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QUASARS, CARBON, AND SUPERNOVAE: EXPLORING THE

DISTRIBUTION OF ELEMENTS IN AN EXPANDING UNIVERSE

Shailendra Kumar Vikas, PhD

University of Pittsburgh, 2013

This thesis consists of three different studies with a common goal of understanding the

constituents and structures of the universe.

The current understanding of galaxy formation is not complete. Cold and hot flows in

galaxies play a role in the evolution and transportation of elements within halos. Ionized

carbon clouds are often observed in the spectra of back-lighting quasars. I study the clus-

tering properties of the triply ionized carbon clouds from SDSS-III data to determine the

minimum mass of the host halo in which galaxy formation processes produce such clouds.

Apart from enabling better understanding of these clouds, this result will help constrain

galaxy formation theory and the associated feedback processes.

Standard cosmological theory produces an excess of baryonic structure compared to the

observed one. Energetic quasars are often envisaged as the process which injects kinetic

energy into the structures and halts the structure formation. I study the outflow in SDSS-

III quasars through the observed velocities of the triply ionized carbon clouds detected in

their spectra. Using more accurate modeling of the abundance of carbon clouds, I make

robust conclusions about properties of outflow systems. Understanding the velocities of such

outflow helps constrain the amount of energy injected in the feedback process of quasars and

helps in explaining the observed baryonic structure of the Universe.

Supernovae Ia enable us to measure distances at different redshifts. Distances enable us

to infer the expansion history of the Universe and measure the current accelerated expansion.

The equation-of-state parameter, w, of the dark energy responsible for this acceleration, can
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be determined from the expansion history. I estimate w using data from ESSENCE and other

current supernova surveys and measure the effect of the important systematic uncertainties

that are expected to have the largest contribution to the uncertainty in our understanding

of dark energy.
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1.0 INTRODUCTION

This dissertation explains the background and details of my contribution to improve the

understanding of the Universe and its constituent. I study constituents different epochs of

the Universe, encompassing the distribution of elements during the epoch when galaxies were

very actively evolving and forming stars to the acceleration of the expansion of universe at

recent epochs.

The first chapter provides a brief introduction to our current understanding of the uni-

verse and the relevance of my thesis towards improving that understanding. It explains

the current standard cosmology, also known as ΛCDM cosmology, which explains various

important epochs of the evolution of the universe. The different projects of my thesis are

presented in each of the chapter. In Chapter 2, I measure the special clustering strength of

carbon clouds with respect to quasars to determine the host halo mass of these absorbers.

In Chapter 3, I present the most detailed measurements and analysis to date of the carbon

clouds from the outflow of quasars. In Chapter 4, I measure properties of dark energy using

Supernovae Ia and estimate the systematic error due to the largest expected contributors.

In the Appendix, I describe the enhancement to a pipeline used to detect absorption lines in

quasar spectra. The enhanced absorber pipeline is used in the work described in Chapter 2

and Chapter 3.

In the standard picture of ΛCDM cosmology, the universe is made of three main con-

stituents: 1. Matter; 2. Radiation; and 3. Dark Energy. The “Matter” component can be

further divided as “dark matter”, which only interacts gravitationally, and ordinary matter

(baryons). Fig. 1.1 shows the contributions of different components. The contributions of

dark energy, dark matter, and baryons are approximately 74%, 22%, and 4% respectively,

of the total energy density at the present epoch, while the contribution of radiation is neg-
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ligible (Komatsu et al. 2011; Larson et al. 2011; Jarosik et al. 2011). The dark matter is

approximately five times more abundant than the ordinary matter and therefore plays a

central role in the formation of structures, while the ordinary material largely traces the

gravitational potential defined by the dark matter. Standard cosmology also assumes that

Einstein’s theory of General Relativity, which has been tested quite accurately at various

scales, is the guiding principle for the universe. The density of each components evolves at a

different rates; because of this, at various times during the evolution of the universe, different

components played the dominant role. The geometry of the universe has been measured to

be very close to being flat with a high degree of accuracy (Komatsu et al. 2011; Larson et al.

2011; Jarosik et al. 2011). As such, I assume it to be flat throughout this dissertation.

74% Dark Energy

22% Dark Matter

4% Atoms

Figure 1.1 The constituents of the universe at the present epoch. The dark energy, dark

matter and baryons are approximately 74%, 22% and 4% of the total energy density. The

radiation is negligible at the present epoch.

1.1 EARLY UNIVERSE

The universe is believed to have been in a very hot and dense state at the earliest fraction

of a second. The natural forces were unified. As the universe expanded, it cooled and

2



the natural forces started to separate. This expansion was most dramatic during a period

of “inflation”, during which it increased about 1050 times in scale (see Fig. 1.2). As the

cooling process continued, the quarks and photons remained in thermal equilibrium. When

the universe cooled sufficiently, the quarks combined to form stable protons and neutrons.

As the cooling continued, the neutrons and protons interacted and started to fuse together

to make nuclei of elements heavier than hydrogen, a process called “nucleosynthesis”. The

era of nucleosynthesis created nuclei of helium and a very small amount of lithium and

beryllium. These nuclei and free electrons continued to interact with photons because they

are electrically charged and thus easily interact with photons. The large cross-sections of

nuclei and free electrons inhibited free streaming of photons and made the universe opaque.

The temperature eventually cooled enough (T∼3000 K) for the electrons to combine with

nuclei to make neutral atoms. These atoms, being neutral, did not strongly interact with

photons (peak λ ∼ 1µm), allowing photons to stream freely afterwards. We observe these

photons today as the Cosmic Microwave Background (CMB). This epoch is known as the

“recombination” era (Fig. 1.2, Marked as “Afterglow Light Pattern”).

1.2 STRUCTURE FORMATION

The universe continued to expand and cool after recombination. The matter component

of the universe at this point consisted of dark matter and atoms of hydrogen, helium, and

traces of lithium. Due to the expansion of the universe, the CMB photons were redshifted

out of the optical range. No stars or other bodies had yet formed; there was nothing hot

enough to generate optical photons. Due to the lack of optical photons, this era is also

known as the dark ages. The dark matter formed large scale structure by gravitating to

initial regions of small overdensities. Subsequently, these overdensities grew bigger and gas

clouds of hydrogen and helium fell into them. The gas clouds continued to cool through

radiation and form more dense clouds. The gravitation instability in these clouds caused the

gas to collapse and form the first generation of stars, also known as population III stars (see

Fig. 1.2; Bromm et al. 2009; Chiappini et al. 2011). The first stars were much more massive
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than stars found today. Massive stars are both short lived and very bright. Such extreme

brightness caused the ionization of regions surrounding the stars, and the universe became

ionized again. This epoch is also called the era of reionization (Wyithe and Loeb 2003;

Bromm et al. 2009; Robertson et al. 2010).

Figure 1.2 Evolution of the universe over 13.7 billion years. Important epoch of inflation,

recombination, dark ages, and first star formation are shown. Credit: NASA / WMAP

Science Team

Small inhomogeneities in the early universe started to grow after recombination. Dark

matter gravitated towards overdensities. Fig. 1.3 shows the simulated structure of universe

at large scale. The plots, from top left to bottom right, are snapshots of the universe at

redshift z=18.3, 5.7, 1.4 and 0.0 from a numerical simulation called the Millennium Simula-

tion (Springel et al. 2005). As can be seen from these plots, the structures are more evolved

and show filamentary structure at smaller redshift. Fig. 1.4 shows the observed structure
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of our local universe, where each point denotes a real galaxy. The filamentary structure, as

predicted by the simulation, is evident in the observed data, leading to the conclusion that

ordinary matter follows the dark matter potential.

Figure 1.3 Computer simulation of large-scale structure of universe from the Millennium

Simulation. From top left to bottom right the structure at redshift z= 18.3, 5.7, 1.4 and

0.0 respectively. The bar in each figure shows the scale of 125 Mpc/h. (Springel et al. 2005,

http://www.mpa-garching.mpg.de/galform/virgo/millennium)

The structures continued to evolve, enhancing inhomogeneity. Baryons condensed in

these overdensities and began to form more complex object than stars (e.g., proto-galaxies,

quasars, galaxies, galaxy clusters etc.). Quasars are known to have existed as early as

redshift 7.085, which is only 0.77 billion years after the Big Bang (Mortlock et al. 2011).

Formation of baryonic structure at any time affects the formation and evolution of subsequent

structure, hence understanding the structures at all epochs is important to achieve a complete

understanding of evolution of universe.
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Figure 1.4 Structure of the local universe. The points are location of galaxy, the filament

structures of large scale are evident from the figure. Courtesy: Michael Blanton/SDSS III

1.3 QUASARS

Quasars are extremely bright sources of light, exceeding trillions of times the brightness of

the Sun (∼ 2× 1012L�), and yet they are point-like objects on the sky, suggesting that they

are much smaller than galaxies. A quasars’s brightness makes it observable across the visible

universe.

Quasars are believed to be powered by accretion around super massive blackholes (SMBH)

at the center of galaxies (Urry and Padovani 1995). Super massive blackholes (SMBH) are

black holes that are typically hundreds of millions of solar masses. The accretion disk around

the SMBH feeds the black hole to cause powerful jets. The accretion disk radiates due to

heat caused by gravitational potential and compression. Quasars are often a few hundred
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times brighter than the galaxy in which they reside. Extreme radiation near quasars ion-

izes the surrounding gas. Strong winds from the quasar accretion disk blow the ionized gas

out into the environment of the quasars (Balsara and Krolik 1993; Krolik and Kriss 1995;

Proga et al. 2000; Krolik and Kriss 2001; Proga and Kallman 2004; Everett 2005).

In this thesis, I make extensive use of quasar observations to improve the understanding

of baryons in quasar systems, as well as using them as background light to understand inter-

galactic material in the universe. In the next few sections, I discuss the history and present

understanding of these fascinating objects.

1.3.1 Discovery and Basic Nature of Quasars

The discovery of quasars is a result of the development of radio astronomy. The existence

of cosmological sources of radio waves was established in the 1950’s. The polarization of

these radio waves suggested the origin to be a synchrotron processes, in which the moving

electrons radiate in the presence of a magnetic field. The estimated energy output from

these objects was so large that the idea of a gravitational potential from normal matter as

the source of energy was soon shelved. As the resolution of radio telescopes improved, the

search for the optical counterparts of these radio sources caught on. The first few identified

optical counterparts looked like stars, and their redshifts were identified from optical spectra.

These redshifts suggested that the distances to the systems were on a cosmological scale;

the redshifts/distances enabled the estimation of the energy output of these systems. These

star-like objects, being very compact objects, emitting energy that was hundreds of times

the output of a galaxy, were called Quasi-Stellar Objects (QSO) or quasars.

The early definition of a quasar was summarized by Burbidge (1967) as follows:

• star-like object identified with a radio source

• variable light

• large ultraviolet flux of radiation

• broad emission lines in the spectra with absorption line in some cases

• large redshift
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The theoretical understanding of quasars progressed with the observations in the early

days. Hoyle and Fowler (1963) suggested that compact gravitationally collapsed objects

could serve as the energy source for such energetic objects. The existence of jets in early iden-

tified quasars also suggested the existence of violent processes (Rees 1967; Blandford and Rees

1974). These ideas soon led to the following picture of quasars: an accretion disk is formed

around a super-massive black hole, many orders of magnitude larger than the mass of typical

stars, with jets coming out perpendicular to the accretion disk. With advances in theoret-

ical understanding of in-falling material on to a compact object (e.g., neutron star, black

hole), the understanding of accretion disks a torus-like thick disk in the quasar environment

was established (Shakura and Sunyaev 1973; Lynden-Bell and Pringle 1974). Even though

a detailed understanding of quasars is still elusive, the existence of an accretion disk and a

thick torus around a super-massive blackhole (SMBH) with jets coming out from the pole is

still accepted as the current basic description of quasars.

1.3.2 Unified Quasar structure

Since the discovery of cosmological radio sources and their optical identification, there have

been many observational efforts undertaken to try to identify these non- typical objects, using

various ranges in the electro-magnetic spectrum, from radio to X-ray. Various classifications

of objects that are not typical stars or galaxies have come from these efforts. The objects

are classified in various categories according to the properties of their spectra. Below I give

a brief description of a select few.

Seyfert Galaxies: First identified by Seyfert (1943), these galaxies contain bright star-

like nuclei and their spectra have broad emission lines. With identification of more such

galaxies, Seyfert galaxies were further classified as type 1 and 2. The type 1 Seyfert galaxy

nucleus has a strong continuum from far infrared to X-ray. The few emission lines are

generally broad but some narrow emission lines can be present. The type 2 galaxy nucleus

has a much weaker continuum and only contains narrow emission lines.

Radio Galaxies: Radio galaxies are galaxies which are identified as radio sources.

Most of these galaxies have an elliptical morphology. The radio emission shows a complex
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morphology for the radio emitting region. Radio galaxies are further classified according

to emission line properties as Broad-Line Radio Galaxy (BLRG) and Narrow-Line Radio

Galaxies (NLRG). As the name suggests BLRGs have some emission lines which are broad,

while in NLRGs, all the emission lines are narrow.

Blazars: This family of objects shows rapid variability and features a spectrum domi-

nated by non-thermal emission. Blazars are subdivided into BL Lac and OVV subclasses.

BL Lac objects are generally strong X-ray sources. These objects do not show strong emis-

sion lines. They also demonstrate high polarization and are a strong source of radio emission.

Optically violent variable (OVV) quasars show rapid variation in their optical spectrum.

These diverse classes of object, though having many peculiarities, have many underlying

similarities. These similarities naturally give an opportunity to attempt a unification of these

classes with a general model using only few basic parameters. While many theories that have

attempted to unify a few classes have enjoyed limited success, the attempt to unify various

classes is far from over. I present here the most popular unification scheme. The review

article Urry and Padovani (1995) covers this scheme in great detail. The level of scientific

verification varies for different parts of the model.

Quasars originate from matter falling in to a SMBH at the center of the galaxy. The

falling gas forms an accretion disk. The viscous and turbulent processes in the accretion

disk cause the gas to lose angular momentum, thus bringing it closer to the event horizon

of the black hole. During this process, the accretion disk heats up and glows brightly in

ultraviolet and soft X-rays. Hard X-rays are produced very near to the black hole emitted

by hot electrons. The rapidly moving gas cloud in the potential of the SMBH produces strong

emission lines in the optical and ultraviolet. There is a thick torus made of gas and dust

aligned with the accretion disk. The torus obscures the SMBH and the associated broad-line

emission gas cloud from lines of sight near the equatorial plane. Gas clouds away from the

torus produce narrow emission lines. The SMBH also forms jets of energetic particles in the

direction of the poles. These jets interact with the Inter-Stellar Medium (ISM) and produce

radio emission. Thus in an elliptical galaxy, due to more ISM in the direction of jets, the

radio sources are strong compared to the spirals. The lines of sight near the equatorial

plane are blocked by the dusty torus, preventing observation of the broad emission line gas
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cloud, resulting in spectra with only narrow emission lines. The above picture of the SMBH

region in galaxies attempts to explain the different classes of observed spectra as differences

in viewing angle, mass and spin of the SMBH, and accretion rate. Details of these processes

are still not resolved.

One of the important features of the unified scheme is the outflow of the gas from the

accretion disk. The origin of such outflows is not very well understood. The outflow may

be accelerated by magneto-centrifugal forces, or by radiation pressure, or by pressure driven

wind, depending on the different model. In the case of an outflow dominated by radia-

tion pressure, the flow is confined to low latitudes with respect to the accretion disk plane.

According to simulations (Proga et al. 2000; Proga and Kallman 2004), some transient fil-

aments of higher density form. In the case of outflows dominated by magneto-centrifugal

forces, the flow is more cylindrical (Everett 2005). In the case of outflows dominated by

gas pressure, the wind is generated from the cool, dense torus, by photo-evaporation; there-

fore the wind does not originate deep inside the potential well, and it has a smaller outflow

velocity (Balsara and Krolik 1993; Krolik and Kriss 1995, 2001).

1.3.3 Quasar Properties

The quasar spectrum shows broad emission lines in the ultraviolet and optical parts of the

spectrum. At high redshift, the most commonly observed emission line is C IV, due to

redshifting of ultraviolet features into the observable optical range. These emission lines

are generated very near to the accretion disk of SMBH and an intrinsic part of quasars.

Baldwin (1977) was the first to observe the anti-correlation between luminosity and the

equivalent width of C IV. The effect has been confirmed by many studies (e.g., Wu et al.

2009; Richards et al. 2011) and is due to a lack of atoms in higher ionizing states, because

of the lack of ionizing photons in low brightness quasars.

Quasars emit over a very broad range of the electro-magnetic spectrum and are bright

in ultraviolet through X-ray. They exhibit an anti-correlation of ultraviolet luminosity and

X-ray luminosity. More specifically, there is a suggested nonlinear inverse scaling of 2 keV

X-ray luminosity with the ultraviolet luminosity at 2500 Å (Avni and Tananbaum 1982;
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Green et al. 1995; Steffen et al. 2006; Just et al. 2007; Richards et al. 2011)

It is also well observed that the emission lines in quasar spectrum are systematically

blue-shifted compared to the true redshift. The blue-shift varies for different emission lines,

with a more severe blue-shift for higher ionization lines. The blue-shift also depends on

the luminosity, though the luminosity dependence is much weaker in radio-loud quasars

compared to radio-quiet quasars (Richards et al. 2011).

1.3.4 Significance of Quasars for cosmology

Quasars are a very useful probe for enhancing our understanding of cosmology. The quasars

observed at redshift ∼6 provide a wealth of information about the epoch of reionization

(Becker et al. 2001; Fan et al. 2001, 2003; White et al. 2003; Djorgovski et al. 2006). They

are one of the very few tools available to us to probe this epoch.

Quasars could have a significant effect on the evolution of baryonic objects (e.g., galax-

ies). The highly energetic narrow jets and less energetic but broader outflows give a sig-

nificant amount of energy to the surrounding ISM. Such a feedback process has been hy-

pothesized to regulate the evolution of the galaxies (Silk and Rees 1998; Springel et al. 2005;

Di Matteo et al. 2005; Bower et al. 2006).

Quasars are also very useful in probing everything along their sight-line. The intervening

objects between the quasar and us often imprint absorption features in spectra. These

absorption lines (QALs) provide information about the quasar environment as well as the

Inter-Galactic Medium (IGM). QALs have been used to study a broad range of subjects,

ranging from quasar environments (e.g., Foltz et al. 1988; Aldcroft et al. 1994; Richards 2001;

Ganguly et al. 2001; Baker et al. 2002; Vestergaard 2003; Yuan and Wills 2003; Richards

2006; Ganguly et al. 2007; Lundgren et al. 2007; Misawa et al. 2007; Ganguly et al. 2007)

to large scale clustering (for example,Petitjean and Bergeron (1990); Steidel and Sargent

(1992); Petitjean and Bergeron (1994); Outram et al. (2001); Churchill et al. (2003)

Adelberger et al. (2005); Bouché et al. (2006); Scannapieco et al. (2006); Wild et al. (2008);

Tytler et al. (2009) Lundgren et al. (2009); Crighton et al. (2011))

11



1.3.5 Understanding the origin of quasar absorption systems

The star formation rate peaked between redshift '2 and '3 and decreased by an order of

magnitude by the present day (Hopkins and Beacom 2006). Since stars are the only source

for elements heavier than lithium, the QALs at this redshift range are a great tracer of star

formation and galaxy evolution. One of the most easily detectable absorber systems at this

redshift is triply ionized carbon (C IV). The C IV transition at wavelength 1549Å is in the

ultraviolet range (100-4000Å) of the spectrum, but since the photons are redshifted, they

reach us in the optical part of the spectrum, if they originate at a redshift greater than 1.5.

We can understand the origin of these C IV systems by measuring their clustering strength.

For example, in the simple model where C IV systems originate from population III stars,

C IV systems would be more homogeneously distributed and their clustering strength would

be similar to the strength of the dark matter itself. However, if the C IV gas originated

in star-forming galaxies and was expelled by supernova blast waves into the intergalactic

medium, we would expect the C IV systems to have a higher clustering strength matching

that of star-forming galaxies. Alternatively, if the C IV systems result from quasars and are

expelled by outflows, we would expect the C IV systems to have a strong clustering strength

similar to quasars. Our understanding of structure formation by dark matter enables us to

use the clustering strength of dark matter halos to find the mass of the halo at any epoch.

Since C IV (like any baryon) traces the dark matter, the clustering strength measurement

gives the mass of the host halos of these systems.

Measuring clustering strength requires an accurate understanding of observational con-

straints and the selection effects due to these constraints. The complexity of constraints of

quasar observations along with extracting the absorber’s information from the spectra makes

it difficult to directly measure the clustering strength of C IV. However, ever-useful quasars

help us determine the clustering strength indirectly by measuring the clustering strength

of C IV with respect to a quasar. We have numerous observations of quasars in the same

volume as the CIV absorbers, and the understanding of their population is quite accurate. In

Chapter 2, I determine the clustering strength of C IV absorbers by measuring their relative

clustering with quasars.
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1.3.6 Understanding Quasars using absorption lines

Many quasar spectra demonstrate various QALs, (e.g., Mg II, C IV, Ly-α, Ly-β, Si IV,

Fe II). These are generally subdivided as Broad Absorption Line (BAL) or Narrow Ab-

sorption Line (NAL). These absorption features are an excellent way to probe the environ-

ment of the quasar, as some physically reside in this environment (Weymann et al. 1979;

Yuan and Wills 2003; Richards 2006; Ganguly et al. 2007; Lundgren et al. 2007; Foltz et al.

1988; Aldcroft et al. 1994; Ganguly et al. 2001; Baker et al. 2002; Vestergaard 2003; Richards

2001; Misawa et al. 2007; Ganguly et al. 2007). C IV gas clouds are frequently observed in

the quasar spectrum with redshift similar to that of the quasar, making them the obvious

candidate to probe the quasar environment. In Chapter 3 we study the quasar environment

using the C IV absorbers associated with quasars. However, all C IV clouds observed in the

quasar spectrum are not due to their local environment. The intervening space also makes a

significant contribution, but because we only observe velocity not actual distance, it is hard

to classify them according to their origin. We can improve our study if we try to account for

C IV clouds statistically rather than individually. In Chapter 3, we estimate the intervening

component and use it to estimate the population and properties of C IV clouds in quasar

environments.

