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Inhibitory control, the ability to inhibit impulsive responses in favor of voluntary responses, 

remains immature during adolescence. Although this behavior has been well documented, the 

cognitive and neural processes associated with immature inhibitory control during adolescence 

are still not well understood. To address this question, we collected Magnetoencephalography 

(MEG) data from 17 adolescents (age 14-16) and 20 adult participants (age 20-30), where 

participants performed the antisaccade (AS) and control prosaccade (PS) tasks. Leveraging 

MEG’s high temporal resolution, our goal was to delineate developmental changes in local 

neural oscillations and inter-regional neural synchronization associated with preparatory 

inhibitory control. Participants were shown a preparatory cue (a red “x” for AS or a green “x” for 

PS) for 1500 ms, followed by a peripheral target where participants were instructed to make a 

saccade toward (PS) or away (AS) from the target. Neural activity estimates from a priori brain 

regions were then extracted for oscillatory power and phase synchrony analyses. We found that 

compared to adults, adolescents showed decreased alpha-band power in the oculomotor regions 

in preparation to inhibit an upcoming reflexive saccade, suggesting immaturities in functional 

inhibition of task-inappropriate activity. Furthermore, adolescents showed weaker beta-band 

power in prefrontal cognitive control regions, which could reflect less robust top-down biasing of 

sensory and motor processes. Lastly, we found that adolescents showed decreased levels of 

phase synchrony between frontal and parietal regions, possibly reflecting immaturities in 
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coordinating distributed cortical activities. Our results suggest that immaturities in functional 

inhibition, top-down control, and inter-regional synchrony collectively contribute to immature 

inhibitory control during adolescence.  
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1.0  INTRODUCTION 

In our daily lives, successful goal-directed behaviors often require inhibiting task-irrelevant, 

reflexive, or impulsive behaviors. Inhibitory control allows us to act flexibly in service of 

behavioral goals, while suppressing contextually inappropriate or reflexive responses that may be 

compelling but less optimal. Increases in risk-taking behavior during adolescence, such as 

reckless driving, unprotected sex, and substance abuse (Spear, 2000; Steinberg et al., 2008), may 

reflect immaturities in inhibitory control (Luna, Garver, Urban, Lazar, & Sweeney, 2004). In 

addition, impaired inhibitory control is a prominent clinical syndrome across major 

psychological disorders (Sweeney, Levy, & Harris, 2002; Sweeney, Takarae, Macmillan, Luna, 

& Minshew, 2004) that frequently emerge during adolescence (Cicchetti & Rogosch, 1999, 

2002; Cicchetti & Toth, 1998; Resnick et al., 1997). The goal of this dissertation is to improve 

our understanding of the neural mechanisms underlying the development of inhibitory control 

during adolescence, which could be of considerable theoretical and translational significance.  

We will first review what is known about the development of inhibitory control and its 

neural bases (Chapter 2). We will argue that from functional mapping studies we know much 

more about which segregated brain regions contribute to inhibitory control, but less about how 

the spectral and temporal neurodynamics within these functional regions develop. Furthermore, 

how these functionally specialized but anatomically distributed regions interact and how inter-

regional communication develops is less understood. Robust evidence suggests that different 
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oscillatory neurodynamics reflect distinct circuit level physiological processes underlying higher 

cognitive functions (Donner & Siegel, 2011; Kopell, Kramer, Malerba, & Whittington, 2010; 

Wang, 2010), and that flexible coupling between distributed brain regions could be achieved 

through the synchronization of neural oscillations (Fries, 2005; Siegel, Donner, & Engel, 2012; 

Varela, Lachaux, Rodriguez, & Martinerie, 2001). Despite these important advances, our current 

knowledge of how oscillatory neurodynamics develop to support inhibitory control from 

adolescence to adulthood is limited, largely because of methodological limitations. 

The main thrust behind this dissertation is to fill this critical gap. Based on known 

structural neurodevelopment during adolescence (Chapter 4), we hypothesized that the 

development of inhibitory control is associated with developmental changes in the expression 

and synchronization of neural oscillations in task-related regions. To test these hypotheses, we 

collected MEG data from adolescent (aged 14-16) and adult participants (aged 20-30) while they 

performed an oculomotor inhibitory control task. We found that compared to adults, adolescents 

showed decreased alpha-band power in the oculomotor regions in preparation to inhibit an 

upcoming reflexive saccade, which may suggest immaturities in functional inhibition of task-

inappropriate activity. Adolescents also showed weaker beta-band power in the prefrontal 

cognitive control regions, which could reflect less robust top-down biasing of sensory and motor 

processes. Finally, we found that adolescents showed decreased levels of phase synchrony 

between frontal and parietal regions, reflecting immaturities in long-distance cortical 

communication. 
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2.0  THE DEVELOPMENT OF INHIBITORY CONTROL 

2.1 THE OCULOMOTOR PARADIGM OF INHIBITORY CONTROL 

Inhibitory control is defined as the ability to inhibit an automatic, habitual, reflexive, or 

prepotent behavior in favor of a voluntary, goal-directed behavior (Luna, Padmanabhan, & 

O’Hearn, 2010). Several paradigms have been developed for studying the neurobiology and 

psychology of inhibitory control, including the AS task, the stop signal task, and the Go/NoGo 

task (Aron, 2011). All these paradigms have consistently demonstrate developmental 

improvements in inhibitory control capacity from childhood through adulthood (Bedard et al., 

2002; Luna, et al., 2004; Williams, Ponesse, Schachar, Logan, & Tannock, 1999).  

Although all these paradigms require participants to suppress a naturally prepotent or 

overlearned response, in the current dissertation we utilized the oculomotor paradigm (Hallett, 

1978) to probe the development of inhibitory control because it has several important 

advantages. First, the neural system associated with saccadic responses has been well delineated 

using both invasive electrophysiology recordings (e.g., Everling, Dorris, Klein, & Munoz, 1999; 

Everling & Munoz, 2000; Zhang & Barash, 2000), non-invasive neuroimaging techniques (e.g., 

Connolly, Goodale, Menon, & Munoz, 2002; Curtis, Cole, Rao, & D'Esposito, 2005; DeSouza, 

Menon, & Everling, 2003; Luna et al., 1998), and neuropsychological testings of patients with 

brain lesions (e.g., Hodgson et al., 2007; Pierrot-Deseilligny et al., 2003; Pierrot-Deseilligny, 
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Rivaud, Gaymard, & Agid, 1991). These studies have characterized the oculomotor system’s 

neurochemistry, neuroanatomy, and neurophysiology, providing a strong foundation to inform 

developmental neuroimaging studies. Second, the stimulus input and response output are in the 

same domain, and this simplicity limits the potential confound of task comprehension and 

multisensory integration. Finally, and of crucial importance, this paradigm is sensitive to 

adolescent development (Luna, et al., 2004; Luna et al., 2001; Ordaz, Davis, & Luna, 2010; 

Velanova, Wheeler, & Luna, 2008, 2009), and has been widely used to study cognitive deficits in 

patients with neurological and psychiatric disorders (Sweeney, et al., 2002; Sweeney, et al., 

2004).  

The oculomotor paradigm of inhibitory control (Figure 1) consists of two tasks: the AS 

task and the control PS task. The AS task requires participants to suppress a prepotent saccadic 

response to a peripheral stimulus that appears in an unpredictable location and instead make a 

goal-directed eye movement response to the mirror location of the stimulus. The AS task is 

typically presented in conjunction with trials or blocks of PS trials, where subjects are instructed 

to gaze at the peripheral stimulus, and it is used to control for basic oculomotor processes. Each 

task consists of a preparatory period followed by a response period. During the preparatory 

period, participants are asked to fixate on an instructional cue on the center of the screen. A red 

“X” instructs participants to make an AS when the target appears, whereas a green “X” instructs 

the participants to make a prosaccade PS towards the target. After a certain amount of delay, the 

cue disappears from the screen, signaling the beginning of the response period, and a yellow 

flash target appears on a peripheral location within the visual field. Crucial to this task is that the 

location where the target will appear is not known during the preparatory period, allowing 

preparatory signals to be separated from response signals. Preparatory signals are involved in 
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anticipatory cognitive control processes (Braver, 2012), whereby goal-relevant information is 

maintained and used to prepare sensory and motor systems to inhibit an anticipating response 

tendency (Aron, 2011), whereas response signals are related to the actual execution of motor 

response (Brown, Vilis, & Everling, 2007).  

The AS task induces more errors than the reflexive PS task (Munoz & Everling, 2004); 

an AS error is characterized by a reflexive saccade generated toward the target, and is treated as 

an indication of inhibitory control failure. The latency (reaction time) to initiate an AS is longer 

than a PS, and could be contributed to the extra requirement of inverting the stimulus location 

vector into the saccade direction vector for AS (termed vector inversion). For the PS task the 

stimulus location vector is congruent with the saccade vector and can be automatically or 

reflexively executed (Munoz & Everling, 2004). 

 

 
 

 
Figure 1. The oculomotor paradigm of inhibitory control. 
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2.1.1 Preparatory Inhibitory Control Processes 

Non-human primate studies indicate that the preparatory period is crucial for AS task 

performance (Everling & Johnston, 2011; Munoz & Everling, 2004). Specifically, neural 

activities during the preparatory period in oculomotor regions such as the frontal eyefield (FEF), 

the supplementary eyefield (SEF), and the superior colliculus (SC) predict correct vs. incorrect 

AS task performance (Everling, et al., 1999; Everling, Dorris, & Munoz, 1998; Everling & 

Munoz, 2000; Schlag-Rey, Amador, Sanchez, & Schlag, 1997). In addition, longer preparatory 

time correlates with fewer AS errors and faster reaction time (Barton, Greenzang, Hefter, 

Edelman, & Manoach, 2006; Connolly, et al., 2002; Ordaz, et al., 2010). These findings suggest 

that preparatory physiological and psychological processes have pivotal impact on inhibitory 

control. The preparatory neural signals likely reflect two cognitive processes (Brown, et al., 

2007): 

1. The instructional cue is first converted into a task-rule (“red means look away from the 

dot” and “green means look towards the dot”). The encoded task-rule should be actively 

maintained in working memory throughout the preparatory period. We will refer to this process 

as task-rule maintenance. 

2. The encoded task-rule should bias task-relevant sensory and motor processes (Miller & 

Cohen, 2001) in preparation for the upcoming saccade target. For example, the AS task requires 

participants to first suppress the prepotent saccade towards the peripheral stimulus, instead 

generate a goal-directed saccade toward the opposite direction. This could be achieved by 

inhibiting the saccade-generation mechanism to prevent the oculomotor system from triggering a 

saccade upon seeing the target (Everling, et al., 1999; Everling & Munoz, 2000), while preparing 

both the visuospatial and oculomotor systems to compute the vector inversion. We will refer to 
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this process as top-down signaling, which control signals are sent to task-relevant regions for 

task-specific preparations.  

It has been suggested that the AS task can be regarded as an arbitrary stimulus-response 

(SR) mapping task (Munoz & Everling, 2004) because the stimulus and response vectors are 

incompatible. To prepare to execute an AS, top-down signaling is needed to inhibit the more 

automatic and prepotent congruent SR mapping (a PS), while preparing sensory and motor 

resources to execute the arbitrary SR mapping for a correct AS response. The PS task allows the 

more automatic congruent SR mapping to be executed, lessening the need for top-down 

signaling. Because PS responses are automatic and prepotent, participants will not need to 

actively maintain task instructions during the preparatory period for PS, but just respond 

reflexively to the visual target. To summarize, differences in preparatory neural activities 

between AS and PS should reflect differences in top-down signaling and task-rule maintenance. 

2.2 BEHAVIORAL STUDIES 

Behavioral studies indicate that the capacity for inhibitory control is present in infants (Amso & 

Johnson, 2005; Diamond, 1989), who can successfully inhibit motor responses on some trials. 

Nevertheless, the consistency continues to improve over the course of development (Fischer, 

Biscaldi, & Gezeck, 1997; Klein & Foerster, 2001; Luna, et al., 2004; Munoz, Broughton, 

Goldring, & Armstrong, 1998). The development of AS task performance (percentage of error 

trials) is best fitted by an inverse function (Luna et al., 2004), indicating that error rates decreases 

with age as the capacity for inhibitory control continues to develop. The behavioral improvement 

is more rapid (steeper slope) from childhood to adolescence, and accuracy increases (fewer error 
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trials) whereas reaction time decreases from childhood through adolescence (Fischer, et al., 

1997; Klein & Foerster, 2001; Luna, et al., 2004; Munoz, et al., 1998). Critically, the 

performance asymptotes in early adulthood, indicating inhibitory control remains immature 

during adolescence (Luna, et al., 2004).  

 Although contextual factors such as reward anticipation could improve performance, 

adolescents still showed higher AS error rates (Geier & Luna, 2012). Adolescents’ immature 

performance could not be explained by slower processing speed; even when the preparatory time 

was increased up to six seconds, adolescents still made more errors than adults (Ordaz, et al., 

2010). Considered together, these studies suggest that there are critical immaturities in the 

neurocognitive processes being engaged in preparation to inhibit reflexive saccades. 

2.3 NEURAL SYSTEMS OF INHIBITORY CONTROL 

An extensive body of literature of human neuroimaging, human neuropsychology, and primate 

electrophysiology studies has identified several distributed brain regions associated with 

inhibitory control processes. These regions include the dorsal anterior cingulate cortex (ACC), 

the ventral lateral prefrontal cortex (VLPFC), the dorsal lateral prefrontal cortex (DLPFC), and 

the posterior parietal cortex (for in-depth reviews, see Aron, 2011; Aron, Robbins, & Poldrack, 

2004; Luna & Sweeney, 2004). The antisaccade task also recruits a set of regions that are 

associated with the initiation and suppression of saccadic eye movements, including the FEF, the 

SEF, the intraparietal sulcus (IPS), the basal ganglia (BG), the SC, the thalamus, and the 

cerebellum (for in-depth reviews, see Curtis, 2011; Munoz & Everling, 2004). 
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2.3.1 Preparatory Neural Activities Associated with Inhibitory Control 

Single-neuron recordings in non-human primates showed differential neural activities between 

AS and PS. Saccade neurons in the monkey FEF and SC showed higher firing rates during the 

preparatory period of the PS task, compared to the AS task; in contrast, fixation neurons in the 

FEF and SC exhibited higher firing rates for the AS task compared to the PS task (Everling, et 

al., 1999; Everling & Munoz, 2000). Furthermore, Everling and Munoz (1998, 1999, 2000) 

found that firing rates of saccade neurons during the preparatory period could be used to predict 

success vs. failure in inhibiting the upcoming reflexive saccade. Specifically, trials with higher 

saccade-related activity during the preparatory period show a higher probability of inhibition 

failure. These findings were extended into a mechanistic model predicting the success vs. failure 

in inhibiting reflexive saccades (Munoz & Everling, 2004). The model proposes that during the 

preparatory period, there is a competition between fixation and saccade mechanisms. To 

successfully inhibit a reflexive PS, pretarget activity in saccade-generating neurons has to be 

dampened. In an accumulator model, the suppression of saccade-related activation will prevent 

the stochastically fluctuating saccade-related activity from reaching a critical triggering threshold 

(Curtis, 2011; Hanes & Schall, 1996), ensuring that no reflexive saccades will be prematurely 

triggered upon seeing the visual target, and fixation can be maintained. If pretarget saccade-

related activity is not sufficiently suppressed, its activation can reach the triggering threshold, 

and a reflexive saccade will be triggered toward the visual target, resulting in inhibition failure. 

The lateral PFC has been hypothesized to be involved in top-down signaling processes required 

for generating preparatory signal necessary to inhibit saccade-related activity in the FEF and the 

SC (Brown, et al., 2007; DeSouza, et al., 2003). 
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Functional magnetic resonance imaging (fMRI) studies found that the DLPFC, the SEF, 

the ACC, the FEF, and the IPS showed significantly higher preparatory activations for AS, when 

compared to PS (Brown, et al., 2007; Connolly, et al., 2002; Curtis, et al., 2005; DeSouza, et al., 

2003). Given that the eye movement response is the same for AS and PS trials, increased activity 

in these brain regions reflects the engagement of preparatory inhibitory control. For example, the 

DLPFC has been suggested to be involved in task-rule encoding and task goal maintenance 

(Cole, Bagic, Kass, & Schneider, 2010; Sakai, 2008), and the VLPFC is involved in inhibiting 

motor-related activities for stopping actions (Aron, Fletcher, Bullmore, Sahakian, & Robbins, 

2003; Aron, et al., 2004; Rubia, Smith, Brammer, & Taylor, 2003). The lateral frontal and 

parietal regions could also be involved in working memory maintenance (Curtis & D'Esposito, 

2003a; Pesaran, Pezaris, Sahani, Mitra, & Andersen, 2002). 

