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STABILITY ANALYSIS AND OPTIMAL CONTROL DESIGN FOR AC-DC

POWER SYSTEM WITH CONSTANT POWER LOAD

Jean-Marc Coulomb, M.S.

University of Pittsburgh, 2012

This thesis studies the stability properties of an AC-DC system - a three-phase controlled

rectifier - with constant power load (CPL) and proposes an optimal design for the system

control. CPLs have been widely seen in power electronic applications. For example, motor

drives and DC/AC inverters in advanced automotive systems may behave as CPLs. Due to

their negative impedances, CPLs often impact the power quality and stability of an AC/DC

system. This thesis considers a typical AC/DC system with constant power load, where

the three-phase rectifier is originally controlled by two PI controllers. It is demonstrated

that the PI control strategy obtains narrow stability margin. To overcome the limitation

of PI control, a linear quadratic regulator with full state feedback is used to determine the

optimal structure of the controller and tune the parameters of the controller and DC filter.

This method is shown to improve the stability margin of the AC-DC system tremendously.
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1.0 INTRODUCTION

1.1 STATEMENT

Power electronics are involved in many applications. The number of applications has been

growing significantly during the last decades.

Among those applications, there is a typical type of load: the constant power load

(CPL). This type of load has always been an important issue both for the industry and for

researchers. Indeed, the constant power load exhibits unique characteristics and dynamics

due to their negative impedance characteristic.

Many studies have been performed on the constant power loads since they can be en-

countered in many different areas. Let us mention, for example, a load fed by a motor, by a

converter, or even a load in a microgrid.

This type of load is completely different from the regular loads. Indeed, the constant

power load has a stability issue that can significantly degrade the stability of the system. As

mentioned, several studies have been performed on this topic but there is still no generalized

solution. However, it is totally possible to stabilize a particular system using a specific

control method. Additional investigations need to be done to strictly establish the stability

limits and obtain more accurate models.

In this study, the model consists in a constant power load fed by a three-phase controlled

rectifier.
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1.2 OBJECTIVES

The main purpose of this study is to find the stability limits of a given system and to apply

an optimal control method on it to enhance these limits.

As it was mentioned previously, the system is a three-phase controlled rectifier feeding

a constant power load. It is of interest to study the behaviors of the system with given

parameters. Another interesting study to do is to slightly change the value of some of the

parameters and observe the system’s reactions. Some parameters will affect the stability

limits while others will not.

As mentioned, the main purpose is to improve the system’s stability. To achieve this

goal, an optimal control method will be applied: Linear Quadratic Regulator method (LQR).

This method will considerably increase the system’s stability limits. However, since this

study is strictly theoretical and there are no specific design requirements, it will then be

impossible to determine new fixed limits for the system’s stability.

1.3 LAYOUT

This study is composed of four chapters:

• Chapter one - Literature review

This chapter introduces the state-of-art with a literature review. It begins with various

explanations and examples about the constant power load issue. It clearly explains why

constant power load is a recurrent problem for the global stability of the system by

giving several examples that it is likely to encounter. Then, the following part will be

a complete review of what it has been done in this area and see what kind of control

methods have been applied to make the system more stable.

• Chapter two - Description of the system

This chapter develops the main problem of the study. It introduces the model, the

controllers’ schematic and the different control loops.
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• Chapter three - Solution

This chapter develops the solution that was chosen to enhance the stability of the system.

The different methods to derive a model into a matrix form are briefly introduced and

explained. The following step is the derivation of the model using the dq-transformation

method. The equations of the controllers are also derived. Then, Kirchhoffs’ voltage

and current laws are applied to derive the equations of the dq-transformed model and

the resulting set of equations is linearized in order to be put in matrix form. The next

step is to calculate the coefficients’ values of the PI (Proportional Integral) controllers

using the Classical method. Finally, the use of the Linear Quadratic Regulator method

applied on the system is explained.

• Chapter four - Simulations and results

This chapter describes the different simulations made. The stability limits of the original

system are determined and the effects of the change in some parameters values are

investigated. The different results are shown for the system excited by a step.
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2.0 LITERATURE REVIEW

2.1 GENERAL POINTS

Power converters are involved in a wide range of applications including electric motor drivers,

power supply, harmonic and reactive power compensators in transmission lines, telecommu-

nication [2], [3], [4], [5], [6], naval ships [7], or industrial power systems [8], [9], [10]. Of course,

this list is non-exhaustive. For most of those applications, the load is modeled as a resistor,

a constant source, or a series combination of voltage source, resistor or inductor. However,

another type of load which is called constant power load is commonly encountered [11].

The stability of the constant power loads is a recurrent problem. It represents an im-

portant issue, especially when feeding electric machines. This type of load can significantly

degrade the stability of the system. Consequently, studies need to be performed in order to

improve the behaviors of those systems.

Actually, the number of studies done on stability and behaviors of systems feeding a

constant power load is relatively small. Several methods have been applied to stabilize

specific systems, but none can be generalized. It would also be interesting to get more

details in order to obtain more accurate models. In other words, we still do not have a full

understanding of this problem, mainly because of the unique characteristics and dynamics

of the constant power load.

Let us take the example of an electric motor fed by a constant power load which appears

to be very frequent [12], [13]. When the motor is tightly controlled, it behaves as a constant

power load.
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Figure [1] represents a constant power load fed by a motor.

