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The South American Summer Monsoon (SASM) provides the Peruvian Andes with 

precipitation during the austral summer.  Over multidecadal timescales the SASM is influenced 

by sea surface temperature (SST) anomalies, land-sea temperature gradients, the El Nino 

Southern Oscillation (ENSO) and the location of the Intertropical Convergence Zone (ITCZ).  

Decadal to multi-decadal changes in SASM precipitation are documented by δ18O values of 

authigenic calcite precipitated from the waters of Lake Junin (11.0°S, 76.2°W), which is today a 

hydrologically open-basin lake system.  This sediment record archives calcite-rich sediments that 

were used to determine the timing and magnitude of regional precipitation changes associated 

with variability of the SASM.  Low δ18O values provide evidence for a strengthened monsoon 

system spanning the Little Ice Age (LIA) from AD 1250 to 1600.  Following the LIA, higher 

δ18O values during the Current Warm Period (CWP) from AD 1850 to present are consistent 

with a time of decreased monsoon intensity.  These data suggest that the SASM is sensitive to 

changes in the location of the ITCZ, which is influenced by Atlantic tropical SST anomalies 

controlled by Northern Hemisphere temperatures.  

The Junin sediment record deviates from other regional paleoclimate records in AD 1932, 

recording a sharp and sustained decrease of δ18O values.  This event is attributed to the 

construction of the Upamayo Dam, which resulted in the impoundment of waters from the Rio 

San Juan in Lake Junin, delivering river waters with low δ18O meteoric rainwater to the lake.  
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Trace metal data reveals a uniform and sustained enrichment of metal values beginning at 12 cm 

sediment depth (AD 1932), providing a reliable age-depth correlation between 12cm depth and 

the construction of the dam in 1932.   

This project demonstrates that SASM variability is sensitive to ITCZ location, which is 

dominantly controlled by Atlantic SST anomalies.  This relationship suggests that a continued 

warming of the north Atlantic will prove to be detrimental to tropical latitudes by reducing 

precipitation across the region.  
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1.0  INTRODUCTION 

The focus of my research is to document the timing, magnitude and rate of oxygen and 

carbon stable isotope changes in lacustrine calcite in three cores from Lake Junin for the last 

1,000 years and to use these changes as a proxy for changes in lake water hydrology to identify 

wet/dry cycles.  This study will provide a climatic history at decadal to multi-decadal scale 

resolution.   Downcore variations in oxygen isotope compositions reveal more negative values 

during wet periods and more positive values during periods of aridity.  Regional archives, 

including other lacustrine sediment records, ice cores and speleothems, show a similar pattern, 

validating the findings from Lake Junin sediments regarding the timing and magnitude of the 

inferred climatic changes.   

Lake Junin is a hydrologically open basin lake, although during periods of high aridity, 

the lake level becomes so low that the outflow of the lake is cut off, and the basin tends to 

exhibit characteristics of a closed basin system.  Previous work on Lake Junin (Seltzer et al. 

2000) has focused on understanding climatic changes on millennial time scales, recording long-

term changes in insolation and precessional forcing.  This research will focus on understanding 

the precipitation-evaporation record of the past 1,000 years, and help to solidify the relationship 

between the intensity of the South American Summer Monsoon (SASM), the location of the 

Intertropical Convergence Zone (ITCZ), and north Atlantic temperatures and northern 

hemisphere sea surface temperatures (SSTs).  The SASM and ITCZ are primary controls of 
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precipitation over South America, and therefore it is implicit that we understand their natural 

variability as many people rely on this water source for crops, hydroelectric power, tourism and 

personal consumption.  

 

1.1 CLIMATE 

Monsoon systems are seasonal changes in atmospheric circulation and subsequent 

precipitation caused by differential heating of land and sea surfaces.  The Asian and African 

monsoon systems are well-understood phenomena in the northern hemisphere, while the South 

American Summer Monsoon is the dominant system in the southern hemisphere.  During the 

austral summer, the Southeast Pacific Anticyclone combines with cold SSTs causing dry 

conditions in the western South American tropical continent, while the east develops a thermal 

heat low, characterized by warm and humid conditions in the lower troposphere (Lenters and 

Cook, 1997).  North of the Anticyclone, strong easterlies cause a moisture flux into the tropical 

Andes.  The Altiplano separates these two distinct climate regions, which receive 200mm yr-1 in 

the southwest and 800+mm yr-1 in the northeast (Garreaud et al. 2003).  During the austral 

winter, the monsoon weakens and disappears as the Intertropical Convergence Zone (ITCZ) 

migrates north over the western Pacific and Central America.   

Our understanding of how the SASM has changed over time has improved greatly over 

the years (Bird et al. 2011a, Bird et al. 2011b, Vuille et al. 2012, Zhou and Lau 1998).  The 

SASM is the largest monsoon system in the Southern Hemisphere and is a major influence on the 

Amazonian hydrologic and biogeochemical cycles (Zhang et al. 2008, Shanahan et al., 2009).  
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The SASM is seasonal, with an observed spatial temporal pattern following the areas of the 

warmest SSTs (Vuille et al. 2012). The Intertropical Convergence Zone is a driving influence of 

SASM fluctuations (Bird et al. 2011a).  The ITCZ is a low-pressure zone where convection 

causes warm air to rise and precipitate.  The ITCZ migrates north and south, seasonally tracking 

regions with the warmest sea surface temperatures (Chiang and Bitz 2005, Vuille et al. 2012) 

(Figure 1).  The El Nino Southern Oscillation (ENSO) influences both the SASM and ITCZ.  