The above model appears to be contradictory to human fMRI studies, results which 

greater activation has been repeatedly observed in the human FEF for the AS task (e.g., Brown, 

et al., 2007; Connolly, et al., 2002; Curtis & D'Esposito, 2003b). However, fMRI cannot measure 

fixation and saccade neurons separately, and the increase in blood oxygenation level dependent 

(BOLD) activity might reflect increased activities of fixation neurons. Furthermore, it has been 

shown that BOLD response is more highly correlated with local field potentials (LFP) than 

spiking outputs (Logothetis, Paulsen, Augath, Trinath, & Oeltermann, 2001), and thus may better 

reflect the input to an area. Because fMRI cannot easily distinguish excitatory vs. inhibitory 

postsynaptic potentials (Logothetis, 2008), higher BOLD activity might reflect an elevated level 

of inhibition, or increased top-down biasing input, or both (Curtis, 2011). 
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2.4 THE DEVELOPMENT OF NEURAL SYSTEMS ASSOCIATED WITH 

INHIBITORY CONTROL 

Developmental fMRI studies indicate that children, adolescents, and adult recruit a similar set of 

distributed brain regions for inhibitory control (Luna, Padmanabhan, et al., 2010). However, the 

magnitude of activation within each region varies across development (Bunge, Dudukovic, 

Thomason, Vaidya, & Gabrieli, 2002; Casey et al., 1997; Durston et al., 2002; Rubia, Smith, 

Taylor, & Brammer, 2007; Rubia et al., 2006; Tamm, Menon, & Reiss, 2002). Particular 

interests has been placed on the PFC, given its putative role in top-down control of goal-directed 

behavior (Miller & Cohen, 2001). Developmental differences in the magnitudes of activations in 

the VLPFC and the DLPFC have been reported in some studies, suggesting that improvement in 

inhibitory control is supported by maturing PFC function (Bunge, et al., 2002; Rubia, et al., 

2007; Rubia, et al., 2006). However, the direction of developmental differences (adults greater 

than adolescents or vice versa) has not been consistent across studies, and researchers typically 

interpreted age-related increases in activation as an index of increased cognitive control function, 

and a age-related decreases as increased effort (Luna, Velanova, & Geier, 2010; Tamm, et al., 

2002). Note that results from several early studies were confounded by task performance 

discrepancy between age groups, making it difficult to interpret differences across age as being 

related to either changes in brain function or differences in performance. 

In our own studies using the AS task (Velanova, et al., 2008, 2009), we equated 

performance across age groups by separating the transient, trial-locked evoked responses 

between correct and incorrect trials, and performed group comparisons for correct and incorrect 

trials separately. For correct trials, we found no developmental differences in the magnitudes of 

activity between adolescents (age 13-17 years) and adults (age 18 years or older) in either 
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oculomotor or prefrontal cognitive control regions such as the DLPFC (Velanova, et al., 2008). 

Three possible explanations could account for the lack of developmental effect. First, localized 

brain functions could be matured and stabilized by adolescence, and developmental 

improvements from adolescence to adulthood could be better explained by changes in 

connectivity supporting the coordination of global brain functions. For example, the 

effectiveness of PFC sending task-control signals to the oculomotor cortices could show a more 

protracted development. As described in Chapter 4, white matter connectivity is still immature in 

adolescence. Second, it is known that there are vast and complex neurodynamics that cannot be 

adequately measured by fMRI (Cohen, 2011). For example, it has been shown that oscillatory 

neurodynamics undergo significant changes during adolescence (Uhlhaas et al., 2009), yet both 

cognitive and neurodynamics typically evolve at a much faster timescale than fMRI’s sampling 

rate. Because BOLD measures hemodynamic changes to infer neuronal activity summated across 

slow and fast neural oscillations, it is possible that the BOLD is not sensitive to subtle 

developmental changes in neural electrophysiology. Lastly, because we could not separate the 

preparatory signal and the response signal in those studies, it is possible that adolescents could 

have immaturities in preparatory inhibitory control processes that we were unable to detect. 

These possibilities motivated this dissertation. 

2.5 THE DEVELOPMENT OF BRAIN CONNECTIVITY AND INHIBITORY 

CONTROL 

The distributed nature of neural systems suggests that a full understanding of the neural bases of 

inhibitory control necessitates research examining both how activity within brain regions 
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changes with development, and also how brain connectivity develops supporting interaction 

between functional regions. Using Granger causality analysis (GCA; Roebroeck, Formisano, & 

Goebel, 2005), we examined developmental differences in effective connectivity between 

regions supporting AS and PS task performance (Hwang, Velanova, & Luna, 2010). Children 

(8–12 years of age), adolescents (13–17 years of age), and adults (18–27 years of age) performed 

blocks of AS trials and blocks of PS trials. Since the basic perceptual motor processes are 

equivalent between the AS task and the PS task, contrasting the strength of connections during 

the AS and the PS task block allowed us to identify connections associated with top-down 

signaling processes. We found that children demonstrated strong effective connectivity within 

the oculomotor network (FEF and IPS) and within the parietal cortex, but few top-down effective 

connections from the VLPFC and the DLPFC to sensory and motor regions. From adolescence to 

adulthood, connectivity from the right VLPFC to the thalamus, from the ACC to the right 

DLPFC, from the right DLPFC to the thalamus, the IPS, and the FEF continued to strengthen. 

These results suggest that children may rely on visuospatial processing to compensate for 

limitations in prefrontal functions resulting in relatively poor inhibitory control. In contrast, by 

adolescence, top-down connectivity is available but limited, and the strength of top-down 

connectivity from the PFC to down-stream oculomotor regions continues to develop from 

adolescence into adulthood, possibly supporting behavioral improvements in inhibitory control. 

These results provide initial evidence suggesting that strengthening of connectivity 

supports developmental improvements in inhibitory control from adolescence to adulthood. The 

next step is to probe the possible mechanisms that may contribute to these changes. However, 

fMRI has limited temporal resolution in tracking neurodynamics. For example, the strength of 

connectivity had to be estimated using block time-series that consisted of series of AS or PS 
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trials. As such, it was not possible to separate preparatory signals from motor related signals, and 

it remains an open question whether or not the age-related strengthening in top-down 

connectivity we observed reflects enhanced top-down inhibition of preparatory saccade-related 

activity. Similarly, we were unable to separate correct trials from error trials within each block, 

and differences in performance between age groups could have biased our results. Together, 

these limitations make it difficult to draw inferences regarding the underlying neurocognitive 

processes associated with immature inhibitory control during adolescence. To overcome these 

limitations, we need a neuroimaging technique that can more faithfully measure that fast-

changing dynamics of neural electrophysiology. 
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3.0  OSCILLATORY NEURODYNAMICS 

Oscillations are ubiquitous in neural systems—the time-varying voltages of neural currents 

unambiguously show rhythmicity (Buzsaki, 2006). Furthermore, cognitive, perceptual, and 

motor tasks are known to induce and modulate neural oscillations (Donner & Siegel, 2011; 

Siegel, et al., 2012; Wang, 2010). In this chapter, we will discuss how neural circuits generate 

distinct rhythmic neural activities—defined as brain rhythms. One theme that will be emphasized 

throughout is that different brain rhythms are associated with different physiology, thus 

reflecting different circuit-level biophysical processes that together may support different 

components of higher order cognitive functions.  

By definition, oscillations occur when the recorded neural signal shows periodic activity 

within a well-defined time window (Figure 2). Time-domain neural signals can be transformed 

into the frequency-domain by time-frequency decomposition techniques (Jensen & Hesse, 2010), 

whereby the power and phase of oscillation are available as separate measures. The strength of 

neural oscillation can be determined by examining the amplitude. Amplitude is defined as the 

distance from zero to the maximum absolute value of the sinusoidal curve; taking the square of 

the amplitude converts amplitude into oscillatory power. A strong oscillation has larger 

deflections within each cycle, resulting in greater power comparing to a weaker oscillation 

(Figure 2A). The phase of an oscillating signal is defined as the initial angle of the sinusoidal 

function at its origin. With two oscillating signals, the correlation can be measured with phase 
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synchrony. If the phase relationship between the two signals is stable across time, these two 

time-varying signals are synchronized (Figure 2B). If the phase relationship is randomized, 

signals are desynchronized (Figure 2C). Modeling studies suggest that phase synchrony improves 

the effectiveness of communication between signals (Buehlmann & Deco, 2010; Canolty et al., 

2010; Kopell, Ermentrout, Whittington, & Traub, 2000), and is widely used as a measure of 

functional connectivity (Lachaux, Rodriguez, Martinerie, & Varela, 1999).  

 
 
 

 
 
 
Figure 2. Oscillatory power and synchronization. 
A. A strong oscillation will show larger deflections within each cycle. B. The phase relationship 
between the S1 and S2 is stable across time; therefore these two time-varying signals are 
synchronized. C. The phase relationship between S1 and S2 is inconsistent across time, therefore 
these two signals are desynchronized. 
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3.1 NEURAL OSCILLATIONS  

Neural ensembles, groups of neurons forming microcircuits, are known to express intrinsic and 

task-related rhythmic activities across a broad range of frequencies that reflect the simultaneous 

oscillations of extracellular potentials (Wang, 2010). Several biophysical properties of neural 

circuits, such as the excitatory-inhibitory interaction, the temporal structure of synaptic inputs, 

and the electric and chemical properties of neurons, together determine the frequency of 

oscillation (Jones et al., 2009; Kopell, et al., 2010; Roopun et al., 2010; Siegel, et al., 2012; 

Vierling-Claassen, Cardin, Moore, & Jones, 2010; Whittington, Kopell, & Traub, 2010). 

Therefore, distinct brain rhythms at different frequency bands (alpha-band: 8–14 Hz; beta-band: 

15–29 Hz; gamma-band: >30 Hz; Buzsaki and Draguhn, 2004) are associated with different 

physiology (Buzsaki & Draguhn, 2004; Kopell, et al., 2010), and may be treated as indices of 

different microcircuit activities (Donner & Siegel, 2011; Siegel, et al., 2012).  

Using non-invasive neuroimaging techniques with high temporal resolution such as 

MEG, electroengephalography (EEG), or invasive electrophysiology methods that measure local 

field potentials (LFP), one can record electrophysiology signals from a brain region and analyze 

their embedded information regarding oscillatory neurodynamics. Higher-level cognitive 

functions are mediated by different lower-level neural interactive processes among microcircuits 

that encode information, maintain information, output signals, boost or inhibit representation. 

The spectral content of a functional brain region may be process-dependent, depending on how a 

specific cognitive act is mediated by local microcircuit processes (Donner & Siegel, 2011). Note 
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that oscillatory activities reflect summated rhythmic potentials of groups of neurons, and are 

different from spike-rate measures that reflect spiking outputs of a single neuron. 

3.1.1 Circuit Mechanisms of Neural Oscillations 

To understand how circuits generate rhythms, it is useful to first discuss a canonical microcircuit 

model built on features of anatomy that are shared across brain regions (Douglas & Martin, 

2004; Kaas, 2010). The primate neocortex has been found to be organized by large numbers of 

microcolumns and microcircuits (Mountcastle, 1997). Primate neocortical column can be 

specified as a vertical structure that consists of six layers of neurons; there are three superficial 

layers (1-3) and three deep layers (4-6). In each column, microcircuits are formed by excitatory 

and inhibitory neurons. Excitatory pyramidal neurons can be crudely divided into the superficial 

pyramidal cells and the deep pyramidal cells, each are recurrently connected with a wide variety 

of GABAergic inhibitory neurons. Thalamic inputs primarily (but not exclusively) terminate at 

layer 4, while other cortical and subcortical inputs primarily (but not exclusively) terminate at 

the superficial layers. Pyramidal neurons in layer 5/6 send outputs of the microcolumn to the BG, 

the thalamus, or other cortical regions. 

Short-distance, within microcircuit communication tends to occur at the gamma-band (> 

30 Hz). Studies found that gamma-band oscillation is generated by interactions between local 

excitatory pyramidal cells and fast-spiking GABAergic inhibitory interneurons (Cardin et al., 

2009; Sohal, Zhang, Yizhar, & Deisseroth, 2009). In contrast, slower beta- (15-29 Hz) and alpha-

band (8-14 Hz) rhythms likely involve inhibitory neurons with longer time constants, such as the 

low-threshold spiking interneurons (Jones, et al., 2009; Moore, Carlen, Knoblich, & Cardin, 

2010; Vierling-Claassen, et al., 2010). Slower rhythms are typically more strongly expressed in 
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deep laminar layers (Buffalo, Fries, Landman, Buschman, & Desimone, 2011; Roopun, et al., 

2010), suggesting that alpha and beta rhythms could reflect thalamic-cortical, cortical-thalamic-

cortical, or cortical-cortical interactions (Bollimunta, Mo, Schroeder, & Ding, 2011; Jones, et al., 

2009). Furthermore, different brain rhythms can be generated simultaneously in the same brain 

region, collectively reflecting different microcircuit level computation and integration functions 

that support cognition and behavior. 

3.2 COMMUNICATION THROUGH NEURAL SYNCHRONIZATION 

The communication through coherence hypothesis proposes that synchronization between distant 

oscillating neurons could act as a general neuronal communication mechanism (Fries, 2005; 

Varela, et al., 2001). As mentioned in Chapter 3.1, neural activity is known to show periodic 

oscillations, and such periodicity has been suggested to reflect rhythmic modulations in neuronal 

excitability (Burchell, Faulkner, & Whittington, 1998; Haider & McCormick, 2009; Lakatos et 

al., 2005). Rhythmic fluctuation of the excitability of a group of neurons makes its sensitivity to 

synaptic input predictable (Canolty, et al., 2010; Fries, 2005). In other words, the window for 

optimal communication becomes temporally predictable. For effective communication, 

transmitting and receiving neurons should have a consistent phase relationship, allowing neural 

spike-trains to consistently arrive at the phase when the targeted neuron is excitable. If spikes 

arrive at random phases, transmission can miss the optimal window for communication, 

rendering it ineffective. Therefore, different groups of neurons can communicate with each other 

more effectively when their activity patterns are well-synched—defined as neural synchrony, or 

phase synchrony (Figure 3). 
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Figure 3. Phase synchronization as an index of neural synchrony. 
Neural activities from S1, S2, and S3 show rhythmic oscillation across time. S1 and S2 are phase 
synchronized. In contrast, S2 and S3 are not synchronized. Phase synchronization allows 
effective information transfer between S1 and S2 (indicated by arrows) during optimal windows 
of communication (indicated by the boxes circling the peak of oscillation). In contrast, 
communication between S3 and S2 will be ineffective.  
 
 

 
Communication between neurons could be established by reciprocally opening the 

optimal window for communication through entrainment of neural oscillations into the same 

frequency band (Canolty, et al., 2010; Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008); 

whereas communication could be lessened through asynchronous oscillation (Akam & 

Kullmann, 2010). Such selective communication mechanism could be critical for top-down 

biasing and biased-competition. For example, neural synchrony could be strengthened between 

neurons encoding for the to-be-selected perceptual/motor information and neurons encoding for 

higher-order cognitive variables (Womelsdorf & Fries, 2007).  
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To summarize, neural synchrony at different frequencies is thought to support 

communication across different spatial scales. Short-distance synchronization tends to occur at 

higher frequencies (gamma-band), whereas long-distance communication is associated with the 

slower beta- or alpha-band frequencies (Kopell, et al., 2000; von Stein & Sarnthein, 2000). This 

hypothesis is consistent with rhythms’ putative circuit mechanisms: Gamma-band neural 

synchrony is generated by local interactions between excitatory and fast-spiking inhibitory 

neurons (Cardin, et al., 2009), whereas alpha-band and beta-band activities involve cortical-

cortical or cortical-subcortical interactions (Donner & Siegel, 2011; Jones, et al., 2009; 

Saalmann, Pinsk, Wang, Li, & Kastner, 2012; Siegel, et al., 2012). As such, frequency 

information could potentially provide a window into investigating potential circuit mechanisms 

supporting inhibitory control, and provide insights regarding developmental differences in neural 

mechanisms that support inhibitory control. 

