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White matter fiber tractography based on diffusion-weighted magnetic resonance imaging is a 

promising method for non-invasive investigation of anatomical connectivity in the human brain. 

Knowledge of the white matter connections linking functional brain areas can inform 

interpretation of functional imaging results and allow the construction of biologically informed 

computational and statistical models. However, relatively little attention has been paid to the 

reproducibility and external validity of tractography results, even as the user base of this 

technology continues to grow, and as tractography research is applied to cognitive neuroscience 

research in novel ways. In this investigation, we addressed the reliability and validity of 

deterministic tractography results based on diffusion spectrum imaging (DSI). Reliability was 

evaluated both in terms of the presence/absence of fiber connections across sessions and the 

correlation of fiber density values. Validity was assessed by comparing tractography results to 

findings from invasive studies of the macaque monkey: we focused on the cortical and 

subcortical connections of the frontal eye fields (FEF). Results indicated significant variability in 

tractography: on average, intercortical connections present in one session had only a 75% 

likelihood of being detected in a second session from the same individual. However, the fiber 

density of repeatedly-detected connections was highly reliable, with an average between-session 
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correlation coefficient of 0.94. Next, we investigated how global vs. targeted tractography 

approaches affected reliability and detection power. We found that a targeted approach, 

involving the use of region-of interest (ROI) constraints, yielded a large advantage in detection 

power and modest improvements in reliability. Finally, fiber connections of the human FEF were 

broadly consistent with hypotheses derived from a meta-analysis of macaque findings: we found 

reliable projections to the supplementary eye fields (SEF), striatum, thalamus, and parietal 

cortex. In contrast, we found lesser connectivity to a set of foil regions. The combined results of 

this study validate the use of DSI-based fiber tractography to address hypotheses relating to 

human brain connectivity. However, widespread noise in tractography results highlights the need 

for conservative approaches to fiber tracking research. We especially emphasize the benefits of 

collecting multiple data samples per participant and of addressing targeted hypotheses. 
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1.0 EXPERIMENT 1: BETWEEN-SESSION RELIABILITY OF DIFFUSION 

SPECTRUM IMAGING-BASED FIBER TRACTOGRAPHY 

1.1 INTRODUCTION 

Increasingly, cognitive neuroscientists seek to test hypotheses that involve complex 

functional networks. The nodes of such functional networks must necessarily be joined by either 

direct or indirect anatomical connections, in the form of white matter fiber bundles. However, 

direct evidence of anatomical connectivity is usually unavailable, due to methodological 

limitations or the use of human participants, which precludes invasive study of brain 

connectivity. Rather, inferences about network structure are informed by statistical models of 

functional imaging data (Cohen et al., 2008; Cole et al., 2010; Dosenbach et al., 2007; Fox & 

Raichle, 2007; Rogers et al., 2007), behavioral observations following brain injury or 

experimental intervention (Nomura et al., 2010), or prior neuroanatomical evidence of 

anatomical connectivity (Modha & Singh, 2010). Most current knowledge of brain connectivity 

comes from invasive studies of non-human animals, using such techniques as autoradiographic 

tracer labeling (Huerta et al., 1986, 1987; Parthasarathy et al., 1992); some additional data comes 

from post-mortem dissection of human brains (Bürgel et al., 2005). However, these data are 
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costly to acquire, especially because tissue volumes or whole brains can often be used only for a 

single test. As a consequence, knowledge of brain connectivity depends largely on the synthesis 

of findings gathered piecemeal using different methods, from different species and individuals. 

The heterogeneity of data sources limits the precision and confidence of our knowledge about 

brain connectivity, particularly when researchers wish to make assertions or inferences about the 

human brain.  

The combination of diffusion-weighted imaging (DWI) and fiber tractography offers a way 

to non-invasively investigate anatomical connectivity in the human brain. Techniques such as 

diffusion spectrum imaging (DSI; Wedeen et al., 2005, 2008) and high angular resolution 

diffusion imaging (HARDI) have the ability to reproduce known features of human brain 

connectivity with high levels of detail (Behrens et al., 2003; Greenberg et al., 2012; Jarbo et al., 

2012; Phillips et al., 2012; Pyles et al., 2012; Verstynen et al., 2011), providing clinically useful 

information (Fernandez-Miranda et al., 2010). The strength of these methods lies in their high 

spatial and angular resolution, which allows the construction of rich diffusion representations 

using model-free techniques, like the orientation distribution function (Seunarine & Alexander, 

2009). Such representations can be used to resolve complex fiber configurations (Wedeen et al., 

2005) that have confounded simpler forms of DWI, such as diffusion tensor imaging (DTI; 

Basser et al., 1994a, b). 

However, important practical and theoretical questions remain regarding the applicability of 

DWI-based tractography to cognitive neuroscience research. Chief among these questions are the 

reliability and validity of tractography results. Questions about reliability include the replicability 

over time of tractography results in a given individual, both in terms of spatial extent and 

connection density. Unknown factors about the validity of tractography results include the 
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incidence of false positives and false negatives, as well as their proportions to one another. 

Resolution of these questions is important for understanding the noise levels inherent in DSI 

data, as well as the specificity vs. generalizability of tractography results. 

Two previous studies have investigated between-session reliability of DSI-based 

tractography (Bassett et al., 2011; Cammoun et al., 2012). These studies have reported high 

within-subject correlations of connection density values, suggesting that tractography results are 

highly reproducible over time. Moreover, both studies have analyzed reliability at different levels 

of spatial resolution, finding that the reproducibility of results decreased as the spatial scale of 

analysis grew finer. While these results are informative, these studies have left several questions 

unaddressed. Perhaps most importantly, neither study appears to report the reproducibility of 

connectivity results in the simplest terms possible: the likelihood that a connection which is 

present or absent in one dataset will have the same status in a repeat observation. Furthermore, 

investigation of possible explanations for between-session error was limited: Cammoun et al. 

(2012) addressed only one source of variability, the effect of randomness in ROI generation. In 

contrast, comprehensive investigations of possible error sources have been performed for 

tractography based on DTI (Lori et al., 2002) and for functional magnetic resonance imaging 

(e.g., Zou et al., 2005). 

In the present study, we sought to replicate and extend the findings of Bassett et al. (2011) 

and Cammoun et al. (2012). Figure 1 gives an overview of the analyses included in Experiment 

1. First, we reproduced Cammoun et al.’s test of reliability in intercortical connection matrices,

based on regions of interest (ROIs) automatically defined by FreeSurfer (Desikan et al., 2006; 

Fischl et al., 2002, 2004). Based on prior results, we predicted that we would find high between-

session correlation of fiber density values. Additionally, we examined the reproducibility of 



4 

binarized results, where connections were coded as being simply present or absent. This analysis 

yielded information that was complementary to the correlation of fiber density values for 

repeatedly-observed connections. Given the high correlations reported by Bassett et al. (2011) 

and Cammoun et al. (2012), we predicted that the reproducibility of binarized results would also 

be high. 

Figure 1. Overview of Experiments 1 and 2. 

We were additionally interested in procedural effects upon tractography results and their 

reliability. The competitive context for seed generation and fiber propagation represented one 
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such variable of interest. Tractography investigations commonly use a global seeding and 

tracking approach, in which fibers are propagated from starting points throughout the entire 

brain, or large portions of it, with minimal constraints on fiber trajectory or target. We refer to 

this approach as global tractography; other authors have referred to it by the term “exhaustive 

search” (Bassett et al., 2011; Gong et al., 2008). In contrast, deterministic tractography can also 

be performed with specific ROI constraints, and with tracking parameters optimized for 

detecting expected fibers of interest. We refer to this approach as targeted tractography; our 

research group has previously used a targeted approach for tracking fibers of the corticospinal 

tract (Verstynen et al., 2011), low-detectability callosal projections to parietal and posterior 

temporal cortex (Jarbo et al., 2012), and attendotopic projections from early visual regions to 

parietal cortex (Greenberg et al., 2012; Phillips et al., 2012). 

We predicted that targeted tracking would be associated with superior between-session 

reliability and detection power, compared to global tractography. We reasoned that targeted 

tracking could improve reliability in several ways. First, targeting specific fiber tracts allows the 

imposition of more ROI-based constraints than in a whole-brain or nearly whole-brain tracking 

job. Such constraints can counteract “diffusion steal effects”, in which a deterministic 

tractography algorithm may consistently fail to follow a valid diffusion pathway in favor of a 

stronger, adjacent pathway (for example, see Jarbo et al., 2012). Second, and relatedly, targeted 

tracking can be computationally more efficient for detecting specific fibers of interest, allowing 

fuller saturation of possible diffusion pathways than global tracking. Finally, targeted tracking 

allows the user to optimize tractography parameters to increase detection power, whereas global 

tracking jobs must use a single set of parameters to capture fiber tracts with very different 

morphology.  
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To investigate the effects of global vs. targeted tracking, we performed more detailed 

analysis on three specific tracts of interest: the arcuate fasciculus (AF), the corticospinal tract, 

and the interhemispheric projection fibers of the corpus callosum. For these tracts, we performed 

both ROI-based and voxelwise analyses. As in the intercortical connectivity analysis, ROI-based 

analyses indicated the reproducibility of region-to-region connections. Additionally, voxelwise 

analysis of tract endpoint maps was performed to assess the reproducibility of termination fields, 

which are of special interest for their comparability to functional imaging data. Finally, we 

performed voxelwise analysis of full-tract density maps as a means of comparing the 

morphology of tract bodies across sessions. In both ROI-based and voxelwise analyses, we 

additionally examined the effect of tracking condition (global vs. targeted) on detection power, 

assessed by the absolute number of connections and/or voxels reliably detected across sessions. 