During El Nino events, the Central Andes tend to experience drier conditions, while coastal Peru 

and the mid-latitudes are anomalously humid.  These conditions are reversed during La Nina 

events (Garreaud et al. 2009).  The convective activity over the SASM region is primarily 

controlled by the moisture flux influenced by the location of the ITCZ.  Therefore, the location 

and strength of the ocean’s ITCZ is of great importance when understanding the SASM on land 

(Garcia and Kayano 2010). 
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Many archives in the central Andes record periods of large-scale climatic changes driven 

by variations in the strength of the SASM in the Late Holocene, including: the Medieval Climate 

Anomaly (MCA) (900-1100 AD), the Little Ice Age (LIA) (1250-1600), and the Current Warm 

Period (CWP) (1850-today).   These climatic events have been observed in multiproxy records 

from lacustrine sediment cores, ice cores and speleothems, all of which may record oxygen 

isotopic ratios with an annual- to decadal resolution.  An investigation of these proxy records 

suggests that changes in the SASM intensity are regionally synchronous.  SASM variability has 

Figure 1: Long term precipitation over South American during the austral summer (DJF) and winter (JJA).  The 
precipitation patterns track the movement of the Intertropical Convergence Zone (ITCZ).  Figure from Vuille et al. 
2003. 
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been attributed to a displacement of the ITCZ, caused by precessional forcing and changes in sea 

surface temperatures of the northern and tropical Atlantic Ocean (Abbott et al. 1997, Baker et al., 

2001, Cruz et al. 2005).  Understanding the temporal and spatial pattern of monsoonal variability 

can help determine the influence of sea surface temperatures, solar forcing and prevailing wind 

patterns on geographically different areas of the world. 

1.2 SETTING 

Lake Junín (11.00°S 76.19°W) is a large (300km3), open basin lake located in the 

southern Peru Altiplano at an altitude of 4,100 meters above sea level (Hansen et al. 1984) (7.  

The Altiplano is a large plateau located between the Cordillera Oriental and Cordillera 

Occidental (eastern and western mountain ranges, respectively) of the central Andes Mountains.  

The Junin Plain, formed during the late Pleistocene, was dammed by a combination of moraines 

and outwash fans at the time of glacial retreat, around 40,000 years BP (Hansen et al. 1984).  

Lake Junín has a surface area of approximately 300km3 and a maximum water depth of 15m 

(Figure 3).  The lake is underlain by siliciclastic carbonate and crystalline rocks in the eastern 

Cordillera, and Jurassic carbonates and Tertiary volcanics in the Western Cordillera.  The lake 

has a small output flow in the northwest of the basin, draining to the Rio Montaro, a large 

Andean tributary that flows to the Amazon Basin (Wright 1983).  Authigenic calcite precipitates 

in equilibrium with lake water in the summer during the height of biological productivity, which 

leads to small increases in pH.  Although precipitation of calcite occurs annually, the amount per 

year is small, limiting our sampling resolution in Lake Junin to decadal to multidecadal 

resolution.  Oxygen isotope ratios record moisture balance (P-E) conditions in the Lake Junin 
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region, a direct result of the intensity of the SASM and evaporative enrichment of δ18O.  These 

measurements, coupled with radiocarbon dating methods, provide a continuous down-core 

record of climate variability of the Holocene for this location (Seltzer et al. 2000). Eight cores 

were take from Lake Junin (Table 1), although only three short cores (B, E, F) were analyzed for 

interpretation because of their high carbonate concentration. Short core F is located 17.8 km 

from the inlet, the most central core location in the lake.  Short cores B and E are located 

25.51km into the lake from the inlet, and approximately 6m apart from each other.  

 

 

Table 1: Lake Junin sediment core data 

  

Core Core type Length (cm) Water depth 
(cm) 

Year taken 

A Verschuren 42 238 2008 
B Verschuren 130 543 2008 
C Verschuren 58 488 2008 
D Verschuren 128 220 2008 
E Verschuren 108 544 2008 
F Verschuren 120 1083 2008 
G Verschuren 60 288 2008 
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    Figure 2: Location map of Lake Junin and its drainage basin.  Figure from Rodbell et al. 2011. 
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Figure 3: Bathymetry map of Lake Junin with seismic data collected from 2008 and 2011.  The solid black line is 4-
24 kHz source; open circle black lines are from air gun seismic work.  Figure from Rodbell et al. 2011. 

1.3 REGIONAL MINING HISTORY 

Industrialization of the Central American Andes has resulted in the release of metals into 

the atmosphere, rivers and lakes from mining and smelting activities (Cooke 2008).  The timing 

of this pollution can be used to help constrain the age of sedimentary layers, as the history of 

mining is reasonably well known from historical accounts.  Located on the Altiplano in central 

Peru, Cerro de Pasco was first mined for silver by the Spanish in 1630AD, producing 11.2 
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million pesos in the last 5 years of the 1700s (Fisher 1977).  Following the Peruvian War of 

Independence (1809-1824), mine owners rapidly acquired the land and began mining silver 

again.  In the first two decades following Peruvian independence, Cerro de Pasco produced 65 

percent of Peruvian silver, up from pre-war values of 40 percent.  The volume of production at 

Cerro de Pasco grew extensively over the following centuries.   Even after centuries of metal 

extraction and exploitation, Cerro de Pasco is still mined today, primarily for copper production 

(Benavides 1990).   

The watershed of Lake Junin contains the Cerro de Pasco mine, and has suffered 

substantial anthropomorphic contamination due to the smelting, processing and subsequent 

deposition of metal tailings in the lake and surrounding tributaries.  The construction of the 

Upamayo Dam in 1932 on the Rio Montaro has caused extreme contamination of Lake Junin 

(Delman 2012).  The dam redirects the previously south-flowing Rio San Juan into Lake Junin, 

causing the northwest inlet of the lake to serve as both an inlet and outlet.  This alteration of the 

hydrologic cycle ultimately caused the influx of waste-laden water from Cerro de Pasco to enter 

into the lake (O’Donnel 1997).  Trace metal data from Core B lake sediments show a distinct and 

sustained increase in all metal concentrations at 12 cm depth.  This increase is attributed to the 

construction of the Upamayo dam, and provides a well-constrained age-depth marker in the 

Junin Lake sediment, correlating 12 cm depth to 1932.  Lake Junin is dammed during the austral 

wet season (October-April) to retain water for hydroelectric power during the dry season.  This 

damming has caused the lake level to fluctuate 1.5 to 2m annually.  The contamination of Lake 

