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Melanoma is the most aggressive type of skin cancer with increasing incidence rates. To 

date, there are no effective therapies that can ensure disease free or even progression free 

survival of melanoma patients. While early stage primary melanoma is curable by surgical 

resection, survival of patients with metastatic melanoma is measured in months. Therefore it is of 

utmost importance to decipher molecular events that precede and/or induce the switch towards 

the invasive melanoma phenotype. In pursue of efficient therapy, attention has to be given not 

only to the cancer cells themselves but also to the microenvironment that nurtures and promotes 

malignant behavior. Aggressive melanoma cells drastically remodel their microenvironment. We 

found that expression of two extracellular matrix (ECM) proteins was significantly altered in 

melanoma compared to uninvolved patient skin: Tenascin C (TNC) was markedly increased, 

while small proteoglycan Decorin (DCN) was decreased. We found that invasion of the 

melanoma cells correlates with TNC expression levels and that cells present TNC 

asymmetrically at the invasive fronts. We also found that Epidermal Growth Factor-Like (EGFL) 

repeats of TNC promote melanoma cell invasiveness by activating Rho-associated kinase and 

increasing cell contractility, thus allowing mesenchymal to amoeboidal switch in mode of 

migration. Interestingly, TNC and DCN have both been shown to affect signaling through 

Epidermal Growth Factor receptor (EGFR), but with opposite outcomes on cell proliferation, 

migration and survival. We adapted skin organ cultures to test the influence of these two proteins 
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on melanoma invasion and found that DCN can ameliorate TNC induced melanoma invasion. 

Taken together, our findings imply that ECM composition has a significant role in the regulation 

of melanoma invasiveness and that even in the presence of increased pro-invasive TNC signaling 

DCN can be a promising moiety for melanoma therapy. 
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1.0  INTRODUCTION 

More than half a million deaths from cancer are projected to occur in 2012 in United 

States (Siegel et al., 2012). Metastasis is responsible for 90% of cancer deaths and is the main 

factor for cancer treatment failure (Hanahan and Weinberg, 2000). Metastasis is a complex, 

multistage process in which cancer cells exit the primary tumor, survive in the circulation, seed 

the distant sites and grow. The non-malignant stromal cells and the extracellular matrix in the 

microenvironment influence each of these stages. Elucidating the means by which the 

microenvironment facilitates cancer progression may thus contribute to the development of new 

therapeutics, since targeting both tumor cells and stroma may give greater therapeutic success. 

Malignant melanoma is an excellent model for studying molecular changes associated with 

invasive and metastatic disease, in part due to its sequential step-by-step progression in which 

molecular changes can be attributed to each step of progression. Easy access to melanocytic 

lesions and melanoma on the body surface allows the establishment of hundreds of cell lines 

from different stages of the progression for the purposes of experimental studies, to an extent 

greater than in the case of any other cancer type (Berking and Herlyn, 2001) .  
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1.1 MELANOMA 

 Melanoma is the most aggressive type of skin cancer and its incidence is constantly 

increasing (Perlis and Herlyn, 2004).  It is predicted that in 2012 in the United States, melanoma 

will be diagnosed in 76250 patients with over 9000 deaths (www.cancer.gov). Melanoma is a 

significant public health problem and is a great scientific and medical challenge due to its 

heterogeneity and notorious chemotherapy resistance.  

1.1.1 Melanoma progression 

 Melanoma cells arise from transformed melanocytes, pigmented cells of neuroectodermal 

origin, that normally reside in the basal layer of the epidermis. In healthy skin the ratio of 

melanocytes to keratinocytes is approximately 1:5, and melanocyte homeostasis is regulated by 

keratinocytes by cell-cell contacts mediated by cadherins, through gap junctions and through the 

secretion of signaling molecules and growth factors (reviewed in (Santiago-Walker et al., 2009). 

Additionally, melanocytes are kept in place by integrin interaction with the basement membrane. 

The initial abnormal proliferation of melanocytes that is confined to the epidermis can show 

varying levels of dysplasia, but if left untreated all melanoma cells have the potential to invade 

and metastasize. In melanoma, melanocytes undergo E- to N- cadherin switch allowing them to 

escape keratinocyte control and establish contacts with fibroblasts and endothelial cells in the 

dermis (Haass et al., 2004) and alter integrin expression which allows their release from the 

basement membrane (reviewed in (Haass et al., 2005)). The majority of melanomas go through a 

linear progression: from benign nevi to dysplasia to the radial growth phase (RGP) melanoma 

that spreads laterally in the epidermis, and further to the vertical growth phase (VGP) melanoma, 
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which invades into the dermis and has the ability to metastasize, reaching the final step- 

metastatic melanoma (Figure 1) (Clark et al., 1984).   

 

Figure 1.  Stages of the melanoma progression. 

 

The adequate surgical resection of RGP melanoma has a high cure rate, but VGP primary 

melanomas have multiple genetic abnormalities and are able to grow independently of 

exogenous growth factors, to invade and metastasize. Patients with VGP and MGP melanoma 

have very poor survival rates. Therefore, it is of crucial importance to elucidate the events that 

lead to the progression from RGP to VGP melanoma. 

To date, there are no good predictive markers for either melanoma progression or the 

clinical outcome. Melanoma tumors have a very heterogeneous composition, consisting of cells 

with varying malignant potential, display various antigens and are able to secrete a variety of 

cytokines and growth factors (Elias et al., 2010a). In addition, melanomas metastasize to 
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multiple organs and their biological behavior is different from one site to another. Its variability 

and unpredictability have greatly limited treatment of melanoma, with surgery as the only 

effective modality of treatment in all types (Elias et al., 2010b).  

1.1.2 Current therapy for melanoma 

In general, melanoma does not show significant response to chemotherapy. In addition to 

taxanes and platinum agents the-FDA approved drugs for advanced melanoma are: Dacarbazine 

– an alkylating and DNA cross-linking agent, Yervoy (Ipilimubab) - a monoclonal antibody 

targeting T-lymphocyte antigen CTLA-4, Zelboraf (Vemurafenib) - a BRAF inhibitor that blocks 

V600E mutated BRAF protein and Adesleukin – recombinant analog of interleukin 2 

(www.cancer.gov). Two most recently developed drugs, approved in 2011: Yervoy, which helps 

turn back on the anticancer immune response and Zelboraf, which can be used only in patients 

carrying the most common mutation in melanoma - V600E BRAF, have unusually severe side 

effects (including fatal autoimmune reaction and squamous cell carcinoma, respectively) but 

prolong survival. 

Currently, there are no available therapies capable of ensuring a disease-free, or even a 

progression-free survival of melanoma patients. Targeting a single pathway will not be sufficient 

to eradicate melanoma. The interaction of melanoma cells with the surrounding stroma strongly 

influences the transformation and progression processes, and taking into account the complexity 

of the melanoma microenvironment, should help devise more effective therapeutic regimens. 

This was recently confirmed by a study in which Dacarbazine treatment was more effective in 

patients in whom the drug could also induce stromal remodeling in addition to the effects on 

melanoma tumor cells (Nardin et al., 2011). New treatment strategies have to take into account 
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the microenvironment, since specific components in the extracellular tumor space provide 

signals for the invasion and progression of tumor cells and could serve as therapeutic targets.  

1.2 TUMOR MICROENVIRONMENT 

The cellular microenvironment contributes significantly to normal cellular function as 

well as to tumor development, growth and spread. The malignant phenotype of tumors is 

dependent not only on the intrinsic changes in cancer cells but also on the interactions of non-

cancer stromal cells, secreted factors and extracellular matrix (ECM) network that together make 

up the tumor microenvironment. Remodeled tumor microenvironment resembles the changes 

observed during embryogenesis, including cell plasticity, migration, vasculogenesis and 

angiogenesis.    

Melanoma is composed of melanoma tumor cells and stoma, which includes resident 

fibroblasts and endothelial cells, infiltrated immune cells, soluble factors and ECM. Aggressive 

melanoma cells remodel the microenvironment, and in turn, the modified microenvironment has 

a notable influence on the phenotype both of melanoma cells themselves and of the surrounding 

stromal cells (Hendrix et al., 2003). Even normal melanocytes can be shifted to invasive 

behavior by exposure to melanoma-produced ECM (Seftor et al., 2005). In addition, melanoma 

cells that leave the primary tumor site can induce molecular signals in the microenvironment for 

other tumor cells to follow, since melanoma cells can express endothelial-associated markers and 

form tubular structures that mimic vasculogenic networks (Maniotis et al., 1999). 
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1.2.1 Cells in the tumor stroma 

Stromal cells can influence cancer cell behavior by secreting chemokines, cytokines, 

growth factors, proteases, protease inhibitors and various ECM proteins; and they create a 

permissive environment for tumorigenesis. The most abundant cell type in solid tumors are 

fibroblasts (Allen and Louise Jones, 2011) that have a functional role in tumor development 

since they can promote angiogenesis, proliferation and survival of tumor epithelial cells and can 

even induce tumorigenesis in non-tumorigenic epithelial cells  (Hu and Polyak, 2008a; Olumi et 

al., 1999). In melanoma, following E- to N-cadherin switch, cancer cells establish 

communication with fibroblasts through gap junctions (Hsu et al., 2000). Additionally, by 

producing TGF-β, bFGF and PDGF melanoma cells induce rapid proliferation of fibroblasts, and 

in turn, fibroblasts produce a series of growth factors that support melanoma growth (Hsu et al., 

2002; Li et al., 2003; Li et al., 2009). Melanoma-derived TGF-β activates fibroblasts to produce 

the matrix with a high expression of collagens, Fibronectin and Tenascin C (Berking et al., 

2001), and the invasiveness of melanoma correlates with the ability to stimulate the stromal host 

fibroblasts (Li et al., 2009). Furthermore, melanoma-associated fibroblasts interfere with natural 

killer cells’ function and thus have an immunosuppressive role (Balsamo et al., 2009). 

In addition to the previously postulated six hallmarks of cancer (Hanahan and Weinberg, 

2000), inflammation has recently been proposed to be the seventh hallmark (Colotta et al., 2009). 

Inflammatory cells are recruited to reorganize the tumor stroma and macrophages form a major 

population in most solid tumors. Macrophage infiltration correlates with the progression of 

melanoma, and macrophage-derived cytokines induce the production of potent angiogenic 

factors, such as VEGF and IL-8 by melanoma cells, thus promoting angiogenesis (Torisu et al., 

2000). The number of tumor-infiltrating lymphocytes also increases with the melanoma 
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progression (Hussein et al., 2006). Neutrophils, macrophages and mast cells are the source of 

matrix metalloproteinase (MMP)-9 in aggressive skin tumors (Coussens et al., 2000) and the 

production of MMPs by stromal and infiltrating tumor cells greatly contributes to the progression 

of melanoma by both destruction of the ECM and by modulating the immune response. There is 

also a possible correlation between the presence of mast cells and the pathogenesis of primary 

melanoma (Dyduch et al., 2011). 

Both cancer-associated fibroblasts (CAFs) and macrophages remodel the existing ECM 

during the tumor progression by releasing extracellular proteases (Egeblad and Werb, 2002), but 

CAFs  also generate the altered ECM environment by secreting a different profile of ECM 

proteins compared to their normal counterparts (Allen and Louise Jones, 2011). Cancer subtypes 

with different clinical outcomes have recently been identified on the basis on the ECM-gene 

related profiles (Bergamaschi et al., 2008). 

1.2.2 Extracellular matrix 

 In normal physiological conditions extracellular matrix provides the structural support for 

tissues and organs, for layers of cells in the form of the basement membrane and for individual 

cells as substrate for migration. It also provides signals for the basic cell functions and serves as 

a reservoir for biologically active molecules. In vertebrate genomes there are hundreds of genes 

coding ECM proteins. Some are ancient and present in all Metazoa, like type IV collagens, 

laminins, Nidogen, Perlecan and collagens XV/XVII which compose the basement membrane, 

while the novel ones, like tenascins and fibronectins have evolved more recently (reviewed in 

(Hynes, 2009)). The human matrisome (all the components of the extracellular matrix) accounts 

for around 4% of the human proteome. In addition to 43 known collagen genes, the human 
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genome encodes 200 ECM glycoproteins and 35 proteoglycans (Naba et al., 2012). In general, 

ECM molecules are classified as fiber-forming, such as collagen and elastin, or interfibrillar 

which are the majority of proteoglycans and glycoproteins (Jarvelainen et al., 2009). ECM 

proteins are typically large, composed of several protein domains that are specialized for protein 

interactions and ECM assembly, or for the recruitment of other proteins (such as growth factors) 

and cells to the ECM (Hynes, 2012).  They are often non- and enzymatically linked and are 

mostly insoluble, which makes their analysis challenging.   

 After changes in cell-cell adhesion, the remodeling of the ECM plays a critical role in 

tumor invasion. Both tumor and stromal cells contribute to these changes and tumors of differing 

metastatic potentials differ in both the tumor- and the stroma-derived components (Naba et al., 

2012). In melanoma, production of ECM is drastically altered; there is an increase in the 

production of collagens, Tenascin C, SPARC and certain laminins and an isoform shift and 

increase in Fibronectin I expression (Hood et al., 2010; Ilmonen et al., 2004; Ledda et al., 1997; 

Natali et al., 1995; Pyke et al., 1994). Recent proteomic characterization of the extracellular 

matrix of human melanoma xenografts in mice has revealed the origin of certain ECM 

components (Naba et al., 2012): Fibronectin I, Collagen IV and Nidogen in the tumor stroma 

were secreted by both tumor and stromal compartments equally; Collagen I and III were secreted 

by both but with greater stromal contribution, which was the case with Tenascin C in more 

invasive tumors, while in less invasive ones the contribution was equal. Detected Vitronectin, 

Decorin and Collagen XIV were solely of stromal origin, while the tumor cells secreted certain 

laminins and latent growth factor binding proteins. Matrix components secreted by the tumor 

cells varied significantly with their metastatic potential, and the matrisome secreted by stromal 

compartment changed in response to the potential of tumor cells indicating a profound cross-talk 
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between tumor and stromal cells. Summary of described melanoma-stromal interactions is 

depicted in Figure 2. 

 

Figure 2.  Melanoma-stromal cell interactions through growth factors, cytokines 

and ECM. 

It has been suggested that the progression of tumors to malignancy is controlled by the 

microenvironment which provides tumor-suppressive signals (Bissell and Hines, 2011); by 

modifying the ECM composition cancer cells are altering the architecture and homeostasis of the 

tissue and releasing their malignant potential.  
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1.3 MATRIKINES 

The concept of matrikines has been proposed in order to define protein domains from the 

ECM which can signal to the surrounding cells (Maquart et al., 1999). Some of these signals can 

be provided by cryptic sites within the ECM molecules that are revealed only after the structural 

or conformational alteration (Davis et al., 2000). In the course of tissue injury or tumor invasion, 

matrix alterations due to ECM denaturation, enzymatic breakdown, mechanical forces or protein 

multimerization and adsorption, provide a plethora of matrycriptis signals. In recent years, 

special attention was given to a class of matrikines that are able to signal through growth factor 

receptors (Tran et al., 2005). These matrikines posses low binding affinity for growth factor 

receptors but are often present in high valence, which increases the avidity for the receptor and 

enables efficient signaling. So far, these domains were found in Collagen, Laminin, Decorin and 

Tenascin C and they enable persistent non-degradable signals (Tran et al., 2004). Interestingly, 

analysis of melanoma tissue samples and adjacent uninvolved skin of the same patient revealed 

that the expression of two matrikines Tenascin C and Decorin is opposite, and inversed 

compared to the expression in the normal human skin (Hood et al., 2010)(Figure 3). 
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Figure 3.  Proteomic analysis of human melanoma tissue sample and uninvolved 

skin of the same patient. 

(A) Schematic outline of the proteomic analysis procedure (image courtesy of Drs 

Thomas Conrads and Brian Hood) (B) Table representing ECM protein counts in melanoma and 

normal skin. Numbers represent the number of peptides detected out of 10000 analyzed peptides 

per sample. 

 

1.3.1 Tenascin C 

The physiological role of Tenascin C (TNC) lies in establishing of the interactions 

between the epithelium and the mesenchyme during embryonic development, tissue 

differentiation and wound repair; therefore expression of TNC is transient and strictly regulated 
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(Jones and Jones, 2000b). Persistent high levels of TNC are present in various tumor tissues, 

including brain, bone, prostate, intestine, lung, skin, and breast (Pas et al., 2006). During 

development TNC is expressed along the pathways of neural crest migration (Mackie et al., 

1988), and given that melanocytes are derived from the neural crest, the expression of TNC in 

melanomas might be a reactivation of a developmental pathway as many of the processes leading 

to transformation of melanocytes are reminiscent of differentiation stages during development.  

Tenascin C is a hexameric glycoprotein composed of 180 to 320 kDa monomers, which 

are disulfide-linked at their N-termini (Figure 4). Different molecular weights of TNC are the 

consequence of glycosylation and alternative splicing. Each subunit contains: the N-terminal 

assembly domain, a domain composed of 14.5 EGF-like repeats, a domain composed of 

fibronectin type III-like (FNIII) repeats and a fibrinogen-like sequence on the C terminus 

(Aukhil et al., 1993; Chiquet-Ehrismann and Chiquet, 2003; Erickson and Bourdon, 1989; Jones 

and Jones, 2000a; Orend, 2005; Orend and Chiquet-Ehrismann, 2006). Modular structure of 

TNC enables interactions with various binding partners that can have different functions during 

tissue injury and tumorigenesis. TNC can interact with several other ECM proteins and cell 

surface receptors thus influencing tissue architecture and cell response.  
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Figure 4.  Schematic illustration of TNC monomer and hexamer.  

 

The Fibronectin III (FNIII)-like domain of TNC is the site of interaction with 

Fibronectin, Heparin, Perlecan, Aggrecan, Versican and Brevican (Midwood and Orend, 2009), 

and the hexameric structure of TNC may allow cross-linking of ECM molecules and re-

organization of the matrix architecture. Cells can interact with the FNIII-like domain of TNC via 

integrins α2β1, α7β1, α9β1, αVβ1, αVβ3, and αVβ6, which allow cell attachment, and via 

syndecans-1 and -4, and annexin II which can signal de-adhesion (reviewed in (Midwood and 

Orend, 2009; Orend and Chiquet-Ehrismann, 2006)). Therefore, the response to TNC differs 

depending on the receptor repertoire present on the cell surface. TNC can be alternatively spliced 

within the FNIII-like repeats (designated by letters A to D) and the most represented isoform in 

tumor tissues is the full length 320 kDa, although different splice variants can co-exist in the 

same tumor tissue (Pezzolo et al., 2011). It is not clear whether alternatively spliced forms have 

clearly distinct roles, but the presence of the FNIIIA-D repeats is responsible for some anti-
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adhesive and pro-proliferative properties of TNC (Chung et al., 1996; Huang et al., 2001; 

Murphy-Ullrich et al., 1991). TNC can promote de-adhesion of cells adhered on Fibronectin 

(FN) (Chiquet-Ehrismann et al., 1988); and this de-adhesion can be signaled by TNC 

interference with FN binding to Syndecan-4, and preventing the FN induced cell spreading 

(Huang et al., 2001); or through one of the known receptors for TNC - Annexin II, calcium 

binding membrane protein, which binds TNC through alternatively spliced A-D fibronectin III-

like domain. Only the variants containing the he whole A-D domain can bind and signal de-

adhesion via Annexin II (Chung et al., 1996).  

