbation, all in well-established notation.

The growth of perturbation is affected by the change of energy density among the rel-

ativistic and non-relativistic components. From Eq. (2.4) and Eq. (2.5) we can see that in

the decaying dark matter scenario the comoving dark matter density decreases exponen-

tially, and all of this decrement is transferred into relativistic energy density. Consequently,

perturbation growth exhibits a scale-dependent suppression relative to stable dark matter,

where the relevant scale is the horizon size at the epoch of decay. This late-time suppression

of structure growth in large part provides the necessary leverage for weak lensing constraints

on unstable dark matter. For daughter particles, the additional ρDDM/ρRD terms have an

impact on scales greater than the horizon at the time of decay [27].

As we will discuss below in § 2.2, some of the constraining power of weak gravita-

tional lensing, which is the observable that we consider for this class of DDM, comes from

observations made on scales where linear perturbation theory is no longer adequate (e.g.,

[69, 70, 71, 72, 73, 74]). The constraints we forecast in the following sections that are based

on linear scales only are robust and interesting in and of themselves. However, the utility

of weak lensing is greatly increased if scales modified by nonlinearity can also be exploited

for cosmological constraints [74], so we explore multiple proposed nonlinear corrections to

linear evolution in § 2.1.2.

We also consider a second class of model in which that dark matter decays into another

species of stable dark matter with a small mass splitting, DDM→ SDM + L, where L denotes

a “massless” daughter particle, SDM is the stable dark matter with mass m, and DDM is

the decaying dark matter with mass M . The mass loss fraction f of DDM is directly related

to the kick velocity deposited to the SDM particle by f ' Vk/c from energy-momentum

conservation. The following relations are valid in the rest frame of DDM particles with the

kick velocity of SDM being the velocity relative to the DDM rest frame.
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Following the same approach as previous model, the rate of change in the DDM distri-

bution function is

ḟDDM(qDDM) = − a
2MΓ

EDDM
fDDM(qDDM) ' −aΓfDDM(qDDM), (2.9)

where ḟ denotes the partial derivative of the distribution function with respect to conformal

time, dτ = dt/a, Γ is the decay rate, a is the cosmological scale factor, qDDM is the comoving

momentum, and EDDM =
√
q2
DDM +M2a2. This is very similar to Eq. (2.1) in the previous

model. Specializing to two-body decays, one can show that the corresponding change to the

SDM distribution function will be [75, 19]

ḟSDM(pSDM) =
aM2Γ

2ESDM pSDM pCM

∫ Ef

Ei

dE fDDM(p), (2.10)

where

Ef,i =
1

2
ESDMm

2
0 ± pSDMpCMM/m2

SDM ,

the quantity pCM is the center-of-mass momentum, and m2
0 ≡M2 +m2.

We again define the average distribution function, f 0
i (q, τ), and the perturbation to the

distribution function, Ψi(~x, ~q, τ), for each different species of particle according to Eq. (2.3)

Since DDM particles are non-relativistic, their zero order phase-space distribution is the

Maxwell-Boltzmann function. The zero order phase-space distribution function of SDM is

[31, 19]

f0,SDM(q, a) =
ΓΩMρcrit
Mq3H(a′)

exp(−Γtq) Θ(apCM − q) (2.11)

where q is the comoving momentum of the SDM particle, a′ = q/pCM , and tq = t(a′).

This can be derived from the fact that the decay always generates SDM particles with the

same physical momentum pCM . In the SDM distribution function, the spectrum of different

momenta arises from decays at different times, designated by the cosmic scale factor a′ so

that q = pCMa
′. The Heaviside step function Θ(apCM − q) (see Eq. 2.11) enforces a cut-off

qmax = apCM at a given redshift a. This maximum momentum stems from the fact that the

maximum momentum at a given redshift is from decay processes happening at that time,
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while SDM with lower momenta are from the earlier decays. To be explicit, the average

comoving number density of SDM particles is the integral of f0 over momentum space,

nSDM =

∫
q2dq dΩ f0,SDM(q) (2.12)

→ dnSDM(q) = 4πq2dq f0,SDM(q) (2.13)

Thus f0,SDM can be written as

f0,SDM(q) =
dnSDM(q)

q2dq
=

dnSDM
q2pCMda′

=
1

H(a′)q3

dnSDM
dt′

(2.14)

→ f0,SDM(q) =
1

MH(a′)q3

d(ρDDMa
′3)

dt′
(2.15)

This then implies Eq. (2.11) after enforcing the maximum momentum at qmax = apCM .

The evolution equations for the mean energy densities in the two dark matter components

are given by the integrals of Eq. 2.9 and Eq. 2.10 using the unperturbed distribution function.

They read

ρ̇DDM + 3
ȧ

a
ρDDM = −aΓρDDM (2.16)

and

ρ̇SDM + 3
ȧ

a
(ρSDM + PSDM) = Γ

am2
0

2M2
ρDDM (2.17)

respectively. Given the DDM energy density, the decay product energy density ρd = ρSDM +

ρL can be obtained using the first law of thermodynamics [76, 77] from

da3ρd
dτ

= −Pd
da3

dτ
− d(a3ρDDM)

dτ
. (2.18)

This implies that the energy density evolution of the massless daughter particle L is

ρ̇L + 3
ȧ

a
(ρL + PL) = ρ̇L + 4

ȧ

a
ρL = Γ

a(M2 −m2)

2M2
ρDDM (2.19)

To compute the matter power spectra, it is necessary to compute the perturbations

to the dark matter distributions and the metric. Our treatment of perturbations again

follows the conventions established in Ma and Bertschinger [78]. We will present our results

in the synchronous gauge, because this choice lends itself to numerical evaluation using

publicly-available CMBFAST code [68] or CAMB [79]. The same as the previous model, the
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DDM perturbation equations are the same as the well-known equations describing CDM.

For the decay products, the collision terms are

(
∂fSDM
∂τ

)
C

=
am2

0Γ

2ME
f0,DDM(1 + ΨDDM) (2.20)

and (
∂fL
∂τ

)
C

=
a(M2 −m2)Γ

2ME
f0,DDM(1 + ΨDDM). (2.21)

The factors m2
0/(2M

2) and (M2−m2)/(2M2) that appear in the SDM and L collision terms

can be easily understood. Consider a two-body decay in the rest frame of the DDM particle,

A→ B + C, with corresponding masses mA, mB, and mC . The energies of B and C in the

rest frame of A are EB = (m2
A +m2

B −m2
C)/(2mA) and EC = (m2

A +m2
C −m2

B)/(2mA). So

these factors represent the ratios of energy that have been deposited into different daughter

particle species.

The perturbations for the massless relativistic daughter particles may be treated in a

manner analogous to that of massless neutrinos, save for the peculiar distribution function

of the L. Following the treatment of relativistic daughter (RD) particles in previous mode and

evaluating the Boltzmann equation for our Legendre polynomial expansion as in Eq. (2.7)

yields the evolution of the multipole coefficients in the conventional notation,

δ̇L = −2

3
(ḣ+ 2θL) + aΓ

E2

M

ρDDM

ρL

(δDDM − δL), (2.22)

θ̇L = k2(
δL

4
− σL)− aΓ

E2

M

ρDDM

ρL

θL, (2.23)

σ̇L =
2

15
(2θL + ḣ+ 6η̇ − 9

4
kFL,3)− aΓ

E2

M

ρDDM

ρL

σL, (2.24)

and

ḞL,l =
k

2l + 1
[lFL,l−1 − (l + 1)FL,l+1]− aΓ

E2

M

ρDDM

ρL

FL,l, l ≥ 3, (2.25)

Here we have defined E1 = (M2 +m2)/(2M) = m2
0/(2M) and E2 = (M2 −m2)/(2M).
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The SDM must be treated differently to account for their finite mass and non-trivial

velocity kicks. We expand the perturbation to the distribution function, Ψ, in a Legendre

series

Ψ(~k, n̂, q, τ) =
∞∑
l=0

(−ı)l(2l + 1)Ψl(~k, q, τ)Pl(k̂ · n̂). (2.26)

We have dropped the “SDM” subscript on Ψ for brevity as there should be no cause for

confusion in this context. Evaluating the Boltzmann evolution equation on this expansion,

we obtain for the different multipoles

∂Ψ0

∂τ
= −qk

E
Ψ1 +

1

6
ḣ
d ln fSDM,0

d ln q
+ aΓ

E1

E

fDDM,0

fSDM,0

ΨDDM,0 − aΓ
E1

E

fDDM,0

fSDM,0

Ψ0, (2.27)

∂Ψ1

∂τ
=
qk

3E
(Ψ0 − 2Ψ2)− aΓ

E1

M

fDDM,0

fSDM,0

Ψ1, (2.28)

∂Ψ2

∂τ
=
qk

5E
(2Ψ1 − 3Ψ3)− (

1

15
ḣ+

2

5
η̇)
dfSDM,0

dlnq
− aΓ

E1

E

fDDM,0

fSDM,0

Ψ2, (2.29)

and
∂Ψl

∂τ
=

qk

(2l + 1)E
(lΨl−1 − (l + 1)Ψ(l+1))− aΓ

E1

M

fDDM,0

fSDM,0

Ψl. (2.30)

for l ≥ 3.

If we restrict attention only to cases in which the mass difference between the DDM and

SDM particles is small, f = 1−m/M � 1, the SDM particle will receive an extremely non-

relativistic kick velocity Vk ∼ fc. As we should expect, SDM behaves similarly to CDM, aside

from the fact that it is endowed with a non-negligible distribution of momentum due to the

DDM decays. In this limit, the SDM perturbations evolve as for a standard non-relativistic

dark matter species,

δ̇SDM = −θSDM −
1

2
ḣ+ aΓ

E1

M

ρDDM
ρSDM

(δDDM − δSDM) (2.31)

and

θ̇SDM = − ȧ
a
θSDM +

δPSDM
δρSDM

k2δSDM − aΓ
E1

M

ρDDM
ρSDM

θSDM , (2.32)

where

c2
s =

δPSDM
δρSDM

=
4π
3
a−4

∫
q2dq q

2

E
f0(q)Ψ0

4πa−4
∫
q2dqEf0(q)Ψ0

(2.33)
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The higher multipole terms become negligible in the non-relativistic as they are proportional

to powers of the ratio of the kinetic energy to the total energy, q/ε.

Though we solve the complete equations for the evolution of the SDM perturbations,

the non-relativistic kick velocity approximation is valid in most of our calculations. The

most interesting constraints from future surveys are relevant for models with Vk ≤ 10−3c

and relativistic kicks have already been ruled out for a wide range of lifetimes [80, 30].

Perturbation growth is suppressed on scales smaller than the free-streaming scale. The

free-streaming scale is, in turn, determined by an integral of the sound speed cs. We defer

a detailed discussion of the free-streaming scale in our decaying dark matter models and its

imprint on the matter, weak lensing, and Lyman-α forest power spectra to § 3.

2.1.2 Non-linear correction for decaying dark matter models

Our most robust constraints stem from perturbations on linear scales. However, it is inter-

esting to estimate the level of constraints that may be achieved by exploiting mildly non-

linear scales as is common practice in the established framework for exploring dark energy

with lensing and galaxy clustering statistics [81]. Including mildly nonlinear scales improves

constraints because it increases the signal-to-noise of lensing measurements and because it

includes information regarding the effects of DDM on the abundance and internal structures

of cluster-sized dark matter halos. We explore constraints including mildly nonlinear scales

as a means of estimating the level of constraints that may be achievable after an exhaustive

numerical simulation program, similar to what is being performed for dark energy [82].