Junin is visible in the red color of its surface waters and the decline of diversity of flora and 

fauna surrounding the basin.  
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1.4 REGIONAL PALEOCLIMATE ARCHIVES AND PAST RESULTS 

Laminated lake sediments can provide annual to decadal resolution of oxygen isotope 

ratios from authigenic calcite (CaCO3) precipitated in the lake’s water column if sedimentation 

rates are high enough and the water column is anoxic.  Oxygen isotope values are important for 

understanding the prevailing precipitation and climatic patterns in a given area.  There are two 

major factors that effect δ18O values of lake water: (1) the isotopic composition of input waters 

and (2) hydrologic processes, such as evaporation.  Isotopic compositions of input waters are 

influenced by the δ18O values of precipitation, surface runoff and groundwater and these inputs 

can be altered by the origin of atmospheric moisture, air mass history and the seasonality of 

precipitation.  This isotopic signature helps to decipher the geographic precipitation pattern over 

South America, as is controlled by the intensity of the SASM.   

The main control of isotopic composition of water vapor transported over the Tropical 

Atlantic to the Peruvian Andes can be described as Rayleigh-type fractionation (Vuille and 

Werner 2005).  Preferential removal of the heavy isotope of oxygen (18O) during precipitation 

enriches the remaining vapor in the lighter isotope (16O).  This causes the δ18O precipitation 

values of an air mass to be more negative with more intense or prolonged rainfall.  Monsoon 

intensity controls air mass trajectory and subsequent rainout, and therefore during periods of 

stronger SASM intensity, the δ18O values of precipitation falling over the central Andes becomes 

increasingly more negative.  The isotopic composition of rainfall becomes more negative with 

increased precipitation; this process is called the ‘amount effect’ (Dansgaard 1964).  Because of 

the amount effect, more positive values of δD and δ18O values are observed during months of 

less rainfall (austral winter), while more negative values of δD and δ18O are attributed to times of 

higher precipitation (Dansgaard 1964).  
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Determining if a lake basin is hydrologically open- or closed-basin is extremely 

important as it indicates whether or not the lake sediment stable isotopes are sensitive to 

evaporation (e.g. Bird et al. 2011a).  Closed-basin lakes have no surficial outflow, and lake levels 

are controlled by the balance of precipitation and evaporation (P-E), thus evaporative enrichment 

of δ18O is the primary control of δ18Ocalcite values.  A closed basin lake precipitates authigenic 

calcite (CaCO3) in the spring and summer through photosynthetically induced biomediation 

(Kelts and Hsu 1978), and records evaporative or drought-like conditions.  During drier climatic 

conditions, 16O is preferentially evaporated from the lake, leaving the lake water more enriched 

in 18O (Seltzer et al 2000). 

 Closed-basin lakes are characterized by more positive δ18O and δD lake water values, 

relative to the local meteoric water line (LMWL), which is shown Figure 4.  The global meteoric 

water line (GMWL) represents the isotopic composition of global precipitation and represents an 

average composition of global terrestrial waters that have not been affected by evaporation.  The 

local meteoric water line (LMWL) represents the local composition of terrestrial waters derived 

from data collected from local sites; the LMWL plots parallel to the GMWL and includes the 

effects of evaporation as the rainfall moves through the atmosphere.   The local evaporation line 

(LEL) plots oblique (down and to the right) to the LMWL, showing that δD and δ18O values of 

closed basin lakes are predominantly controlled by evaporative enrichment, characterized by 

enrichment of both δ18O and δD in lake water.   

Open-basin lakes have a surficial outflow and generally have a shorter water residence 

time, which limits the amount of evaporation that occurs, generally leading to more negative 

values of both δD and δ18O.  Measured δD and δ18O values from open-basin lakes plot along the 

LMWL, parallel to the GMWL (Figure 4).  This parallel, but offset dataset shows the isotopic 
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composition of the lake water tracking the seasonal variation in δ18O of precipitation, not 

evaporation (Bird et al. 2011b).   Due to the similarity of the δ18O of the lake water and δ18O of 

precipitation, it can be assumed that any calcite precipitated from the lake is in isotopic 

equilibrium with the lake water and therefore is indicative of the isotopic composition of 

precipitation.  Influenced by the amount effect, in an open-basin system, δ18O is more negative 

during the austral summer wet season, despite warmer temperatures, and more positive during 

the dry austral winter, when the temperature is cooler (Bird et al. 2011b).  
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Glaciers are another archive of oxygen and hydrogen isotopes although they are 

considerably higher in elevation than most lakes by 1000 to 1500 m.  The δ18O record is fairly 

well established for the high latitude Greenland and Antarctic ice sheets (Alley 1997) which 

track atmospheric temperature.  High altitude, low latitude regions are not as well understood.  

Thompson et al. (2006) suggest that δ18O of low latitude ice cores record changes in atmospheric 

Figure 4: Surface water samples from Lake Junin taken in July 2000 (triangles) and February 2001 (diamonds), and 
plot along the Local Evaporation Line (LEL).  Surface water samples from the nearby Lake Pumacocha and the 
monthly precipitation averages from the Cerro de Pasco weathering station plot along the Local Meteoric Water 
Line (LMWL). 
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circulation on an annual to decadal time scale, and air temperature on longer time scales.  

Historically, the interpretation of oxygen isotopes from Andean glaciers is that more positive 

δ18O values signify warmer temperatures whereas a more negative δ18O values indicates cooler 

temperatures (Thompson et al. 2006).  However, recent work suggests temperature changes may 

be minimal and most of the change in isotope values is related to moisture balance changes (Bird 

et al. 2011a; 2011b).  Lower δ18O values observed in ice core records spanning in the LIA show 

a time of regional cooling and glacial advance, may also be related to wetter conditions.  By 

using δ18O values, dust concentrations, aerosol chemistry and accumulation rates, a greater 

understanding of past climatic events can be more readily interpreted (Thompson et al. 1986, 

2006).  Although forcing mechanisms controlling δ18O values of tropical ice cores remains 

controversial, most agree that the large-scale dynamics of the tropical hydroclimate have shifted 

in the past 1,000 years (Thompson 2006).   