At redshift '1, the dark energy started to have non-negligible influence on the rate of

expansion of the universe. By redshift '0.3 the dark energy became the dominant component

of energy density and improving our understanding of dark energy has assumed foremost

importance in understanding our present-day universe.

1.4 SUPERNOVA

Supernova Ia cosmology burst onto the center stage of cosmology by discovering acceleration

of the expansion of universe (Riess et al. 1998; Perlmutter et al. 1999). The acceleration is

attributed to a component of the universe that has a negative pressure, which is called Dark

Energy. The negative pressure leads to the acceleration of expansion of the universe, as

13



Figure 1.5 The plot of apparent magnitude with redshift from the supernova data. The black

line is the best fit cosmology parameter for the data. (From: Conley et al. (2011))

opposed to other forms of energy which lead to deceleration. At present, 74% of the total

energy in the universe is in the form of dark energy, as shown in fig. 1.1. The discovery of

dark energy was made using Type Ia supernovae as the standard candles (Riess et al. 1998;

Perlmutter et al. 1999). Standard candles are light sources for which the brightness is always

the same. By measuring the apparent brightness of these sources, the distance to the source

can be estimated. The estimation of distances from many supernovae at different redshifts

traces the expansion at various epochs and constrains the nature of dark energy. Figure 1.5

shows a plot of distance and redshift in the most recent supernova analysis of Conley et al.

(2011).

Since the discovery of dark energy, the next challenge has been to estimate the equation

of state parameter of dark energy, w, describing the relation of the pressure of dark energy
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to the energy density of dark energy. The next generation of surveys, such as ESSENCE

(Miknaitis et al. 2007), aimed to measure the w of dark energy. Due to the increased number

of observed supernovae, the statistical uncertainty in supernova analysis has decreased. How-

ever, there remain many systematic uncertainties due to various assumptions and unknowns.

The systematic uncertainties of supernova analyses now exceed the statistical uncertainties.

It is now imperative to understand the systematic uncertainties so that further progress can

be made.

In Chapter 4, I estimate w and the systematic uncertainty carefully for the ESSENCE

supernova survey. In next few sections, I describe the history and current understanding of

supernova Ia, which have changed our understanding of the universe in a very significant

way in the last decade.

1.4.1 Supernovae Ia and Properties

Supernovae are a transient event following the explosion of a star. At their peak brightness,

they can match the brightness of the galaxy in which they reside. Since they are very bright,

supernovae can be seen to large distances and probe the universe in the distant past. Their

standard brightness can be used as a tool to measure their distances. They are also factories

for making and distributing new elements, making them important for galaxy evolution and

composition in the universe.

Supernovae have been centers of curiosity since the 20th century. In early observations,

they were described as “novae” (new stars). In a famous debate between Shapley and Curtis,

they argued about the nature of these “novae”. Shapley (1921) argued them to be novae

and thus nearby objects. Curtis (1921) argued them to be in separate galaxies and to be

inherently different objects compared to novae. The debate has been detailed in Trimble

(1995). Using the locally observed properties of Cepheid variables-the period of oscillation

in luminosity correlates with luminosity-Hubble deduced the distance of nearby galaxies

(Hubble 1925). Hubble’s famous plot of distance vs redshift of nearby galaxies established

the view of the expanding universe; such plots are now are called “Hubble diagrams”. This

firmly established the extra galactic origin of these “novae”, resolving the debate.
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Baade and Zwicky (1934) were the first to use the name “supernovae” for these extra

bright “novae”, and were also the first to try to explain supernovae physically, by speculating

that they are collapsing neutron stars. Baade (1938) was the first to highlight the uniformity

of brightness in the supernova data, which made them appropriate to be used as “standard

candles”. The need for classification arose when Minkowski (1941) found a spectrum of a

supernova that was very different than previously observed. The supernovae from Baade

(1938) had not shown any hydrogen in their spectra. They were called Type I supernovae

(SN I), while the new supernova was classified as Type II. The first attempt to make a

Hubble diagram using 19 supernovae was made by Kowal (1968).

Pskovskii (1968) noticed the presence of broad and deep absorption observed at about

6150Å, due to Si II at the maximum brightness, in many SN I. Supernova classification

evolved with better spectra and further understanding of noise. Supernovae Type Ia (SN Ia)

are currently described as supernovae which do not show any sign of Hydrogen or Helium

but show a distinctive SiII absorption feature at peak brightness. SNe Ia are now understood

to be thermo-nuclear reactions during which the white dwarf is totally disintegrated by the

energy. All other supernovae are core-collapse, where the central region of an evolved star

is converted to a neutron star or black hole due to pressure, and the outer layers are blown

away due to shock.

With the advent of CCDs and more accurate measurement of light from SN Ia, it became

clear that SN Ia had substantial variation in luminosity. The brighter SNIa’s are about three

times brighter than the dimmer ones. Phillips (1993) demonstrated the correlation between

the luminosity and the rate of rise and fall of luminosity (light curve) of the SN Ia, also

referred to the as brighter-slower relationship: brighter SN Ia rise and fall in luminosity

slower. It was observed for SNe Ia that the higher the luminosity, the shallower the slope

of the light curve tends to be. The correction for this correlation significantly reduced the

scatter of SN Ia on the Hubble plot. Figure 1.6 shows the effect of the correction of this

correlation. The discovery pointed to a need to find more very well observed SN Ia at

various epoch, in the local universe, so that more properties could be found to improve the

standardness of SN Ia as standard candles.

Along with improvements in making SN Ia better standard candles, there were attempts
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to verify the distance estimation of SN Ia independently. Sandage et al. (1992); Saha et al.

(1995) used HST images to identify Cepheid variables in type Ia host galaxies. These studies

established the supernova Ia absolute magnitude at MV = −19.52 ± 0.07 mag and MB =

−19.48 ± 0.07 mag.

Because SN Ia suffer from extinction due to dust, the distance measurement is difficult.

A significant improvement in measuring dust extinction was achieved when Lira (1995)

first noticed that all SN Ia reach a common color after 30-90 days of maximum brightness,

irrespective of their luminosity. Due to improvement in the dust extinction measurement,

allowing a more precise measurement of the color of supernova, Riess et al. (1996) noticed

the color of SN Ia correlates to luminosity, which is often referred to as the “brighter-bluer”

relation where the brighter SN Ia tend to be bluer in color.

Significant improvement in the technology of making telescopes and computational power

led to further improvement. Riess et al. (1998) and Perlmutter et al. (1999) made the break-

through discovery about the accelerating universe using SN Ia as standard candles, a dis-

covery that made SNe Ia central to modern cosmology.

1.4.2 Progenitors of Supernova Ia

Improved knowledge of the SN Ia progenitor would be immensely useful for SN Ia cosmology.

Understanding the progenitor systems could lead to significant improvement in understand-

ing the evolution of various systematics with redshift and possibly their correlation with each

other. It could also give guidance to suggestions of physical parameters which might make

SNe Ia better standard candles. Even though the importance of SN Ia to cosmology can not

be overstated, the basic understanding of its progenitor still eludes us.

SN Ia’s are thought to be thermo-nuclear explosions of a carbon-oxygen white dwarf,

which are at, or close to, the Chandrasekhar limit of 1.4 M� (Hoyle and Fowler 1960).

One widely accepted progenitor is a carbon-oxygen white dwarf that grows in mass

through accretion from a non-degenrate stellar companion (i.e., main sequence star, subgaint

star, helium star, red giant star; Whelan and Iben 1973). The accreted matter increases the

pressure in the white dwarf above the limit that can be supported by the degeneracy pressure
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Figure 1.6 Top panel shows the different SN Ia light curves. The vertical axis is brightness and

horizontal axis is time in the rest frame of SN Ia, in reference to time of maximum brightness.

The bottom panel show the same light curves, taking into account the correlation between

brightness and shape. This figure demonstrates that the scatter in luminosity of SN Ia is

reduced significantly once the correlation is taken into account (Coursey: Kim et al. 1997).
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of electrons. At this point, the nuclear burning starts and within seconds completely destroys

the star. A large fraction of the star burns completely to Ni56. The radioactive decay of Ni56

powers the light curve that we observe (Colgate and McKee 1969). Figure 1.7 (a & b)shows

a cartoon picture of this progenitor model, which is also known as Single Degenerate.

Another model of the progenitor involves two white dwarfs merging after losing energy

and angular momentum to gravitational waves (Figure 1.7 (c)). Such a merger may lead

to an object more massive than the Chandrasekhar limit, which can ignite and explode.

Alternatively, the process of merging might disintegrate the smaller white dwarf and may

lead a super-Chandrasekhar limit white dwarf (Iben and Tutukov 1984; Webbink 1984).

Since these models involve two degenerate objects, they are called Double Degenerate.

Both of the models were suggested many decades ago but even today there is no clear

preference for any model. There is, in fact, much observational evidence against each model

(e.g., Maoz and Mannucci 2011, and references therein). The observed rate of SN Ia is an ex-

ample. The current SN Ia rate is considered, by some, bimodal, with one prompt component

which is proportional to star formation rate and a delayed component which is proportional

to total stellar mass of the galaxy (Mannucci et al. 2005; Scannapieco and Bildsten 2005).

The single degenerate model fails to explain the existence of the delayed component, but

the double degenerate model does not explain the prompt component well. Both models

under-predict the observed SN Ia rate. Both models can only explain the SN Ia in a narrow

range of some physical parameters of the model.

It is also possible that both systems result in SN Ia. The possible consequence of multi-

ple channels of progenitor is more diversity in the supernova brightness, which would reduce

their standardness. As we can see in the double degenerate case, the combined mass after

a merger can exceed the Chandrasekhar mass limit, making these supernovae brighter than

others. The multiple channel also brings a complicated redshift dependence to the super-

nova brightness. We know that in the early universe the star formation rate was much higher

than it is currently. This asymmetry in star formation rate could make the supernovae at

higher redshift systematically more fainter than the local ones, as they would have a higher

proportion of single degenerate progenitors. To make the dependence more complicated, the

brightness of supernovae is also believed to dependent on the metalicity of the progenitor in
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Figure 1.7 The figure is a cartoon describing the single and double degenerate progenitor of

SN Ia. A white dwarf in binary system with Red Giant (a), Subgiant (b), white dwarf (c)

as possible progenitor systems (Courtsey: Hamuy 2011).
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the single degenerate case. Lower metalicity may make supernovae less bright (Timmes et al.

2003; Sullivan et al. 2010; Konishi et al. 2011). At higher redshift the metalicities are lower,

and because of this, these supernovae would be fainter than more recent ones. The super-

novae from double degenerate systems have a large delay time and are thus less affected by

metalicity variations as a population. As we can see, our lack of knowledge of a progenitor

limits our ability to use the SNe Ia as standard candles.

Even though the mystery of a SN Ia progenitor is far from being solved, the empirical

standaredness can still be used to provide estimates on the cosmological parameters.
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2.0 C IV ABSORBER-QUASAR CROSS CORRELATION

The Work presented in this chapter was submitted to the Astrophysical Journal in May

2012. In this chapter, I study the clustering of C IV absorbers with respect to quasars. Such

clustering estimates can shed light on many important questions (i.e., the origin of absorbers,

feedback processes in galaxies and star formation). In §2.1, I explain the basics of absorption

system detection and their properties. The estimation of clustering is contingent upon our

understanding of large scale clustering of dark matter. In §2.2, I give a short background of

large scale clustering theory. I explain the importance and advantages of my measurement

in §2.3 in the context of cosmology, as well as the astrophysics of the host galaxies of the

C IV absorbers. In § 2.4, I explain the source of data for absorbers, quasars, and the random

comparison catalog. I explore different correlation function estimators in §2.5 and justify

my choice of the correlation estimator. In §2.6, I present the main results of this study and

compare them to previous studies. In §2.7, I estimate the contribution of various systematic

errors that could affect this result. In the last section of this chapter, §2.8, I summarize the

main findings of my study and suggest future studies that could improve my result.

2.1 ABSORPTION SYSTEMS

Quasars are highly luminous objects that are believed to be super-massive black holes (Salpeter

1964; Lynden-Bell 1969) accreting material. Being very luminous, they can be seen at large

distances; therefore, they are ideal for the study of large scale clustering at early cosmic

times. Quasars are also very useful for probing the space along the lines of sight to the

quasar. Intervening material imprints various absorption at different redshifts in the spec-
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trum of a single quasar. Quasar absorption lines are currently thought to be from two

sources: (1) intrinsic gas in the host galaxy of the quasar and (2) intervening gas in the

galaxy along the line of sight to the quasar (e.g., Lynds 1971; Bergeron 1986; Sargent et al.

1988; Steidel and Sargent 1992; Steidel et al. 1994; Petitjean et al. 1994).

Figure 2.1 A cartoon picture of the quasar intrinsic spectrum is shown as the red line. The

green line is the spectrum we observe, which has flux absorbed by material in between us

and the quasar. The absorption lines identify the redshift and element causing absorption

from the spectrum. Courtesy: John Webb

We describe the absorption feature in the spectrum using a measure known as “equivalent

width”. The equivalent width is defined as the area enclosed by the absorption feature after

normalizing the spectrum by the continuum. Fig. 2.2 illustrates the definition of equivalent

width. The absorption profile at the left has the same area as the shaded region of width b

at the right. The value of b is the equivalent width of the absorption profile. The equivalent

width is widely used in the study of QALs, as it is a better indicator of the physical properties

of the originating system than other spectral features, such as depth.

C IV is a commonly observed QAL system in quasars. The rest-frame wavelength of the
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UV CIV doublet transition is (1548Å, 1550Å), which makes it easily observable in the optical

region at redshift z > 1.5. The C IV transition being a doublet makes the identification of

such systems more robust.

Figure 2.2 Illustration of the definition of equivalent width. The shaded areas are equal in

size. The value of b is the equivalent width measurement for the absorption feature shown

on the left side. Courtesy: COSMOS - The SAO Encyclopedia of Astronomy

2.2 LARGE SCALE CLUSTERING

The theory of large scale clustering is developed assuming a smooth distribution of matter in

the early universe and small perturbations on top of that. In the limit of small perturbations,

the growth of structures can be calculated. The equations are usually written in terms of

the overdensity, δ, which is defined as

δ(~x) =
ρ(~x) − ρ̄

ρ̄
(2.1)

where ρ̄ is average density of the universe and ρ(~x) is the density of the universe at location

~x. In Fourier space, different modes of overdensity evolve independently of each other. The

overdensity in Fourier space can be written as

δ(k, t) =
D(t)

D(t′)
T (k, t, t′)δ(k, t′) (2.2)
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where D(t) is the growth function (Lacey and Cole 1993; Carroll et al. 1992; Bildhauer et al.

1992), which is independent of scale, and t and t′ are different epochs. T (k, t, t′) is called

the transfer function (Eisenstein and Hu 1999) and governs the evolution of overdensity of

different modes. The power spectrum, which is defined as the square of the amplitude (thus

the power) of a given mode, can be expressed as follows.

P (k) ≡ 〈|δ(k)|2〉 (2.3)

In terms of the power spectrum, the evolution of structure can be written as

P (k, t) =

(

D(t)

D(t′)

)2

T 2(k)P (k, t′). (2.4)

This enables us to calculate the power spectrum at any epoch, if we know the power

spectrum at any earlier epoch. The power spectrum at early epochs is well observed by

studying the CMB when the overdensities were small. Using the growth function and the

transfer function, we can estimate the power spectrum at any epoch quite precisely. This

power spectrum is often called the linear power spectrum as it holds in the approximation

of small overdensities where the original equation governing the evolution becomes a linear

differential equation. This power spectrum holds for dark matter, as dark matter interacts

only through gravitation and is, therefore, easier to calculate. Since the dark matter density

is much higher than the baryon density, the baryons follow the dark matter potential. At

small real distances the overdensity is not proportionally small, but averaged over large

distances, the overdensity is still extremely small and the above formalism works very well.

The overdensity of condensed baryons, like galaxies and quasars, are also small at large

scales, so it can be written for any species, x, as (Efstathiou et al. 1988; Cole and Kaiser

1989; Mo and White 1996; Sheth and Tormen 1999)

δx = bxδdm (2.5)

where bx is the bias of x. Now the power spectrum of two species x and y can be written as

Px−y(k, z) = bxbyP
lin(k, z). (2.6)
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Since all our measurements are in real space, the above equation can be rewritten in real

space by using the inverse transformation as defined below.

ξ(r, z) =
1

2π2

∫

k3P (k, z)
sin(kr)

kr
d ln k (2.7)

The cross correlation of species x and y can then be written as below.

ξx−y(k, z) = bxbyξdm (2.8)

Since ξdm can be calculated using basic physics, any observation of the cross-correlation of

species x and y leads to the determination of bxby.

2.3 MOTIVATION

The origin of intergalactic QALs is not well understood. The metal lines provide infor-

mation about the structure formation process. They could be produced, for example, by

(1) isolated initial generation of stars (population III); (2) gas ejected into the inter-galactic

medium from proto-galaxies in merger processes (Gnedin 1998); (3) gas ejected from star-

forming processes within galaxies transported to large distances by galactic superwinds

(Voit 1996; Heckman et al. 2000; Pettini et al. 2001, 2002) or jets from active galactic nuclei

(AGN) (Bahcall and Spitzer 1969; Mo and Miralda-Escudé 1996; Maller and Bullock 2004;

Chelouche et al. 2008); (4) processes in the cold gas in dark matter halos (Bahcall and Spitzer

1969; Mo and Miralda-Escudé 1996; Maller and Bullock 2004; Chelouche et al. 2008) around

star-forming galaxies–the subsequent growth of large-scale structure would then make their

distribution more cuspy.

One way to differentiate between these various scenarios of metal-enrichment of the inter-

galactic medium is to measure the clustering strength of the QAL systems (Adelberger et al.

2005). For example, in the simple model where QAL systems originate from population III

stars, QAL systems would be more homogeneously distributed and their correlation function

would be similar to the correlation function of the dark matter itself. However, if the QAL

gas originated in star-forming galaxies and was expelled by supernova blast waves into the
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intergalactic medium, we would expect the QALs to have a more biased correlation function

matching that of star-forming galaxies. Equivalently, we would expect the QAL systems to

reside in the same dark matter halos in which the star-forming galaxies reside. Alternatively,

if the QAL systems are from quasars and expelled by outflows, we would expect the QALs

to have a strongly biased correlation function similar to quasars. In other words, the QALs

would reside in the same dark matter halos as quasars. The measurement of the QAL corre-

lation function thus enables us to relate the QAL systems to the mass of the halos in which

they reside.

The correlation strength of intervening QALs can also be used to better estimate the

fraction of QALs that are due to the quasar environment, and do not follow the clustering

properties exhibited by other QALs. In this document, we refer to all such QALs as “intrin-

sic,” making no distinction between systems that are sometimes more specifically referred to

as “intrinsic” or “associated.” Our definition of “intrinsic” QALs thus includes those with

high outward velocity with respect to quasars that overlap in redshift space with the inter-

galactic QALs. Understanding the correlation of the intergalactic QALs will allow for more

accurate measurements of the spatial and velocity distribution of the intrinsic QALs in the

future, and in turn, will help constrain the astrophysics of quasars and their host galaxies.

There have been many of investigations of the clustering properties of various QALs. Be-

cause most spectra are taken in optical observer-frame wavelengths, different species of QALs

have usually been studied in different redshift ranges according to their rest-frame wavelength

and uniqueness of identification. Mg II (λ =2796Å,2803Å) and C IV (λ =1548Å,1550Å)

are the two most-studied species because their prominent absorption double lines make

them easy to identify. Previous works have studied Mg II systems in a redshift range of

0.2 < z < 2 (Petitjean and Bergeron 1990; Steidel and Sargent 1992; Churchill et al. 2003;

Bouché et al. 2006; Lundgren et al. 2009). With C IV QALs we can reach the higher redshift

range of 1.5 < z < 4.

A number of efforts have been made to determine the C IV clustering strength, us-

ing various methods (Petitjean and Bergeron 1994; Outram et al. 2001; Adelberger et al.

2005; Scannapieco et al. 2006; Wild et al. 2008; Tytler et al. 2009; Crighton et al. 2011). A

few studies have measured the auto-correlation function for C IV and other absorbers (e.g.,
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Scannapieco et al. 2006). The cross-correlation of CIV absorbers with quasars or galaxies has

been explored by (Outram et al. 2001; Wild et al. 2008; Tytler et al. 2009; Crighton et al.

2011). Adelberger et al. (2005) found that the cross-correlation function for C IV absorp-

tion systems and galaxies, based on ∼1000 absorbers, is similar to the correlation function

of star-forming galaxies. All of these studies, however, are based upon a small number of

quasars and C IV absorbers and lack the power to statistically probe the overall structure

of a large volume of the Universe. Therefore, they only constrain clustering strength with

relatively low precision.

New surveys with more uniform, accurate, and extensive data currently allow for a more

precise QAL clustering analysis. The SDSS-III Baryonic Oscillation Spectroscopic Survey

(BOSS Eisenstein et al. 2011a) provides an excellent data set for such analysis. Data Release

9 (DR9) contains high-quality spectra of ∼61,000 quasars at z > 2.1 (Pâris 2012); this data

set provides almost an order-of-magnitude increase in the number of QALs over previous

C IV studies.

The ideal way to measure the clustering of C IV absorbers would be to perform an auto-

correlation study of C IV absorbers. However, determining the uniformity and completeness

of the back-lighting quasar sample together with the line-of-sight completeness of detecting

C IV absorbers in quasar spectra is a significantly challenging project that requires future

work. The BOSS quasar sample specifically targets quasars in the redshift range of z > 2.2

(Ross et al. 2012); thus there is a good overlap between the space of C IV absorbers (1.5 <

z < 4) and the target redshift range of the BOSS quasar sample.

In this chapter, I calculate the two-point cross-correlation between the BOSS C IV ab-

sorbers and the BOSS quasars, which have a well-understood selection function (White et al.

2012), to provide a better estimate of clustering of the C IV absorbers. Because both our

sample C IV absorbers and quasars are from spectroscopic data, the redshifts of each sample

are known quite accurately. Therefore, here I undertake a 3-D correlation study to extract

the most information from our data set.