We implement the nonlinear corrections to the matter and lensing power spectra using

the halo model [83]. The halo model is known to exhibit mild systematic offsets compared

to numerical simulations and the nonlinear correction of [84]. However, we use the halo

model because it provides a convenient framework for estimating the alterations to nonlinear

structure induced by DDM before performing an exhaustive numerical investigation. We

combine the standard aspects of the halo model with an analytical model proposed by Peter

[80] for the first DDM model and Sánchez-Salcedo [18] for the second one for the alterations

to dark matter halo structure due to the decay process.
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The halo model (see [83] for a review) is based on the assumption that all matter resides

within dark matter halos. The matter power spectrum is given by the sum of two terms,

P (k) = P1H(k) + P2H(k), (2.34)

where

P1H(k) =
1

ρ2
M

∫
dmm2 dn

dm
λ2(k|m), (2.35)

and

P2H(k) =
1

ρ2
M

P lin(k)

[∫
dmm

dn

dm
λ(k|m) bh(m)

]2

. (2.36)

In the foregoing equations, ρm is the mean matter density of the universe, m is halo mass,

λ(k|m) is the Fourier transform of the NFW density profile for a halo mass m, P lin(k)

is the linear matter power spectrum, and bh(m) is the halo bias function. The one-halo

term P1H(k), describes correlations among mass elements within a common halo while the

two-halo term P2H(k), is due to correlations among mass elements in distinct halos.

For the first class of model, to estimate the impact of decaying dark matter on matter

clustering we follow the approach denoted as Case 1 by [80] to describe modifications to

the halo mass function, halo bias, and internal halo structure. We then incorporate these

modifications into the halo model formulae of Eq. (2.35) and Eq. (2.36) to compute lensing

power spectra. This model is based upon the assumption that halos at early times are very

much like their counterparts in models of stable, cold dark matter (because little decay will

occur in any viable model) and that modifications to halo structure can be described by the

conservation of adiabatic invariants describing dark matter particle orbits.

Consider a population of dark matter halos that formed prior to any significant dark

matter decays such that halos at any time t � H−1
0 can be modeled as standard, CDM

halos. These halos then lose mass as their constituent dark matter particles decay. If the

decay lifetime is much larger than the halo dynamical timescale (as it will always be in cases

of interest because dynamical times are τdyn ≤ 0.1H−1
0 and viable regions of parameter space

are Γ−1 � H−1
0 ), then the halo gravitational potential changes adiabatically. Exploiting the

adiabatic invariance of angular momentum for particles on nearly circular orbits, establishes
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a prediction for the relationship between the initial and final matter distribution within a

dark matter halo,

Mi(ri)ri = Mf (rf )rf , (2.37)

where Mi(r) is the mass enclosed within radius r in the initial, early-time halo, Mf (r) is the

corresponding quantity describing the contemporary, late-time halo, and ri and rf are the

initial and final radii of a particle shell, assuming that mass shells never cross and particles

move in circular orbits. Eq. (2.37) is the basic relation of the standard, adiabatic contraction

model for predicting modifications of halo structure due to collisional processes [85, 46, 47].

For unstable dark matter, with a lifetime τddm, a fraction f(τddm, z) of unstable dark

matter particles will have decayed by redshift z. According to the adiabatic contraction

model, the mass enclosed in rf will be

Mf (rf ) = (1− f(τddm, z))Mi(ri) (2.38)

Inserting Eq. (2.38) into Eq. (2.37), the relationship between the initial and final radii is

rf = ri/(1− f(τddm, z)). (2.39)

If we assume that the initial dark matter halos can be well described by NFW profiles, the

final mass distribution will be

ρf (rf ) =
1

4πr2
f

dMf

drf
(2.40)

=
(1− f)2

4πr2
f

dMi

dri
(2.41)

=
(1− f)4ρs(

(1− f)rf
rs

)[
1 +

(1− f)rf
rs

]2 . (2.42)

We model the initial mass function dni/dm and halo bias bh(m) using the relations of

[86]. This choice is made for convenience because in models with stable dark matter, it

satisfies the necessary conditions that the halo model integrals contain all mass and that the

clustering of dark matter is unbiased with respect to itself. Some definitions of halo virial

radii will be altered by decays. In order to ensure that all mass remains accounted for, we

define halos as the mass within virial radii fixed to a definition of 200 times the average
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density of the Universe in the absence of decays. Thus, virial radii are fixed to be the same

as they would be in standard CDM, but halo masses are smaller by a factor of 1− f(Γ−1, z).

This definition preserves the convenient properties of the bias and mass relations in [86] and

is identical to their halo definition in the absence of dark matter decays.

The new halo mass function at mass Mf is

dnf (Mf , z)

dm
=
dni(Mi, z)

dm
(2.43)

and

bh(Mf ) = bh(Mi), (2.44)

where the initial and final masses are related via Eq. (2.38). In other words, we assume the

abundance and clustering to follow the abundance and clustering laws for halos of stable

dark matter of the corresponding masses. Notice that the abundance of halos of a given

contemporary mass Mf is reduced compared to that in a stable dark matter model because

the final mass reflects the mass loss due to decays and more massive halos are intrinsically

rare. Likewise, halos of final mass Mf are more strongly clustered than their counterparts

in stable dark matter scenarios because halo bias is an increasing function of mass (see [87]

for the basic theory of the mass function and bias). The halo density profiles also become

shallower as rs increases and ρs decreases when the decay-induced modifications to halo

profiles are accounted for. The reduction in the number of halos and the shallowing of halo

profiles reduces lensing power compared to a halo model with no accounting for mass loss.

As we show in § 3, this additional reduction in power is a distinctive feature that leads to

slightly more restrictive bounds on DDM lifetimes.

In the second class of DDM model, dark matter halos also begin with the same density

profiles as in the standard CDM model for relevant lifetimes (Γ−1 � H−1
0 ). Their density

distributions can be well described by Navarro et al. [88] (NFW) profiles. As the DDM

decays, the kinetic energy of dark matter particles will change because SDM particles receive

a small kick velocity from their parent particles. Assuming that we only consider decay

processes with f � 1, the mass of the parent and daughter particles will be nearly identical.

As discussed in Sánchez-Salcedo [18], on average the net effect of decays is to impart an

amount of energy ∆E ≈ mv2
k/2 on the dark matter, independent of the initial velocity.
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Figure 2.1: Dark matter density profiles times radius, r ρ(r), as a function of radius and

time. The dark matter halo mass is Mh = 1012 M�. In the absence of dark matter decays,

the halo concentration is c = 5. The halo has a virial speed vvir ≡
√
GMh/Rvir ≈ 130 km/s.

Different panels are for different choices of kick velocity and lifetime as labeled along the top

and right axes respectively. In each panel the solid lines show the initial NFW profile. The

short-dashed line, long-dashed line, dash-dotted line, and dash-double-doted line represent

density profiles after 2.5, 5, 7.5, and 10 Gyr. This figure is designed to be directly comparable

to the simulation results displayed in Fig. 1 of [29].

The changes in average kinetic energy will result in changes in particle orbits, causing an

expansion of dark matter halos and a shallowing of dark matter profiles.

To demonstrate the effect of density profile modification, we adopt a two-step calculation.
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Figure 2.2: Similar to Figure 2.1 but for halos with Mh = 5 × 1013 M� and NFW concen-

tration c=5. The halo virial speed is vvir ≈ 477 km/s.

Assume that DDM particles in halos follow circular orbits prior to any significant DDM

decays. The particles orbit in the gravitational potential of the NFW halo, which can be

approximately described by a power law vc(r) = v0(r/r0)1/2β over any sufficiently small range

of r. In a given time interval, a small fraction of DDM particles decay and their daughter

SDM particles gain a small amount of energy ∆E ≈ mv2
k/2. In general, the daughter

particles will move from circular orbits to elongated orbits, characterized by the new energy

relative to the halo potential and an apocentric radius r. Orbits in the NFW potential

are not closed, rendering it a numerical problem to compute the time-averaged value of the

radial coordinate of the daughter particle. To obtain a simplistic estimate of the new radii
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the particles move to, we assume that the new average position of the daughter is similar

to the radius of a circular orbit at the new value of the orbital energy. This is conservative

in the present context, because circular orbits in equilibrium are least susceptible to such

expansion [18]. In this assumption, the radial position of the daughter particles, r′, will be

r′ =

(
r1/β +

1

2β + 1

(
vk(R)

v0

)2

r
1/β
0

)β

. (2.45)

The model we have described is not self-consistent, so it is important to validate the basic

predictions of the model against more complete calculations. To check the validity of this

model, we compare our analytical calculation results with the N-body simulation results from

[29]. In Figure 2.1, we plot density profiles for a dark matter halo with mass Mh = 1012 M�

and an initial NFW concentration parameter c = 5 for several different lifetimes and kick

velocities. Peter et al. [29] computed the profiles of dark matter halos in the same model

using N-body simulations that accounted for the dark matter decays. Fig. 2.1 is the same as

Figure 1 in Peter et al. [29] save for the fact that we have computed modified halo profiles

according to the analytic model described in this section. A comparison of the two figures

reveals that the analytic model and the numerical simulations are in remarkable agreement

for all models with Vk<∼ 200km/s and Γ−1>∼ 10 Gyr. There are several possible explanations

for the inconsistencies that arise when Vk>∼ 200 km/s and Γ−1<∼ 10 Gyr. One is that when

changes to the gravitational potential are not small, the final gravitational potential is suf-

ficiently different from the initial gravitational potential that the initial potential cannot be

used to approximate the new positions of the SDM particles. Another possibility is that typ-

ical circular orbits no longer provide useful approximations for the degree of halo expansion.

As discussed in [29], where they look at velocity anisotropy of their simulated halos, they

found that the orbits become radially biased at the halo outskirts. Moreover, Vk = 200 km/s

is considerable compared to the virial velocity of a Mh = 1012 M� halo, so it is not surprising

that those halos are not in dynamical equilibrium for large Vk and small lifetime. These

simulation results show that the assumptions of our simple model are violated in the regime

of high kick velocity and low lifetime. As we show in § 3, our primary results in which the

nonlinear model is used correspond to Vk<∼ 200km/s and lifetimes Γ−1>∼ 100Gyr, so our use

of this model for a first foray into this regime is justified.
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Unlike Peter et al. [29], we are interested in cosmological weak lensing as our observable.

The halo mass most relevant to weak lensing lie in the range Mh ≈ 1013−1014M� [74]. Such

halos have significantly larger virial velocities than the 1012 M� halos considered above.

Typical virial velocities of these larger halos lie in the range vvir ≈ 280 − 600 km/s. This

suggests that our model can be used at larger Vk than the value Vk ≈ 200 km/s that we

arrived at by comparing to simulations of a 1012 M� halo above, because these kicks represent

a smaller fraction of the potential well depth. For instance, Peter et al. [29] pointed out that

the cluster mass function is insensitive to Vk<∼ 500 km/s, because the typical virial speeds

clusters are Vk>∼ 600 km/s. For completeness, we show the corresponding density profile

modifications for these group- and cluster-sized halos in Figure 2.2. We will show in § 3 that

our calculations are only sensitive to DDM parameters that result in density profiles with

mild changes.

We include this effect in our nonlinear halo model calculation by giving all recomputing

halo profiles or halo mass function as described above. We modified halo profiles by assuming

initial halos with the same profiles, including concentrations, as their concordance ΛCDM

counterparts and implementing the above model on these halos. Ideally, one would treat

nonlinear corrections to structure growth using program of cosmological numerical simula-

tions. However, we place such a study outside the scope of the present work as our initial aim

is to estimate the constraining power of forthcoming surveys. In this manner, we estimate

the fruit that a computationally-intensive numerical simulation program may bear on the

problem of unstable dark matter.

2.2 WEAK LENSING

Weak lensing as a cosmological probe has been discussed at length in numerous papers (a

recent review is [89]). We give a brief description of our methods below, which are mostly

based on the conventions and notation in [74]. In the first class of DDM model where the

decay process may generate certain amount of relativistic energy at late time, we consider

the linear evolution of full metric potential in the lensing power spectrum instead of using
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matter-domenated assumption as in [74]. In this manner, our work is very similar in spirit to

that of Schmidt [73]. The most robust forecasts derive from considerations of possible weak

lensing measurements restricted to scales where linear perturbative evolution of the metric

potentials remains useful. However, we attempt to estimate possible improvements to the

constraining power of weak lensing observables, provided that mildly nonlinear evolution can

be modeled robustly.