Figure 1: Electric motor feeding a constant power load

Let us assume that the controller tightly regulates the speed. Therefore, the motor has

a one-to-one linear torque-speed characteristic. Equation (2.1) shows the relation between

power, torque and angular speed.

P = T × Ω (2.1)

The speed is constant since it is regulated by the controller. The motor has a one-to-one

torque-speed relation, so for each speed there is a corresponding torque. This means that

the torque is also constant. According to equation (2.1), the power which is the product of

the torque and the angular speed is also constant.

Moreover, if we assume a constant efficiency, it can be ensured that the input power is

also constant. Consequently, the system exhibits constant power load characteristics.
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Figure [2] represents the most basic circuit involving a constant power load [12]. In this

case, the type of converter is DC/DC and the load is a resistor. A resistor exhibits a linear

voltage-current relation.

Figure 2: DC/DC converter feeding a constant power load

The main idea is similar to the one from the previous example. The value of the resistor

is fixed. The controller tightly regulates the value of the voltage in order to keep it constant.

Equation (2.2) shows the relation between current and voltage for this circuit.

I = V ×R (2.2)

As a consequence, the current remains constant too. Finally, the power can be obtained

by equation (2.3)

P = V × I (2.3)

Then, the power is also constant.
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It has been mentioned earlier in this study that the cause of this instability comes from the

negative impedance characteristic. Let us highlight in equation (2.4) that the instantaneous

impedance is always positive.

V

I
> 0 (2.4)

On the other hand, the incremental impedance, which can be represented as the overall

impedance, is always negative as shown in equation (2.5).

dV

dI
< 0 (2.5)

The incremental impedance is shown in figure [3].

Figure 3: Voltage-current curve of a constant power load

Let us now consider figure [3]. The negative impedance characteristic has a negative

influence on the power quality and on the global stability of the system. This effect is

simply called the negative impedance instability. The negative impedance characteristic is

represented as a curve with a negative slope. In other words, it means that when the voltage

increases, the current decreases for a same amount of power. And vice-versa, if the current

7



increases, the voltage decreases. Equation (2.6) shows the calculation of the incremental

resistance of a constant power load.

Rcpl = (
∂i

∂v
)−1 =

−V 2

P
(2.6)

According to equation (2.3) and since the power is constant, it can easily be observed

that if the value of one of the two parameters changes, the other one has to adjust. This is

the core of the problem.

Let us come back to the previous statement: if the current decreases, the voltage in-

creases. This will lead the current to decrease even more. Therefore, the system becomes

completely unstable.

Figure [4] represents another example of this negative impedance instability issue and it

is interesting to explain it with further details.

Figure 4: DC source feeding a constant power load through an inductor

Figure [4] is a simple circuit that includes a DC power source, an inductor L and a load

connected in series. Equation (2.7) shows the output power of the circuit represented in

figure [4].

P = v0 × i0 = Constant (2.7)

It is interesting to examine the circuit’s behaviors because of the negative impedance

issue.
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First, let us establish the position of the equilibrium point. The equilibrium point can

be reached with the voltage source equal to the voltage load. Operating at the equilibrium

point means that we are in steady state. Let us now compare the two voltage-current curves

of the system and see how the equilibrium point behaves.

Figure [5] represents the voltage-current characteristic of a basic voltage source and a

constant power load.

Figure 5: Voltage-current characteristics of a voltage source and a constant power load

The equilibrium point is represented by point A and is located at the intersection of

the two curves. To have a better understanding, it must be mentioned that the system is

considered stable if it returns to the equilibrium point after a disturbance. In other words,

it has to converge towards its original state. If it does not, it is considered as an unstable

system. The disturbance may appear either in the source or in the load.

Let us now fully analyze the behaviors of figure [5]. To begin, let us assume a disturbance

which causes a reduction in the current of ∆i. According to figure [5], it can be noticed that

the load voltage is now larger than the source one. As a consequence, the current decreases

further since the source voltage becomes smaller. Therefore, the operating point moves away

from the equilibrium point A. Finally, the current reaches zero while the voltage reaches

infinity.
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A similar phenomenon occurs when the current increases after a small perturbation. The

load voltage becomes smaller than the source voltage. This means that the current increases

even more. Again, the operating point moves away from its initial position. Similarly, the

current reaches infinity while the voltage goes to zero.

It is now clear that point A is an unstable point of equilibrium. There is no way that

the system can be stable after a disturbance without control. It should be mentioned that

the system acts as a positive feedback.

To compare the constant power load system with a regular system, let us replace the

constant power load by a resistor. The source and the inductor remain the same. Figure

[6] represents the voltage-current characterestics of both the voltage source and the resistive

load.

Figure 6: Voltage-current characteristics of a voltage source and a resistive load

Similarly to the previous study, let us examine how the equilibrium point B moves and

check whether the system is stable or not. To begin, let us remind the difference between

the two loads: the constant power load exhibits a negative incremental impedance while the

resistor exhibits a positive incremental impedance.

Let us use the same procedure to study the system. Assume a perturbation that de-
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creases the current of a value of ∆i. The load voltage is now smaller than the source voltage.