Epidermal Growth Factor-like (EGFL) repeats of TNC also have counter-adhesive 

properties (Prieto et al., 1992; Spring et al., 1989) and have been shown to bind and signal 

through the Epidermal Growth Factor receptor (EGFR) (Iyer et al., 2007a; Swindle et al., 2001). 

The affinity of select EGFL repeats for EGFR is in the micromolar range (Swindle et al., 2001) 

but the matrix-constrained environment that limits diffusion and hexameric presentation of the 

repeats within the TNC molecule allow high avidity of the binding (Iyer et al., 2007a). 

Furthermore, the binding of TNC EGFL repeats does not induce receptor internalization, 

restricting EGFR signaling to the plasma membrane, which preferentially activates the EGFR 

pro-migratory signaling cascade: the activation of phospholipase C γ involved in lamellipod 

protrusion formation, and the activation of m-calpain involved in tail retraction during cell 

migration (Iyer et al., 2008). 

Fibrinogen-like globe of TNC binds to αVβ3 integrin (Yokoyama et al., 2000) and Toll-

like receptor 4 (TLR4) and exhibits pro-inflammatory effects by the activation of Toll-like 

receptors in macrophages and fibroblasts (Midwood et al., 2009).  
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In summary, TNC is equipped not only to modulate ECM architecture but also to 

dramatically influence the behavior of cells. TNC expression in tumors can be induced by 

various inflammatory cytokines and growth factors that are mostly secreted by stromal cells: 

TNFα, IFNγ, IL-1, -4, -6, -8, -13, EGF and TGFβ, just to name a few (reviewed in (Chiquet-

Ehrismann and Chiquet, 2003)). In addition, reactive oxygen species, hypoxia and mechanical 

stress, which are all present in the tumor tissue, can induce TNC expression (reviewed in 

(Midwood and Orend, 2009)). TNC can be cleaved by MMPs and serine proteases, and some of 

these events can reveal cryptic sites. For example, MMP2 cleavage of TNC occurs after the 

second alternatively spliced FNIII domain (Siri et al., 1995)  and reveals a cryptic adhesive site 

in the FNIII domain that binds to Syndecan-4 and causes β1 integrin activation (Saito et al., 

2007).  Cleavage sites for MMP2, MMP3, MMP7 and MMP9 are all within the FNIII like 

domain or the NH2 terminal knob, leaving EGFL repeats intact (Siri et al., 1995). TNC itself 

induces the expression of MMPs 1, 3, and 9 (Tremble et al., 1994) and activation of MMP2; in 

addition, TNC deposition is positively regulated by MMP3 and MMP9 (Dang et al., 2004). 

Consequently, there is a positive feedback loop between induction of MMPs by TNC and its 

cleavage.  

In normal human skin TNC is expressed at low levels in papillary dermis beneath the 

basal lamina, within the walls of blood vessels and around sweat glands (Lightner et al., 1989) 

and it comprises only 0.02-0.05% of total protein in papillary dermis. Upon photo damage of the 

skin TNC can be detected throughout the epidermis, at the epidermal-dermal junction and deep 

in papillary dermis (Filsell et al., 1999). It is upregulated in wounded skin (Latijnhouwers et al., 

1996) being produced by keratinocytes in the early phases of the wound healing (Latijnhouwers 

et al., 1997) and co-localizes with lymphocyte infiltration in inflamed dermis (Seyger et al., 
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1997). TNC peaks at the end of the inflammatory phase of tissue repair and promotes tissue 

rebuilding, and the levels return to normal after the repair is complete (Betz et al., 1993).  The 

upregulation of TNC in melanoma is an example that supports the hypothesis that “tumors are 

the wounds that never heal” (Dvorak, 1986) as in the tumor microenvironment constant high 

levels of TNC are present, produced both by transformed tumor cells and stromal cells (De 

Wever et al., 2004; Hanamura et al., 1997; Yoshida et al., 1997). In vitro, the majority of human 

melanoma cell lines secrete TNC (Herlyn et al., 1991) and the expression levels of TNC in 

melanoma cell lines derived from tumors of different stages correlate with the severity of the 

stage (Figure 14). Thus, an open question remains whether the TNC expressed by the melanoma 

cells can drive melanoma progression. TNC has been shown to be important for the proliferation 

of melanoma cells when they are grown as spheres, suggesting its role in the maintenance of 

tumor initiating cells (Fukunaga-Kalabis et al., 2010). In melanoma tumor tissue, TNC seems to 

be incorporated in channel-like structures together with Fibronectin and pro-Collagen I 

(Kaariainen et al., 2006) and it is suggested that these structures can form a continuum between 

avascular and vascular tumor tissue and can serve as the scaffold for tumor angiogenesis 

(Midwood et al., 2011). It has also been proposed that cancer cells are the main source of TNC in 

micrometastases until the stroma takes over and becomes the primary source in larger metastases 

(Oskarsson et al., 2011). The growth of melanoma tumors in TNC knock-out mice is suppressed 

compared to the wild type due to the lack of TNC from the stroma, which is needed for VEGF 

expression and tumor vascularization (Tanaka et al., 2004). It is likely that TNC plays several 

roles in tumor progression, and that the endogenous TNC synthesized by tumor cells and stroma-

derived TNC have both overlapping and distinct roles. The underlying signal transduction 

pathways responsible for TNC pleiotropic effects are mostly unknown. 
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1.3.2 Decorin 

 Decorin (DCN) is the small (40kDa) leucine-rich proteoglycan synthesized chiefly by 

stromal fibroblasts, endothelial cells under stress and smooth muscle cells (Neill et al., 2012). 

Decorin contains a protein core and a single chondroitin/dermatan sulfate glycosaminoglycan 

chain attached to a serine near the N terminus (Chopra et al., 1985) (Figure 5) . It is mostly found 

in collagen–rich connective tissues (Bianco et al., 1990) where it interacts with high affinity with 

collagen fibers and is involved in collagen fibrologenesis (Danielson et al., 1997; Keene et al., 

2000; Zhang et al., 2006). In addition, DCN can bind to multiple growth factor receptors 

including EGFR (Iozzo et al., 1999b), Met receptor (Goldoni et al., 2009) and IGF-1R (Iozzo et 

al., 2011). DCN can also sequester TGFβ family members into the extracellular matrix, as there 

are two binding sites for TGFβ in the DCN core (Hildebrand et al., 1994). 

 

 

Figure 5.  Schematic illustration of Decorin. 

 

The first identified receptor tyrosine kinase to bind Decorin was EGFR (Iozzo et al., 

1999b): DCN initially triggers receptor activation, dimerization and internalization, but 

prolonged exposure induces EGFR down-regulation (Zhu et al., 2005) thus terminating EGFR 
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signaling. The affinity of DCN is in the nanomolar range (70nM) (Santra et al., 2000; Santra et 

al., 2002) comparable to the EGF itself, and the binding site of DCN within the EGFR is partially 

overlapping but distinct from the EGF binding site (Santra et al., 2002). DCN is also an 

antagonist of the Met receptor (Goldoni et al., 2009) and can inhibit the PDGF receptor (Merline 

et al., 2011). Therefore, DCN can be considered an endogenous matrix-centric pan-kinase 

inhibitor (Neill et al., 2012) and along with TGFβ sequestering function which leads to tumor 

immunosupression and growth retardation, has been proposed  to be “a guardian from the 

matrix” to draw a comparison to “guardian of the genome” p53 (Neill et al., 2012). Notably, the 

cooperation between Decorin and p53 has already been established (Iozzo et al., 1999a). 

In normal human skin Decorin is produced by fibroblasts, with higher expression in 

deeper dermis compared to the superficial layers (Honardoust et al., 2012). Quiescent fibroblasts 

are the main source of DCN, as proliferating fibroblasts produce significantly lower levels 

(Mauviel et al., 1995). The disruption of Decorin leads to abnormal collagen fibril morphology 

and skin fragility (Danielson et al., 1997). DCN is a vital player in maintaining the overall 

integrity of the skin by both providing structural organization and indirect signaling (Reed and 

Iozzo, 2002).  In melanoma, Decorin can be found in peritumoral stroma, but not in melanoma 

cells or dense tumor tissue (Brezillon et al., 2007). 

Interestingly, Decorin and Tenascin C, two ECM proteins with opposing roles in tumor 

progression share two receptors TLR 4 and EGFR. TNC can bind to TLR 4 via its fibrinogen 

domain (Midwood et al., 2009) and soluble Decorin was also found to bind to TLR 2 and TLR4 

on macrophages thus boosting their inflammatory activity and suppressing tumor growth 

(Merline et al., 2011). The EGFL repeats of TNC and the leucine rich domain of DCN can 

activate the same receptor – EGFR without sharing structural homology. In addition, TNFα and 
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TGFβ1 can down-regulate DCN expression (Mauviel et al., 1995), and TGFβ1 is being secreted 

by melanoma cells and is up-regulating TNC expression (Berking et al., 2001). In melanoma 

TNC and DCN proteins have inversed expression (Figure 24), which makes it interesting to 

postulate that one can counteract the other in the melanoma extracellular matrix setting. 

1.4 THE ROLE OF THE EXTRACELLULAR MATRIX IN TUMOR CELL 

ADHESION AND MIGRATION 

1.4.1 Cell-matrix adhesion 

 The adhesion of cells to the extracellular matrix is important for basic cell functions: it is 

necessary for the cell growth, survival, differentiation and cell migration. On rigid two- 

dimensional substrates cell adhesion is three-phasic: cells first attach to the substratum, then they 

spread, and in the last phase they form focal adhesions and stress fibers (Figure 6). The initial 

attachment is mediated by integrins and their ECM substrates and is weak in strength; next, with 

the appropriate signals from the ECM the cells increase the surface area of the contact with the 

substratum and spread through the formation of actin microfilaments. The clustering of integrins 

and their activation then induces formation of focal adhesions and strengthens the adhesion. This 

whole process is reversible and upon appropriate intra- or extracellular signals during cell 

proliferation, motility or morphogenesis, cells can de-adhere to various extents.  
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Figure 6.  Stages of cell adhesion on two-dimensional substratum. 

 

Much less is known about the process of de-adhesion in which the cell moves to a state of 

weaker adherence. The state of weaker adherence can be induced by the matricellular proteins 

Thrombospondin-1 and -2, Tenascin C and SPARC (reviewed in (Murphy-Ullrich, 2001)). These 

proteins function both in soluble and insoluble states and can promote only initial stages of cell 

adhesion – attachment and spreading. When presented with other matrix proteins they can 

antagonize adhesive activities of these other molecules (Adams and Schwartz, 2000; Murphy-

Ullrich and Hook, 1989; Wenk et al., 2000) and when added as soluble agents they can disrupt 

focal adhesion complexes of already spread cells (reviewed in (Orend and Chiquet-Ehrismann, 

2000)).  

 Adhesive proteins can also gain anti-adhesive properties under certain conditions: MMP2 

cleavage of Laminin-5 can expose a cryptic anti-adhesive and pro-migratory site in the α2 chain 

(Giannelli et al., 1997) and the same enzyme can cleave Fibronectin and release its anti-adhesive 

site that competes with the native Fibronectin (Watanabe et al., 2000). Little is known about the 

signaling mechanisms that are being activated by the adhesion modulatory ECM proteins, but the 
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change in cell shape and the reorganization of the actin cytoskeleton are the major common 

determinants. The major candidate class for the actin cytoskeleton remodeling are integrins, 

heterodimeric transmembrane receptors, which mediate cell attachment to ECM and link it to the 

cytoskeleton (Giancotti and Ruoslahti, 1999).   

 In melanoma, cell matrix interactions shift from Collagen IV and Laminin adhesion in 

normal melanocytes to Collagen I and Vitronectin in melanoma cells, in addition to the cadherin 

switch that allows melanoma cell detachment from keratinocytes. Increased and altered 

expression profiles of integrin combinations that are important for the progression of melanoma 

are: αVβ3 that binds to Fibronectin, Fibrinogen, Von Wildebrand factor, certain collagens, 

Thrombospondin-1, Osteopontin, Laminin and Tenascin C; αvβ1 that binds Fibronectin, 

Vitronectin and Tenascin C and α5β1 that binds Fibronectin ((Albelda et al., 1990; Felding-

Habermann et al., 1992; Natali et al., 1997; Natali et al., 1993; Van Belle et al., 1999) and 

reviewed in (van der Flier and Sonnenberg, 2001)). αVβ3 is especially important for melanoma 

survival in 3D collagen environment (Montgomery et al., 1994).  

1.4.2 Cell migration 

 The intermediate state of cell adhesion favors motility (DiMilla et al., 1991; DiMilla et 

al., 1993). Matricellular proteins that promote the intermediate state of adhesion have increased 

expression at the exact sites of remodeling that require cell migration - during embryogenesis, 

wound healing, inflammation and tumor invasion. This suggests a role for the matricellular 

proteins in promoting migration by enabling the intermediate adhesive state. A mathematical 

model developed by DeMilla, Barbee and Lauffenburger predicts that the maximal motility of 

cells is achieved when the ratio of the cellular force, achieved through cytoskeletal contractility, 
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and the adhesive strength, achieved through integrin-matrix interactions, is intermediate (DiMilla 

et al., 1991). Weak cell adhesion does not generate enough force for the cell movement, and too 

strong adhesion prevents the releasing of the cell from the ECM (Palecek et al., 1997). Migration 

requires the coordination of the cell extension, adhesion/de-adhesion and contraction, and is 

simultaneously regulated by growth factors and the ECM molecules. 

In order for cells to move, the existing adhesion sites have to be disassembled and the 

new ones have to be formed. Current understanding of cell-matrix adhesions and migration is 

based mostly on in vitro studies on rigid 2D surfaces that induce an artificial polarity between 

lower and upper cell surfaces. In vivo, cells are embedded within 3D matrices and focal 

adhesions differ from classically described in vitro adhesions in structure, localization and 

functions (Cukierman et al., 2001). Both three-dimensionality and the composition of the matrix 

are contributing to more effective mediation of the adhesion and enhanced migration of cells in 

vivo or in in vivo-like 3D matrix compared to mechanically 2D flattened cell matrix, or 

individually presented matrix components in 2D (Cukierman et al., 2001).  

In order to move during tumor invasion in vivo, cancer cells must break away from the 

primary tumor mass and deform and/or degrade the ECM. Contrary to the 2D motility that is 

based on actin polymerization that propels the cell forward, in 3D environment the force of 

protrusive actin polymerization drives cells into spindle shaped mesenchymal morphology that 

can allow cell migration only in the presence of proteases that degrade the surrounding ECM 

(Sahai and Marshall, 2003; Wolf et al., 2003). A hallmark of tumor cell invasion is upregulation 

of proteolytic enzymes generated both by migrating cells and the stromal cells (Kessenbrock et 

al., 2010). Proteolytic mesenchymal migration is a multi step process. The cell polarization and 

initial protrusion are followed by the attachment of the leading edge to ECM. Next, the cell 
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surface localized degradation of ECM generates space into which actomyosin contraction will 

move the advancing cell body deforming both the cell and the ECM. Finally, retraction of the 

cell rear and turnover of adhesions occur (Friedl and Wolf, 2010; Wolf and Friedl, 2011). 

However, in 3D context tumor cells can also invade without the requirement for the proteolytic 

activity and move through ECM without its degradation by acquiring a rounded morphology and 

using actin contractile force to generate amoeboid bleb-like protrusions that push and squeeze 

cells through the ECM (Friedl, 2004; Sahai and Marshall, 2003; Wolf et al., 2003; Wyckoff et 

al., 2006). Migration is possible in the absence of proteolysis if both the porosity of the matrix 

and the cell body deformability can support it. Molecular and structural characteristics of both 

tissue microenvironment and cell behavior determine whether cells will migrate collectively or 

individually in mesenchymal or amoeboid mode. ECM stiffness, fiber orientation, density and 

gap size provide parameters that modulate cell adhesion and cytoskeletal organization (Friedl 

and Wolf, 2010). In 3D stiff matrices mesenchymal migratory force generation is β1 integrin-

dependent (Wolf et al., 2003) while soft matrices do not reinforce focal adhesion formation and 

support cell rounding (Ulrich et al., 2009). While mesenchymal migration is dependent on 

alternative pushing and pulling cycles, amoeboidal migration is equally mechanically complex 

and combines stronger pushing with less adhesive pulling of the substrate (Friedl and Wolf, 

2010). The tuning model proposed by Friedl and co-workers predicts that cell migration is a 

continuum of states that are determined by several modal parameters that simultaneously control 

how cell migrates and that their combined magnitudes impact which migrational mode the cell 

will adopt (Friedl and Wolf, 2010). A central signaling pathway that controls the conversion 

between mesenchymal and rounded migration is the balance between Rac and Rho signaling 

(Sahai and Marshall, 2003). 
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1.4.3 Molecular mechanisms of mesenchymal and amoeboid migration 

 The Rho family of small GTPases is the key regulator of both cell adhesion and 

cytoskeleton during cell migration. The most studied members of the family are Cdc42, Rac1 

and RhoA. In the mesenchymal mode of migration, formation of actin-rich filopodia and 

lamellipodia is Cdc42- and Rac1-dependent (Nobes and Hall, 1995; Ridley and Hall, 1992; 

Ridley et al., 1992). Cdc42 and Rac regulate WASP/WAVE proteins that promote the nucleation 

of actin filaments and the formation of the leading edge (Miki et al., 1998; Rohatgi et al., 1999). 

The protruding leading edge is then stabilized by integrin interactions with the ECM and the 

formation of focal adhesions. Rho and its downstream effector Rho-associate kinase (ROCK) 

have been shown to be dispensable for the mesenchymal mode of migration (Sahai and Marshall, 

2003), where Cdc42 can compensate the loss of Rho/ROCK signaled contractility (Wilkinson et 

al., 2005). In contrast, the rounded mode of motility is dependent on Rho and ROCK activity 

(Sahai and Marshall, 2003), where ROCK-dependent myosin light chain (MLC) phosphorylation 

is crucial for the correct organization of MLC and force generation within the moving cell 

(Wyckoff et al., 2006). Phosphorylated MLC increases ATPase activity to promote actin-myosin 

interactions and contractile force generation. The intracellular pressure results in the rupture of 

the actomyosin cortex and the formation of membrane blebs (Keller and Eggli, 1998). After the 

formation of the bleb the contractile cortex reassembles (Charras et al., 2006). One major 

difference between mesenchymal and amoeboid movement is therefore the driving force for the 

formation of protrusions, which are actin polymerization and cytoplasm inflow, respectively. The 

silencing of ROCK pathway induces the transition from amoeboidal to mesenchymal 

invasiveness (Sahai and Marshall, 2003; Sanz-Moreno et al., 2008) and the silencing of Rac 

induces the opposite shift (Sanz-Moreno et al., 2008; Yamazaki et al., 2009). In addition, active 
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Rac negatively regulates Rho/ROCK signaling (Sander et al., 1999) and inhibits cell rounding, 

while active Rho/ROCK limits Rac activity that inhibits cell extension (Sanz-Moreno et al., 

2008). Mesenchymal and amoeboid cell phenotypic characteristics and possible signaling 

controls are summarized in Figure 7. 