3.3 OSCILLATORY NEURODYNAMICS AND INHIBITORY CONTROL 

Although few studies have directly examined the relationship between oscillatory neurodynamics 

and AS task performance, studies have characterized the time-frequency structure of neural 

oscillations associated with working memory and selective attention, both are closely related to 

the processes we hypothesized to be engaged during the preparatory period. Below we briefly 

review relevant findings. 
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3.3.1 Gamma Rhythm and Working Memory Maintenance  

We hypothesized that to successfully perform the AS task, participants should actively maintain 

task-rule in working memory throughout the preparatory period. It has been suggested that 

sustained gamma-band activity (> 30 Hz) reflects active information maintenance in neural 

circuits through recurrent excitatory-inhibitory interactions (Jensen, Kaiser, & Lachaux, 2007). 

In support of this hypothesis, several human and nonhuman primate studies have found increased 

gamma-band power in the frontal and parietal cortices during the delay period of working 

memory tasks (Howard et al., 2003; Pesaran, et al., 2002; Roux, Wibral, Mohr, Singer, & 

Uhlhaas, 2012). Increased gamma-band power has been found in the lateral intraparietal sulcus 

(LIP) in macaque monkeys during a memory-guided saccade task, task which eye movements 

have to be made to a remembered location (Pesaran et al., 2002). Using a spatial-working 

memory task, a human MEG study also found increased gamma-band power in the DLPFC as 

well as the IPS during the delay period (Roux, et al., 2012). Furthermore, using the Steinberg 

working memory task, an intracranial electroencephalography (iEEG) study found that gamma-

band power was positively correlated with working memory load (Howard, et al., 2003), and 

these positive correlations were predominantly found in electrodes placed over the lateral PFC. 

Together these results suggest that increases in gamma-band power might reflect local brain 

region actively maintaining information on-line. 

3.3.2  Beta Rhythm and Top-Down Signaling 

We hypothesized that for the AS task, the maintained task-rule should be converted to control 

signals and communicated to the oculomotor system to decrease the probability of making 
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reflexive saccades. The physiological origin of the beta rhythm (15-29 Hz) suggests it may 

reflect cortico-cortical communication and top-down signaling. In one in vitro study that 

recorded field potentials from slices obtained from rat’s parietal cortices, beta rhythms were 

generated by glutamatergic excitation in the deep layers of cortical columns (Roopun, et al., 

2010). Because excitatory pyramidal neurons in layer 5/6 send outputs of cortical columns to 

subcortical structures or other cortical areas or both (Douglas & Martin, 2004), beta-band 

activities expressed in higher-order association cortices could reflect top-down signaling that 

transmits control signals to influence down-stream sensory and motor processes.  

Further, one computational modeling study showed the genesis of the beta rhythm in the 

primary somatosensory circuit could be accurately modeled by two inputs into laminar circuits; 

one thalamic feedforward input to the granular layer (layer 4) followed by a delayed feedback 

input into the superficial layers of cortical columns (Jones, et al., 2009). This is in contrast to the 

alpha rhythm, which could be modeled by the thalamic-cortical feedforward input. Feedback 

projections into the superficial layers are thought to be originated from either non-specific 

thalamic nuclei that have extensive connections throughout the cortex (Sherman & Guillery, 

2011), or from other cortical columns (Douglas & Martin, 2004). This result suggests that local 

beta-band activity could be generated by recurrent cortical-subcortical-cortical loops (Alexander, 

DeLong, & Strick, 1986), when outputs originated from deep layers of a cortical column induce 

feedbacks from non-specific thalamic nuclei or other cortical columns back into the superficial 

layers. In a broader context, synchronous beta activity could also reflect global integrative 

functions (Donner & Siegel, 2011) that involve cortical-cortical or cortical-subcortical-cortical 

interactive processes. 
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In support of these hypotheses, increased beta-band activity has been found to be 

implicated in top-down control of goal-directed behaviors (Buschman, Denovellis, Diogo, 

Bullock, & Miller, in press; Buschman & Miller, 2007; Gross et al., 2006; Hipp, Engel, & Siegel, 

2011; Saalmann, Pigarev, & Vidyasagar, 2007; Swann et al., 2009). An iEEG study reported 

increased beta-band power in the right VLPFC when patients successfully inhibited a motor 

response in the stop-signal task (Swann, et al., 2009). This increased beta-band power could 

reflect the right VLPFC outputting control-signals to inhibit down-stream motor circuitries. A 

similar finding has also been reported in a recent monkey electrophysiology study (Buschman, et 

al., in press). In this study, monkeys were trained to acquire and execute two different arbitrary 

SR mapping rules, and distributed neural ensembles within the PFC were found to encode each 

rule. Critically, when monkeys were executing a specific rule, beta-band neural synchrony 

increased among PFC neural ensembles that were previously found to encode the selected rule, 

whereas alpha-band neural synchrony increased among neural ensembles that coded the 

competing rule. This result further suggests that beta-band activity could also be involved in 

executing arbitrary SR mapping rules for goal-directed behaviors. 

In a nonhuman primate study comparing top-down (memory search) and bottom-up (pop-

out) sensory processing, neural synchrony between the PFC and the IPS has been found to 

strengthen in the beta frequency range during top-down attention selection (Buschman & Miller, 

2007). Consistent with this finding, a human MEG study also found increased beta-band 

synchrony between frontal and parietal regions in anticipation of an incoming visual stimuli 

(Gross, et al., 2006). Furthermore, beta-band neural synchrony between the frontal and sensory 

cortices (occipital and temporal) increased when participants combined visual and auditory 

stimuli into a coherent percept (Hipp, et al., 2011). Collectively these results suggest beta-band 
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neural synchrony may reflect cortical-cortical communication, and increases in local beta-band 

oscillatory power may reflect top-down signaling from higher-order cortices; we hypothesized 

that preparatory inhibitory control will engage both processes. 

3.3.3 Alpha Rhythm and Functional Inhibition 

Studies suggest that correct AS task performance requires pretarget saccade-related activity to be 

sufficiently suppressed (Everling, et al., 1999; Everling & Munoz, 2000). What is the neural 

signal that might reflect this inhibition process? It has been suggested that functional inhibition is 

associated with increases in alpha-band power (8-14 Hz; Jensen & Mazaheri, 2010; Klimesch, 

Sauseng, & Hanslmayr, 2007). In support of this hypothesis, studies found that when participants 

directed attention to one hemifield, alpha-band power decreased in the contralateral hemisphere 

but increased in the ipsilateral hemisphere (Handel, Haarmeier, & Jensen, 2011; Thut, Nietzel, 

Brandt, & Pascual-Leone, 2006; Worden, Foxe, Wang, & Simpson, 2000). These findings 

suggest that increases in alpha-band power might reflect disengagement of task-irrelevant 

regions. In addition, if increased alpha-band power also reflects active inhibition of neuronal 

processes, it should also influence behavioral performance and neuronal firing. In support, it has 

been found that alpha-band power expressed in the somatosensory cortex was negatively 

correlated with the detection rate of tactile stimuli (Jones et al., 2010), and increased alpha power 

in the visual cortex negatively correlated the discrimination of near-threshold visual stimuli (van 

Dijk, Schoffelen, Oostenveld, & Jensen, 2008). Furthermore, a study that recorded neural 

activity from the monkey premotor cortex found that neural spike-rate was negatively correlated 

with alpha-band power—when alpha-band power was high, neurons fired less frequently 

(Haegens, Nacher, Luna, Romo, & Jensen, 2011).  
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The physiological mechanism of the alpha rhythm is currently not well understood, and 

different hypotheses have been proposed. Because thalamic neuronal populations are known to 

show intrinsic alpha-band activity (Hughes & Crunelli, 2005), most models agree that alpha-

band activity reflect some forms of cortico-thalamic interactions (Bollimunta, et al., 2011; Jones, 

et al., 2009), yet still no firm explanation exist. If increased alpha-band power is an index of 

cortical inhibition, it should involve inhibitory neurons that can sustain inhibition to pyramidal 

neurons to reduce spiking outputs. It has been found that one type of low-threshold spiking 

interneurons, the somatostatin (SOM) expressing neurons, reduce burst firing in excitatory 

neurons by providing tonic inhibition to pyramidal neurons’ distal dendrites (Gentet et al., 2012). 

Computer simulations of microcircuits suggests that activation of SOM inhibitory neurons could 

amplify low frequency oscillation (Vierling-Claassen, et al., 2010). Furthermore, SOM neurons 

receive inputs from the thalamus (Tan, Hu, Huang, & Agmon, 2008), consistent with existing 

models suggesting that alpha rhythm involves thalamic-cortical interactions (Bollimunta, et al., 

2011; Jones, et al., 2009). Together these studies suggest that during the preparatory period, 

alpha-band power will increase in oculomotor regions, reflecting active functional inhibition of 

saccade-related activity. 
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4.0  DEVELOPMENTAL OF OSCILLATORY NEURODYNAMICS 

In Chapter 3, we discussed how neural circuits could generate oscillatory neurodynamics, and its 

involvement in preparatory inhibitory control processes. In this chapter, we will review studies 

describing structural neurodevelopment during adolescence, and discuss how brain maturation 

might affect neural oscillation and neural synchrony. Several related issues had been previously 

discussed in Hwang & Luna (2012). 

4.1 BRAIN MATURATION DURING ADOLESCENCE 

4.1.1 Synaptic Pruning and Myelination 

The brain continues to show important morphological changes during adolescence. Neocortical 

gray matter shows continued thinning into adulthood, especially in the PFC and the temporal 

cortex (Gogtay et al., 2004). The pruning of synapses is believed to be a primary contributor to 

gray matter thinning, and continued synaptic pruning has been found during adolescence (Rakic, 

Bourgeois, Eckenhoff, Zecevic, & Goldman-Rakic, 1986). Histological studies found that the 

reduction in synapses in the middle frontal gyrus reached adult levels at a later age (16 years), 

when compared to age 7 in the visual cortex (Huttenlocher, 1979; Huttenlocher, de Courten, 
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Garey, & Van der Loos, 1982), and at age 10 in Heschls’s gyrus in the temporal cortex 

(Huttenlocher & Dabholkar, 1997).  

Concurrent with gray matter maturation, white matter connections also show protracted 

development during adolescence. Distant brain regions are interconnected by bundles of axon 

fibers that support communication between gray matter regions. During development, glial cells 

form myelin sheets that wrap around these axon fibers, enhancing the speed and efficiency of 

neuronal transmission. Histological findings indicate that myelination begins during the second 

trimester of pregnancy and continues into adult life (Yakovlev, Lecours, & Minkowski, 1967). 

Myelination reaches adult levels in the sensory regions first, followed by the motor regions, and 

association regions continue to myelinate through adolescence (Yakovlev, et al., 1967).  

4.1.2 Structural Connectivity 

Diffusion tensor imaging (DTI) measures the coherence of water diffusion in the brain 

parenchyma; in white matter tracts, because the direction of diffusion is more confined, greater 

coherence of water diffusion reflects increased integrity of white matter tracts. Fractional 

anisotropy (FA) measures the diffusion along the length of axons of the white matter, and radial 

diffusivity (RD) measures the width and depth of diffusion. Both measures are routinely used to 

characterize the integrity of white matter tracts in developmental DTI studies. 

Several DTI studies found that FA values increased with age in major white matter tracts 

that provide cortical-cortical and cortical-subcortical connections. These tracts included the 

internal capsule, the superior longitudinal fasciculus, and the corpus callosum (Asato, 

Terwilliger, Woo, & Luna, 2010; Ashtari et al., 2007; Barnea-Goraly et al., 2005; Schmithorst, 

Wilke, Dardzinski, & Holland, 2002). In our own DTI study, we found continued maturational 
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changes in major white matter tracts from adolescence to adulthood (Asato, et al., 2010). For that 

study, we recruited 36 children (8–12 years of age), 45 adolescents (13–17 years of age), 33 

adults (18–28 years of age), and examined age-related changes in RD. RD has been found to be a 

more faithful measure of histological changes in myelination and dysmyelination; decreases in 

RD value was suggested to be associated with increases in myelination (Song et al., 2002; Song 

et al., 2005). Specifically, the uncinate fasciculus, a frontal portion of the superior longitudinal 

fasciculus, frontal portions of the anterior thalamic radiations, the genu of the internal capsule, a 

frontal-parietal portion of the corona radiata, and the posterior portion of the corpus callosum 

had not reached adult levels in adolescence. Among these white matter tracts, the superior 

longitudinal fasciculus connects the PFC with the parietal cortex, and the thalamic radiata 

encapsulates thalamic-cortical projections. Immaturities in these white matter tracts could be 

related our previous effective connectivity study (Hwang, et al., 2010), suggesting that both 

functional and structural brain connectivity between frontal-cortical and frontal-subcortical 

regions continues to develop into adulthood.  

Myelination increases the speed of neuronal transmission (Stufflebeam et al., 2008), 

potentially enhancing the precision of inter-regional synchronization. Specifically, immaturities 

in association tracts and thalamic radiata could be particularly relevant to the expression and 

synchronization of alpha and beta rhythms. As discussed previously, the physiological 

mechanisms that generate alpha and beta rhythms could involve cortical-cortical and subcortical-

cortical interactions (Jones, et al., 2009). If association tracts and projection tracts are immature 

during adolescence, this immaturity could affect both the expression of alpha and beta 

oscillations, as well as the synchrony between oscillations.  
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4.1.3 Inhibitory Neurons  

As discussed in the previous chapter, the expression of oscillatory neurodynamics is intimately 

linked to the excitatory/inhibitory interactions of microcircuits. Critically, different types of 

inhibitory interneurons and gamma-aminobutryic acid (GABA) functioning are pivotal in 

modulating the frequencies of neural oscillations (Moore, et al., 2010). Thus, cellular 

developmental changes in inhibitory neurons could influence the synchrony and power of neural 

oscillations, and inturn influence behavior.  

Using primate models, studies suggest fast-spiking interneurons’ functions remains 

immature during adolescence (Lewis & Melchitzky, 2012). For example, the density of axon 

terminals in fast-spiking parvalbumin (PV) GABA inhibitory neuron increases continuously into 

adulthood in the PFC (Erickson & Lewis, 2002), and the expression of messenger ribonucleic 

acid (mRNAs) encoding postsynaptic GABA receptors subunits also have a protracted 

developmental trajectory through adolescence (Hashimoto et al., 2009). PV GABA neurons 

innervate the axon initial segment (axon hillock) of pyramidal cells, regulating their firing 

output; therefore immaturities in layer 5 fast-spiking GABA interneurons could potentially affect 

prefrontal cortex’s top-down signaling to subcortical and cortical regions.  

Low-threshold spiking inhibitory neurons, such as the SOM neuron that targets the 

dendritic branch of pyramidal cells, has been hypothesized to be involved in the genesis of the 

alpha rhythm (Vierling-Claassen, et al., 2010). While low-threshold spiking interneurons’ 

developmental trajectories and its function over adolescence remain poorly understood, it has 

been found that in human postmortem DLPFC samples, the expression level of mRNA encoding 

for SOM showed continuously change into early adulthood (Fung et al., 2010). This result 

suggests that the density of SOM neurons and the level of SOM peptide expression continue to 
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change during adolescence. Collectively, cellular changes in PV GABA interneurons and SOM 

interneurons could change the strength and kinetics of GABA neurotransmission, altering 

excitatory/inhibitory interactions in microcircuits, ultimately affecting the expression and 

synchrony of neural oscillations. 