 

 

 

1.2 METHOD 

 

1.2.1 Participant Information 

 

Seven healthy adults between the ages of 22 and 34 participated. The mean age was 26.7 

(4.5) years. Four participants were male, and three were female. All participants gave informed 

consent as required by the Institutional Review Board of the University of Pittsburgh. Five 

people received monetary compensation for their participation, and two co-authors volunteered 

to participate. 
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1.2.2 Procedure 

 

Four participants underwent 2 two-hour scanning sessions each for the 2009 Pittsburgh Brain 

Connectivity Competition. In a total of four of these sessions, high angular resolution diffusion 

imaging (HARDI) data were also collected. One participant, for whom HARDI data were not 

collected, underwent functional magnetic resonance imaging (fMRI) in both sessions. Data for 

the remaining three participants were collected for an unpublished cognitive training experiment; 

scanning sessions for these participants were either 90 minutes or two hours and included both 

DSI and fMRI data collection. DSI and tractography results for all seven participants have been 

reported in previous publications by our group (Jarbo et al., 2011; Verstynen et al., 2011). 

 

1.2.3 Anatomical Image Acquisition and Processing 

 

High-resolution T1-weighted anatomical images were collected for all subjects using a 

magnetization-prepared rapid gradient echo (MPRAGE) sequence.  (TR=2110 ms, TE=2.63 ms, 

flip angle=8°, 176 slices, field-of-view=256 x 256 mm, voxel size = 1.0 x 1.0 x 1.0 mm). For a 

subset of datasets, T1 images were collected with voxel sizes of 0.5 x 0.5 x 0.5 mm; prior to 

other processing steps, these images were resampled to match the 1 mm isotropic voxel size of 

the other T1 images. 

Anatomical images were processed using the FreeSurfer recon-all pipeline (Desikan et al., 

2006; Fischl et al., 2002, 2004). Input images were processed to remove the skull and normalize 

image intensity across the field of view. An automated algorithm parceled the cortex into 
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discrete ROIs, based on local cortical curvature and neuroanatomical priors; additionally, it 

segmented major subcortical structures, based on gray/white matter contrast and 

neuroanatomical priors. FreeSurfer output included volumetric representations of all cortical 

parcels and subcortical segmented structures, as well as multiple representations of the cortical 

surface. Output from FreeSurfer was also converted for subsequent processing in AFNI and 

SUMA. 

Because FreeSurfer output was in a different image orientation and voxel resolution than DSI 

data, it was necessary to align the two image spaces. For each dataset, the unweighted EPI 

volume (B0 image) was skull-stripped, then aligned to the skull-stripped, intensity-normalized 

T1 image output by FreeSurfer. Alignment was based on a 12-parameter affine transformation, 

computed using FSL’s FLIRT. All transformed B0 images were visually inspected to check the 

alignment of ventricles, gyri, and sulci. The inverse of the previously computed affine 

transformation was subsequently used to align FreeSurfer-derived ROIs to the DSI data. 

 

1.2.4 Diffusion Image Acquisition and Processing 

 

Diffusion-weighted imaging data were collected twice for each of 7 participants with a 3-

Tesla Siemens Tim Trio MR scanner and a 32-channel send/receive coil. We used a diffusion 

spectrum imaging (DSI) protocol with a twice-refocused spin-echo EPI sequence (TR=9916 ms, 

TE=156 ms, voxel size=2.40625 x2.40625 x 2.4 mm, field of view=231 x 231 mm). This 

protocol scanned 257 diffusion directions over b-values ranging from 300 to 7000 s/mm^2. This 

sampling scheme represents anisotropic and isotropic diffusion in a four-dimensional space 

(three spatial dimensions plus time) referred to as “q-space” (Basser & Özarslan, 2009; 
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Callaghan et al., 1990). Images collected at higher b-values capture diffusion over longer time 

intervals than images at lower b-values, improving discrimination of crossing or “kissing” fibers. 

The cost of this improved diffusion contrast is decreased signal-to-noise ratio at high b-values 

(Tournier et al., 2004); however, empirical testing by our group and others has found that a 

mixture of high and low b-values produces tractography results which best reproduce known 

neuroanatomical features (Phillips et al., 2012; Wedeen et al., 2005). 

No corrections for participant head motion, EPI distortions, or eddy currents were applied to 

the raw diffusion images. Although such corrections are commonly applied to diffusion-

weighted MR images collected at lower b-values, no method currently exists for correcting data 

collected at high b-values, including DSI and multi-shell HARDI (Phillips et al., 2012). This is 

because current algorithms rely on global information about neuroanatomical structure across the 

volumes of an EPI dataset; however, those features are absent or severely degraded at high levels 

of diffusion weighting. An additional obstacle to correcting for head motion and image 

distortions is the spatial error introduced by image interpolation: even simple corrections, such as 

rigid-body alignments for motion correction, involve resampling and spatial blurring of the input 

data.  The effects of such interpolation may go unnoticed in DTI-based tractography because of 

the limited angular resolution of the reconstructed data. In contrast, Gaussian spatial 

interpolation of DSI volumes may introduce spurious diffusion information into neighboring 

voxels, reducing the effective angular resolution in tractography results. We note that DSI 

protocols have been shown capable of producing highly reliable tractography results between 

sessions (Cammoun et al., 2012), despite the valid concerns about uncorrected image distortion 

and motion artifacts. 



 10 

Generalized q-sampling imaging (Yeh et al., 2010) was used to reconstruct the raw diffusion 

data. Like q-ball imaging (QBI; Tuch, 2004) and the reconstruction scheme originally designed 

for DSI data (Wedeen et al., 2005), GQI belongs to the class of “model-free” reconstruction 

techniques, which employ Fourier transforms to estimate diffusion patterns from raw diffusion-

weighted MR images. However, GQI is characterized by several differences from related model-

free methods. The most significant difference is that ODFs in GQI are based on a spin density 

function (SDF) for each voxel, whereas QBI and DSI yield ODFs which are based on a 

probability density function (PDF). The PDF represents only proportions of the total spins 

diffusing in each direction within a given voxel and gives no information about the absolute 

number of spins represented. In contrast, the SDF calculated in GQI has been mathematically 

demonstrated to represent the absolute number of spins diffusing within a voxel (Yeh et al., 

2010). GQI thus produces ODFs which have a meaningful physical relationship with those in 

other voxels. A second characteristic of GQI is that anisotropy is not usually expressed in terms 

of fractional anisotropy (FA; Basser & Pierpaoli, 1996; Jones, 2009), the metric prevalent in 

many other DWI methods. Instead, GQI employs a metric called quantitative anisotropy. While 

FA and generalized fractional anisotropy are directionally non-specific descriptions of the 

overall anisotropy (i.e., “pointedness” or “constrained-ness”) of diffusion in a voxel, QA is a 

directionally specific metric. QA can thus be estimated for multiple different diffusion 

orientations within a given voxel. Furthermore, in simulation experiments, QA has been shown 

to correlate with the physical volume of diffusion (Yeh et al., 2010), although this relationship 

has not yet been confirmed in diffusion phantoms or biological tissue. 

Orientation distribution functions (ODFs) were reconstructed using DSI Studio (http://dsi-

studio.labsolver.org; November 2011 release). The raw diffusion data (comprising 257 discrete 
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gradient directions) were resampled to represent 642 diffusion orientations, evenly distributed on 

a unit sphere. Possible fiber orientations were identified in each voxel by finding local maxima 

on the unit sphere representation. A maximum of 5 distinct diffusion orientations per voxel was 

allowed; this number was chosen to allow for the possibility of complex fiber crossings, although 

to our knowledge no evidence exists for crossings of more than 3 fiber tracts at a single point in 

mammalian brains. In practice, the reconstruction algorithm did not identify more than three 

possible fiber directions per voxel in any of the datasets analyzed. We employed a diffusion 

sampling ratio of 1.25.  