According to Kirchhoff’s voltage law, the voltage called vL across the inductance L is posi-

tive. Consequently, the current increases until it reaches its initial value. It returns to the

equilibrium point.

On the other hand, if the current increases due to a disturbance, the load voltage becomes

larger than the source voltage. According to Kirchhoff’s voltage law, the voltage vL across

the inductor L is negative. The current decreases and the system returns to the initial state.

Therefore, the system is stable. After a disturbance, it returns to the equilibrium point.

This system behaves as a negative feedback.

Reference [14] shows an interesting review of the different loads’ characteristics. It ba-

sically says that loads are characterized by their voltage dependency as shown in equation

(2.8).

P = P0 × (
u

u0
)MP (2.8)

In equation (2.8), P represents the power of the load, P0 represents the initial power

consumption, U is the voltage and U0 is the initial voltage. Equation (2.8) is true for the

smallest change in U .

The exponent MP represents the three main types of load:

• If MP = 0, the load power demand is independent of the voltage amplitude, then the

load acts as a constant power load.

• If MP = 1, the load power demand is proportional to the voltage amplitude, then the

load acts as a constant current load.

• If MP = 2, the load power demand is proportional to the square of the voltage amplitude,

then the load acts as a constant impedance load (resistance load).

To illustrate, let us give the example of a rising voltage for each type of load. The cur-

rent decreases for a constant power load, it does not change for a constant current load and

it increases for a constant impedance load. Reference [15] provides additional information

about the different types of load.
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2.2 MODELING

Let us clarify the large-signal and small-signal models of a constant power load. These

models can be encountered in many studies. Equation (2.9) represents the power of the

constant power load at the operating point [16].

P0 = v0 × i0 (2.9)

Let us now assume a small perturbation around this operating point, as shown in equa-

tions (2.10) and (2.11).

i0 = I0 + î0 (2.10)

v0 = V0 + v̂0 (2.11)

Equation (2.12) shows the result obtained after substituting equations (2.10) and (2.11)

into (2.9).

P0 = (V0 + v̂0)× (I0 + î0) (2.12)

And by neglecting the second-order term, the result becomes equation (2.13).

Rcpl =
v̂0

î0
=
V0
I0

= −R0 (2.13)

Equation (2.13) refers to the negative impedance characteristic for a small-signal model.

Figure [7] represents the large-signal model while figure [8] shows the small-signal model.

The large-signal model is used to calculate the operating point while the small-signal

model is used to determine the transfer function [16].

Consider the case of an uncontrolled rectifier or a converter with unity power factor

(α = 1), the constant power load can be represented as a pure negative resistance. On the

other hand, with a power factor different from unity, a reactive element must be added in the
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model [17]. The power factor is a phase difference between the voltage and the fundamental

component of the current.

Figure 7: Large-signal model of a con-

stant power load

Figure 8: Small-signal model of a con-

stant power load

Figure [9] represents the model with a unity power factor while figure [10] represents the

model with a power factor different from unity.

Figure 9: Converter with unity power fac-

tor

Figure 10: Converter with power factor

different from unity

2.3 CONTROL METHODS

It is important to mention that because of the non-linearity, time-dependency and nega-

tive impedance characteristic of the converters and loads, the classical linear control meth-
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ods show limitations when the behaviors are considered [12]. Therefore, stabilizing control

methods must be used to ensure large-signal stability [18], [19], [20], [21], [22].

The authors of reference [20] studied the behaviors of a boost converter operating with

a state feedback control and with a constant power load while in reference [10], the authors

studied a buck converter in a closed loop.

Some studies involved, for example, Sliding Mode Control [23], Fuzzy Logic [24], [25],

Non-linear Proportional Integral [26], as well as many others linear and non-linear [27], [28].

Let us also mention feedback linearization [29], synergetic control [30], pulse adjustment

technique [31], or active damping. Active damping was primarily used to stabilize the

input filter of AC/DC converters [32], [33] as well as the output filter of power-electronic

inverters [34].

In reference [30], the authors stabilize a buck converter loaded with a non-ideal constant

power load using a Synergetic control while reference [35] consists in a study of a synchronous

generator-rectifier which feeds a constant power load.

Reference [34] shows a new way of dealing with the negative impedance issue which is

called Pulse Adjustment. In a few words, it is a frequency digital control technique where the

converters are treated as digital systems and where the output voltage regulation is achieved

by choosing high and low power pulses instead of the conventional pulse width modulation.

Let us also highlight references [36], [37], where the authors deal with various methods

to overcome the destabilizing problem of the negative impedance. A stability analysis of an

open loop converter is performed in [38], [39] and [40].

In reference [41], the authors are using a Nonlinear System Stability Controller (NSSC)

based on a stability criterion that predicts when the overall system is unstable. This criterion

also allows the use of several other methods to stabilize the system. Let us mention the design

of the converter regulatory control with low bandwidth which reduces the negative impedance

or this other method which consists in incorporating a passive RC damping network.

Reference [42] shows another method which consists in the use of a linear feed forward

pole-zero cancellation control.

Reference [43] shows a study of a converter loaded by a constant power load and operating

in Discontinuous Conduction Mode (DCM). They prove that the system is stable when

14



running in open loop. Besides, the authors also show that the feedback design of a DC/DC

converter loaded by a constant power load can be designed as a conventional feedback with

a resistive load.