Speleothems records from lowland caves are dated using U-Th dating methods and 

provide a more reliable age model compared to radiocarbon dating of lake sediments.  

Speleothems form by water percolation in limestone caves; therefore this isotopic record 

provides a signal of the intensity and frequency of precipitation events.  Typically, a strong 

austral summer (October-April) precipitation is controlled by continental convection, and has a 

longer-term control that is influenced by ENSO.  The precipitation pattern is extremely variable 

because of the topographic constraint and variable SST’s of both the Atlantic and Pacific.  

Therefore, the recorded changes in precipitation are dependent on the temporal and spatial 

complexity of the region (Reuter et al. 2009).  A speleothem from Cascayunga cave in northeast 

Peru records variability attributed to monsoon intensity over the past 2,000 years.  Reuter et al. 

(2009) determined that on average, annual precipitation was 10 to 20% higher during the LIA 
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compared to the 20th century (CWP).  This increase in annual rainfall is attributed to cooler north 

Atlantic SSTs.  Oxygen isotope values from the LIA are an average 1.0‰ lower than the CWP 

(Reuter et al. 2009).   

Lake Junin has been the focus of many studies, beginning with Hanson (1984), who 

showed that authigenic calcite is predominantly precipitated in the water column during non-

glacial intervals.  Seltzer et al. (2000) established an age-depth chronology for Lake Junin, based 

on radiocarbon analyses of organic matter and mollusc shells from a 19 m sediment core.  The 

average rate of Holocene sedimentation was determined to be ~0.9mm/year 14C years, with a 

minimal reservoir effect (<60 14C years).  Carbonate analysis of the lacustrine sediment in the 

upper 11 m of the core revealed an overall trend from drier to wetter conditions from the late 

glacial through the Holocene, and suggest this change is due to the gradual increase in summer 

insolation since the early Holocene.  An airgun seismic survey of Lake Junin revealed a sequence 

of 150 m of nearly undeformed sediment (Rodbell et al. 2011), suggesting that the sediment has 

recorded climatic variability over many hundreds of thousands of years.   

In this study, coupled measurements of oxygen isotopic composition and accelerator 

mass spectrometry radiocarbon dated sediment provide a high-resolution record of climate 

variability in the past 1,000 years.  Combining the Junin data with regional ice core and 

speleothem records thus provides a more comprehensive understanding of late Holocene climate 

change in this region. 
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2.0  METHODS 

Eight short cores (A, B, C, D, E, F, G) were collected in the spring of 2008 by Donald 

Rodbell and Mark Besonen, from eight locations around Lake Junin using a Verschuren surface 

corer (Rodbell et al. 2011) (Figure 5).  The cores were extruded in the field at 1-2cm sample 

intervals to ensure they would not be mixed during transport back to the University of Pittsburgh 

(Table 1).   

  



 17 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiple dating methods were used to correlate sediment core depths with ages.  Lead-

210 dating was attempted on Junin B-08 drives B and F.  Twenty samples from both cores E and 

F were freeze-dried and equilibrated in a cold storage room at the University of Pittsburgh for 

three weeks.  Lead-210 was then measured using a Canberra Germanium Detector at the 

University of Pittsburgh for 23 hours to detect gamma radiation.  Following the constant rate of 

supply model adapted from Appelby and Oldfield (1983), sediment ages were determined.   

Figure 5: Core locations from 2008 from Lake Junin. 
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Seven samples from Core B and four samples from Core F were prepped for AMS 

radiocarbon dating.  Three of the samples from Core B are molluscs, and were pretreated at the 

University of Irvine, with a 10% HCl leach.  The remaining seven samples were disaggregated in 

7% H2O2 overnight and wet-sieved to isolate discrete terrestrial macrofossils.  Samples were then 

identified and handpicked under a stereomicroscope.  These samples were then pretreated using 

the standard acid-base-acid procedure of Abbott and Stafford (1996) and sent to the Keck Center 

for Accelerator Mass Spectrometry at the University of Irvine for radiocarbon analysis.   

Carbon and oxygen isotope samples were prepped at the University of Pittsburgh.  The 

samples were covered in 7% H2O2 for 24 hours to remove biologic carbonate.  Samples were 

then sieved, and the <63 micron sample was bleached using a solution of 50% Clorox bleach and 

50% deionized water for 6-8 hours.  The samples were then centrifuged to decant the bleach and 

rinsed three times with deionized water.  Finally, the samples were freeze-dried for 36 hours and 

homogenized. δ18O and δ13C of the carbonate samples were measured at the Environmental 

Isotope Laboratory at the University of Arizona using an automated carbonate preparation device 

(KIEL-III) coupled to a Finnigan MAT 252 gas-ratio mass spectrometer.  The isotope ratio 

measurement is calibrated based on repeated measurements of NBS-18 and NBS-19. 

X-ray diffraction analysis was first performed on three samples from Short Core B (33-34 

cm, 62-64 cm, 126-128 cm) using a Philips X’pert X-Ray diffractometer for powder diffraction.  

The samples were pretreated using 7% H2O2 to remove organic matter, and then rinsed with 

deionized water.  Then the samples were frozen, freeze-dried and homogenized.  This sediment 

was then packed into a metal stage slide for analysis. XRD results were analyzed to characterize 

the general mineralogical composition.  The sample intervals from Short Core B were then 
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imaged using the Philips XL-30 field emission Scanning Electron Microscope (SEM) at the 

University of Pittsburgh’s Department of Mechanical and Material Science.   

Metal concentrations were measured by ICP-MS at Union college where concentrations 

of Co, Cu, Zn, Ba, Sr, Pb, Fe and Mn were measured.   The flux of metal in six cores was 

determined, comparing Zn and Pb levels in Junin Core B to the Pumacocha lacustrine record.   

Flux was calculated by multiplying the bulk density of the sub sample by the sedimentation rate 

by the metal concentration at each sub-sample.   