Throughout this work, I assume a flat ΛCDM cosmology of ΩΛ=0.74, ΩM=0.26, w = −1,

and h = 0.72.
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2.4 DATA

2.4.1 BOSS

BOSS is an ongoing survey with the goal of determining the expansion history of the

Universe by measuring the baryon acoustic oscillation feature using luminous galaxies at

z ∼ 0.7 and the Lyman-α forest traced by quasars (Cole et al. 2005; Eisenstein et al. 2005;

McDonald et al. 2006; Eisenstein et al. 2011a). The survey plans to obtain spectra for 1.5

million massive galaxies in order to measure the distance-redshift relation dA(z) and the

Hubble parameter H(z) with percent-level precision out to z = 0.7, using techniques that

led to the first detection of the BAO feature (Cole et al. 2005; Eisenstein et al. 2005); the

first BOSS results are given in Mehta et al. (2012); Padmanabhan et al. (2012); Xu et al.

(2012). BOSS is also extending a new method of BAO measurement using the Lyman-α

forest of 150,000 distant quasars at z ' 2.5 (McDonald et al. 2006; Slosar et al. 2011).

BOSS is a spectroscopic survey undertaken within the SDSS-III program (Eisenstein et al.

2011b). SDSS-III uses a dedicated 2.5-m telescope located at the Apache Point Observatory

in New Mexico at an elevation of 2788 m (Gunn et al. 1998, 2006). In this work, I am using

data that will be part of the SDSS Data Release (DR9), which will include all the observa-

tions taken by the BOSS prior to the summer shutdown in July 2011 and is released in July

of 2012.

2.4.2 Quasars

BOSS targets galaxies for its main BAO survey and quasars for studies of the Lyman-α forest.

Maximizing the number of quasar sight-lines, regardless of how the quasars are selected, is

the best way to detect the baryon acoustic feature in the Lyman-α forest, which is a goal of

BOSS.

It was recognized early on in the survey, however, that additional science can be done

with a homogeneous quasar sample, such as, determinations of the quasar luminosity func-

tion, active black hole mass function, and auto-correlation function. Thus, to maximize the

scientific output of the survey, the BOSS project decided to target half of the quasar sample
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using a uniform selection algorithm (Ross et al. 2012). This subset of the quasar data is

known as the “CORE” sample. On average, approximately 40 fibers for quasars targets

were allocated per deg2 of the BOSS survey; 20 of these fibers are used for the CORE sam-

ple and another ∼ 20 targets are from the “BONUS” sample. The BONUS sample uses

targeting algorithms that incorporate all available information, even if it is heterogeneous

on the sky, and is continually updated to maximize the number of quasars observed without

regard to uniformity of selection. After initial experimentation with different selection algo-

rithms (see, e.g., Kirkpatrick et al. 2011), the algorithm denoted “XDQSO” was finalized as

the algorithm that defines the CORE sample for the rest of the survey. The details of the

XDQSO targeting algorithm are presented in Bovy et al. (2011).

The main goal of having a separate homogeneous CORE sample is to enable statistical

studies, which require understanding of the completeness of the survey. The work described

in this chapter is one study that is possible because of this CORE sample.

The BOSS survey targeting strategy divides the sky into “chunks.” During the initial

period, the targeting algorithm was held constant within each chunk and changed between

chunks. After the chunk “boss12”, the targeting algorithm for CORE was frozen, So the

BOSS CORE sample is homogeneously selected subsequent to chunk 12, and will remain

so until the end of the survey. Ross et al. (2012) provides the details of the quasar target

selection and quasar sample. For this study, we are using all BOSS chunks except boss1,

which was Stripe 82 (Stoughton et al. 2002) commissioning data. Fig 2.3 shows the redshift

distribution of the quasars in our study.

2.4.3 Random Catalog for Quasars

The construction of random catalogs that represent the selection of BOSS CORE quasars is

detailed in White et al. (2012). Because the CORE quasar target selection was in flux for

the first-year, the CORE quasar sample is not perfectly uniform. However, as the CORE

target selection algorithm is now fixed to XDQSO, the completeness of the first year data

can be estimated retroactively. For each chunk, we take the catalog of targets XDQSO

would have generated and compare it to the objects that were actually observed. From
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Figure 2.3 Distribution of redshift for C IV absorbers (black, solid line) and quasars (red,

dashed). All quasars are from the CORE DR9 sample. There are a total 37,831 quasars and

23,389 C IV absorbers in the sample. However, our clustering analysis only makes use of the

19,701 quasars and 6,149 absorbers of equivalent width > 0.28Å in the overlapping region of

the distributions from 2.1 < z < 2.5.
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this comparison, I calculate the completeness of each sector, where a sector is a spherical

polygon, or a collection of spherical polygons, that define a survey area observed under

the same conditions. Fortunately, there is a high coincidence of target objects between

the XDQSO targets and the actual targets observed for a given chunk. Ross et al. (2012)

presented the details and a comparison of the target selection algorithms.

To reconstruct the correlation function, I need a random sample subject to the same

survey effects as the quasar sample. I used code written by Adam Meyers to calculate com-

pleteness and generate the random sample. I generated a random sample with approximately

100 times more random points the actual number of quasars to accurately sample the com-

pleteness in redshift and position on the sky. Therefore, the random sample represents an

unclustered distribution of points following the properties of the data. The random gener-

ation, completeness mask, and redshift distribution are described in detail in White et al.

(2012).

2.4.4 C IV Absorption line identification pipeline

The C IV absorbers examined in this work were extracted using a modified version of the

automated SDSS Data Release 7 (Abazajian et al. 2009) quasar absorption line identification

pipeline described in Lundgren et al. (2009) and York and et al. (2012, in prep). The pipeline

identifies features of absorption by first subtracting a pseudo-continuum from each quasar.

In each case, the pseudo-continuum is determined using a variation of a moving mean, which

has been found to robustly fit both the quasar emission lines and the flat regions over a broad

range of quasar spectral morphologies. An algorithm is then run on the normalized spectra

to identify significant absorption lines. The line-finding algorithm determines the reduced

χ2 fit to a Gaussian profile centered on each pixel of the spectrum. Errors on the equivalent

width of each feature are measured directly from the error array of the quasar spectra output

by the BOSS pipeline, and lines with ≥3σ significance are retained for identification. The

error on the equivalent width reflects the 1σ error on the best Gaussian fit to each absorption

line, as derived from the SDSS error spectrum (photon statistics) for each object. For the

rest frame equivalent width measurements, the observed error is divided by 1 + z.
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The pipeline then attempts to identify each of the detected absorption features by match-

ing ions of different species at the same redshift. The line identification algorithm operates

by first identifying the most easily observable doublets, C IV and Mg II. The search is done

independently for each of these doublets, so systems that only have C IV or only have Mg II

are easily found. Since absorbing gas should be physically located in the foreground of

the quasar, this search is restricted to the wavelength range corresponding to a velocity of

3000 km s−1 behind the quasar, to accommodate redshift errors in the quasar sample.

The continuum fitting algorithm fits poorly around narrow emission lines, causing it to

often produce artifacts of false absorption features. For this reason, the algorithm also omits

regions of the quasar spectrum in close proximity (20 Å) to narrow emission lines. Because

of our cross-correlation analysis approach, our study is not sensitive to any underestimation

of C IV absorbers caused by narrow emission lines.

For each detected doublet, an absorption redshift is determined, and the remaining

unidentified absorption lines are examined for matches to other ions at the same redshift. I

consider all C IV absorbers that have resolved doublets detected at ≥ 4σ significance.

2.4.5 The C IV sample

I use the pipeline described in §2.4.4 to find C IV absorbers in BOSS quasar spectra. As

explained in §2.4.2, there are two samples of quasars, CORE and BONUS. However, the

absorber sample does not need to use a well defined selection of quasars. I choose C IV

absorbers in the following redshift range:

zabs < min

(
√

1 − βmin

1 + βmin
(1 + zQSO) − 1,

7500Å

1549Å
− 1

)

zabs > max

(

1260Å

1549Å
(1 + zQSO) − 1,

3800Å

1549Å
− 1

)

(2.9)

As evident from Eq. 2.9 I choose the C IV absorbers in the quasar spectra in the observed

wavelength range of 3800–7500 Å. This range is chosen to avoid the noisy region of the

spectra due to spectral contamination from sky lines and our limited ability to correct for

them. I also avoid any features in the region shortwards of 1260 Å in the quasar rest-frame,

as this region is contaminated by the N V line and the Lyman-α forest. Therefore, our cut
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avoids many potential false detections at the expense of missing some real systems. This

approach leads to a redshift range for detectable C IV absorbers of 1.453 < zabs < 3.841.

Broad Absorption Lines (BALs) in quasar spectra are known to contaminate Narrow

Absorption Lines (NALs), so all spectra with C IV BALs are removed from our analysis. The

BOSS quasar catalog relies on visual examination to determine if an object is a quasar or

not. BAL absorbers are visually identified in all cases (Pâris 2012). This process leads to a

first-cut catalog of 37,441 C IV absorbers.

Our aim is to study the clustering of C IV absorbers relative to quasars. Quasars are

known to emit ionized winds at high velocity, so many absorption features in quasar spectra

will be intrinsic to the quasar itself rather than due to intervening absorbers. To remove

these intervening absorbers, I apply an additional constraint of β > 0.02 with β given by

β =
v

c
=

(1 + zQSO)2 − (1 + zabs)
2

(1 + zQSO)2 + (1 + zabs)2
, (2.10)

The quantity β is the recession velocity between absorber and quasar. The cut of β = 0.02

corresponds to v = 6000 km s−1 which removes most of the intrinsic absorbers from the

sample. Previous studies used a less conservative cut for the velocity. Ellison et al. (2002)

used 3000 km s−1 and Fox et al. (2007) used 5000 km s−1.

Figure 2.4 shows the distribution of β for our sample. The excess of C IV absorbers in

0 < β < 0.02 is due to intrinsic CIV absorbers, which I remove from our sample. Intrinsic CIV

absorbers are known to contaminate the sample at much larger velocities (vanden Berk et al.

1996; Richards et al. 1999). Such contamination may affect the estimation of the correlation

function; I estimate this effect in §2.7.4. The intrinsic absorbers may reside in the host galaxy

of the quasar, be in material ejected from the quasar, or be in the clustering environment

of the quasar. Only the material ejected by the quasar, however, can contaminate the

measurement of the correlation function. All other sources of intrinsic C IV absorbers would

still contribute to the correct correlation function. To accurately describe intrinsic absorbers,

I would have to assume a model for the velocity distribution around the quasar, but such a

study is beyond the scope of this current work. Applying the β > 0.02 cuts decreases our

C IV absorber sample to 23,339 absorbers.
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Figure 2.4 Distribution of β of the absorbers. The excess in the range 0.0 < β < 0.02 is due

to absorbers intrinsic to the quasar. The red dashed line of β = 0.02 separates the samples

in our study. After the β cut, 23,389 absorbers remain.
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I measure the equivalent width of the doublet as the equivalent width of the 1548Å line.

Catalog absorbers with rest-frame equivalent widths, Wr, ≈ 5 Å can arise as artifacts of the

pipeline (due to, for example, poorly subtracted night sky lines) or from complicated blends

of multiple doublets. All absorbers with such strong Wr > 5 Å features are removed from

the sample. This limit removes only 15 absorbers from our sample, leaving 23,324 absorbers.

The likelihood of false positives is higher in the small observer-frame equivalent width

absorbers, so I apply a cut on observer-frame equivalent width of W0 > 1 Å. Applying

this cut provides an automatic cut on rest-frame equivalent width of Wr > 0.28Å (at our

median sample redshift of z ∼ 2.3). Figure 2.5 shows the distribution of absorbers in i-band

magnitude and Wr space. The top panel shows the distribution of Wr for absorbers from

CORE and BONUS quasars. The side panel shows the distribution of i-band magnitude for

the same absorbers. After applying this cut, I am left with 20,925 absorbers.

Cross-correlating BOSS quasars and absorbers on scales out to 100 Mpc requires the two

samples to be in the same redshift range (2.1 < z ≤ 2.5). There are very few quasars at

z < 2.1 and few absorbers at z > 2.5. This redshift range restricts our final sample to 6,149

C IV absorbers, which is almost an order-of-magnitude larger than previous C IV absorbers

correlation analysies. A summary of the effects of the different cuts is given in Table 2.1.

2.5 CORRELATION ANALYSIS

The spatial correlation function, ξ(r), describes the clustering of spatial points as a function

of distance r. Similarly, the cross-correlation function, ξA−B, describes the clustering of

two species A and B at any given separation r. The cross-correlation function between a

population of C IV absorbers and of quasars, ξQSO−CIV(r), is defined as the excess probability

of finding a C IV absorber at distance r from a quasar compared to the chance of a random

coincidence:

d P (r) = n̄QSOn̄CIV (1 + ξQSO−CIV(r)) d VQSO d VCIV (2.11)

where n̄CIV is the mean density of CIV absorbers, and n̄QSO is the mean density of quasars (Peebles

1980).
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Figure 2.5 The bottom left panel of the plot shows the distribution of C IV absorber rest-

frame equivalent width, Wr(Å), and the quasar i-band magnitude. The color denotes the

number density of the C IV absorbers. The color-bar at the right side of the plot shows the

color-density scale. The lack of completeness for low Wr is evident as it is systematically

more difficult to detect weaker absorbers in fainter quasars. The panel at the right shows

the distribution of i−band magnitude for absorbers from the CORE and BONUS quasar

samples. Similarly, the panel at the top shows the distribution of Wr for absorbers from the

CORE and BONUS quasar sample.
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Table 2.1 Table of Number of C IV absorbers for different selection cuts

Description Number of C IV absorbers

No cut 37,441

β > 0.02 23,339

Wr < 5 Å 23,324

Wo > 1 Å 20,925

2.1 < z ≤ 2.5 6,149

The non-continuous geometry and varying depth of observations in large surveys makes

the task of estimating the correlation function more difficult than the trivial calculation of

distances between different pairs. In general, the estimation of the correlation function relies

on constructing a random sample which contains all the information about the geometry of

the survey and the varying depth of data by calculating the completeness of the observation

in any given sector. This random sample is essentially a mock survey that does not have

any clustering but contains all of the other information about the survey that needs to be

considered for a correlation function calculation. By comparing the clustering of real data

and the random sample, the real clustering of the data can be isolated and measured .

There are different estimators for the correlation function, each of which has advantages

and disadvantages in the context of our study. The first method I consider is from Peebles

(1980),

ξQSO−CIV(r) =
DCIVDQSO

DCIVRQSO

− 1, (2.12)

where DQSO represents our CORE sample of quasar data, RQSO is the random sample that

corresponds to the quasars and DQSO, and DCIV is CIV absorber data. DD and DR represent

the data-data and data-random pair counts as a function of r. The auto-correlation of quasars

is defined in a similar manner to Eq. 2.12. The advantage of the estimator in Eq. 2.12 is

that it does not need a random sample for the C IV absorbers. However, while this method

is simple, it is a biased estimator (Peebles 1980).

The other method I consider for estimating the cross-correlation function is an unbiased
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estimator given by Landy and Szalay (1993),

ξQSO−CIV(r) =
DCIVDQSO − RCIVDQSO − DCIVRQSO + RCIVRQSO

RCIVRQSO
, (2.13)

where DQSO and RQSO are the same as in the previous equation and DCIV and RCIV are the

C IV absorber sample and random sample for the C IV sample.

Eq. 2.13 is a more robust estimator, but it would require the generation of a reliable C IV

absorber random catalog. While I use Eq. 2.12 in this analysis, I would like to share some

thoughts on Eq. 2.13, as it may become the preferred method for future analyses.

The established procedure to generate randoms absorbers is to select a random point in

the sight line to the quasar in the range that absorbers could be detected. However, this

approach is not an accurate way to generate the random absorbers, as it assumes the chances

of detection and number density of the absorbers to be constant along the line-of-sight. If

the sight line covers a large enough redshift range, this assumption would affect the observed

number density of absorbers. Other effects, such as gravitational lensing, may contribute

to changes in the observed number density of the absorbers as well. I propose that future

analysis based an approach that uses Eq. 2.13 use a different two-step procedure. First, a

random quasar sample should be generated, which provides the locations on the sky. Second,

absorbers should be assigned redshifts, drawing from the observed redshift distribution of

the absorbers. This distribution may be a function of completeness of the survey. This

procedure would yield two advantages over our current use of Eq. 2.12; it would not have to

make any assumption about the evolution of number density and probability of detection,

and it will reduce the effect of survey edges on the correlation function.

However, I can not use Eq. 2.13 because I need a larger sample of absorbers to estimate

the redshift distribution for different completeness bins of quasars. At the conclusion of the

BOSS survey, it will cover a large footprint with high completeness, and we will be able to

generate a random sample that accurately follows the absorber population.

For the current study, I choose the estimator in Eq. 2.12, which does not require random

absorbers for C IV.

In addition to redshift-space three dimensional correlation fucntion, I also calculate the

projected cross-correlation function for the C IV absorbers and quasars. The redshift-space
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distance, s, between a C IV absorber and quasar can be decomposed into components per-

pendicular (rp) and parallel (π) to the line of sight

s2 = r2
p + π2. (2.14)

I can estimate the two-dimensional cross-correlation function as

ξ(rp, π) =
DCIVDQSO(rp, π)

DCIVRQSO(rp, π)
− 1 (2.15)

and the projected cross-correlation function is defined as

wp(rp) = 2

∫

∞

0

ξ(rp, π)dπ (2.16)

2.5.1 Error Estimation

Correlation function studies have used different methods of error estimation. These methods

can be broadly placed in three categories: Poisson, Field-to-Field, and Jackknife. The

Poisson error is simplest, but it assumes that the pair counts on different distance scales

are independent. However, the Poisson error is known to underestimate the error at large

distances, where the Poisson error is small and the cosmic variance term becomes comparable

or bigger than the Poisson error (Myers et al. 2005; Ross et al. 2007), such that the Poisson

counts are correlated across different scales. In this study, I choose to use the jackknife

method, following Scranton et al. (2002).

I partition the data into 25 different areas which have roughly the same number of quasars

from our random quasar catalog. I calculate 25 separate cross-correlation functions, leaving

out one chunk at a time. Using the 25 cross-correlation functions, I estimate the covariance

matrix from

Covij =
N − 1

N

N
∑

i=1

(

ξ̄(ri) − ξ(ri)
) (

ξ̄(rj) − ξ(rj)
)

(2.17)

where N = 25 is the number of cross-correlation functions, ri and rj are the points where the

correlation function are estimated, and ξ(ri) is the correlation function for the full sample at

rj. The diagonal element of the covariance matrix Covii is the error estimate for the variance

σ2
ii of the two-point correlation function in the ith bin.
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2.5.2 Fitting for the Correlation Function and Bias

A standard way to model the two-point correlation function is using a power law given by

ξ(r) =

(

r

r0

)−γ

(2.18)

which is a good approximation for the correlation function to large distances and also a

convenient form to compare with other results. The assumption of a power-law form for the

correlation function in real space leads to a projected-space correlation function, defined in

Eq. 2.16, of the following form

wp

rp

=

(

r0

rp

)γ

B

(

1

2
,
γ − 1

2

)

(2.19)

where B(a, b) is the Euler beta function. In reality, I can not integrate in the line-of-sight

direction to infinity. If I choose to select the maximum line-of-sight distance, πmax, as our

integration limit, I can write

ẃp

rp

=

(

r0

rp

)γ [

B

(

1

2
,
γ − 1

2

)

− B

(

r2
p

r2
p + π2

max

;
1

2
,
γ − 1

2

)]

(2.20)

where ẃp is the projected correlation function integrated to πmax and B(z; a, b) is the incom-

plete beta function.

To fit the correlation function in the above form, I minimize

χ2 = [ξ − ξ̂]T Cov−1[ξ − ξ̂] (2.21)

where ξ̂ is value from the model. However, in general, the covariance matrix is too noisy to

be useful, so I only use the diagonal element of the covariance matrix.

Baryonic matter traces the gravitational potential created by dark matter and scales as

a function of the dark matter (DM) halo mass (Bardeen et al. 1986; Cole and Kaiser 1989;

Mo and White 1996; Sheth and Tormen 1999; Sheth et al. 2001; Jing 1998; Gao and White

2006; Tinker et al. 2010). The observed two-point correlation function of baryonic material

is related to the underlying dark matter two-point correlation function, as explained in §2.2.

If I assume a linear bias (Scherrer and Weinberg 1998), or baryon/DM ratio, then I can write

ξCIV−QSO(r) = bCIVbQSOξDM(r), (2.22)
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ξQSO−QSO(r) = b2
QSOξDM(r), (2.23)

similar to Eq. 2.7. I can thus find the bias for CIV absorbers without knowing the underlying

dark matter two-point correlation function. In terms of the other observable quantities

ξQSO−QSO and bQSO, the C IV absorber bias is

bCIV =
ξCIV−QSO

ξQSO−QSO
bQSO (2.24)

The bias of a dark matter halo as a function of mass can be derived theoretically

(Bardeen et al. 1986; Cole and Kaiser 1989; Mo and White 1996; Sheth and Tormen 1999;

Sheth et al. 2001), but more accurate descriptions of halo bias can be derived from large-

scale dark matter simulations (Jing 1998; Gao and White 2006; Tinker et al. 2010). Using

such a calibration of the dark matter halo bias, I can find the mass of the dark matter halo

in which a typical C IV absorber resides.

2.6 RESULTS

Table 2.2 summarizes our measurements of the correlation length and slope for the C IV

absorber and quasar correlation functions.

2.6.1 Cross Correlation of C IV absorbers and quasars

Figure 2.6 presents our calculated three-dimensional cross-correlation of C IV absorbers and

quasars in redshift space in the redshift range of 2.1 < z < 2.5. Fitting the cross-correlation

in the range of 10 Mpc< s <100 Mpc with a power law, as described in Eq. 2.18, I find

the correlation-length to be so = 8.46 ± 1.46 Mpc with a slope γ = 1.68 ± 0.27. For the fit

I found χ2/D.o.f = 10.88/8 = 1.36, which suggests it is a quite reasonable fit to the data.

However, there is significant degeneracy between the parameters so and γ, as changes due

to an increase in slope can be caused by the increase of correlation length. The correlation

coefficient between s0 and γ for our fit is 0.86, which suggests a high degree of correlation.
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The cross-correlation measurement is expected to be not accurate in the range of s < 10 Mpc,

because at this scale, fiber collision is expected to contaminate the astrophysical clustering

signal (Ross et al. 2009).