 

1.2.5 Anatomical Region-of-Interest Creation 

 

Anatomical ROIs for fiber-tracking and subsequent analysis were created from the 

FreeSurfer cortical parcels and subcortical segmentation described above. A total of 150 cortical 

ROIs were created for each brain (75 per hemisphere). Cortical ROIs were created from surface-

format data, by dilating surface masks along the vector normal to the cortical surface at each 

node, to a depth of 1 times the cortical thickness below the gray/white matter boundary. This 

dilation is necessary because diffusion anisotropy falls off quickly in gray matter, and anisotropy 

estimates are less stable than in gray matter (Farrell et al., 2007). A small dilation of tractography 

seed or ROI masks thus serves to dramatically increase detection power for diffusion 

streamlines. Empirical testing indicates that our procedure dilates cortical ROIs by 1-3 voxels (a 

growth of 2.4-7.2 mm in the datasets presented here). Automatically-segmented subcortical ROIs 

were extracted from the FreeSurfer aparc.a2009s+aseg image. 
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Both subcortical and cortical ROIs were aligned to DSI data by applying the affine 

transformation previously computed for each dataset. This transformation involved a necessary 

loss of spatial resolution, due to the larger voxel sizes used in the DSI protocol. Nearest-neighbor 

interpolation was used for transforming ROI masks, in order to avoid the extensive blurring 

associated with trilinear interpolation. Subsequently, holes in transformed ROI masks were filled 

using a slice-by-slice procedure, in which any zero-valued voxels which were surrounded by at 

least 6 non-zero neighbors were also made non-zero. 

1.2.6 Deterministic Tractography Methods 

Fiber-tracking was performed with the deterministic tractography algorithm implemented in 

DSI Studio (Wedeen et al., 2008; Yeh et al., 2010). In general, deterministic tractography 

methods generate virtual fiber streamlines which represent possible fiber trajectories. 

Deterministic algorithms follow set decision rules at each step of a fiber’s propagation; the 

resulting streamlines should be viewed as inferences of a fiber’s presence, and not as veridical 

fibers. Furthermore, the streamlines generated by deterministic algorithms are not accompanied 

by estimates of their probability. In this respect, deterministic tractography differs from 

probabilistic algorithms, which estimate the probability of diffusion into a voxel as a 

combination of the diffusion signal strength and the accumulation of uncertainty created by 

tractography parameters. For example, using a large step size of 2 mm during fiber propagation 

creates more uncertainty than a step size of 0.5 mm, since larger step sizes decrease the 

algorithm’s sensitivity to sudden changes in the trajectory of fiber bundles. While the 

accompanying confidence estimates represent an advantage of probabilistic tractography, this 
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method is less useful for making inferences of point-to-point connectivity in the brain: 

probabilistic methods typically produce volumetric “heat maps”, indicating the likelihood that 

fibers connecting two ROIs pass through each voxel. In contrast, the reliability analyses in the 

current study required estimates of connection density between ROIs; thus, deterministic 

tractography was employed. 

As discussed in the introduction, the tractography algorithm used in DSI Studio requires the 

user to set several parameters that influence its operation. Analogous parameter decisions exist in 

other tractography software; when these parameter choices are not made apparent to the user, 

they may have been internally set in a software package. The most important of these are fiber or 

seed count, fiber length, tracking threshold, angle threshold, smoothing, and step size; the effects 

of variations in these parameters are investigated in subsequent analyses. Explanations of each of 

these tractography parameters can be found in Appendix A. 

Yeh et al. (2010) outline the steps of the tractography algorithm used here. Briefly, seed 

points for fiber propagation were chosen randomly within the user-supplied seed mask. These 

seed points were chosen at sub-voxel resolution in continuous mm-based coordinates. The initial 

orientation of fiber propagation was randomly chosen from the peaks in the seed voxel. QA at 

the initial seed point was determined using trilinear interpolation from the 8 surrounding voxels 

in the plane of initial orientation. The algorithm then propagated the fiber in discrete steps 

(according to a user-set step size), choosing the orientation with the smallest angle of deviation 

from the current trajectory. This decision was mediated by the use of a momentum parameter, 

which represents the relative weights given to the incoming fiber trajectory and the trajectory at 

the next step: thus, a momentum value of 0.8 would yield a new fiber trajectory which was the 

sum of unit vectors representing the current orientation and the next chosen orientation, weighted 
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respectively by 0.8 and 0.2. The effect of this momentum parameter is to smooth fiber 

trajectories. Fiber propagation terminated if the virtual fiber encountered 1) a situation in which 

any further steps were at an angle of deviation greater than the user-set angle threshold; or 2) the 

QA values of any further steps were below the user-set tracking threshold. 

1.2.7 Intercortical Connectivity Reliability Analysis 

We sought to replicate Cammoun et al.’s (2012) finding of high between-session reliability in 

intercortical connection matrices. This analysis relies on FreeSurfer’s anatomically-defined ROIs 

and examines connection density between every unique pair of ROIs (including interhemispheric 

connections). Although Cammoun et al. performed this analysis at multiple spatial scales, we 

employed a single grain size of 75 regions per hemisphere (150 total); this resolution is most 

similar to the 66/83-region resolution reported by Cammoun and colleagues (where 66 and 83 

indicate the number of regions per hemisphere, before and after including subcortical ROIs). 

Between-session reliability was assessed for each participant using multiple methods. First, 

we calculated the Pearson correlation coefficient between the connection matrices for the two 

sessions (Figure 2). Second, we assessed overlap in binarized connection matrices: for each 

session, we calculated the ratio of non-zero connections shared with the other session to the total 

of shared and unshared connections (Figure 3). The ratios for the two sessions were then 

averaged to produce the mean likelihood that a connection detected in one session would also be 

detected in a repeat session. 
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Figure 2. Intercortical connectivity analysis: Pearson’s correlation metric. 
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Figure 3. Intercortical connectivity analysis: overlap metric. Intercortical connectivity 

matrices are binarized (connection present/absent), and the proportion of repeatedly detected 

connections relative to total connections detected in a single session is calculated.  
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Tractography seed masks were created by aligning all FreeSurfer cortical ROIs to DSI data, 

then joining these ROIs into a single cortical mask. Tracked fibers were required to have at least 

one of two endpoints within this cortical mask. We used a fixed fiber count of 500,000 for all 

datasets, in order to facilitate comparison of connection densities across datasets. We used a 

maximum turning angle of 65 degrees, a smoothing value of 0.8, and a step size of 1 mm. These 

values were selected on the basis of prior studies from our group (Jarbo et al., 2011; Verstynen et 

al., 2011).  

Additionally, a minimum length of 30 mm and maximum length of 200 mm were set. The 

lower length limit was chosen due to the objectives and granularity of the planned analysis: we 

aimed to detect only inter-regional connections traveling in white matter between FreeSurfer 

anatomical ROIs, and were not interested in self-connections or lateral connections within 

cortex. FreeSurfer ROIs range in surface area from approximately 1 cm2 to more than 20 cm2, 

and so short-range connections between adjacent cortical areas were expected to exceed the 

minimum distance. The upper length limit was chosen to set a generous margin for the detection 

of long-distance projection fibers. 

The QA0 map, representing the magnitude of the largest QA value in each voxel, was used as 

the basis for anisotropy thresholding. The tracking threshold was initially set for one participant 

on the basis of values used for the same dataset in published analyses by our group (Jarbo et al., 

2011; Verstynen et al., 2011). We then created a histogram of QA0 values from that dataset and 

found the z-score corresponding to the chosen threshold. The tracking threshold for the 

participant’s second dataset and for all other datasets were determined by finding the QA value 

corresponding to the same z-score.  
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1.2.8 Targeted Tract Reliability Analysis 

 

The analysis described in the preceding section (“Intercortical Connectivity Reliability 

Analysis”) provides an efficient method for assessing global brain connectivity with nearly 

whole-brain seeding. Moreover, it serves as a replication test of Cammoun et al.’s (2012) recent 

report on the reliability of DSI-based tractography. However, we sought to go beyond these 

findings, with three main objectives. First, we hoped to determine whether targeted tracking of 

specific white matter structures could improve between-session reliability, relative to the global 

tractography employed in the intercortical connectivity analysis. Second, we hypothesized that 

targeted tracking would increase the detection power of tractography, generating more 

streamlines than global tracking for a given fiber tract. Finally, we wished to investigate the 

repeatability of fiber-tracking results at the resolution of a single voxel, both in terms of tract 

termination fields and tract bodies.  