4.2 THE DEVELOPMENT OF NEURAL OSCILLATION 

Both the amplitude of neural oscillations and the strength of neural synchrony have been found 

to change throughout development. A set of resting-state EEG studies that recruited a large 

cohort of participants ranging in age from 2 months to 26 years have revealed continuous 

changes in the synchrony of spontaneous neural activity from infancy to adolescence (Thatcher, 

North, & Biver, 2008; Thatcher, Walker, & Giudice, 1987); specifically beta-band neural 

synchrony between anterior-poster pairs of electrodes increased with age in an exponential 

manner from 2 months to 26 years of age (Thatcher et al., 1987). Another resting-state EEG 

study has also found that alpha- and beta-band power increased from age 6 to 24 (Dustman, 

Shearer, & Emmerson, 1999). Similarly, using an auditory oddball task, it was found that 

synchrony between long-distance electrode pairs in the 0–12 Hz frequency range was weaker in 

young children (9-13 years), compared to young adults (18-25 years; Muller, Gruber, Klimesch, 

& Lindenberger, 2009).  

To date the most comprehensive study on the development of neural synchrony was 

carried out by Uhlhaas and colleagues (2009). In this study, 68 6- to 21-year-olds were studied 

with EEG while subjects performed a Mooney face perception task. Mooney faces are black and 

white pictures of faces with minimal identify information, and are known to induce strong 
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synchronization of oscillatory activity in the beta- and gamma-band (Rodriguez et al., 1999). 

Adults showed strong gamma-band power over parietal electrodes and long-range neural 

synchrony in the theta- and beta-band between distant electrodes. Developmentally, oscillation 

power in the gamma-band increased until early adolescence (12–14 years) but dropped during 

late adolescence (15–17 years) and increased again in early adulthood. The same nonlinear 

developmental pattern was also observed for beta- and theta-band synchrony between all 

electrodes. This finding highlights late adolescence as a critical developmental period when 

neural oscillations undergo critical changes. 

The EEG studies discussed above only analyzed sensor signals, and results could be 

confounded by signal mixing—signals measured in one sensor reflect signals summated across 

multiple different anatomical structures (S. Palva & Palva, 2012). Without identifying 

anatomical sources, it is difficult to make effective interpretation on how regional-specific 

oscillatory neurodynamics could contribute to cognitive development. Furthermore, volume 

conduction could inflate synchrony estimates in the sensor space (Schoffelen & Gross, 2009). 

Nevertheless, when taken together, these EEG studies suggest that both the amplitude of neural 

oscillations and the strength of neural synchrony continue to develop during adolescence. 

Specifically, beta-neural synchrony, alpha-band power, and gamma-band power continue to 

develop during adolescence. In turn, these developmental changes in oscillatory neurodynamics 

could contribute to developmental improvements in inhibitory control.  
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4.3 MOTIVATION 

We have reviewed studies that found maturational changes in brain morphology, histology, 

structural connectivity, inhibitory neurons, and neural synchrony. Together these studies provide 

evidence for a protracted development of oscillatory neurodynamics, specifically alpha, beta, and 

gamma rhythms. Maturational changes in the expression of neural oscillations in distributed 

cortical regions, as well as the inter-regional synchrony of oscillations, could further affect 

inhibitory control processes. Given that the biophysical mechanisms of neural oscillations are 

still being intensively investigated, studying developmental changes of oscillatory neural activity 

has the potential linking system-level descriptions of brain activity to circuit-level biophysical 

processes. Our results will have the potential to provide insights into the physiological basis of 

aberrant development that can lead to disturbances in behavior and emergence of major 

psychopathology during adolescence. 
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5.0  HYPOTHESES AND METHODS 

The primary aim of this dissertation was to delineate developmental changes in oscillatory 

neurodynamics associated with preparatory inhibitory control from adolescence to adulthood. 

We addressed this aim using oculomotor tasks with high temporal resolution MEG, where 

participants performed the AS and the PS tasks. MEG was used because of its superior temporal 

resolution and reasonable spatial resolution, making it an optimal tool for tracking fast-changing 

cortical neurodynamics occurring in parallel of cognitive dynamics. As discussed above, the AS 

task has been found to be sensitive to detecting behavioral immaturities in inhibitory control 

during adolescence (Luna, et al., 2004), and the PS task is an important control for age-related 

differences in basic perceptual and oculomotor processing. We focused on the preparatory signal, 

given its importance in predicting success vs. failure of AS task performance. Specifically, we 

had two specific aims: 

1. To investigate oscillatory neurodynamics associated with preparatory inhibitory 

control processes.  

2. To investigate the development of oscillatory neurodynamics associated with 

inhibitory control from adolescence to adulthood. 
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5.1 PARADIGM 

Each trial began with a 1.5 seconds cue fixation (Figure 4). For AS trials, a red “x” instruction 

cue instructed participants to look at the mirror location of an upcoming peripheral target, 

whereas for PS trials a green “x” instructed participants to look at the target. The colored “x” will 

be referred to as the cue in the following sections. The cue lasted for 1.5 seconds, during which 

the participants maintained fixation. This stage of the task denotes the “preparatory period”. A 

target stimulus was then presented after the extinction of the cue. The target stimulus was a solid 

yellow circle presented on the horizontal meridian at one of four unpredictable eccentricities 

(±6.3° and ±10.6° from center fixation) for 1.5 seconds, and participants had to either look at the 

yellow dot for PS, or look at the opposite direction of the dot for AS. The peripherally presented 

yellow dot will be referred to as the target here on. Ninety percent of the targets were presented 

at the far location (±10.6°), and only the far trials were included for analyses to control for 

saccade amplitude. A 1.2 to 1.6 seconds jittered white fixation “x” was presented between trials.  

We presented AS and PS trials in blocks. This was chosen to minimize task-switching 

effects, as mixing AS with PS had been shown to alter both behavioral performance and neural 

activity significantly (Akaishi, Morishima, Rajeswaren, Aoki, & Sakai, 2010; Lee, Hamalainen, 

Dyckman, Barton, & Manoach, 2010). A three seconds text instruction was presented at the 

beginning of each task block to signal the beginning of task blocks. Each block lasted 30 seconds 

with five trials, and a five seconds short rest period was inserted between blocks. The order of 

task blocks was counter-balanced across participants, and 210 AS trials and 210 PS trials were 

distributed across eight MEG runs (six minutes each).  
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Figure 4. Task diagram. 
Arrow indicates correct saccade direction. 

 
 
 

5.2 HYPOTHESES 

5.2.1 Aim 1: To Investigate Oscillatory Neurodynamics Associated with Inhibitory 

Control Processes during the Preparatory Period 

Studies discussed above strongly suggest that oscillatory neurodynamics may be related to 

different preparatory inhibitory control processes. 

  1. We hypothesized that task-rule maintenance would be associated with increases in 

gamma-band power in the PFC and the IPS. We hypothesized that because the PS task is a 
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reflexive task that requires less cognitive resources, the PS task could engage less working 

memory processes, resulting in weaker gamma power when compared to the AS task. 

2. We hypothesized that for the AS task, the encoded task-rule would be converted to 

top-down control signals and bias the oculomotor system to decrease the probability of making a 

reflexive saccade (Brown, et al., 2007; Everling & Munoz, 2000; Munoz & Everling, 2004). We 

further hypothesized that beta-band power would increase in the PFC, reflecting top-down 

signaling through projection and association pathways to down-stream subcortical and 

oculomotor regions. Furthermore, beta-band neural synchrony between the PFC and oculomotor 

regions would increase. For the PS task, given that there is no need to inhibit reflexive saccades, 

the need for top-down signaling would be lessened, resulting in weaker beta-band power and 

beta-band neural synchrony compared to the PS task. 

3. We hypothesized that alpha-band power would increase in the FEF for the AS task 

when compared to the PS task, reflecting functional inhibition of saccade-related activities. 

5.2.2 Aim 2: To Investigate the Development of Oscillatory Neurodynamics Associated 

with Inhibitory Control from Adolescence to Adulthood 

To date, how oscillatory neurodynamics develop to support inhibitory control during adolescence 

has not yet been directly examined. Studies of neurodevelopment provide compelling evidence 

that microcircuitries and major white matter tracts continue to develop during adolescence, 

potentially affecting the expression and synchronization of alpha, beta, and gamma oscillations. 

Initial EEG studies also showed changes in both the power and synchrony of neural oscillations. 

Based on these findings, we proposed sets of developmental hypotheses. 
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 1. As previously hypothesized, task-rule maintenance would be associated with increased 

gamma-band power in the PFC and the IPS. Given that fast-spiking GABA interneurons remain 

immature during adolescence (Lewis & Melchitzky, 2012), we hypothesized that adolescents 

would show weaker gamma-band power in fronto-parietal cortices.  

2. We hypothesized that top-down signaling processes would be associated with increases 

in beta-band power in the PFC, as well as increases in beta neural synchrony between the PFC 

and oculomotor regions. Given subcortical-cortical projection and cortical-cortical association 

tracts’ hypothesized involvement in beta rhythm (Jones et al., 2009), and their known 

immaturities in adolescents (Asato, et al., 2010), we hypothesized that adolescents would show 

weaker beta-band oscillatory power in the PFC, reflecting immaturities in top-down signaling 

processes, as well as weaker long-range beta neural synchrony, indicating ineffective cortical-

cortical communication.  

3. We hypothesized that during the preparatory period, saccade-related activities would 

be functionally inhibited, indicated by increases in alpha power in oculomotor regions. Due to 

known immaturities in thalamic-cortical projection tracts during adolescence (Asato et al., 2010) 

and their hypothesized involvement in alpha rhythm (Bollimunta, et al., 2011; Jones, et al., 

2009), we hypothesized that alpha-band power would be decreased in adolescents, indicating 

immature functional inhibition.  
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5.3 METHODS 

5.3.1 Participants 

Twenty-six adults (12 male; aged 19 to 30) and 22 adolescents (11 male; aged 14 to 16) 

participated in the study in accordance with University of Pittsburgh Institutional Review Board 

guidelines. Participants and their first-degree relatives had no history of psychiatric disorders. 

Two adults were excluded from analyses because of excessive blinking. Data from four adults 

and four adolescents were excluded because of excessive artifacts that could not be removed 

during post-processing. One adolescent was excluded because of history of psychiatric disorder 

that was revealed after participation. After exclusions, we reported data from 20 adults (10 male) 

aged 20 to 30 (M = 26.11 years, SD = 3.41) and 17 adolescents, (8 male) aged 14 to 16 (M = 

15.74 years, SD = 0.94). IQs were not significantly different between adults and adolescents 

(adults: M = 112.25, SD = 8.09; adolescents: M = 110.64, SD = 12.91; t(35) = 0.45, p = 0.65). All 

participants gave inform consent. 

5.3.2 Data Acquisition 

All MEG data were acquired using an Elekta Neuromag VectorView MEG system (Elekta Oy, 

Helskink, Finland) located in a three-layer magnetically shielded room. The system includes 102 

identical sensor triplets, two orthogonal planar gradiometers, and one magnetometer (306 sensors 

in total). Subjects were seated upright with the head positioned inside the helmet containing the 

sensors. Visual stimuli were projected to a screen located one meter in front of the participant. 

Before the MEG scan began, three anatomical cardinal landmarks (nasion and two preauricular 
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points), 20 additional anatomical points, and four head position indicators (HPI) were digitized 

using a 3D-digitizer (ISOTRACK, Polhemus, Inc., Colchester, VT) to define the head coordinate 

system and to assist co-registration of MEG data with MRI data. MEG data were acquired 

continuously with a sampling rate of 1000 Hz. Head position relative to the MEG sensors was 

measured throughout the recording period to allow off-line head movement correction (Wehner, 

Hamalainen, Mody, & Ahlfors, 2008). Two electrocardiogram (ECG) electrodes were placed on 

each subject’s chest to record cardiac signals. A ground electrode was placed behind 

participants’ right ear, and a reference electrode was placed behind particpants’ left ear. 

For all participants, structural MRI data were collected at a Siemens 3T Tim Trio system 

scanner. Structural images were obtained using a magnetization-prepared rapid acquisition with 

gradient echo (MP-RAGE) sequence with the following parameters: TR = 2100ms, TI = 1050 

ms, TE = 3.43ms, 8° flip angle, 256x256x192 acquisition matrices, FOV = 256 mm, and 1 mm 

isotropic voxels.  

5.3.3  Eye Movement Data 

To monitor eye movements and eye blinks during MEG scans, two bipolar electrode pairs were 

used to record vertical and horizontal electrooculogram (EOG) signals. Horizontal EOG 

electrodes were placed above and below the left eye; vertical EOG electrodes were placed 

laterally to each eye. At the beginning of each participant’s MEG scanning session, EOG 

calibration data were collected to convert EOG voltages into saccade directions and amplitudes 

(Lee, et al., 2010; Moon et al., 2007). Calibrated EOG data were then scored offline in 

MATLAB (2011a, The MathWorks, Natick, MA.) using a costum program to code correctly and 

incorrectly performed trials. For each trial, the direction of and latency of the initial saccade were 
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determined. Saccades were identified as horizontal eye movements with velocities exceeding 

40°/second, and the onset was defined as the time when the velocity exceeded 15% of the peak 

saccade velocity (Gitelman, 2002). Only trials with latencies between 110 and 800 ms were 

included for future analyses. The cutoff of 110 ms excluded express saccades that were not 

reaction to the stimulus (Fischer & Boch, 1983). 

5.3.4 MEG Data Preprocessing 

After acquisition, MEG sensor data were first manually inspected to reject bad or flat channels. 

Data were then preprocessed off-line using the temporal signal space separation (TSSS) method 

(Taulu & Hari, 2009; Taulu, Kajola, & Simola, 2004). TSSS reduces environmental magnetic 

artifacts outside the head and sensor artifacts, and performs head movement compensation by 

aligning sensor level data to a common reference (Nenonen et al., 2012). This head motion 

correction procedure also provides estimates of head motion relative to sensors coordinates every 

200 ms, estimates which will be used to reject trials contaminated by motion artifacts (Wehner, 

et al., 2008).  

5.3.4.1 Artifact Rejection 

Cardiac, eye-blinks, and saccade artifacts were removed using an independent component 

analysis-based procedure. MEG sensor data were decomposed into 64 independent components 

(ICs) using EEGLAB (Delorme & Makeig, 2004) algorithms implemented in the Fieldtrip 

software suite (Oostenveld, Fries, Maris, & Schoffelen, 2011). The number of ICs (64) was 

chosen because TSSS internally reduces dimension to 64 components before re-projecting 

signals back to the sensor space (Taulu & Hari, 2009; Taulu, et al., 2004). To identify artifact 
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components, each IC was correlated with ECG and EOG data. An IC was designated as an 

artifact if the absolute value of the correlation was three standard deviations higher than the 

mean of all correlations. Across all subjects, between two and six artifact components were 

rejected. The “clean” ICs were then projected back to the sensor space for manual inspection. 

We found that for every participant, cardiac and eye-blink artifacts were successfully removed; 

however, this procedure failed to detect saccade-related components for most subjects, therefore 

artifacts introduced by eye movements were controlled for by only analyzing data prior to the 

onset of saccades. Note that the preparatory period was saccade free. After the removal of 

artifacts, sensor data were down-sampled to 250 Hz to improve calculation efficiency. Power 

line noise was removed using a Fourier transformation of 10 seconds long signal window that 

moved along the full data length, and subtracted the 60 Hz component and its harmonics.  

 Trials were then inspected for sensor jumps, muscle artifacts, unwanted saccades, and 

head movement artifacts. Trials with saccades that occurred during the preparatory period or 

pretrial baseline were excluded. Trials with gradiometer peak-to-peak amplitudes exceeded 3000 

fT/cm or magnetometer peak-to-peak amplitudes exceeded 10 pT were also excluded (Lee, et al., 

2010; Moon, et al., 2007). To mitigate the effects of head motion on data quality, we adopted a 

conservative approach and rejected trials with sensor displacement greater than 1 mm. The 

amount of head motion was estimated by calculating the frame-by-frame sensor displacement 

relative to the head position (Wehner, et al., 2008). Briefly, low-amplitude, high-frequency 

sinusoidal continuous currents (> 300 Hz) were fed to the four HPI coils positioned on the 

subject's head throughout the scan. The position and orientation of the head with respect to the 

sensor array can then be determined at 200-ms intervals, using Elekta’s MaxFilter software. If at 

any time during the trial the displacement of MEG sensors was greater than 1mm, the trial was 
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rejected from all future analyses. On average, 3.4% of trials were rejected for adults (standard 

deviation = 6.9%, range = 0.7% to 17%), and 4.6% of trials were rejected for adolescents 

(standard deviation = 3.7%, range = 1.3% to 11%).  