Figure 2.7 presents the projected cross-correlation of the C IV absorbers and quasars in

the same redshift range 2.1 < z < 2.5. I fit the cross-correlation in the range of 10 Mpc<

rp <100 Mpc with a power law, as described in Eqs. 2.19 & 2.20. I find the best fit power-

law length to be r0 = 7.76 ± 3.80 Mpc with a slope γ = 1.74 ± 0.21. I integrate the

correlation function in the line-of-sight direction until πmax = 60 Mpc and find a χ2/D.o.f =

9.20/8 = 1.15. The estimates of the length scale and power-law slope are highly degenerate

as indicated by a correlation coefficient of 0.96.

2.6.2 Cross-Correlation at large distance

Figure 2.8 shows the correlation function in the range of 10 Mpc< s <1000 Mpc in bins

of 10 Mpc. The errors are Poisson errors. The blue line is the best-fit cross-correlation

function. I find that the power-law fit does not fit the data for distances s > 100 Mpc.

This disagreement potentially expected as there is no reason the correlation function should

be well-approximated by a power-law at large distances, but this measurement provides

quantitative confirmation of the significant variation from the simple power-law model. Both

the observed and simple models for the correlation function gradually approach zero at larger

distances. Cosmic variance can contribute a small offset from zero at all scales, which is

evident only at large scales when the correlation is very close to zero.

2.6.3 Estimation of C IV bias

One of the major aims of this work is to calculate the bias of C IV absorbers with respect

to linear matter perturbations. I use a cross-correlation between the QSO sample and the

C IV sample to best estimate this bias. Ideally, one would use the C IV auto-correlation, but

the appropriate random set for the QSO sample is far better understood than for the C IV

sample. A proper generation of randoms for the absorber sample would require a model of

the evolution and distribution of C IV absorbers as a function of redshift. Providing rough
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Figure 2.6 Cross-correlation function in redshift space for C IV absorbers and quasars from

2.1 < z < 2.5. The dotted line is the best-fit power law, as defined in Eq. 2.18, with

so = 8.46 ± 1.46 Mpc and slope γ = 1.68 ± 0.27 in the range 10 Mpc < s < 100 Mpc. The

horizontal axis denotes the geometric mean of the bin distance. The vertical error bar is the

jackknife error.

44



10 30 50 70 100

rp (Mpc)

10-2

10-1

100

w
p
/
r p

CIV QSO projected correlation(6149)

Figure 2.7 Projected correlation function for C IV absorbers and quasars. The dotted line

is the best fit power law, as defined in Eqs. 2.19 and 2.20, with r0 = 7.76 ± 3.80 Mpc and

slope γ = 1.74 ± 0.21 in the range 10 Mpc < rp < 100 Mpc. The horizontal axis denotes

the geometric mean of projected distance bin. The redshift range for the C IV absorbers and

quasars is 2.1 < z < 2.5.
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Figure 2.8 Correlation function for 10 Mpc< s < 1000 Mpc with a bin size of 10 Mpc.

The errors are calculated using Poisson re-sampling. The redshift range for the data is

2.1 < z < 2.5. The blue dash-dot line is the best fit power law so = 8.46 ± 1.46 Mpc and

γ = 1.68 ± 0.27. This power law approximation significantly under-predicts the correlation

at distances s > 100 Mpc and I conclude it is invalid at this scale.
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Table 2.2 The correlation length and slope for the different sample of C IV absorbers and

quasars.

Description so|ro (Mpc) γ

CIV-QSO 3D corr. 8.46 ± 1.46 1.68 ± 0.27

CIV-QSO projected corr. (ro) 7.76 ± 3.80 1.74 ± 0.21

QSO-QSO 3D corr. 12.19 ± 0.32 1.77 ± 0.04

CIV-QSO 3D corr. (γ = 1.77) 8.92 ± 0.63 fixed at 1.77

constraints for such a model is one of the goals of current work, so I choose to avoid making

assumptions about this distribution by using a QSO-CIV cross-correlation.

In order to use Eq. 2.24, I must calculate the bias for quasars, bqso. The quasar bias

is given by bqso(z) = ξqso−qso(r, z)/ξdm(r, z), where ξqso−qso(r, z) is the real-space correlation

function of our quasar sample and ξdm(r, z) is the theoretical matter correlation function.

A full treatment of the BOSS quasar auto-correlation from 4–36 Mpc is given in White et al.

(2012). Our analysis here is simpler, focused on the larger scale of 10–100 Mpc, to extract a

reliable quasar bias to compute the C IV absorber bias. I use the same tools for the quasar

random sample and completeness map as in White et al. (2012), but while that work re-

quired a completeness of > 0.75, I do not apply a completeness cut in order to use all of the

C IV absorbers.

I follow the method adopted by Ross et al. (2009) to calculate quasar bias. I calculate

the volume-average correlation function ξ̄, defined as

ξ̄ =

∫ smax

smin

4πś2ξ(ś)dś
∫ smax

smin

4πś2dś
(2.25)

=
3

(s3
max − s3

min)

∫ smax

smin

ξ(ś)ś2dś (2.26)

where smin = 10 Mpc and smax = 100 Mpc for our case. The volume-average correlation

function minimizes non-linear effects. Instead of using the theoretical definition of the scale-

independent bias is expressed in terms of the real-space clustering, I measure the redshift-
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Figure 2.9 The correlation of r0 and γ. The solid blue line is the 1σ contour region for a r0

and γ fit to the 3D correlation function and the dashed red line is the same for the projected

correlation function. There is a strong degeneracy between the slope and scale length of

both the 3D and the projected correlation functions.
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space correlation function. To minimize the error caused by this difference, I use a linear-

regime relation between the redshift-space and real-space correlation function given by

ξ(s) = ξ(r)

(

1 +
2

3
β(z) +

1

5
β2(z)

)

(2.27)

where

β(z) =
Ω0.55

m (z)

b(z)
. (2.28)

The difference in the real-space and redshift-space correlation functions is due to redshift

distortion caused by infall of baryonic matter towards the over-density of matter (Kaiser 1987;

Fisher et al. 1994; Peacock et al. 2001; Hawkins et al. 2003; Ross et al. 2007; Guzzo et al.

2008). Using Eqs. 2.10 & 2.27 and the definition of bias, I find the expression for bias to be

bqso(z) =

√

ξ̄qso−qso(s, z)

ξ̄dm(r, z)
− 4Ω1.1

m (z)

45
− Ω0.55

m (z)

3
(2.29)

where the volume-averaged ξ̄qso−qso is calculated from our measured ξqso−qso, and ξ̄dm is

calculated from the theoretical estimate of ξdm. I calculate ξdm from the model of Smith et al.

(2003) for a non-linear power spectrum of dark matter, which is quite accurate for the

distance range we are considering.

To measure the bias for C IV absorbers, I use the above method and assume the same dis-

tortion for the C IV absorbers quasar cross-correlation as for the auto-correlation of quasars.

The bias for cross-correlation can then be given by the following

√

bqsobCIV =

√

ξ̄CIV−qso(s, z)

ξ̄dm(r, z)
− 4Ω1.1

m (z)

45
− Ω0.55

m (z)

3
. (2.30)

Combining Eqs. 2.29 & 2.30, I can calculate the bias for the C IV absorbers..

Fig. 2.10 presents the auto-correlation function (black squares) for the BOSS DR9 quasars

in the redshift range 2.1 < z < 2.5, over the redshift-space distance range 10 Mpc< s <

100 Mpc. The errors are calculated using the jackknife method. I fit the quasar auto-

correlation with a power law and find the correlation length to be so = 12.19 ± 0.32 Mpc

(8.78±0.23h−1 Mpc ; h = 0.72) with a power-law slope γ = 1.77±0.04. This is comparable to

9.7±0.5 h−1 Mpc, found in White et al. (2012) for a fixed power-law slope of −2 (γ = 2). The

power-law parameters so and γ are highly degenerate; higher estimates of γ lead to higher
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estimate of so (see, e.g., Fig. 2.9). I estimate the correlation in the range of 10–100 Mpc

while White et al. (2012) performed their measurement over 3–25 h−1 Mpc (4.2–35.7 Mpc;

h = 0.72).

The slope of the quasar correlation function in Fig. 2.10 is roughly consistent with an

assumption of linear bias, although the power-law model does not completely explain the

data. I have not done any systematic error analysis for the QSO auto-correlation function,

as the auto-correlation of quasars is not the aim of this work; I refer readers interested in

this subject to White et al. (2012).

Fig. 2.10 also shows the cross-correlation function of C IV absorbers and quasars fit with

the slope of the quasar auto-correlation. The correlation length of C IV absorber-quasar in

this case is so = 8.92 ± 0.63 Mpc. Using the method described above, I find the combined

bias is
√

bqsobCIV = 2.97 ± 0.51. I estimate the bias for quasars to be bqso = 3.71. Using the

bqso I determine the bias for C IV absorbers to be bCIV = 2.38 ± 0.82.

I use this C IV bias value to calculate the mass of the typical dark matter halo in which

these C IV absorbers reside (see §2.5.2). Using the model described by Sheth and Tormen

(1999), which provides a relationship between halo mass and the bias for a given redshift, I

find that the minimum mass of the dark matter halo for moderate C IV absorbers (0.28Å<

Wr < 4Å) is MCIV ≈ 1012M� for our median redshift of z = 2.3. Moderate C IV absorbers

are quite specifically more clustered than halos less massive than this. Because the mass

function for dark matter halos has a steep negative slope for high mass halos (> 1012M�),

if moderate C IV absorbers were found in lower-mass halos, then the likely great numbers of

such absorbers would have significantly diluted the correlation function I measured.

These results imply that the dark matter halos more massive than 1012M� contains

enough C IV gas to produce an absorption feature stronger than 0.28Å at z ∼ 2.3. Less

massive halos have less than Wr < 0.28Å of C IV gas at this redshift.

2.6.4 Comparison with previous results

There have been various previous studies of the correlations of C IV absorbers with quasars

and galaxies. However, most of these studies concentrated on the correlation function at
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Figure 2.10 The quasar auto-correlation function (black circles). The green dashed line is

the best power law fit in the range of 10 Mpc< s < 100 Mpc. The redshift range for the

data is 2.1 < z < 2.5. The best-fit value for the power law is so = 12.19 ± 0.32 Mpc and

slope γ = 1.77 ± 0.04. The blue squares are the cross-correlation measurement for C IV

absorbers and quasars over this redshift range. The red dash-dot line is the best-fit value for

the correlation length, so = 8.92±0.63 Mpc, assuming a fixed slope derived from the quasar

auto-correlation.
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much smaller distances than our study. Wild et al. (2008) quoted a correlation length of

so = 5.8 ± 1.1 h−1 Mpc with γ = −1.8 for C IV absorbers with rest-frame Wr >0.3Å,

compared to our result of so = 6.09 ± 0.89h−1 Mpc (8.46 ± 1.46 Mpc; h = 0.72) with

slope γ = 1.68 ± 0.27, there is excellent agreement between results. Our measurement

more cleanly removes the intrinsic C IV absorbers for a correct measurement of correlation,

whereas Wild et al. (2008) modeled the intrinsic C IV absorbers and thus were reliant on

more assumptions.

The clustering of C IV absorbers and Lyman Break Galaxies(LBGs) was measured in

Adelberger et al. (2005) and Cooke et al. (2006) for CIV absorbers with rest-frame EW>0.4Å

. Adelberger et al. (2005) measured the correlation length of CIV absorbers by comparing the

LBG auto-correlation and LBG-C IV cross-correlation to be ro ≈ 5±1h−1 Mpc (7±1.4 Mpc;

h = 0.72) at z ' 3. They also concluded that the C IV absorbers likely formed in these

early large galaxies rather than in some more distributed environment. Our study from

10 Mpc< rp < 100 Mpc is 1σ consistent with this result (ro = 7.76± 2.8). Our study covers

a much larger redshift range and has significantly greater statistical power due to the larger

number of absorbers.

Our results corroborate the idea that LBG and C IV absorbers, having similar clustering

properties, reside in similar environments and the same dark matter potentials.

2.7 SYSTEMATIC UNCERTAINTIES

In this section I discuss potential systematic uncertainties in our measurement presented in

§2.6.

2.7.1 North Galactic Cap vs Full Sample

I explore a potential systematic difference between the North Galactic Cap (NGC) and South

Galactic Cap (SGC) data set. The NGC portion of BOSS footprint is much larger than the

SGC portion, which makes the correlation function for SGC alone very noisy. To explore
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possible systematic effects I therefore compare the correlation function of the full sample with

the NGC sample. The SGC’s data quality is worse compared to the NGC for several reasons.

First, the SGC suffers much more contamination from the Milky Way Galaxy compared to

the NGC. Second, the SGC area is small (∼ 700 deg2) and the footprint is not smoothly

contiguous. This leads to an enhancement of any edge effects on the correlation function

compared to the more contiguous coverage of the NGC (∼ 2600 deg2). Third, our current

understanding of other systematics is much better in the NGC than in the SGC area. All

these issues with the SGC left us predisposed to expect that the DR9 NGC data is more

reliable than the SGC data.

I present in Fig. 2.11 the three dimensional redshift space correlation function for the

NGC. The bottom panel compares this correlation function to the correlation function of

the full sample. A power-law fit for the correlation function finds a correlation length so =

9.26 ± 1.23 Mpc with slope γ = 2.06 ± 0.25 and a goodness-of-fit of χ2/D.o.f = 1.01. The

correlation between the so and γ is 0.78. I also estimate, using the expression in Eq. 2.30,

that
√

bqsobCIV = 2.05 ± 0.46. Fig. 2.12 shows the projected correlation function of NGC

sample. The bottom panel compares the projected correlation function to the projected

correlation function of the full sample. I also fit the projected correlation function for r0 and

γ from Eq. 2.19; I estimate r0 = 7.75± 1.04 Mpc and γ = 1.84± 0.09 with a goodness-of-fit

χ2/D.o.f = 1.25.

From Fig. 2.11 & 2.12 I see that the NGC correlation function is systematically lower

than the full sample, which is also reflected in the estimation of
√

bQSObCIV. White et al.

(2012) also find a noticeably larger auto-correlation for the quasars at these scales in the

SGC. Despite the extensive search they were unable to find any systematics which would

explain the discrepancy. The excess in the quasar auto-correlation would also cause an excess

in the cross-correlation measurement. The difference in the NGC and SGC cross-correlation

measurements are features of the data gathered to date. However, they are 2σ consistent

with each other. The sample size from the full BOSS, which will be about three times larger,

will reveal whether this discrepancy is fundamental or a fluctuation.
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Figure 2.11 The redshift space correlation function of CIV absorbers and quasars in the NGC.

The dotted line is the best fit power-law, as defined in Eq. 2.18,with so = 9.26 ± 1.23 Mpc

and slope γ = 2.06 ± 0.25 in the range 10 < s < 100 Mpc. The redshift range for the C IV

absorber and quasar is 2.1 < z < 2.5 . The lower panel compares the NGC correlation

function to the full sample correlation function.
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Figure 2.12 Projected correlation function for C IV absorbers and quasars in the NGC. The

dashed line is the best fit power-law, as defined in Eq. 2.19 and 2.20, with r0 = 7.76±3.80 Mpc

and slope γ = 1.74 ± 0.21 in the range 10 Mpc< wp < 100 Mpc in the redshift range of

2.1 < z < 2.5. The lower panel compares the NGC projected correlation function to the full

sample one.
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2.7.2 CORE vs BONUS Systematics Error

I next explore potential systematic effects due to the survey configuration of having two

separate samples of quasars: CORE and BONUS. Because our C IV absorbers are from both

CORE and BONUS quasars, I investigate differences in clustering property of these two

subsamples. Fig. 2.13 (top panel) shows the cross-correlation measurement of the CORE

C IV absorbers and BONUS C IV absorbers. The BONUS sample has only 1818 absorbers;

thus the error of the correlation function is relatively larger than for the CORE sample. It is

therefore ineffective to compare the power-law fit of the two samples as the parameters are

poorly constrained. As such I restrict our comparison to correlation function to determine if

the two samples are consistent. The bottom panel of Fig. 2.13 shows the correlation function

of CORE and BONUS in comparison to correlation function of the combined sample.

I estimate the
√

bQSObCIV for CORE and BONUS to be 2.56±0.44 and 3.80±0.71. Using

the combined sample, the result, 2.97 ± 0.51, is within 1σ for both CORE and BONUS.

Therefore I conclude that there are no large systematic errors due to the targeting algorithm

for source quasars. Any difference in the equivalent width distribution between CORE and

BONUS is also not expected to be reflected in the systematics.

2.7.3 Measurement Robust Across Different BOSS Chunks

In this section I estimate the effect of the varying CORE algorithm in different chunks in the

BOSS targeting process. Due to the changing targeting algorithm for the CORE sample in

first year, there could be errors introduced by estimating larger completeness in one chunk

compared to other chunks because the CORE target algorithm of a different chunk selected

a different fraction of the target catalog generated by XDQSO algorithm. Within a chunk,

the fractional difference in completeness determines the relative number of random points in

those fields, and overall completeness only reflects in number density of the random points.

In Fig. 2.14 I compare the overall correlation function measured with the average of the

19 correlation functions, each formed from individual chunks. The error for the case when

the correlation measurement is done within a chunk is the Poisson error; the overall error

is calculated by adding the errors from the different chunks in quadrature. The top panel
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Figure 2.13 Cross-Correlation for the CORE C IV absorbers and BONUS C IV absorbers (top

panel). The two correlation functions are consistent with each other, but the large errors

would mask all but very large differences. The bottom panel compares the both sample

correlation functions to the combined correlation function.
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displays the correlation functions ξchunk(s) and ξ(s). The bottom panel is the difference of

the correlation calculated within chunk ξchunk and the overall correlation function in units

of the Jackknife error of the overall correlation function. If there is a systematic error from

the chunking process and evolving CORE algorithm, I would expect either consistently more

than the correlation calculated within chunks or consistently less, caused by different overall

levels of completeness, due to different algorithm used in different chunks. However, it is not

clear the plot signifies any trend of the ξchunk being consistently either more or less than the

overall estimate of correlation function, which indicates that is there is no large effect from

the use of slightly different selection algorithms in different BOSS chunks.

For the chunk correlation function I estimate
√

bqsobCIV = 2.07 ± 0.61 but the error is

larger compared to combined sample. The correlation function does not appear to be biased

compared to the combined sample. For the full BOSS sample the problem will be irrelevant

as all subsequent chunks will use the same target selection algorithm. All the coverage will

fill the space in the foot print and significantly reduce any edge effects.

2.7.4 Other Systematic Errors

In this section I estimate the systematic effect of various properties of the sample on the

estimates of the correlation strength (r0), the slope (γ), and the bias of C IV absorbers

and quasars
√

bCIVbQSO. The errors on our parameters are large, and the samples are

not sufficiently large to perform the typical systematic analysis in which one calculates

the correlation function for a bin for each parameter space and measure the change in the

correlation function in every bin. Hence, I used a jackknife procedure because it works well

on small samples. To estimate each systematic, I compared the Jackknife error caused by

dividing the sample into bins based on a ordering in the given parameter to the Jackknife

errors from a random division of the data in to same number of bins. The Jackknife error

brings out the systematic error for the parameter in consideration. The significance of this

is estimated by dividing the sample randomly and get the distribution of Jackknife error.

Below is the specific procedure I follow:

1. Sort the C IV absorbers according to the given property (e.g., equivalent width).
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Figure 2.14 Top panel compares the average of cross-correlation functions calculated within

chunks to the overall correlation function in the redshift distance range 10 < s < 100 Mpc.

The bottom plot is the difference of the correlations function (in units of 1σ Jackknife error)

calculated for the overall correlation function. The plots indicate no significant systematic

error for the correlation function caused by different algorithm used in different chunks and

hence the overall completeness of chunks are appropriate.
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2. Calculate the jackknife error by dividing the C IV absorber sample, according to property

in consideration, into 10 bins for r0, γ and
√

bCIVbQSO .

3. Calculate the jackknife error by dividing the C IV absorber sample, randomly, into 10

bins for r0, γ and
√

bCIVbQSO .

4. Do the previous step 5,000 times and find the distribution of r0, γ, and
√

bCIVbQSO.

5. Estimate the probability of measured Jackknife error by random chance, called p-value

by using of the distribution of the random scatter of errors in previous step.

Following the above procedure, I explore the systematic effects of absorber equivalent

width, β, i-band magnitude, absorber redshift, quasar spectroscopic features, and Galactic

latitude. Table 2.4 summarizes the mean variation and standard deviation of the parameters

for each systematic. Fig 2.15, 2.16, and 2.17 show the distribution of the parameters r0, γ

and
√

bCIVbQSO from the random jackknifing of the sample. Below I describe each systematic

and its potential effect on the correlation function measurements. In many cases a systematic

error of one property could be correlated with that of another.

1. Absorber Equivalent Width: There are two obvious ways the equivalent width of

the C IV absorber could affect the systematic error.

A) There could be a few false positive C IV absorbers in the sample, and such con-

tamination may not be distributed uniformly across the equivalent width distribution.

The lower equivalent width absorbers are more likely to be contaminated by false pos-

itives compared to the high equivalent absorbers. This contamination will decrease the

correlation strength for lower equivalent width absorbers.

B) There could also be an intrinsic correlation dependence on equivalent-width. The

higher equivalent-width absorbers could be more correlated with dark matter compared

to lower equivalent-width absorbers. However, our error estimations of the correlation

function are not small enough to measure this trend.

Following our systematic analysis, I found a noticeable, but not statistically significant,

increase in the change in bias as different equivalent-width bins are dropped. The prob-

ability of having such error occuring by chance is 13%.

2. β: The CIV absorber sample could have two basic origins. One may be intrinsic to quasars
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and quasar host galaxies, the other to intervening material in inter-galactic space. These

two samples will have different clustering properties. I remove a large sample of intrinsic

C IV absorbers by having a minimum cut on the relative absorber velocity with respect

to the quasar, β. However, I can expect some remaining contamination of the intrinsic

C IV absorber in our sample (see Figure 2.4). This contamination would be distributed

asymmetrically in β because lower values of β are more likely to be contaminated by

intrinsic C IV absorbers than higher β. This systematic would, therefore, overestimate

the effect of contamination on r0, γ and
√

bCIVbQSO.

I find that the systematic error due to β is marginally significant for the bias (Table 2.7.4)

and quite significant for r0 and γ. I conclude that there is a non-trivial number of intrinsic

C IV absorbers in our sample. I determine the error due to the β systematic alone as

about ∼2.8 Mpc in r0 and ∼ 0.28 in γ. The strong effect on r0 and γ but weaker effect

on the bias can be explained if the intrinsic C IV affects the correlation function at small

scales only (bias is determined from a volume-weighted average).