 

Figure 7.  Mesenchymal and amoeboid cell phenotypes. 

 

Rho proteins are often overexpressed in tumors (Fritz et al., 1999) and one of the key 

events in experimental melanoma metastasis is the upregulation of RhoC (Clark et al., 2000). 

The inhibition of RhoC or the combined inhibition of RhoA and ROCK1/2 greatly reduce 

melanoma invasion (Sahai and Marshall, 2003; Wolf et al., 2003). In melanoma, genes involved 

in the control of cell motility show altered expression levels, but not mutational activation 

(Gaggioli and Sahai, 2007), as activation of one step but not the others in the migration process 

would give un-coordinated and inefficient motility. Two modes of migration are interchangeable 

and arise as a reply to the specifics of the microenvironment (Pankova et al., 2010). So far, apart 

from the influence of the collagen fiber spatial organization (Provenzano et al., 2008), little is 
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known about the ECM components that influence the migratory shifts or the cellular receptors 

that signal them. 

1.5 MODELS FOR IN VITRO STUDY OF MELANOMA INVASION 

One of the obstacles in developing effective therapeutic approaches for melanoma is the 

lack of good experimental models that recapitulate the in vivo behavior of tumors. Biological 

properties of 2D cultured melanoma cells only partially resemble those in situ. Melanoma 

development is a result of deregulated signaling between melanocytes, keratinocytes and the 

stroma, and has to be studied in the context of multicellular 3D environment. As melanocyte 

regulation by keratinocytes is very intricate, studying melanoma progression requires the 

organotypic models that would include as many players as possible. The goal is to recreate the 

characteristics of the tumor in the appropriate microenvironmental context. Rodent models of 

melanoma have not proven to be successful in recapitulating the early stages of melanoma 

invasion since melanocytes are localized differently in rodent and human skin and rodents do not 

develop spontaneous melanoma.  

 A key feature of signaling from the ECM is the spatial organization of cells within 

tissues, such that the cell shape, spacing and positioning within the 3D structure are additional 

factors in cell response to signals. Therefore, it is of importance to study cell migration and 

invasion in matrices with the models that would most resemble the natural occurrence of these 

proteins. In vivo cells experience the surrounding ECM as a three dimensional network, and this 

cannot be mimicked in two dimensional cell culture assays.  
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1.5.1 Skin organ constructs 

Skin organ constructs (SOC) are the most advanced in vitro models for the study of 

melanoma-microenvironment interactions and present a link between two-dimensional cultures 

and in vivo models. These cultures are composed of dermal and epidermal equivalents. Dermal 

equivalents can be made by repopulating post mortem acquired de-cellularized human dermis 

with fibroblasts (Ghosh et al., 1997; Regnier et al., 1986), or by embedding primary fibroblasts 

into collagen gels and letting them contract and remodel the gel (Bell et al., 1983; Marionnet et 

al., 2006). Seeding primary keratinocytes on top of dermal equivalents forms epidermis. Gradual 

withdrawal of EGF from the culture medium induces keratinocyte differentiation. Placing gels 

on top of rafts and exposing them to air allows keratinization of the epidermis resembling 

stratum corneum. Keratinocytes can generate normal epidermis irrespective of the species origin 

of fibroblasts which allows identification of the origin of the components involved in tissue 

reconstitution (Stark et al., 2004). These organotypic models form the basement membrane and 

the epidermal-dermal junction is straight in the case of dermal collagen gels (Meier et al., 2000b; 

Smola et al., 1998), or follows natural ridges in de-cellularized human dermis. Both 

keratinocytes and fibroblasts contribute to the formation of the basement membrane in SOC and, 

interestingly, TNC is present during formation of the dermal-epidermal junction (Marionnet et 

al., 2006). If melanocytes are included in the model, they migrate and position themselves at the 

basal levels of the epidermis and make contacts to multiple keratinocytes (Valyi-Nagy et al., 

1990).  Melanoma cells from different stages of progression can be incorporated into SOCs and 

they reflect the characteristics of the cells in situ: RGP cells do not invade into dermis, while 

VGP and MGP derived cells invade (Meier et al., 2000b). The representative images of SOCs 

made from contracted collagen gels grown at the air liquid interface are shown in the Figure 8. 
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Figure 8.  Skin organ constructs. 

(A) SOC composed of fibroblast-contracted collagen gel seeded with keratinocytes is shown in 

the left side panel, and SOC with melanoma cells seeded on top of the epidermis is shown on the 

right. Arrow points to the mole-like growth of melanoma cells expressing GFP that were initially 

seeded within a cloning ring on top of the epidermis. (B) H&E staining of SOCs. The 

arrowheads point to non-invading and invading melanoma tumors, respectively; scale bar 

100µm. E-epidermis, D-dermis, M-melanoma. 

 

These cultures are suitable for use of transfected and infected cells and are a useful tool 

for studying protein function in melanoma progression. Genetic perturbations of melanoma cells 

sometimes show drastic differences in growth compared to control cells that were otherwise 

undetectable in 2D culture systems (Hsu et al., 1998; Satyamoorthy et al., 2001). For example, 
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SOCs were used to show that αVβ3 integrin up-regulation induces conversion from RGP to VGP 

melanoma and progressive invasion (Hsu et al., 1998). Skin organ reconstructs are healthy for up 

to a month in culture and biological phenotype of melanoma cells is remarkably stable (Meier et 

al., 2000b). Quantification of invasion in SOCs can be achieved by taking into account both the 

depth and the pattern of invasion (Nystrom et al., 2005). In addition, these cultures can be grafted 

on immunodeficient mice for long-term studies (Javaherian et al., 1998). 

1.6 HYPOTHESIS 

 Given the significant change in the composition of the extracellular matrix in invasive 

melanomas compared to normal skin counterparts, we reasoned that distinct de-regulated ECM 

proteins could drive the melanoma cell invasion. We hypothesize that the increased expression of 

ECM protein Tenascin C by melanoma cells themselves can drive melanoma invasion by 

increasing migration of cells in 3D environments. We postulate that this pro-invasive effect of 

TNC would be mapped to the EGFL repeats of TNC, as these were shown to activate the pro-

migratory EGFR signaling cascade (Iyer et al., 2008). Furthermore, we hypothesize that another 

EGFR-binding matrikine, Decorin, could counteract TNC-driven melanoma invasion. In this 

work we will first test whether skin organ cultures seeded with melanoma cells can recapitulate 

changes in the ECM found in human melanoma samples and then test the influence of Tenascin 

C and Decorin on modulating melanoma invasion. 
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2.1 ABSTRACT 

Gaining insights into the molecular events that govern the progression from melanoma in 

situ to advanced melanoma, and understanding how the local microenvironment at the melanoma 

site influences this progression, are two clinically pivotal aspects that to date are largely 

unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and 

the melanoma-skin microenvironment, primary and metastatic human melanoma cells were 

seeded into skin organ cultures (SOCs), and grown for two weeks. Melanoma cells were 

recovered from SOCs by laser microdissection and whole-cell tryptic digests analyzed by 

nanoflow liquid chromatography-tandem mass spectrometry with an LTQ-Orbitrap. The 

differential protein abundances were calculated by spectral counting, the results of which 

provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the 

presence of these melanoma cells recapitulate proteomic data obtained from comparative 

analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, non-involved 

skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations 

of the melanoma microenvironment. 
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2.2 INTRODUCTION 

Despite increasing efforts aimed at melanoma prevention and, equally important, early 

detection, the worldwide incidence of melanoma continues to rise. As there are no effective 

treatment regimens for patients with advanced melanoma, the molecular basis of melanoma 

progression is likely to hold the key to clinical treatment. Melanoma progression is a 

pathologically well-defined process and when surgically resected with a wide and deep margin, 

the prognosis for patients with melanoma in situ is favorable. While melanoma in situ is confined 

to the epidermis, primary melanoma in the vertical growth phase (VGP) has invaded deep into 

the dermis and, unlike melanoma in situ but like melanoma in the metastatic growth phase 

(MGP), VGP melanoma proliferates aggressively.  

Over the past few years, high-throughput studies such as serial analysis of gene 

expression (SAGE), whole-genome microarray expression profiling and integrative analysis by 

microarray-based comparative genomic hybridization (array-CGH) have led to the identification 

of genes that previously were not known to be expressed in advanced melanomas, and/or were 

found to be upregulated with progression from early to advanced-stage melanoma. More 

recently, mass spectrometry (MS)-based proteomics has been used to identify proteins that are 

differentially expressed in VGP versus MGP melanomas (Baruthio et al., 2008), or to detect 

melanoma in its early stage of development (Caron et al., 2009; Forgber et al., 2009; Paulitschke 

et al., 2009). Unlike in the case of breast cancer, however, where various high-throughput 

molecular approaches have generated significant information detailing the interactions among 

epithelial and stromal cells that play supporting roles in tumorigenesis (Hu and Polyak, 2008b), 

little information is yet available regarding the contributions of the local microenvironment to 

melanoma invasion and progression.  
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The epidermis is a multilayered structure, which is separated by an intact basement 

membrane from mesenchymal support cells. The stem cell-like basal keratinocytes undergo 

asymmetric replications with a multi-cell vertical differentiation resulting in enucleation and 

formation of a keratinized barrier. Neuroectoderm-derived melanocytes migrate into and reside 

in the epidermis where they are in contact with and communicate through E-cadherin and 

connexin junctions with keratinocytes. As part of the invasion process, melanoma cells must 

transit an E-cadherin-bridged epithelial milieu, attach to and breach the laminin/fibronectin-rich 

basement membrane and penetrate the dermis to reach conduits for dissemination, such as the 

host vasculature (Fig. 9A). 

Detailed insights are lacking regarding how the local microenvironment affects or alters 

molecular features of melanoma cells that may be required to drive invasion and progression, 

arising from the absence of suitable skin models that mimic invasive growth. Indeed, rodent skin 

does not recapitulate the structural microenvironment of human skin and other animal models, 

such as porcine, do not present naturally occurring melanomas. Ex vivo human skin organ 

cultures (SOCs; Fig. 9B) have been used to investigate various human skin conditions including 

wound healing and have been used in a limited fashion in melanoma research (Eves et al., 2003; 

Eves et al., 2000; Herlyn et al., 2001; Meier et al., 2000a; Neil et al., 2000). Skin organ cultures 

are derived from excess pathological specimens obtained during cosmetic surgery or post 

bariatric weight loss, or can be generated ex vivo from human skin components (Margulis et al., 

2005).  
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Figure 9.  Melanoma model. 

(A) Stages of melanoma progression in skin. Melanocytes reside in the epidermal/dermal 

junction. Early stage radial growth phase melanoma cells descend into the papillary dermis and 

spread laterally. Invasion deep into the dermis characterizes melanomas in the vertical growth 

phase. (B) Skin organ culture (SOC). SOCs are maintained at the air-liquid interface. (Inset) 

Hematoxylin and eosin stained section collected on day 12 of culture. 
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In the present study, we demonstrate that seeding VGP and MGP melanoma cells into 

SOCs leads to formation of melanoma nodules after approximately 12 days. Laser micro-

dissection was utilized to acquire the melanoma tumor nodule from these tissue sections, as well 

as samples from collagen-injected and non-injected SOCs, which were analyzed by nano-flow 

liquid chromatography-tandem mass spectrometry (LC-MS/MS). An analysis of differential 

protein abundances by spectral counting was conducted, and demonstrates that the proteomic 

profiles very closely resemble that obtained from a differential proteomic analysis of human 

melanoma and an adjacent skin biopsy free of melanoma. These data suggest that melanoma-

seeded SOCs represent a unique model system for investigating the molecular events in the 

microenvironment that promote melanoma invasion and progression.  

2.3 RESULTS AND DISSCUSION 

The impact of the microenvironment on the expression of proteins that govern invasion 

and progression of melanoma is one of the fundamental, but yet largely unresolved questions 

regarding this malignancy. To gain a better understanding of the underlying molecular events 

involved in this process, the study presented here served to determine whether an in vitro skin 

organ culture system can recapitulate protein abundance differences between melanoma cells and 

surrounding skin of melanoma and adjacent non-involved skin tissue samples as identified by a 

differential proteomic analysis. The SOCs were injected with either VGP (WM983A) or MGP 

(WM1158) melanoma cell lines, or collagen alone to serve as a control. These two melanoma 

cell lines are widely utilized and were selected solely to compare melanoma growth to normal 

(e.g. non-involved) skin in this SOC model and not to provide a detailed comparison of VGP 
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versus MGP. Approximately 10,000 cells were collected by laser micro-dissection from these 

FFPE SOC sections (Fig. 10A). The micro-dissected cells were processed using an “MS-

friendly” heat-induced, enzyme-mediated (HI/EM) antigen retrieval method, followed by trypsin 

digestion (Fig. 10B). Peptide digests were analyzed by LC-MS/MS; Figure 10C shows a 

representative base peak chromatogram of a digest from approximately 5,000 cells on column 

from the micro-dissected FFPE VGP melanoma SOC section. This analysis afforded the 

identification of upwards of several hundred proteins per sample at a false discovery rate of 

approximately 2%, with all samples processed in duplicate.  
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Figure 10.  Mass spectrometry-based proteomic analysis of melanoma and skin organ 

cultures. 

(A) Hematoxylin and eosin staining of formalin-fixed, paraffin-embedded (FFPE) skin organ 

culture (SOC) sections injected with approximately 10 000 VGP melanoma cells (WM983A) 

before (left panel) and after (right panel) laser microdissection. (B) Laser microdissected FFPE 
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tissue samples were processed using a heat-induced, enzyme-mediated digestion protocol for 

LC-MS/MS analysis. (C) Base peak chromatogram of approximately 5000 VGP melanoma cells 

obtained by laser micro-dissection from the FFPE SOC tissue sections. 

 

Differences in protein abundance between the various SOC-derived samples were derived 

by spectral counting, where it was found that proteins such as Tenascin C (TNC) and 

Fibronectin, which have been described in the literature to play a role in melanoma cell invasion 

(Fukunaga-Kalabis et al., 2008; Kaariainen et al., 2006), were identified by high spectral count in 

the MGP melanoma SOC sections, and at lower levels in the VGP melanoma SOC sections 

(Table 1). 

 

Table 1. Spectral count data for selected extracellular matrix and cytoskeletal proteins identified 

in melanoma-injected or control SOCs and from melanoma and normal human skin tissue 

 

Skin organ cultures Biopsy  

Protein 

 

Function WM1158 WM983A collagen ctrl melanoma normal 

Tenascin C Matrix 19 7 1 0 143 0 

Fibronectin Adhesion/Matrix 11 6 0 0 46 20 

Collagen 1 Matrix 17 8 6 10 15 107 

α-Actinin-4 Adhesion/Cytoskeleton 2 1 0 0 76 22 

Thrombospondin-1 Adhesion/Matrix 2 2 0 0 4 1 

Plectin Adhesion/Cytoskeleton 17 1 0 1 153 15 

Transgelin 2 Adhesion/Cytoskeleton 6 0 0 0 14 18 

Cytokeratin 5 Adhesion/Cytoskeleton 69 9 30 31 43 9 

Cytokeratin 14 Adhesion/Cytoskeleton 56 1 22 13 25 14 
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Cytokeratin 6A Adhesion/Cytoskeleton 41 6 26 30 17 0 

Cytokeratin 16 Adhesion/Cytoskeleton 17 0 7 5 11 0 

Cytokeratin 17 Adhesion/Cytoskeleton 22 0 5 4 1 0 

 

These proteins were either not identified or were identified at very low abundance in the 

collagen and non-injected SOC controls. Increases in the abundance of TNC have been 

documented in MGP melanomas, and it has been suggested that relatively low levels of TNC 

expression may be associated with a lower risk for metastasis (Ilmonen et al., 2004). Like TNC, 

Fibronectin is another protein implicated in melanoma invasion. Specifically, it has been 

reported that these two proteins stimulate the invasive features of primary melanoma cells in 3D 

collagen matrices, and that TNC, Fibronectin and pro-collagen I form specific channel structures 

for melanoma invasion (Kaariainen et al., 2006). Tenascin C and Fibronectin are produced not 

only by fibroblasts, but also by endothelial cells and keratinocytes (Jones and Jones, 2000a). 

However, it is not yet fully established to what extent these proteins are also produced by VGP 

and/or MGP melanoma cells. The data presented here document that melanocytes, propagated in 

vitro, do not produce detectable levels of TNC (Fig. 11) and only low levels of Fibronectin (data 

not shown). In contrast, both MGP and VGP melanoma cells express substantial amounts of 

these matrix proteins. These matrix components are not only secreted but also incorporated into 

an insoluble matrix surrounding the cells, likely giving rise to the apparent difference in the 

relative levels of TNC transcript versus protein abundances measured in this study. The 

important point regarding this finding is that these melanoma cells produce these matrix 

components which are known to drive cell migration and tumor invasion (Iyer et al., 2007b).  
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Figure 11.  Expression of Tenascin C in melanoma cells. 

(A) Quantitative RT-PCR analysis of the expression of Tenascin C (TNC) mRNA in WM983A 

(VGP) and WM1158 (MGP) melanoma cells compared to human melanocytes, propagated in 

vitro. The data are expressed as the mean (standard deviation from three independent 

experiments. (B) Immunoblot analysis depicting the level of TNC in the VGP and MGP 

melanoma cell lines and melanocytes. (C) Immunofluorescence analysis of melanocytes and 

VGP and MGP melanoma cell lines, probed with antibody to TNC (pseudocolored green) and 

actin (pseudocolored red). The cells were counterstained with fluorescent DAPI (pseudocolored 

blue). 
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α-Actinin-4 (ACN4) is another protein identified as differentially abundant between the 

SOC melanoma samples and controls. Furthermore, as depicted in Figure 12, this protein is 

clearly present at higher levels in melanoma cells compared to melanocytes, both at the level of 

the transcript and protein. α-Actinin-4 is an actin cytoskeleton filament bundling protein and 

plays crucial roles in cell migration and cytokinesis (Sjoblom et al., 2008). In addition, growth 

factor signaling is important for dynamic control of ACN4/actin filament interactions, which in 

turn regulates cell adhesion during substratum attachment and nuclear segregation during mitosis 

(Shao et al., 2009). 

 

Figure 12.  Alpha-actinin-4 expression in melanoma cells. 

(A) Quantitative RT-PCR analysis of α-actinin-4 (ACN4) expression in the WM983A (VGP) and 



 42 

WM1158 (MGP) melanoma cell lines and in melanocytes. The data are expressed as the mean 

(standard deviation from three independent experiments. (B) Immunoblot analysis of ACN4 

expression in the VGP and MGP melanoma cell lines and in melanocytes. (C) 

Immunofluorescence analysis of melanocytes and VGP and MGP melanoma cell lines, probed 

with antibody to ACN4 (pseudocolored green) and actin (pseudocolored red). The cells were 

counterstained with fluorescent DAPI (pseudocolored blue). 