5.3.5 Inverse Solution 

The source location of neural activity cannot be determined by only analyzing MEG sensor data. 

To estimate source activity, we calculated the cortically constrained minimum-norm estimates 

(MNE; Dale & Sereno, 1993; Hamalainen & Ilmoniemi, 1994; Hamalainen, Lin, & Mosher, 

2010), using the MNE software package (version 2.7.3; http://www.martinos.org/mne/) and 

custom MATLAB scripts. MNE is a non-parametric technique that yields distributed cortical 

current estimates by minimizing the norm of the estimated currents. Because the majority of 

MEG signal is thought to be generated by neurons structurally aligned in cortical columns at the 

surface of the brain, and are positioned perpendicular to the cortical surface (Hamalainen, Hari, 

Ilmoniemi, Knuutila, & Lounasmaa, 1993; Lopes da Silva, 2010), accuracy is improved by 

incorporating biophysical realistic constraints based on each participant’s brain geometry (Dale 

& Sereno, 1993; Lin, Belliveau, Dale, & Hamalainen, 2006).  

First, sensor data were bandpass filtered at 0.01 – 80 Hz. The geometry of each 

participant’s cortical surface was reconstructed from the respective structural images using 

FreeSurfer (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999). The solution space for 

the source estimation was then constrained to the gray/white matter boundary, by placing 

approximately ~3000 dipoles per hemisphere with 7 mm spacing. A forward solution for the 

constructed source space was calculated using a single compartment boundary-element model 

(Hamalainen & Sarvas, 1989). The noise covariance matrix was calculated from -700 to -400 ms 

http://www.martinos.org/mne/
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baseline time windows during the inter-trial-intervals (before task cues were presented) of all 

trials that were free of artifacts. The noise covariance matrix and the forward solution were then 

combined to create a linear inverse operator (Dale et al., 2000) to project MEG sensor data to the 

cortical surface.  

5.3.6 Dynamic Statistical Parametric Maps 

Although brain regions associated with AS and PS performances have been well characterized 

using fMRI, it is unknown if MEG has the spatial sensitivity to identify similar regions. To 

address this question, we calculated dynamic statistical parametric maps (dSPM; Dale, et al., 

2000) to characterize spatiotemporal patterns of brain activity associated with AS. For each 

participant, preprocessed sensor data were first averaged across trials, separately for each 

condition. We then projected the grand-averaged sensor data into the source space by applying 

the inverse operator. The current estimate at each source location was divided by the estimated 

baseline variance (-700 to -400 ms prior to the cue presentation), resulting in an F-like statistics 

that can be visualized as dSPM (Dale et al., 2000). The dSPM values were then used to identify 

brain regions that were reliably activated by the task. To visualize group results, each subject’s 

dSPM data were morphed to a common template surface from 40 adults created by the Buckner 

laboratory at Harvard University (Cambridge, MA). Note that dSPM patterns represent time-

domain evoked responses that are phase-locked to the cue. 
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5.3.7 Oscillatory Analyses 

To investigate neural oscillation and neural synchrony, it is necessary to obtain the instantaneous 

spectral power and phase information of source current estimates. It has been shown that 

frequency-domain oscillatory activities are not phase-locked to the stimuli (Pfurtscheller & 

Lopes da Silva, 1999), and will be attenuated by averaging time-domain evoked responses. 

Therefore it is necessary to perform time-frequency transformation on single-trial MEG data 

(Jensen & Hesse, 2010). For oscillatory analyses, no grand averaging was performed; instead, 

single-trial sensor data were projected into the source space using the linear inverse operator. 

Single-trial source estimates were then subjected to spectral analyses to obtain power and phase 

information for every trial (Lin et al., 2004). We spectrally decomposed neural currents at each 

source by convolving the time-domain signal with a family of complex Morelet wavelets 

(Lachaux, et al., 1999; Tallon-Baudry, Bertrand, Delpuech, & Permier, 1997). The Morelet 

wavelet was used because it is better suited for non-stationary neural signals (Jensen & Hesse, 

2010), and achieves the optimal time-frequency resolution by applying a Gaussian shape tapper. 

For each source location, current estimates s at time t were convolved with the wavelet G 

centering at frequency f to produce a time frequency representation 

 

ω :  

 

ω(t, f ) = G(t, f ) ∗ s(t) ,         (1) 

where f stepped from 8 to 60 Hz by one Hz increment.  

 The complex wavelet G was defined as: 

 

G(t, f ) =
1
2πf

exp(
−t 2

2σ 2 )exp(i2πft),        (2) 
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where 

 

σ was set to be 7/2

 

πf to achieve the optimal time-frequency resolution and to ensure the 

stability of wavelet transformation (Ghuman, McDaniel, & Martin, 2011; Tallon-Baudry, et al., 

1997).  

 For each source location, the time-varying power P for frequency f was obtained with: 

 

 

P(t, f ) = ω (t, f ) 2,          (3) 

and the phase vector 

 

φ  was calculated using: 

 

φ(t, f ) = arctan(ω(t, f )).         (4) 

5.3.8 Frequencies of Interest 

Although spectral neural activity follows 1/f continuum, computation models (Jones, et al., 2009; 

Vierling-Claassen, et al., 2010; Whittington, et al., 2010) and electrophysiology recordings 

(Bollimunta, et al., 2011; Cardin, et al., 2009; Haegens, et al., 2011; Roopun, et al., 2010) 

together strongly indicate that oscillatory neural activity can be classified into discrete rhythms, 

each associated with different circuit mechanisms. We defined the frequency ranges for alpha- 

(8-14 Hz), beta- (15-29 Hz), and gamma-band (30-60 Hz) based on previous literature and our 

pilot analyses whereby we observed distinct alpha- and beta-band activities (Figure 5). We did 

not include slower rhythms (< 8 Hz) because they required a long wavelet window to achieve the 

desirable frequency resolution. Having a long wavelet window will decrease temporal resolution, 

and makes it difficult to separate activities between task epochs (i.e., baseline vs. preparatory 

period vs. response period).  

 
 



 47 

 

 
 
 
Figure 5. Prelimnary analysis of power spectrum associated with AS task performance. 
This is the power spectrum of all frontal ROIs (FEF, DLPFC, VLPFC), averaged across all 
participants. Distinct bands of alpha and beta rhythms were observed. 
 
 
 

5.3.9 Regions of Interest  

We selected regions of interest (ROIs) a priori based on their known involvement in inhibitory 

and oculomotor control, including the DLPFC, the VLPFC, the FEF, and the IPS. ROIs from 

both hemispheres were selected. We also included the primary visual cortex (V1) for control 

purposes. Because MEG is relatively insensitive to subcortical sources (Hamalainen, et al., 

2010), no subcortical ROIs were included. Similarly, the ACC and the SEF were not included 

because we found that medial ROIs had significantly lower signal-to-noise ratio compared to 

lateral ROIs. Lower signal-to-noise ratio in medial ROIs could be caused by the known source 
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cancelation problem in MEG signal, problem which nearby sources with opposite current 

directions will weaken magnetic signal. 

Since MEG is most sensitive to tangential sources located in the sulci (Lopes da Silva, 

2010), we further restricted our ROIs within selected anatomical structures. These selected 

structural masks were created using FreeSurfer’s automatic parcellation of sulci and gyri 

(Destrieux, Fischl, Dale, & Halgren, 2010) based on each participant’s structural MRI. 

Anatomical masks used to constrain functional ROI were determined by consulting the relevant 

literature (Figure 6). Specifically, we defined the FEF to be located within the precentral sulcus, 

with distinct superior and inferior portions (sFEF and iFEF; Lee, et al., 2010; Luna, et al., 1998; 

Moon, et al., 2007). The VLPFC was constrained to be within the inferior frontal sulcus, the 

triangular and the orpercular part of the inferior frontal gyrus (Aron, et al., 2004; Levy & 

Wagner, 2011), and the DLPFC was defined within the middle frontal sulcus (Badre & 

D'Esposito, 2009; DeSouza, et al., 2003; Koval, Lomber, & Everling, 2011). The V1 was defined 

along the calcarine fissure. Within these anatomical masks, we functionally constrained the ROIs 

to dipoles that showed reliable oscillatory activity in the alpha-, beta-, and gamma-band 

frequencies during the preparatory period. 
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Figure 6. Anatomical structures of interest. 
For illustration, anatomical structures of interest are shown on the right hemisphere. ROIs from 
both hemisphere were selected. 
 
 
 

Briefly, using Equation 3, for every trial the time-varying power of all frequencies (8-60 

Hz) was calculated for all dipole sources within each anatomical structure. Separately for each 

frequency, the power values were then converted to signal-to-noise estimates by subtracting it 

from the baseline mean and dividing by the variance of baseline power. Baseline window was 

defined as -700 to -400 ms prior to the cue presentation. This signal-to-noise ratio estimate is 

analogous to a z-score and can be used to identify dipoles where oscillatory activities are robust. 

We then took the absolute values of z-scores, and averaged them within the preparatory period 

for all trials (AS and PS), regardless of performance. This procedure is akin to deriving an 

omnibus test statistic for all conditions. We used absolute values to account for the possibility of 

having negative z-scores, indicating suppression in oscillatory power. Absolute z-scores were 
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then further averaged across frequencies (8-60 Hz). We then identified the dipole with the 

maximum averaged absolute z-score, and drew an ROI around the peak dipole that included 27 

to 30 contiguous dipoles through an iterative spreading operation (Hamalainen, 2010). Because 

the MNE solution yields current estimates that are spatially smoothed (Jensen & Hesse, 2010), it 

is typical to include a larger number of dipoles for ROI definition, instead of selecting focal 

sources (Lee, et al., 2010; Moon, et al., 2007; Temereanca et al., 2012).  

This ROI definition procedure includes all trials (AS and PS), performances (correct and 

incorrect trials), and frequencies (8-60 Hz); it is therefore unbiased and independent with regard 

to our hypotheses. This procedure is also age-neutral because ROIs are defined separately for 

each subject, and no age-related contrasts are used. Furthermore, defining ROIs in native space is 

advantages because MNE specifically incorporates individual’s anatomical information into 

source estimation. This approach does not require spatial normalization, an advantage that 

minimizes interpolation errors and spatial smoothing of current source estimates.  

5.3.10 Oscillatory Power 

To analyze the power of different brain rhythms, single-trial MNE estimates were first averaged 

across dipoles within each ROI while aligning the sign of current fluctuations across different 

dipoles (Hamalainen, et al., 2010). For each trial, power time-courses were calculated using 

Equation 3. Power values were then converted to percent signal changes from baseline power. 

The baseline power was computed from -700 to -400 ms prior to the cue presentation. For each 

subject, percent signal changes in power were then averaged across trials within each condition 

(AS-Correct, PS-Correct, AS-Incorrect), and pooled across subjects for group analyses. Instead 

of treating each frequency as separate dependent measures, we averaged power time-courses 
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across frequencies into the three classes of rhythms that were defined a priori (alpha, beta, and 

gamma). Averaging across frequencies reduces data dimension and the number of statistical tests 

that have to be performed. This approach has been consistently used in the EEG/MEG literature 

(e.g., Hipp, et al., 2011; Siegel, Donner, Oostenveld, Fries, & Engel, 2008). Note that to control 

for performance, correct and incorrect trials were analyzed separately.  

5.3.11 Neural Synchrony 

We calculated phase locking values (PLV; Lachaux, et al., 1999) to measure the strength of 

neural synchrony (phase synchrony) between ROIs. First single-trial MNE estimates were first 

averaged across dipoles within each ROI, and phase vector was derived using Equation 4. 

Consider two ROIs a and b, PLV can then be calculated using: 

 

PLV (t, f ) =
1
N

exp{i[φa (t, f ) − φb (t, f )]}
n =1

N

∑ ,       (5) 

where 

 

φa  is the phase vector of region a, 

 

φb  is the phase vector of region b, N is the number of 

trials, t and f are time and frequency of interest, respectively. PLV measures the trial-by-trial 

variance of the phase relationship between two signals at a particular frequency. Smaller trial-by-

trial phase variance results in larger PLV, which implies precise synchronization of oscillations. 

PLV ranges from zero to one; one indicates perfect synchrony, and zero indicates random phase 

relationship thus no synchrony. Similar to power time-courses, we converted PLVs into percent 

signal changes from baseline to estimate task-induced changes in PLVs. For each subject, 

percent signal changes were then averaged across trials within each condition (AS correct, PS 

correct, AS incorrect), and pooled across participants for group analyses. Finally, we averaged 
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PLV time-courses across frequencies within the alpha-, beta-, and gamma-band. Note that to 

control for performance, correct and incorrect trials were analyzed separately. 

PLV has several important advantages compare to other more conventional synchrony 

measures such as coherence. PLV only considers phase consistency, and is a direct test of 

theories concerning inter-regional communication (Fries, 2005; Varela, et al., 2001). In contrast, 

coherence does not quantify phase-relationships, and increases with amplitude covariance. This 

difference also suggests that oscillatory power will have a larger impact on coherence, but less 

on PLV.  

5.3.12 Statistical Analyses 

Oscillatory power estimates and PLVs are non-Gaussian, therefore conventional parametric tests 

cannot be used. Instead, the significance level was determined by the randomized permutation 

test (Maris & Oostenveld, 2007). To briefly illustrate, when testing differences between the AS 

task and the PS task, we first calculated the test statistic of t-test comparing the mean of all AS 

observations from the mean of all PS observations. Then we randomly permuted the AS and PS 

labels for all observations, and recalculated the test statistic. We repeated this random 

assignment procedure 1000 times to create a null distribution of t-values. This distribution 

satisfied the null hypothesis, since any differences between AS and PS could only occur by 

chance as labels were assigned by chance. The proportion of values in the null distribution that 

was greater than the original “real” test statistic was treated as the significance probability value. 

For each contrast of interest, we permuted the task condition label or subject assignment 

1000 times to derive an empirical null distribution that satisfied the null hypothesis. To control 

for family-wise error rate, we calculated cluster level statistics instead of testing the significance 
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of every time-frequency bin (Maris & Oostenveld, 2007). For both oscillatory power and PLV 

values, the following contrasts were tested for their significances: AS correct trials vs. PS correct 

trials and AS correct trials vs. AS incorrect trials. We further tested developmental differences by 

permuting adults vs. adolescents for AS correct trials, AS incorrect trials, and PS correct trials. 

Note that we did not test for incorrectly performed PS trials because participants performed at 

ceiling. 

5.3.13 How Preparatory Oscillatory Power Affect AS Task Performance  

We performed multi-level (mixed-effect) logistic regressions to examine the relationship 

between trial-by-trial preparatory oscillatory and AS task performance:  

 

P =
exp(a + bx)

1+ exp(a + bx)
,          (6) 

where P is the probability of correct AS task performance, a is the intercept term, b is the 

regression coefficient (slope) that quantifies the strength of predictive effect of preparatory 

oscillatory power for AS task performance, x is single trial oscillatory power. A positive slope 

indicates that the stronger the preparatory oscillatory power, the more likely participants will 

perform correctly on the AS task. Subjects were entered as random effect, and intercept and 

slope terms were entered as fixed effects separately for adults and adolescents.  
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6.0  RESULTS AND DISCUSSION 

6.1 BEHAVIOR 

As expected, accuracy of AS trial performance was greater for adults (adults, M = 74 %, SD = 

14; adolescents, M = 59 %, SD = 18; t(35) = 2.86, p = 0.007; Figure 7A), whereas PS accuracy 

was at ceiling for both age groups (adults, M = 98 %, SD = 1.2; adolescents, M = 97 %, SD = 1.9; 

t(35) = 1.84, p = 0.074; Figure 7A). No developmental differences in saccade latencies were 

found for both AS (adults, M = 330 ms, SD = 45 ms; adolescents, M = 347 ms, SD = 65 ms; t(35) 

= -0.92, p = 0.36; Figure 7B), and PS (adults, M = 235 ms, SD = 23; adolescents, M = 252 ms, 

SD = 43; t(35) = -1.45, p = 0.16; Figure 7B). 