First I will explain the weak lensing model using the convention of [74], and then I will

demonstrate how to convert into the full potential form, which is actually more integrated

and will converge back to the notation in [74] in the matter-dominated universe. We consider

the set of observables that may be available from large-scale galaxy imaging surveys to be

the auto- and cross-spectra of lensing convergence from sets of galaxies in NTOM redshift

bins. The NTOM(NTOM + 1)/2 distinct convergence spectra are

P ij
κ (`) =

∫
dz
Wi(z)Wj(z)

H(z)D2
A(z)

Pm(k = `/DA, z), (2.46)

where i and j label the redshift bins of the source galaxies. We take NTOM = 5 and evenly

space bins in redshift from a minimum redshift of z = 0 to a maximum redshift of z = 3.

Increasing the number of bins beyond NTOM = 5 adds only negligibly to the constraining

power of lensing data, in accord with an analogous statement for dark energy constraints

[90].In Eq. (2.46), H(z) is the Hubble expansion rate, DA(z) is the comoving angular diameter

distance, and Pm(k, z) is the matter power spectrum at wavenumber k and redshift z.

The Wi are the lensing weight functions for source galaxies in redshift bin i. In practice,

the galaxies will be binned by photometric redshift, so that the bins will have non-trivial

overlap in true redshift (see [90, 91] for detailed discussions). Defining the true redshift

distribution of source galaxies in the ith photometric redshift bin as dni/dz, the weights are

Wi(z) =
3

2
ΩMH

2
0 (1 + z)DA(z)

∫
dz′

DA(z, z′)

DA(z′)

dni
dz′

(2.47)

where DA(z, z′) is the angular diameter distance between redshift z and z′ and H0 is the

present Hubble rate.

22



If we consider the full potential metric, convergence spectra will take the following form

Pκ,potij(`) = `4

∫
dz
Wi(z)Wj(z)

H(z)D6
A(z)

PΨ−Φ(k = `/DA, z), (2.48)

where PΨ−Φ(k, z) is the power spectrum of Newtonian gauge scalar potentials Ψ− Φ at

wavenumber k and redshift z. The difference in Eq. (2.46) and Eq. (2.48) is in the way

we describe the potential field where the presence of matter potential bend the light from

background galaxies. They can be converted back and forth using Poisson’s equation. In

this notation the window functions are

Wi,pot(z) = DA

∫
dz′

DA(z, z′)

DA(z′)

dni
dz′

(2.49)

We model the uncertainty induced by utilizing photometric galaxy redshifts with the

probability function of assigning an individual source galaxy photometric redshift zp given

a true redshift z, P (zp|z). The true redshift distribution of sources in the ith photometric

redshift bin is
dni(z)

dz
=

∫ z
(high)
p,i

z
(low)
p,i

dzp
dn(z)

dz
P (zp|z) (2.50)

Here we take the true redshift distribution to be

dn(z)

dz
= n̄

4z2√
2πz3

0

exp[−(z/z0)2] (2.51)

with z0 ' 0.92, so that the median survey redshift to zmed = 1, and n̄ as the total density

of source galaxies per unit solid angle [92, 93, 94]. We assume that uncertain photometric

redshifts can be approximated by taking

P (zp|z) =
1√

2πσz
exp

[
−(zp − z)2

2σ2
z

]
(2.52)

where σz(z) = 0.05(1 + z) [90]. Complexity in photometric redshift distributions is an issue

that must be overcome to bring weak lensing constraints on cosmology to fruition (e.g.,

[95, 91]).

Observed convergence power spectra P̄ ij
κ (`), contain both signal and shot noise,

P̄ ij
κ (`) = P ij

κ + niδij〈γ2〉 (2.53)
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where 〈γ2〉 is the noise from intrinsic ellipticities of source galaxies, and ni is the surface den-

sity of galaxies in the ith tomographic bin. We follow recent convention and set
√
〈γ2〉 = 0.2,

subsuming additional errors on galaxy shape measurements into an effective mean number

density of galaxies, n̄. Assessments of intrinsic shape noise per galaxy may be found in,

for example [96, 97, 98]. Assuming Gaussianity of the lensing field, the covariance between

observables P̄ ij
κ and P̄ kl

κ is

CAB = P̄ ik
κ P̄

jl
κ + P̄ il

κ P̄
jk
κ (2.54)

where the i and j map to the observable index A, and k and l map to B such that CAB is a

square covariance matrix withNTOM(NTOM+1)/2 rows and columns. We assume Gaussianity

throughout this work and even in our most aggressive forecasts we consider only multipoles

` < 3000, at which point the Gaussian assumption and several weak lensing approximations

break down [69, 99, 100, 101, 102].

2.2.1 Forecasting methods

The Fisher Information Matrix provides a simple estimate of the parameter covariance given

data of specified quality. The Fisher matrix has been utilized in numerous, similar contexts

in the cosmology literature [103, 104, 105, 106, 107, 72, 74, 108, 109, 95, 21, 22], so we give

only a brief review of important results and the caveats in our particular application. We

have confirmed the validity of the Fisher matrix approximation in models of unstable dark

matter using Monte Carlo methods as described in [21].

The Fisher matrix of observables in Eq. (2.46), subject to covariance as in Eq. (2.54),

can be written as

Fij =
`max∑
`=`min

(2`+ 1)fsky
∑
A,B

∂Pκ,A
∂pi

[C−1]AB
∂Pκ,B
∂pj

+ F P
ij (2.55)

where the indices A and B run over all NTOM(NTOM + 1)/2 spectra and cross spectra, the pi

are the parameters of the model, fsky is the fraction of the sky imaged by the experiment,

and `min = 2f
−1/2
sky is the smallest multipole constrained by the experiment. F P

ij is a prior

Fisher matrix incorporating previous knowledge of viable regions of parameter space. We set

`max = 300 for linear forecasts and `max = 3000 in our most ambitious nonlinear forecasts.
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On smaller scales (higher `), various assumptions, such as the Gaussianity of the lensing

field, break down [69, 99, 100, 101, 102, 74, 49]. To be conservative, we explore modest

priors on each parameter independently, so that F P
ij = δij/(σ

P
i )2, where σPi is the 1σ prior on

parameter pi. The forecast, 1σ, marginalized constraint on parameter pi is σ(pi) =
√

[F−1]ii.

Our DDM models have one or two independent parameters, namely decay rate Γ (or

lifetime, Γ−1) for both model and mass loss fraction f (which is related to Vk via Vk = fc)

for the second model. For the second class of DDM model, either one of these parameters

can independently be tuned to render the effects of DDM negligible. So it is not useful to

marginalize over one parameter to derive constraints on the other. In what follows, we choose

to illustrate the effectiveness of lensing to constrain DDM by fixing lifetime and quoting

possible constraints on f . Other than the decay model parameters, we also consider six

cosmological parameters that we expect to modify weak lensing power spectra at significant

levels and to exhibit partial degeneracy with our model parameters. We construct our

forecasts for DDM parameter bounds after marginalizing over the remaining parameters.

Our six additional parameters and their fiducial values (in parentheses) are the dark energy

density ΩΛ (0.74), the present-day dark matter density, ωDM = ΩDMh
2 (0.11), the baryon

density ωb = Ωbh
2 (0.023), tilt parameter ns(0.963), the natural logarithm of the primordial

curvature perturbation normalization ln(∆2
R) (−19.94), and the sum of the neutrino masses∑

imνi (0.05 eV). This choice of fiducial model implies a small-scale, low-redshift power

spectrum normalization of σ8 ' 0.82. The optical depth to reionization has a negligible

effect on the lensing spectra on scales of interest, so we do not vary it in our analysis.

We take priors on our cosmological parameters of σ(ωm) = 0.007, σ(ωb) = 1.2 × 10−3,

σ(ln ∆2
R) = 0.1, σ(ns) = 0.015, and σ(ΩΛ) = 0.03. We assume no priors on DDM model

parameters or neutrino mass. Our fiducial model is motivated by the WMAP seven-year

result and our priors represent marginalized uncertainties on these parameters based on the

WMAP seven-year data [4]. These priors are very conservative and allow for weaker con-

straints on DDM than would be expected from future data, where stronger priors may be

available. To estimate the potential power of lensing constraints on DDM when stronger

cosmological constraints are available, we also explore prior constraints on these parameters

25



at the level expected from the Planck mission1 using the entire Planck prior Fisher matrix

of [110]. Of course, using published priors from other analyses is not self-consistent because

these priors were derived in analyses that assume stable dark matter, but for relevant life-

times the dark matter decays should cause only subtle alterations to the cosmic microwave

background anisotropy spectrum so this analysis should approximate a self-consistent simul-

taneous analysis of all data.

In some cases, we will estimate nonlinear power spectra in models with significant neu-

trino masses. In such cases, we follow the empirical prescription established in previous

studies (e.g., [111, 108, 112]) and take

Pm(k) =

[
fν
√
P lin
ν (k) + fb+DM

√
PNL
b+DM(k)

]2

(2.56)

where

fν =
Ων

Ωm

, (2.57a)

fb+DM =
ΩDM + Ωb

Ωm

, (2.57b)

P lin
ν (k) is the linear power spectrum of neutrinos, and PNL

b+DM(k) is the nonlinear power

spectrum evaluated for baryons and dark matter only. However, we note that recent work

has questioned the robustness of this treatment of neutrino mass using direct numerical

simulations [113] and perturbation theory [114], so it may become necessary to revisit this

aspect of the modeling of power spectra prior to the availability of observational data.

We explore possible constraints from a variety of forthcoming data sets. We consider the

Dark Energy Survey (DES) as a near-term imaging survey that could provide requisite data

for this test. We model DES by taking a fractional sky coverage of fsky = 0.12 and with

n̄ = 15/arcmin2. Second, we consider a class of future “Wide” surveys as may be carried out

by the Large Synoptic Survey Telescope (LSST)[98] or Euclid [115]. We model these Wide

surveys with fsky = 0.5 and n̄ = 50/arcmin2. Lastly, we consider a comparably narrow, deep

imaging survey. We refer to such a survey as a “Deep” survey and model it with fsky = 0.05

and n̄ = 100/arcmin2. Such a survey may be more typical of a space-based mission similar

1http://www.esa.int/planck
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to the proposed Wide-Field InfraRed Survey Telescope (WFIRST). In all cases, we take√
〈γ2〉 = 0.2 and assume particular shape measurement errors from each experiment are

encapsulated in their effective number densities, in accord with recent conventional practice

in this regard. Our results are relatively insensitive to number density because shot noise

does not dominate cosmic variance on the scales we consider, and our linear constraints are

completely insensitive to the choice of galaxy number density over a wide range.

2.3 LYMAN-α FOREST METHODS

The Lyman-α forest is a dense set of absorption features presented in quasi-stellar object

(QSO) spectra. These features are caused by photoionized intergalactic medium (IGM)

which are neutral hydrogen clouds around redshift z ∼ 2-4. Because these gaseous structures

responsible for typical Lyman-α forest lines are large (>∼ 100 kpc), low density (δρ/ρ<∼ 10),

and fairly cool (T ∼ 104 K), pressure forces are sub-dominant, and the gas density closely

traces the total matter density on large scales. The Fourier-transfered Lyman-α flux power

spectrum PF (k, z) thus provides a way to estimate the matter fluctuation of scale up to

around k∼ a few hMpc−1 at high redshift.