This result motivates future work to better understand the intrinsic absorber population

around quasars.

3. i-band Magnitude: There are two ways the apparent i-band magnitude can affect the

correlation function systematically.

A) False-positive C IV absorbers are more likely to occur in the spectrum of a fainter

quasar than a brighter one. A false-positive signal randomly distributed would dilute

any inherent clustering in the sample. Therefore absorbers found against fainter quasars

could produce systematically lower clustering strength than those found against brighter

ones.

B) The i-band magnitude could affect the correlation because brighter apparent mag-

nitudes quasars are more likely to be brighter in absolute magnitude (because of the

restricted redshift range) and thus likely to be in a more highly clustered environment,

assuming brighter quasars reside in more massive halos. Thus some of the intervening

C IV absorbers are likely to be from clustered environment of the host galaxy.

I estimate this systematic error with i-band magnitude to be not very significant (Ta-

ble 2.7.4). The systematic effect are at the 1σ of the mean random expectation of error
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and the p-value similarly indicates no significant deviation from random chance.

4. Absorber Redshift: The potential systematic effect of contamination because of false

positives due to potential incomplete sky subtraction in the BOSS quasar spectra is

minimal in this analysis. A sky line at a particular wavelength would affect the C IV

absorbers at a particular absorber redshift. Any sky line which falls in the observed

wavelength range for a given redshift range for C IV absorbers could contribute to a

reduced signal in this range. Such contamination would possibly lead to smaller clustering

measurement which would lead to systematic error. However, the strong O I sky line

5570-5590Å is removed from the absorber pipeline, which corresponds to C IV absorber

redshift of 2.59. Our cutoff absorber redshift of 2.5 avoids any neighboring part of

spectrum which might be affected.

With this motivation in mind for potential lines I may have neglected in the above cut,

I searched for a dependence of our fit parameters on the absorber redshift. However, I

found no significant systematic effect (Table 2.7.4). Hence I expect that the sky subtrac-

tion for the relevant region of the spectrum is sufficient and no sky-line-contamination

creates false C IV absorber detections.

5. Galactic Latitude: The extinction through the Milky Way varies with galactic latitude.

Such extinction could be correlated to poor signal-to-noise and could lead to false positive

detection of C IV absorbers. The Galactic latitude could also potentially interact with

the cosmic variance error along with contamination effect on correlation function. Hence

the estimate of error could be overestimating error because of contamination.

Table 2.7.4 shows the significance of the systematic error due to Galactic latitude in

bias. This is another way of looking at the NGC vs. SGC discrepancy discussed in

2.7.1. I estimate the error due to Galactic latitude on
√

bCIVbQSO to be 0.494 with < 3%

probability of such a shift occuring by chance.

6. Quasar Redshift: The biggest potential systematic from quasars at different redshifts

(beyond any apparent magnitude variation as explored above) is a potential systematic

contamination associated with features in the quasar spectrum, which could lead to a

false positive identification as a C IV absorber. These contaminating lines would affect

the correlation function asymmetrically at different rest frame wavelengths. However,
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Table 2.3. Systematic error estimates and p-values for r0, γ and
√

bCIVbQSO.

Description δr0 δγ δ
√

bCIVbQSO

Equivalent Width 2.562 0.306(0.424) 0.477(0.130)

β 3.875(0.027) 0.405(0.051) 0.424(0.298)

i-band Magnitude 3.344(0.140) 0.335(0.266) 0.351

Absorber Redshift 2.574 0.258 0.412(0.346)

Galactic Latitude 3.300(0.157) 0.335(0.270) 0.618(0.003)

Quasar rest frame λ a 3.874(0.027) 0.404(0.052) 0.415(0.331)

aThe absorber redshift, β, and quasar rest frame are three differ-

ent representations of only two independent quantities.

this systematic error actually becomes strongly correlated with the β systematic error

because the absorbers that are near particular quasar rest-frame wavelengths also fall

into specific β range. I indeed find very similar dependence between β and the quasar

redshift as shown in Table 2.7.4.

Table 2.4 Random error distribution for r0, γ and
√

bCIVbQSO.

Parameter mean std dev

δr0 2.667 0.628

δγ 0.293 0.068

δ
√

bCIVbQSO 0.376 0.089
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Figure 2.15 Error distribution for r0 [Mpc] from 5000 binned jackknife resamplings of the

absorber sample. The distribution can be well approximated as Gaussian (dashed blue line).
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Figure 2.16 Error distribution for γ from 5000 binned jackknife resamplings of the absorber

sample. The distribution can be well approximated as Gaussian (dashed blue line).
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Figure 2.17 Error distribution for
√

bCIVbQSO from 5000 binned jackknife resamplings of the

absorber sample. The distribution can be well approximated as Gaussian (dashed blue line).
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2.8 SUMMARY AND FUTURE DIRECTIONS

This study has measured the correlation strength of C IV absorbers with the quasars from

the BOSS survey. I focus on correlations between 10 Mpc< s < 100 Mpc at z ∼ 2.3, probing

the large-scale clustering unaffected by details of the astrophysics of the galaxy environment

surrounding quasars. I conclude the following:

• The three-dimensional two-point cross-correlation for C IV absorbers and quasars is well

approximated by a power law in the distance range 10 < s < 100 Mpc with s0 =

8.46 ± 1.46 Mpc and γ = 1.68 ± 0.27.

• The projected cross-correlation for C IV absorbers and quasars is well approximated by

a power law in the distance range 10 < rp < 100 Mpc with r0 = 7.76 ± 3.80 Mpc and

γ = 1.74 ± 0.21.

• I measure the combined QSO-C IV absorber bias
√

bqsobCIV = 2.97 ± 0.51.

• I estimate the quasar auto-correlation and find a correlation length so = 12.19±0.32 Mpc

and slope γ = 1.77 ± 0.04 and thus infer a quasar bias of bqso = 3.71.

• Using this estimate of the quasar bias bqso I find bCIV = 2.38±0.82 and that EW> 0.28Å

C IV absorbers reside in halos of mass MCIV ≥ 1012M�.

• The dominant sources of systematic error in our estimation of CIV absorber bias are (1) a

difference as a function Galactic latitude (NGC vs. SGC; §2.7.1); (2) absorber equivalent

width; and (3) potential contamination of high-velocity intrinsic-absorbers (β > 0.2).

This study lays the groundwork for subsequent work of both improved clustering analysis

with an extended data set, as well as enabling complementary approaches to investigate

C IV absorbers. With the well-constrained correlation of C IV absorbers at cosmological

separations, one can propagate the two-halo correlation function down to small scales to

remove this contribution from low-β absorbers, enabling a cleaner investigation of C IV

absorbers in the same halo as the quasars. Any departure from the expected number of C IV

would indicate the role of quasars in creating/destroying the absorbers, leading to a better

understanding of quasars.
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A repeated analysis with the full BOSS sample will not only have ∼3 times more quasars

and absorbers, but will also will have significantly reduced edge effects and have a more

uniform completeness and coverage. The question of any NGC vs. SGC difference (currently

consistent with Poisson fluctuations) will be settled, and with a cleaner sample of quasars

and absorbers it will be possible to make a random catalog for CIV absorbers without having

to assume a specific redshift dependence of the their number density. The increased number

of absorbers will also allow us to measure the correlation function as a function of equivalent

width and other absorber properties. The final SDSS-III BOSS C IV absorber analysis will

feature improved systematic errors and more clearly highlight the statistical power of these

large samples.
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3.0 QUASAR OUTFLOWS USING INTRINSIC ABSORPTION SYSTEMS

In §1.3 I presented an overview of quasars and their utility. I introduced the idea of using

absorption systems to study the structure of quasars. In this chapter, I study the outflows

in quasars using C IV absorbers seen in the spectra of SDSS-III BOSS quasars from DR9.

In §3.1, I describe the motivation behind, and the importance of, this study. In §3.2, I

present the models for the data and explain the reasoning behind them. In §3.3, I explain

the halo occupation formalism, which is used as the guiding principle for the estimation of

the correlation function. In §3.4, I present the observational data used for this study. In

§3.5, I explain the estimation of the correlation function required for the models. In §3.6,

I present the result of the analysis and interpretation. In the last section, §3.7, I present a

summary of this analysis and comment on future directions for this study.

3.1 MOTIVATION

Quasars can be identified during the epoch when galaxies were assembling and the star

formation rate was ten times higher than today. Because they are a biased tracer of high

density environments in the early universe, understanding quasars can help in understanding

the formation of large scale structure and the formation and evolution of galaxies. Being

very energetic, quasars can be powerful engines that mix material within a galaxy as well as

expell material into the Inter Galactic Medium (IGM). Such feedback processes have been

postulated to reduce the growth of baryonic structure in the early universe (Silk and Rees

1998; Springel et al. 2005; Di Matteo et al. 2005; Bower et al. 2006). Therefore understand-

ing quasars and their outflows is an important route to correctly explain the formation of
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stars and the distribution of elements in and around galaxies.

Many models of quasar outflows postulate that the gas arises from the accretion disk. But

we still do not know how these flows are launched. There have been many models explaining

their origin and how they are ejected from the inner region. Some models use only line

radiation pressure (Arav et al. 1994; Murray et al. 1995; Proga et al. 2000) while others add

in magnetic forces (de Kool and Begelman 1995; Everett 2005; Proga and Kallman 2004) to

accelerate the material.

Despite their importance, the understanding of quasars is fairly limited due to their ex-

treme distance and extreme physics. Many studies have been done to understand quasar

outflows from the broad absorption lines (BALs) (e.g., Weymann et al. 1979; Yuan and Wills

2003; Richards 2006; Ganguly et al. 2007; Lundgren et al. 2007). The BALs are unambigu-

ously associated with quasars which make them easy targets for detailed study. There have

been other studies using narrow absorption lines (NALs) to study the outflows of quasars

(Foltz et al. 1988; Aldcroft et al. 1994; Ganguly et al. 2001; Baker et al. 2002; Vestergaard

2003; Richards 2001; Misawa et al. 2007; Ganguly et al. 2007). The study of NALs has many

advantage over BALs. Most notably the NALs are detected in a large fraction of quasars (∼
50%) compared to BALs (∼ 10%). And unlike BALs, NALs do not suffer from line blending.

However NALs do suffer from one important disadvantage: NALs are produced by the

intervening galaxies along the line of sight as well. Hence identifying the NAL to be intrinsic

to the quasar is often a very difficult task. However a large fraction of the NALs having a

redshift similar to the quasar redshift are likely intrinsic. But these can still have significant

velocities with respect to the quasar. For example, Richards (2001) suggests that ∼36% of

NALs with a velocity with respect to the quasar rest frame of v > 5000 km/s are intrinsic,

i.e., physically close in distance to the quasar.

NALs also provide a complementary study of quasars compared to BALs. As the BAL

gas clouds are believed to be closer to the accretion disk and NAL gas clouds are much

further, they probe different parts of a quasar and together, may offer a more complete

picture of the quasar and the surrounding environment.
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3.2 NUMBER DENSITY OF C IV ABSORBERS

The light from a quasar travels through its own dark matter halo and other halos picking

up signatures of the absorption systems encountered. The frequency of such encounters is

determined by the number density of the absorption systems. Figure 3.1 shows a schematic

diagram of a sample line of sight from a quasar to an observer. In this section I model

the observed frequency of absorption systems detected in the rest-frame of the backlighting

quasars. Motivated by the different physical origins of the absorption systems, I divide the

absorbers into three broad categories: 1. in the host halo due to clustering (one halo); 2. in

an intervening halo (two halo); 3. in the outflowing gas due to quasar environment (outflow).

The total probability of an absorption system can now be written as

d P = d P 1h + d P 2h + d P outflow (3.1)

I use separate models for describing each separate component.

• Two-halo d P : We are going to first evaluate the d P 2h term. For this component the

absorption systems are not very close to the quasar in velocity space. In the pencil beam

survey the probability of detecting an absorber between z and z + d z is given as (e.g.,

Hogg 1999)

d P 2h = n(z)σ(z)
c

Ho

(1 + z)2

√

ΩM(1 + z)3 + ΩΛ

d z (3.2)

where n(z) and σ(z) are the number density and cross section respectively of C IV ab-

sorbers at redshift z. ΩM , ΩΛ, Ho are the relevant cosmological parameters. Modeling

the redshift dependence of n(z) as a correlation of quasars and C IV absorbers we can

write

n(z)σ(z) = noσo(1 + ξ2h(r; zqso))(1 + z)ε (3.3)

where ε characterizes the evolution of number density with redshift and noσo is the

current value of number density and cross-section. ξ2h(r; zqso) is the cross-correlation

function of quasars and C IV absorbers from different halos. Note that the ξ in the

equation indicates that matter in the universe is clustered and hence, even with no
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intrinsic physical connection, there are more C IV absorbers near quasars compared to

further away.

Since we are interested in outflow velocities from the quasar, it is logical to do the analysis

in the velocity space of the quasar rest-frame. I convert probabilities in redshift space to

probabilities in quasar rest-frame velocity space, β, using the following relationships

β ≡ v

c
=

(1 + zqso)2 − (1 + z)2

(1 + zqso)2 + (1 + z)2
(3.4)

and

d β ≡ d v

c
= − 4 (1 + z) (1 + zqso)2 d z

[

(1 + zqso)
2 + (1 + z)2]2

. (3.5)

This leads to an expected probability of C IV absorbers from intervening DM halos of

d P

d β

2h

(zqso) = noσo(1 + ξ2h(r; zqso))
c

hHo

(1 + z)1+ε

√

Ωm(1 + z)3 + ΩΛ

[

(1 + zqso)
2 + (1 + z)2]2

4(1 + zqso)2

(3.6)

• One-halo d P : For the single halo term I assume that the host halo is virialized. So the

velocity of an absorption system in the rest-frame of quasar can be well approximated

as a Gaussian

p(v) d v =
1

√

2πσ2
v

exp

(

− v2

2σ2
v

)

. (3.7)

Hence, for the single halo term we can write the probability of observation as

d P

d β

1h

(zqso) =
f√
2π

exp

(

− β2

2σ2
β

)

(1 + zqso)ε (3.8)

Here we assume that the average number of absorbers in a halo evolves as (1 + zqso)ε.

The parameters unknown in the above equation are f , σβ.

• Outflow d P : The outflow term is modeled as a piece-wise continuous function described

by

d P outflow

d v
=























































n2k/2000 0 < v < 2000 km/s

(n4k − n2k)/2000 2000 < v < 4000 km/s

(n6k − n4k)/2000 4000 < v < 6000 km/s

−n6k/2000 6000 < v < 8000 km/s

0 v < 0 km/s&v > 8000 km/s

(3.9)
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The simple piece-wise function is considered appropriate as it makes the fewest assump-

tions about the shape of the outflow distribution while at the same time having only

a small number of free parameters. The velocity range of the function is chosen to be

0-8000 km/s because in tests of this range any free parameter greater than 8000 km/s

was found to be consistent with zero.

In the SDSS-III BOSS DR9 sample the redshift of the quasar, zqso, is uncertain due to the

astrophysical variation of different emission line velocities. Hence the measured value of the

number of absorbers in a bin between r and r +d r will be a convolution of the redshift error

of the quasar with the actual number density of absorbers. We can not observe absorption

lines at all possible redshifts; we can only observe the absorbers that are physically between

us and the quasars. Also, a quasar spectrum observed from the ground can only detect C IV

absorption redward of the UV. Therefore, for every quasar at redshift zqso there is a minimum

zmin(zqso) and maximum redshift zmax(zqso) at which we can observe a CIV absorption system

in the SDSS-III BOSS data.

Hence the observed number density from all quasars can be given as

d P

d β

∣

∣

∣

∣

observable

= Gaussian(0, σz) ∗
∑

qso

d P

d β
(zqso)H(z − zmin(zqso))H(zmax(zqso) − z) (3.10)

where H , zmax, and zmin are the Heaviside Step Function, maximum redshift, and minimum

redshift respectively.

3.3 CORRELATION FUNCTIONS IN A HALO MODEL FRAMEWORK

Halo models are a formalism to describe the clustering of objects. The formalism has a

long history and has provided important analytical descriptions of large scale clustering

(Neyman and Scott 1952; McClelland and Silk 1977a,b; Peebles 1974). After the realization

that most matter in the universe is in the form of dark matter which interacts only gravita-

tionally, the halo formalism was further developed to provide an analytical tool for predicting

clustering of dark matter halos (Mo and White 1996; Sheth and Tormen 1999; Sheth et al.
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Figure 3.1 A cartoon description of a line of sight from a quasar (left) to an observer (right).

The big circles indicate the dark matter halos. The arrows shows the uncertainty in location

due to peculiar velocities within the host halos.

2001; Seljak and Warren 2004; Tinker et al. 2005). These models developed for dark matter

halos are easily extensible for studies of the clustering of any population.

3.3.1 Basics of The Halo Model Formalism

The halo model formalism is based on a few assumptions. One of the basic assumptions is

that all matter resides in halos of different sizes. The size distribution of halos is given by the

mass function, denoted by d n/ d M (e.g., Sheth and Tormen (1999); Jenkins et al. (2001)).

The mass function is the number of dark matter halos of mass between M and M + d M

in a comoving unit volume. The halo bias is bh(M) is defined as the overdensity of halo of

mass between M and M + d M compared to the overdensity of all matter (Efstathiou et al.

1988; Mo and White 1996; Jing 1998; Sheth and Tormen 1999). The distribution of dark

matter within a halo is described by the density profile around the center of the halo as

λ(r|M) (Navarro et al. 1997; Bullock et al. 2001a). These ingredients are estimated using

dark matter simulations or approximate analytical solutions.

Using the ingredients of the halo model formalism we can calculate the clustering of
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any kind of object or of different types of objects. Here I estimate the two-point correlation

function of C IV absorbers and quasars using the halo model formalism below. The two-point

correlation function describes the clustering of C IV absorber and quasar pairs as a function

of the distance between them. Any pair of C IV absorber and a quasar can be of either of two

origins; 1) both reside in the same halo, called the one-halo term or, 2) reside in different

halo, called the two-halo term. The total correlation function is the sum of these two and

can be written as follows.

ξqso,CIV(r) = ξ1h
qso,CIV(r) + ξ2h

qso,CIV(r) (3.11)

where ξ1h
qso,CIV(r) is the one-halo correlation term and ξ2h

qso,CIV(r) is the two-halo term. These

two terms can be calculated separately (Scherrer and Bertschinger 1991). The one halo term

is written as

ξ1h
qso,CIV(r) = n̄−1

qson̄
−1
CIV

∫

d M
d n

d M
〈NqsoNCIV〉(M)

∫

d3 ~xλ(~x|M)λ(~x + ~r|M). (3.12)

where n̄qso and n̄CIV are the average number density of quasars and C IV absorbers, respec-

tively. 〈NqsoNCIV〉(M) is the average of the number of quasars times the number of C IV

absorbers in halos of mass between M and M + d M .

Similarly, the two-halo term can be written as follows.

ξ2h
qso,CIV(r) = n̄−1

qson̄
−1
CIV

∫

d M
d n

d M
〈Nqso〉(M)

∫

d M ′
d n

d M ′
〈NCIV〉(M ′)

×
∫

d3 ~x

∫

d3 ~yλ(~x|M)λ(~y|M ′)ξhh(~x − ~y − ~r|M, M ′)

(3.13)

where 〈Nqso〉(M) and 〈NCIV〉(M) are the average number of quasars and C IV absorbers

respectively, in the halos of mass between M and M + d M , and ξhh(M, M ′) is the two-point

cross-correlation function of dark matter halos of mass M with those of mass M ′.

For our analysis we will be required to calculate only ξ2h
qso,CIV(r) and not ξ1h

qso,CIV(r). The

two halo term can further be simplified by assuming ξhh(r|M, M ′) ' bh(M)bh(M ′)ξlin
DM(r),
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where ξlin
DM is the dark matter power spectrum in linear perturbation theory. Using this

assumption the two-halo cross-correlation function can be written as

ξ2h
qso,CIV(r) = n̄−1

qson̄
−1
CIV

∫

d M
d n

d M
〈Nqso〉(M)bh(M)

∫

d M ′
d n

d M ′
〈NCIV〉(M ′)bh(M ′)

×
∫

d3 ~x

∫

d3 ~yλ(~x|M)λ(~y|M ′)ξlin
DM(~x − ~y − ~r|M, M ′)

(3.14)

It is often helpful to take the Fourier transform of an equation that involves convolution

as the convolution in real space become simple multiplication in Fourier space. We can write

the above equation in Fourier space as follows.

P 2h
qso,CIV(k) = n̄−1

qson̄
−1
CIVP lin(k)

∫

d M
d n

d M
〈Nqso〉(M)λ(k|M)

×
∫

d M ′
d n

d M ′
〈NCIV〉(M ′)λ(k|M ′)

(3.15)

where n̄ is defined as

n̄ =

∫

d M
d n

d M
〈N〉 (3.16)

3.3.2 Mass Function and Bias

The equations in the halo model formalism are generally written in term of the variable

ν ≡ δc(z)/σ(M), where δc(z) is the equivalent linear collapse overdensity and σ(M) is the

rms mass fraction in the linear density field smoothed on a scale containing mass M . The

quantity f(ν) d ν denotes the fraction of mass contained in halos in a range d ν about ν.

Then the mass function is related to f(ν) by

d n

d M
= 2ν2f(ν)

( ρ̄

M

) d ln ν

d M
. (3.17)

Using the above equation we can write

P 2h
qso,CIV(k) = P lin(k)bqso(k)bCIV(k), (3.18)

where b(k) can be written as

b(k) =

∫

d ln(ν)ν2f(ν)bh(ν)λ(k|ν)〈N〉(M)
∫

d ln(ν)ν2f(ν)〈N〉(M)
. (3.19)
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There are many different mass functions which are derived from analytical and dark mat-

ter simulations (Press and Schechter 1974; Sheth et al. 2001; Jenkins et al. 2001; Tinker et al.

2010). Here we use the mass function and halo bias from Sheth et al. (2001) which is based

on a model of ellipsoidal collapse of dark matter. The mass function of Sheth-Tormen is

given by

f(ν) = A(p)

√

2a

π

(

1 +
1

(
√

aν)2p

)

ν exp(−aν2/2) (3.20)

where a = 0.707, p = 0.3, and A(p) = [1 + 2−pΓ(0.5 − p)/
√

π] ≈ 0.3222. The halo bias for

the Sheth-Torman mass function is given by

bh(ν) = 1 +
aν2 − 1

δc

+
2p/δc

1 + (aν2)p
. (3.21)

To make further progress we need to make some assumption about 〈Nqso〉(M) and 〈NCIV〉(M).