 
 
 

 
 

 
Figure 7. Behavioral performance. 
A. Accuracies for AS and PS. B. Saccade latencies for AS and PS. RT = reaction time. Error bar 
= one SE. 
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To test if participants were able to improve their performances on the AS task through 

learning, we further compared accuracies and latencies between early and late phases of MEG 

scanning (Figure 8). We found no significant differences between different quarters of testing, 

suggesting that AS task performance has minimal learning effect within a session. 

 
 
 

 
 
 
Figure 8. Behavioral performance of AS trials during different quarters of testing. 
A. Accuracies of AS at different quarters of MEG testing. B. Saccade latencies of AS at different 
quarters of MEG testing. No significant differences were found between quarters. Q1 = first 
quarter of testing, Q2 = second quarter, Q3 = third quarter, Q4 = last quarter. Error bar = one SE.  

6.2 REGIONS OF INTEREST 

The primary aim of this dissertation was to delineate developmental changes in oscillatory 

neurodynamics of cortical regions associated preparatory inhibitory control. To achieve this aim, 

we selected a priori anatomical structures that were known to be involved in inhibitory and 

oculomotor processes, and defined ROIs that included dipoles that showed reliable oscillatory 

activities across all frequencies of interest. As described in the methods (Chapter 5.3.9), ROIs 
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were defined on each participant’s native surface, and all subsequent analyses were performed in 

native space to reduce spatial smoothing and interpolation error. The following ROIs were 

defined in both hemispheres: the DLPFC, the VLPFC, the iFEF, the sFEF, the IPS, and the V1. 

To inspect the spatial location of ROIs, and the degree of overlap between participants, we 

morphed each participant’s ROI into a group average surface (see Chapter 5.3.6), and calculated 

the percentage of overlap (Figure 9). We found that most ROIs showed a high degree of overlap 

across participants and age groups, especially for the iFEF, the sFEF, and the IPS. The spatial 

coverage was slightly more dispersed for prefrontal ROIs. These ROIs were age-neutral, 

unbiased, and independent with regard to our hypotheses, as they were defined using all trials 

(AS and PS, correct and incorrect), frequencies (8-60 Hz), and without any group contrasts.  
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Figure 9. Spatial coverage of ROIs. 
Color-scale indicates the percentage of participants within each age group that showed 
reliable oscillatory activities for alpha-, beta-, and gamma-band at this vertex.  
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6.2.1 Dynamic Statistical Parametric Maps 

To ensure that the ROIs we defined showed reliable activation associated with the AS task, we 

performed exploratory whole-brain dSPM analysis to characterize the spatiotemporal patterns of 

evoked activity (Figure 10). Leveraging MEG’s superior temporal resolution, we characterized 

the time-resolved evoked activity during the preparatory period and the response period (prior to 

the saccade). Note that time-domain evoked activities are phase-locked to the cue and are distinct 

from our primary interest—induced oscillatory activities that are not necessarily phase-locked to 

the cue (Jensen & Hesse, 2010). Nevertheless, we performed this analysis to corroborate the 

veracity of our ROI selection procedure. We found that the ROIs we identified were activated 

during both the preparatory period and the response period. During the preparatory period, the 

AS task cue first activated the visual cortex, activity then propagated to frontal and parietal 

regions, including the IPS, the FEF, and lateral PFC regions (DLPFC and VLPFC). Similar 

progression of activity was also observed during the response period. These results suggest that 

MEG has the spatial sensitivity to identify cortical regions known to be involved in inhibitory 

control processes, and the ROIs we created based on frequency-domain induced oscillatory 

activities also showed reliable temporal-domain evoked activations. 
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Figure 10. dSPM maps associated with AS task performance. 
Temporal evolution of evoked activation associated with AS, averaged across all participants. 
Note that we did not extend our analysis pass 200 ms into the response period to avoid saccade-
artifacts.  
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6.2.2 Temporal progression of evoked responses  

To quantify the temporal progression of evoked activations during the preparatory period, we 

calculated the time-to-peak for each ROI separately for each condition and each age group 

(Figure 11). Briefly, for each condition and age group, the averaged task-related evoked response 

(MNE current estimates) was extracted from each ROI for each participant, and the latency from 

the onset of cue presentation to the time of maximum neural activity was calculated. We found 

that across condition and age group, the visual cortex was activated first, peaking around 120 ms, 

followed by the IPS, peaking around 150 ms, and PFC ROIs, peaking around 150 to 200 ms. We 

also found considerable individual differences, indicated by the relatively large error bars (one 

SE; Figure 11). As a result, no significant differences were found in the latencies of peak neural 

activities between ROIs, between conditions, or between age groups. Nevertheless, a pattern of 

occipital-parietal-frontal progression was observed, pattern that reflect the sequence of time-

domain activation evoked by the task cue. We did not perform this analysis for the response 

period because saccades distort MNE current estimates, making it difficult to separate the peak 

of neural activities from saccade artifacts.  
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Figure 11. Time-to-peak of cortical activations evoked by the task cue. 
R = Right, L = Left, error bar = one SE. 
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6.2.3 Control Analyses 

One concern was that adolescents might have weaker signal-to-noise ratio that could bias group 

analyses. To rule out this possibility, we compared the averaged z-score of oscillatory power 

across the alpha-, beta-, and gamma-band in the V1 between adults and adolescents (see Chapter 

5.3.9). Briefly, power values of each frequency were converted to signal-to-noise estimates by 

subtracting it from the baseline mean and dividing by the baseline variance, then averaging 

across frequencies and time. V1 was chosen because our previous study found no significant age 

effect in this region (Velanova et al., 2008), suggesting that basic visual processes are mature by 

adolescence, and that age-invariant activations in V1 could be used as an indication of 

comparable signal-to-noise between adolescents and adults. We found no significant age-related 

differences in the V1 (Figure 12). We further inspected the time-courses of alpha-, beta- and 

gamma-band power during the AS preparatory period, and no significant age-related differences 

were found in the V1 (timecourses from the right V1 shown in Figure 13). 
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Figure 12. No significant age-related differences in oscillatory power were observed in the 
primary visual cortex. 
Z-scores were averaged across frequencies (8-60 Hz) and time (only during the preparatory 
period). Error bar = one SE. 
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Figure 13. No significant age-related differences in alpha-, beta-, and gamma-band power 
were found in the right V1. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Y axis indicates 
percent signal change from baseline. Only correctly performed AS trials were analyzed. 
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6.3 GAMMA-BAND POWER 

We hypothesized that task-rule maintenance would be associated with increases in gamma-band 

power. However, we did not find any robust gamma-band activity in any ROIs. Given that fast-

spiking GABA interneurons remain immature during adolescence (Lewis & Melchitzky, 2012), 

we further hypothesized that adolescents would show weaker gamma-band power. However, nor 

did we find any significant age effects. Figure 14 illustrates this by presenting gamma-band 

power in the right DLPFC. For all ROIs, we found that gamma-band power fluctuated around 

zero throughout the task epoch. As a result, we did not find significant task-related or age-related 

modulation in gamma-band power.  

6.3.1 Interim Discussion 

There are two possible explanations for the lack of gamma effect. First, it remains controversial 

whether or not MEG has the sensitivity to reliably measure gamma rhythm. It is well 

documented that the spectral energy of neural activity follows the 1/f power-law scaling (He, 

Zempel, Snyder, & Raichle, 2010). The implication is that the higher the frequency, the weaker 

the overall signal will be; gamma-band activity might be too weak to be reliably measured by 

MEG sensors. This limitation was demonstrated in a simultaneous MEG and iEEG study which 

reported that while iEEG observed robust alpha-, beta-, and gamma-band activities, MEG was 

only reliable in measuring alpha- and beta-band activities, but not gamma (Dalal et al., 2009). 

Second, because we utilized a block design, it is possible that the demand for working memory 
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maintenance was lessened, resulting in less gamma-band activity. Although memorizing stimuli 

properties such as memorizing the location of a stimulus (Roux, et al., 2012) or the identity of 

the stimulus (Howard, et al., 2003) has been associated with increased gamma-band power, it is 

unclear if gamma activity encodes task-rules (“look away from the dot” vs. “look at the dot”). In 

support, a recent study showed that neural ensembles encode SR mapping rules through 

oscillatory synchronization in the beta frequency range, but not gamma (Buschman, et al., in 

press). 
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Figure 14. Gamma-band power in the right DLPFC. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Only correct trials 
were analyzed. 
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6.4 BETA-BAND POWER 

It has been suggested that the PFC provides top-down control signal to inhibit saccade-related 

activities in the oculomotor regions (Munoz & Everling, 2004), and we hypothesized that 

increases in beta-band power in the PFC would reflect top-down signaling. The resulting 

lessened need for top-down signaling could result in weaker beta-band power when compared to 

the AS task. Developmentally, we hypothesized that adolescents would show weaker beta-band 

power in the PFC, reflecting immaturities in top-down signaling processes. 

In support of our hypothesis, we found that preparatory beta-band power in the PFC was 

significantly stronger for the AS task when compared to the PS task. In adults, this effect was 

observed in the right DLPFC (Figure 15) and the right VLFPC (Figure 16). No task-related 

modulation of beta-band power was observed in adolescents or any in any other ROIs (see 

Appendix A). This suggests that increased beta-band power for the correct trials of the AS task is 

specific to the PFC, but not a global resonance phenomenon. 

In support of our developmental hypothesis, we found that for the AS task, beta-band 

power during the preparatory period was significantly stronger in adults compared to 

adolescents. This effect was observed in the right DLPFC (Figure 15), the right VLPFC (Figure 

16), and the left VLPFC (Figure 17). No age effect was found for the PS task, or in any other 

ROIs. Note that to control for the behavioral difference, only correct trials were included in the 

above analyses. 
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Figure 15. Beta-band power in the right DLPFC. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time to saccade onset. Horizontal bar indicates task period that showed significant difference 
between conditions or age groups (p <.05 corrected). Only correct trials were analyzed. 
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Figure 16. Beta-band power in the right VLPFC. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time to saccade onset. Horizontal bar indicates task period that showed significant difference 
between conditions or age groups (p <.05 corrected). Only correct trials were analyzed. 
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Figure 17. Beta-band power in the left VLPFC. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time to saccade onset. Horizontal bar indicates task period that showed significant difference 
between conditions or age groups (p <.05 corrected). Only correct trials were analyzed. 
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If increased preparatory beta-band power is an indication of enhanced top-down control, 

it should also affect AS task performance. To test this hypothesis, we performed a logistic 

regression to assess the trial-by-trial impact of preparatory beta-band power on the probability of 

correct AS task performance (Figure 18). The independent variable was single-trial beta-band 

power averaged from 700 ms to 800 ms during the preparatory period (the time-widow when we 

observed significant task-modulation). Though no statistically significant association was found 

in the right VLPFC, for adults there was a trend showing that probability of correct AS task 

performance increased as preparatory beta-band power in the right VLPFC increased (b = 0.046, 

z = 1.61, p = 0.11). For adolescents no significant association was found (b = -0.013, z = -0.64, p 

= 0.53). No statistically significant associations between preparatory beta-band power and AS 

task performance were found in other ROIs for both age groups. 
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Figure 18. Preparatory beta-band power and AS task performance. 
 
 
 

6.4.1 Interim Discussion 

We found that in response to the heightened control demand by the AS task, adult participants’ 

beta-band power increased in the right DLPFC and the right VLPFC during the preparatory 

period, but beta-band power did not increase among adolescents. These results are consistent 

with the literature suggesting that the PFC sends control signals to inhibit motor responses 

(Swann, et al., 2009), and to bias sensory and motor processes to generate goal-directed 

responses (Everling & Johnston, 2011; Miller & Cohen, 2001). Further, it has been found that 
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compared to the PS task, the right DLPFC is more heavily involved in AS task performance 

(Ford, Goltz, Brown, & Everling, 2005), and other inhibitory control tasks heavily recruit the 

right VLPFC (Aron, 2011; Levy & Wagner, 2011). A transcranial magnetic stimulation (TMS) 

study also found that when used single-pulse TMS to interfere with the right DLPFC during the 

preparatory period, participants’ AS performances suffered, suggesting that the lateral PFC is 

involved in preparatory inhibitory control processes.  

In the PFC, we observed robust task-related modulations in beta-band power, but not in 

gamma- and alpha-band (see Chapter 6.5 for alpha-band results). Our results are consistent with 

recent animal and human studies suggesting that beta rhythm is involved in top-down control of 

goal-directed behavior (Buschman, et al., in press; Buschman & Miller, 2007; Pesaran, Nelson, 

& Andersen, 2008; Saalmann, et al., 2007; Swann, et al., 2009). We suggest that the increased 

frontal beta-band power we observed reflect prefrontal top-down signaling through the feedback 

projection pathways to oculomotor regions. This top-down signaling process could serve to 

inhibit preparatory saccade-related activities, and to decrease the likelihood of generating 

reflexive saccades (Munoz & Everling, 2004).  

Consistent with the literature, we only found significant task-related modulations of beta-

band power in the right DLPFC and the right VLPFC, but not in the left PFC. One study found 

that patients with damages in the right VLPFC made more AS errors, compared to patients with 

left VLPFC lesions (Hodgson, et al., 2007). Our results are also consistent with other imaging 

studies, suggesting that compared to the left PFC, the right PFC is more heavily involved in 

inhibitory motor responses (Aron, et al., 2003; Rubia, et al., 2003).  

Another observation is that the shapes of beta-band timecourses were similar between the 

right DLPFC, the right VLPDC, and the right iFEF (Figure 30). Because MNE source estimates 



 75 

are essentially linear combinations of all sensor signals (Hamalainen, et al., 2010), this similarity 

could reflect the inherent correlation between source estimates (Schoffelen & Gross, 2009). We 

addressed this issue by interpreting task-related modulations in beta-band power, since volume 

conduction does not change across conditions. However, because of this limitation, it is difficult 

to dissociate the functions of DLPFC and VLPFC. One iEEG study suggests that the right 

DLPFC is associated with task-goal maintenance, and the right VLPFC implements inhibition 

over the motor system (Swann, Tandon, Pieters, & Aron, 2012). Because MEG does not have the 

same spatial acuity as iEEG, we tentatively conclude that increased beta-band power in the right 

DLPFC and the right VLPFC collectivity reflect top-down signaling process related to 

preparatory inhibitory control, and also potentially task-rule representation for AS. This 

interpretation is consistent with findings suggesting that increased beta-band activity (but not 

gamma) is associated with forming arbitrary SR mapping rules in the PFC (Buschman, et al., in 

press), and to inhibit motor-related activities (Swann, et al., 2009). 

In contrast to adults, we did not find any statistically significant task-related beta-band 

modulations in adolescents. Group comparisons showed that compared to adults, adolescents 

showed significantly weaker beta-band power in the right DLPFC, the right VLPFC, and the left 

DLPFC. We propose that these age-related differences reflect weaker prefrontal top-down 

signaling function in adolescents. Specifically, immaturities in control signal output that bias 

preparatory saccade-related activities in down-stream oculomotor cortices (Hwang, et al., 2010).  

 What is the specific neural mechanism that might contribute to age-related increases in 

beta-band power from adolescence to adulthood? Existing models suggest that the expression of 

local beta-band activity could reflect neural circuits sending outputs from the deep layers of 

cortical columns (Roopun, et al., 2010; Wang, 2010), or interactions between feedback and 
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feedforward inputs into cortical columns (Jones, et al., 2009). Extending these models to the 

PFC, it is possible that after a prefrontal microcircuit generates an output, it receives feedbacks 

from non-specific thalamic nuclei or other prefrontal microcircuits, and this recurrent interaction 

generates rhythmic oscillation (Bollimunta, et al., 2011; Steriade, Gloor, Llinas, Lopes de Silva, 

& Mesulam, 1990). Based on these models, we suggest that decreased beta-band power in the 

PFC during adolescence might reflect immaturities in PFC outputting control signals through 

cortical-BG-thalamocortical interactions (Vokoun, Mahamed, & Basso, 2011).  