In order to predict PF (k, z) for a given cosmological model, it is usually done by perform-

ing hydrodynamic simulations. In our case we used pure Smoothed-particle hydrodynamics

(SPH) dark matter simulations, assuming gas and dark matter have the same spatial dis-

tribution. This has been shown [116, 117, 118] to produce results comparable to the full

hydrodynamical simulations. From simulations it is found that the relation between tem-

perature and density is well-approximated by a power law:

T = T0(ρb/ρ̄b)
α (2.58)

,where T0 is round the order of 104 K. We can get the optical depth τ by applying the

fluctuating Gunn-Peterson approximation:

τ ∝ ρ2
bT
−0.7 = A(ρb/ρ̄b)

β = A(ρDM/ ¯ρDM)β (2.59)
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where,

A = 0.946
(1 + z

4

)6( Ωbh
2

0.0125

)2( T0

104K

)−0.7( Γ

10−12s−1

)−1( H(z)

100kms−1Mpc−1

)−1

(2.60)

, with β ≡ 2-0.7α. Here Γ is the photoionization rate and H(z) is the Hubble expansion rate

at redshift z. Then flux is calculated by F=exp(-τ)=exp[-A(ρDM/ ¯ρDM)β]

The the flux power spectrum PF (k) and linear matter matter power spectrum P (k) are

complicated function of cosmological parameters (σ8,Ωm, h, n) and astrophysical parameters

that are related to properties of gas. In order to alleviate degeneracies of decaying dark

matter model parameters with other parameters and optimize the constraints, we include the

CMB measurement from seven year WMAP data in the fit. These parameter limit extraction

from combined cosmological data sets can be conveniently performed with a Monte-Carlo

Markov Chain (MCMC) technique using the public code CosmoMC.

2.3.1 VHS data & SDSS data

2.3.1.1 VHS data The VHS data [41] contains two spectrum data sets: one has 27

QSO spectra from LUQAS ((Large Sample of UVES Quasar Absorption Spectra) by [33]

with mean absorption redshift < z > ∼ 2.25, and the other one from [34] consists of 30

Keck HIRES spectra and 23 Keck LRIS spectra with < z > ∼ 2.72 between 2.3 <∼ z <∼ 3.2.

These data are reanalyzed using a large suite of hydrodynamic simulations to estimate the

linear dark matter power spectrum on scales 0.003 s/km <∼ k <∼ 0.03 s/km, which roughly

corresponds to scale 0.3 h/Mpc <∼ k <∼ 3 h/Mpc. Each spectrum was observed with high

resolution and high signal-to-noise. However, the dataset has a relatively small number of

samples, so this statistical error is large. Therefore, it is shown in [41] that the dependence

of the bias function between flux and matter power spectrum b(k, z) ≡ PF (k, z)/P (k, z) on

cosmological parameters can be neglected for this data set. Thus we are going to use the

derived matter power spectrum directly in this case. SDSS galaxy 3D power spectrum [119]

and CMB observation from seven year WMAP experiment [4] are also included in this joint

analysis to help to break degeneracies of cosmological parameters.
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2.3.1.2 SDSS data The SDSS collaboration [35] had analyzed 3035 quasar spectra with

low resolution and low signal-to-noise. They span a wide redshift range of z=2.2-4.2. They

have divided the data into 11 equally-spaced redshift bins and 12 measurements of the flux

power spectrum at 0.00141 <∼ k (s/km) <∼ 0.01778. With low resolution it can’t provide

measurement on small scale ( k >∼ 0.02 s/km), but the large sample number significantly

reduces the statistical error on large scale and compensate the low signal-to-noise. Therefore

we can’t ignore the effect of cosmological parameters on the bias function. We choose to

work with flux power spectrum directly. This usually requires a large suite of hydrodynamic

simulations to do the calibration. We take the advantage of the tight correlations between

temperature and density in IGM and run a suite of dark-matter only simulations instead.

This should be able to provide a sensible estimation of the constraining power to the decay

model that we are interested in. The caveat is that a more robust result will require running

full hydrodynamic simulations, and it is out of the scope for this project since our plan is to

provide an proof-of-concept study of this method.

Following the approach of [120], we have approximated the flux power spectrum by a

first-order Taylor expansion around the fiducial model for the cosmological/astronomical

parameters p:

PF (k, z; p) = PF (k, z; p0) +
N∑
i

∂PF (k, z; pi)

∂pi


p=p0

(pi − p0
i ) (2.61)

The difference of flux power spectra as a function of cosmological parameters and red-

shift are derived using simulations. Although this method will become inaccurate when the

points are far from the fiducial model and it assumes that the likelihood distribution is well-

described by a multivariate Gaussian function, it has been found [120, 121] to be a good

approximation for the standard cosmological/astronomical parameters. We then perform

a Monte Carlo Markov chain analysis in these parameters space to take into account the

uncertainties associated with them. We have the following set of cosmological parameters:

H0, ns, σ8, Ωm, and also our decay model parameter lifetime Γ−1 and kick velocity Vkick.

For astrophysical nuisance parameters we consider eight parameters. For τeff we have am-

plitude τAeff and slope at z=3 τSeff , so that the evolution of optical depth is described as an
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power-law: τeff = τAeff (z = 3)[(1 + z)/4]τ
S
eff . For γ and T0, we both treat them as broken

power-law at z=3 with one amplitude parameter and two slopes at z < 3 and z > 3.

Following the suggestion by [35], we include the Si III contamination model by by assum-

ing a linear bias correction of the form P ′F = [(1+a2)+2acos(vk)]PF , with a = fSiIII/(1−F̄),

fSiIII = 0.011 and v = 2271 km/s.

However, for the decay parameters that we intend to explore, they have highly non-

Gaussian distribution. We will follow the way of [121] treating the warm dark matter mass

and fraction parameters and run a grid of simulations to sample the decay model parameter

space. The grid consists of four different values of the lifetime and four kick velocities (Γ−1

= 30, 10, 1, 0.1 (Gyr) and Vkick = 70, 100, 200, 500 (km/s)), so we perform 16 additional

simulations and interpolate between them. The details of the simulations will be described

in §2.3.2

2.3.2 Numerical simulations

For our analysis we use simulation run with parallel N-body code GADGET-2 and a modified

version by [29]. The modified version consists of a Monte-Carlo simulation at each time step

∆t to determine whether a particle should decay with decay probability P = Γ∆t should

decay. If a particle is designated for decay, it will receive a kick speed Vkick in a random

direction, and it will be flagged to make sure it will not decay again. Each simulation is

with box size of 60h−1 Mpc and 4003 dark matter particles. The gravitational softening

scale is set to 1 h−1 kpc in comoving units and the mass per particle is 2.56×108 h−1M�.

As mentioned in §2.3.1.2, we perform a set of 16 simulations, with Γ−1 = 30, 10, 1, 0.1

(Gyr) and Vkick = 70, 100, 200, 500 (km/s) to sample the decay parameter space. The

cosmological reference model corresponds to a ”fiducial” ΛCDM universe with parameters,

at z=0, Ωm=0.273, ΩΛ=0.727, Ωb=0.044, ns=0.967, H0=70.4 kms−1Mpc−1, and σ8=0.811.

It is consistent with the results of WMAP 7-year data [4]. We also run four additional

simulations that change H0, ns, σ8, Ωm to calculate the power spectrum difference for our

Taylor expansion methods. All the decay simulations have the same initial condition as the

fiducial run starting at z=99. Snapshots are output at regular inter-vals between redshift
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z=4.2 and 2.2. The initial conditions are realized using N-GenIC by displacing particles from

a Cartesian grid according to Zel’dovich approximation to obtain distributions that agree

with density fluctuation power spectrum from [122].

2.4 ADIABATIC CONTRACTION

Baryonic evolution, although it describes only ∼ 5% of the universe’s energy density, is

driven by more complex dynamical processes occurring on different scales, and can modify

the dominant dark matter distribution by transforming gravitational potential energy. As

baryons cool and fall toward the center of a dark matter halo, their condensation pulls the

host material along, increasing the central density of the halo. This response is typically

modeled by theories positing adiabatic contraction (AC) in halos.

First considered by Eggen et al. [123] and Zeldovich et al. [85] for various purposes,

the standard AC model which describes the dark matter’s contraction in response to the

change in baryon potential was introduced and numerically tested by Blumenthal et al. [46,

henceforth B86]. In order to simplify the equations governing mass distribution, this early

model assumed circular particle orbits, angular momentum conservation, and also prevented

“shells” of mass from crossing each other. These limitations were alleviated significantly

by Gnedin et al. [47, henceforth G04], in which adiabatic contraction dynamics account for

orbital eccentricities while adopting an orbit-averaged radius r̄ calculated by simulations.

More recent tests of the G04 model have been made on galactic scales [59], and have also

compared different applications of baryonic physics at varying mass scales up to the cluster

regime [65], while simulations including a full hydrodynamical treatment have been used

to check the answers obtained by standard G04-type models [124, 125, 126]. The general

findings of these analyses have shown that the G04 paradigm has improved the predictive

capacity of adiabatic contraction theory, but that much further calibration is required to

reach the precision necessary for a sensitive probe of dark matter distributions. Here, we

ascertain the accuracy of advanced AC models in comparison to a suite of cosmological

simulations designed to sensitively test the impact of various baryonic effects on dark matter
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Table 2.1: Numerical Parameters of Cosmological Simulations

Run Box size Np mDM mgas ε zend

h−1 Mpc h−1M� h−1 kpc

D4dm 33.75 2163 3.176×108 6.25 0.00

D4bh 33.75 2×2163 2.75×108 4.24×107 6.25 1.00

D4 33.75 2×2163 2.75×108 4.24×107 6.25 1.00

D6dm 33.75 4863 2.79×107 2.73 1.00

D6 33.75 2×4863 2.75×107 4.24×106 2.73 1.00

structure formation.

2.4.1 Numerical simulations

In our set of simulations, we explore the parameter space characterized by varying mass

and force resolution, as well as differing implementations of baryonic physics in order to

systematically distinguish the strength of the dark matter density response as a function of

these variables. These cosmological simulations are described in detail by Di Matteo et al.

[66], in which a ΛCDM cosmological model evolves according to parameters consistent with

the WMAP first-year results: Ωm=0.3, ΩΛ= 0.7, primordial power spectral index n = 1,

Hubble parameter h = 0.7, and matter power spectrum normalization σ8=0.9 [127]).

The numerical experiments are performed with a modified version of GADGET-2 [128],

in which baryonic evolution is implemented via the Lagrangian smoothed-particle formalism.

Radiative cooling and heating processes are computed with a spatially-uniform photoionizing

UV background as in Katz et al. [129], while star formation and the associated supernova

feedback are modelled by a subresolution treatment of the multiphase interstellar medium

[130]. In Table 2.4.1, we note the basic numerical features of each simulation, with our

annotations defined as follows: “D4dm”, in which dark matter particles are the sole inhabi-

tants of the material universe and interact only gravitationally; “D4”, in which baryons are
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included and star formation/feedback are calculated; and “D4bh”, which is identical to D4

apart from the addition of energetic feedback via active galactic nuclei (AGN) .In the sim-

ulations including AGN feedback, the central black holes in each halo are each represented

by a collisionless “sink” particle that grows via accretion of surrounding gas or merger with

another black hole. We estimate the accretion rate of gas onto a black hole by using the

Bondi-Hoyle-Lyttleton parametrization [131, 132, 133], and we further assume that the cou-

pling efficiency between radiated luminosity and surrounding gas is weak, such that only

5% of the feedback energy is dumped immediately into the SPH smoothing kernel at the

position of the black hole. The “D6” simulations are direct counterparts of the “D4” exper-

iments, where the two families have the same initial conditions and cosmological box-size

(though they differ in particle number and the scale of gravitational force softening), and

the hydrodynamical implementations are identical for the boxes including baryons and their

evolution. Throughout this paper, we refer to D6 as the high-resolution counterpart of D4bh,

and correspondingly D6dm maps to D4dm. In these cosmological samples, we probe a range

in halo virial mass Mvir roughly bounded by 3× 1012h−1M�<∼ Mvir
<∼ 5.2× 1013h−1M�. The

corresponding range in virial radius rvir is 3.6× 102<∼ rvir
<∼ 9.4× 102h−1 kpc.

Computational resources limit us to analysis of these cosmological simulations at redshift

z = 1 (though we note that the D4dm experiment is complete to the present-day), and

throughout this paper we refer to quantities measured at that epoch unless otherwise noted.

We define a dark matter halo as a sphere with mean internal density ρ̄180 equal to 180 times

the mean density ρ̄tot of the entire simulated box. In order to compare halo catalogs directly

between different simulations, we identify halo counterparts as those lying within 0.8Rvir of

each other and with mass difference less than 15%.