We are assuming 〈N〉(M) to be of some functional form.

3.3.3 Density profiles of Halos

There are many studies that have attempted to determine the density profile of dark matter

halos (Hernquist 1990; Navarro et al. 1997; Moore et al. 1999). The NFW profile proposed

by Navarro et al. (1997) is the most commonly used dark matter profile. We are going to

assume the NFW profile for our studies which is given as

λ(r|M) =
ρs

(

r
rs

)(

1 + r
rs

)2 (3.22)

where ρs and rs are model parameters. A more frequent parametrization is the concentration

parameter which is defined as c ≡ rvir/rs. Dark matter simulations, show that for halos of

the same mass, the distribution of the concentration parameter is given by a log-normal

distribution (Jing 2000; Bullock et al. 2001b).

p(c|M, z) d c =
d ln c

√

2πσ2
ln c

exp

(

− ln2 c/c̄(M, z)

2σ2
ln c

)

(3.23)

77



where σln c ≈ 0.25 and c̄(M, z) ok given by

c̄(M, z) =
9

1 + z

(

M

M?(z)

)−0.13

, (3.24)

where M?(z) is the characteristic mass at which ν(M, z) = 1. The mass of the halo can be

written as

M =

∫ rvir

0

d r 4πr2λ(r|M) = 4πρsr
3
s

(

ln(1 + c) − c

1 + c

)

. (3.25)

Hence mass M and concentration parameter c completely specify the density of dark matter

halos. Since we have written our equation in Fourier space, the density profile can be written

in Fourier space as

λ(k|M) = 4πρsr3
s

M
×

{

sin(krs) [Si ((1 + c)krs) − Si (krs)] − sin(ckrs)
(1+c)krs

+ cos(krs) [Ci ((1 + c)krs) − Ci (krs)]
}

,

(3.26)

where Si (x) and Ci (x) are given by equations

Si (x) = −
∫

∞

x

d t
cos t

t
and Ci (x) =

∫ x

0

d t
sin(t)

t
. (3.27)

3.4 DATA

In this study I am using data from the SDSS-III BOSS (Eisenstein et al. 2011b), described

in § 2.4.1. For this study I am using the quasars identified by the survey and are part of

Data Release 9 (DR9). The quasar selection process and properties are described in more

detail in § 2.4.2.

Broad Absorption Lines (BALs) in quasar spectra are known to contaminate narrow

absorption lines, so all spectra with C IV BALs, or Damped Lyman-α systems (DLAs),

are removed from our analysis. The BOSS QSO catalog relies on visual examination to

determine if an object is a QSO or not. All identified BAL systems are visually confirmed

in all cases (Pâris 2012, submitted). This process leads to a first-cut catalog of 35,367 C IV

absorption systems.
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Catalog absorbers with rest-frame equivalent widths, Wr, above 3Å can arise as artifacts

of the pipeline (as, for example, to poorly subtracted night sky lines) or from complicated

blends of multiple doublets. All systems with such strong Wr > 3Å features are removed

from the sample. This limit removes only 226 systems from our sample, leaving 35,141

absorbers.

For this study we need to ensure that our sample is close to complete. Low equivalent-

width systems can only be observed in high signal-to-noise spectra. Figure 3.2 shows the

signal-to-noise of the r-band SDSS photometry vs equivalent width. The solid black and

dashed red lines are the median and mean respectively, in equivalent width bins of 0.1Å,

for the absorbers above the horizontal line. The lines turn up toward higher SNr to detect

equivalent widths less the 0.5Å (vertical line). The lines are nearly constant towards the

right of 0.5Å. The horizontal and vertical lines are the cuts SNr > 6 and Wr > 0.5Å. After

these cuts we are left with 9,276 absorption systems.

To demostrate the completness of the sample, I made a sample of weakest absorbers

by selecting absorbers with a signal-to-noise in the r-band between 6.0 and 6.15, and rest

equivalent-width between 0.50 and 0.55. There are total 34 systems satisfying the above

criteria out of which I selected 6 systems randomly to show the significance of the absorber

systems visually. Fig 3.3 shows the relevant part of the spectra which shows the C IV

absoption system along with their equivalent width and signal-to-noise in r-band.

We choose C IV absorbers in the quasar spectrum in the observed wavelength range of

3800–7500Å. This range is chosen to avoid the noisy region of the spectra due to spectral

contamination from sky lines on the spectra and our limited ability to correct for them.

We also avoid any features in the region shortwards of 1260 Å in the quasar rest-frame, as

this region is contaminated by the N Vline and the Lyman-α forest. Hence, our cut avoids

many potential false detections at the expense of missing some real systems. This approach

leads to a redshift range for detectable C IV systems of 1.453 < z < 3.841. The redshift cut

corresponding to this wavelength restriction is shown in Eq. 2.9 using βmin = −0.01. These

cuts reduce the sample size to 7,753.

There are some skylines which can lead to false identifications of C IV lines. The oxygen

line at 5577Å, and the sodium doublet at 5890Å are the two prominent ones. To remove
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Table 3.1 Table of NCIV for different selection cuts

Description NCIV

No cut 35,367

Wr < 3 Å 35,141

Wr > 0.5 Å 25,311

SNr > 6 9,276

FWHM < 600 km s−1 9,276

3800Å ¡ λr < 7500Å 7,753

λo < 5550 Å, λo > 5620 Å 7,638

λo < 5850 Å, λo > 5950 Å 7,507

any possible problem due to these lines we apply cuts removing any absorption systems in

the observer-frame wavelength of 5550 Å< λo <5620Å and 5850Å< λo <5950Å. These cuts

further reduce the sample size to 7,507 systems.

These cuts and their corresponding number of absorbers are tabulated in the Table 3.1.
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Figure 3.2 r-band signal-to-noise of the back-light quasars vs EW of detected CIV. The green

lines are the sample cut (Wr > 0.5Å , SNr > 6). The red dashed and black solid lines are

the mean and median of SNr in Wr bins of 0.1 Å for the absorbers above the horizontal line.
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Figure 3.3 First and second of six example spectra.
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Figure 3.3 Third and fourth of six example spectra.
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Figure 3.3 Example of six spectra out of thirty four weekest defined by signal-to-noise r-band between 6.0 and 6.15, and

equivalent-width are between 0.50 and 0.55. The C IV are evident in these spectra and suggest the sample to be complete. The

equivalent-width and signal-to-noise of r-band are also mentioned in the spectrum.
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This analysis is done in the quasar rest frame. Because quasars at different redshift

contributed to different range of observable velocity space, I calculate the number of quasars

that contribute to any particular velocity range. Fig. 3.4 shows the number of quasars

contributing as a function of velocity from the quasar rest-frame. As can be seen from this

plot there are typically ∼12,300 quasars that contribute to the velocity range of interest.

3.5 ESTIMATION OF THE CROSS-CORRELATION FUNCTION

Using the halo model formalism described in section 3.3 we estimate the cross-correlation

function of quasars and C IV absorbers. Using the estimation given in Eq. 3.8. I used

the result from (Vikas et al. 2012, submitted to ApJ) of a large scale bias for quasars of

bqso = 3.71 and for C IV absorbers bCIV = 2.38 ± 0.62 at redshift 〈z〉 = 2.3. I use the large

scale bias estimation to determine the small scale bias. For this I have to assume, 〈N〉(M),

the functional form of average number of quasars and C IV absorbers in a halo of mass M .

For quasars I assume 〈N〉(M) to be of the form

〈N〉(M) =











0 for M < Mmin

1 Otherwise

(3.28)

The form of the above equation is motivated by the fact that the quasars are highly clustered

objects and hence are expected to live in large DM halos (Ross et al. 2009; White et al. 2012).

The time scale for SMBH merger is short (∼ 105 years) hence we do not expect more than

one quasar in a DM halo (Armitage and Natarajan 2002).

Now, using Eq. 3.19 I estimate Mmin such that at very small k (large scale) the bias

matches the scale independent bias. I perform a similar calculation for C IV absorbers with

a slightly different 〈N〉(M) functional form. For C IV absorbers I assume

〈N〉(M) =











0 for M < Mmin

M
Mmin

Otherwise

(3.29)
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Figure 3.4 Number of quasars contributing at any given velocity in the rest-frame of quasar.
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Table 3.2 Estimated parameters, using HOD formalism, for the Quasars and C IV absorbers

so that the linear bias is correct.

Quasars C IV absorbers

b 3.71 2.37

Mmin 2.61 × 1012 7.66 × 1010

The clustering of C IV absorbers is similar to galaxies (Vikas et al. 2012). Hence we may

expect many C IV absorbers to occupy a single DM halo. Hence the form of the above

equation does not limit the number of absorption systems in a halo.

We estimate the Mmin which matches the scale-independent bias for C IV absorbers.

Table 3.2 lists the estimated Mmin for both C IV absorbers and quasars. Fig. 3.5 shows the

bias as a function of minimum mass for both functional forms. We denote the minimum

mass and bias for C IV and quasars in the plot.

The power spectrum of the cross-correlation function from the two-halo term can be

written using Eq. 3.18. I get the cross-correlation function from the power spectrum using

an inverse Fourier transform.

ξ2h
qso,CIV(r) =

1

2π2

∫

k3bqso(k)bCIV(k)P lin(k)
sin(kr)

kr
d ln k (3.30)

The measurements of large-scale bias for quasars and C IV absorbers are estimated at

redshift z ∼ 2.3. Hence the cross-correlation function we estimated is only valid at about the

same redshift. Since our quasar sample for this study has a larger redshift range (1.5 < z <

3.8) we need to estimate the cross-correlation function at various redshifts. In the absence of

any knowledge of the rate of change of the large-scale bias with respect to redshift I assume

that the large-scale bias for quasars remains the same in our redshift range of interest. Thus

any change in the cross-correlation is governed by the change in the linear power spectrum

due to redshift.

Figure 3.6 shows the cross-correlation function of the two-halo term at redshifts z = 2.0

and 2.4. The cross-correlation function for z = 2.3 is calculated using the halo occupation

model formalism and that for at z = 2.0 is calculated from the values at z = 2.3 using the

redshift evolution of the linear power spectrum of dark matter.
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Figure 3.5 Plot of bias vs minimum mass. The two curves correspond to different functional

forms for the average number of objects in a halo of given mass. The scale-independent bias

and minimum halo mass corresponding to them is marked.
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Figure 3.6 Plot of the quasar CIV absorber cross-correlation function for redshift 2.0 and 2.4 .

The z = 2.3 line is calculated using the halo occupation formalism and z = 2.0 is calculated

using the estimate of z = 2.4 and the growth function of the linear power spectrum.

3.6 RESULTS

In this section I present the results of the different analysis and the inference that can be

drawn from them.
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3.6.1 Estimation of parameters for the full dataset

I fit the model described by Eq. 3.10 to the observed BOSS data. I assume the redshift error

of BOSS quasars to be ∆zqso = 0.003(1 + zqso) (White et al. 2012). Figure 3.7 shows the

number density per unit velocity of the C IV absorbers as the blue circles. The error-bar on

the data is the Poisson error on the bin. The solid black line is the best fit model to the

data. The green region around the model line is the 1-σ error region of the model. The

error region is estimated by making 1000 realizations of the best fit covariance matrix and

calculating the 1-σ spread around every point. The best-fit parameters and their associated

errors are listed in Table 3.3.

Figure 3.8 shows the different components of the best-fit model. The solid line is the

one-halo component of the number density, Eq. 3.8, and the red region around the line is

the 1-σ error region. The dashed line is the two halo component of the number density,

Eq. 3.6 and the green region is the 1-σ error. The dotted line is the outflow component of

the number density, Eq. 3.9, and the blue region is 1-σ error region.

Figure 3.9 shows the correlation matrix at the best-fit value in parameter space. The

plot shows that there are some significant correlations between parameters of each models.

However, the lack of correlation between the outflow parameters (n2k, n4k, n6k) and non-

outflow parameters (n0σ0, ε, σβ, f) is evident. This suggest that our estimation of the

existence and overall strength of the outflow component is quite robust. There is also a lack

of corrleation between the one-halo parameters (f , σβ) and two-halo parameters (n0σ0, ε)

implying that our models are each independently constrained by the data.

3.6.2 Luminosity Dependence for Outflow

In this section I explore the dependence of the outflow on the luminosity of the quasars.

To explore this, I calculated the absolute magnitude of the backlighting quasars. I divide

the C IV absorbers into three bins (≈ 2500 absorbers each) according to tritiles of absolute

magnitude. Figure 3.10 shows the distribution of the absolute magnitude of the back-lighting

quasars of absorbers. The red-dashed lines show the tritiles of absolute magnitude of the

sample. For sub-samples I fit the model again fixing the non-outflow parameters (n0σ0, ε,
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Figure 3.7 The model number density (solid line) and the observed number density (blue

circles) of the C IV absorbers as a function of velocity in the-rest frame of the quasar. The

error-bar on the data is estimated assuming Poisson distribution in the bins. The error

region for the model is derived by calculating the 1-σ error at every velocity point in 1000

realizations of the best-fit covariance matrix.
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Figure 3.8 The individual components of the best-fit model. The one halo, two halo, and

outflow components are denoted by solid line, dashed line, and dotted line respectively with

red, green, and blue region as their 1-σ error region.
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Figure 3.9 Correlation matrix of the best-fit model. The existence of many significant cor-

relations between parameters is evident. However, the lack of correlation between outflow

parameters (n2k, n4k, n6k) and non-outflow parameters (n0σ0, ε, σβ , f) is also clear, which

suggests the robustness of the outflow detection.
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Table 3.3 The best-fit parameters of the model for all absorber data.

Parameter Best Fit

n0σ0 1.558 ± 0.188 × 10−3 Mpc−1

ε −2.884 ± 0.107

σβ 3.451 ± 1.925 × 10−4 km s−1

f 8.091 ± 4.519 × 103

n2k 5.736 ± 0.613

n4k 1.373 ± 0.485

n6k 1.540 ± 0.304

σβ , f) to be same as the best-fit of the entire sample (shown in Table 3.3). I allowed the

outflow parameters (n2k, n4k, n6k) to vary and get the best-fit outflow parameters for each

sub-sample. Table 3.4 shows the best-fit outflow parameters for the high (low), medium

(medium), and low (high) absolute magnitude (luminosity) sample. Figure 3.11 shows the

best-fit outflow components for the low, medium and high absolute magnitude samples. The

red, green and blue line shows the outflow component for low, medium, and high luminosity

samples respectively. This plot gives strong evidence of the outflow being at higher velocity

for the brighter quasars compared to lower brightness one.

I also try to estimate if there is any dependence of the number of outflow systems on the

quasar luminosity. Table 3.5 lists the expected number of CIV systems for each component as

a percentage of the expected total. I calculate the expected number for each given component

by integrating the component for the whole range of β. It is evident that the abundance

of the outflow component for low, medium and high luminosity are consistently decreasing

with increasing luminosity. An inference can be drawn from these observations that the

luminosity tends to push absorption systems to higher velocity, while destroying a fraction

of absorbtion systems. Table 3.6 shows the number-density-weighted mean velocity of the

outflows for the three different samples and for all absorbers.
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Table 3.4 The best-fit parameters of the model for all absorber data.

Parameter Mr < −27.09 −27.09 < Mr < −26.45 Mr > −26.45

n2k 3.188 ± 0.826 5.774 ± 0.978 7.459 ± 1.102

n4k 1.122 ± 0.712 0.651 ± 0.813 2.905 ± 0.948

n6k 1.693 ± 0.482 1.588 ± 0.520 0.840 ± 0.529

Table 3.5 Individual component as a percent of the total sample.

Sample One Halo Two Halo Outflow

Mr < −27.09 13.46 ± 0.50% 78.57 ± 0.05% 7.97 ± 0.15%

−27.09 < Mr < −26.45 13.20 ± 0.52% 77.47 ± 0.05% 9.33 ± 0.15%

Mr > −26.45 16.52 ± 0.64% 71.34 ± 0.05% 12.13 ± 0.16%

All 14.32 ± 0.57% 75.46 ± 0.05% 10.23 ± 0.09%

Table 3.6 The weighted mean velocity of the outflow.

Sample Velocity km s−1

Mr < −27.09 3786 ± 77

−27.09 < Mr < −26.45 3191 ± 63

Mr > −26.45 2902 ± 49

All 3232 ± 34
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Figure 3.10 Distribution of the absolute magnitude of the back-lighting quasars of absorbers.

The red-dashed lines indicate the tritiles of the sample (-27.09,-26.45) mag.
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Figure 3.11 Outflow component of the low, medium and high luminosity samples. The red,

green and blue lines are outflows from low, medium and higher luminosity sample and the

red, green and blue regions around them are the 1-σ errors of the outflows. The total number

of systems is smaller (higher) for brighter (dimmer) quasars.

97



3.6.3 Outflowing absorber properties

In this section I explore the properties of the CIV absorption systems of different components.

Since the spectra from the BOSS survey are of low resolution there are only a few properties

that can be extracted from the absorption feature. The main properties are the equivalent

width (EW) and the Full-Width-at-Half-Max (FWHM). The equivalent width is defined in

§2.1 in detail. FWHM is defined as the width of the feature at the half of the “maximum”

(deepest point for the absorption feature).

3.6.3.1 FWHM of outflowing absorbers At large velocities (> 15, 000 km s−1;β >

0.05) in the quasar rest-frame the absorbers are largely found in the intervening material

between the quasars and us. These absorbers are unlikely to be affected by quasar radiation

and winds. The normalized distribution of FWHM for these absorbers in the two-halo

component is shown as blue circles in Fig. 3.12. The error-bars are the Poisson errors.

I now take the distribution of FWHM in the range of −0.01 < β < +0.04 which has a

significant contribution from both the one-halo and outflow components. I estimate the

number of absorbers in this range from the two-halo component by integrating the two-halo

component in the mentioned β range. Assuming that these two-halo absorbers have the same

distribution of FWHM as calculated for (v > 15, 000 km s−1), I subtract that component

and deduce the normalized distribution of FWHM for the one-halo and outflow components.

This is shown as the green points in Fig. 3.12.

From the plot it is evident that there are significant differences in the distribution of

FWHM between the components which could be affected by quasars and components which

are not affected by quasars. I conclude that absorbers have systematically smaller FWHM

due to either the affect of quasar radiation or outflow, or that quasar environments produce

C IV absorbers of smaller FWHM.

I further analyze the data to see if there is any systematic difference in the distribution

of FWHM for the one-halo and outflow components. To isolate their distribution I choose

a range +0.01 < β < +0.04 in which there is little contribution of the one-halo component

which is mostly −.01 < β < +.01. Using the distribution of the two-halo component, shown
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Figure 3.12 Normalized distribution of FWHM for the two-halo (blue) and one-halo plus

outflow (green) C IV absorption systems. The two distributions are significantly different

and suggest systematically smaller FWHM for the absorbers affected by quasars.
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as the blue points in Fig. 3.13, I determine the normalized distribution for the outflow

component which is shown as green points in the figure. For the range −0.01 < β < +0.01

there is a significant contribution of the outflow as well as the two-halo terms. Assuming

the distribution of the other components, I determine the normalized distribution of the

one-halo component, which is shown as red points in the figure.

The FWHM distributions of outflow and one-halo absorbers in Figure 3.13 are quite

noisy. It is difficult to quantify the difference between the one-halo and outflow distributions.

However, the outflow component does shows an excess at lower FWHM. It can be inferred

that the outflow components have a systematically lower FWHM compared to both two-halo

and one-halo components. The estimate of the outflow and one-halo distributions are very

anti-correlated as they are isolated from the combined distribution. This anti-correlation

makes the differences, appear up to two times larger than they actually are. I used a

Kolmogorov–Smirnov (KS) test to test the significance of difference between the one-halo

and outflow components. The null hypothesis is that the distribution of one-halo and outflow

FWHMs are the same. I made 1000 realizations of the FWHM distribution by shuffling the

FWHM of the absorbers in the range −0.01 < β < +0.04. For each realization I estimated

the “ks-distance” between the one-halo and outflow distribution as the maximum difference

between the cumulative distribution of the two samples. The distribution of the ks-distance

is shown in Figure 3.14. The red dashed line shows the ks-distance of outflow and one-halo

distribution from Figure 3.13. It is evident that the significance of the difference is high

(p-value ∼0.001). The p-value value signifies the probabblity of getting the same result by

chance. I conclude that the FWHM of the absorbers in outflow is different compare to the

one in the host halo of the quasars.

3.6.3.2 Equivalent width of outflowing absorbers I follow a similar approach for

estimating the distribution of equivalent width as I did for FWHM in §3.6.3.1. Figure 3.15

shows the normalized distribution of equivalent width for the two-halo component in blue

points and the one-halo plus outflow in green. The two-halo component is derived from the

absorbers with velocity (> 15, 000 km s−1). The one-halo plus outflow component is derived

from −0.01 < β < +0.04, subtracting the two-halo component. It is evident from the
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Figure 3.13 Normalized distribution of FWHM for one-halo, outflow and two-halo compo-

nents. The outflow and one-halo are very anti-correlated which may amplify their difference.

It can be inferred that the FWHM for outflows are systematically smaller than other com-

ponents.
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Figure 3.14 The ks-distance of 1000 random realizations of the FWHM distributions of the

one-halo and outflow components.
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distribution that the two-halo component is steeper compared to the one-halo plus outflow

and hence the absorbers in the quasar environment posses systematically larger equivalent

width compared to the two-halo term.

Following the steps of the §3.6.3.1, I further explore the difference between the out-

flow and one-halo components. I estimate the equivalent width distribution for the outflow

component from the absorbers in the range +0.01 < β < +0.04 subtracting the two-halo

component. I determine the distribution for the one-halo component from the absorbers in

the range −0.01 < β < +0.01 subtracting outflow and two-halo components. Figure 3.16

shows the equivalent width distribution of the two-halo, outflow and one-halo components

in blue, green and red respectively. There is no significant difference evident from this plot

due to the large error-bars and scatter.

3.6.4 Comparison with other result

There have been various previous studies of narrow C IV absorbers intrinsic to the quasars.

These studies try to model the observed number density using very simplistic models. The

model adopted in this study is a more physically accurate and statistically consistent way

to estimate the outflow component.