 

The increased expression of both TNC and ACN4 was verified by immunohistochemistry 

(IHC) in WM983A injected SOCs in the region of the tumor lesion as compared to the collagen-

injected controls (Fig. 13). As expected, TNC appears to be localized to the extracellular space 

(Fig. 13A) whereas ACN4 expression is primarily observed to be intracellular (Fig. 13C). While 

low levels of TNC can be observed in the collagen-injected SOC, this observation likely arises 

from the fact that these skin cultures are immature and composed of neonatal fibroblasts and 

keratinocytes, both of which produce TNC. 
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Figure 13.  Immunohistochemical analysis of Tenascin C and α-actinin-4 in SOCs. 

Immunohistochemical analysis of the expression of Tenascin C (TNC) (A and B) and α-actinin-4 

(ACN4) (C and D) in SOCs injected with WM983A melanoma cells (A and C) compared to 

collagen injection controls (B and D). 

 

Thrombospondin-1 (TSP-1) was identified with an elevated abundance in both the MGP 

and VGP SOC sections compared to the controls. TSP-1 is a secreted protein that plays a role in 
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tissue remodeling, is upregulated in response to injury and inflammation (Bornstein, 2001) and 

has been detected at elevated levels in sera of patients with advanced melanoma (Bornstein, 

2009; Rofstad and Graff, 2001; Sid et al., 2004). Plectin was also substantially more abundant in 

the MGP melanoma cells than in the VGP melanoma cells. Plectin, a structural protein found in 

nearly every cell type, interacts with numerous cytoskeletal components and has a role in the 

interactions of intracellular junctions and contributes to tissue integrity (Svitkina et al., 1996; 

Wiche, 1989). Plectin has been shown to be upregulated in pancreatic and colon cancer (Bausch 

et al., 2009; Lee et al., 2004), but there are no reports that cite this protein as being expressed in 

advanced melanomas. Similar to Tenascin C and Fibronectin, Plectin was identified with an 

increased relative abundance in the melanoma tissue sample as compared to that of the normal 

skin sample.  

Alpha-enolase and pyruvate kinase M2 were identified with elevated abundances in the 

MGP SOC section relative to the other SOC samples. Increased levels of α-enolase have been 

previously associated with tumor cell migration and metastasis (Liu and Shih, 2007) and have 

been shown to be elevated in several metastatic melanoma cell lines (Nawarak et al., 2009; 

Rodeck et al., 1991). This increased expression level of α-enolase and pyruvate kinase M2 may 

reflect the apparent increased utilization of glycolysis for ATP generation in tumor cells as 

suggested by Warburg (Warburg et al., 1970). 

There are a number of notable proteins identified in the present study that merit further 

investigation. Of these, transgelin 2, a homolog of transgelin and member of a family of actin-

binding proteins that is proposed to be involved in cytoskeletal cross-linking and polymerization, 

was identified in greater relative abundance in the MGP SOC tissue section as compared to the 

other samples. There are several reports citing an upregulation of transgelins in gastric (Huang et 
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al., 2008) and colorectal (Zhang et al., 2009) cancers. Transgelin has been shown to be involved 

with ERK-related signal transduction, however, the function of transgelin in cancer development 

and progression remains to be elucidated. The cytokeratin (CK) pairs 5/14 and 6/16 and 17 were 

observed with decreased abundances in the VGP SOC section. It is well known that cytokeratins 

play a significant role in the organization and integrity of cellular structure and are indicators for 

differentiation state and metastatic nature of tumor cells. A previous study established 

diminished expression levels of CK 5/14 and 6/16 and 17 in metastatic melanoma (Riker et al., 

2008). The present analyses also reveal an apparent increase in the abundance of pulmonary 

surfactant protein D in the VGP SOC section. While its role in melanoma has not been fully 

explored, the gene encoding this protein has been shown to be induced in a variety of metastatic 

pulmonary and non-small cell lung cancers, and is detectable in a variety of others, such as 

gastric, pancreas and prostate (Betz et al., 1995).  

2.4 CONCLUSIONS 

The findings of these proteomic analyses establish the feasibility of using SOCs for 

evaluating the tumor microenvironment and the changes in the molecular events that drive 

invasion and progression of melanoma. Melanoma cell lines, representing VGP and MGP 

melanoma, injected into SOCs demonstrate the ability to perform a differential proteomic 

analysis using a spectral count approach and generation of proteomic profiles which very closely 

resemble those obtained from an analysis of differential protein abundances from melanoma and 

normal skin biopsy tissues. Indeed, several known melanoma-related proteins, such as Tenascin 

C and Fibronectin, were identified at different relative abundances in the SOCs, which directly 
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correspond to the abundance differences observed in the analysis of the tissue biopsy samples. 

These data suggest that melanoma-seeded SOCs represent a unique model system to gain further 

insight regarding proteins that support melanoma cell invasion and the crosstalk between 

melanoma cells and the skin microenvironment.  

2.5 MATERIALS AND METHODS 

2.5.1 Cell cultures and tissue samples 

Normal human epidermal melanocytes (FC-0019, Lifeline Cell Technology, 

Walkersville, MD) were maintained in DermaLife Basal Medium with LifeFactors (LM-0027, 

Lifeline Cell Technology). The VGP (WM983A) and MGP (WM1158) human melanoma cell 

lines were propagated in vitro as described (Becker et al., 1989). De-identified, post-diagnosis, 

excess pathological specimens, representing an advanced melanoma and an adjacent skin biopsy 

with no clinical signs of melanoma, resected from a patient, were obtained in compliance with a 

University of Pittsburgh Cancer Institute (UPCI) and University of Pittsburgh Institutional 

Review Board (IRB)-approved protocol.  

2.5.2 Antibodies and reagents 

An anti-human/mouse Tenascin C monoclonal antibody (MAB2138) was purchased from 

R&D Systems (Minneapolis, MN), and mouse anti-α-actinin-4 antibody (sc-49333) was from 

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Antibodies were used at a 1:200 dilution for 
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immunoblotting and immunocitochemistry. For immunohistochemistry stainings, anti-human 

Tensacin C mouse monoclonal antibody (ab6393) and anti-human/mouse α-actinin 4 antibody 

(ab32816, Abcam, Cambridge, MA) were used at the final concentration of 2 µg/ml. 

2.5.3 Skin organ cultures 

Skin organ culture experiments were performed on human Epiderm full-thickness 400 

(EFT-400) 3D skin-like structures obtained from MatTek Corporation (Ashland, MA). These 

constructs contain human-derived dermal fibroblasts and epidermal keratinocytes and utilize 

bovine collagen as the base for the dermal matrix. Cultures were maintained at the air-liquid 

interface and supplied every other day with maintenance medium (EFT-400-MM, MatTek). 

Cultures were injected intra-epidermaly with 10,000 melanoma cells (either WM983A or 

WM1158) resuspended in 3 µg/mL rat tail collagen (R&D Systems). Collagen-injection and non-

injected SOCs served as controls. On day 13 after injection, tissues were divided in half with a 

razor; one half was formalin-fixed and paraffin-embedded, and the other half was embedded in 

OCT and frozen in liquid nitrogen. This time point was chosen based on previous reports as 

sufficient time for growth of tumor-like structures within the SOC (Eves et al., 2000; Meier et 

al., 2000a). Furthermore, the SOC maintain structural integrity for throughout this time period 

but begin to degenerate upon further culture. Cells from defined regions were acquired by laser 

micro-dissection (Leica LMD 6000, Leica Microsystems, Inc., Bannockburn, IL) and collected 

in 40 µL of purified H2O in RNAase/DNAse-free microcentrifuge tubes.  
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2.5.4 FFPE sample preparation 

Samples were brought to 100 mM NH4HCO3, pH 8.4, 60% acetonitrile and incubated in a 

thermal cycler at 100 °C for 1 h, and thereafter at 65 °C for an additional 2 h. Samples were 

cooled to ambient temperature, followed by addition of 100 ng of modified porcine sequencing 

grade trypsin (Promega) and incubated for 16 h at 37 °C. Samples were vacuum-dried and 

desalted using PepClean desalting columns (Pierce) according to the manufacturer’s protocol. 

Eluted peptides were vacuum-dried and stored at -80 °C.  

2.5.5 Human melanoma biopsy sample preparation 

Cryopreserved melanoma and human skin samples were placed in a Petri dish containing 

phosphate-buffered saline (PBS) on wet ice and cut into small pieces with a scalpel. Tissues were 

transferred to microcentrifuge tubes, homogenized for 10 s, snap-frozen in liquid nitrogen and 

brought to ambient temperature. Tissue lysates were sonicated for 15 sec (50 Hz) and 

supernatant was collected by centrifugation (2000 x g, 10 min). Fifty µg of each protein lysate 

was resolved by 1D SDS-PAGE and each lane was cut into ten equivalent slices that were 

digested in-gel according to established protocols.(Wilm et al., 1996) Briefly, gel bands were 

destained in 50% acetonitrile in 50 mM NH4HCO3, pH 8.4 and vacuum-dried. Trypsin (20 

µg/mL in 25 mM NH4HCO3, pH 8.4) was added and samples were incubated on wet ice for 45 

min. The supernatant was removed and gel bands were covered with 25 mM NH4HCO3, pH 8.4 

and incubated at 37 °C overnight. Tryptic peptides were extracted with 70% acetonitrile, 5% 

formic acid, lyophilized to dryness and resuspended in 0.1% trifluoroacetic acid (TFA) prior to 

LC-MS/MS analysis.  
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2.5.6 Mass spectrometry analyses 

Skin organ culture tryptic digests were analyzed in duplicate by nanoflow reversed-phase 

liquid chromatography (LC)-MS/MS using a nanoflow LC (Dionex Ultimate 3000, Dionex 

Corporation, Sunnyvale, CA) coupled online to a linear ion trap MS (LTQ-XL, ThermoFisher 

Scientific, San Jose, CA). Human biopsy tissue tryptic digests were similarly analyzed on an 

LTQ-Orbitrap MS (ThermoFisher). Separations were performed using 75 µm i.d. x 360 o.d. x 15 

cm long fused silica capillary columns (Polymicro Technologies, Phoenix, AZ) slurry packed in 

house with 5 µm, 300 Å pore size C-18 silica-bonded stationary phase (Jupiter, Phenomenex, 

Torrance, CA).  

Following sample injection onto a C-18 trap column (Dionex), the column was washed 

for 3 min with mobile phase A (2% acetonitrile, 0.1% formic acid) at a flow rate of 30 µL/min. 

Peptides from the SOC tissue sections were eluted using a linear gradient of 0.33% mobile phase 

B (0.1% formic acid in acetonitrile)/minute for 130 min, then to 95% B in an additional 15 min, 

all at a constant flow rate of 200 nL/min. In the case of the melanoma and skin tissue samples, 

peptides were eluted using a linear gradient of 1% mobile phase B/minute for 40 min, then to 

95% B in an additional 10 min, all at a constant flow rate of 200 nL/min. Column washing was 

performed at 95% B for 15 min for all analyses, after which the column was re-equilibrated in 

mobile phase A prior to subsequent injections.  

For the SOC analyses, the MS was operated in data-dependent MS/MS mode in which 

each full MS scan was followed by seven MS/MS scans performed in the linear ion trap (LIT) 

where the seven most abundant peptide molecular ions were selected for collision-induced 

dissociation (CID), using a normalized collision energy of 35%. The human melanoma and 

normal skin tissue digests were analyzed using a high resolution (R=60,000 at m/z 400) full MS 
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scan conducted in the Orbitrap followed by tandem MS of the top five molecular ions in the LIT 

as described above. Data were collected over a broad precursor ion selection scan range of m/z 

375-1800 for the SOC analysis and m/z 350-1800 for the analysis of the human tissue samples. 

Dynamic exclusion was enabled for both MS analyses to minimize redundant selection of 

peptides previously selected for CID.  

2.5.7 Bioinformatic analysis 

 Tandem mass spectra were searched against the UniProt human protein database (11/09 

release) from the European Bioinformatics Institute (http://www.ebi.ac.uk/integr8), using 

SEQUEST (ThermoFisher Scientific). Additionally, peptides were searched for methionine 

oxidation with a mass addition of 15.9949 Da. Peptides were considered legitimately identified if 

they met specific charge state and proteolytic cleavage-dependent cross correlation scores of 1.9 

for [M+H]1+, 2.2 for [M+2H]2+ and 3.5 for [M+3H]3+, and a minimum delta correlation of 0.08. 

A false peptide discovery rate of approximately 2% was determined by searching the primary 

tandem MS data using the same criteria against a decoy database wherein the protein sequences 

are reversed (Elias and Gygi, 2007). Results were further filtered using software developed in-

house, and differences in protein abundance between the samples were derived by summing the 

total CID events that resulted in a positively identified peptide for a given protein accession 

across all samples (spectral counting) (Liu et al., 2004). The spectral count data were normalized 

for each protein accession by calculating the percent contribution of the spectral count values for 

each protein accession against the total number of peptides identified within a given sample 

(Patel et al., 2008). 
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2.5.8 Real-time PCR 

Total mRNA from the melanocytes and melanoma cell lines was isolated using an 

RNAeasy Mini Kit (Qiagen, Valencia, CA), and 1 µg of mRNA was reverse-transcribed into the 

corresponding first-strand cDNA with the Quantitect Transcription Kit (Qiagen). PCR reactions 

were performed on a MX3000P Real-Time PCR instrument (Stratagene, Agilent Technologies, 

Santa Clara, CA), using 1 µl of first-strand cDNA per reaction with Brilliant SYBR Green QPCR 

Master Mix (Stratagene). Primers (Integrated DNA Technologies, Coralville, IA) are listed in the 

Table 2:  

Table 2. Primers used in real time PCR  

 

 

 

cDNA Sequence of primers 

Tenascin C 

Forward 

Reverse 

 

5’-GAGGTCAACAAAGTGGAGGCA-3’ 

5’-GAGAGATTGAAGCTCTCGGGAG-3’ 

α-Actinin-4 

Forward 

Reverse 

 

5’-CATATCAGGGGAGCGGTT-3’ 

5’-GCAATAAAGTCCAGCGCT-3’ 

GAPDH 

Forward 

Reverse 

 

5’-GAGTCAACGGATTTGGTCGT-3’  

5’-TTCATTTTGGAGGGATCTCG-3’ 
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All experiments were performed in triplicate, fold-abundance changes in transcript levels 

were quantified by the ΔCt method and target gene expression was normalized to GAPDH. The 

VGP melanoma cell line, WM983A, was used as a reference. 

2.5.9 Immunoblotting and Immunostaining 

Cell lysates were obtained by snap-freezing, thawing, and vortexing in lysis buffer (50 

mM Hepes, pH 7.9, 0.4 M KCl, 0.5 mM EDTA, 0.1% NP-40, 10% glycerol) supplemented with 

1 mM sodium orthovanadate, 50 mM sodium fluoride and protease inhibitor cocktail set V 

(Calbiochem, EMD Chemicals, Gibbstown, NJ). Protein concentrations were determined by the 

BCA assay (Pierce, Rockford, IL), and 100 µg of total protein per sample was resolved by 1D 

SDS-PAGE. Samples were transferred to PVDF membranes (Millipore, Billerica, MA), blocked 

with 5% milk in PBST and incubated with primary antibody overnight at 4 °C. Secondary 

antibody was added for 1 h at ambient temperature and blots were detected with SuperSignal 

West Pico Chemiluminescent Substrate (Pierce).  

Normal human melanocytes, and likewise melanoma cells, were seeded on glass 

coverslips and fixed with 2% formaldehyde for 30 min at ambient temperature. After washing 

with PBS, cells were treated for 5 min with 0.2% Triton-X on wet ice and blocked with 5% goat 

serum for 30 min at ambient temperature. Incubation with anti-tenascin-C diluted in 1% goat 

serum was performed for 2 h at ambient temperature. After washing extensively with PBS, 

secondary goat anti-mouse 488-Alexa Fluor antibody (Molecular Probes, Invitrogen) was added 

for 1 h. Actin fibers were stained with rhodamin phalloidin (Invitrogen) for 40 min at ambient 

temperature and nuclei were stained with DAPI. Slides were mounted and images were acquired 

with a 60X objective using an Olympus BX-40 microscope.  
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2.5.10 Immunohistochemistry in SOCs 

5µm sections of paraffin embedded specimens were cut, transferred to poly-L-lysine 

coated slides and deparaffinized 2 hours at 58°C. Slides were then dewaxed in xylene, rehydrated 

in series of desending grades of alchocol and washed with deionized water. Antigens were 

retrieved for 15 min in 1% pepsin in 10mM HCl for TNC staining or heat induced for 20min in 

citrate biffer pH6 (Dako, Carpinteria, CA) for ACN-4 staining. Endogenous peroxidase was 

blocked with 3% H2O2, and sections were then incubated in 5% goat serum to decrease 

background staining. Sections were incubated with primary antibodies for 2h in humified 

chamber in 37°C incubator, washed and incubated with biotinilated secondary goat anti-mouse 

antibody (Jackson ImmunoResearch, West Grove, PA) at 1:250 dillution. Vectastatin ABC kit 

(PK-6100) and DAB peroxidase kit (SK-4100) were both form Vector Laboratories (Burlingame, 

CA). Slides were counter stained with Meyer’s hematoxylin (Vector Laboratories), dehydrated 

and mounted with Permount solution (Fisher Scientific, Pittsburgh, PA). Images were acquired 

with a 10X objective using Olympus BX-40 microscope and SPOT imaging software (Sterling 

Heights, MI). 

2.6 SUPPORTING INFORMATION 

 

The complete list of peptides/proteins, identified in the various SOC sections and the 

melanoma and skin tissue samples are listed in Appendix A (Global protein and peptide results 

for the skin organ construct FFPE tissue samples (Tabs 1 and 2 respectively) and biopsy tissue 
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sample (Tabs 3 and 4 respectively) analyses. Xcorr, Sequest cross correlation score; DeltaCn, 

Sequest delta correlation score.).  
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3.1 ABSTRACT 

Tenascin C (TNC), overexpressed in invasive growths, has been implicated in 

progression of melanoma but the source and function of this molecule are not well defined. We 

found TNC expression at the front of invading melanoma cells, and that adding TNC to matrices 

enhances individual melanoma cell migration. As TNC is a multidomain protein, we examined 

the role of the TNC EGF-like repeats (EGFL) as these activate motogenic signaling cascades. 

We overexpressed a TNC fragment containing the assembly and EGFL domains of TNC 

(TNCEGFL). TNCEGFL-expressing melanoma cells had lower speed and persistence in 2D 

migration assays due to a shift in the adhesion-contractility balance, as expression of TNCEGFL 

delayed melanoma cell attachment and spreading. The less adhesive phenotype was due, in part, 

to increased ROCK signaling concomitant with MLC2 and MYPT phosphorylation. Inhibition of 

ROCK activity, which drives transcellular contractility, restored adhesion of TNCEGFL 

expressing melanoma cells and increased their migration in 2D. In contrast to the diminished 

migration in 2D, TNCEGFL-expressing melanoma cells had higher invasive potential in 

Matrigel invasion assays, with cells expressing TNCEGFL having amoeboid morphology. Our 

findings suggest that melanoma-derived TNC EGFL play a role in melanoma invasion by 

modulating ROCK signaling and cell migration.  
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3.2 INTRODUCTION 

 

Melanoma, which continues to increase in frequency, has a very low response rate to 

current therapies, with the tumor invading through a collagen-rich dermis to disseminate to 

ectopic sites. The transition from melanoma in situ and radial growth phase (RGP) to the vertical 

growth phase (VGP) melanoma is poorly understood. The invasive aspects of tumor progression 

represent complex molecular events, which involve recognition and remodeling of extracellular 

matrix (ECM), changes in intracellular signaling and reorganization of the cytoskeleton, 

allowing for enhanced motility of tumor cells (Friedl and Gilmour, 2009; Wells, 2000). While 

there are numerous changes in both the melanoma cells and the dermis during this progression, 

one striking feature is the re-expression of Tenascin C (TNC) (Hood et al., 2010; Ilmonen et al., 

2004; Kaariainen et al., 2006). TNC is an extracellular matrix protein linked to development and 

tissue regeneration along with tumor invasion (Jones and Jones, 2000b; Midwood et al., 2011). 