2.4.2 Tests on adiabatic contraction models

The standard model introduced by B86 is based on several assumptions. If angular momen-

tum is conserved and dark matter halos are spherically-symmetric, B86 posits the following

identity involving dark matter mass MDM and baryonic mass Mb:

[MDM(ri) +Mb(ri)]ri = [MDM(rf ) +Mb(rf )]rf (2.62)
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where M(r) is the mass enclosed within a shell of initial radius ri, which after compression

has a final radius rf . Given the additional assumption that mass shells do not cross (i.e.

MDM(ri) = MDM(rf )), it is then possible to calculate the final dark matter distribution

given only the initial mass profiles for dark matter and baryons (traditionally modelled by

simulation) as well as the final baryonic profile.

This model was later substantially improved by Gnedin et al. [47], who noted that the

B86 model could no longer adequately describe simulation work that was beginning to probe

the scales of interest at halo centers. Accounting for eccentricities in particle orbits, G04

used the orbit-averaged radius

r̄ =
2

Tr

∫ ra

rp

r
dr

vr
(2.63)

where Tr and vr are the radial period and velocity while ra and rp are the apocenter and

pericenter, respectively. Using this formalism, G04 found that a more well-conserved quantity

during the adiabatic contraction is given by the product of the mass within the orbit-averaged

radius and the instantaneous shell radius, i.e. M(r̄)r is a constant. The orbit-averaged radius

r̄ at a given radial position can be described by a power law function, according to G04, as

follows:

x̄ = Axw, x ≡ r/rvir (2.64)

with A ≈ 0.85±0.05 and w ≈ 0.8 ± 0.02. This simple model has since been extended to

account for the variance of r̄ with halo mass, redshift, and baryonic physics [65], although

significant discrepancies have emerged between best-fit values of A and w and those obtained

by inspecting the orbital properties controlled by Eq. 2.63 [59]. In our study, we perform

similar tests of the AC formalism’s predictive capacity as a function of the physical models

implemented in typical cosmological simulations.

As is well-known, there are many ways to estimate halo concentrations as needed for

various purposes. In the sort of experiment we describe here, the traditional method involves

fitting NFW profiles to dark matter density distributions. However, as recently noted by

Prada et al. [134], resolution issues as well as this profile-form assumption can affect fitting

techniques at small radii such as those with which we are presently concerned. An alternative

definition of concentration has been adopted by some past studies [e.g.135], involving an

estimate based on the ratio between a halo’s virial radius and the radius surrounding a
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certain fraction of the halo’s total mass. Following this concept, we henceforth define this

mass-enclosing concentration as follows:

c(x) =
rvir

rm(r)/Mvir=x

(2.65)

where x is a variable representing the chosen mass ratio. In the next section we will look

at the correlation between AC model accuracy and halo properties like mass-enclosing con-

centration, demonstrating that model predictions are closely related to a select few of these

quantities.
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3.0 RESULTS

3.1 WEAK LENSING

3.1.1 Effect on weak lensing power spectrum and large-scale structure

For the first class of DDM model, weak lensing power spectra are altered in two respects.

First, the power spectra for potential and density fluctuations are altered in a scale-dependent

way. At early epochs, when the matter density is higher in the DDM models than in standard

ΛCDM, potential and density fluctuations are larger because the epoch of matter-radiation

equality occurs earlier. We have verified that our constraints are insensitive to the epoch

at which we normalize the matter density. At late times, DDM decays suppress density

and potential fluctuations. We show this dependence of potential fluctuations on DDM

lifetime in Figure 3.1. Notice that models of unstable dark matter have greater PΨ−Φ(k)

on scales k>∼ 10−2 h Mpc−1 at high redshift, but this power is suppressed on sub-horizon

(k>∼ 10−3 h Mpc−1) at lower redshifts. The strong scale dependence in potential power

spectra at scales of order k ∼ 0.05 h Mpc−1 should be present in convergence spectra

projected on multipoles ` ∼ k DA(z = 1) ∼ 150 (z = 1 is the median redshift of lensed

sources in our model surveys). The different redshift dependence of DDM, which results in

greater suppression of power with decreasing redshift, compared to neutrino mass-induced

power suppression allows the two to be disentangled. We also find that angular diameter

distances are modified at levels that are small compared to the relative potential fluctuations

shown in Fig. 3.1. As a consequence, we find that DDM constraints are based mainly on

the scale-dependent potential fluctuation modifications rather than on the modified distance

scale, which is the primary driver of dark energy constraints.
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Figure 3.1: Relative difference in the linear potential power spectra between DDM and

stable dark matter models at z = 4 (top) and z = 0 (bottom). The solid lines show a model

with τDDM = Γ−1 = 103 Gyr while the dashed lines have Γ−1 = 300 Gyr. The dash-dotted

lines show the influence of a non-negligible neutrino mass with
∑

i mνi = 0.3 eV.

For the second class of DDM, there are several effects of DDM on lensing power spectra

at low redshift. First, decays change the cosmological energy density. This change alters

both structure growth and distance. However unlike the first class of DDM model, this effect

is further suppressed by the mass loss fraction, which is usually a very small number in our

study. Further, decaying dark matter results in significant free-streaming of daughter SDM

particles. While each of these effects can be important, for models near the limit of what may

be constrained by lensing surveys or Lyman-α forest data, it is the effect of free-streaming

that largely determines the power spectra. In this case, the free-streaming velocity of SDM

suppresses structure growth on scales smaller than free-streaming scale, an effect similar to
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that caused by massive neutrinos.

Figure 3.2: Free-streaming scale as a function of scale factor. The blue lines show free-

streaming scales for lifetime much greater than the age of universe ( <∼ 100 Gyr) for several

different mass loss fractions. The dash-dotted magenta lines are for f = 10−2 and three

lifetimes. From top-to-bottom at right, these are 0.01 Gyr, 0.1 Gyr, and 1 Gyr. The green

line is the free-streaming scale for massive neutrino with mν,i =0.4 eV. Structure grows on

scales between the free-streaming scale and horizon. On scales smaller than free-streaming

scale (k<∼ kFS), structure growth is suppressed.

In the standard cosmological scenario, matter density fluctuations at a particular scale

grow once the scale enters the horizon (k<∼ H) during the matter-dominated epoch. However,

species with non-negligible primordial velocities will be able to escape the potential wells and

suppress the formation of structure. The scale that corresponds to this effect is the free-

streaming scale kFS, which can be defined as

kFS(a) =

√
3

2

H(a)

cs(a)
, (3.1)
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where H(a) = ada/dτ and H−1 is the comoving horizon scale.

Figure 3.3: Fractional difference between matter power spectrum for standard ΛCDM and a

decaying dark matter model evaluated at z = 0. Left : The effect of varying the DDM lifetime

at fixed mass-loss fraction, f = 10−1. Solid curves show the linear theory predictions, and

dash or dash-dot lines show predictions that include the nonlinear corrections implemented

via the halo model. The green lines show the spectrum in a ΛCDM with massive neutrinos,

Σmν =0.5 eV, for comparison. Right : The effect of varying mass-loss fraction f , at a fixed

lifetime of Γ−1 = 50 Gyr.

We show the evolution of free-streaming scale of SDM particles as a function of scale

factor in Figure 3.2 for several mass loss fractions f and lifetimes. As discussed in [31],

the behavior of the free-streaming scale of DDM can be divided into two regimes. When

the decay process is still occurring, corresponding to cosmological times less than the decay

lifetime, daughter particles with the same physical momentum are continuously created so

that the sound speed stays approximately the same. In this case, the evolution of free-

streaming scale will simply trace the evolution of horizon. If decays have ceased, which will

happen when Γ−1 � H−1
0 , the sound speed will decrease as cs ∝ a−1. The free-streaming

scale shrinks as the initial velocities are redshifted away. This effect also happens to massive

neutrinos as they become non-relativistic. At early times the neutrino free-streaming scale

traces the horizon so long as the neutrinos have relativistic velocities. In Figure 3.2 we
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Figure 3.4: Fractional difference of auto convergence lensing power spectrum between

standard ΛCDM model and decaying dark matter model from first tomographic redshift bin

(lensing source galaxies between 0 < zp < 0.6, where zp is photometric, and not necessarily

true redshift). Solid lines are calculated using halo model with NFW profiles. These lines

include the alteration of the linear power spectrum on large-scales and the reduction in

the abundance of dark matter halos due to free-streaming. However, halos are assumed to

have the same profiles as they would in standard ΛCDM. The Dash-dotted lines include the

nonlinear corrections to halo density profiles.

can see that after neutrinos become non-relativistic, at anr ' 1.3 × 10−3 (0.4 eV/mν), their

free-streaming scale varies as kFS ∝ a1/2 during matter domination, which is identical to

free-streaming in the small lifetime limit of DDM.

As we mentioned above, DDM affects lensing power spectra in two respects. First, the

power spectra for potential and density fluctuations are modified by the free streaming of

the daughter SDM particles. At k>∼ kFS, structure growth is suppressed. Second, the matter
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density is reduced as decays occur, slightly suppressing the late-time growth of structure. In

the left panel in Figure 3.3, we show that significant decrements in power occur at roughly

the same scale, k>∼ 10−2hMpc−1 for a variety of lifetimes, so long as the lifetime Γ−1 � H−1
0

(the regime most relevant to our work). This suppression is due to free streaming and indeed,

the scale on which the suppression occurs agrees with the estimates of the free-streaming

scale shown in Fig. 3.2. The right panel of Fig. 3.3 illustrates that the scale of suppression

is determined by the mass-loss fraction f , in the limit that Γ−1 � H−1
0 . In models with

larger f , the velocities of the daughter SDM particles are higher, so at fixed lifetime, they

free-stream greater distances. Both panels in Fig. 3.3 show a small increment in power on

large scales for models with small lifetimes (Γ−1<∼ 50 Gyr) and larger mass-loss fractions

(f>∼ 0.1). This delineates the parameter regime for which the overall change in the energy

budget begins to have a non-negligible effect on fluctuation growth. The small increment on

large scales in these cases enforces a fixed observed CMB normalization.

Notice in the left panel of Fig. 3.3 that with f ∼ 10−1, the free-streaming suppression is

similar to that induced by massive neutrinos with the sum of the neutrino masses Σmν ≈

0.5 eV. This suggests that neutrinos may be degenerate with DDM, and this would be the

case if it were not possible to probe a wide range of length scales and redshifts. In practice,

we find that massive neutrinos are distinguishable from DDM for two reasons. First, the

differences in scale dependence exhibited in Fig. 3.3 give a possible handle with which to

separate the two. More importantly, the redshift dependence of the power spectrum differs

in the two models. This is most easily seen in Fig. 3.2. The evolution of the free-streaming

scale of massive neutrinos and the free-streaming scale of DDM differs significantly. Deep,

large-scale survey data that enable probes of structure at a variety of redshifts between

0<∼ z<∼ 3, as is expected of forthcoming surveys, break the potential degeneracy between

massive neutrinos and DDM.

The Dash-dotted lines in Figure 3.4 exemplify the alterations to the small-scale lensing

convergence power spectra incurred when we account for the altered halo profiles that re-

sult from dark matter decays. As f increases, kick velocities increase, and the fractional

power decrement increases, as we should expect. This additional suppression is confined to

relatively small scales (large multipoles, `>∼ 300) for most of the parameter space of interest
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Figure 3.5: Comparison of the redshift evolution of decaying dark matter and massive neu-

trino lensing power spectra. We plot fractional difference of auto convergence lensing power

spectra between standard ΛCDM model and decaying dark matter (or massive neutrino)

models in three tomographic redshift bins (labeled at the top). For simplicity, we show only

the linear power spectra in this plot, though spectra computed with our nonlinear model

lead to a similar conclusion.

(Vk<∼ 200 km/s for Γ−1<∼ 100 Gyr).