The authors of reference [44] explain how to stabilize a microgrid loaded with a constant

power load using amplitude death. They focus on two methods to provide an open loop

control: one using delay, the other using circuit heterogeneity.

Reference [45] exhibits a virtual resistance method based on active damping to stabilize

a microgrid.

In reference [46], the authors studied a matrix converter feeding a three-phase constant

power load. They averaged the model using the state average method.

In reference [47], the author divided the different methods to compensate the constant

power load into three categories which consist in:

• making the feeder more robust

• inserting a element between the feeder and the load

• doing some modifications in the load itself

15



Figure [11] represents a summary of all those methods.

Figure 11: Summary of the different methods used to compensate the negative effect of a

constant power load

16



3.0 DESCRIPTION OF THE SYSTEM

3.1 MODEL

As it has been seen in the literature review, the negative impedance of the constant power

load is a recurrent issue in power electronics. Whenever a constant power load is used, an

instability problem might be encountered. Let us consider our model, shown in figure [12].

Figure 12: Three-phase rectifier feeding a constant power load

This circuit is quite simple, it consists of:

• a balanced three-phrase voltage source: Vsa, Vsb and Vsc

• a transmission line: Req, Leq and Ceq

• a 6-pulse controlled rectifier

• filters: rf , Lf and Cf

• a constant power load

17



In this case, the constant power load is a mathematical model. In real application, the

constant power load could be a boost converter for example.

A similar study on this converter has already been done in reference [48]. The authors

studied the stability problems and limits. However, this study can significantly be improved.

It has already been improved in reference [49] where the authors used Artificial Intelligence

techniques to enhance the control of the system. These two techniques were Adaptive Tabu

Search and Genetic Algorithm.

This being so, this system can be improved using an optimal control method. Then it

will be possible to reach a new threshold regarding the stability limits.

Figure [13] shows how the control strategy is applied on the system.

Figure 13: Model including the control system

18



3.2 CONTROL STRATEGY

This control strategy is made by the use of two PI controllers. Because the model a mathe-

matical model, it is necessary to simulate a constant power load. To to that, one PI controller

will control the output voltage while the second PI controller will maintain the current con-

stant on the DC side.

Figure [14] represents the schematic of the two PI controllers.

Figure 14: Schematic of the controllers

Basically, the goal is to control the voltage V ∗, which is the voltage accross the two DC

side components: rf and Lf , through the use of the two PI controllers.

In the two studies mentioned above, the control scheme was the same. Consequently,

in both studies, they managed to find some values for the four coefficients of the two PI

controllers: Kpv, Kiv, Kpi and Kii. In reference [48], the authors used a classical method to

determine the four coefficients of the two PI controllers. On the other hand, in reference [49],

they used the Adaptive Tabu Search and the Genetic Algorithm to determine the four

parameters.

Let us give more information about these two PI controllers. Each one controls one loop:

• a current control loop

• a voltage control loop

19



The two controllers are built according to figure [15] and figure [16]. Figure [15] represents

the current control loop.

Figure 15: Current control loop

The components of this control block diagram are:

• the reference signal: I∗dc

• the output signal: Idc

• the controller with the two coefficients:

– proportional gain: Kpi

– integral gain: Kii

• the plant with the two components to regulate:

– the resistance rf

– the inductance Lf

Let us focus on the voltage control loop, represented in figure [16].

Figure 16: Voltage control loop
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The components of this control block diagram are:

• the reference signal: V ∗out

• the output signal: Vout

• the controller with the two coefficients:

– proportional gain: Kpv

– integral gain: Kiv

• the plant with the component to regulate:

– the capacitance Cf

The current control loop is the inner loop, while the voltage control loop is the outer

loop. The four coefficients will be calculated in the next chapter using the Classical Method.
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4.0 DEVELOPMENT OF THE SOLUTION

4.1 TRANSFORMATION METHODS

As shown in the previous part, the model is represented in figure [13].

This circuit has to be derived in order to be transformed in matrix form. Once it will be

mathematically modeled, it will be possible to apply the new control strategy through the

use of MATLAB.

Besides, it is necessary to derive this circuit since this model is time-varying. In fact,

the system is time-varying because of the switching behaviors of the converter. Hence, the

system is more complicated to study. These switching behaviors have to be eliminated in

order to obtain a time-invariant system. A time-invariant model is easier to deal with and

makes possible to apply the classical linear system theory on it.
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To derive a circuit like this, there are several methods:

• State-Space Averaging

• Average-Value Modeling

• dq-transformation

For each method, there are some advantages. For example, the State-Space Averaging

offers [50]:

• A more compact representation of equations.

• A comfort to obtain both DC and AC transfer functions.

The Average-Value method offers a very good accuracy for modeling but is not easily

applicable.

However, the most used is the dq-transformation method which is also the most con-

venient and most useful one. Let us give more information about the dq-transformation

method [51]. This method consists in a transformation of coordinates. It transforms the

three-phase stationary system into the dq rotating system. Two distinct steps are needed to

perform this transformation:

• First step

Transformation from the three-phase stationary coordinate scheme into the two-phase

stationary coordinate scheme. The two-phase stationary coordinate system is usually

named the αβ system.

• Second step

Transformation from the two-phase stationary coordinate system into the dq rotating

coordinate system.