Carbon analysis was performed by UIC Coulometric Carbon Dioxide Coulometer at 

Union College by Erin Delman.  Total carbon coulometry was used to acquire total inorganic 

carbon (TIC) and total organic carbon (TOC).  These samples were then combined with 1.0 mL 

of high-purity HNO3 and 9.5mL of deionized water and refrigerated for 24 hours.  1.0mL of the 

sample was then moved to the ICP-MS tube and diluted with 9.0mL of solution.  The ICP-MS 

then analyzed the sediment for Co, Cu, Zn, Ba, Sr, Pb, Fe and Mn. 
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3.0  RESULTS 

Lead-210 results were inconclusive, as the values of unsupported 210Pb were not detected 

above background levels.  Radiocarbon dates (Table 2) were calibrated using CLAM mode, with 

IntCal09 and point-to-point linear interpolation (Blaauw 2010).  Age-depth models from the 

AMS dates obtained for charcoal samples from Cores B and F are shown in figure 6 and 7, 

respectively.   

 

 

Table 2: Radiocarbon ages and associated data from Lake Junin 

 

 

 

 

Core Sample 
depth (cm) 

Material  14C age 
(BP) 

14C age 
error 

Median 
calibrated 
age (cal 
yrsBP) 

2-sigma  
calibrated 
range (cal 
yrBP) 

Core B 32-34 Charcoal 2010 50 1978 1873-2120 
Core B 60-64 Charcoal 2435 20 2529 2365-2732 
Core B 126-130 Charcoal 3785 25 4136 4055-4221 
Core F 30-34 Charcoal 610 35   
Core F 53-57 Charcoal 1085 30 954 899-1010 
Core F 91-94 Charcoal 3230 50 3454 3364-3567 
Core F 116-119 Charcoal 3965 40 4391 4253-4492 
 



 21 

 

 

 

 

 

 

Figure 6: Age depth model for Junin short core B generated by AMS radiocarbon dates. 
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Figure 7: Age depth model for Junin short core F generated by AMS radiocarbon dates. 
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XRD analysis revealed that calcite is the dominant mineral in all three sample intervals 

from Junin Core B (Figure 8).  These results coupled with SEM analysis, reveal that the 

precipitated carbonate crystals are predominantly euhedral calcite (Figure 9), and precipitated 

from the water column. 
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Three cores, core B, core E and core F, were analyzed for % calcite, %TIC, %TOC, δ13C 

and δ18O.   The measurements for each core exhibit similar trends.  The %TIC is calculated by 

the following equation (Myrbo 2004): 

%TIC = {(μg C] - μg C[blank value]) / μg [sample weight]} x 100 

This equation demonstrates that % calcite and %TIC downcore values will be offset but covary. 

Therefore, when presenting the data, I will only refer to the %calcite in each core.  TIC is 

calculated by subtracting TOC from TC.  Therefore, The TIC and TOC values mirror one 

Figure 9: Euhedral calcite from Junin short core B 33-34cm. 
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another.  On average, %TOC increases up-core, while % calcite and %TIC decrease up-core 

(Figure 10).  

Oxygen isotope values of Core B range from -7.9 to -5.3‰ over 130 cm depth.  The 

record shows four distinct units and an overall arc-like trend to more positive values.  Unit one 

starts at the bottom of the core, from 110-130 cm.  This event has a maximum enrichment of -

5.3‰, and values within this interval remain steady around this enrichment (more positive) 

value.  The second unit starts at 110 cm with the most enriched δ18O value, -5.4‰, and is 

characterized by the most depleted values in the core.  The third unit begins at 30 cm, with the 

most enriched δ18O value of -5.8‰ at 27 cm.  The fourth and final event is the most pronounced 

change in the core.  The δ13C values remain constant throughout the first three units. The final 

unit starts at 12 cm, as the δ18O values abruptly shift to extremely depleted values, reaching a 

value of -7.9‰ at the very top of the core.  The δ13C values for unit four make a large shift at 12 

cm, from 13.8‰ to 3.8‰ at the core top. 

The top of core E was not properly extruded in the field and therefore the analysis begins 

at 20cm.  From 55-108 cm the calcite ranges from 74.2%-83.0%,.  From 20-55 cm there is a 

general trend of decreasing calcite, ranging from 79.3% to 67.0%.  %TOC mirrors %calcite, with 

little variation, ranging between 7.3%-11.5% from 55-108 cm.  From 55cm to the core top, there 

is an increasing trend ranging between 9.4% and 13.0%.  δ13C has an arc like trend, with the 

greatest depletion in the middle of the core.  Between 35 and 108 cm, there is a gradual trend to 

more depleted values ranging from 11.7‰ to 13.8‰.  At 35 cm, the δ18O values begin trending 

to greater enrichment, reaching a maximum enrichment value of 14.3‰ at 21 cm.  Finally, δ18O 

values exhibit a trend to more depleted values up core, with a range of values between -4.6‰ to -

7.5‰ 
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Core F has the most variable downcore record of the three cores.  Calcite has an arc-like 

trend, with the lowest values (41.2%) at 112 cm and reaching 0% twice at 55 cm and 22 cm, 

which could be attributed to inaccuracies in the measurements.  % Calcite spikes at 39cm, with a 

value of 72.7%, and continues to more positive values until the core top. %TOC mirrors calcite, 

exhibiting a general trend to more positive values toward the core top.  δ13C values remain 

steady, with values between 9.2‰ and 11.8‰, with a sharp increase to 12.7‰ at 38.5 cm.  

Above this interval, δ13C values decline to the core top.  δ18O values range between -7.2‰ and -

5.3‰ from the base of the core, until 40.5 cm where values reach -4.6‰, the most enriched 

value in the core.  Values deplete upcore, reaching the most depleted value of -9.4‰ at 14.5 cm  

The trace metal data shows obvious trends in core B.  Core B is located ~25 km from the 

lake inlet.  Trace metals concentrations remain low (background) until 12 cm, when all metal 

concentrations increase sharply.  At 9.5 cm, Mn spikes at 4.55x104 ppm.  At 3.5cm, Fe=2.33x104

ppm, Co=23.5 ppm Cu=477 ppm, and Zn=5.51x104 ppm.  Finally, at 2.5cm, Pb concentrations 

reach 238 ppm (Figure 11). 
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4.0  DISCUSSION 

4.1 AGE MODEL 

Junin Core B is located far from river inputs in the SE section of the Lake Junin basin.  