As we pointed out in right panel in Figure 3.3, DDM may partially mimic massive neutri-

nos if redshift evolution information in not accessible. In Figure 3.5, we show a comparison

of the redshift evolution of DDM and massive neutrino lensing power spectra in three tomo-

graphic redshift bins. Other than the difference in shapes, it is also evident that the DDM

power spectra evolve significantly more than the spectra in massive neutrino models. The

reason is that the decay process continuously deposits kinetic energy into the daughter dark

matter distribution, in contrast to the neutrinos which have purely redshifting kinetic energy
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distributions.

3.1.2 Forecasting constraints

To estimate of the power of weak lensing to constrain DDM, we adopt a variety of possible

strategies. First, we consider constraints from data on scales where linear evolution of density

fluctuations should be valid. The value of this approach is that exploiting linear scales to

constrain DDM does not require a simulation program to confirm or refine nonlinear models

of structure formation in these models. Moreover, relatively large-scale constraints are less

observationally challenging because they exploit data on scales where cosmic variance, rather

than galaxy shape measurements, are the dominant error. In both cases, these constraints are

conservative so we should expect that forthcoming lensing surveys designed to address dark

energy should do at least as well as our linear forecasts. To limit ourselves to linear scales,

we take data on multipoles ` < 300. All of the constraints that we show in this section have

been marginalized over the remaining cosmological parameters, including neutrino mass.

To show the maximum potential of lensing surveys, we consider measurements that

extend into the mildly nonlinear regime, as is commonly done for dark energy forecasts.

The primary value of this extension is not that particular features in the power spectra

induced by DDM are added to the data set. Rather the primary improvement in constraints

comes from an increase in the signal-to-noise with which the power suppression can be

detected [21, 22]. In this case, we include information on multipoles up to our quoted

maximum multipole `max = 3000 (see § 2.2.1). Constraints on these scales will rely on

reliable modeling of clustering on mildly nonlinear scales, so a comprehensive simulation

program will be necessary to ensure the robustness of such constraints. A comprehensive

program is computationally-intensive and beyond the scope of our studies, as part of our goal

is to emphasize that such a large-scale numerical program may be interesting and useful.

We summarize our primary results for the upper limits that may be set on the first class of

DDM decay rate Γ, by weak lensing measurements in Table 3.1. The limits in this table have

been marginalized over all other cosmological parameters, including neutrino masses. We

computed the results in the upper portion of Table 3.1 using contemporary priors on other
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Table 3.1: Forecast 68% marginalized limits on the first class of dark matter model

[21] decay rates from weak lensing surveys under several assumptions. The limits are in

units Γ/H0, where H0 = 72 km/s/Mpc. Constraints are shown for “Linear” power spectra,

“Smith et al.” nonlinear corrections, “Halo Model” nonlinear corrections, and “Modified

Halo Model” nonlinear corrections that account for mass loss as in [80]. The abbreviation

“PP” stands for Planck priors.

Experiment DES Deep Wide

Linear, `max = 3000 0.07 0.06 0.046

Linear, `max = 300 0.08 0.09 0.057

Smith et al, `max = 3000 0.03 0.02 0.008

Smith et al, `max = 300 0.06 0.05 0.029

Halo Model, `max = 3000, 0.03 0.02 0.010

Modified Halo Model, `max = 3000, 0.02 0.02 0.008

Linear, `max = 3000, PP 0.03 0.03 0.016

Linear, `max = 300, PP 0.06 0.07 0.026

Smith et al, `max = 3000, PP 0.02 0.01 0.006

Smith et al, `max = 300, PP 0.05 0.05 0.018

Halo Model, `max = 3000, PP 0.02 0.02 0.007

Modified Halo Model, `max = 3000, PP 0.02 0.01 0.006

cosmological parameters. Results below the middle dividing line of Table 3.1 were computed

with prior constraints on cosmology at levels expected from the Planck CMB mission and are

labeled with a “PP.” Different lines in Table 3.1 show results using different model power

spectra. The options are the linearly-evolved power spectrum only, results correcting for

nonlinear evolution using the Smith et al. [84] formula, nonlinear power results using the

halo model, and nonlinear power using the halo model modified to account for the loss of

mass within halos (following [80]). In each case, we consider both restricting to linear scales
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taking `max = 300 and using nonlinear information with `max = 3000 to constrain decaying

dark matter.

Constraints that exploit only linear scales are already promising. A DES, a Deep

JDEM/WFIRST-like survey, or a Wide LSST- or Euclid-like survey should constrain the

DDM lifetime at the level of Γ−1 >∼ 13 H−1
0 , 12H−1

0 , and 18H−1
0 with contemporary priors

on other cosmological parameters. These results are already comparable to contemporary,

model-independent constraints on unstable dark matter [136, 28, 137, 138, 80, 29] and do

not require detailed calibration of nonlinear structure growth or ambitious priors on other

cosmological parameters (ln ∆2
R in particular). It seems reasonable then, that weak gravita-

tional lensing will provide, at minimum, a complementary, model-independent technique to

constrain DDM that is competitive with other, existing techniques.

If we interpret the other entries in Table 3.1 as possible limits that may be achieved

if the necessary nonlinear evolution in models of DDM can be calibrated, then the re-

sults become much more interesting. Using contemporary priors, the limits range between

Γ−1>∼ 33H−1
0 and Γ−1>∼ 43H−1

0 for DES, Γ−1>∼ 48H−1
0 and Γ−1>∼ 66H−1

0 for our Deep survey,

and Γ−1>∼ 100H−1
0 and Γ−1>∼ 125H−1

0 for our Wide survey. The variation between the lower

values and higher values exhibits the range of possible constraints estimated using different

nonlinear structure formation prescriptions. In all cases, the standard halo model gives the

poorest constraint and the halo model modified to account for mass loss as the dark matter

decays, as described in § 2.1.2, gives the most stringent constraint. The ability to exploit

nonlinear power enables weak lensing to constrain unstable dark matter more stringently

than contemporary methods using contemporary priors.

For the second class of DDM model, we display our forecast 1σ exclusion contours along-

side a variety of other contemporary constraints In Figure 3.6. The most relevant contempo-

rary constraints come from modifications to the structures of dark matter halos with virial

velocities similar to the SDM kick velocities [29] (orange region). Additional constraints may

be placed on unstable dark matter by examining the properties of the satellite galaxies of

the Milky Way [30] (green regions). However, these constraints rely on a variety of assump-

tions regarding the formation and evolution of relatively small galaxies. Moreover, these

constraints delineate a range of DDM parameters for which unstable dark matter may have
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Figure 3.6: Comparison of DDM parameter exclusion contours from Peter et al. [29] (or-

ange) and Peter and Benson [30] (dark and light green) to those that from Lyman-α forest

data. The red, purple lines are the 1 σ exclusion contours from our weak lensing forecasts

assuming ”wide,” ”deep,” and DES like galaxy imaging surveys respectively. The solid lines

combine weak lensing with projected Planck constraints, and the dot-dash lines are from

weak lensing alone. The less restrictive set of contour lines correspond to constraints using

scales on which linear theory is applicable (` < 300). The more restrictive set of contours in-

corporate multipoles up to `max = 3000 and the theoretical calculation includes our nonlinear

corrections to halo density profiles.

a significant effect on the interpretation of the missing satellites problem. As this type of

DDM model has been invoked to mitigate the ”missing satellite” problem, it should not be
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a surprise that stronger constraints also come from these types of observations. As such, it

is this parameter range for which it is most interesting to develop independent constraints

on unstable dark matter and that is the purpose of our weak lensing study.

Again, as indicated in Figure 3.6, our most conservative, linear calculation can already

give interesting constraints DDM that are competitive with contemporary bounds. The

largest advantage of lensing constraints will be that it can extend constraints on DDM life-

times significantly, as is evident in Fig. 3.6. These forecasts are not dependent upon modeling

nonlinear structure growth, so they constitute a robust lower limit to the constraining power

of imaging surveys. Moreover, these constraints are not subject to any particular assump-

tions regarding the evolution and formation of galaxies, particularly the Milky Way satellite

galaxies that are the subject of so much contemporary research. Comparing the linear con-

straints from the three types of surveys, the “Deep” survey provides slightly more restrictive

constraints than DES. A “Wide” survey similar to LSST or Euclid has the potential to

improve the constraints relative to DES by ∼40-60%.

The slope of the constraint contours turns over near lifetimes of a few Gyr. This turn over

reflects the turn over in free streaming scale exhibited by the dash-dotted lines in Fig. 3.2. In

models with Γ−1 � H−1
0 , the free-streaming scale at low redshift decreases with time. Notice

that including Planck priors yields only a marginal improvement on the forecast constraints,

∼ 15− 40% over the parameter ranges of interest. Our nonlinear forecasts exhibit a similar

sensitivity to Planck priors, though they are not depicted in Fig. 3.6 in the interest of clarity.

3.2 LYMAN-α FOREST

3.2.1 Impacts on Lyman-α forest data

As mentioned previously in §2.3.1.1, we will work with the derived-matter power spectrum

from the VHS Lyman-α data sets. The effects of DDM model on linear structure growth

have been discussed in details in [22]. As discussed in §3.1.1, the free-streaming effect from

the excess kick velocity of the decay products suppresses density fluctuation at k>∼ kFS. The
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Figure 3.7: Lyman-α-forest-derived matter power spectra from VHS data set and theoretical

P (k) for a standard ΛCDM model (solid black) and DDM model [22] with different decay

parameter values. Everything has evolved to z=0 for comparison. The blue diamonds are

SDSS LRG 3D matter power spectrum [119]. The red points are from Lyman-α forest

observation from [34] and green for [33], as re-interpreted by [41]. The cyan lines are DDM

suppressed matter power spectrum with Γ−1 =1 Gyr and Vk = 30, 100, 150 km/s from top

to bottom.

decay lifetime, which determine the abundance of decay daughter particles, will affect the

suppression amplitude. These are shown in Fig. 3.3. Here in Fig. 3.7 we show the relevant

scale of the data to the DDM suppression of primordial matter spectrum. It is clear from this

comparison that Lyman-α forest has the advantage of probing the smallest linear regime,

which will provide most of the sensitivities to the small kick velocity regime.

In Fig. 3.8, we plot the Lyman-α forest flux power spectrum versus the SDSS flux power

spectrum data from [35] for a few different values of decay parameters. The solid lines are

flux spectra derived from standard cold dark matter simulations, and the dash-dotted lines
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Figure 3.8: Comparison of observed SDSS Lyman-α forest flux power spectra as a function of

redshift from z=4.2 (top) to 2.2(bottom) with theoretical model from numerical simulations.

For each redshift the solid lines are from the best-fit CDM model, while the dash-dotted

lines are for the corresponding DDM model with decay parameter marked in each panel.

The response of flux power spectrum to decay parameters are very similar to matter power

spectrum, and redshift evolution of the spectrum deviation is greater at late time.
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are from simulations with decay modifications. They two types of simulations show good

convergence for small kick velocity and large lifetime, as these simulations start from the same

initial conditions and decay process changes the properties of some fraction of the dark matter

particles as the time evolves. We can see that a similar trend to the matter power spectrum

as a function of decay parameters is present. The suppression of power on small scale in DDM

make the fit further deviate from the data. The amount of suppression increases from high

redshift to low redshift, as from top to bottom in Fig. As time evolves, more decay daughter

particles with kick velocity are generated. More significant deviation from the cold dark

matter scenario present in low redshift bins. These scale and time-dependence both agree

with the behavior we see in matter power spectrum in §3.1.1. Although similar suppression

can be induced by massive neutrinos or WDM, the confusion can be easily clear out by

their different redshift evolution of the free-streaming effect. This has been discussed in

§3.1.1. For either massive neutrino or WDM, they possess extra velocity component (either

relativistic or smaller) at they time they are generated at very early time. As the universe

expanded, they cool down and the free-streaming scales decrease quickly. Their impacts on

both matter and Lyman-α flux power spectrum decrease as time evolves.