Let us consider a three-phase balanced system, it is possible to transform it into the dq

system through the use of matrix T shown in equation (4.1).

T =
2

3

 cos(ωt) cos(ωt− 2
3
π) cos(ωt+ 2

3
π)

−sin(ωt) −sin(ωt− 2
3
π) −sin(ωt+ 2

3
π)

 (4.1)
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In other words, it is possible to obtain the transformation of a matrix Xabc, shown in

equation (4.2), to a matrix Xdq, shown in equation (4.3).

Xabc =


Xa

Xb

Xc

 (4.2)

Xdq =

Xd

Xq

 (4.3)

This is summarized in equation (4.4).

Xdq = T ×Xabc (4.4)

It is also possible to transform Xdq into Xabc via the multiplication of T−1.

The dq-transformation is the method used in this study.
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Figure [17] represents the application of the dq-transformation to the stator of a syn-

chronous machine. The left hand side shows the three-phase stationary coordinate system,

while the right hand side highlights the dq rotating coordinate system [1].

Figure 17: dq-transformation - Adapted from Reference [1]

One last interesting point about the dq-transformation is that the power converters can

be treated as power transformers.

4.2 DQ-TRANSFORMATION OF THE MODEL

This dq-transformation is divided into three parts. First, let us transform only the rectifier

into the dq form. Second, the different components present in the original circuit will be

added. And finally, the model of the second step will be simplified [52].
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Before doing the transformation, it is important to mention the following assumptions:

• The converter is operating under the continuous conduction mode.

• A constant output current of the rectifier is assumed.

• The amplitudes of the three-phase sources are constant and balanced.

• Harmonics are neglected.

• The overlap angle resistance caused by the effect of Leq on the AC side is also neglected.

As a reminder, figure [12] represents the original model without the controllers.

The controls applied to the circuit are not included in the dq-transformation.

Let us begin by deriving the switching signals of the controlled rectifier, represented in

figure [18] and express them in Fourier series, as shown in equation (4.5). Let us remind

that the harmonics are neglected.

Sabc =
2
√

3

π

[
sin(ωt+ φ− α) sin(ωt− 2

3
π + φ− α) sin(ωt+ 2

3
π + φ− α)

]T
(4.5)

Where φ is the phase angle of the AC bus and α is the firing angle of the thyristors.

Equations (4.6) and (4.7) represent the transfer functions of the controlled rectifier:

Iin,abc = SabcIdc (4.6)

Edc = STabcVbus,abc (4.7)
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Let us now apply matrix T on equations (4.6) and (4.7) which become equations (4.8)

and (4.9).

Iin,dq = SdqIdc (4.8)

Edc = STdqVbus,dq (4.9)

Equation (4.10) is the transformation of equation (4.5).

Sdq =

√
3

2

2
√

3

π

[
cos(φ1 − φ+ α) −sin(φ1 − φ+ α)

]T
(4.10)

Figure 18: Switching functions

With equations (4.8), (4.9) and (4.10), it is possible to draw the dq representation of the

controlled rectifier. It is represented as two power transformers. One depends on d and has

a ratio Sd while the second one depends on q and then has a ratio Sq.
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Those ratios depend on:

• the phase of the dq frame φ1

• the phase of the AC bus φ

• the firing angle α

Figure [19] is the dq representation of the rectifier only.

Figure 19: dq representation of the rectifier

The input, which was a three-phase, has been replaced by two inputs. The rectifier is

now in dq form, so the rest of the circuit must be transformed too via the use of matrix

T . Figure [20] represents the rectifier modeled in figure [19] plus the different components

present in the original circuit.
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In a few words, the transmission lines have been transformed in dq form: the components

Req and Leq have added a voltage source in series while the capacitance Cf has added a

current source in parallel [53].

Figure 20: dq representation of the whole circuit

The three-phase sources Vsa, Vsb and Vsc have been eliminated and replaced by the dq

sources Vsd and Vsq.

The last step is to simplify the complete model by fixing the rotating frame on the phase

of the switching function, represented in equation (4.11).

φ1 = φ− α (4.11)

By considering equation (4.11), the q term of equation (4.10) will be canceled. Conse-

quently, the ratio 1 : Sq of the second transformer will be equal to 1 : 0 and so this part of

the circuit can be neglected.
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The simplified model is shown in figure [21].

Figure 21: Simplified model of dq-transformation

4.3 DERIVATION OF THE CONTROLLERS’ EQUATIONS

Let us now consider the controls associated with the system because so far the circuit has

been transformed in the dq form without taking the controllers into account. Let us remind

the control schematic with the two PI controllers in figure [14].

Let us first derive V ∗ according to the schematic of the controllers, represented in equation

(4.12).

V ∗ = −KpiIdc −KpvKpiVout +KivKpiXv +KiiXi +KpvKpiV
∗
out (4.12)

Then let us give the differential equation for Xv and Xi, shown in equation (4.13) and

(4.14).

Ẋv = −Vout + V ∗out (4.13)

Ẋi = −Idc −KpvVout +KivXv +KpvV
∗
out (4.14)
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Besides, it has been mentioned earlier in this study that the voltage V ∗ is controlled via

the resistance rf and the inductance Lf . This is shown in equation (4.15).