Three prominent white matter structures were chosen for targeted tracking and analysis: the 

corticospinal tract, the arcuate fasciculus (anterior portion of the superior occipito-frontal 

fasciculus), and the interhemispheric projections passing through the corpus callosum. The 

corticospinal tract projects between spinal ganglia and the neocortex, particularly primary motor 

and pre-motor areas (Dum & Strick, 2002; Nieuwenhuys et al., p. 849). The arcuate fasciculus 

(AF) is a major long-distance projection pathway linking inferior temporal areas with prefrontal 

areas (Nieuwenhuys et al., p. 627-8). This tract, also referred to as the anterior branch of the 

superior longitudinal fasciculus, is implicated in speech and other forms of language processing, 

although active debate continues about its precise functional role (Bernal & Ardila, 2009; Catani 

& Mesulam, 2008). Finally, long-range projection fibers passing through the corpus callosum 
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form the principal path of communication between homotopic and heterotopic brain areas of the 

two hemispheres (Jarbo et al., 2011). Given the diverse topology of callosal projections, the 

importance of this fiber pathway is not limited to one or a few functional domains. The severing 

of callosal projections in split-brain patients has been associated with an array of curious 

behavioral and cognitive phenomena (Bloom & Hynd, 2005; Gazzaniga, 2000). 

We targeted these structures for both theoretical and practical motivations: all three are of 

general interest to cognitive neuroscience researchers, have been investigated using such “gold-

standard” techniques as microdissection and tracer labeling in primates (Dum & Strick, 2002; 

Killackey et al., 1983; Martino et al., 2010), could be located easily across individuals and 

datasets, and have been previously investigated by our research group (Fernandez-Miranda et al., 

in review; Jarbo et al., 2012; Verstynen et al., 2011). Additionally, the targeted tracts display 

morphological diversity, with both fanning and compact segments, and with principal fiber 

directions along each of the three cardinal axes. We felt that such morphological diversity was 

important for the generalizability of the findings presented here, to discount the possibility that 

our DSI protocol and hardware array were more sensitive to some tracts than to others. 

Regions of interest were created for the three targeted tracts in each participant’s first DSI 

session; these ROIs were then spatially aligned to the second DSI session. Ipsilateral fibers of the 

left corticospinal tract were tracked using the method of Verstynen et al. (2011). Tracking was 

seeded in a cortical mask; virtual fibers were required to have one endpoint in this mask. Fibers 

were also required to pass through an ROI in the left cerebral peduncle and finally through an 

ROI located in the spinal cord, below the divergence of cerebellar fibers. Left AF fibers were 

seeded in a mask of temporal cortical areas, including inferior, middle, and superior temporal 

gyri; inferior, superior, and transverse temporal sulci; the temporal pole; lateral occipito-
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temporal gyrus/sulcus;  fusiform gyrus; and parahippocampal gyrus. Fibers were required to pass 

through a large rectangular prism ROI at the temporo-parietal junction, centered around the 

prominent, curving white matter pathway at this point; this ROI was manually placed for each 

dataset. Finally, fibers were required to terminate in a mask of pre-frontal cortical areas, 

comprising the frontomarginal gyrus/sulcus, inferior frontal gyrus (opercular and triangular 

parts), inferior frontal sulcus, middle frontal gyrus, superior frontal sulcus, lateral orbital sulcus, 

and precentral sulcus. Callosal fibers were seeded in gray matter of the left hemisphere, required 

to pass through a hand-drawn mask of the corpus callosum, and required to end in the 

contralateral gray matter. Seed and target masks for callosal tracking included not only cortical 

gray matter, but also the thalamus, amygdala, and basal ganglia. 

An angle threshold of 70 degrees was used for targeted tracking, as Verstynen et al. (2011) 

previously used these values to investigate somatotopy in the corticospinal tract, and because the 

arcuate fasciculus and callosal projections were expected to exhibit similar amounts of curvature. 

Anisotropy threshold, smoothing, fiber length criteria, and step size were set as in the 

intercortical connectivity analysis. We generated 100, 000 fibers for each tract of interest. To 

compare the reliability of targeted vs. global tracking, we also performed whole-brain 

tractography for all datasets without any ROI constraints. For whole-brain tracking, 500,000 

fibers were generated per dataset; all other parameters were set as in the intercortical 

connectivity analysis. 
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1.2.9 Targeted vs. Global Tracking: Region-to-Region Analysis 

We first analyzed targeted tracking results using the ROI-based method of the intercortical 

connectivity analysis. For each pair of tracts (session 1 and session 2), we computed overlap, 

correlation, and detection power metrics. Overlap was defined as between-session overlap of 

binarized connection matrices (i.e., the average likelihood of repeating a non-zero connection 

within subject, between sessions). The correlation metric was a pairwise Pearson’s correlation of 

region-to-region fiber density values between each participant’s two DSI sessions. As above, 

correlations of fiber density were computed using only the density values for connections which 

were non-zero in both of a participant’s DSI sessions. Detection power was assessed by the 

number of unique connections detected in common across two sessions. These three metrics thus 

communicated complementary information: the likelihood of finding a connection to be reliably 

non-zero, the reliability of a connection’s magnitude if repeatedly detected, and the absolute 

number of connections repeatedly detected. 

Next we compared region-to-region connectivity results for targeted vs. global tracking 

approaches. We extracted fibers of interest from the whole-brain tracking files using the same 

ROI constraints employed in targeted tracking. For each participant, all tracts (3 structures x 2 

conditions: global vs. targeted) were spatially aligned with the first session’s DSI data using a 

previously-computed affine transformation.  We then computed overlap, correlation, and 

detection power metrics for global tracking results. The effect of tracking condition on overlap 

and detection power was assessed using analyses of variance (ANOVAs) with fixed effects of 

tracking condition (global vs. targeted) and fiber tract (AF, callosal fibers, and corticospinal 

tract), as well as a random effect of participant. We predicted that targeted tracking would be 
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associated with greater overlap in binarized connection matrices than global tracking results; we 

also predicted that targeted tracking would be associated with greater detection power. To 

directly compare the between-session correlations of connection density values based on targeted 

vs. global tractography, we used Fisher’s test for the difference of two correlation coefficients. 

This test was repeated for each participant, and the pattern of group results was qualitatively 

assessed. We predicted that between-session correlations would be higher under targeted 

tracking conditions than global conditions. 

 

1.2.10 Targeted vs. Global Tracking: Voxelwise Analysis 

 

Next, we investigated tractography reliability at the scale of a single voxel. The input data for 

these analyses were full-tract and endpoint-only density maps, in which the value of each voxel 

indicated the number of virtual fibers passing through or terminating within it. Full-tract density 

maps were used to compare the reproducibility of a tract’s body between sessions, while 

endpoint density maps were used to assess the reproducibility of fiber termination fields.  

As before, we rated each tract for each participant on overlap, correlation, and detection 

power; however, these metrics were slightly different for the voxel-wise analysis than for the 

region-to-region analyses described above. First, correlations were based on fiber counts in 

voxels of uniform size, count and density metrics were functionally equivalent. Second, it is 

important to note that by basing correlations on density maps, we did not strictly assess point-to-

point connectivity. Density maps simply indicate how many of the fibers that connect seed and 

target ROIs occupy a given voxel; they do not indicate the specific seed/target voxels connected. 

This shorthand measure of connectivity was more computationally feasible than computing fiber 
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counts between every voxel and every other voxel in the brain; moreover, it allowed us to 

investigate the effects of spatial smoothing to address partial volume effects (see below).  

Between-session overlap was computed by calculating for each session the ratio of non-zero 

voxels in the between-session set intersection to the total count of non-zero voxels in that 

session, then averaging the two ratios. Thus, this overlap measure indicated the average 

likelihood that a voxel which was non-zero in one session’s endpoint density map was non-zero 

in the second session. Correlation tests were performed for over the intersection of non-zero 

voxels in the two sessions’ density maps. Finally, we assessed detection power in terms of the 

number of non-zero voxels shared between sessions in density maps. As above, we compared 

these metrics for targeted vs. global tracking results. 

We anticipated that partial volume effects would have a sizable and adverse impact on the 

results of voxel-wise tests, as misalignments of just a millimeter or two could throw off endpoint 

density measures considerably. We addressed this problem by additionally investigating the 

effects of Gaussian spatial smoothing on correlation, overlap, and detection power metrics. We 

applied smoothing kernels of 2, 4, 6, 8, 12, and 20 mm full-width half-maximum (FWHM) to 

full-tract and endpoint-only density maps. We note that smoothing values of 4-6 mm are the 

most relevant for the reliability analyses reported below, as this range would address spatial 

misalignment of approximately 1 voxel in any given direction. Residual spatial error after affine-

based alignment was not expected to exceed 1-2 voxels. 

We compared targeted vs. global tracking results using the same statistical methods 

described in the region-to-region analysis. The effect of tracking condition on overlap and 

detection power metrics was assessed using ANOVAs with fixed effects of tracking condition 

and fiber tract, as well as a random effect of participant. As in region-to-region analysis, we 
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predicted that targeted tracking would be associated with greater between-session overlap and 

greater detection power. Conditional differences in the reliability of fiber density estimates were 

again assessed by testing the difference between correlation coefficients under targeted vs. global 

tracking conditions. We again predicted that between-session reliability of fiber density estimates 

would be more reliable under targeted tracking conditions. 