Consequently, the 128 cm long sedimentary section in Core B is continuous, well-preserved, and 

provides a high-resolution record for the past 1,000 years.  In addition, Core B is the most distal 

(25 km) from the input stream and Upamayo dam, allowing for the record to be nearly 

undisturbed.  Accordingly, focus will be placed on Core B for the development of the 

geochronology of this stratigraphic section.   

The age model generated by AMS radiocarbon dates (Figure 6, 7, Table 2) from Core B 

is discordant with previously published results (Seltzer et al. 2000).  The basal radiocarbon age 

for Core B is 4,160 cal BP (-2210 AD/BC).  When compared to the results generated by Seltzer 

et al. (2000), who radiocarbon-dated molluscs and macrofossils at similar and deeper depth 

horizons from Lake Junin, the measured ages from this study appear significantly too old.  

Furthermore, Seltzer et al. (2000) validated their radiocarbon chronology by using uranium-

thorium dating methods on calcite.  
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In order to explain these discrepancies, we must understand the problems associated with 

radiocarbon dating in a lacustrine environment.  Radiocarbon dating requires the measurement of 

14C preserved in organic materials, measuring the amount of radioactive decay in order to 

calculate the given age for the sample.  Plants uptake atmospheric carbon through photosynthesis 

and animals ingest the plant material, thereby incorporating a known amount of radiocarbon 

from the plants.  When the organism dies, this carbon exchange stops and 14C begins to decay 

radioactively.  By measuring the parent-daughter ratio in a given sample you can then calculate 

the time of the organism’s death.  If an organism dies and is preserved on the landscape and is 

subsequently eroded and redeposited in lake sediment at a later time, the sediment will have an 

anomalously old radiocarbon date.  There is evidence of large erosional events at Lake Junin, as 

seen by the down cutting of input stream channels and bi-annual large-scale lake level 

fluctuations (1-2m) controlled by the Upamayo dam (Rodbell et al., 2011).  The marsh-like 

catchment surrounding the lake coupled with the annual change in lake level could also supply 

old carbon.  If the down cutting of the surrounding wetlands by streams erodes old soils or marsh 

vegetation and redeposits this material in the lake, then it could account for erroneously old 

radiocarbon ages.  The high altitude environment of the lake is also conducive to large-scale 

erosional events by wind and heavy rain.   

Bird et al. (2011a, 2011b) developed a δ18O record with 14C and 210Pb age control for 

Lake Pumacocha located 20km NW of Lake Junin.  Studies have indicated that Lake Pumacocha 

and Lake Junin are influenced by the same climatic forcing because of their close proximity and 

comparable environments (Delman 2011, Rodbell et al. 2011).  Carbonate isotopes were 

analyzed for both lakes and the data exhibits similar, but offset trends in the δ18O record.  

Because of these similarities, an age-depth correlation between the two lakes was used to 
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identify similar trends of δ18O variability through time and identify common points that were 

used to tie the records together and produce an age model (Figure 12).  The Pumacocha data has 

been resolved to a 5-point moving average for a better comparison to the Junin core B data 

(Figure 13) 

Yeas (AD/BC)

Figure 12: Comparison of the Junin core B δ18O record with the Pumacocha δ18O record. 
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Supporting evidence for this approach comes from the trace metal data for Core B, which 

also suggests the radiocarbon age model is incorrect.  Trace metal levels in Lake Junin have 

increased by up to three orders of magnitude, starting at 12cm depth in Core B (Delman 2011) 

(Figure 11).  This level of metal contamination is unprecedented in the lake and can be attributed 

to the construction of the Upamayo dam on the Rio San Juan in 1932 AD.  The molluscs dated at 

and around 12 cm depth (~1932) appear to be anomalously old (1216 AD, 1095 AD, 698 AD), 

and therefore I chose to do a point-to-point correlation between the Junin and Pumacocha oxygen 

isotope record.  Both records show similar trends as well as a distinct deviation at 12cm depth, 

which is understood to be the time of dam construction.  There are several possibilities of age 

Figu re 13: Pumacocha δ18O record in blue.  A 5-point moving average of the Pumacocha δ18O record is 
overlain on the high resolution Pumacocha data.  The 5-point moving average data will be used for com 
parison to the Junin δ18O record. 
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models for this sediment core and I have chosen to interpret the data based on one model in order 

to be consistent in interpreting the isotopic record.   

Thus, coupling the metals data with the age-model of Lake Pumacocha provides the age-

depth model used for Lake Junin Core B.  The metal spike seen in Lake Junin sediments occurs 

at 12cm depth, corresponding to an age of ~1932 AD using the Pumacocha age-model.  The 

Upamayo Dam was constructed in 1932 AD, causing metal tailings to be deposited in the lake, 

thus providing strong evidence for correlation.   

4.2 JUNIN-PUMACOCHA ISOTOPE COMPARISON 

The δ18O record of regional lake, ice and speleothem archives reveals a relatively 

synchronous transition from drier to wetter conditions from the early to late Holocene, 

respectively (Figure 14).  The hydrologic mass balance of open- and closed-basin lakes is well 

understood and is important when interpreting δ18O values of lake water.  Open-basin lake 

systems track changes in meteoric precipitation composition, while closed basin systems are 

controlled by evaporative enrichment (aridity); therefore, drier conditions in the early Holocene 

would cause a significant divergence in δ18O values between open- and closed-basin systems.  A 

transition to wetter conditions in the late Holocene would result in a subdued evaporative effect 

in a closed basin system, causing the δ18O values in Lake Junin and Lake Pumacocha to record 

similar, but offset, isotopic compositions.  As mentioned previously, during wetter times, the 

outflow channel to Junin remains active due to the high lake level, while during drier, more arid 

times, this channel becomes inactive due to a lower lake level.  The isotope record for Lake 
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Junin Core B extends only to 1,000 AD, a period which is characterized by more precipitation 

(relative to the early Holocene), and therefore the Junin record can be interpreted as a balance of 

precipitation-evaporation, with an overprint record of SASM intensity.   