Another possibility is that decreased beta-band power in adolescents reflects immaturities 

in the interaction between excitatory and inhibitory neurons within prefrontal microcircuits. To 

further constrain and specify the neural mechanisms associated age-related changes in beta 

rhythm expression, we need to first understand what type of (and how) inhibitory interneurons 

are involved in beta rhythm genesis in the PFC, and specify details of how cortical-BG-

thalamocortical interactions might drive PFC beta rhythm. Such details are currently unavailable, 

which points to the critical need for future investigations. For example optogenitically drive 

different inhibitory populations in the cortex or different subcortical structures to test how PFC 

beta rhythm could be generated.  

6.5 ALPHA-BAND POWER 

To successfully perform an AS trial, saccade-related activity during the preparatory period would 

need to be sufficiently suppressed (Everling, et al., 1999; Everling & Munoz, 2000; Munoz & 

Everling, 2004). We hypothesized that during the preparatory period, alpha-band power would 

increase in oculomotor regions for the AS task when compared to the PS task, reflecting 
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functional inhibition of saccade-related activities. Furthermore, due to the known decreased 

white matter integrity in the thalamic radiata during adolescence (Asato et al., 2010), and 

projection tracts’ hypothesized involvement in alpha rhythm genesis (Bollimunta, et al., 2011; 

Hughes & Crunelli, 2005; Jones, et al., 2009), we hypothesized that alpha-band power would 

increase from adolescence to adulthood.   

 In support of our hypothesis, we found that preparatory alpha-band power in several 

oculomotor ROIs was significantly stronger for the AS task when compared to the PS task. In 

adults, this effect was observed in the left iFEF (Figure 19), the right sFEF (Figure 20), and the 

left IPS (Figure 21). For adolescents, alpha-band power was higher for the AS task in the left 

iFEF (Figure 19) and the right iFEF (Figure 22). Unexpectedly, for adolescents alpha-band 

power was significantly stronger in the right sFEF for the PS task (Figure 20). In addition, no 

task-related modulation of alpha-band power was observed in the DLPFC and the VLPFC (see 

Appendix B), suggesting that increased alpha-band power for the AS task is specific to 

oculomotor regions, but not a global resonance phenomenon.  

In support of our developmental hypothesis, we found that for the AS task, alpha-band 

power during the preparatory period was significantly stronger in adults compared to 

adolescents. This effect was observed in the left iFEF (Figure 19) and the right sFEF (Figure 20). 

No age effect was found for the PS task, or in any other ROIs. Note that to control for behavioral 

difference, only correct trials were included in the above analyses. 
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Figure 19. Alpha-band power in the left iFEF. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 20. Alpha-band power in the right sFEF. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 21. Alpha-band power in the left IPS. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 22. Alpha-band power in the right iFEF. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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If increased alpha-band power does reflect inhibition of saccade mechanism, it should 

decrease when participants are ready to make a saccade. We re-arranged the timing of AS trials 

to the onset of the saccade, and analyzed timecourses of alpha-band power prior to the onset of 

saccades. As expected, alpha-band power decreased right before saccade onset in all four FEF 

ROIs (Figure 19). 

Further, if increased alpha-band power is an indication of enhanced functional inhibition 

of saccade-related activities in oculomotor cortices, it should also correlate with better AS tasks 

performance. To test this hypothesis, we performed a logistic regression to assess the trial-by-

trial impact of preparatory alpha-band power on the probability of correct AS task performance 

(Figure 24). The independent variable was single-trial alpha-band power averaged from 700 ms 

to 1500 ms during the preparatory period (the time-widow when we observed significant task-

modulation). We found that for adults there was a significant association: as preparatory alpha-

band power in the right sFEF increased, the probability of performing a correct AS trial 

increased (b = 0.061, z = 2.04, p = 0.04). Whereas for adolescents no significant association was 

found, though there was a trend showing negative association (b = -0.038, z = -1.65, p = 0.09). 

No statistically significant associations between preparatory alpha-band power and AS task 

performance were found in other ROIs for adults and adolescents, although for adults the 

associations approached trend in other FEF ROIs. 
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Figure 23. Alpha-band power time-locked to saccade onset. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time to saccade onset. Horizontal bar indicates task period that showed significant difference 
between conditions or age groups (p <.05 corrected). Only correct trials were analyzed. 
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Figure 24. Preparatory alpha-band power and AS task performance. 

 
 
 

6.5.1 Interim Discussion 

In adults, we found that when compared to the PS task, alpha-band power was significantly 

stronger for the AS task in the left iFEF and the right sFEF. Further, stronger alpha-band power 

was correlated with better AS task performance, suggesting that stronger inhibition of saccade-

related activity could lead to better AS task performance. In adolescents, increased alpha-band 

power for the AS task was found in the bilateral iFEF. 
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Historically, alpha-band activity was thought to reflect “idling” or “inattentive” states. 

This conception was based on observations that alpha rhythm is most pronounced when 

participants are awake but not engaging in any task. However, it has been demonstrated that 

alpha activity can be modulated by different task conditions, and thus require an alternate 

interpretation (Jensen & Mazaheri, 2010; S. Palva & Palva, 2007). One increasingly influential 

hypothesis suggests that increased alpha-band activity reflects functional inhibition of cortical 

activity (Jensen & Mazaheri, 2010; Klimesch, et al., 2007), and has received strong empirical 

support (Bonnefond & Jensen, 2012; Haegens, et al., 2011). Our results are consistent with this 

hypothesis, suggesting that inhibition of preparatory saccade-related activity in the FEF is 

associated with increased alpha-band power. These results are consistent with Everling and 

Munoz’s FEF recording study (2000), and their model (2004) suggesting that pretarget saccade-

related activity has to be inhibited for successful AS task performance.  

The superior portion of the precentral sulcus (sFEF) has long been suggested to be the 

human homologue of monkey FEF (Curtis, 2011; Luna, et al., 1998). Human functional imaging 

studies also found the inferior portion of the precentral sulcus (iFEF) associated with oculomotor 

control (Berman et al., 1999; Lee, et al., 2010; Luna, et al., 1998; Moon, et al., 2007). We 

interpreted our results in both the sFEF and the iFEF as an indication of functional inhibition of 

saccade-related activity. Because the iFEF partially overlaps with the inferior frontal junction, a 

region that has been hypothesized to be involved in stimulus-driven attention orienting (Asplund, 

Todd, Snyder, & Marois, 2010; Levy & Wagner, 2011), it is possible that the iFEF activity is 

associated with attention processing of visual cues (the red X), whereas the increased alpha-band 

power in the sFEF is associated with inhibition of saccadic motor control. Since we observed 

increased alpha-band power late in the preparatory period, long after the salient cue was 
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presented, we suggest that increased alpha-band power is not related to attention processing of 

visual stimuli. Nevertheless, the functional role of the inferior precentral sulcus in oculomotor 

paradigms remains to be explored.  

In adults, we also found significant task-related modulation of alpha-band power in the 

left IPS. Although pretarget suppression of saccade-related activities in the SC (Everling, et al., 

1999) and the FEF (Everling & Munoz, 2000) have been found to be critical for successful AS 

task performance, similar effect has not been reported in the monkey LIP. Unlike the FEF and 

the SC, electric stimulation of LIP neurons does not induce saccades (Curtis, 2011), suggesting 

that the IPS is not directly involved in the motor production of saccades. Therefore, the increased 

alpha-band power we observed in the left IPS is probably not functionally equivalent with the 

elevated alpha-band power in the FEF. It has been suggested that the IPS is involved in 

transforming the stimulus location vector into a saccade direction vector (Van Der Werf, Jensen, 

Fries, & Medendorp, 2008; Zhang & Barash, 2000). Because the possible target locations were 

fixed in our paradigm (four locations), it is possible that participants memorized target locations, 

and the increased alpha-band power in the left IPS reflects functional inhibition of reflexive 

saccade direction vectors.  

We noticed that for the AS task, alpha-band power in the FEF and the IPS started to 

increase around 500 ms into the preparatory period, sustained throughout the later half of the 

preparatory period, and lasted through the first 200 ms of the response period. Could this alpha 

activity reflect temporal prediction of the timing of the target onset, rather then functional 

inhibition of saccade-related activity? We consider this scenario unlikely for the following two 

reasons. First, the sustained alpha effect continued past target presentation, and decreased right 

before the onset of the saccade (Figure 23), suggesting that this effect is associated with saccades 
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but not target presentation. Second, alpha-band power was significantly higher for the AS task 

when compared to the PS task, suggesting that the increased alpha-band power is associated the 

increased control demand for the AS task, but not temporal prediction of the timing of target 

onset.   

It is possible that perhaps participants have acquired task contingencies, and withheld 

inhibition until late into the preparatory period when it was most needed. Before the MEG 

sessions, participants performed practice trials and other similar oculomotor tasks in the MRI 

environment; in such a case, the late peaking alpha-band power we observed could reflect task 

familiarity. To test if learning of trial timing occurred during the MEG testing, we contrasted 

alpha-band power timecourses from trials administered in the first half of the testing, versus 

trials administered in the second half. If learning had occurred, we would expect to see stronger 

alpha-band power in the beginning versus the end of the session. We did not find such effect in 

our MEG data (see Appendix C), and our behavioral data (Figure 8) suggest that no learning 

occurred during MEG testing. 

We also found significant increases in alpha-band power around the time when the task 

cue was presented, or even before the start of the preparatory period. Could this activity reflect 

participants were predicating the onset of task cues? This is unlikely because inter-trial-intervals 

were jittered; instead, we suspect this effect reflects task-set related functional inhibition 

(Velanova, et al., 2009), whereby an overall heightened level of inhibition was maintained 

throughout the AS task blocks. 

If beta-band activity reflects top-down signaling that transmits control signals to inhibit 

saccade-related activities in oculomotor regions, and if alpha-band activity represents functional 

inhibition of saccade-related activity, then we would expect these two signals to have a temporal 
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relationship. Indeed, we found that beta-band power showed significant task modulation around 

the time when alpha-band activity started to peak (500 ms into the preparatory period). Because 

we did not find sustained beta increase, this further suggests that after the initial increases in both 

alpha- and beta-band power, the prolonged functional inhibition as indicated by sustain increases 

in alpha-band power was probably sustained by sources other than the PFC. One possibility is 

that recurrent thalamocortical pathway may be cable of sustaining inhibition signal after the 

initial signaling from the PFC.  

Although we observed robust task-related modulation in beta-band activity, increased 

beta-band power in the PFC was only weakly correlated with better AS task performance. In 

contrast, in adults we found significant associations between alpha-band power in the right sFEF 

and AS task performance. This suggests that though increased cognitive control demand for the 

AS task modulates prefrontal top-down signaling, the success vs. failure of AS task performance 

depends more heavily on how effective saccade-related activity is inhibited in the oculomotor 

regions. 

Consistent with our developmental hypothesis, compared to adolescents, adults showed 

significantly stronger alpha-band power in the right sFEF and the left iFEF. Studies have shown 

that even when instructed in advance, adolescents still have difficulties in inhibiting upcoming 

prepotent motor responses (Luna, et al., 2004; Munoz, et al., 1998). Our results suggest that his 

behavioral difference could be related to immaturities in sustaining inhibitory neural signals that 

functionally inhibit preparatory saccade-related activities (Everling, et al., 1998; Everling & 

Munoz, 2000).  

 Similar to beta activity, the genesis of alpha rhythm is still not well understood, and at 

this point we can only postulate on why adolescents showed weaker alpha-band power. Most 
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studies agree that alpha rhythm involves cortical-thalamic interaction (Bollimunta, et al., 2011; 

Jones, et al., 2009; Saalmann, et al., 2012), and decreased alpha-band power during adolescence 

could suggest immature functioning of deep-layer thalamocortical cells. Similarly, decreased 

myelination of thalamic-cortical projection tracts during adolescence (Asato, et al., 2010; Lebel, 

Walker, Leemans, Phillips, & Beaulieu, 2008) could also affect cortical-thalamic interactions. 

For example, it has been found that the thalamus innervates low-threshold spiking inhibitory 

neurons (Tan, et al., 2008) that provide sustained inhibition on excitatory cells to reduce spiking 

outputs (Gentet, et al., 2012). Decreased myelination during adolescence could reduce the 

effectiveness of driving interneuron activities, ultimately leading to lower levels of cortical 

inhibition. Although direct physiological evidence is still lacking, one computational modeling 

study further suggests that alpha rhythm recruits low-threshold spiking interneurons (Vierling-

Claassen, et al., 2010), finding which supports our interpretation that decreased alpha-band 

power during adolescence reflects immaturities in functional inhibition.  

It is also possible that weaker frontal top-down signaling during adolescence, as indicated 

by decreased beta-band power, could led to insufficient inhibition in the FEF. Because wavelet 

analyses require a longer wavelet window to achieve a reasonable spectral resolution, the power 

timecourses were temporally smoothed, making it difficult to make conclusive assessment on 

temporal causality based on power timecourses. In the next section (Chapter 6.6), we directly 

tested the phase synchrony between the PFC and the FEF.  
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6.6 NEURAL SYNCHRONY 

We have presented results suggesting that top-down signaling is associated with increased beta-

band power in the PFC, and that functional inhibition is associated with increased alpha-band 

power in oculomotor regions. We further hypothesized that beta neural synchrony between the 

PFC and oculomotor regions will increase to communicate top-down biasing signals for the AS 

task, and that adolescents will show weaker long-range beta neural synchrony, indicating 

ineffective cortical-cortical communication. 

To test these hypotheses, we calculated PLVs in the beta-band between PFC ROIs 

(bilateral DLPFC and bilateral VLPFC) and oculomotor ROIs. Because we observed robust 

alpha-band power modulation in the FEF, we first focused on PFC-FEF synchrony. For adults, 

we did not find any significant task-related modulations in PLVs between the PFC and all FEF 

ROIs. Instead, we found that beta neural synchrony between the right DLPFC and the right IPS 

was significantly stronger for the AS task compared to the PS task (Figure 25). Unexpectedly, 

for adolescents we found that beta neural synchrony was significantly higher for the PS task 

compared to the AS task, between the right DLPFC and the left sFEF (Figure 26), and between 

the right VLPFC and the right sFEF (Figure 27). In support of our developmental hypothesis, for 

the AS task, Adults’ beta-band neural synchrony between the right DLPFC and the right IPS was 

significantly stronger compared to adolescents (Figure 25). Similar age effect was also observed 

between the right DLPFC and the left sFEF (Figure 26), and between the right VLPFC and the 

right sFEF (Figure 27). To control for performance differences, only correct trials were analyzed.  
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Figure 25. Beta-band neural synchrony between the right DLPFC and the right IPS. 
Y scale is percent signal change in PLVs from baseline. Shaded areas indicating one SE. X axis 
indicates the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal 
bar indicates task period that showed significant difference between conditions or age groups (p 
<.05 corrected). Only correct trials were analyzed. 
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Figure 26. Beta-band neural synchrony between the right DLPFC and the left sFEF. 
Y scale is percent signal change in PLVs from baseline. Shaded areas indicating one SE. X axis 
indicates the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal 
bar indicates task period that showed significant difference between conditions or age groups (p 
<.05 corrected). Only correct trials were analyzed. 
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Figure 27. Beta-band neural synchrony between the right VLPFC and the right sFEF. 
Y scale is percent signal change in PLVs from baseline. Shaded areas indicating one SE. X axis 
indicates the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal 
bar indicates task period that showed significant difference between conditions or age groups (p 
<.05 corrected). Only correct trials were analyzed. 
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Could inter-regional communication be supported by synchrony in frequencies other than 

beta-band? To address this question, we examined both alpha- and gamma-band neural 

synchrony between ROIs. We did not find any significant task-related modulations in alpha- and 

gamma-band neural synchrony. However, for the AS task, alpha-band neural synchrony between 

the left sFEF and the right IPS was higher for adults when compared to adolescents (Figure 28).  

Because PLV measures the phase consistency across trials, we were not able to repeat the 

trial-by-trial analysis that we did to assess the impact of preparatory alpha- and beta-band power 

on task performance. To investigate the association between preparatory neural synchrony and 

AS task performance, we repeated PLV analyses by including both correct and incorrect trials. 