 

1.2.11 Identifying Sources of Between-Session Error in Tractography Results 

 

We next performed a series of follow-up analyses to identify potential sources of error that 

could adversely affect between-session reliability. Specifically, we investigated 1) differences 

resulting from random seed generation during tracking; 2) variability related to differences in 

tractography parameter settings between sessions;  3) error related to spatial misalignment of 

observations; and 4) acquisition-related error, encompassing factors such as participant head 

motion and image distortions. 

The first of these factors, which we call reseeding error, does not involve between-session 

variability per se; rather, it refers to the possibility that differences in random seed points 

between runs of the tractography algorithm could lead to the generation of different fiber sets, 

ultimately causing differences in interregional connection estimates. This problem may appear 

even greater if we consider that the tracking software employed (DSI Studio; http://dsi-

studio.labsolver.org) generates seed points at sub-voxel resolution, implying a practically infinite 

number of possible starting points for fiber propagation. However, many of the fiber streamlines 

generated through extensive sub-voxel seeding are redundant with one another, following 

parallel trajectories with minimal spatial separation. Thus, at the resolution of our analyses, these 
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fibers would be practically identical, and small differences between them would be irrelevant to 

between-session analysis. In theory, a sufficiently large fiber or seed count should saturate the 

space of non-redundant fiber trajectories. Given the large fiber counts which we employed, we 

predicted that reseeding error would not be shown to adversely affect between-session reliability. 

To test this hypothesis, we performed reseeding of tractography at multiple fiber counts; detailed 

procedures are described below. 

The second error source which we addressed was the sensitivity of tractography results to 

variations in tracking parameters. As mentioned above, key parameters in deterministic 

tractography include anisotropy threshold (hereafter referred to as tracking threshold), maximum 

turning angle, minimum and maximum fiber lengths, step size for fiber propagation, smoothing, 

and the number of seeds or fibers generated by the tractography algorithm in a single run. These 

parameters are defined in greater detail in Appendix A. Theoretically, sub-optimal parameter 

choices could degrade the between-session reliability of tractography results. For example, error 

in equilibrating tracking threshold could create variability in tractography results, or the use of an 

excessively small step size could make tractography more sensitive to noise sources that 

preferentially affect one of the two datasets compared. To our knowledge, no study to date has 

investigated the effect of systematic variations in tractography parameters on the results.  We 

analyzed the density and morphology of 3 representative white matter structures (corticospinal 

tract, arcuate fasciculus, and callosal projection fibers) across a large combination of parameter 

values, attempting to identify the range of each variable which produced mutually consistent and 

anatomically correct results. The detailed procedure of this analysis is given below. 

The third error source we investigated was spatial misalignment of datasets. We reasoned 

that spatial error could occur in multiple situations. One form of spatial error is variability 
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between sessions in the cortical parcellation and subcortical segmentation performed by 

FreeSurfer. FreeSurfer processing was performed independently for the two datasets collected 

for each participant, using the T1-weighted anatomical image collected in each scanning session. 

Although brain morphology was unlikely to have changed significantly for any participant 

between scans, differences in magnetic field homogeneity, hardware state, or other factors could 

have caused differential patterns of image distortion between scans, potentially changing the 

curvature and contrast information employed by the FreeSurfer recon-all pipeline. Moreover, 

Cammoun et al. (2012) report that FreeSurfer processing is not deterministic, yielding small 

differences when run multiple times on the same dataset. 

Another form of spatial error is imperfect alignment of datasets for voxel-by-voxel 

comparisons. Our initial analysis of between-session reliability is not affected by this form of 

spatial error, as correlations were performed between the pairs of independently-derived 

FreeSurfer anatomical ROIs, as described above. However, spatial transformation error is highly 

relevant to the voxel-by-voxel comparison of endpoint fields for the specific tract analysis 

detailed above. Like the T1-weighted anatomical images, the b=0 EPI images used for alignment 

of each participant’s two DSI datasets may suffer from different non-linear distortion patterns, 

which render perfect alignment with affine transformation methods impossible. The best overall 

transformation for a given pair of datasets can produce a misalignment of several millimeters for 

some specific structures, reducing voxel-by-voxel correlations of fiber density. It is difficult to 

directly quantify the effect of spatial error on tractography results; however, we attempt to assess 

the magnitude of spatial error in several indirect analyses, described below. 

Finally, acquisition-related error could represent a major factor adversely affecting the 

reproducibility of tractography results. This category combines measurement error and 
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physiological noise, including non-linear EPI distortions, eddy currents, participant head motion, 

cardiovascular effects, and respiration. In the temporal sequence from acquisition to 

tractography, these causes are primary, thus potentially affecting all subsequent processing and 

analysis. As discussed above (“Deterministic Tractography Methods”), the high b-values 

employed in DSI degrade global anatomical structure in EPI volumes, making estimation and 

correction of motion parameters impossible; for the same reason, EPI distortions and eddy 

currents cannot be addressed. Finally, the specific effects of physiological processes upon the 

diffusion signal upon the current dataset are unclear. However, respiration and cardiovascular 

processes are known noise sources in MRI generally, as they create magnetic field 

inhomogeneities and can contribute to motion artifacts. Physiological noise in DTI data has been 

previously associated with biologically invalid diffusion estimates, in the form of negative 

eigenvalues for tensor axes (Jones, 2009). Although the current study was unable to dissociate 

these acquisition-related errors from one another, we sought to characterize their aggregate effect 

upon data quality, relative to other error sources mentioned above. Detailed procedures for 

investigating each error source are described below. 

 

1.2.11.1 Assessment of Reseeding Error 

 

We assessed reseeding error by performing repeated tracking (two iterations) at each of 6 

fiber counts, for all participants. This procedure was performed for intercortical connections, as 

in our initial reliability analysis. We predicted that connectivity results for the pairs of tracts 

would converge quickly and become identical at high fiber counts. Tracking was performed at 
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fiber counts of 100, 500, 1000, 5000, 10000, and 100000. Similarity was assessed by correlating 

the FreeSurfer ROI connection matrices for the two sessions, as in our initial analysis.  

 

1.2.11.2 Parameter Sensitivity Analysis 

 

For each parameter investigated, we aimed to identify the range of values which produced 

morphologically consistent and neuroanatomically valid results. We did this by orthogonally 

varying several tracking parameters, to produce multiple copies of a target tract. We then tested 

each tracking result against a set of neuroanatomical priors and eliminated failing results from 

consideration. Next we divided the surviving results into quartiles, based on their net accuracy 

score. We computed a similarity matrix for the surviving results and found the mean mutual 

similarity of results within each quartile. 

Tracking threshold, angle threshold, and smoothing were parametrically and orthogonally 

manipulated. Step size was held constant at 1 mm, since the inclusion of this variable in 

parameter tests dramatically increased computing time and made testing unfeasible. Parameter 

tests were conducted in a single participant’s dataset for the left corticospinal tract only, due to 

the computational intensity of the tractography demands associated with this analysis.. Five 

values each were sampled for angle threshold and smoothing; a range of ten tracking thresholds 

was sampled. Thus, tracking for each of the three tracts was performed 250 times. 

The parameter sensitivity test was performed in two phases. In the first phase, 25 million 

random seed points were generated in each tracking job. The number of seeds (as opposed to a 

count of virtual fibers) was chosen as the stopping criterion for a tracking job, because extreme 

parameter values—particularly very high tracking thresholds and very low angle thresholds—
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could reduce or entirely prevent the detection of virtual fibers. Tracks produced during this first 

iteration were then evaluated against a set of anatomical heuristics. These tests were based on 

prior neuroanatomical findings from invasive techniques, such as microdissection and tracer 

labeling. For each of the three test tracts, we compiled sets of “hit” and “false alarm” regions. 

The former set comprised brain areas known to be contacted by the tract in question, while the 

latter set comprised areas to which the tract did not project. Detailed descriptions of these 

heuristics for each test tract are given below.  

We subtracted the false alarm rate for each virtual fiber tract from its hit rate to yield a 

composite accuracy score. Only tracts with a net accuracy of at least 0.5 were submitted to the 

second phase of testing. In this phase, a uniform total of 100,000 virtual fibers was generated for 

each fiber tract. This uniform count was chosen to allow comparisons of fiber density ratios 

across the results produced by different combinations of tracking parameters. 

Ten FreeSurfer ROIs were designated as target regions for the corticospinal tract, on the 

basis of known white matter projections to these areas. The target ROIs encompass primary 

somatosensory and motor cortices, as well as dorsal and ventral premotor areas, which form the 

bulk of the corticospinal tract. We also included the posterior portions of the superior and middle 

frontal gyri, as well as the posterior part of the superior frontal sulcus, on the basis of these areas’ 

putative homologies to macaque areas F2 and F7 (Geyer et al., 2000). Similarly, a set of false 

alarm ROIs was compiled from brain areas known not to send projections into the corticospinal 

tract. The complete list of target and false alarm ROIs is given in Table 1. 
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Table 1. Target and foil regions for parameter sensitivity test. 