TNC is barely detectable in normal skin, but present in substantial amounts in advanced 

melanoma particularly at the invasive fronts and lack of detectable TNC in primary melanoma 

lesions has been shown to correlate with a lower risk of developing metastases (Kaariainen et al., 

2006). In the tumor microenvironment, TNC is produced by both transformed tumor cells and 

stromal cells (De Wever et al., 2004; Hanamura et al., 1997; Yoshida et al., 1997) and in vitro, 

the majority of human melanoma cell lines secrete TNC (Herlyn et al., 1991). Thus, an open 

question remains of whether the TNC expressed by the melanoma cells can drive tumor cell 

invasion.  

TNC is a hexameric protein composed of 180 to 320 kDa monomers, which are disulfide 

linked at the N-termini. Each subunit contains: a globular N-terminal assembly domain, a 
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domain composed of 14.5 Epidermal Growth Factor-like (EGFL) repeats, a domain composed of 

fibronectin type III-like (FNIII) repeats, and a fibrinogen-like sequence on the C terminus 

(Aukhil et al., 1993), and each domain has a potentially distinct role (Jones and Jones, 2000b). 

Tenascin C has been shown to modulate many of the processes involved in cell migration and 

invasion (reviewed in (Orend, 2005; Orend and Chiquet-Ehrismann, 2006). The majority of 

cancer cell lines fail to attach on TNC coated surfaces (Huang et al., 2001), with some 

exceptions where TNC is adhesive (Paron et al., 2011), while endothelial cells attach and spread 

on TNC (Sriramarao et al., 1993). In addition, soluble and substratum-adsorbed TNC have 

distinct effects on cell adhesion and proliferation (Orend and Chiquet-Ehrismann, 2000). These 

seemingly discrepant findings are in part traceable to the different signaling propensities of the 

multiple domains of TNC being impacted by the presence of other matrix components and the 

potentially differential effects of signals in two- versus three-dimensions. 

We have previously reported that distinct EGFL repeats of TNC bind and signal through 

the EGF receptor in a novel manner as ultra low affinity/high avidity ligands (Iyer et al., 2007a; 

Swindle et al., 2001). The ‘staccato’ nature of the individual EGFL repeat binding to the receptor 

results in an anti-adhesive phenotype that must be balanced by the adhesive matrix proteins or 

even the fibronectin-like repeats of TNC.  In the presence of adequate pro-adhesive moieties, 

these EGFL repeats restrict signaling to the plasma membrane and preferentially activate a 

motogenic signaling cascade (Iyer et al., 2008).  As little is known about TNC matrikine role in 

melanoma we tested the role of EGFL repeats in melanoma motility and invasion. Herein we 

report that TNC promotes melanoma cell invasion and that this activity can be localized to the 

EGFL repeats.  
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3.3 RESULTS 

3.3.1 Advanced melanoma cell lines express TNC and increase migration in response to 

exogenous TNC 

In melanoma, TNC is present at high concentrations in the dermal matrix having 

increased from negligible levels in normal dermis (Hood et al., 2010; Kaariainen et al., 2006; 

Tuominen and Kallioinen, 1994). We examined TNC expression in human melanoma tissue 

microarray with the antibody specific for the EGFL repeats of Tenascin C (ab6393) and observed 

that it’s expression increases with melanoma progression (Figure 14A). To test whether 

melanoma cell derived TNC could be involved in dissemination we first examined expression 

levels in three melanoma cell lines derived from different stages. The WM35 cells derived from 

superficial spreading melanoma (RGP/VGP) expressed little if any TNC, similar to human 

melanocytes (Hood et al., 2010), while VGP WM983A cells and metastatic growth phase (MGP) 

cells derived from the same patient WM983B expressed high levels of TNC ( Figure 14B). This 

TNC was incorporated into the cell-generated matrix in the extracellular space and, of greater 

interest, the melanoma-derived TNC was being secreted asymmetrically at the front of the 

invading melanoma cells, as observed by confocal microscopy during the invasion of a Matrigel 

matrix (Figure 14C and D). In fact, we found that invasiveness of the three melanoma cell lines 

directly correlated to the TNC expression levels (R2=0.83) (Figure 14E). These data strongly 

suggest a role for TNC, derived from the melanoma itself as driving transmigration.  

As motility is a predictive aspect of tumor invasion (Kassis et al., 2001; Wells, 2000) and 

consistent with reports of TNC being motogenic (Chung et al., 1996; Iyer et al., 2008; Nishio et 

al., 2005; Paron et al., 2011; Swindle et al., 2001), melanoma cell lines expressing higher levels 
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of TNC migrated faster in live cell tracking experiments and had greater directional persistence, 

as measured by cell track straightness (Figure 14F, white bars). That the increase in cell speed 

was due to the TNC incorporated into the substratum was shown by adding TNC to the 

Collagen-I coating on tissue culture dishes; this further increased melanoma migration of all 

three cell lines tested (Figure 14F, gray bars). Additionally, there was high correlation (R2=0.99) 

between levels of TNC being expressed by melanoma cells, but not with exogenously added 

TNC, and cell track straightness. Cell track straightness is a measure of directionality of cell 

movement and is a ratio between displacement of a cell and the track length for a set period of 

time implying a directional component to the endogenously expressed TNC. These data suggest 

that both endogenously produced and exogenously presented TNC contribute to melanoma 

migration, but that the cells asymmetrically place the endogenously produced TNC to promote 

directional translocation. 
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Figure 14.  Expression of TNC in human melanoma samples and cell lines and its influence 

on melanoma cell invasion and migration.  

(A) TMA (tissue micro-array) stained with the antibody recognizing EGFL repeats of 

TNC (ab6393) (brown) and counterstained with hematoxylin. Scale bar 50µm. Shown are 

representative primary tumor samples. (B) Immunoblot and (C) immunostaining analyses show 

increased TNC protein expression and extracellular deposition in VGP and MGP phase 

melanoma cell lines compared to a cell line derived from superficially spreading melanoma. 

Scale bars are 50µm. Images are representative of at least three independent experiments. (D) 

During invasion in Matrigel, TNC is deposited at the fronts of WM983A cells. The size of the 3D 

model is: width 83µm, height 85µm, depth 63µm. (E) Melanoma cell lines expressing higher 

amounts of TNC invade to a greater extent in Matrigel invasion assays (R2=0.83). Shown is the 

mean ± SD of three experiments. (F) Melanoma cell speed (left panel) increases on surfaces 

coated with Collagen I -Tenascin C mixture compared to Collagen I alone, while cell track 

straightness (displacement divided by total track length, right panel) correlates with the levels of 

endogenous TNC expression (R2=0.99) but does not change upon exogenous addition of TNC. 

Box and whisker plots summarize average from three independent experiments, N > 50 tracks 

per treatment in repeated experiments. *p < 0.05, ** p < 0.01 (box encompasses 25-75%, with 

bars 10 (square)-90 (X)%, median is the triangle).  

3.3.2 TNCEGFL expression impairs migration of melanoma cells in 2D 

TNC is distinguished from most of the other Tenascin family members by the inclusion 

and/or extent of the EGF-like repeat region. We have reported that at least some of these EGFL 

repeats function as cryptic growth factors that preferentially promote motility (Iyer et al., 2007a; 
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Swindle et al., 2001). As multivalent concatamers of EGF-like repeats are difficult to synthesize 

and pose challenges to incorporating into matrices, we over-expressed the Tenascin C EGF-like 

repeats transcript in the WM983A cell line (WM983A-TNCEGFL), a cell line already 

expressing substantial amounts of endogenous full length TNC, but responding to additional 

exogenous TNC (Figure 14). A vertical growth phase melanoma cell line was chosen as a model 

system as an intermediate phenotype of the cell lines tested regarding motility in 2D and 3D 

assays, so that changes in both directions can be observed. The TNCEGFL monomer ran in 

PAGE analyses at the predicted size of 69kDa and, as assessed under non-reducing conditions, 

assembled in polymers with the endogenous full length TNC (Figure 15A). Staining with 

antibody that recognized the EGFL repeats (MAB2138, R&D Systems) revealed that TNCEGFL 

formed punctuated extracellular network, compared to WM983A cells transfected with an empty 

vector (WM983A-EV), which formed prominent fibrilar TNC mesh, supporting the role of TNC 

FN repeats in organization of TNC extracellular network (Ramos et al., 1998) (Figures 15B, 

lower panel and 18B). Interestingly, while WM983A-EV cells arranged themselves in a 

distributed mesh, the WM983A-TNCEGFL cells aligned to form cords (Figure 15B, upper 

panel).  



 64 

 

 

Figure 15. Expression of TNCEGFL in WM983A cell line. 

(A) Immunoblotting of TNC under non-reducing conditions with the antibody recognizing EGFL 

repeats (R&D Systems): whole cell lysates and matrix are shown in the left and conditioned 
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melanoma media are in the right. Graphic depiction of the full length TNC and TNCEGFL 

construct is provided. (B) Immunostaining of TNC: endogenous TNC forms fibrilar mesh in the 

ECM while TNCEGFL is punctuate (lower panel 60X, arrow heads point to the TNC fibers and 

punctae, respectively), WM983A-TNCEGFL forms organized cords compared to unorganized 

WM983A-EV cell distribution (upper panel 20X). Scale bars 50µm.  

 

Of interest, and unexpectedly, WM983A-TNCEGFL cells migrated significantly slower 

in a 2D wound healing assay that measures directional collective 2D migration (Figure 16A) and 

presented individually at a significantly reduced average speed in live cell tracking experiments 

(3.9 nm/s) compared to WM983A-EV cells (4.5 nm/s) (Figure 16B). Moreover, cell track 

straightness was significantly reduced (Figure 16B right panel) in WM983A-TNCEGFL cells, 

suggesting that the loss in cell movement directionality in 2D is contributing to decrease in 

collective cell migration. The phenotype was confirmed in WM35 cell line, which expresses 

little if any endogenous TNC. Upon transient expression of either full length TNC or TNCEGFL 

average cell speed and cell track straightness significantly decreased in 2D live cell tracking 

experiments with the TNCEGFL cells migrating the slowest (Figure 17). This confirms the 
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findings with the over-expression of TNC constructs in the invasive melanoma cells.

 

Figure 16. WM983A-TNCEGFL cells present impaired 2D cell migration. 

(A) WM983A-TNCEGFL cells migrate significantly slower in wound healing assays. 

Scale bar 200µm. The graph shows mean ± SEM of three experiments each in triplicate. (B) 

Individual cell speed and track straightness of WM983A-TNCEGFL cells are significantly 



 67 

decreased compared to WM983A-EV cells. N > 50 tracks per phenotype (box encompasses 25-

75%, with bars 10%-90%, median is the triangle). * p < 0.05, ** p < 0.01. 

 

 

 

 

Figure 17. Expression of TNCFULL or TNCEGFL impairs WM35 cell migration. 

 (A) Immunoblotting of TNC under non-reducing conditions with the antibody 

recognizing EGFL repeats (R&D Systems) and ppMLC: whole cell lysates and matrix at the end 

of live cell tracking experiment; increased ppMLC in cells transfected with TNC constructs. 

Intensities of protein bands were determined by integrating optical density over the band area 
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using Image J software, normalized to the GAPDH levels and divided by the lane 1. (B) 

Individual cell speed and track straightness of WM35 cells transfected with TNCFULL or 

TNCEGFL are significantly decreased compared to WM35-EV cells. N > 50 tracks per 

phenotype. * p < 0.05, ** p < 0.01. TNCEGFL expressing cells have more severe phenotype 

than TNCFULL. 

3.3.3 TNCEGFL expression impairs melanoma cell attachment 

Migration speed in 2D results from a balance in adhesion and contractility in a biphasic 

manner (DiMilla et al., 1991; DiMilla et al., 1993; Lauffenburger and Horwitz, 1996). Decrease 

in adhesiveness could alter the cell speed in increasing or decreasing manner, depending on the 

initial adhesiveness to substratum. Examining this aspect, we found that TNCEGFL expressing 

cells were slower to adhere to and spread on substrata (Figure 18A). In cell spreading assays, 

TNCEGFL expressing cells started spreading with a 4h lag compared to cells expressing an 

empty pcDNA3.1 vector (Figure 18A). Furthermore, attachment of WM983A cells was inversely 

correlated to the amount of TNCEGFL repeats being expressed (Figures 18A and B). While 

over-expression of the full length of TNC (TNCFULL) did not impair cell attachment, 

expression of the EGFL repeats suppressed attachment in dose dependent manner. This 

phenotype was intrinsic as the difference in cell spreading and migration between WM983A-

TNCEGFL and WM983A-EV persisted on plastic culture dishes or Fibronectin-1 coated 

surfaces (Figure 19). The difference in adhesiveness was not likely due to altered attachment 

proteins as the integrin profile of the TNCEGFL-expressing cell line remained the same as the 

one transfected with an empty vector, as determined by PCR Array (SABiosciences, PAHS-

013A) (Table 3) nor was this an artifact of cell death as 48 hours post plating there were equal 
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cell numbers (Figure 18B). The reduced adhesion and spreading were due to an anti-adhesive 

phenotype of the EGFL repeats, as quantified in inverted centrifugation assays. Adherent 

WM983A-TNCEGFL cells detached to a greater extent when subjected to centrifugal force than 

WM983A-EV cells (Figure 18C).  

Table 3. Integrin profiles of WM983A-EV and WM983A-TNCEGFL cell lines determined by 

PCR array 

 WM983A-TNCEGFL WM983A-EV  

gene symbol Ct Ct fold change 

ITGA1 25.60 26.23 1.34 

ITGA2 28.35 29.09 1.45 

ITGA3 25.85 25.87 0.88 

ITGA4 21.79 22.03 1.03 

ITGA5 25.92 25.40 0.61 

ITGA6 20.59 20.59 0.87 

ITGA7 30.17 30.58 1.16 

ITGA8 35.00 35.00 0.87 

ITGAL 34.60 34.81 1.01 

ITGAM 32.18 35.00 6.14 

ITGAV 22.20 21.86 0.67 

ITGB1 20.05 20.14 0.93 

ITGB2 33.03 35.00 3.41 

ITGB3 25.83 26.14 1.08 
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ITGB4 34.74 34.18 0.59 

ITGB5 25.15 25.95 1.51 

     

HPRT1 22.04 21.83  

RPL13A 19.21 18.89  

GAPDH 17.24 16.99  

ACTB 14.33 15.34  

 

 * The grey shaded genes’ average threshold cycle is relatively high (> 30), meaning that 

its relative expression level is quite low and thus quantitation is difficult, in both control and test 

samples, and thus, fold changes while in two seemingly significant, are likely biologically 

irrelevant. All other changes for mRNA that are present at readily measurable levels are not 

statistically significant. 
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Figure 18. WM983A-TNCEGFL cells present impaired cell spreading and 

attachment that is TNCEGFL dose dependant.  

> 
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(A) Cells were imaged at the indicated times after seeding by phase contrast microscopy 

and scored for the percentage of spread cells (upper panel). Lower panel shows the difference in 

cell spreading at 6h. Shown are representative of three experiments. Scale bar 100µm. (B) 

Immunostaining of TNC in two clones of WM983A-TNCEGFL (C1 and C3) and the full length 

TNC (TNCFULL) construct. (C) WM983A-TNCEGFL detached to a greater extent in inverted 

centrifugation assays. Shown is an average ± SEM of three experiments, each in triplicate. *  p < 

0.05. 

 

 

Figure 19. TNCEGFL expressing cells have anti adhesive phenotype that persists on 

Fibronectin coated surfaces and have unchanged proliferation rates compared to 

WM983A-EV cells. 
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(A) Quantification of cell attachment assay (left panel) and wound healing assay (right 

panel) on 2µg/cm2 fibronectin coated surface. (B) Number of WM983A-EV and WM983A-

TNCEGFL cells 48h post plating determined with trypan blue dye exclusion. 

3.3.4 Expression of TNCEGFL activates ROCK signaling 

The critical aspect of both cell migration and attachment/spreading is the ratio of 

adhesion to transcellular contractility (Lauffenburger and Horwitz, 1996). As integrin profiles 

were similar and the phenotype persisted across different substrata, we focused on contractility 

that creates tension within the cell and determines the round cell shape (reviewed in (Sanz-

Moreno and Marshall, 2010)), mainly the Rho-associated kinase (ROCK) and myosin light chain 

2 (MLC2). ROCK inhibitor Y27632 dramatically improved adhesion and spreading of 

WM983A-TNCEGFL cells when added at the time of plating (Figure 20A). 2D migration of 

WM983A-TNCEGFL cells was slightly but statistically significantly increased when 5µM 

Y27632 was added at the time of introducing “the wound”, compared to the WM983A-EV 

(Figure 20B). This is in accordance with findings that inhibition of ROCK in the absence of 

three-dimensional environment enhances cell movement (Sahai and Marshall, 2003) as it allows 

generation of protrusions and adhesion of the leading edge.  

Activated ROCK affects the state of MLC2 phosphorylation by direct phosphorylation of 

MLC2 and by phosphorylation and inhibition of MLC phosphatase (Amano et al., 2000). 

Phosphorylation of MLC2 on Ser-19 is only partially dependent on ROCK whereas 

diphosphorylation on both Thr-18 and Ser-19 and myosin phosphatase phosphorylation (which is 

inhibitory to this contractility antagonist) on Thr-853 are ROCK dependent (Ren et al., 2004). It 

has been shown that upon cell detachment Rho-ROCK signal transduction is disrupted (Ren et 
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al., 2004).  Therefore, we examined the phosphorylation status of these molecules in trypsinized 

(detached) and replated WM983A-EV and WM983A-TNCEGFL cells during the time course of 

8 hours (Figure 20C). We observed that after detachment phosphorylation levels drop and during 

the course of attachment WM983A-EV cells gradually increase diphosphorylation of MLC2 

(ppMLC2) while TNCEGFL expressing cells have constant higher levels of ppMLC2. 

Monophosphorylation on Ser-19, as expected, did not differ in WM983A-TNCEGFL cells 

compared to WM983A-EV. Increased diphosphorylation of MLC2 may induce premature 

contraction and decreased spreading, the phenotype that we observe in TNCEGFL expressing 

cells. Additionally, in TNCEGFL expressing cells phosphorylation of Thr-853 MYPT, myosin-

binding subunit of myosin phosphatase, that inhibits its phosphatase activity, was increased 

compared to WM983A-EV. Furthermore, transient expression of TNCFULL or TNCEGFL in 

WM35 cells increased basal levels of ppMLC (Figure 17A) As adhesion provides physical 

support for contraction and effective migration on rigid substrates, our results imply that overly 

activated ROCK and its effectors in TNCEGFL expressing cells lead to impaired cell attachment 

and movement in 2D.  
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Figure 20. Expression of TNCEGFL activates ROCK signaling.  