Then for each participant, we extracted the averaged preparatory PLV values from all the 

significant time-clusters we reported above, and correlated with behavioral performance. We did 

not find any significant correlations, with r ranging from -0.12 to 0.21, and all p values were 

greater than 0.16. 
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Figure 28. Alpha-band neural synchrony between the left sFEF and the right IPS. 
Y scale is percent signal change in PLVs from baseline. Shaded areas indicating one SE. X axis 
indicates the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal 
bar indicates task period that showed significant difference between conditions or age groups (p 
<.05 corrected). Only correct trials were analyzed. 
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6.6.1 Interim Discussion 

It has been long hypothesized that the PFC provides inhibitory signals to suppress saccade-

related activity in the FEF (Munoz & Everling, 2004). We hypothesized that beta-band neural 

synchrony between the PFC and the FEF would increase for the AS task, reflecting enhanced 

communication between frontal cognitive control regions and oculomotor regions for top-down 

inhibition of saccade-related activity. However, we did not find evidence that supports this 

hypothesis. Instead, for adults we found that beta-band neural synchrony between the right 

DLPFC and the right IPS increased for the AS task, when compared to the PS task. As 

previously discussed, increased alpha-band power in the parietal cortex is probably associated 

with the inhibition of reflexive saccade direction vector, but not functional inhibition of saccade 

generation. We suggest this increased synchrony pattern could reflect be related to the 

preparation of the vector inversion process. Because we did not find significant task-related 

modulation in alpha-band power in the right IPS, it is also possible that the DLPFC-IPS 

connectivity is not related to functional inhibition, but related to other preparatory cognitive 

control processes such as working memory maintenance. One study has found increased beta-

band neural synchrony between frontal and parietal cortices when working memory load 

increased (J. M. Palva, Monto, Kulashekhar, & Palva, 2010).  

Since we did not find any significant task-related increases in phase synchrony between 

the PFC and FEF ROIs, it remains an open question how functional inhibition in the FEF was 

initiated. Because the thalamus could be involved in both inhibition (Tan, et al., 2008) and alpha 

rhythm (Jones, et al., 2009; Saalmann, et al., 2012), it is possible that signals were transmitted 
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through indirect connectivity, such as cortical-BG-thalamocortical pathways (Vokoun, et al., 

2011) or the cortical-thalamic-cortical pathways (Saalmann, et al., 2012; Sherman & Guillery, 

2011). For example, the global pallidus and the substantia nigra are composed of mainly 

GABAergic neurons that inhibit the thalamocortical pathway to prevent saccade generation 

(Hikosaka, Takikawa, & Kawagoe, 2000). Outputs from the PFC could be transmitted to the 

caudate, then from the caudate to the global pallidus and the substantia nigra, and then to the 

thalamus and to the FEF (Alexander, et al., 1986). Cortical-cortical interaction could also be 

mediated by indirect cortical-thalamic-cortical pathways (Sherman & Guillery, 2011). 

Particularly, non-specific thalamic nuclei (such as the pulvinar) are known to have widespread 

cortical connectivity, well situated to mediate inter-cortical communication (Saalmann, et al., 

2012). Unfortunately, these hypotheses are difficult to test with MEG, given its insensitivity to 

subcortical sources.  

Another possibility is that the FEF receives inhibition input from regions other than the 

PFC, such as the SEF or the ACC (Everling & Johnston, 2011; Schlag-Rey, et al., 1997). One 

recent study showed that temporally deactivating the monkey DLPFC reduced the suppression of 

stimulus-related activity in the SC, and eliminated the differences in activity between PS and AS 

trials (Koval, et al., 2011). These results strongly suggest that the DLFPC is critically involved in 

providing control signal to bias saccade-related activity, at least to the SC. It is also possible that 

PFC control signals are first transmitted to the SEF, and in turn SEF provides inhibition of the 

FEF and the SC. Future studies should clarify if DLPFC directly influences preparatory activity 

in the FEF, and if the SEF or the ACC provides top-down inhibition signal.  

Beta-band neural synchrony between the right DLPFC and the right IPS, the right 

VLPFC and the right sFEF, the right DLPFC and the left sFEF, and alpha-band neural synchrony 
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between the left sFEF and the right IPS all increased from adolescence to adulthood. However, 

because only the DLPFC-IPS connections showed stronger PLV measure for the AS task 

compared to the PS task, we cannot confidently suggest all these connections were involved in 

preparatory inhibitory control processes. We tentatively suggest that these age-related 

differences reflect overall immaturities in coordinating distributed activities during adolescence.  

Decreased synchrony during adolescence could be associated with decreased white-

matter integrity in direct cortical-cortical association tracts and subcortical-cortical projection 

tracts (Asato, et al., 2010; Ashtari, et al., 2007; Barnea-Goraly, et al., 2005; Lebel, et al., 2008; 

Schmithorst, et al., 2002). Decreased myelination affects the speed and validity of neuronal 

transmission (Stufflebeam, et al., 2008), and may further impede the effectiveness of entraining 

distributed brain regions into the same oscillating frequency and to maintain a consistent phase 

relationship. Note that the synchrony measure we used, PLV is calculated by only considering 

phase information but not frequency amplitudes (Lachaux, et al., 1999), therefore weaker alpha- 

and beta-band power during adolescence should not have confounded our synchrony analyses.  
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7.0  GENERAL DISCUSSION 

Perhaps one of the most striking findings from the adolescent development literature is that even 

when instructed in advance, adolescents still have difficulties inhibiting an anticipated prepotent 

motor response, and that although adolescents can sometimes successfully inhibit single 

responses, the rate of correct inhibitory responses continues to increase into adulthood. This is 

repeatedly demonstrated by studies showing that compared to adults, adolescents consistently 

showed higher AS error rates across studies (e.g., Klein & Foerster, 2001; Klein, Foerster, 

Hartnegg, & Fischer, 2005; Luna, et al., 2004; Munoz & Everling, 2004), even when the 

preparatory time was extended to six seconds (Ordaz, et al., 2010). Collectively these studies 

suggest that there are critical immaturities in the preparatory neurocognitive processes being 

engaged in preparation to inhibit reflexive saccades.  

We have presented results providing novel insights into what these immaturities might 

be. First, we found that compared to adults, adolescents could not initiate and sustain the same 

level of functional inhibition to inhibit preparatory saccade-related activity, as indicated by 

decreased alpha-band power in the FEF. Second, we found that compared to adults, adolescents 

showed less robust top-down signaling, as indicated by weaker beta-band power in the right 

DLPFC and the right VLPFC. Lastly, flexible coupling between task-relevant regions have been 

suggested to be critical for goal-directed behaviors (Siegel, et al., 2012), yet we found that 
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compared to adults adolescents showed decreased levels of synchrony between task-relevant 

regions, reflecting immaturities in coordinating distributed cortical activities.  

These results extend our previous fMRI studies (Hwang, et al., 2010; Velanova, et al., 

2008, 2009) and provide additional evidence illuminating the nature of immature inhibitory 

control during adolescence. Consistent with our previous effective connectivity study (Hwang, et 

al., 2010), we found that adolescents showed weaker fronto-parietal synchrony associated with 

correct AS trial performance, indicating that our fMRI results were not biased by performance 

differences. However, we were unable to replicate our increased frontal-FEF fMRI connectivity 

findings. As discussed in Chapter 6.6.1, we suspect this was because subcortical structures were 

involved in mediating inhibitory signal (Hikosaka, et al., 2000; Vokoun, et al., 2011) and rhythm 

genesis (Jones, et al., 2009; Steriade, et al., 1990). Because MEG is not sensitive to subcortical 

sources, and because pairwise GCA between cortical ROIs could discount contributions from 

subcortical ROIs, other connectivity methods that can specifically model the contribution from 

subcortical structures are needed.  

In our previous fMRI studies (Velanova, et al., 2008, 2009), we could not separate 

preparatory vs. response signals in our trial-locked, evoked BOLD analyses. When compared 

transient activations associated with correct trials, we did not find significant differences 

between adolescents and adults in the FEF and the DLPFC (Velanova, et al., 2008). 

Nevertheless, when comparing sustained task-set related activities between adolescents and 

adults, we found decreased sustain activation in the PFC and other temporal/parietal regions for 

adolescents (Velanova, et al., 2009). Building on these findings, by using high temporal 

resolution MEG, we found that immaturities persist in transient (trial-related) preparatory control 

signals during adolescence, indicating weaker top-down signaling and functional inhibition. 
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Because BOLD infers neuronal activity summated across slow and fast neural oscillations, we 

gained more sensitivity in detecting transient signals by using MEG. Indeed, studies have 

reported complex and nonlinear relationship between BOLD and trial-related neural 

synchronization/desynchornization (Scheeringa et al., 2011; Winterer et al., 2007). It is possible 

that when contrasting microcircuit activities of adolescents and adults, adolescents’ activity was 

not as synchronous as adults’, yet had similar metabolic demand, as indicated by similar transient 

BOLD responses. When considered together, our results suggest that adolescents have 

immaturities in transient, trial-related preparatory neurocognitive processes, in addition to 

immature sustained, task-set related function (Velanova, et al., 2009).  

Although our hypotheses and results were specific to the oculomotor paradigm, they 

could be generalized to inhibitory control of other behaviors, not just saccadic responses. In a 

broader context, we found that adolescents showed evidence of decreased levels of functional 

inhibition of task-irrelevant or task-inappropriate processes, and less robust top-down control of 

goal-directed behaviors. Immature functional inhibition could lead to inhibitory failure because if 

task-irrelevant or task in-inappropriate processes are not sufficiently suppressed, they could 

override the weaker goal-directed or contextually-driven behavior. Our results suggest that 

adolescents have immaturities in generating and sustaining inhibition signal, and if contextually 

inappropriate behavior has a much stronger representation, adolescents could have difficulties 

suppressing it. Similarly, immaturities in top-down signaling could affect how processes in the 

sensory and motor regions could be effectively biased toward accomplishing a behavioral goal. 

Overall, we found that adolescents did not show the same pattern of oscillatory 

neurodynamics as adults—weaker local oscillatory power and weaker phase synchrony between 

distant regions. It is possible the immaturities in neural circuits’ functions will not only reduce 
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spectral energy, but also decrease long-range synchronization between distant oscillating 

neurons. These immaturities could have important translational implications. As discussed in the 

introduction, impaired inhibitory control is a prominent clinical syndrome in several psychiatric 

disorders, such as schizophrenia and Attention Deficit/Hyperactivity Disorder (Sweeney, et al., 

2002; Sweeney, et al., 2004). More recently, abnormal oscillatory activities have also been 

reported in patients with neuropsychiatric disorders (Uhlhaas & Singer, 2006, 2012). Whether or 

not the neural mechanisms associated with decreased oscillatory power and decreased phase 

synchrony that we observed in adolescents overlaps with disorders’ underlying etiologies is an 

open question that needs to be empirically investigated. The first step is to pinpoint the neural 

mechanisms involved in alpha and beta rhythms in healthy developing adolescents. Although 

specifics remain elusive, our findings provide a context for future directions.  

Inhibitory interneurons are known to be critical for rhythm genesis and regulating 

activities within microcircuits (Moore, et al., 2010). Initial studies suggest that GABA 

interneurons undergo important changes through adolescence that could affect microcircuit 

processing (Lewis & Melchitzky, 2012). How different types of inhibitory neurons develop 

through adolescence, and their functional role in regulating cortical activities need to be further 

investigated. Studies suggest that certain inhibitory populations, such as the SOM interneurons, 

could be involved in amplifying alpha rhythm (Vierling-Claassen, et al., 2010), and provide 

sustain inhibition over pyramidal neurons (Gentet, et al., 2012). It is possible that weaker 

functional inhibition during adolescence could be related to immaturities in interneuron 

functioning within microcircuits. How SOM interneurons function over the course of 

adolescence, and its abnormality in psychiatric disorders, should be further investigated.  
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Other candidates are the thalamocortical and BG-thalamocortical pathways. Existing 

models prominently highlight the thalamus’s role in both alpha and beta rhythm geneses 

(Bollimunta, et al., 2011; Jones, et al., 2009), yet direct physiological evidence remains sparse. 

Similarly, how the BG-thalamocortical loop could be involved in transmitting control signal and 

sustaining inhibitory signal need to be further investigated. As discussed above, age-related 

increases in white matter integrity of fronto-cortical and fronto-subcortical tracts would support 

developmental enhancements in thalamocortical and BG-thalamocortical pathways. 

Interestingly, one theory proposed that several psychopathologies could be characterized by 

abnormal resonant interactions between the thalamus and the cortex, giving rise to abnormal 

oscillatory neurodynamics (Schulman et al., 2011). Given the adolescent emergence of major 

neurpsychiatric disorders, underscores the potential translational significance of this area of 

research. 

Behaviorally, we found that adolescents failed to inhibit reflexive saccades 40% of the 

time. Although this performance was significantly worse than adults’, on average adolescents 

were still able to inhibit reflexive saccades on more than half of the trials. A big dilemma is that 

our results indicated that adolescents were able to generate correct inhibitory responses despite 

weaker top-down control and preparatory inhibition. One possibility is through compensation; 

perhaps adolescents were utilizing other regions we did not examine. However, our previous 

fMRI studies showed that adolescents and adults utilized largely overlapping sets of brain 

regions for AS task performance (Velanova, et al., 2008, 2009), and we consider this possibility 

unlikely.  

Another possibility is that perhaps adolescents’ inhibitory control system functions at a 

level slightly above the threshold of successful inhibition, but well below the level utilized by 
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adults. In this proposed model, there would be a threshold of required functioning level of top-

down signaling and functional inhibition for successful inhibitory control. If system’s 

functioning level dips below the threshold, errors will be made. On a trial-by-trial basis, 

adolescents’ immature system would frequently dip below the threshold, resulting in higher 

number of error trials (Figure 29). In contrast, adults’ system functions at a more mature and 

robust level. On a trial-by-trial basis, the system’s functioning level also varies, but because it is 

mature and well above the critical threshold, fewer errors are made (Figure 29).  

Figure 29. System functioning level. 

It has been long recognized that heightened risk-taking behaviors during adolescence is a 

multi-factor construct, and numerous social and affective factors play significant roles (Crone & 

Dahl, 2012). Similarly, the need to exert inhibitory control does not only apply to simple motor 
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responses, but also emotion, motivation, complex behaviors, and thoughts. In this dissertation, 

we investigated how reflexive motor response could be inhibited in order to generate a voluntary 

goal-directed response. Despite using a basic model, we found important immaturities in 

functional inhibition and top-down signaling. It is possible that when placed in emotionally and 

socially challenging contexts, adolescents’ system could be further challenged, resulting in the 

inhibitory failures and impulsive behaviors that we commonly observe in society.  
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APPENDIX A 

BETA POWER IN THE OCULOMOTOR ROIS 

Statistically significant task-related and age-related modulations in beta-band power were only 

observed in PFC ROIs. For completeness, beta-band power timecourses from other ROIs are 

presented in this appendix.  
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Figure 30. Beta-band power in the right iFEF. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 31. Beta-band power in the right sFEF. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 32. Beta-band power in the left iFEF. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 33. Beta-band power in the left sFEF. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 34. Beta-band power in the right IPS. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 35. Beta-band power in the left IPS. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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APPENDIX B 

ALPHA POWER IN THE RIGHT PFC ROIS 

Statistically significant task-related and age-related modulations in alpha-band power were only 

observed in oculomotor ROIs. For completeness, alpha-band power timecourses from the right 

PFC ROIs are presented in this appendix.  
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Figure 36. Alpha-band power in the right DLPFC. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 37. Alpha-band power in the right VLPFC. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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APPENDIX C 

CONTRASTING ALPHA-BAND POWER DURING DIFFERENT PARTS OF THE 

TESTING  

Here we present results contrasting alpha-band power during the first half of the testing session, 

versus the second half. No significant differences were found. Specifically, alpha-band power 

timecourses of AS trials from the first half of the testing were not statistically different when 

compared to the second half of the testing, for both adults and adolescents. 
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Figure 38. Adolescents’ alpha-band power timecourses during different halfs of the testing. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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Figure 39. Adults' alpha-band power timecourses during different halfs of the testing. 
Y scale is percent signal change from baseline. Shaded areas indicating one SE. X axis indicates 
the time since cue onset. From zero to 1.5 seconds is the preparatory period. Horizontal bar 
indicates task period that showed significant difference between conditions or age groups (p <.05 
corrected). Only correct trials were analyzed. 
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