 

Hit regions (ipsilateral only) False alarm regions (bilateral) 
Central sulcus Amygdala 
Paracentral gyrus and sulcus Calcarine sulcus 
Precentral gyrus Corpus callosum 
Postcentral gyrus Hippocampus 
Postcentral sulcus Inferior temporal gyrus 
Anterior superior frontal gyrus Lateral occipito-temporal/fusiform gyri 
Superior frontal sulcus Medial occipito-temporal/lingual gyri 

 Medial occipito-temporal/parahippocampal gyri 
 Superior temporal gyrus/planum temporale 
 Temporal pole 
 Precuneus 
 Intraparietal sulcus 
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1.2.11.3 Assessment of Spatial Error 

 

Spatial differences in FreeSurfer anatomical ROIs were assessed in two ways. First, we 

addressed the possibility that randomness in FreeSurfer recon-all processing could cause 

differences in cortical parcellation or subcortical segmentation between runs (Cammoun et al., 

2012). For each of 3 participants, we performed two iterations of the recon-all pipeline on the 

same T1-weighted anatomical image; ideally, we expected the results to be completely identical. 

We aligned the resulting ROI masks to the DSI data from the same session by applying the 

previously computed affine transformation, then compared overlap in the masks produced by the 

two FreeSurfer runs. Overlap was defined as above, by computing the average likelihood  

(between the two sessions) that a voxel found in the ROI mask would be found in the set 

intersection with the corresponding ROI mask from the other session. These results were 

interpreted as a measure of how reliably FreeSurfer would identify a given anatomical structure, 

given the same input. 

Next, we addressed the possibility that differences in non-linear distortion between the two 

T1 images could create variability in FreeSurfer’s definition of cortical and subcortical ROIs. 

Anatomical ROIs derived from two different sessions were aligned to the same session’s DSI 

data, using the previously-computed affine transformation and nearest neighbor interpolation. 

Again we compared the overlap between the two sessions. These results were taken as a measure 

of FreeSurfer’s consistency in assigning the same set of voxels to a given anatomical ROI, given 

different T1-weighted images that could be differentially affected by non-linear image 

distortions. However, this interpretation was complicated by the need to first align the two sets of 

anatomical ROIs to a common space, as well as the interpolation which accompanied each of 
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these alignments. Thus, this analysis was confounded with spatial transformation error, such as 

results from partial volume effects. 

Spatial transformation error of this sort could particularly affect the voxel-wise correlation of 

fiber density in the specific tract analysis reported above. We expected that moderate amounts of 

spatial smoothing in fiber density maps would be largely effective in compensating for this error; 

however, smoothing could not be expected to be effective in specific areas or individuals with 

large alignment error. To gauge the presence and relative severity of spatial transformation error 

across participants, we assessed the quality of spatial alignment between each participant’s pair 

of B0 images. This was done by spatially aligning the session 2 image to its session 1 

counterpart, using the affine transformation computed above. We then computed voxel-wise 

correlation coefficients between the two images. We predicted that maximal correlation between 

the two B0 images would be obtained with a moderate amount of spatial smoothing (e.g., 1-2 

voxels). 

 

1.2.11.4 Assessment of Acquisition-Related Error 

 

We assessed acquisition-related measurement error in multiple ways. First, we compared the 

distribution of QA values in each pair of QA0 maps (which were the basis for anisotropy 

thresholding in tractography). We reasoned that if QA estimates were reliable across sessions, 

the two distributions should heavily overlap. Furthermore, the degree of differences between 

histograms of the two distributions should provide a coarse metric of the error between the two 

datasets. We first converted each distribution into z-scores, such that their means were aligned at 

zero, and subtracting one session’s histogram from the other’s. By taking the sum of absolute 
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values of the remaining counts across histogram bins, we obtained a rough estimate for each 

participant of the similarity of the two QA0 maps. Although this method is simplistic, it avoids 

the confound of spatial transformation error introduced by voxel-wise comparisons. 

Next, we examined between-session differences in anisotropy estimates on a voxel-by-voxel 

level for each participant. We reasoned that the difference between QA maps should be inversely 

related to the reliability of QA estimates. As in the subtraction of QA0 distributions described 

above, values in the maps were converted into z-scores; the session 2 map was then aligned with 

the session 1 map. For each participant, we computed the Pearson correlation coefficient across 

all voxels. We then compared between-session correlation of B0 images to that of QA0 images. 

We reasoned that any decrement in correlation for QA0 images, relative to B0 images, would 

indicate variability in anisotropy values (and thus, diffusion contrast) which could not be 

attributed to residual spatial alignment error. 

Additionally, we assessed the spatial distribution of QA0 variability by creating maps of 

“masked-out” voxels: that is, portions of the QA0 map which survived the anisotropy threshold 

used in one session, but not the second. We reasoned that this voxel-wise analysis could identify 

datasets marked by less reliable QA estimates, or whose tracking thresholds had not been well 

equilibrated, eliminating true signal in at least one of the two sessions. Furthermore, this analysis 

indicated brain volumes that were particularly susceptible to variability in anisotropy 

measurements across individuals. We predicted that unreliable voxels would be particularly 

prevalent near tissue boundaries in the brain, due to true differences in anisotropy between tissue 

types, as well as the exaggerated visibility of head motion artifacts in these areas. While the 

spatial specificity of this analysis was desirable, we note that it is partially compromised by the 

possibility of spatial transformation error, as discussed above: apparent variability in QA 
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estimates between sessions could be due at least partially to poor spatial alignment of the maps to 

be compared. 

 

 

 

1.3 RESULTS 

 

1.3.1 Intercortical Connectivity Reliability Analysis 

 

1.3.1.1 Between-Session Correlation of Connection Density 

 

We first assessed the between-session correlation of connection densities among all unique 

pairs in the set of 150 FreeSurfer cortical ROIs. Initially, we calculated Pearson’s correlation 

coefficients for each participant over the set of connections which were non-zero in one or both 

sessions (Table 2). These results were markedly lower than the correlation coefficients found by 

Cammoun et al. (2012): at their analogous resolution of 83 ROIs per hemisphere, the authors 

report single-subject correlation coefficients with a mean of approximately 0.98, indicating 

almost perfect correlation between the connection densities in intercortical connection matrices 

obtained for the two sessions. In contrast, we found correlation coefficients which ranged from 

0.14 to only 0.53, with a mean of approximately 0.38 across participants. 
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Table 2. Within-subject, between-session reliability of intercortical connectivity matrices. 

Participant R (between-session 
union) 

R (between-session 
intersection) 

Overlap of binarized 
connection matrices 

1 0.41 0.95 0.84 
2 0.40 0.92 0.77 
3 0.14 0.93 0.65 
4 0.37 0.93 0.77 
5 0.39 0.94 0.70 
6 0.45 0.95 0.77 
7 0.40 0.94 0.77 
Mean 0.38 (0.11) 0.94 (0.02) 0.75 (0.06) 

We asked whether the difference in our results and those of Cammoun et al. (2012) could 

relate to the thresholding procedure mentioned by those authors. This procedure excluded cells in 

which ROI pairs were relatively sparsely connected (by fewer than two fiber bundles). 

Additionally, Cammoun et al. excluded a number of interhemispheric projections from frontal 

lobe regions for unstated reasons. We speculated that these steps had eliminated a great deal of 

noise in their correlations, possibly by excluding cells which had failed to replicate between 

sessions. Indeed, scatterplots of session 1 vs. session 2 connection densities in the current 

analysis revealed a large number of connections that were present in one session but failed to be 

replicated in the second dataset from the same participant. We refer to such connections hereafter 

as “one-off” connections, and we note that these cases probably represent a mixture of false 

positive and false negative results. The frequency of these one-off cases can be derived from the 

overlap metrics in Table 2, which indicate the average likelihood for each participant that a non-

zero connection in one session would be non-zero in the other session. The average probability 
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of repetition for a single participant was 0.75; thus, the average frequency of one-off cases was 

about 0.25 of all non-zero connections reported for a single session. A paired t-test indicated no 

significant effect of session upon the number of one-off connections detected [t(6)=-1.88, 

p<0.11], discounting the possibility of systematic effects of scanning sequence upon data quality. 