(A) Effects of ROCK inhibitor Y27632 on WM983A cell spreading (shown at 4h post 

plating (left panel) and quantification (right panel)) and migration (B). Shown is mean ± SEM of 

three experiments each in triplicate, * p > 0.05. Scale bars 50µm. (C) Phosphorylation of the 
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downstream ROCK effectors MLC2 and MYPT in WM983A-TNCEGFL cells during the course 

of attachment compared to WM983A-EV. Intensities of protein bands determined by integrating 

optical density over the band area using Image J software, normalized to the GAPDH levels 

showed increases between 1.5 to 2.0 fold across all three repeats for WM983A-TNCEGFL 

ppMLC and pMYPT levels compared to WM983A-EV across time points.  

 

3.3.5 TNCEGFL expressing melanoma cells have increased invasion potential 

The foregoing presents a cell that is less attached to the substrata, and likely exhibits 

greater shape plasticity, and thus may preferentially move through a 3D matrix (Friedl et al., 

1998; Wolf et al., 2003). To address the question of the role of TNCEGFL in 3D migration and 

invasion we performed Matrigel invasion experiments. WM983A-TNCEGFL cells had rounded 

morphology in Matrigel, as observed by confocal microscopy, and the phenotype could be 

reverted to the elongated mesenchymal type in the presence the ROCK inhibitor (Figure 21A). In 

addition, WM983A-TNCEGFL cells invaded to a greater extent than WM983A-EV cells (Figure 

21B). Confocal imaging of individual invading cells in 3D revealed that WM983A-TNCEGFL 

cells had rounded blebbing morphology with high diphosphorylated MLC present in the invading 

blebs, compared to WM983A-EV cells which had a mesenchymal morphology with filamentous 

protrusions (Figure 21C). Increased invasion potential was not due to increased gelatinase 

activity as the activities of MMP2 and MMP9 did not change (Figure 22).  Our findings are in 

line with the notion that round melanoma cells are able to squeeze through gaps in ECM more 

readily (Gaggioli and Sahai, 2007) as a result of strengthening of the Rho/ROCK signaling 
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pathway as one of the mechanisms leading to mesenchymal to amoeboid migration transition 

(reviewed in (Friedl, 2004)).   

Finally, we tested the ability of WM983A-EV and WM983A-TNCEGFL cells to invade 

into the collagen-rich dermis of all-human skin organ cultures, a model that better captures 

melanoma invasion in the human skin. While WM983A-EV cells disrupted formation of 

stratified epidermis, they did not invade into dermis in the 20-day period. On the contrary, 

WM983A-TNCEGFL cells were able to penetrate in the dermis compartment of skin organ 

cultures (Figure 21D). 
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Figure 21. TNCEGFL expressing cells have rounded morphology in 3D and present 

higher invasion potential.  

(A) Morphology of WM983A-EV and WM983A-TNCEGFL cells seeded in Matrigel in the 

absence or presence of Y27632 inhibitor. Scale bars 100µm. (B) Extent of invasion into Matrigel 

after 48h, in the absence or presence of Y27632 inhibitor, results are shown relative to the 

WM983A-EV invasion, average ± SD n=3, * p < 0.05. (C) Confocal stacks of individual 

WM983A-EV and WM983A-TNCEGFL invading cells in 3D Matrigel, immunostained for 

diphosphorylated MLC (Cell Signaling). Arrowheads point to actin protrusions and blebs, 

respectively. The left hand part of each image is the Z stack in the transverse plane through the 

cell, whereas the right hand part is the coronal section with the depth to the left. Scale bars 

10µm. (D) Representative images of H&E stained skin organ cultures seeded without or with 

WM983A-EV and WM983A-TNCEGFL melanoma cells after 20 days of culture. Arrow points to 

invading WM983A-TNCEGFL cells. Scale bar 100µm. E-epidermis, D-dermis, M-melanoma. 

These results are representative of three independent experiments.  
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Figure 22. TNCEGFL expressing cells have unchanged MMP2 activity compared to 

WM983A-EV cells.  

Gelatin zymogram of WM983A-EV and WM983A-TNCEGFL conditioned medium or cell 

lysates.   

3.4 DISCUSSION 

The most important step in progression from melanoma in situ to advanced metastatic 

disease is acquiring invasive ability. Advanced melanomas produce substantial amounts of TNC 

that are thought to form fibrillar channels allowing invasion (Kaariainen et al., 2006). Down-

regulating TNC in melanoma cells leads to impaired lung colonization and metastasis formation 

(Fukunaga-Kalabis et al., 2010); this was also observed in TNC-deficient breast cancer cells in 

which TNC maintains the metastatic niche (Oskarsson et al., 2011). Therefore, increased levels 

of TNC secreted by melanoma cells may not only promote tumor invasion but also contribute to 

metastatic seeding. Despite the phenomenological descriptions, the actual cellular mechanisms 

by which TNC contributes to invasiveness of melanoma are not defined. Herein, we show that 
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one aspect driven by TNC is the enhanced migration through matrices signaled by the EGFL of 

this matrix molecule. 

In this report we show that advanced melanoma cell lines themselves express large 

amounts of TNC that is incorporated into the extracellular matrix, and further respond to 

exogenous TNC by increasing migration speed. We observe that asymmetrical placement of 

TNC at the cells’ front may promote directional translocation during melanoma cell invasion. As 

TNC is susceptible to proteolytic degradation by MMPs (Imai et al., 1994; Siri et al., 1995) and 

EGFL repeats can be released or ‘uncovered’ by this cleavage (Wallner et al., 2004), we focused 

in particular on the possible impact of TNCEGFL repeats on melanoma cell migration and 

invasion. We show that overexpressing TNCEGFL impairs TNC extracellular network 

organization and confers intrinsic anti-adhesive phenotype to melanoma cells, which is EGFL-

dose dependent. We find that TNCEGFL-expressing cells migrate slower in 2D motility assays 

but move and have increased invasion potential in 3D systems. Invading TNCEGFL expressing 

cells have rounded cell morphology, consistent with reports that melanoma cells can shift to a 

less adhesive amoeboid mode of cell movement (Sahai and Marshall, 2003). This dichotomy of 

migration potential in 2D and 3D matrices has been noted previously with a shift in the adhesion-

contractility towards a lesser overall value promoting speed through 3D matrices while 

diminishing the locomotion on 2D surfaces (Zaman et al., 2006). The mechanism of this shape 

plasticity in presence of TNCEGFL points to ROCK signaling that has been shown to allow 

melanoma switching between mesenchymal and amoeboidal types of cell movement (Sahai and 

Marshall, 2003; Sanz-Moreno and Marshall, 2009). This is consistent with signaling of the 

EGFL repeats via the EGFR. However, we could not definitively demonstrate such a pathway as 

EGFL repeats being at ultra-low affinity (Swindle et al., 2001) and melanoma cells expressing 
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low levels of steady state EGFR; further, the melanoma cells did not survive in the face of EGFR 

inhibition (data not shown). Nevertheless, Proximity Ligation Assays (PLA) (Soderberg et al., 

2006) implicate a close physical association (<40nm) of TNC and EGFR in these melanoma cells 

(Figure 23). Still in the absence of definitive evidence, it is possible that the EGFL repeats signal 

via other surface receptors.  

 

Figure 23. Proximity ligation assay for physical association of EGFR and TNC.  

PLA assay was performed with primary anti EGFR antibody (Cell signaling) and anti 

TNC antibody that recognizes EGFL repeats (ab6393, Abcam). Close physical association of the 

two proteins is visualized as a red fluorescent signal. (A) Representative maximum intensity 
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projections from 20 planes 1 µm apart. PLA signal is red, nuclei stained with DAPI. (B) Average 

integrated density of the red signal per cell in each plane was calculated with Image J software 

Particle Analyzer. The distance of 20 represents the surface of the coverslip. 

 

It has been described that amoeboid-like melanoma cells that have high ROCK activity 

are found at the invasive fronts of melanomas, while mesenchymal elongated cells comprise the 

body of the tumors (Sanz-Moreno et al., 2011). We find that TNCEGFL-expressing cells have 

increased ROCK signaling, as observed by increased phosphorylation of its targets: 

biphosphorylation of MLC2, that increases transcellular contractility, and phosphorylation of 

MYPT, that negates the inhibition of actin cytoskeleton contraction. This is validated by the loss 

of the anti-adhesive phenotype and rounded morphology in presence of the ROCK inhibitor 

Y27632 on both rigid 2D substrates and in 3D Matrigel. Furthermore, in the blebs of TNCEGFL 

expressing cells invading the 3D matrices, diphosphorylated MLC2 co-localizes with the actin 

cytoskeleton; this is characteristic of contractile amoeboid type of movement (reviewed in 

(Lammermann and Sixt, 2009)). Finally, we show that TNCEGFL expressing cells are more 

efficient in invading into a human skin organ culture, a setting that better resembles the first 

steps of actual melanoma invasion in patients.  

Supporting our signaling model, it has been shown that recombinant TNC construct 

Ten70 which does not contain EGFL repeats, suppresses Rho A activation while maintaining the 

level of active Cdc42 thus preventing stress fiber formation (Wenk et al., 2000). Cells seeded on 

Ten70 form prominent filopodia, and that exact feature is lost in TNCEGFL-expressing 

melanoma cells. By overexpressing EGFL repeats, the balance of endogenous signaling of TNC 

is shifted and activation of ROCK enables amoeboid morphology. Our results are in concordance 
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with observation that distinct modes of cell motility have different requirements for ROCK 

activity (Sahai and Marshall, 2003), as TNCEGFL expressing cells perform better in 3D 

migration assays and have impaired migration in 2D assays compared to melanoma cells 

transfected with an empty vector. It is interesting to speculate that TNC, highly expressed at the 

invasion fronts of melanoma (Kaariainen et al., 2006) and at the front of invading melanoma 

cells promotes activation of ROCK and amoeboid cell morphology observed at the fronts of 

invasion in melanoma tumors (Sanz-Moreno et al., 2011). 

Taken together, our data demonstrate that over expression of TNCEGFL repeats alters 

both adhesive and migratory states of melanoma cells and the composition of the extracellular 

matrix making it more permissive for melanoma cell invasion. The rounded morphology and 

enhanced blebbing of the amoeboid form of motility allows for cells to more easily penetrate 

smaller sized pores in matrices and thus are less dependent on proteolytic ‘opening’ of channels 

in a collagen-rich matrix such as the dermis (Friedl, 2004). Our findings also reinforce the notion 

that cells utilize different signaling cascades to effect migration dependent on the 2D versus 3D 

matrix context.  

3.5 MATERIALS AND METHODS 

3.5.1 Cell culture 

Melanoma cell line WM35, obtained from Coriell Institute for Medical Research 

(Camden, NJ), was maintained in MCDB153: L15 4:1 medium mixture with addition of 5% 

FBS, 5µg/ml insulin and 2mM CaCl2. WM983A and WM983B were obtained from Wistar 
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Institute (Philadelphia, PA) and cultured in DMEM: L15 3:1 mixture with addition of 10% FBS 

(Herlyn et al., 1991). Human epidermal keratinocytes were obtained from Invitrogen and 

cultured on collagen-coated dishes in Epilife medium with growth supplements (Invitrogen, 

Grand Island, NY). Human neonatal fibroblasts were cultured in DMEM with 10% FBS. Primary 

cells were used in skin organ cultures under 6th passage. 

3.5.2 Generation of TNCEGFL and TNCFULLL constructs and TNCEGFL expressing 

melanoma cell lines 

Full length TNC construct (X78565) was obtained form Dr. Harold Erickson (Duke 

University, Durham, NC)(Aukhil et al., 1993). The first half of the TNC sequence was amplified 

with introduced NotI and EcoRV cutting sites, of total length of 2355 bases, and cloned into 

pcDNA3.1(-) vector (Invitrogen). The primers for amplification were 5’-ATA CTC AAG CGG 

CCG CAT GGG GGC CAT GAC TCA-3’ and 5’-CGG ATA TCT CAT ACT CTT GCC CAG 

GA-3’. Subsequently, TAA stop codon was introduced instead of TCA codon at the end of 14th 

EGFL repeat with Quick Change II Site Directed Mutagenesis Kit (Stratagene) and primers 5’-

GGG AGG AGA CAC CTCTTA GCA GTC TTC TCC G-3’ and 5’-CGG AGA AGA CTG 

CTA AGA GGT GTC TCC TCC C-3’. WM983A cells were transfected with TNCEGFL using 

Lipofectamine (Invitrogen) and G418 resistant clones were selected. Clone expressing the 

highest amount of TNCEGFL (C1) was selected for further analysis and clone with lower level 

of TNCEGFL expression (C3) for comparison in some assays. As a control, a monoclonal 

WM983A isolate expressing empty pcDNA3.1(-) vector was established. For the TNCFULL 

construct the full length TNC was cloned into the same vector and G418 resistant clones were 
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selected. The same vectors EV, TNCEGFL and TNCFULL were used for transient transfection 

in WM35 cell line. 

3.5.3 TNC TMA immunohistochemistry 

Melanoma tissue microarrays ME1004 and ME242 were purchased from Biomax 

(Rockville, MD) and stained with anti-TNC antibody that recognizes the EGFL repeats (ab6393, 

Abcam, Cambridge, MA) as previously described (Hood et al., 2010). Images were acquired 

with an Olympus 40X 0.75 NA objective on Olympus BX-40 microscope.    

3.5.4 Immunoblotting and immunostaining 

Immunoblotting and immunostaining were performed as previously described (Hood et 

al., 2010). Antibodies used were: anti-TNC recognizing FN repeats (MAB33581, R&D 

Systems), anti-TNC recognizing EGFL repeats (MAB2138, R&D Systems), anti-pMLC2 Ser-19, 

anti-pMLC2 Thr-18/Ser-19, anti pMYPT Thr-853 (#3675, #3674 and #4563, respectively, Cell 

Signaling Technology) and anti-GAPDH (G9545, Sigma-Aldrich). All secondary antibodies 

were from Sigma-Aldrich or Molecular Probes, Invitrogen. Actin fibers were stained with 488- 

or 568-Alexa Fluor phalloidin (Invitrogen) and nuclei with DAPI. Images were acquired with an 

Olympus 60X 1.25 NA or Olympus 20x 0.4 NA objective on Olympus BX-40 microscope.    
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3.5.5 Cell spreading and inverted centrifugation assays 

For spreading assays cells were trypsinized and re-plated on plastic culture dishes in 

regular medium or in the presence of 5µM Y27632 (Calbiochem). After 2, 4, 6 and 8 hours 

images were acquired using Olympus IX70 microscope with a 10X 0.3 NA objective, cells were 

counted (n=100 per treatment) and percentage of spread cells was determined. Completely round 

phase-bright cells were counted as non-spread and those that lacked round shape and had 

membrane protrusions were counted as spread. Data was collected from three independent 

experiments. 

Inverted centrifugation assay was performed as described (Shao et al., 2010). In this 

assay, after 2, 4, 6 and 8 hours, we compared stationary plates washed with PBS against plates 

spun inverted at 1000 rpm (150g). This was used to calculate the % of attached cells compared to 

not centrifuged plate controls.  

3.5.6 2D migration assays and cell tracking 

For wound healing assay cells were seeded in regular medium and let attach 12h and then 

quesced in 0.5% FBS medium for 24h. The cross wound was introduced with a yellow pipette 

tip, and the cross was used as a reference of position for taking images. If used, 5µM Y27632 

(Calbiochem) was added at the time of introducing the wound. Images were taken at 0 and 22h 

post scratching using Olympus IX70 microscope with a 4X 0.13 NA objective. Area of the 

wound was calculated using ImageJ software and results were expressed as % of the area closed 

within 22h.  
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For imaging of single cell movement of WM35, WM983A and WM983B cells, plates 

were coated with 2µg/cm2 of rat tail Collagen I (BD Biosciences, Bedford, MA) or 2µg/cm2 of 

Collagen I and 2µg/cm2 of human Tenascin C (Millipore, Temecula, CA) in PBS for 2 hours at 

ambient temperature and then blocked for 30 minutes with 0.1% BSA in PBS. 2x104 cells per 

well were seeded and let attach for 12 hours. Cells were labeled with Cell Tracker red CMPTX 

(Invitrogen, Carlsbad, CA) and after 6h in 0.5% FBS medium imaged for 8 hours every 10 

minutes in TRITC and phase channels with Nikon 10X 0.5 NA objective on Nikon Ti-E inverted 

microscope with CO2 stage incubator (Okolabs, Quarto, Italy). Cell migration speed and track 

length and displacement were analyzed with Imaris software (Bitplane, Zurich, Switzerland) 

based on tracking of movement of fluorescence as autoregressive motion. Experiment was 

repeated two times and total of more than 50 tracks per treatment were analyzed. For tracking of 

WM35 cell movement upon expression of TNC constructs, cells were transfected with EV, 

TNCFULL or TNCEGFL, and 24h later imaged for 8h every 10 minutes. For tracking of 

WM983A-EV and WM983A-TNCEGFL cell movement, cells were seeded on glass-bottom 

dishes (MatTek Corporation, Ashland, MA) an let grow for 72 h before imaging to allow 

deposition of the matrix and then imaged and analyzed as described above. 

3.5.7 3D invasion assay 

Matrigel invasion assay was performed in BD BioCoat Matrigel Invasion Chamber per 

manufacturer instructions (354480, BD Biosciences, Bedford, MA). Cells were let to invade for 

48h or 72h as specified in the legends. The invaded cells at the bottom side of membrane were 

stained with DAPI and five random 10x fields were counted, with each condition in triplicate. 
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Experiments were repeated three times and average number of invaded cells was expressed as 

number of invaded cell per 10x field or relative to WM983A-EV.   

3.5.8 Confocal imaging of Matrigel invading cells 

Cells were seeded as for Matrigel invasion assay and let invade 48h. Matrigels were 

stained as described with modifications (Hooper et al., 2006). Briefly, Matrigel inserts were 

washed with PBS, fixed 30 minutes in 4% formaldehyde 0.25% glutaraldehyde in PBS, treated 

with 0.2% Triton X for 30 min on ice, and stained with 0.2µg/ml 568-Alexa-Fluor phalloidin 

(Molecular Probes, Invitrogen) and 2µg/ml DAPI (Sigma) in dark for 3h. After washing with 

PBS samples were incubated with anti-TNC or anti-ppMLC antibody for 12h at 4°C and another 

2h at ambient temperature with anti-rat 488-Alexa Fluor secondary antibody (Invitrogen). 

Membranes were cut out with a razor blade and mounted on glass slides in PBS. Images were 

taken on Nikon Sweptfield Confocal Microscope (TSI inverted) using 10X and 60X 1.4 NA 

objectives. 3D volume representations of Z-stacks were made using Nikon Elements software. 