3.2.2 Preliminary constraint results

Although not all the intended analysis are done, here we present the preliminary constraint

results from the Lyman-α forest data. Here we display our forecast 1σ exclusion contours

alongside a variety of other contemporary constraints In Figure 3.9. A direct comparison

can be made between Figure 3.9 and Figure 3.6. As we described in §3.1.2, the most relevant

contemporary constraints come from modifications to the structures of dark matter halos

[29] (orange region). Additional constraints may be acquired by examining the properties of

the satellite galaxies of the Milky Way [30] (green regions). From our preliminary results,

the Lyman-α-derived matter power spectrum from [41] combining with WMAP 7 data [4]

can place constraints slightly better than those using halo structure of galaxy-cluster size

halo from [29]. The SDSS flux power spectrum constraints are preliminary and we have

not marginalized over cosmological and astrophysical parameters yet. We use simple χ2
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Figure 3.9: Comparison of DDM parameter exclusion contours from [29] (orange) and

[30] (dark and light green) to those that are derived from Lyman-α forest data. Notice

that the these results are preliminary and we have not marginalized over cosmological and

astrophysical parameters in the SDSS constraint. The red line is the 1 σ exclusion contours

from VHS data set with WMAP 7 data. The purple line is the 1 σ exclusion contours from

SDSS flux power spectrum using the χ2 deviation for our simulation results.

deviation for our simulation results to estimate the possible 1 σ exclusion contour. For low

lifetime, SDSS data is comparable with the VHS data results. Although SDSS flux power

spectra have better statistic error, but it extend to slightly lower k value than the VHS
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data(k <∼ 0.02 s/km comparing to k <∼ 0.03 s/km in VHS data set). The smaller error bars

in SDSS data may compensate with the smaller highest k value, and make the constraints

from these two data comparable in low lifetime range. However, for lifetime Γ−1>∼ 1 Gyr,

the SDSS data starts to provide better constraints that the VHS data. This is likely due to

the smaller statistic error of SDSS sample.

3.3 ADIABATIC CONTRACTION

3.3.1 Effects of baryon physics

The baryonic tendency to cool via radiation allows gas to cluster on a smaller scales than that

of the corresponding dark matter structure, which can lead to several potentially significant

modifications of standard N-body cosmological predictions. The exact baryonic distribu-

tion at the center of a particular halo is sensitive to and scale-dependent on the physical

implementations included in a given simulation. The amount of contraction is also related

to the dark matter halo densities, shown in Figure 3.10. The effect of AGN feedback can

be seen from the comparison of D4 and D4bh. Central densities in both stars and gas are

significantly reduced in D4bh by the presence of AGN feedback, which expels gas from a

halo’s center and aids the suppression of star formation in that region [while concomitantly

enhancing the gas fraction at intermediate radii as shown by 139, in studies of the same

simulation suite]. In contrast, the central density of dark matter is higher in the presence of

baryons and their associated physics, as theories of adiabatic contraction would predict and

hope to model. We note that the D4 simulation, which includes hydrodynamics and star

formation but not black hole feedback, is systematically more concentrated in dark matter

than the D4bh counterpart, demonstrating that the ejection of gas via AGN can mitigate to

some degree the baryon-induced contraction of a halo.

Comparing D4bh and D6, we see that the effects of an increased force/mass resolution

are not obvious for objects larger than 1013h−1M�, which correspond to the upper panels

of Figure 3.10. For the smaller objects in the lower panels, the baryonic distributions are
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Figure 3.10: Stacked density profiles in the D4, D4bh, and D6 simulations, and the frac-

tional differences between these profiles and the predictions made by two analytic mod-

els of adiabatic contraction. We average over 8 halos for two different mass bins: 5.33 ×

1013<∼ Mvir
<∼ 1.20 × 1013h−1M� (upper panels), and 5.95 × 1012<∼ Mvir

<∼ 5.0 × 1012h−1M�

(lower panels). Black diamonds correspond to dark matter profiles, while green and yellow

dash-dotted lines are stellar and gas density profiles, respectively, and the pink dash-dotted

line shows the sum of these two baryonic components. The error bars denote the standard

deviation of the mean, and all baryonic profiles have been multiplied by 5 for ease of com-

parison. In each panel, the softening scale is marked by a vertical dotted line representing

that scale with respect to the smallest halo in the mass bin.
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quite different at higher resolution, since lower-mass halos in D4bh appear to have fewer

stars at the center and more gas at intermediate radii than their counterpart objects in D6.

This is likely due to the fact that gas density distributions are more well-resolved in D6,

thus boosting star formation rates. Although the baryonic matter distributions vary on this

level between the two resolution regimes, the behaviors of AC-reconstructed dark matter

density profiles in D4bh and D6 agree surprisingly well. The small panels beneath each row

in Figure 3.10 show the residuals of each model prediction with respect to the simulated dark

matter distributions, and these residuals are quite similar down to a radius r ∼ 0.02rvir.

The correlation between central dark matter density and the inclusion of baryonic physics

demonstrates conclusively that the distributions of gas and stars in a halo can significantly

influence the halo’s density profile through the action of gravity alone. Throughout the

complex dynamical process of galaxy formation, the subtleties of physics in the ISM as

well as the stochasticity of cosmic variance will determine the timescale and degree of a

given halo’s response, but the basic assumption of AC is clearly robust in the context of

standard cosmological experiments. However, generating a mathematical model that recovers

the results of adiabatic contraction in halos without the complication of hydrodynamical

simulation has proven to be a difficult task, and one which we address in §3.3.2 in order to

probe the successes and failures of the standard AC paradigm.

3.3.2 Tests of Adiabatic Contraction Models

In order to test the orbital hypothesis of the G04 model, we examine possible correlations of

the power-law parameters A and w with the orbit-averaged radius of Eq. 2.64. Following G04,

we calculate the time-averaged radius for dark matter particles in individual halos identified

in the D4dm simulation. Approximating halo potentials by spherical NFW profiles drawn

from density fitting, we remove unbound particles moving faster than their halo’s escape

velocity and integrate Eq. 2.63 to obtain the orbit-averaged radius r̄ for each particle within

the virial radius. In the leftmost panels of Figure 3.11, we bin particles radially between

0.02<∼ r/rvir
<∼ 1.0 and fit the power law of Eq. 2.64, which yields a narrow distribution

in the power-law index 0.5<∼ w<∼ 1.0 that correlates weakly with halo mass. This positive
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Figure 3.11: Calculated values of A and w in the orbit-averaged radius formalism of G04 (left

and center-left columns, from the D4dm and D6dm dissipationless simulations, respectively),

and values fitted by minimizing χ2 in the hydrodynamical experiments D4, D4bh, and D6

(center, center-right, and right columns respectively), as a function of halo mass. The dotted

horizontal lines represent the values reported by G04 (A = 0.85 and w = 0.8). The light

crosses denote individual halos and the dark triangles with error-bars represent mean values

and variance in each mass bin, as in Figure 3.13.

trend opposes those calculated from the best-fit results in D4 and D4bh hydrodynamical

simulations, in which w decreases with halo mass, and the two methods produce distributions

in distinctly different regions of parameter space. This suggests that the G04 dynamical

model may not be useful for calibrating AC models as applied to individual halos, but that

it does reasonably describe the general behavior of dark matter distributions in a statistical

sense.

In Figure 3.12, we show the χ2 distributions of stacked density profiles as a function

of varying A and w, over different mass ranges for each set of input baryonic physics. By
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Figure 3.12: Distribution of χ2 (color-coded from blue at minimum values, to red at maxi-

mum values) according to a fitting of A and w in the orbit-averaged formalism of G04, for

stacked dark matter density profiles. Each row represents a cosmological simulation includ-

ing baryonic physics (D4, D4bh, and D6, from top to bottom) and the three columns separate

the stacked sample into mass bins of 2 − 5.2 × 1013M� (left panels), 4.4 − 13.0 × 1012M�

(center panels), and 3.0 − 4.3 × 1013 h−1M� (right panels). The parameter values found

by G04, B86, and our minimum χ2 fitting are marked by triangles, diamonds, and crosses,

respectively. Note that the small number of objects in the leftmost mass bin has significantly

widened the contours in χ2; however, A and w show clear signs of high degeneracy across all

simulated cosmological boxes.
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inspecting these contours from the D4 and D4bh simulations, we note that the presence of

AGN feedback in the D4bh run generally results in AC model predictions that are signif-

icantly improved matches to the simulated data. Comparing the two resolution regimes,

D4bh and D6 show very different behaviors, indicating that numerical effects are affecting

our probe of this parameter space. Again, as previous work has shown [59, 65], normaliza-

tion and power-law index in the G04 formalism are highly degenerate and form extended

envelopes of constant χ2 in the A − w plane. We also note that the best-fit values evolve

with halo mass in the D4 simulation, in agreement with the mass-profile residual correlations

discussed above.

3.3.3 Correlations with halo properties

The careful calibration of AC models does require an intimate knowledge of how their pre-

dictive accuracy correlates with halo parameters derived from simulation. For a variety of

properties including (but not limited to) stellar mass fraction, halo mass, and NFW concen-

tration, we check the residual between the mass profiles predicted by adiabatic contraction

and those obtained directly through simulation analysis, and in Figure 3.13 we show a selec-

tion of interesting correlates appearing at r = 0.07rvir. After experimenting with the ratio

x in the mass-enclosing concentration defined by Eq. 2.65, we find that a value of x = 3%

(corresponding to a radius r ∼ 0.04− 0.05 for most halos) shows obvious correlations in the

various simulation experiments. We also show that similar correlations result when NFW

concentrations are fitted over the radial range 0.02− 1.0rvir, assuming a flat error over this

span.

Although the two concentration formalisms have generated similar correlations, only the

NFW fitting method probes scales close to the gravitational force-softening length, implying

that the mass-enclosing concentration correlations are more robust with respect to numerical

resolution. Quantifying this conclusion in Figure 3.14 by calculating the Spearman’s-rank

coefficient for these correlations, we see obvious positive correlations in the D4 simulation

between the mass-profile residual and halo properties drawn from the dissipationless coun-

terpart simulation D4dm, while a negative correlation emerges with respect to the same

57



Figure 3.13: Fractional residual in mass enclosed within a radius r = 0.07rvir, between the

hydrodynamical cosmological experiments and the AC-reconstructed dark matter profiles,

as a function of several halo properties drawn from counterpart simulations. Blue triangles

and their error-bars represent the mean and variance in mass bins containing the individual

halos denoted by crosses. In the second and third columns, we fit concentration values

of c according to the NFW formalism for halo profiles outside a minimum radius rmin =

0.02rvir, while the fourth and fifth columns adopt the mass-enclosing concentration defined

by Equation 2.65.
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parameters as determined self-consistently from the D4 halo catalog. In contrast, the D4bh

simulation (including the baryonic physics of D4 with the addition of AGN feedback) shows

a distinct mass-residual correlation only with the concentrations drawn from the D4dm ex-

periment.

In Fig. 3.14, we also attempt to disentangle the NFW concentration parameter from

its weak dependence on halo mass, dividing values of c180 by the mean concentration value

yielded by the model of Macciò et al. [140]. In both hydrodynamical simulations D4 and

D4bh, and for both the B86 and G04 models of adiabatic contraction, we find a correla-

tion between prediction residuals and D4dm halo concentrations, at a level exceeding 5%

significance for an extended radius out to r<∼ 0.1rvir. In the panels of Fig. 3.14, we show

residuals calculated by the G04 formalism, finding that correlations of similar strength and

radial distribution arise for both NFW and mass-enclosing concentration models.