A one-way ANOVA also revealed no effect of subject upon the number of one-offs, suggesting 

that the rate of failure of replication was relatively homogeneous across individuals [F(6,7)=0.14, 

p<1]. 
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Figure 4. Between-session comparison of log-transformed intercortical connection 

densities. Top: Scatterplot of log-transformed intercortical connection density values for two 

DSI sessions from participant 1. Each point represents a unique connection between two 

anatomically-defined ROIs. The dotted blue line, oriented at 45° to the x- and y-axes, represents 
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In contrast, cells which were non-zero in both sessions appeared to correlate well. The 

scatterplots of Figure 4 show a highly consistent relationship between session 1 and session 2 

connection density values for each participant when one-off connections were excluded from 

consideration. We confirmed this relationship by re-computing correlations over the intersection 

of non-zero connections in paired datasets (i.e., the set of connections in common between each 

participant’s two sessions). As expected, focusing on connections which were repeatedly non-

zero significantly improved the correlation of connection densities, yielding Pearson’s 

coefficients ranging from 0.92 to 0.97 (Table 2). These results are comparable with the results of 

Cammoun and colleagues, indicating high reliability in the connection densities of overlapping 

cells of the two sessions’ connection matrices. 
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Figure 5. Detection frequency for intercortical connections. A total of 11175 possible 

pairwise connections exist in the ROI matrix. Of these, 987 were detected in all 14 DSI datasets. 
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Figure 6. Scatterplot of density values for connections detected in all datasets. Each color 

represents a different participant. Values are log-transformed. Session 1 density values were a 

strong linear predictor of session 2 values. 
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1.3.1.2 Reliability Across Individuals and Sessions 

Of course, the results described above merely imply consistency over time within a given 

individual; they do not indicate the degree of replicability across individuals. To address this 

question, we summed binarized connection matrices from all 14 datasets to yield the overall 

number of detections for each cell, both within and between subjects. Figure 5 shows a 

histogram of these detection counts. A total of 987 connections replicated across all 14 datasets; 

this number represented, on average, a proportion of 0.24 (std. dev. = 0.02) of the total non-zero 

connections detected in a given dataset. This figure should not be interpreted to suggest that only 

24% of the intercortical connections reported in a given dataset are true connections. Rather, the 

remaining 76% of connections are likely to reflect a combination of misses in some datasets, 

false alarms in others, and real individual differences in anatomical connectivity. A scatterplot 

restricted to these most often detected connections indicated that their between-session reliability 

remained extremely high (Figure 6). 
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Figure 7. Relationship between connection density and frequency of detection. 
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We further asked how the probability of replicating a given connection related to its strength, 

as measured by the density metric of Cammoun et al. (2012). We predicted that stronger 

connections would be associated with a greater number of detections across datasets than weaker 

connections. In order to test this prediction, we first calculated the mean fiber density across 

datasets for each cell in the intercortical connection matrix. (We note that means were based only 

on the set of non-zero values for each connection; thus, the mean for a connection detected in all 

14 datasets is based on more data than the mean for a connection detected in just one or two 

datasets.) The mean of these values for each level of detection (1 to 14 times) is shown in Figure 

7. A linear regression model indicated a significant but very modest relationship between the

number of detections and connection density [coefficient=0.005; t(8328)=2.5, p<0.011; adjusted 

R2=0.0007], according to which denser connections had only slightly more detections than 

sparser connections. Although this result reached statistical significance, its small size (coupled 

with visual inspection of Figure 7) suggests that higher connection density is not a major 

predictor of the likelihood of replication within- and between-subjects. The difficulty of using 

connection density as a heuristic to separate reliable from unreliable connections is made 

especially clear by Figure 8, which plots distributions for each of three different connection 

types: those that were detected in all 14 datasets, those that were successfully replicated within-

subjects (but not across all datasets), and one-off connections. We note that despite variability in 

the height of each distribution, the three connection types have similar means and widths in all 

14 datasets. 
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Figure 8. Distribution of connection densities by connection type. One-off connections are 

plotted in blue, connections replicated in all 14 datasets are plotted in red, and connections 

replicated within-subject (but not across all datasets) are plotted in white. Purple bars indicate 

overlap between red and blue distributions. 
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Figure 9. Histograms of connection density by frequency of detection. In all histograms, the 

x-axis represents the natural logarithm of fiber tracts’ connection density, calculated according to 

the method of Cammoun et al. (2012). The y-axis represents the count of connections detected 

within each participant at each density level. 
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We next sought to characterize in more detail those connections detected in all 14 datasets, 

which we refer to hereafter as most-often-detected (MOD) connections. Of all fiber pathways 

detected in a given dataset, these MOD connections may be the most likely to represent veridical 

white matter tracts, due to their high consistency across time and between individuals. In 

contrast, we predicted that if random noise in DSI datasets created false fiber pathways, they 

would be inconsistently detected between- and within-subjects, due to variability in spatial 

location and trajectory. A total of 987 connections were detected in all 14 datasets; Figure 10 

characterizes these connections in terms of their trajectory (intrahemispheric vs. 

interhemispheric) and their left-right symmetry. Intrahemispheric connections constitute the 

majority of these MOD connections; within the set of intrahemispheric connections, the majority 

of those found in one hemisphere are independently detected in the other hemisphere (298 

connections with opposite-hemisphere homologues vs. 135 left-only and 182 right-only 

connections). Of 72 interhemispheric connections, a minority of 6 connections were homotopic, 

extending from one area to the homologous area in the opposite hemisphere. Thirty-eight 

connections were heterotopic and symmetrical: they extended from one area to a non-

homologous area in the opposite hemisphere, and the left-right mirror image of that connection 

was also present. (Collapsing across hemisphere, these connections thus represent 19 unique 

fiber pathways.) A total of 30 interhemispheric connections were heterotopic and asymmetrical. 
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Figure 10. Type and symmetry of interhemispheric connections replicated in all  datasets. 

Plot A: counts of interhemispheric, left-hemisphere intrahemispheric, and right-hemisphere 

intrahemispheric connections. Plot B: counts of homotopic, symmetrical heterotopic, and 

asymmetrical heterotopic connections within the set of interhemispheric connections. There are 

38 symmetrical connections; thus, 19 connections in a single hemisphere are mirrored in the 

opposite hemisphere. Plot C: counts of left-hemisphere-only, right-hemisphere-only, and 

symmetric (i.e., present in both hemispheres) connections composing the set of intrahemispheric 

connections (middle and right bars in Plot A). In a single hemisphere, 298 connections have a 

homologue in the opposite hemisphere. 
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We next investigated the spatial distribution and network structure of MOD connections. We 

first identified the cortical areas with the highest degree (Rubinov & Sporns, 2009), a graph 

theory metric which here indicates the sum of non-zero MOD connections projecting to each 

cortical area. Degree values ranged from a minimum of 1 to a maximum of 67 connections. The 

mean degree was 13.8 (std. dev. of 12.0), with a median degree of 11. Results were highly 

similar across hemispheres: of the top 10 left-hemisphere areas of highest degree, 7 of their 

contralateral homologues were in the corresponding right-hemisphere list (Table 3). The cortical 

wall had the highest degree of connectivity in each hemisphere, possibly due to the inclusion of 

fibers terminating in the thalamus. Additional areas of high degree included bilateral middle and 

superior frontal gyri, superior parietal lobules, orbital gyri, and superior temporal sulci. Anterior 

cingulate cortex, the middle temporal gyrus, and the lateral superior temporal gyrus were also 

highly connected (Table 3, Figure 11). The node-to-node topology of the MOD connection 

network is illustrated in Figures 12–14, plotted separately for inter- and intra-hemispheric 

connections. These figures provide supplementary information to Table 3 and Figure 11, 

including the presence of homotopic intercortical connections among several of the high-degree 

regions listed in Table 3. 
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Figure 11. Cortical areas in the network of MOD (most-often-detected) connections. Blue-

to-red color coding indicates the number of MOD connections projecting to each area; warmer 

colors indicate more connections. Images are thresholded to mask out areas with 20 or fewer 

connections. 
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Table 3. Left- and right-hemisphere areas with highest degree of MOD connections. 

Left hemisphere Degree Right hemisphere Degree 
Medial wall 62 Medial wall 67 
Superior frontal gyrus 43 Superior temporal sulcus 46 
Orbital gyrus 40 Superior frontal gyrus 45 
Middle frontal gyrus 40 Orbital gyrus 44 
Superior temporal sulcus 33 Superior parietal lobule 36 
Inferior insula/circular sulcus 29 Middle frontal gyrus 40 
Inferior temporal gyrus 29 Angular gyrus 33 
Lateral superior temporal gyrus 26 Inferior insula/circular sulcus 32 
Anterior cingulate gyrus/sulcus 24 Middle temporal gyrus 29 
Superior parietal lobule 23 Inferior temporal sulcus 26 
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Finally, we characterized MOD connections in terms of average fiber length. Figure 15 

shows the distribution of lengths across the set of MOD connections. The mean MOD tract 

length was 69 mm, with a median of 63 mm (s.d.=27). We used a length criterion of 100 mm in 

order to identify long-distance projection tracts within the set of MOD connections. This 

criterion isolated a total of 116 connections, linking a total of 43 ROIs. Collapsing across 

hemisphere, the ten most prominent ROIs in this sub-network included the orbital gyrus (29 

long-distance connections), middle frontal gyrus (26), angular gyrus (12), superior frontal gyrus 

(11), lateral superior temporal gyrus (10), middle occipital gyrus (10), frontomarginal gyrus and 

sulcus (10), precuneus (9), superior parietal lobe (9), and superior temporal sulcus (8). Several of 

these ROIs also rank highly in terms of total degree, including both long and short connections 

(Table 3). Table 4, in turn, gives the ten highest-degree areas for each hemisphere within this 

subset of long-distance MOD connections. 
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Figure 15. Distribution of average fiber lengths in MOD connection set. 