Wild et al. (2008) models the expected number density of absorbers by extrapolating the

best-fit power-law correlation function, determined in the distance range of 10-100 Mpc, to

small (kpc) scales. They find excess absorbers up to 150 Mpc away from the quasar. This,

unfortunately, result is not directly comparable to the results of this chapter as the they did

their analysis in comoving distance space and I choose velocity space of the quasar. The

result of their paper that excess of absorbers can not be explained by clustering alone holds

true for this study even after using more realistic handling of correlation function scaling to

smaller scale. The sample size of their C IV absorbers is 6,459 where as this study uses 7,507

absorbers, however, in this study we remove a large portion of spectrum to make cleaner

data.

Nestor et al. (2008) adopted a more detailed model for number density compared to

Wild et al. (2008). They modeled the number density of absorbers by adopting an intrinsic
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Figure 3.15 Normalized distribution of equivalent width for the two-halo (blue) and one-halo

plus outflow (green) CIV absorption systems. The distributions are significantly different and

suggest systematically larger equivalent widths for the associated absorbers near quasars.

104



Figure 3.16 Normalized distribution of equivalent width for one-halo, outflow and two-halo

components in blue, green and red respectively. No clear inference can be made from this

about the distribution of one-halo and outflow components.
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term similar to the one-halo model in this chapter and constant term which is similar to two-

halo term of this chapter in the limit of large distances from the quasar. They constrained

their model from different parts of the velocity space and determined the outflow component

by subtracting the best-fit of the model from observed number density. My work improves

on this by modeling the two-halo term using halo occupation model formalism and taking

proper care of the redshifts of the quasars into account. Nestor et al. (2008) measured the

peak fractional contribution of the outflow to be ' 0.81 ± 0.13 at v ' 2, 000 km s−1. Their

results broadly match with the one from this chapter, but here I find the peak to be at

v ' 2, 100km s−1 contributing a smaller fraction (' 0.55 ± .05) of total absorbers. Their

result shows a tail of outflow velocity extending to v ' 12, 000 km s−1. Unlike theirs, I do

not find significant contribution of outflow at v > 8, 000 km s−1. I believe the difference

is due to simplistic model of Nestor et al. (2008) which does not consider the correlation

function. Due to the explicit modeling of the outflow component in my work, I believe, the

statistical inference of the outflow, is more robust and removes the tail of outflow at higher

velocity as they lack statistical significance. This study uses 7,507 C IV absorbers compared

to the 2,009 of Nestor et al. (2008). This large sample size enables better constrains of the

different components.

3.7 SUMMARY AND FUTURE DIRECTION

This study measures the velocity distribution and number density of the CIV absorbers in the

outflow of quasars using data from SDSS-III BOSS survey. I focused on the detailed modeling

of the number density of the absorbers according to their physical origin and undertook a

statistically robust measurement of different components. I conclude the following.

• The observed C IV absorbers can not be explained with the clustering of quasar and C IV

systems alone.

• The outflow system contribute ' 10% of the all C IV absorption systems detected.

• The outflow velocity peaks at ' 2, 100 km s−1 and are insignificant at > 8, 000km s−1.

• Brighter quasars have larger outflow velocities than dimmer ones.
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• C IV absorbers affected by quasars have smaller full-width-half-max and larger equivalent

widths compared to the ones which are not affected by quasars.

A repeated analysis with the full BOSS sample will have ∼3 times more absorbers. The

statistical advantage of the full BOSS sample will greatly improve our ability to determine the

difference of properties (equivalent width, full-width-half-max) between outflowing absorbers

and clustering absorbers in the host halos of the absorbers.
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4.0 SUPERNOVA IA COSMOLOGY AND SYSTEMATICS

Supernova Ia cosmology burst onto the center stage of cosmology when it was used to discov-

ering the acceleration of the expansion of the universe (Riess et al. 1998; Perlmutter et al.

1999). The next challenge, since the discovery of dark energy, has been to estimate its

equation of state, w, which describes the relation of its pressure to its energy density. The

generation of surveys that followed, such as ESSENCE, aimed to measure the w of dark

energy. In addition to estimating the value of w, it is important to measure the error on it

both statistical and systematical.

The new generation of supernova surveys like Pan-STARRS, DES, and LSST will yield a

much larger SN Ia sample. These large samples of SN Ia will measure w with greater precision

and will be instrumental in measuring the evolution of w over cosmic time. However, to reach

the full potential of these large samples of SN Ia data, which have the potential to give a much

smaller statistical error, we must improve our understanding of systematic errors, as they

do not decrease with large sample sizes. Therefore, a good estimation of systematic errors is

critical in order to provide a guide to channel the effort to tackle the largest systematic error

contributor. All recent SN Ia analysis suggest a high importance to estimating systematic

uncertainties (Conley et al. 2011; Kessler et al. 2009a; Wood-Vasey et al. 2007).

This chapter follows the trend of improving upon the estimation of systematics and

applying the improvements to the SN Ia data from the ESSENCE survey. In §4.1, I explain

how SN Ia are useful for understanding cosmology. I describe the effect of dust on supernova

cosmology in §4.2 and highlight the dependence of the dust uncertainty on the possible

progenitors. In §4.3, I describe the origin of the SN Ia data that is being used for the

study. I explain the method of fitting the light curves, which is essential to the estimation

of intrinsic parameters for the individual supernova, in §4.4. In §4.5, I explain the tool used
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to generate the Monte Carlo simulations for the surveys and also explain the properties of

the simulation data generated by the tool. §4.6 presents the description of the systematic

errors that could be affecting the cosmological inference and the estimation of those errors

for our data. Finally, in the last section of this chapter, §4.7, I summarize the conclusions

from our study and present future direction for this study.

4.1 COSMOLOGY WITH SUPERNOVA IA

In classical physics, we can describe the distance, D, of a source with intrinsic luminosity,

L, and measured flux, F , as

D =

√

L

4πF
(4.1)

Since the discovery of the acceleration of the expansion of the universe, requiring a

component of universe to have negative pressure, the standard way to describe dark energy

is by its equation of state, P = wρc2. Assuming Einstein’s general theory of relativity holds,

the “luminosity distance”, Dl, is given by

Dl =
(1 + z) c

H0

∫ z

0

dz′
√

Ωm (1 + z)3 + ΩΛ (1 + z)3(1+w)
(4.2)

where Ωm and ΩΛ are the ratios of the densities of matter and dark energy to the critical

density of the universe. Here we have assumed the universe to be flat (ΩΛ = 1−Ωm). Using

the luminosity distance, we can write the distance modulus as follows

µ ≡ m − M = 5 log Dl − 5 (4.3)

where m is the apparent magnitude, which is a measure of flux, and M is the absolute

magnitude, which is a measure of luminosity, and Dl is luminosity distance in units of parsecs.

Standard candles have the same luminosity, making the absolute magnitude a constant for

all SN Ia observation. We can use Eq. 4.3 to constrain the cosmological parameters Ωm

and w if we have a sufficiently large number of supernovae Ia with well-measured apparent

magnitude and redshift.
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As mentioned in §1.4.1, the supernova Ia’s “standardness” can be improved by using

the brighter-slower and brighter-bluer correlations. Using these correlations, Eq. 4.3 can be

modified as follows

µ ≡ m − (M − α shape + β color) (4.4)

where α and β are the global correlations of brightness-slowness and brightness-color, and

shape and color are parameters describing the slowness and color of the individual supernova

Ia light curves.

4.2 DUST EXTINCTION AND THE RELATIONSHIP BETWEEN DUST

AND SN IA PROGENITORS

One of the largest sources of uncertainty is the lack of understanding of dust in the host

galaxies of supernovae and their local environments. The estimation from the most studied

supernovae suggests steeper dependence of extinction versus wavelength with typical RV

values of ≈ 2 (Wang 2005; Krisciunas et al. 2007), compared to RV = 3.1 as observed for

the Milky Way galaxy (Schlegel et al. 1998).

The source of dust extinction can be divided into two components: 1) dust from the

host galaxy; 2) dust from the local environment of the progenitor. The dust due to the host

galaxy would not depend on the progenitor of the supernova, but the local environment dust

could be highly correlated with the type of progenitor. In the single degenerate model, the

progenitor accretes from a companion through Roche-lobe overflow and is likely to exhibit

a small explosion before the supernova (Nomoto 1982). Such small explosions or a series of

them can create dust clouds around the progenitor (Corradi 2003; Bujarrabal et al. 2010).

These progenitors also reside in star-forming regions of the galaxies, which are inherently

dusty environments. For these reasons, the single degenerate progenitors are expected to be

in environments with more dust extinction. In the case of the double degenerate progenitor,

the binary system is composed of two degenerate cores, meaning that star formation would

have ceased a long time before, so they are expected to be located in less dusty environments.

They would still, however, suffer from dust extinction due to the dust in the host galaxy.
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The canonical value of RV in Milky Way is 3.1, but it ranges from 2-6 along different line

of sight (Schlegel et al. 1998). In a region of dense star formation, RV can be as small as

≈ 2 (Martin et al. 1989; Larson et al. 1996; Gordon and Clayton 1998; Larson et al. 2000;

Clayton et al. 2003; Gordon et al. 2003).

The treatment of host galaxy extinctions is very important for supernova cosmology.

IT is treated several different ways in the literature: 1) assume the AV to be linear with

flat prior (Perlmutter et al. 1999; Knop et al. 2003); 2) use models of the dust distribution

(Hatano et al. 1998; Commins 2004; Riello and Patat 2005) in galaxies to model line of sight

extinction values (Riess et al. 1998; Perlmutter et al. 1999; Tonry et al. 2003; Riess et al.

2004); 3) assume that the distribution of host galaxy AV is of exponential form (Jha et al.

2007); 4) use self-calibration within a set of low-z supernovae to obtain a color versus AV re-

lationship and assume the relation for the full set (Astier et al. 2006). Different assumptions

have different strength and weaknesses. The flat prior assumption assumes the least amount

of knowledge about the extinction, but it also allows the unphysical value of negative AV .

The method of modeling the dust distribution is physically motivated, but it relies on the

accuracy of our understanding of the complicated process of dust formation. The Jha et al.

(2007) derivation of the AV distribution assumes a particular distribution of color, and the

highly extincted objects often affect the fit of the overall dust law, even though they may

represent a separate population.

4.3 SUPERNOVA DATA FOR THIS STUDY

4.3.1 ESSENCE Supernova Survey

Designing surveys to look for supernova Ia is a difficult challenge because supernovae occur

only a few times per millennium in a typical galaxy, which makes, concentrating on a few

galaxies inefficient. Supernovae are transient events that last for only a couple of months.

A possible observation strategy could be taking images of large part of the sky regularly, so

that a new bright spot in the image could be identified. This strategy would give candidates
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for supernova Ia that would need to be watched more carefully in order to be identified as

real SN Ia.

Equation of State: SupErNovae trace Cosmic Expansion Survey (ESSENCE) was a

ground-based multi-year project aimed to identify the supernova Ia in the redshift range of

0.2 < z ≤ 0.8. The survey was conducted using the Blanco 4m telescope at Cerro Tololo

Inter-American Observatory (CTIO) located in Chile. It used passbands with a MOSAIC

wide-field CCD camera. The survey took repeated images in R and I passbands with a

cadence of a few days separation for three consecutive months each year. The base bands, R

and I, were chosen to coincide, at a redshift of z ∼ 0.5, with the rest frame bands, B and V,

where our understanding of SN Ia is best. When the survey identified a potential supernova

Ia, several different large aperture telescopes (Keck, VLT, Magellan, Gemini) followed up on

the object. Taking spectra from large telescopes helped to identify the type of supernova

and also gave accurate measurements of the redshift of the supernova.

The goal of the survey is to put tight constraints on the equation of state of dark energy,

w. The ESSENCE survey was designed to take advantage of the uniformity of photometry

because it used a single telescope and instrument throughout the survey period. The survey

also focused on the sources of systematic errors that are now a bigger source of uncertainty

than the statistical error associated with the small number of supernova Ia observations. The

survey collected data for 197 half nights over a six year period of observation. The survey

confirmed 203 supernova Ia during the entire observation period. The detail of the design of

the ESSENCE survey is elaborated in Miknaitis et al. (2007).

Wood-Vasey et al. (2007) have done the cosmological analysis using three years of data

from ESSENCE. They explore, in great detail, the systematic error for the analysis and

their estimation. Table 5 in that paper, lists all the individual systematics considered and

estimations of the effect on w.

4.3.2 Low redshift sample

To a large extent our understanding about SN Ia comes from the well-observed sample of

low redshift,. They have been observed at densely sampled epochs in multiple pass-bands.
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Understanding the low redshift sample enables us to produce light curves for the high redshift

SN Ia, correcting for extinction and incorporating the brightness-color and brightness-shape

correlations. The low redshift sample comes from various sources including the: Calán/Tololo

survey (Hamuy et al. 1996), CfAI(Riess et al. 1999), CfAII (Jha et al. 2006). The sources are

compiled in Jha et al. (2007) with much emphasis on making the measurements as accurate

as possible. I use this sample of 125 nearby SN Ia for our study. In addition to light curve

measurements, the low redshift sample is also very important for cosmological analysis, as

our goal in this study is to obtain the tightest constraint on w. The absolute distances of

the supernovae depend on the parameter w and the Hubble parameter h. However, since the

ratio of the distances of high-redshift supernovae to low-redshift supernovae is independent

of the Hubble parameter h, hence the low-redshift supernovae sample enables us to make

more robust constraints on w, by not being dependent on absolute knowledge of h and the

luminosity of SN Ia.

4.3.3 Other Surveys

SN Ia surveys yield a limited number of events during the survey lifetimes. Using events

from different surveys from analysis is an easy way to improve the sample size. In addition to

having better statistics, using various surveys has the benefit of sampling different redshift

ranges, which will produce better constraints on the cosmological parameter. In this study,

we includes data from SDSS (Kessler et al. 2009a, 115 SN Ia), SNLS (Astier et al. 2006, 65

SN Ia), and HST (Riess et al. 2007, 20 SN Ia).

4.4 LIGHT CURVE ESTIMATOR

SN Ia exhibit variability in light curve shape, colors, intrinsic luminosity, and spectral fea-

tures. These properties are measured in the observer reference frame using photometry at

non-periodic intervals using various filters. The redshifting of the spectra makes different

parts of rest-frame spectra available for measurement. Apart from intrinsic variability of the

113



SN Ia spectrum, the difference in dust absorption along different lines of sight affects the

observed properties of SN Ia. Converting observed properties of SN Ia to the rest-frame prop-

erties of interest is a non-trivial task but of central importance to analysis. Many such light

curve estimators have been developed, e.g. MLCS2k2 (Jha et al. 2007), SALT II (Guy et al.

2007), BayeSN Mandel et al. (2011). In this study, we are using the SALT II light curve

estimator.

4.4.1 SALT II

SALT II models the mean evolution of the spectral energy distribution sequence of super-

novae Ia and the variation with a few dominant components. It also allows a time indepen-

dent variation with color. The following functional form of flux, F , is assumed:

F (SN, p, λ) = xo [Mo(p, λ) + x1M1(p, λ) + ...] exp [c CL(λ)] (4.5)

where p is time in the rest-frame since the date of maximum luminosity in B-band, and λ

is the rest-frame wavelength of the supernova. Mo(p, λ) is the average spectral sequence;

Mk(p, λ), for k > 0, represents additional components that describe the main variability

of supernova Ia; CL(λ) represents the average color correction law; and c is defined as

(B − V )max− < B − V >. Therefore, xk and c are individual supernova Ia parameters and

Mk is a global parameter.

SALT II uses multi-band light curves to train the model. It also uses the spectroscopic

data to improve the model resolution in wavelength space. Use of spectroscopic information

enables the K-correction to be treated in a consistent manner.

The above model is constructed using the nearby supernova Ia sample and the high red-

shift supernovae from the Supernova Legacy Survey (Astier et al. 2006; Conley et al. 2011).

Including the high redshift supernova Ia enables us to constrain the model in the wavelength

range of the U-band, which can not be done using only nearby supernovae Ia because they

have poor U-band data due to the opacity of Earth’s atmosphere in the ultraviolet. Us-

ing these datasets the model from Eq. 4.5, is constrained at grid points in phase, p, and

wavelength.
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Once the training of the model is completed, SALT II can be used to evaluate the light

curve of any supernova Ia by trying to evaluate the best fit for variability parameters xk and

c. The model should, therefore, be able to produce the light curve for any supernova Ia.

Using the parameters of SALT II, Eq. 4.4 would be written as

µ ≡ m − M + α x1 − β c (4.6)

4.5 MONTE CARLO SIMULATION

Systematic studies on combined SN Ia samples can be done, in principle, by selecting subsets

of whole datasets, according to different properties, and doing complete analysis on the

different subsets. However, this would require a vary large dataset so meaningful constraints

on the subset could be found. The current worldwide SN Ia sample is far from reaching the

required size (>10,000) for such analysis, but the problem can be overcome if we are able

to create a simulated dataset that takes into account the effect of different parameters on

the dataset. Although simulated data is not useful for finding new systematics in the data,

it can accurately measure the existing systematic errors for any parameter modeled in the

simulated dataset.

4.5.1 SNANA

SNANA is a publicly available simulation tool designed to model SN Ia datasets. The soft-

ware is described in Kessler et al. (2009b). The software contains a Monte Carlo simulator,

a light curve fitter, and a cosmology fitter. The software is designed to use multiple SN Ia

light curve models and can be easily extended to include new models of light curve fitting.

SNANA provides the ability to specify the description of any survey, such as the MJD

of survey observations, filters, and many other properties, which enables the Monte Carlo

simulator to generate supernova datasets closely following the real data properties. SNANA

also provides a way to specify the desired properties and the model used for light curve fitting.

These properties include, but are not limited to, specifying the brightness-shape correlation,
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brightness-color correlation, dust extinction distribution and various other model parameter

distributions that could affect the distribution of the supernova Ia data. The software also

has the capability to specify a quality cut on the supernova data before it is accepted as a

reliable supernova observation. To model an individual survey, we can use the specific filters

and the quality based on the filters and actual observational conditions.

The SNANA software provides several light curve fitter options, including SALT II and

MLCS2k2, and provides an easy way to support new light curve models. These options help

to achieve some uniformity in the light curve model, makeing it easy to test the robustness of

the analysis. The light curve fitter provides various methods to obtain the best fit value of the

parameters and produces the measurements of different parameters of individual supernova.

The software also provides a cosmology fitter that takes the output of the light curve

fitting and attempts to fit the global parameters, which could be the cosmological parameter

or the global brightness-shape or brightness-color correlation. All of these parameters are

provided in the simulation step, so we can check if there is a bias introduced by the analysis.

There are many other capabilities of the SNANA tool, but I have only outlined those

that are used by our analysis.

4.5.2 Simulation data

I created the simulation dataset to closely follow the characteristics and composition of the

real dataset, so the simulated data is an accurate representation of the real dataset. I used

the SNANA software described in section 4.5.1 to make one hundred realizations of the

dataset. The real dataset consists of a collection of surveys. To imitate the real data, I

generated simulated data for the LOWZ, SDSS, ESSENCE, SNLS, and HST surveys, having

125, 115, 150, 65, and 20 supernovae respectively. I used custom survey definition files to

generate appropriate datasets for each survey and then added the simulated data to make

the complete simulated dataset used for analysis. I generated all the simulated data using

the SALT II model. After the SN Ia data was generated, I concatenated the data from

different surveys to make the complete dataset representing the real data. I used the light

curve fitter on the simulated dataset to measure the properties of the individual light curves.
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I then used the cosmological fitter to get the best fit cosmological parameters, assuming a

flat universe.

4.6 SYSTEMATIC UNCERTAINTIES OF THE SUPERNOVA ANALYSIS

In this section, I aim to estimate the errors due to the systematics that affect this analysis.

I first make a list of possible systematic error sources and then predict how they could be

affecting our data in section 4.6.1. In section 4.6.2, I describe the methodology I used to

find the probability distribution of the error introduced by any specific systematic error. In

section 4.6.3, I describe the analysis of the systematic error for our data sample using the

methodology described in section 4.6.2.

4.6.1 List of systematic uncertainties

In this section, I mention and explain various systematic errors that could affect the inference

of cosmological parameters.

1. Dust and Milky Way Extinction: Supernovae Ia are important to cosmology be-

cause they are standard candles. However, their observed brightness can be affected by

material, such as dust, that lies between the supernova and us. While the intergalactic

medium is quite thin and does not contain much dust that would affect the brightness,

our own Milky Way galaxy contains a significant amount of dust. The host galaxies of

supernovae can also contain a significant amount of dust. Our ability to determine the

absolute brightness relies on our ability to correctly estimate the dimming of brightness

due to dust. Dust extinction affects smaller wavelengths more than larger wavelengths,

so the net affect of dust extinction is to make the supernova appear redder. The avail-

ability of multi-band photometry data enables us to determine the color of high redshift

supernova. Each supernova may be expected to have a different dust extinction, due to

environment effects, however, it is not possible to correct for the effect of dust extinction

using only color information. Estimation of the global distribution of dust extinction
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is used to correct the individual supernova color. The well-observed nearby sample of

supernovae provides the distribution of supernovae in color space. Assuming the distri-

bution of the nearby sample to be true at higher redshifts, we can estimate the global

extinction distribution of the supernova sample. Any error in estimating the global dust

extinction affects the estimation of all supernova colors individually. The inference of

cosmological parameters is affected systematically.

2. Evolution of Dust Extinction: The extinction of supernovae Ia due to dust in the

host galaxies is not very well understood. There are reasons to think that there could

be evolution of dust in the host galaxies of supernovae Ia (Totani and Kobayashi 1999;

Jain and Ralston 2006), as the galaxies evolve with redshift affecting the dust content

due to various factors (e.g., star-formation, metalicity). Our measurement of dust ex-

tinction is not accurate enough to measure the redshift evolution of dust extinction. The

assumption of no evolution in dust extinction can lead to a systematic error dependent

on redshift.