Figure 14: Comparison of isotope records from the central Peruvian Andes.  (A) Huascaran (red) is an 
icecore record from Thompson et al. (1995); (B.) Pumacocha (blue) is a marl lake core record from Bird 
et al. (2011a); (C.) Junin (green) is a marl lake record from Seltzer et al. (2000). 
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4.3 ENVIRONMENTAL ISOTOPES 

4.3.1 Junin Core B δ18O record 

The Junin isotope record is validated by the Pumacocha δ18O record (Bird et al. 2011) 

and shows similar trends with the Cascayunga cave and Quelccaya ice core δ18O records (Figure 

15).  While these regional archives record Holocene scale climatic changes, the Junin short Core 

B is limited to the past 1,000 years.  Variations in δ18O values of Lake Junin Core B are 

interpreted to represent monsoon intensity.  High (more positive) δ18O values represent a period 

of reduced monsoon intensity, while lower (more negative) δ18O values represent an increase in 

SASM intensity.   

Unit I (1100-1250 AD) corresponds to the tail end of the Medieval Climate Anomaly 

(MCA) a period of high aridity and evaporation coupled with decreased monsoon intensity and 

precipitation.  Higher, more positive δ18O vales during this time are interpreted as a warm, dry 

period in the regional archives (Figure 15).   

Unit II (1250-1600 AD) is characterized by maximum the lowest δ18O values, associated 

with the Little Ice Age (LIA) and a time of increased SASM intensity.  Sea surface temperature 

(SST) reconstructions show that the north Atlantic cooled while the tropics experienced El Nino 

like conditions (Sachs et al. 2009).  Archive records from the tropics suggest a southward 

displacement of the Intertropical Convergence Zone (ITCZ) during this time, which is consistent 
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with northern hemisphere (NH) cooling.  Lake Junin δ18O values record this event, agreeing with 

the interpretation of a wetter LIA period, associated with a stronger SASM.  

Unit III (1600-1932 AD) is recognized as the Current Warm Period (CWP).  Sustained 

enrichment in δ18O values, as seen in the Lake Junin record, is indicative of a long-term 

weakening of the SASM.  Due to the warming of the north Atlantic and the NH, a northward 

shift of the ITCZ would subsequently cause a weakened state of the SASM.  The exact timing of 

this event is variable among climatic archives, but its sustained presence is supported by many 

studies (Figure 15) (Bird et al. 2011a, Bird et al., 2011b, Reuter et al. 2009, Vuille et al. 2012).   

Unit IV (after the 1932 AD dam construction) shows a sharp transition to more negative 

δ18O values in the core.  This deviates from the proxy data from the other regional archive 

records (Figure 15) and is the most distinct and sustained transition in core B.  This transition is 

attributed to anthropogenic pollution caused by the construction of the Upamayo dam and 

subsequent deposition of mining tailings and waste being redirected and deposited into the lake.  

The construction of the Upamayo dam in 1932 is seen by a transition to low δ18O values and is 

also supported by the peak in trace metal data.  The damming of the lake has caused the Rio San 

Juan to be redirected to flow into Lake Junin and subsequently adds a large flux of extremely 

negative δ18O meteoric water into the lake.  This period of anthropogenic pollution is an isolated 

event attributed to local mining pollution and dam construction.  
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Figure 15: The Lake Junin core B δ18O record compared to the δ18O records from Pumacocha 
sediment core,(Bird et al. 2011a) Cascayunga speleothem record (Reuter et al. 2009) and 
Quelccaya ice cap (Thompson et al. 2006).  The four unit divisions are labeled.  The data for 
Pumacocha, Cascayunga and Quelccaya has been smoothed using a 5-point moving average. 

I II III IV
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4.3.2 Regional comparison of archive δ18O records 

Other archives from tropical South America exhibit similar variability in δ18O values, 

suggesting a regional influence of the SASM.  The timing and magnitude of these events are also 

very similar to the Junin δ18O record.  The Lake Pumacocha (10.70°S, 76.06°W, 4,300m asl) 

isotopic record, which is interpreted as the variability of the SASM, exhibits similar trends in 

δ18O values as the Junin record.  The timing and magnitude of mean state changes are nearly 

identical through the LIA and CWP between the two records, until the Junin record deviates at 

12 cm due to anthropogenic influence (Bird et al. 2011a) (Figure 15). 

The Junin δ18O record also closely tracks the 900-year Cascayunga Cave δ18O record 

(6.09°S, 77.23°W, 930m asl).  The Cascayunga speleothem record is interpreted to track annual 

changes in rainfall (Reuter et al. 2009).  Although Cascayunga is located to the north of Junin, as 

well as ~3,000 m lower, the δ18O records are similar.  The high resolution of the speleothem 

record provides better temporal constraint, while the magnitude of δ18O changes are more 

pronounced in the Junin record.  Their similarities support the interpretation that over the past 

1,000 years, the Lake Junin δ18O record has documented SASM variability (Figure 15). 

The Quelccaya ice core (103.93°S, 70.83°W, 5,670m asl) and Junin core B share similar 

isotopic trends through the LIA and the CWP.  Although the timing of the LIA occurs slightly 

later in the Quelccaya core, the magnitude of this event is similar between the two records.  In 

both cores, the CWP is consistent with increasing δ18O values.  The trends deviate at 1932, when 

the Junin core begins to record anthropogenic influence.  The interpretation of the Quelccaya ice 

core has previously been interpreted as a paleo-temperature record, but it is now thought to 
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record precipitation trends on shorter time scales (Thompson et al. 1986; 2006).  The similarities 

of the Junin, Pumacocha, Cascayunga and Quelccaya records are consistent with the 

interpretation that these archives record changes in tropical precipitation associated with the 

SASM (Figure 15).   

The regional archives discussed all exhibit similar trends in δ18O values and are all in 

close agreement in the timing, direction and magnitude of SASM variability.  From these data it 

is believed that SASM variability is the forcing mechanism driving the shifts in δ18O values 

across the Andean tropical latitudes.  Although the archive sites are geographically distinct (i.e. 

lowland caves, high latitude ice cores), they all receive the majority of their precipitation during 

monsoon season, therefore explaining the synchronicity of the δ18O variability.   