V ∗ = rfIdc + Lf İdc (4.15)

The equation of İdc is obtained in equation (4.16) after substituting equation (4.12) into

(4.15).

İdc = −rf +Kpi

Lf
Idc +

KivKpi

Lf
Xv +

Kii

Lf
Xi −

KpvKpi

Lf
Vout +

KpvKpi

Lf
V ∗out (4.16)

The set of equations for the controllers schematic has been obtained. Let us now derive

in the following section the equations of figure [21].

4.4 DERIVATION OF THE DQ SIMPLIFIED MODEL’S EQUATIONS

To derive the simplified model’s equations, let us use the well-known Kirchhoff’s voltage and

current laws. By applying Kirchhoff’s laws, the following set of non-linear equations has

been obtained. This set of equations is represented in equation (4.17) to equation (4.21).

İds = −Req

Leq
Ids + ωIqs −

1

Leq
Vbus,d +

1

Leq
Vsd (4.17)

İqs = −Req

Leq
Iqs − ωIds −

1

Leq
Vbus,q +

1

Leq
Vsq (4.18)

V̇bus,d =
1

Ceq
Ids + ωVbus,q −

√
3

2

2
√

3

πCeq
Idc (4.19)

V̇bus,q = −ωVbus,d +
1

Ceq
Iqs (4.20)

V̇out =
1

Cf
Idc +

1

Cf

Pcpl
Vout

(4.21)
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Now that all the necessary equations have been derived, the next step is to linearize them

in order to be put in matrix form.

4.5 LINEARIZATION

The set of equation must be linearized around the operating point V ∗out. Then, a set of linear

differential equations will be obtained and put in matrix form, according to the well-known

state-space form shown in equation (4.22).

∂ẋ = A(x0, u0)∂x+B(x0, u0)∂u

∂y = C(x0, u0)∂x+D(x0, u0)∂u
(4.22)

Then matrix A is created and given in equation (4.23).

A(x0, u0) =



−Req

Leq
ω − 1

Leq
0 0 0 0 0

−ω −Req

Leq
0 − 1

Leq
0 0 0 0

1
Ceq

0 0 ω −
√

3
2

2
√
3

πCeq
Idc 0 0 0

0 1
Ceq

−ω 0 0 0 0 0

0 0 0 0 − rf+Kpi

Lf
−KpvKpi

Lf

KivKpi

Lf

Kii

Lf

0 0 0 0 1
Cf

Pcpl

CfV
2
out,0

0 0

0 0 0 0 0 −1 0 0

0 0 0 0 −1 −Kpv Kiv 0



(4.23)
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Matrix A is a 8 × 8 matrix since there were 8 equations after the derivation of the

simplified model. Matrix B is shown in equation (4.24).

B(x0, u0) =



0

0

0

0

KpvKpi
Lf

0

1

Kpv



(4.24)

Matrices C and D are represented in equations (4.25) and (4.26).

C(x0, u0) =
[
0 0 0 0 0 1 0 0

]
(4.25)

D(x0, u0) =
[
0

]
(4.26)

It is also important to show the matrices of the states X, the input U and the output

Y . They are respectively given in equations (4.27), (4.28) and (4.29).

x =
[
Ids Iqs Vbus,d Vbus,q Idc Vout Xv Xi

]T
(4.27)

u =
[
V ∗out

]
(4.28)

y =
[
Vout

]
(4.29)
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4.6 DETERMINATION OF THE CONTROLLERS’ COEFFICIENTS

To simulate the model in MATLAB, it is necessary to give the value of the following param-

eters:

• Vs = 230Vrms/phase

• f = 50Hz

• Req = 0.15Ω

• Leq = 30µH

• Ceq = 2nF

• Cf = 1000µF

• rf = 0.03Ω

• Lf = 6.5mH

Let us now find the value of the four coefficients Kpv, Kiv, Kpi and Kii. Let us remind

Figure [15] which represents the current control loop and figure [16] which represents the

voltage control loop.

To find the values of these coefficients, let us use the Classical method. The first step is

to find the transfer function of the current control loop. This is shown in equation (4.30).

Idc
I∗dc

=
sKpi +Kii

s2 + (
Kpi+rf
Lf

)s+ Kii

Lf

(4.30)

Previously, some values for the DC side parameters Lf and rf have been given. These

values will be necessary to determine the parameters values of the two PI controllers. To
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determine the parameters Kpi and Kii, let us use the denominator of the canonical form of

a second order system shown in equation (4.31).

s2 + 2ξωns+ ω2
n (4.31)

Next step is to identify the different components knowing that the values of the damping

ration ξ and the natural frequency ωni are respectively 0.8 and 2π70rad/s. By identification,

let us find the equations for Kpi and Kii. Those are shown in equations (4.32) and (4.33).

Kpi = 2ξωniLf − rf (4.32)

Kii = ω2
niLf (4.33)

After doing the calculation, the values of Kpi and Kii are respectively 4.5442 and 1257.4.

Let us now do the same analysis for Kpv and Kiv which are the parameters of the voltage

control loop. By considering figure [16], let us write the transfer function of the voltage

control loop, as shown in equation (4.34).