3.5.9 Skin organ cultures and H&E staining 

Skin organ cultures were established as previously described (Simpson et al., 2010) with 

modifications. Briefly, 5x105 primary human fibroblasts were seeded in collagen gels, and after 5 

days in submerged culture 1x106 normal human keratinocytes were seeded on top. The next day 

1x105 WM983A-EV or WM983A-TNCEGFL cells were seeded in the center of the plug within 

the cloning rings, let attach for 8h and then the cloning rings were removed. After 3 days, the 

cultures were lifted to air liquid interface to allow epidermis maturation and medium was 
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replenished every other day for total of 20 days of culture. The samples were fixed and paraffin 

embedded and H&E stained as previously described (Hood et al., 2010). Experiment was 

repeated two times with similar results. 

3.5.10 Gelatin zymography 

Gelatinase activities of MMP2 and MMP9 in WM983A-EV and WM983A-TNCEGFL 

conditioned medium and lysates were assessed according to prior protocols (Toth and Fridman, 

2001). 

3.5.11 PCR array 

RT2 Profiler PCR Array of Human Extracellular Matrix and Adhesion Molecules (PAHS-

013A, SABiosciences, Frederick, MD) was performed per manufacturer instructions in 96 well 

format with 1µg of total RNA. Experiment was repeated two times and data was analyzed with 

SABiosciences PCR Array analysis web-based Utility 

(http://sabiosciences.com/pcrarraydataanalysis.php). 

3.5.12 Proximity ligation assay (PLA) 

WM983A-EV and WM983A-TNCEGFL cells were grown on glass cover slips, fixed 

with 4% formaldehyde, treated with 0.2% Triton-X, blocked with 5% goat serum and incubated 

with primary rabbit anti-EGFR (#2232, Cell Signaling Technology) and mouse anti-TNC 

(ab6393, Abcam) that recognizes EGFL overnight at 4°C. PLA was performed according to the 
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manufacturer’s instructions (Duolink II Red Starter kit, Olink Bioscience, Uppsala Sweden). 

Briefly, rabbit and mouse specific oligonucleotide conjugated secondary antibodies (PLA 

probes) bind to the primary antibodies. Next, probes are annealed if they are in close proximity 

(<4 0nm) and in the presence of fluorescently labeled onligonucleotides allow rolling circle 

amplification. The signal from the close physical association between the proteins of interest is 

visualized as red dots. Nuclei were labeled with DAPI and images were taken on Nikon 

Sweptfield Confocal Microscope (TSI inverted) using 40 1.2 NA objective. 20 Z plane images 

were taken every 1µm and the intensity and number of red signals were analyzed with Image J 

Particle Analyzer for at least 20 cells in each treatment, and expressed as average integrated 

density per cell. Experiment was repeated two times. Controls with single anti EGFR and anti 

TNC antibodies were performed and they gave low or no signal. 

3.5.13 Statistical testing 

All statistics of quantification in this study, including spreading assay, wound healing 

assay, Matrigel invasion assay, RT-PCR and live cell tracking experiments were performed by 

two- tailed Student's t test with a P < 0.05 being required to be considered significant and shown 

as mean ± SD or SEM (if each experiment was performed in triplicate). 
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4.1 ABSTRACT 

 

Melanoma is the most aggressive type of skin cancer with increasing incidence rates 

whose progression is characterized by drastic changes in the composition of the extracellular 

matrix (ECM).  Tenascin C in the melanoma matrix is highly up regulated and there is 

significant decrease in levels of the small leucine-rich proteoglycan Decorin compared to normal 

skin. Interestingly, both Tenascin C (TNC) and Decorin (DCN) have been shown to signal 

through the Epidermal Growth Factor receptor, with opposite outcomes on cell proliferation, 

survival and migration. We therefore examined expression of these two ECM proteins and found 

that they have opposite and almost mutually exclusive patterns of expression in benign nevi and 

primary melanoma samples. Therefore, we asked whether DCN could counteract the effects of 

increased TNC expression during melanoma invasion. DCN was able to reverse the influence of 

TNC on cytoskeletal organization and to block TNC induced increased invasion in collagen gels. 

Ultimately, in skin organ culture models DCN was able to ameliorate melanoma invasion even in 

the presence of TNC. These findings imply a role for Decorin as a preventive ECM moiety in 

melanoma invasion that could potentially be used for developing treatments. 
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4.2 INTRODUCTION 

In order to develop efficient cancer therapies it is important to identify the mechanisms 

by which tumor cells invade into surrounding tissues. Melanoma, the most aggressive cancer of 

the skin with high resistance to therapy and ability to metastasize to multiple organs, is a good 

model for studying tumor invasion partly due to its step-wise progression. Melanoma arises from 

transformed melanocytes, pigmented cells of neuroectodermal origin that normally reside at the 

basal layers of the epidermis. The majority of melanomas have a linear progression: from benign 

melanocytic nevi to the radial growth phase (RGP) melanoma that divides and spreads within 

epidermis, to vertical growth phase (VGP) during which melanoma cells invade through the 

basement membrane into dermis, reaching the final step-metastatic growth phase (MGP) that 

metastasizes to lymph nodes, lungs, liver, bones and brain (Clark et al., 1984). While melanoma 

in situ has a high cure rate by surgical resection, invasive melanoma that has penetrated dermis 

has very poor prognosis and the depth of invasion in primary tumors highly correlates with 

patient survival (Wanebo et al., 1975). It is therefore of utmost importance to elucidate changes 

that precede and/or induce melanoma invasion from the epidermis into the dermis. 

In addition to the changes in cell to cell adhesion, remodeling of the extracellular matrix 

(ECM) plays a critical role in tumor invasion as ECM proteins provide both mechanical and 

chemical signals to the tumor cells. In recent years, deciphering the regulation of tumor growth, 

invasion and metastasis by the extracellular matrix components has shed a new light on the 

sequence of events in cancer progression (Herlyn, 2009; Malanchi et al., 2012; Oskarsson and 

Massague, 2012). In melanoma, the production of ECM proteins is significantly altered 

compared to normal skin: components characteristic of an immature and healing dermis, such as 

Tenascin C, Fibronectin, certain laminins and SPARC are upregulated (Ilmonen et al., 2004; 
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Ledda et al., 1997; Natali et al., 1995; Pyke et al., 1994) while components characteristic of a 

mature matrix such as Decorin, Lumican and certain collagens are down-regulated (Hood et al., 

2010). Therefore, we asked the question whether the changes in ECM could drive melanoma 

invasion and dissemination.  

Both melanoma cells and stromal fibroblasts secrete Tenascin C (TNC) (Herlyn et al., 

1991) which has been shown to promote tumor invasion (Galoian et al., 2007; Grahovac et al., 

2012; Hancox et al., 2009; Sarkar et al., 2006). On the other hand, Decorin (DCN) is expressed 

in normal human dermis by quiescent fibroblasts (Honardoust et al., 2012; Mauviel et al., 1995), 

and can be present in melanoma tumor stroma at low levels, but is absent in melanoma cells 

themselves (Brezillon et al., 2007). Contrary to TNC, DCN has been shown to have an inhibitory 

role in cancer progression (Neill et al., 2012). Both TNC and DCN have been shown to bind the 

Epidermal Growth Factor Receptor (EGFR) (Iozzo et al., 1999b; Iyer et al., 2007a), DCN with 

the affinity of around 70nM (Santra et al., 2000; Santra et al., 2002) and TNC with lower affinity 

in the micromolar range but with high avidity due to its hexameric structure and tethering within 

the ECM (Swindle et al., 2001). DCN and TNC have different effects on EGFR signaling: DCN 

causes down-regulation of the receptor and attenuation of downstream EGFR signaling cascades 

(Zhu et al., 2005), while TNC causes sustained membrane-restricted signaling which promotes 

pro-migratory EGFR cascade (Iyer et al., 2008). Having this in mind, we explored whether DCN 

can counteract TNC promoting effects on melanoma invasion.  
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4.3 RESULTS 

4.3.1 Tenascin C and Decorin have opposite patterns of expression in melanoma tissue 

and benign nevi 

 We have previously reported comparative proteomic analysis of melanoma and the 

adjacent uninvolved skin of the same patient in which the expression of TNC was highly up-

regulated and expression of small leucine rich proteoglycans DCN and Lumican was decreased 

in melanoma samples (Hood et al., 2010). To investigate this further, we examined the 

expression of TNC and DCN in melanoma tissue array and observed that the expression of these 

two proteins is inversed in benign nevi and primary melanoma (Figure 24). Namely, TNC was 

absent in benign nevi, while the dermis was rich in DCN; on the other hand, in primary 

melanoma samples TNC was detectable throughout the samples with decreased or non-

detectable levels of DCN. Furthermore, the expression of these two proteins seemed to be almost 

mutually exclusive, as regions of the same samples rich with TNC were devoid of DCN, and vice 

versa (arrowheads, Figure 24).  
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Figure 24. Expression of TNC and DCN in benign nevi and primary melanoma. 

Representative images from the melanoma TMA stained for TNC and DCN (brick red). 

Upper panel shows benign nevi samples, and lower panel shows primary melanoma samples. 

Arrowheads point to the regions with inversed TNC and DCN expression in the same sample. 

Magnification 10X. Brown-black stain in the third and fourth lower panel samples is the 

endogenous melanin. 
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4.3.2 Tenascin C and Decorin have opposite effects on melanoma cell cytoskeleton 

 Both TNC and DCN have been reported to influence cytoskeletal organization by the 

modulation of small GTPases RhoA and Rac (De Wever et al., 2004; Tufvesson and Westergren-

Thorsson, 2003), thus affecting cell migration. This implies that the presence or absence of TNC 

and/or DCN in the melanoma ECM would modulate cell migration and invasion. We first 

examined the effects of TNC and DCN on the melanoma cell cytoskeletal organization. We 

chose two metastatic melanoma lines with different cellular morphologies (Figure 25A): 

WM983B have a more mesenchymal morphology with filopodia protrusions, while WM1158 

cells have a more spread morphology with membrane ruffling. Both cell types were seeded on 

collagen-coated surfaces (COL) with the addition of 2µg/cm2 TNC (COLTNC) or 2µg/cm2 DCN 

(COLDCN) or both (COLDCNTNC) and 24 hours post seeding cytoskeletal changes were 

detected by phalloidin staining (Figure 25B). Both cell lines seeded on COLTNC substratum had 

less spread, stretched morphology, while the cells seeded on COLDCN were spread with 

prominent stress fibers compared to cells seeded on collagen alone (Figure 25B). The addition of 

both DCN and TNC proteins counteracted the effects of one another, with cell shape resembling 

the one seen on collagen-coated surface alone. These findings imply that DCN could counteract 

the effects of TNC on cytoskeletal rearrangement, and therefore influence invasion. 



 100 

 

Figure 25. TNC and DCN have opposite effects on melanoma cell cytoskeletal 

arrangement. 

(A) Bright field images of WM983B and WM1158 cells. (B) Both cell lines respond to 

TNC and DEC by cytoskeletal rearrangement. Phalloidin 568 (gray). Scale bar 50µm.  

4.3.3 Decorin can counteract Tenascin C-promoted melanoma invasion  

To test the effects of TNC and DCN on melanoma invasion we chose to examine more 

aggressive WM1158 cells, given that they presented higher migration speed in cell tracking 
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experiments and higher invasion potential in both Matrigel and collagen invasion assays (data 

not shown). WM1158 cells showed prominent invasion into 3mg/ml Collagen I gels, with both 

collective invasion and individually detaching invading cells (Figure 26A). The addition of 

4µg/ml of DCN into collagen gels decreased the collective invasion of WM1158 cells compared 

to the invasion into simple collagen gel (Figure 26C), to average 185µm depth compared to 

240µm depth of invasion in collagen alone. The addition of 4µg/ml of TNC to collagen gels 

significantly increased the extent of the WM1158 cell invasion (to average of 285µm depth). 

Moreover, the addition of TNC to collagen gels increased the number of cells that detached from 

the initial mass seeded on top of the gel (Figure 26B, detached cells (green); continuous tumor 

mass (yellow)), as quantified by Imaris software (Figure 26C). The addition of both DCN and 

TNC together dramatically decreased the collective invasion of WM1158 cells into collagen gels 

as well as the detachment of cells from the initial mass.  
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Figure 26. WM1158 cell invasion in 3D collagen gels enriched with TNC or DCN. 

(A) Confocal Z stack representation of WM1158 cells invading into collagen gels 

enriched with DCN, TNC or both. Phalloidin 488 (green), scale bar 500µm. (B) The same stacks 
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represented with Imaris software surfaces function: yellow represents continuous mass with 

detail level of 3µm, green represents cells and clusters of cells detached from the continuous 

mass 3 or more micrometers away. (C) Quantification of the depth of the melanoma cell invasion 

(D) Quantification of the volume of detached cell mass. Results are presented as average ± SD 

n=3, * p < 0.05, **p<0.01.  

 

To validate these results in more complex melanoma microenvironmental context, we 

tested the invasion of WM1158 cells in skin organ cultures (SOCs) (Figure 27). Embedding 

neonatal fibroblasts into 3mg/ml collagen gels formed the dermal compartment onto which a 

layer of normal human keratinocytes was seeded to form epidermis. WM1158 cells were seeded 

2 days after the seeding of keratinocytes to allow formation of the basement membrane between 

the epidermis and the dermis. WM1158 cells invaded into the dermal compartment of SOCs 

within 20-day time frame, both collectively and as detached cell clusters (Figure 27, upper left). 

The addition of 4µg/ml DCN into the dermal compartment prevented melanoma cells from 

invading into the dermis, and the growth was confined to the epidermis. The addition of TNC at 

the same concentration induced profound melanoma invasion into dermis, with multicellular 

streaming-like pattern. These anti and pro- invasive effects of DCN and TNC, respectively, were 

dose-dependent a 1:1 DCN: TNC ratio in the dermis induced an increased growth of the 

WM1158 mass in the epidermis, but a barely observable invasion into the dermis, while a 1:2 

DCN: TNC ratio induced an invasion into the dermis, although to the lesser extent than TNC 

alone. This implies that DCN can counteract pro-invasive TNC signals in a dose-dependent 

manner. 
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Figure 27. WM1158 cell invasion in skin organ cultures in presence of TNC and 

DCN. 

 Representative images of H&E stained skin organ cultures seeded with WM1158 and 

melanoma cells after 20 days of culture. E-epidermis, D-dermis, M-melanoma. These results are 

representative of two independent experiments.  

4.4 DISCUSSION 

 Molecular events that direct the progression from melanoma in situ to advanced 

melanoma and the microenvironmental influences on melanoma progression are two critical 

aspects the understanding of which would greatly contribute to development of new treatment 

strategies. The composition of the extracellular matrix in melanoma is significantly changed 
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compared to normal skin (Hood et al., 2010; Naba et al., 2012; Quatresooz et al., 2011) and these 

changes could drive melanoma invasion.  Here we the examined expression of two ECM 

proteins Tenascin C and Decorin in the panel of melanoma samples and found that their 

expression is opposite and almost mutually exclusive in benign nevi and primary melanoma 

samples. The presence of TNC and DCN in the ECM presented to melanoma cells had an 

opposite influence on the cytoskeletal organization and had a profound effect on melanoma cell 

invasion in 3D collagen gels. Tenascin C promoted while Decorin limited WM1158 cell 

invasion. While DCN decreased the depth of invasion in collagen gels, it did not limit WM1158 

melanoma cell detachment form the initial mass. Interestingly, DCN showed a dramatic effect on 

the cells induced to detach by TNC, and inhibited melanoma cell invasion into collagen gels 

even more in the presence of TNC then when presented alone. Ultimately, in skin organ cultures 

the presence of Decorin in the dermal equivalent was able to prevent melanoma invasion from 

the epidermis into dermis, and even in the presence of pro-invasive TNC it was able to 

ameliorate the invasion potential of melanoma cells. The mechanistic explanation of this effect, 

which was beyond this initial exploration, could be grounded in the fact that both TNC and DCN 

can bind and signal through EGFR with opposite outcomes. Select EGFL repeats of TNC have 

been shown to bind to the EGF binding pocket of EGFR (Iyer et al., 2007a), while DCN binding 

site in EGFR partially overlaps but is distinct from the EGF binding epitope (Santra et al., 2002). 

We have previously shown that EGFL repeats of TNC promote melanoma cell invasiveness by 

increasing the ROCK activity and myosin-light chain phosphorylation in migrating cells, which 

leads to a shift in mode of motility from mesenchymal to amoeboid and allows greater flexibility 

in 3D microenvironment (Grahovac et al., 2012). Decorin could simply prevent this effect by 

competing for EGFR given that it has higher affinity for the receptor (Santra et al., 2000), or 
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could signal inhibition of migration through other receptors such as c-Met, PDGFR or IGF-1R 

(Neill et al., 2012), all of which can independently contribute to melanoma invasiveness (Wu et 

al., 2012). Decorin has also been shown to inhibit melanoma migration by cellular acidification 

(Stock et al., 2011). As a natural moiety present in the skin, Decorin is an attractive candidate for 

the development of anti-melanoma therapy both as a natural kinase antagonist and as an 

enhancer of targeted gene delivery due to its collagen binding affinity (Choi et al., 2010). Further 

studies of the exact mechanistics of Decorin interference with Tenascin C are underway. 

4.5 MATERIALS AND METHODS 

4.5.1 Cell culture 

Melanoma cell lines WM983B and WM1158 were obtained from the Wistar Institute 

(Philadelphia, PA) and cultured in DMEM: L15 3:1 mixture with the addition of 10% FBS 

(Herlyn et al., 1991). Human epidermal keratinocytes were obtained from Invitrogen and 

cultured on collagen-coated dishes in Epilife medium with growth supplements (Invitrogen, 

Grand Island, NY). Human neonatal fibroblasts were cultured in DMEM with 10% FBS. Primary 

cells were used in skin organ cultures under 6th passage. 

4.5.2 Melanoma tissue microarray immunohistochemistry 

Melanoma tissue microarrays ME1004, ME1004a and ME242 were purchased from 

Biomax (Rockville, MD) and stained with anti-TNC antibody (ab6393, Abcam, Cambridge, 



 107 

MA) or anti-DCN antibody (AF143, R&D Systems, Minneapolis, MN). Antigens were retrieved 

in 1% pepsin in 10mM HCl for TNC staining or heat-induced in citrate buffer pH6 (Dako, 

Carpinteria, CA) for DCN staining. Endogenous peroxidase was blocked with 3% H2O2, and 

sections were incubated in 5% goat or rabbit serum to decrease background staining. Sections 

were incubated with primary antibodies for 2h in a humified chamber at ambient temperature, 

washed and incubated with biotinilated secondary goat anti-mouse antibody or rabbit anti-goat 

antibody  (Jackson ImmunoResearch, West Grove, PA). Vectastatin ABC kit (PK-6100), 

ImmPACT NovaRed (SK-4805) and Meyer’s hematoxylin counter stain were all from Vector 

Laboratories (Burlingame, CA). Samples were dehydrated and mounted with Permount solution 

(Fisher Scientific, Pittsburgh, PA). Images were acquired with a 10X 0.3 NA objective on 

Olympus BX-40 microscope with SPOT imaging software (Sterling Heights, MI). 