4.3.3 Sea surface temperature reconstructions and δ18O records 

Northern Hemisphere (NH) SST reconstructions (Moberg et al. 2005) coupled with the 

Pumacocha δ18O data (Bird et al. 2011, Vuille et al. 2012) suggest a close relationship between 

SSTs and monsoon intensity during MCA, LIA and CWP.  Oxygen isotope records from the 

central Andes suggest a maximum SASM intensity during the LIA, while reconstructed NH 

SSTs reached a 2,000-year low (Moberg et al. 2005).  In contrast, a weakened mean state of the 

monsoon occurred during the MCA and CWP, consistent with above average reconstructed (and 

historical) NH temperatures (Bird et al. 2011, Moberg et al. 2005, Vuille et al. 2012).  The 

similarities of South American tropical latitude regional archive δ18O trends validate the 

relationship between NH SSTs and SASM intensity.   
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The location of the ITCZ is believed to have an influence on the intensity of the SASM 

due to its sensitivity to NH temperature (Vuille et al. 2012).  The ITCZ follows areas of warmest 

SSTs, and therefore a NH cooling would result in a southward displacement of the ITCZ.  This 

displacement occurs due to a thermodynamic adjustment in Hadley cell circulation to allow for 

northward heat transport to balance the NH cooling.  The location of the ITCZ is extremely 

important because it determines the areas that receive an enhanced moisture flux and subsequent 

increase in convective activity over the continental region.  For example, a southward 

displacement of the ITCZ would result in greater convective activity over the tropical continent, 

as well as an enhanced moisture flux over the South American monsoon domain, resulting in 

greater monsoon intensity (Marengo et al. 2012).  In contrast a northward displacement would 

cause suppressed convection over the Amazon Basin, resulting in drought-like conditions.  This 

relationship between the ITCZ and SASM is consistent with the boreal SST cooling and 

intensification of the SASM (Vuille et al. 2012).  

4.3.4 Carbon isotope variability in Junin Core B 

In Core B, there is a large 13C enrichment (>14‰) in carbonates, consistent throughout 

the record until ~12 cm (1932 AD) when values drop to ~3‰ (Figure 15).  Atmospheric CO2 

exchange and carbon source inputs are thought to be the main controls of authigenic carbonate 

values in lake sediments.  However, there is a large 13C enrichment in carbonate lakes located on 

the Andean Altiplano (Valero-Garcés et al. 1999), an area that is characterized as an active 

geothermal area.  Valero-Garcés et al. (1999) suggest that high elevation, lacustrine catchments 

with geothermal activity may be influenced by CO2 degassing of thermal springs, thus causing a 

non-equilibrium isotope fractionation.  Seltzer (2000) supports this degassing interpretation, 
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coupled with periods of high primary productivity and sequestration of inorganic carbon in 

Chara stems.  In Lake Junin, calcite typically forms around the stems of this submerged 

macrophyte, recording high δ13C values.  Chara comprises most of the fine-grained calcite in the 

sediment record (Seltzer 2000).  Other closed basin lakes in the Andean Altiplano have similar 

high 13C values (Valero-Garcés et al. 1999), suggesting a common cause for isotopic enrichment.  

The high 13C values (>14‰) are almost exclusive to this region, and are among the highest 

values reported for calcite in surface waters in relevant literature.  At 12 cm the 13C values 

decrease drastically to ~3‰.  This drop is consistent with the damming of the lake and 

subsequent lake level rise.  The Upamayo dam redirects the Rio San Juan into the lake, causing 

an influx of low δ13C (-12 to -6‰ PDB) waters to the lake (Flusche et al 2005).  Therefore, a 

flux of isotopically low δ13C water would cause the isotopic composition of the water to shift to 

more negative values, as is seen in Core B.   
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Figure 16: Junin core B 13C downcore variations.  The 13C values remain very positive between 12-128 cm. 
The excursion to lower 13C values at 12cm is attributed to the construction of the Upamayo dam. δ13C 
measured in ppm. 
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5.0  CONCLUSIONS AND FUTURE IMPLICATIONS 

Analyzing authigenic calcite precipitated in equilibrium with lake water has proved 

useful in reconstructing the natural variability of precipitation in the central Andes that is 

dominated by the South American Summer Monsoon (SASM).  The Junin sediment record 

shows similar trends to other regional archives including ice, cave deposits and other lakes (Bird 

et al. 2011; Thompson et al. 1986; Thompson et al. 2006; Reuter et al. 2009; Vuille et al. 2012), 

supporting the hypothesis that precipitation changes occur synchronously across the region.  In 

Junin, lower δ18O values are observed during the LIA (1250-1600 AD), supporting a 

strengthened SASM.  Following the LIA, the CWP (1850-present) is characterized by an 

increase in δ18O values, suggesting a long term weakening of the SASM and associated rainfall.  

The SASM is influenced by the variability of the location of the ITCZ, which is controlled by the 

regions of warmest SSTs.  This relationship suggests that a continued warming of SST during the 

CWP would further displace the ITCZ northward, causing an even greater reduction in SASM 

intensity.  This reduction would negatively impact Andean glaciers and water resources, a 

detrimental change for many South American Cultures.  The age-depth model for Lake Junin 

must be validated and work is in progress to do this.  The timing of change is important when 

understanding past climatic events, and a coherent age model, supported by accurate AMS dates 

would improve the accuracy of this study.    
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Lake Junin potentially predates the maximum extent of glaciation, and contains a 

continuous record of tropical climate over the past hundreds of thousands of years (Rodbell 

2011).  Because of this unique study site and preserved sediment record, Lake Junin is currently 

the target of a potential deep drilling project.  The aim of this project is to develop the first 

continuous and high resolution Quaternary record of climate change in the tropical Andes.  This 

record would expand existing Lake Junin data have and complement other regional archives 

(Rodbell et al. 2011).   
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