The demonstrated correlations between mass-profile residuals and halo concentration/mass

imply that calibrating dark matter distributions with large-scale hydrodynamic simulations

can be a significant source of systematic bias in baryonic contraction predictions, favoring

certain halo populations over others when semi-analytic galaxy formation models are applied

to test the modification of mass profiles. To investigate the strength of this effect in model

parameter space, in Figure 3.11 we show the best-fit distributions of the G04 normalization

A and power-law index w as a function of halo mass, after tuning the reconstructed den-

sity profiles to match those found in the simulations. We estimate the goodness-of-fit for

each parameter pair by calculating χ2 between simulated and AC-predicted values over the

radial range 0.025<∼ r/rvir
<∼ 1.0, assuming a flat error in each mass bin. In addition to the

wide range in parameter values available, we also note that the trend in w with halo mass

is stronger in D4 than in D4bh, reflecting the weaker correlation in the latter simulation

between mass-profile residuals and halo mass. At fixed A, an increase in w will boost the

amplitude of the density profile near a halo’s center, such that the decreasing value of w as

a function of halo mass compensates for the growing AC-model residuals at larger masses.
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Figure 3.14: Spearman’s-rank coefficient of correlations between the fractional mass resid-

uals (for AC-reconstructions by the G04 method and simulated profiles, as presented in

Figure 3.13) and several halo properties as a function of radius, for the 40 most massive

halos in each hydrodynamical experiment. Larger absolute values of this coefficient imply

higher correlations, and the dark (light) shaded region thus encloses the 95% (99%) level of

significance; values outside this area indicate that the mass residuals are strongly correlated

with a halo property at that radius. Left panels use the NFW definition of halo concentra-

tion, while right panels adopt the mass-enclosing concentration of Eq. 2.65. Solid green and

cyan lines denote halo mass and star fraction, respectively. Solid blue and magenta lines rep-

resent concentration values divided by the mass-dependent mean drawn from Macciò et al.

[140], for profiles fit to the dissipationless and hydrodynamical simulations respectively, and

the dash-dotted blue and magenta counterparts represent the original concentration values.
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4.0 CONCLUSIONS

In my thesis , I explored a few astrophysical methods for understanding dark matter prop-

erties. I investigate the impact of unstable dark matter models on large-scale structure, and

also the utility of future or forthcoming weak lensing surveys and contemporary Lyman-α

forest data to constrain their properties. For the first class of model that we consider, dark

matter decay into light daughter particles. Decaying dark matter can be disentangled from

dark energy, because its primary observational signature is to reduce the potential fluctuation

power spectrum, while dark energy is primarily constrained by geometric effects [141, 142].

DDM can also be distinguished from massive neutrinos or warm dark matter because the

suppression of power is a strong function of redshift. In the second class of model that we

consider, DDM decays into a less massive, stable dark matter particle and a significantly

lighter particle. The mass difference is parameterized by the velocity kick (Vk) that the

daughter, stable dark matter particles receive upon the decay of the heavier, parent DDM.

DDM leads to a suppression of matter clustering on scales below the free-streaming scale

of the stable, daughter dark matter particles and this suppression can be probed with data

from galaxy imaging surveys and Lyman-α forest.

Our most conservative weak lensing constraint forecasts result from considering lensing

over large scales on which linear theory should be valid. In this case, best limits which come

from a Wide survey, similar to Euclid or LSST. For the first class of DDM model, the forecast

limit is Γ−1<∼ 240 Gyr , which is stronger than the best contemporary constraints [136, 137,

138, 80]. For the second class of DDM model, these surveys may exclude Vk>∼ 90 km/s

for Γ−1 ∼ 1 − 5 Gyr, a result that is competitive with contemporary constraints [29]. For

this model, lensing improves upon contemporary constraints most markedly for large decay

lifetimes (Γ−1 > H−1
0 ), which is shown in Figure 3.6. In the relatively near-term, the DES
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will be able to place limits of Γ−1>∼ 160 Gyr for the first class of model and Vk>∼ 160 km/s for

Γ−1 ∼ 1− 5 Gyr for the second class of model. Achieving constraints at this level should be

achievable. First, the lensing surveys we study are under development to study dark energy

already. Moreover, these constraints assume that we restrict attention only to relatively

large scales on which linear perturbation theory can be used to predict lensing power, so no

additional theoretical effort will be necessary.

It may be possible to derive more restrictive lensing constraints on unstable dark mat-

ter by considering the mildly nonlinear scales that are commonly considered as part of the

program to constrain dark energy. Including multipoles up to ` ∼ 103 increases constraining

power by boosting the signal-to-noise with of the weak lensing signal on scales that are sen-

sitive to the dynamics of the dark matter. Exploiting such scales will rely on an exhaustive

simulation program to understand nonlinear clustering in DDM models, similar to the simu-

lation program that is being performed in support of dark energy probes [82], so significant

additional theoretical work will be necessary. Nevertheless, the payoff could be significant.

In order to estimate the ambitious constraints that may be achieved from such a data anal-

ysis, we have implemented nonlinear corrections to lensing power using the standard halo

model coupled with a simple model for the modification of halo density structures due to

decaying dark matter.

In our most ambitious forecasts, we find that weak lensing may constrain the lifetime

or the mass splitting of the DDM nearly an order of magnitude more restrictively than

implied by our linear scale analysis. For the first class of DDM, these forecasts are more

restrictive than constraints available via other means. For the second class of DDM, it may

be possible to achieve similar constraints depending upon a variety of assumptions regarding

the formation process of these satellite galaxies [30], but lensing provides a complementary

constraint using data on distinct length scales.

We have demonstrated that measurements of the large-scale matter distribution through

a weak lensing survey will be a powerful probe of decaying dark matter. This probe is

valuable for several reasons. First, such surveys as PanSTARRS, LSST, DES, Euclid, and

WFIRST are already being undertaken as part of the effort to constrain dark energy. The

survey requirements specified by the dark energy program are the same that we assume

62



here, so no additional observational work will be necessary. Moreover, we have shown that

such measurements can provide independent, competitive constraints on models of DDM

that could alter our interpretation of the small-scale problems of the standard cosmological

model, particularly the missing satellites problem. In fact, we have demonstrated that lensing

will probe DDM models with lifetimes that exceed contemporary bounds by an order of

magnitude. Our most ambitious constraint forecasts rely upon the development of accurate

and precise models of matter clustering in models of unstable dark matter. This will likely

require a significant simulation effort to ensure the robustness of any constraints derived from

forthcoming data. It is our hope that this proof-of-concept work will motivate more detailed

numerical studies of unstable dark matter models as well as additional possible constraints

from related observations.

I also investigate contemporary constraints utilizing Lyman-α data from different mea-

surements [33, 34, 35]. Important extensions of this work will include the complete SDSS

data analysis. For the class of DDM that decays into a slightly massive stable daughter

particle in which we consider for the Lyman-α study, it shows competitive constraints for

both the SDSS data and VHS data regarding the contemporary from [29]. This is exiting be-

cause our study using large-scale structure methods can provide promising constraints that

will compensate other means using dark halo structures like [29] and [30]. The SDSS data

analysis is not completely done. From the preliminary results we can see that the advantage

of large sample in SDSS data can provide extra sensitive on large lifetime comparing to VHS

data.

On the small scale, we try to understand the effect of baryon on dark matter distribution

by study adiabatic contraction models. Testing the assumptions made by AC models of vary-

ing complexity requires calibration against dark matter simulations modulo input baryonic

physics, such that hidden correlations must be identified and thoroughly understood before

model predictions can be robustly useful in application. In agreement with previous work, we

find that adiabatic contraction theory produces mass profiles that deviate from simulated

dark matter distributions to varying degrees in different radial regimes. Calibrating the

model parameters of the AC formalism depends on accurately characterizing the underlying

correlations with halo properties, since we find that baryonic distributions are linked to halo
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concentrations in cosmological simulations both with and without AGN feedback included,

strongly implying that the process of contraction plays an important role in molding dark

matter density structure on varying scales.

The predictions of adiabatic contraction modelling are much more faithful reproductions

of halo density profiles in the hydrodynamical cosmological simulations including black hole

physics and associated AGN feedback, likely due to suppression of radiative cooling and

subsequent reduction of the baryonic infall rate to a condition much closer to real adiabaticity.

The details of feedback energy injection strongly affect this condition, and must be carefully

considered when applying AC model predictions to investigations of dark matter structure

drawn from baryonic observations (as also noted by [65]). The D4bh simulation is also

subject to fewer correlating properties than the D4 run, with mass-profile residuals that

only depend on concentrations derived from the dissipationless D4dm counterpart. This

allows well-understood N -body results to inform the process of AC model calibration to a

much larger degree than in the D4 case without AGN feedback, in which correlations are

conflated between halo mass and concentration values calculated in both the hydrodynamical

and collisionless contexts. The effects of numerical resolution on the accuracy of AC models

are not completely clear, since central density profile parameters in cosmological simulations

can be heavily influenced by methodology, as discussed above. However, in the two resolution

regimes considered here, the model predictions agree remarkably well for a variety of tested

correlates over a wide range in halo mass.

Our analysis shows that adiabatic contraction is a significant factor in the evolution of

central density profiles in a ΛCDM universe, and that the implementation of various baryonic

physics can strongly affect the accuracy of model predictions compared to cosmological

simulations, but it is not well-understood at what level the assumptions made by these

models are valid during the complex process of galaxy evolution in the context of hierarchical

structure formation. Best-fit constraints on G04 model parameters do not typically recover

those values calculated directly by averaging particle orbits, since they evolve differently with

halo mass and occupy different regions in A−w space, demonstrating even more concretely

that the calibration of any particular adiabatic contraction paradigm is severely limited by

our incomplete understanding of galaxy formation and the evolutionary interplay between
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baryons and dark matter in cosmological simulations and the real universe.

In summary, in order to understand the nature of dark matter, we must understand both

the large- and small-scale phenomena. As many dark matter models are invoked to solve

small scale problems, these signals can either be washed out when baryon cools and deepens

the potential well, or have significant degeneracy with signatures from strong feedback of

supernova or AGN. It is thus essential to understand how baryon physics affect dark matter

clustering in halos. Even if we choose to go with large-scale probes, the constraining power

usually can be best utilized when we understand the nonlinear modification. No matter

which way we go, these two distinct direction will provide constraints that will compensate

each other. This is seen as an example in warm dark matter studies. Although WDM

has long been the best motivated candidate for understand the small-scale missing satellite

and galaxy density profile problems, Lyman-α forest power spectrum has provided the most

vigorous constraints so far. The Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-

III will measure Lyman-α forest of 105 quasars in the redshift range 2.2 <∼ z <∼ 3.5 and over

∼ 10, 000 deg2. The precision of Lyman-α data may soon be greatly improved, and it may

provide better evidence to the nature of dark matter. At the same time, as many surveys

already have the goal of measuring cosmological weak lensing as a probe of dark energy,

similar test on dark matter can be performed largely with the observational infrastructure

used to study dark energy at no additional cost. We hope that in the future with the aid of

large surveys and theoretical understanding, the mystery of dark matter will soon be solved.
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[32] V. K. Narayanan, D. N. Spergel, R. Davé, and C.-P. Ma, ArXiv Astrophysics e-prints
(2000), arXiv:astro-ph/0005095.

[33] T.-S. Kim, M. Viel, M. G. Haehnelt, R. F. Carswell, and S. Cristiani, Mon. Not. R.
Astron. Soc. 347, 355 (2004), arXiv:astro-ph/0308103.

[34] R. A. C. Croft, D. H. Weinberg, M. Bolte, S. Burles, L. Hernquist, N. Katz, D. Kirk-
man, and D. Tytler, Astrophys. J. 581, 20 (2002), arXiv:astro-ph/0012324.

[35] P. McDonald, U. Seljak, S. Burles, D. J. Schlegel, D. H. Weinberg, R. Cen, D. Shih,
J. Schaye, D. P. Schneider, N. A. Bahcall, et al., Astrophys. J. Suppl. Ser. 163, 80
(2006), arXiv:astro-ph/0405013.

[36] M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese, and A. Riotto, Phys. Rev. D
71, 063534 (2005), arXiv:astro-ph/0501562.

[37] U. Seljak, A. Makarov, P. McDonald, and H. Trac, Physical Review Letters 97, 191303
(2006), arXiv:astro-ph/0602430.

[38] F. Governato, C. Brook, L. Mayer, A. Brooks, G. Rhee, J. Wadsley, P. Jonsson, B. Will-
man, G. Stinson, T. Quinn, et al., Nature 463, 203 (2010), 0911.2237.
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