Vout
V ∗out

=
sKpv +Kiv

s2 + (Kpv

Cf
)s+ Kiv

Cf

(4.34)

In this case, only the value of the capacitance Cf is required to determine the coefficients

Kpv and Kiv of the PI controller. Again, let us compare and identify Kpv and Kiv with

the denominator of the canonical form of a second order system and using a damping ratio

ξ = 0.8 and a natural frequency ωnv = 2π10rad/s, as shown in equations (4.35) and (4.36).

Kpv = 2ξωnvCf (4.35)

Kiv = ω2
nvCf (4.36)

After doing the calculation, the values of Kpv and Kiv are respectively 0.101 and 3.9478.
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4.7 LINEAR QUADRATIC REGULATOR

The Linear Quadratic Regulator method is a well-known optimal control method. MATLAB

offers a useful toolbox to apply this method. Basically, the Linear Quadratic Regulator

function on MATLAB will select the optimal coefficients K to stabilize the system. The

purpose is to minimize the quadratic cost function given in equation (4.37) by using the

state feedback law shown in equation (4.38) [54]. This optimal control method implies

having a full knowledge of the states: full state feedback.

J(u) =
∫ ∞
0

(xTQx+ uTRu+ 2xTNu) dt (4.37)

u = −KX (4.38)

In order to obtain a usable answer for the step input, it is necessary to add a feed

forward gain Kf to compensate and obtain a DC gain equal to unity. This gain is calculated

in equation (4.43).

Kf =
1

C(−A+BK)−1B
(4.39)

Let us remind that in this study, V ∗out is the input. The system of equation (4.39)

represents the standart state-space form without matrix D which is equal to zero.

Ẋ = AX +Bu

Y = CX
(4.40)

Let us now subsitute equation (4.40), which is coming from figure [22] into (4.39) to obtain

equation (4.41)

u = V ∗outKf −KX (4.41)

Ẋ = AX +B(V ∗outKf −KX)

Y = CX
(4.42)
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Equation (4.42) is obtained from equation (4.41) after being rearranged.

Ẋ = (A−BK)X +BV ∗outKf

Y = CX
(4.43)

Figure [22] represents the schematic of the solution. The plant is considered to be the

whole system.

Figure 22: Schematic of the new control strategy

Now that everything is set, let us implement the derived system in MATLAB.
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5.0 SIMULATIONS AND RESULTS

5.1 RESULTS FOR THE ORIGINAL CONTROL STRATEGY

As we mentioned previously, the goal of the study is to enhance the stability of the given

circuit. The original control scheme is able to give good results and it will not be modified.

However, it is possible to improve the system’s stability using the optimal control method.

In order to do this, let us apply the Linear Quadratic Method studied in the previ-

ous chapter. Applying this method on the whole system will greatly enhance the system’s

stability.

In this chapter, the system’s stability will be analysed, but the system’s behaviors will

also be studied while the different parameters of the DC filter Lf and Cf will be changed.

The goal is to observe what parameters have the potential to affect the stability of the

system.

Before beginning the analysis, it is important to give the values for the different param-

eters which have not been given yet. Let us sort the parameters depending on the fixed or

changing value.

Parameters with a fixed value:

• Vs = 230V

• Vout = 500V

• f = 50Hz

• ω = 2πf = 314rad/s

• Req = 0.15Ω

• Leq = 0.00003H
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• Ceq = 0.000000002F

• rf = 0.03Ω

• Kpv = 0.10

• Kiv = 3.9478

• Kpi = 4.5442

• Kii = 1257.4

Parameters with a changing value:

• Cf = 0.001F

• Lf = 0.0065H

• Pcpl = 25000W

All the simulations show how the system reacts after being excited by a step. The first

simulation is the most basic one. Only the two PI controllers are acting on the system with

the values given previously. The result is shown in figure [23].

Figure 23: Original control strategy - Power = 25kW
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The power of the constant power load has been set to this value for a particular reason.

Actually, 25kW represents the stability limit of the system. As it can be seen on figure [24],

the system becomes unstable if the power has a value larger than 25.7kW . To be precise,

figure [24] represents the response of the system for a power equal to 26kW .

Figure 24: Original control strategy - Power = 26kW

Another method used to check the stability is the Eigenvalue theorem. It requires less

coding but on the other hand it is also less accurate and less convenient. Consider the two

cases studied previously (Pcpl = 25kW and Pcpl = 26kW ).

In order to be stable, all the real parts of the eigenvalues of matrix A have to be less

than 0 as shown in equation (5.1).

Re(λi) < 0 (5.1)

The eigenvalues can be calculated for matrix A using equation (5.2).

det(λI − A) = 0 (5.2)
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The following set of eigenvalues is given in equation (5.3) and is simulated for a power

of 25kW .

−2499, 99999999981 + 4082796, 29843838i

−2499, 99999999981− 4082796, 29843838i

−2499, 99999999979 + 4082167, 97990765i

−2499, 99999999979− 4082167, 97990765i

−300, 500190972646 + 312, 545241021360i

−300, 500190972646− 312, 545241021360i

−1, 36134748889177 + 63, 7231247560282i

−1, 36134748889177− 63, 7231247560282i

(5.3)

By simply looking at the real parts of the eigenvalue, it can be said that the system is

stable since they are all less than 0. Now let us simulate the system again considering a

power of 26kW for the constant power load. This new set of eigenvalues is given in equation

(5.4).