3. Photometric Zeropoint: In astronomy, the prevalent way of measuring the flux is

using the magnitude system. The magnitude is defined as

m = −2.5 log(F ) + zeropoint (4.7)

where F is flux in unit of ergs per second per cm2 per Hz. The zeropoint and m have

the same unit of “mag”. Since every telescope and instrument has unique characteristic

behaviors, the zeropoint offset has to be calculated for each telescope, instrument, and

filter. Any systematic error in estimating the zeropoint for each filter will affect the mag-

nitude estimation for that pass-band data for all observations. These errors in zeropoint

offsets affect the supernova Ia data in following ways:

I) Cosmological analysis of supernovae Ia depends heavily on observations of low red-

shift supernovae Ia. As explained in section 4.4.1, the local supernova Ia are used

to train the light curve fitter and the result is used to estimate the light curve

for high redshift supernova Ia. These samples of local supernova Ia were observed

from multiple telescopes, using different instruments and various filters. The error

in photometric calibration would introduce systematic errors in training the light
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curve fitter and thus would affect the determined properties (i.e., stretch, color) of

all the supernova Ia.

II) For the high redshift supernova survey (e.g., ESSENCE), a precise zeropoint esti-

mation for each different filter is also very important. Since the errors in zeropoint

offset for different filters are independent of one another, the errors could potentially

cause large errors in color. This color error will affect all the supernova Ia from

the survey. From Eq. 4.5, we can see that the color term is important to the train-

ing process and, in conjunction with color correction law, will systematically cause

under- or over-estimation of the extinction, affecting the estimation of cosmological

parameters.

4. Local flow: Supernova cosmology studies compare the low-redshift supernovae with a

high-redshift sample. The goal is to deduce the expansion history of the universe at

different redshifts. An implicit assumption used in this analysis is that the observed

supernova redshift is only due to the expansion of the universe. Because the redshift

measures the recession velocity, which is due to Hubble flow as well as peculiar velocity

of supernova in their local environment, the assumption is not strictly true. However, for

supernovae separated by large cosmological distances, the peculiar velocity cancels out,

as the directions are randomly distributed and do not induce bias in the measurements.

The low-redshift supernovae are not separated by large cosmological distances, so the

peculiar velocities could be correlated, and the net affect of having many supernovae

could be a nonzero peculiar velocity in the direction of the coherent motion of the local

universe. Such a residual will induce systematic error in the estimated expansion history

and will lead to incorrect inference of cosmological parameters. We currently do not have

precise information about the local flow, so to avoid introducing error due to local flow,

we need to remove some very nearby supernova from the sample.

5. Malmquist Bias: The Malmquist bias is the selection bias in a magnitude limited

survey where we selectively intrinsically brighter objects at large distance. As a result,

the properties of that sample that correlate with intrinsic brightness would also correlate

with redshift, even if there is no intrinsic evolution of that property with redshift. This

selection effect is enhanced because spectroscopic criteria are generally more stringent;
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a faint supernova Ia may be too faint to take a clean spectra. This selection effect can

interfere with cosmological analysis in a few possible ways. Error in the measurement

of the strength of the shape-luminosity correlation is one possibility. For a given shape

of supernovae Ia, the selection effect would tend to choose the brighter supernovae Ia,

increasing the inferred shape-luminosity correlation. This mis-estimation will affect all

the supernova Ia in the sample.

Another way the Malmquist bias could affect the cosmological inference is by inducing

errors in the dust extinction of the supernova Ia. For any given intrinsic brightness of

supernova Ia, the selection effect will remove the supernova Ia with more dust extinction

and affect our estimation of dust extinction in the sample. The mis-estimation would

not be so bad, as it will be a true representation of the sample; however, selection effects

introduce a redshift dependence and produce a relative systematic error in high redshift

supernova Ia.

6. Rest Frame U/u Band: The rest frame U-band data for nearby supernovae Ia are

almost the same as the observer frame U-band data. Since the Earth’s atmosphere is not

completely transparent for U-band wavelength, our U-band data for nearby supernovae

is of poor quality and difficult to calibrate. For high redshift supernovae Ia the rest

frame U-band is redshifted to optical range, so they are well observed. Compared to

rest frame U-band observation of high redshift supernovae Ia, the nearby sample has a

big offset due to unreliable U-band data. Since training the light curve fitter is largely

dependent on the nearby supernovae Ia observations, the problematic U-band data can

inflict systematic errors on the light curve estimation of all supernovae Ia, which affects

the cosmological parameter estimation. The U-band measurements also exhibit a larger

dispersion and are inherently less standardizable, compared to other bands.

7. Intrinsic Brightness Evolution: Supernovae Ia are standardizable candles within

some accuracy. However, the possibility exists that supernovae Ia brightness evolves

with redshift. The studies looking to find such evidence have not able to find any, but a

weak evolution of brightness, at the level of a few percent, can not be ruled out. Such

error will place a redshift dependent error on the distance modulus of the supernovae Ia

and will systematically bias the cosmological parameter estimated from the analysis.
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4.6.2 Methodology

In this section, I describe the generic methodology I have used to estimate the systematic

errors. I describe use the SNANA monte carlo simulation tool, described in section 4.5.1, to

model the systematic errors. For any given cosmological parameter X(p1, p2, ..., pn) where

pk is kth systematic parameter, the systematic errors on X can be written as

δX2
sys =

∑

k

(

∂X

∂pk

)2

δp2
k (4.8)

I assume here that the different parameters are not correlated with each other and can

be estimated independently. To estimate ∂X
∂pi

, I generate a random realization of our final

supernovae Ia data from various surveys using SNANA and using pi = pi,True. I complete

the analysis of this dataset by using a light curve fitter and a cosmological fitter, using the

same parameter as in the simulation, and get the best fit value for X to be xi,True. I redo

the above analysis now assuming that I have mis-estimated parameter pi to be pi,True+∆ and

get the cosmological parameter X to be xi,True+∆. Using the above information, I can write

∂X

∂pi

(pi = pi,True) '
xi,True+∆ − xi,True

∆
(4.9)

The estimation of ∂X
∂pi

is only for one random realization. Our dataset sample is only one

realization of an infinite number of possible outcomes for any give set of parameters. To

completely characterize ∂X
∂pi

, I need to find the probability distribution function of ∂X
∂pi

. To

do so, I repeat the process, with different seed values, 100 times for any given parameter

analysis. The distribution ∂X
∂pi

is then converted to a probability distribution function using

kernel density estimation. The estimated error on the cosmological parameter X due to

systematic pi can be written as

δX2
sys,i =

(〈

∂X

∂pi

〉)2

δp2
i (4.10)
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4.6.3 Analysis

In this section, I present the results of the analysis of some of the systematic errors discussed

in §4.6.1. As mentioned in section 4.3.1, the main goal of the ESSENCE survey is to constrain

the dark energy equation-of-state parameter. I consider here the systematic error analysis,

one systematic at a time.

1. Dust and Milky Way Extinction: I estimate here the systematic error due to mis-

estimation of the dust extinction parameter β for SALT II (see Eq. 4.6). The current

estimated value of β for the nearby sample is ≈ 2.6 (Hicken et al. 2009; Kessler et al.

2009a). I estimate 〈∂w
∂β
〉 by following the process outlined in section 4.6.2. I first generate

a simulation of our dataset using SNANA with βsim = 2.6 . Using the simulated survey

dataset, I use the SALT II light curve fitter to estimate the light curve. I then fit for the

cosmological parameters by fixing the extinction parameter β to βsim + ∆β, βsim, βsim −
∆β, where I choose ∆β to be 0.2 . Using the estimated w, I calculate the change in

estimation of w, ∆w, for the change of ∆β, which leads to an estimation of ∂w/∂β. I

also calculate the change in the estimated Ωm as indicated by ∆Ωm. To estimate ∂w/∂β

across the relevant range of β, I repeat this process for simulations with β = 1.6, 3.6. To

estimate 〈∂w/∂β〉 from ∂w/∂β, I repeat the process outlined above 100 times, in order

to estimate the probability distribution function of ∂w/∂β.

Figure 4.1 shows the ∆w and ∆Ωm for simulations of β = 1.6, 2.6, 3.6 . The distribu-

tion of points aligned on negatively sloped straight line indicates the line of degeneracy

in the w and Ωm plane, as a more negative value of w would tend to accelerate the expan-

sion of the universe while a more positive value of Ωm would decelerate the expansion(for

a flat universe). The subplots show the difference in distribution for ∆w and ∆Ωm for

different β. The plot explains the need to estimate ∂w/∂β at three different β values

in order to be representative of the full range of β. A closer look at the plot reveals

that for the lower extinction simulation, the distribution of ∆w peaks closer to near zero

compared to the higher extinction simulations. This confirms that smaller extinction

data suffer less systematic extinction error due to mis-estimation of β.
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Figure 4.1 ∆w and ∆Ωm for ∆β =0.2 for simulated dataset for assumed β = 1.6, 2.6, 3.6. The plot show the degeneracy in the

in w and Ωm plane. The three panels show the difference in distribution of ∆w and ∆Ωm for different β and emphasize the

need to estimate ∂w/∂β for more than one value of β.
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Figure 4.2 shows the probability distribution function for ∂w/∂β estimated from the

100 different ∂w/∂β estimations. The distribution is estimated using a kernel density

estimator. The method involves convolving a Gaussian function with the histogram of

measurement to get a continuous and smooth probability density function.

Using the distribution, I estimate 〈∂w
∂β
〉 = −0.132. There have been a few studies of

dust extinction that estimated the error on the dust extinction parameter for SALT II.

Kessler et al. (2009a) find σRV
= 0.5. Here I conservatively assume the error estimation

of σβ = 1.0 to be on conservative side. I calculate the systematic error due to dust

extinction to be

δw =

√

(〈

∂w

∂β

〉)2

δβ = 0.13

The most recent systematic error study from Conley et al. (2011) estimated the sys-

tematic error on w due to dust extinction to be σw ∼ 0.01. Due to the difference in

analysis the errors are not exactly comparable. However, I believe the difference is due

to our liberal assumption of error on the dust extinction and due to Conley et al. (2011)

having cleaner data with more passbands and excluding highly reddened SN Ia.

2. Photometric Zeropoint: Here I try to demonstrate and quantify the systematic error

due to zeropoint offsets for the ESSENCE data. ESSENCE data are taken in two pass-

bands, R and I. As mentioned in section 4.6.1, the zeropoint estimate for each band is

independent of the other. The systematic error then involves two parameters. I do the

joint analysis of these two parameters. I explore the zeropoint estimate error in the range

of [-.1,.1] in 11 bins for both the R and I bands. For each bin I generate 100 realizations

of data and complete the cosmological analysis. Figure 4.3 shows the equation of state

parameter w for an induced zeropoint offset in R and I band. The horizontal axis shows

the offset in the R band and the vertical axis shows the offset in the I band. The color

in any bin represents the derived value of w. The color-bar shows the mapping between

the value of w and color. This plot shows the amount of systematic error in w due to

zeropoints offsets. It also shows that if both bands suffer from the same error, then they

cancel each other when estimating color and produce the correct w.

Figure 4.4a and 4.4b show the probability distribution function for ∂w
∂∆R or ∆I

for

the shift of 0.02 mag. The probability distribution is estimated using a kernel density
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Figure 4.2 Shows the probability distribution function of ∂w/∂β estimated from 100 simu-

lation to estimate ∂w/∂β. I estimate 〈∂w
∂β
〉 from this distribution.
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Figure 4.3 Shows the estimated value of w for zeropoint offsets in the R and I bands. The

degeneracy in the diagonal direction is due to the fact that the errors on the R and I bands

cancel each other (with a slope of 2) to give an accurate color estimation.
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estimator. Using the probability distribution, I estimate the values of 〈 ∂w
∂∆R

〉 = 1.811 and

〈 ∂w
∂∆I

〉 = −3.487. The anti-correlation of the R and I band errors are expected because

estimation of supernova color depends on the rest-frame B-V color. The color is derived

from the K-correction of R and I band and effectively subtract the zeropoint error of

R and I. Using a known zeropoint offset error of 0.02 for both bands, I estimate the

systematic error on w to be

δw =

√

(〈

∂w

∂∆R

〉)2

δ∆R = 0.04

δw =

√

(〈

∂w

∂∆I

〉)2

δ∆I = 0.07
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(b) Probability distribution function of ∂w/∂Rshift.

Figure 4.4 Shows the probability distribution function of ∂w/∂Ishift and ∂w/∂Rshift estimated from 100 simulated datasets. I

estimate < ∂w/∂Ishift >= −3.49 and < ∂w/∂Rshift >= 1.811 .
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3. Local flow: As explained in section 4.6.3, the systematic error due to the local flow of

galaxies can be estimated from the real data by applying a minimum redshift cut (zmin).

I do the light curve and cosmological fitting for the data after applying the zmin on the

sample. Kessler et al. (2009b) found the w changes rapidly at z ∼ 0.015 and opted for

zmin = 0.02. Other authors estimated different values for zmin; for example, Conley et al.

(2007) found no significant effect of local flow and Riess et al. (2007) used zmin = 0.023.

The blue circles in the lower panel of figure 4.5 show the change in the estimation of

w, compared to w in the last bin of zmin = 0.029. The difference ∆w is clearly visible,

however compared to the error of w, the change is insignificant. I also compare our result

with the result from the SDSS supernova study of Kessler et al. (2009b). Since there are

many differences between this study and Kessler et al. (2009b), I explored whether the

difference is due to the different datasets or different analysis. I made a new dataset

that closely resembles the one from Kessler et al. (2009b) and repeated the analysis on

the new dataset. This reproduced the behavior of Kessler et al. (2009b), as shown in

the lower panel of figure 4.5. Because I was able to successfully reproduce the result, I

conclude that the difference in the result is due to data only and the method of analysis is

consistent. The upper panel of figure 4.5 shows the number of SN Ia in the corresponding

bins. As can be seen from this plot, the number of SN Ia in these bins is much higher

in our study. From the figure, I conclude that the local flow does not affect our result

systematically.

To make a better comparison, I simulated one hundred datasets emulating our

dataset. I compared how much the result from the simulation varies if we have ar-

tificial zmin. Figure 4.6 shows the hundred test simulations in gray, and the red line

indicates the one sigma range for those zmin bins. We see that ∆w varies in the range of

-0.1 to +0.1, which is completely consistent with the error on w from our dataset. This

gives further conformation that the local flow does not add any appreciable systematic

error to the cosmological parameter estimation.
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Figure 4.5 The lower panel shows the change in w compared to the choice for last bin of

zmin = 0.029. The blue circles are our dataset. The red square is the reproduction of the

Kessler et al. (2009b) plot using a subset of all data that is common to their dataset. The

error bars denote the error on the estimation of w. The correct reproduction of low estimate

of w at zmin < 0.018 shows that the difference between these studies is purely data driven.

The upper panel gives the number of SN Ia in each bin. The larger number of supernova

in our studies (blue line compared to red one) removes the data sensitivity to local flow

systematics.
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Figure 4.6 This figure estimates ∆w, which is due to random variation. Each gray line is

one of the 100 simulations of ∆w, as a function of the minimum redshift cut. The red line

is the one sigma range of all of the simulations. The range of variation of ∆w is similar to

the variation in the real dataset. This leads us to conclude that there is no appreciable local

flow effect in the cosmological parameter estimation.
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4.7 CONCLUSION AND FUTURE DIRECTION

The ESSENCE survey has produced 203 confirmed supernova Ia. The large number of

supernovae reduces the measurement error of the equation of state parameter w. Much

effort was spent to study the different sources of systematic error to improve upon the earlier

systematic error estimation. I concentrated on the sources that could make a big contribution

to the systematic errors; dust extinction, photometric zeropoint offsets, local velocity. I

calculated the full distribution of systematic error on w for each source of uncertainty. The

distribution checked the validity of a Gaussian approximation of the error. It also checked

if the distribution was too skewed, as it could lead to an underestimation of the systematic

error.

Using the analysis, I estimated the systematic error on w to be 0.135 for current SN

Ia datasets. Table 4.1 shows the systematic errors of the different components on w. I

also verified that there is no measurable error due to local flow. The results are going to

be part of the final ESSENCE cosmology paper (in prep.). The paper will present the

cosmological parameter estimation from supernovae from the ESSENCE survey and other

supernova surveys. The systematic error estimation is one of most important results of the

study, as well as the most complicated part of analysis.

I used the SALT II light curve fitter for this analysis. I was unable to estimate the

systematic error due to use of SALT II light curve fitter compared to the use of other

fitters. Other notable sources of systematic error that should be explored in future work

include redshift dependence of dust, redshift dependence of the intrinsic brightness of the

supernova, and use of U-band photometry for nearby versus distant supernova . We should

also explore better photometric calibration because the zero point offset is a major source of

uncertainty for w.
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Table 4.1 Table of systematic errors on w

p δw
δp

σp δw

Dust Extinction β -0.132 1.0 0.13

Zeropoint R 1.811 0.02 0.04

Zeropoint I -3.487 0.02 0.07

Total 0.15
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E. Pâris (2012), in prep.
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APPENDIX

ABSORPTION PIPELINE

The spectrum of an object gives a wealth of information about the object and is often essential

in understanding its internal structure and properties. However all the features seen in a

spectrum are not due to the object itself. The intervening material between the object and

us can also make a feature in the spectrum of the object. Often these intervening material

absorbs the light and hence leaving an absorption feature in the spectrum at wavelength

characteristic to the wavelength of the intervening material. Since quasars are bright object

and can be seen from far away, they probe a large volume of intervening space between us

and them.

In the current era of astronomy, large surveys can gather spectra of thousands of objects.

The number of spectra is large enough so that it is not feasible to identify features in the

spectrum by manually looking at each one. Hence we have to automate the process of identi-

fying a quasar absorption feature in the spectrum. In this chapter I present brief description

of the pipeline used in SDSS and the modifications and improvements I contributed.

A.1 INTRODUCTION

The pipeline to identify absorber systems from the quasar spectrum has been developed by

Britt Lundgren and her collaborators (York and et al. 2012). The pipeline can be described

in four broad components. Figure .1 shows the schematic diagram of the absorber pipeline.
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Interface: This part of the code is interfaced to the main SDSS spectral pipeline. It

reads the fits file containing spectra of the objects and interacts with other logical parts of

the code. It returns a list of absorber systems along with the lines of various species which

are part of the absorption system with the properties of the lines identified. It is written

using the Python programming language. The main functions of the pipeline are summarized

below.

• Read the FITS file to get the spectrum.

• Pass the spectrum to the continuum fitter.

• Receive the continuum of the spectrum.

• Pass the normalized spectrum to the line finder.

• Receive the list of lines identified in the spectrum along with their properties.

• Pass the list of line for line classification.

• Receive identified absorption system along with the lines associated with them.

Continuum Fitting: This part of the code is responsible to find out the continuum fit

for the spectrum. It take the spectrum as input and returns a continuum for the spectrum as

output. Finding the continuum is a very important process to identify a line in the spectrum

as it will remove all the variation cause by the intrinsic spectrum of the back-lighting object.

The spectrum removes any increase of flux because of broad emission and hence facilitate

finding out the narrow absorption system. This part of the code is written in C++.

Line Finder: This part of the code is responsible for identifying absorption lines in the

normalized spectrum of the quasar. It takes the normalized spectrum as input and identifies

absorption lines having large significance. It also measure various properties of absorption

lines (i.e. wavelength, equivalent width, Full-width at Half max). This part of the code is

written in C++.

Line Classification: This part of the code classify the absorption line into different

elemental and ionization species using information about presence of a doublet absorption

line, the line ratio, the redshift of the back-light quasar, wavelength of the absorption line.

It also tries to associate identified lines of different species into one absorption system. To
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identify absorption systems which have an abundance of different species of ions. This part

of the code is written in Python.

A.2 SHORTCOMING IN USABILITY OF THE PIPELINE

The pipeline, although algorithmically sound, suffers from problems of inefficiencies and

poor portability. Some part of the pipeline was written in C++ programming language and

some other parts in Python. The main interface to the pipeline is written in the Python

programming language. For seamless portability the information of the spectrum should

be able to pass from Python to C++ and vice versa seamlessly. That was not the case

for the pipeline. The interfacing between different component of the program was achieved

by writing down the intermediate state to flat files and passing the names of the flat file

from Python to C++ and vice verse. This caused too many files to be made and significant

reduction in speed by just reading and writing the files. This inefficiency does not pose any

problem for a single spectra. However, with ever increasing number of quasars with spectra

it pose a significant challenge in managing memory and also speed. Hence an improvement

in the pipeline was required to be able to be useful. Below we summarize the shortcoming

of the previous pipeline;

• It required very large disk space as many files had to be made for every single spectra.

• It was slow as it is does too many input/output operations, which is slow.

• It was not scalable because as the number of spectrum to be processed grows the program

became unusable very fast.

A.3 IMPROVEMENT IN PIPELINE

I made significant improvement in usability of the pipeline. These improvements in the

pipeline was imperative to be able to analyze the large amount of spectrum. The most

pressing problem of the pipeline was the excessive input/output operation to overcome the
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Figure .1 Schematic diagram describing the pipeline. The gray boxes indicates the part

written in python. The unfilled boxes represent the code which is written in C++.
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problem of interfacing between Python and C++ programming language. I overcame this

by effective use of “SWIG” to generate interface Python and C++ code.

A.3.1 What is SWIG?

SWIG is a program which generates interface code for a C/C++ program to be able to

be used in the scripting language such as Python (and many more). It take the C/C++

declaration and use them to generate the wrapper code in C/C++. It also generate code in

scripting language which defines the objects from C/C++ in the scripting language. Hence

it enables the C/C++ function and objects to be accessible in scripting language. It also

understand many nuances of C/C++ programming language and scripting language and

tries to generate code which is compatible with such nuances, without the need for the user

of SWIG to know and understand these nuances. Hence it enable fast development and

portability of between diverse code and users.

A.3.2 Changes for input/output issues.

As a solution to the problem we used the SWIG to make the interface code which interface

with both C++ module “Continuum Fitting” and “Line Finder”. SWIG also generated a

Python module which interacts with the generated C++ wrapper code. Hence once the

wrapper code is generated the logical picture of different parts of the code looks as describe

in figure .2.

A.3.3 Other improvements

I introduced some other improvements to the pipeline to improve its ability to process a

large amount of spectrum without any interaction. These changes are listed below.

• Handle exception in line finding to make the code more robust against unexpected situ-

ation in data.

• Cleaned up the code by removing unused part of the code and made logic behind the

code more easy to understand.
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Figure .2 Schematic diagram describing the pipeline using swig. The gray boxes indicate the

code written in python. Swig generated box is gray as it seems normal python code to the

main interface of the program which is written in python. However in detail the generated

code call the c++ compiled code transparently.
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• Used FITS file to store information about identified absorber system along with line

associated with it.

These changes speed up processing, allowed for automated processing of the full SDSS data

set, are now use by others in the SDSS-III quasars working group.
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