4.5.3 Immunostaining 

 Glass coverslips were coated with 2µg/cm2 Collagen I (BD Biosciences, Bedford, MA), 

Collagen + 2µg/cm2 Tenascin C (Millipore, Temecula, CA), Collagen + 2µg/cm2 Decorin (R&D 

Systems, Minneapolis, MN) in PBS for 12 hours at ambient temperature and then blocked for 30 

minutes with 0.1% BSA in PBS. Cells were seeded on coverslips and let attach 12h, and fixed 

with 4% formaldehyde for 115 min at ambient temperature. After washing with PBS, cells were 

treated for 5 min with 0.2% Triton-X, and stained with 568-Alexa-Fluor phalloidin (Molecular 

Probes, Invitrogen) and 2µg/ml DAPI (Sigma) for 40 minutes at ambient temperature. Images 

were acquired with an Olympus 60X 1.25 NA objective on the Olympus BX-40 microscope.    
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4.5.4 Confocal imaging of invasion into collagen gels 

Accellular collagen gels were made by mixing rat tail Collagen I (BD Biosciences, 

Bedford, MA) in NaHCO3-based buffer to a final concentration of 3mg/ml, as previously 

described (Simpson et al., 2010). TNC (Millipore, Temecula, CA), DCN (R&D systems, 

Minneapolis, MN) or both were added at a concentration of 4 µg/ml prior to the gel 

neutralization with 0.2M NaOH. 50µl gels were casted in optical clear cell culture inserts 

(353095, BD Falcon, Franklin Lakes, NJ).  5x104 WM1158 cells were seeded on top of the gels 

in 1% FBS medium and 10% FBS medium was added to the bottom of the insert to induce 

invasion. Gels were fixed after 72h and stained as described with modifications (Hooper et al. 

2006). Briefly, collagen inserts were washed with PBS, fixed 30 minutes in 4% formaldehyde-

0.25% glutaraldehyde in PBS, treated with 0.2% Triton X for 30 min on ice, and stained with 

0.2µg/ml 488-Alexa-Fluor phalloidin (Molecular Probes, Invitrogen) and 2µg/ml DAPI (Sigma) 

in dark for 3h. Gels were imaged directly in the inserts in PBS on the Nikon Sweptfield Confocal 

Microscope (TSI inverted) using 10X and 60X 1.4 NA objectives. 3D volume representations of 

Z-stacks were made using Nikon Elements software and surfaces of the invading cells were 

modeled with Imaris software based on the absolute intensity of phalloidin staining with 3µm 

surface area detail level (Bitplane, Zurich, Switzerland). Quantification of the depth of invasion 

was performed with the length measurement tool of Nikon Elements software by measuring 60 

random positions per sample from the surface of seeded cells to the bottom most detected 

intensity. Experiments were repeated three times. 
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4.5.5 Skin organ cultures and H&E staining 

Skin organ cultures were established as previously described (Grahovac et al., 2012; 

Simpson et al., 2010), with modifications. Briefly, 15x104 primary human fibroblasts were 

seeded in 1.5 ml 2mg/ml collagen gels alone or with the addition of 4µg/ml of TNC, DCN or 

both, in 24 well plates. After 5 days in submerged culture, 25x104 normal human keratinocytes 

were seeded on top of contracted gels. Keratinocytes were allowed to adhere and 48h later 

10x104 WM1158 cells were seeded in the center of the plug within the 4,7mm R cloning rings 

(Bel Art, 14-512-78, Thermo Fisher Scientific, Pittsburgh, PA), let attach for 8h and then the 

cloning rings were removed. After 3 days, the cultures were lifted to the air liquid interface to 

allow epidermis maturation and the medium was replenished every other day for total of 20 days 

of culture. The samples were fixed and paraffin embedded and H&E stained as previously 

described (Hood et al., 2010). The experiment was repeated two times with similar results. 

4.5.6 Statistical testing 

Statistical analysis in this study was performed by two-tailed Student's t test with a p < 

0.05 being required to be considered significant and values were shown as mean ± SD.  
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5.0  DISCUSSION  

 Despite the enormous efforts in developing new drug strategies to treat advanced 

melanoma, the number of melanoma related deaths rises yearly. Melanoma is one of the most 

aggressive and treatment-resistant human cancers. Given that there is a mathematical relationship 

between the primary tumor thickness and the survival prognosis (Balch et al., 2009) it appears 

that the invasive capacity that melanoma cells acquire at the primary tumor site greatly 

contributes to the disease outcome. Once the melanoma cells have penetrated the basement 

membrane and reached the dermis, they are very hard to combat. Therefore, an understanding of 

the events that lead to the progression from the radial epidermal melanoma spreading to the 

vertical invasion is crucial in order to design better treatment tactics. Many studies have 

concentrated on molecular changes that melanoma cells undergo during progression, and some 

of the recent therapies that target specific changes, like Vemurafenib - BRAF inhibitor that 

blocks V600E mutated BRAF, proved to be efficient. Nevertheless, the constant obstacle that is 

common for any type of cancer treatment is the acquisition of resistance to specific therapy and 

metastatic dormancy. It is postulated that the signals from the outside of the tumor cell shape the 

fate of disseminated tumor cells to progress or to pause in the state of dormancy (Ossowski and 

Aguirre-Ghiso, 2010). Moreover, since tumor microenvironment may also facilitate the 

development of multidrug resistance (Correia and Bissell, 2012), it is important to incorporate 

the knowledge on both tumor cells and their respective microenvironments in order to develop 
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the treatments of malignancies as complex organs rather than mutated cells. Targeting the 

microenvironment would, presumably, irrespective of the tumor cell heterogeneity, impede their 

survival and dissemination. In this work we investigated changes in the extracellular matrix of 

primary melanoma tumors to get a better understanding of how signaling from the extracellular 

space impacts melanoma cell invasion. 

5.1 SKIN ORGAN CULTURES AS A MODEL SYSTEM FOR STUDYING 

MELANOMA INVASION 

Given the microenvironmental complexity of primary melanoma, studies of melanoma 

cell behavior and drug response have to be undertaken in the models that resemble the natural 

occurrence most closely. Skin organ cultures are the most advanced in vitro system for this 

purpose, since they allow the incorporation and/or modification of the major cell types of the 

skin: keratinocytes, melanocytes, fibroblasts and melanoma cells.    

In this work we have first shown that melanoma cells incorporated into SOCs modify the 

extracellular matrix in the way that resembles melanoma microenvironment in human melanoma 

samples (Hood et al., 2010). Proteomic analysis of laser micro-dissected SOCs detected 

increased amounts of Tenascin C, Fibronectin and Thrombospondin-1 in melanoma seeded 

samples, matricellular proteins known to be involved in modulation of cell-matrix interactions 

(Fukunaga-Kalabis et al., 2008). Furthermore, we were able to detect a difference in the amounts 

of abundant intracellular proteins involved in cytoskeletal organization such as α-actinin-4 and 

plectin. The changes we detected in SOCs closely matched the changes detected by the 

proteomic analysis of the melanoma tissue sample and the uninvolved skin of a melanoma 
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patient. This proteomic approach shows promise in tracking protein changes in a high-

throughput manner in SOCs, compared to traditional immunostaining. For example, the response 

of the stroma to genetically manipulated melanoma cells and vice versa can be tracked by this 

approach or effects of therapy application on melanoma matrix composition. 

Next, we reasoned that by modifying the dermal compartment of SOCs, the influence of 

particular microenvironmental components on melanoma cell behavior could be followed. Based 

on the proteomic data from the patient sample, where significant upregulation of TNC and down-

regulation of DCN were detected, we included extra Tenascin C into dermal matrices of SOCs 

and observed an increased invasion of melanoma cells, or included Decorin and observed an 

inhibition of invasion. Decorin could also counteract invasion-promoting TNC in this setting. 

This proves that the composition of the ECM strongly impacts the ability of melanoma cells to 

disseminate from the primary site. 

5.2 HETEROGENEITY OF CANCER CELL MIGRATION PHENOTYPES IN THE 

MICROENVIRONMENTAL CONTEXT 

 The influence of the extracellular matrix on cancer invasion has long been recognized 

(Liotta, 1986). ECM protein TNC has been shown to promote cancer invasion by both MMP-

dependent and independent mechanisms (Hancox et al., 2009). TNC induces the expression of 

MMPs 1, 3, 9 and 13 (Hancox et al., 2009; Tremble et al., 1994) and the activation of MMP2, 

and there is a positive feedback loop between the induction of MMPs by TNC and its cleavage 

(Dang et al., 2004). Interestingly, cleavage sites for all the MMPs tested so far are outside of the 

EGFL repeats domain in the TNC molecule (Siri et al., 1995), leaving them intact in the face of 



 113 

increased ECM remodeling. As the work from our group has previously shown that distinct 

EGFL repeats of TNC can promote pro-migratory EGFR signaling cascade (Iyer et al., 2008) we 

postulated that the increased TNC expression in melanoma allows increased migratory 

capabilities of cancer cells. Melanoma cells themselves secrete TNC (Herlyn et al., 1991), and 

we observed that the TNC production increases with an increase in severity of the stage from 

which the melanoma cells were derived and that the invasiveness in 3D matrices highly 

correlates with the amounts of TNC being deposited in the matrix (Grahovac et al., 2012). 

Imaging cells during their migration in three dimensions revealed that TNC is being deposited at 

the front of the invading cells.   

Given that TNC is a multidomain protein, signaling pathways that would promote 

invasive behavior are not obvious. We therefore over-expressed TNC EGFL repeats with the 

assembly domain in melanoma cells, and showed that they have profound effect on cell 

adhesion. Decreased adhesion was not due to changes in integrin expression, but due to increased 

activation of Rho–associated kinase (ROCK), which induced cytoskeletal reorganization and cell 

rounding due to contraction. As a result of decreased adhesiveness TNCEGFL-expressing cells 

moved slower on 2D substrates, but nevertheless moved faster and invaded deeper into 3D 

matrices, despite there being no increase in MMP activities. The persistence of cell invasion with 

low adhesion, high intracellular contractility and independence of MMP activity is a 

characteristic of amoeboid type of movement (Lammermann and Sixt, 2009; Sahai and Marshall, 

2003; Wolf et al., 2003). To our knowledge, this is the first signal from the extracellular matrix 

protein that has been shown to promote mesenchymal to amoeboidal migration switch. 

 The plasticity of the cell movement allows efficient migration in complex 

microenvironments and allows more effective cancer dissemination (Friedl and Wolf, 2003). It is 
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possible that a single cell during its invasion process can oscillate between mesenchymal and 

amoeboid modes of invasion, which are dictated by the microenvironmental signals, and cell 

mechanical properties. The initial invadopod-rich phenotype, which is needed for collagen 

invasion, can be switched to intracellular contractility-driven push through the space that has 

been released by the matrix-degrading enzymes. This phenotype could be time sensitive, e.g. 

change every couple of minutes/hours and highly dependent on the encountered ECM. While 

intracellular signaling pathways that control cell cytoskeleton during migration have been 

extensively studied, little is known about the signals from the outside of the cell that dictate the 

phenotypic switches in the migrational mode. Collagen fibril orientation has been shown to 

dictate the mesenchymal mode of migration (Provenzano et al., 2008), and we now show that 

EGFL repeats of TNC can induce cytoskeletal changes in melanoma cells that lead to a shift 

towards amoeboid movement. The expression of TNC not only modulates the structural 

composition of the ECM, but also permits greater migrational plasticity. We speculate that 

invadopod protrusions that can localize MMPs in the front of migrating cells (Yamaguchi, 2012) 

could cleave TNC (which we observed being deposited in the front) and TNCEGFL repeats 

could signal contraction and rounding of the cell body that then pushes forward. It is possible 

that after proteolytic cleavage, TNC fragments may have distinct signaling activity compared to 

the full-length TNC protein. Proposed mechanism by which TNC promotes melanoma cell 

invasion is depicted in Figure 28. These are further avenues of research that await exploration. 

Furthermore, it would be interesting to investigate whether TNC expression changes the stiffness 

of the ECM, as increased stiffness promotes transformation of epithelial cells (reviewed in 

(Kumar and Weaver, 2009)).  
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 Figure 28. Schematic representation of the proposed mechanism by which TNC 

promotes melanoma cell invasiveness.  

Having in mind plasticity of melanoma cell migration it would be interesting to 

investigate whether combinational therapy of MMP and ROCK inhibitors targeting both 

phenotypic modes could abolish melanoma cell migration.  
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5.3 DECORIN AS AN ANTI-INVASIVE MOIETY 

  

 We have found that TNC and DCN have inversed expression in melanoma and benign 

nevi samples. In melanoma TNC is up-regulated and DCN down-regulated, in contrast to benign 

nevi which have barely detectable TNC levels and prominent amounts of DCN. The expression 

of these two proteins is at least in part regulated by the same growth factor: TGFβ1 secreted by 

melanoma cells down-regulates DCN expression (Mauviel et al., 1995) and up-regulates TNC 

expression (Berking et al., 2001). These two proteins also have a common receptor – EGFR 

(Iozzo et al., 1999b; Iyer et al., 2007a), the signaling of which they dictate in opposite manner: 

DCN induces internalization and attenuation of EGFR (Zhu et al., 2005) while TNC promotes 

membrane-bound EGF pro-migratory cascades (Iyer et al., 2008). 

 Decorin possesses intrinsic potent anti-tumorigenic properties. It has a promiscuous 

binding repertoire consisting of ECM proteins, cell receptors and growth factors, and is 

considered to be a “guardian from the matrix” (Neill et al., 2012). Although previous studies did 

not find significant correlation between levels of DCN expression and Breslow tumor thickness 

or Clark level of melanoma (Brezillon et al., 2007; Gambichler et al., 2008) we found that 

primary melanoma samples contain decreased DCN amounts compared to benign nevi of the 

skin. Furthermore, we showed that DCN has a remarkable negative impact on melanoma cell 

invasion, in both simple collagen dermal equivalents and dermal equivalents enriched with 
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Tenascin C. Since DCN can inhibit TNC-induced melanoma invasion, we speculate that this 

inhibitory effect is signaled by inhibition of the EGFR signaling in response to TNC (Figure 29).  

 

 Figure 29. Decorin can counteract pro-invasive effects of TNC on melanoma cells.  

(A) Addition of DCN to dermal matrices ameliorates effects of TNC on melanoma 

invasion. (B) Possible mechanism by which DCN can counteract TNC. 

 

 EGFR gene undergoes frequent amplification in advanced melanoma (Koprowski et al., 

1985; Udart et al., 2001) and the gain of chromosome 7 copy number (on which EGFR gene 

resides) occurs later in the melanoma progression (Bastian et al., 1998). Despite the experimental 

evidence that EGFR can promote melanoma progression there is little clinical evidence that 

supports single agent anti EGFR therapy (Tsao et al., 2012). However, EGFR axis activation or 

over expression is a cause for resistance to Vemurafenib, one of the most effective drugs for 

treatment of melanoma that inhibits the oncopotein BRAF(V600E) (Prahallad et al., 2012). 

Therefore, the inhibition of EGFR in combinational therapy may be a candidate for future 

clinical investigations. Decorin could in this case contribute even more profoundly than chemical 
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EGFR inhibitors as it targets multiple kinase receptors involved in cancer promotion in addition 

to EGFR (Csordas et al., 2000; Iozzo and Sanderson, 2011). DCN gene delivery has already been 

shown to retard the growth of human tumors in immunocompromised animals (Reed et al., 2002) 

and due to its collagen binding capacity can even overcome the extracellular matrix barrier that 

is a major obstacle for successful adenoviral gene therapy (Choi et al., 2010). Therefore, Decorin 

is an excellent candidate for combinational therapy both as anti-tumor moiety itself, and as an 

enhancer of the distribution of targeted gene delivery.  

5.4 FUTURE DIRECTIONS 

 
This work has opened several new avenues of research. First, given the extent of 

knowledge on the composition of the melanoma microenvironment, systems for studying 

melanoma progression should be heterotypic and designed to mimic heterogeneity of both 

melanoma cells as well as the supporting stroma. Skin organ cultures could be further adapted to 

incorporate other cell types found in primary melanomas; such are endothelial cells and 

macrophages, as these were shown to have a significant role in cancer cell invasion. This model 

could also be customized to test the drugs that target tumor microenvironment. Second, we have 

shown that matrikine signaling can influence the mode of melanoma cell migration during the 

invasion. This plasticity of cell movement should be taken into account when considering 

melanoma treatment, as the two modes of cancer cell migration have different mechanistics and 

only the inhibition of both would potentially give results, e.g. a combination of MMP inhibitors 

and ROCK inhibitors. Finally, the ability of another ECM protein present in normal skin, to 
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counteract TNC should not be taken lightly. An exploration of the exact signaling mechanisms 

that DCN elicits to block melanoma cell invasion even in the presence of proinvasive TNC could 

shed light on potential regulatory nodes in cell pro-migratory molecular network that could be 

exploited for further drug development. 
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APPENDIX A 

COMPLETE LIST OF PEPTIDES IDENTIFIED IN MELANOMA AND SKIN TISSUE 

SAMPLES AND SOCS 

Appendix can be downloaded from http://pubs.acs.org/doi/full/10.1021/pr100164x 
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APPENDIX B 

B.1 ABBREVIATIONS 

 ACN-4 – α-actinin-4 
 ATP – adenosine thriphosphate 
 bFGF – basic fibroblast growth factor 
 BRAF – B rapidly accelerated fibrosarcoma kinase 

CAF – cancer-associated fibroblast 
Cdc42 – cell division cycle protein 42 
CGH – comparative genomic hybridization 
CK - cytokeratin 
COL - Collagen 

 CTLA-4 - cytotoxic T lymphocyte antigen-4 
DAPI - 4',6-diamidino-2-phenylindole 
DCN - Decorin 

 E-cadherin - epithelial cadherin 
ECM – extracellular matrix 
EGF- epidermal growth factor 
EGFR – epidermal growth factor receptor 
FBS – fetal bovine serum 
FDA -Food and Drug Administration 
FFPE – formalin-fixed paraffin-embedded 
FN - Fibronectin 
FNIII – Fibronectin III like 
GAPDH – glyceraldehide-3-phosphate dehydrogenase 
GTP – guanosine thriphosphate 
IGF-1R – insulin-like growth factor 1 receptor 
LTQ – linear trap quadrupole 
Met receptor – mesenchymal epithelial transition receptor 
MGP - metastatic growth phase 
MLC – myosin light chain 
MMP – matrix metallo-protease/proteinase 
MS – mass spectrometry 
MYPT – myosin phosphatase targeting protein 
NA – numerical aperture 
N-cadherin - neural cadherin 
PDGF – platelet-derived growth factor 
PLA – proximity ligation assay 
Rac – Ras-related C3 botulinum toxin substrate 
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Ras – Rat sarcoma oncogene 
Rho – Ras homolog  
RGP - radial growth phase 
ROCK – Rho associated kinase 
SAGE – serial analysis of gene expression 
SD – standard deviation 
SEM – standard error mean 
SOC – skin organ culture 
SPARC – secreted protein acidic rich in cysteine 
TGF-β – tumor growth factor β 
TLR4 – toll like receptor 4 
TMA – tissue micro array 
TNC – Tenascin C 
TNFα – tumor necrosis factor α 
TSP-1 – Thrombospondin-1 
VGP - vertical growth phase 
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