−2499, 99999999981 + 4082796, 29843838i

−2499, 99999999981− 4082796, 29843838i

−2499, 99999999979 + 4082167, 97990765i

−2499, 99999999979− 4082167, 97990765i

−300, 572562113903 + 311, 945780393577i

−300, 572562113903− 311, 945780393577i

0, 711023652364315 + 63, 7898661009897i

0, 711023652364315− 63, 7898661009897i

(5.4)

In this case, it can be noticed that the two last eigenvalues have a positive real part. It

confirms figure [24] which shows that the system becomes unstable.

41



As mentioned, another goal of the study is to analyze the behaviors of the stability limits

considering a change in the DC filters’ parameters. Figure [25] shows how the limits react

with a change in the capacitance Cf .

Figure 25: Original control strategy - for a varying Cf

Basically, it can be observed that the capacitance Cf have an effect on the stability of

the system. Different values for Cf (from 10µF to 4000µF ) have been tried for a varying

power (from 24kW to 34kW ). It is possible to reach a stable region for some values of the

Cf . For example, for 24 kW, the stable region can be reached for any value of Cf . Consider

now a power of 27kW , the stable region can be reached for a capacitance Cf equal to 210µF .
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Let us do the same analysis for the inductance Lf . Figure [26] is representing the results.

Figure 26: Original control strategy - for a varying Lf

As it can be seen in figure [26], the inductance Lf has a different effect than the capac-

itance Cf on the stability limits. The range for Lf is very large: it is varying from 0H to

0.05H for the same range of power as the previous analysis (from 24kW to 35kW ). The

original value of Lf was 0.0065H. The close variation around this point does not affect the

stability. However, a stable region can be reached with a higher power (29kW ) using a larger

value of Lf . It has to be mentioned that we reach the stability limit for which Lf can no

longer help at 29kW .
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5.2 RESULTS AFTER APPLYING THE LINEAR QUADRATIC

REGULATOR METHOD

Let us now apply the Linear Quadratic Regulator method on the whole system.

Figure [27] shows how the system reacts when excited by a step after applying the control

method.

Figure 27: New control strategy - Power = 25kW

It is clear that the stability has tremendously been enhanced. By comparing with figure

[23], the overshoot and the multiple oscillations have been eliminated. The new system is

also faster. Besides, in figure [23] the stability was reached after 2.5 seconds while in figure

[27], the stability is reached after 0.02 seconds. The behaviors of the system are now better.
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Consider a power equal to 50kW for the constant power load, as simulated and shown

in figure [28].

Figure 28: New control strategy - Power = 50kW

The system is still stable, but with a less important overshoot.

In the original system, the stability limits have been determined. It has been noticed

that for a power greater than approximately 26kW , the system becomes unstable. However,

in this case, the stability limit depends on the weight of the matrix Q that has been used

to determine the optimal coefficients K. It has an influence on the general behavior of the

system (overshoot, damping ratio, etc.). Matrix Q was chosen to be 1. However, it could

have been a larger value. It totally depends on the applications requirements.

Let us mention that a larger value of Q, which means a larger control signal, will decrease

the energy of the controller output. The inverse is also true: a smaller control signal will

lead to an increase of the energy of the controller output [55]. Consequently, in theory it can

be possible to find values for the weight of Q to stabilize the system. However, it may not

be feasible in real application.
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6.0 CONCLUSION

The study presented in the thesis focused on the improvement of the stability limits of a

three-phase controlled rectifier feeding a constant power load.

The dq-transformation of the model was performed and validated throught simulations.

The dq-transformation was used to derive the dynamic model of the system which was

necessary to obtain a suitable model to be simulated. This model absolutely needed to be

transformed to a time-invariant model.

Once the time-invariant model obtained, it was necessary to transform it in matrix form

in order to be implemented in MATLAB. The different matrices were created according to

the state-space form. To do so, the model was linearized around an operating point.

The Linear Quadratic Regulator method was applied on the original system which in-

cludes the two PI controllers used to maintain the system stable. The coefficients of the

parameters of the two PI controllers were determined using the Classical control method.

They were calculated according to specific values for the natural frequency of both loops and

according to the damping ratio.

Originally, the system was stable until it reaches a power equal to 25kW . It was possible

to increase this limit by slightly changing the value of some parameters. By carefully choosing

the value of the capacitance Cf , it was possible to increase the limit of power of 3kW .

The Linear Quadratic Regulator method allowed the system to tremendously increase

the limits of the stability. This method finds the values of the coefficients K to stabilize

the system. The method will be always able to find values for K to keep the system stable,

even for a large amount of power. However, this works in theory but it has some limits

in real application. Indeed, it will not be possible to increase the power too much as the

response of the system will not be able to satisfy the requirements. However, it should be
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kept in mind that matrix Q of the Linear Quadratic Regulator method needs to be carefully

parametered to fulfill the requirements of a real application. The larger the weight of matrix

Q, the smaller the energy of the control output. The inverse is also true.

Finally, the goal of the thesis was reached; the stability of the system was considerably

enhanced. However, the constant power load remains a problem, further investigation are

necessary to find solutions which could work on most of the applications.

Besides, it would be interesting to repeat this study with a non-ideal constant power

load to see how the system would react or directly use a boost converter instead of the

mathematical model of the constant power load. Another idea for a future work would be

to do the same analysis and include the harmonics.
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