 

 

Table 4. Brain areas of highest degree in long-distance subset of MOD connection network. 

 

Left hemisphere Degree Right hemisphere Degree 
Orbital gyrus 14 Orbital gyrus 15 
Middle frontal gyrus 12 Middle frontal gyrus 14 
Lateral superior temporal gyrus 8 Angular gyrus 9 
Precuneus 6 Middle temporal gyrus 8 
Middle occipital gyrus 6 Superior occipital gyrus 7 
Interior temporal gyrus 5 Frontomarginal gyrus/sulcus 7 
Superior frontal gyrus 5 Occipital pole 6 
Occipital pole 4 Superior parietal lobule 6 
Superior temporal sulcus 3 Superior frontal gyrus 6 
Superior parietal lobule 3 Superior temporal sulcus 5 
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1.3.2 Targeted Tractography Results 

 

Targeted tracking using minimal ROI constraints enabled us to detect the corticospinal tract, 

arcuate fasciculus, and callosal projection fibers in all datasets (Figures 16-18). Tracking results 

were broadly consistent across sessions and participants, but important differences in the 

tractography results were also present. For example, tracking of corticospinal fibers successfully 

detected known projections in premotor, primary motor, and somatosensory areas (Verstynen et 

al., 2011). However, in a subset of datasets, erroneous projections to occipital and anterior 

prefrontal areas were also detected. These fibers may represent false continuations, linking 

corticospinal diffusion pathways in the brainstem with occipitopontine and frontopontine 

pathways. In almost all datasets, tractography correctly detected both the primary corticospinal 

and alternative motor fibers, which extend dorsally or posteriorly in the brainstem toward the 

cerebellum. However, for one dataset (Figure 16, subject 6, session 1), the differentiation 

between these structures is unclear. 
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Figure 16. Targeted tracking of left hemisphere corticospinal tract. White numbers indicate 

participant number. Session 1 tracts appear on the left side of each panel, session 2 on the right. 
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Figure 17. Targeted tracking of the left arcuate fasciculus. Layout and numbers are as in 

Figure 16. 
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Figure 18. Targeted tracking of interhemispheric callosal projection fibers. Layout and 

numbers are as in Figure 16. 
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Tractography results for the arcuate fasciculus also broadly reproduced neuroanatomical 

expectations, with some visible noise. In all datasets, targeted tractography captured the expected 

morphology of the tract, bending around the temporo-parietal junction (TPJ) and fanning widely 

to terminate in the temporal lobe and prefrontal cortex. However, some discrepancies and clear 

errors are visible across datasets.  For example, results from both sessions in participant 5 

(Figure 17) show a slender fiber projection from the temporal lobes anterior to prefrontal cortex, 

apparently passing through the insula; this result is likely to be a false conflation of arcuate fibers 

with fibers of the inferior occipitofrontal fasciculus, which passes through the limen insulae into 

the prefrontal cortex (Nieuwenhuys, p. 593). Additionally, in some participants, the density of 

prefrontal terminations appears to differ considerably between sessions (e.g., participants 4 and 

7). Between-session discrepancies for a given participant are not likely to result from differential 

coverage by ROI tractography masks, as between-session alignment was generally very good 

(Figure 31), and visual inspection indicated that session 1 and session 2 masks provided ample 

coverage in thresholded QA0 maps. 

Relative to the arcuate fasciculus and corticospinal tracts, long-distance callosal projection 

fibers projected to a much larger brain volume and involved a larger number of region-to-region 

connections (Figures 18, 21, and 24). Detailed analysis of these fibers through visual inspection 

is not feasible; however, some features of the results depicted in Figure 18 warrant comment. 

The most salient of these may be differences across participants in the amount of fiber 

projections to parietal cortex. The low detectability of parietal projection fibers has been 

previously acknowledged by our group (Jarbo et al., 2012). Jarbo et al. were able to successfully 

tract callosal projections to posterior temporal and parietal cortex through additional targeted 
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tracking, which allowed only fibers with at least one endpoint in these areas; Jarbo et al. found it 

necessary in some cases to lower the anisotropy threshold in order to visualize these pathways.  

 

1.3.3 Global Tractography Results 

 

We identified fibers of interest from whole-brain tracking files using the same ROIs 

employed for targeted tracking. Tables 5–7 list the number of fibers thus identified for each 

participant and tract of interest. Notably, fiber counts differ between sessions and across 

participants, a result which prima facie could reflect either randomness in tractography seeding 

or between-session differences in the underlying diffusion signal. The counts of fibers per tract 

are considerably lower than the 100,000 fibers/tract generated in targeted tracking: an average of 

5972 (std. dev. =  3491) corticospinal fibers, 1303 (542) arcuate fibers, and 9931 (3174) callosal 

fibers were detected. Due to the between-session discrepancies in fiber counts, we predicted 

greater reliability in targeted than global tracking results. 

 

 

Table 5. Left corticospinal tract: fiber counts from global tractography. Number of fibers 

per tract was extracted from whole-brain tracking file for comparison with targeted tractography. 

 

Participant Session 1 fiber count Session 2 fiber count 
1 1284 5588 
2 10751 9841 
3 11278 11269 
4 4487 4156 
5 4849 5289 
6 1112 6022 
7 2764 4914 
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Table 6. Left arcuate fasciculus: fiber counts from global tractography. Number of fibers 

per tract was extracted from whole-brain tracking file for comparison with targeted tractography. 

Participant Session 1 fiber count Session 2 fiber count 
1 1850 1912 
2 737 778 
3 2163 1294 
4 1279 397 
5 1657 1932 
6 1180 1391 
7 888 783 

Table 7. Callosal projection fibers: fiber counts from global tractography. Number of fibers 

per tract was extracted from whole-brain tracking file for comparison with targeted tractography. 

Participant Session 1 fiber count Session 2 fiber count 
1 14651 13972 
2 12571 11534 
3 4464 4210 
4 8823 7852 
5 9938 11600 
6 10095 8834 
7 7959 12527 
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1.3.4 Targeted vs. Global Tracking Comparison: Region-to-Region Connectivity 

 

First, we assessed the degree of overlap in region-to-region connection matrices for targeted 

vs. global tracking (Figure 19). This analysis did not consider the density values of specific 

connections; rather, it only considered whether a connection was present or absent. As described 

in the Methods section, we evaluated between-session overlap as the average likelihood that a 

non-zero connection in one session would be non-zero in the same participant’s second session. 

We investigated effects of tracking condition (global vs. targeted) and tract (corticospinal, 

arcuate, or callosal) upon this overlap metric using a two-way analysis of variance (ANOVA). 

 

 

 

 

Figure 19. Between-session overlap for global and targeted tracking. Overlap indicates the 

average likelihood that a non-zero cell of the connection matrix in one session will also be non-

zero in the second. Error bars indicate standard error of the mean. 
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Results indicated both a main effect of tracking condition [F(1,30)=0.9, p<0.01] and a main 

effect of tract [F(2,30)=97.8, p<0.0001]. The interaction of condition and tract was non-

significant [F(2,30)=0.8]. This pattern of results appeared to indicate generally higher between-

session repeatability of connections in targeted than. global tracking (Figure 19), an 

interpretation which was corroborated by a paired, two-tailed t-test [t(20)=6.0, p<0.0001]. The 

mean difference between targeted and global overlap scores in this test was 0.08, which 

constituted a substantial increase in the likelihood of replicating specific connections across 

sessions. In tract-specific comparisons, overlap of arcuate fasciculus connections averaged 0.74 

(0.06) for targeted tracking, compared to 0.66 (0.05) for global tracking, and this difference was 

statistically reliable [t(6)=3.7, p<0.01]. The corresponding comparison for the corticospinal tract 

was non-significant [t(6)=1.7, p<0.15], although mean overlap was similarly higher for targeted 

vs. global tracking results: 0.79 (0.06) vs. 0.74 (0.06), respectively. Overlap of callosal 

projections averaged 0.40 (0.16) for targeted tracking and 0.28 (0.15) for global tracking; this 

effect was significant [t(6)=8.9, p<0.0005]. Across tracking conditions, overlap was lower for 

callosal connections, relative to those of the AF [t(13)=8.5, p<0.0001] and the corticospinal tract 

[t(13)=10.8, p<0.0001]. Overlap of corticospinal connections was higher than those of the AF 

[t(13)=4.0, p< 0.005]. 

As in the intercortical connectivity analysis, we further assessed reliability by examining the 

between-session correlation of fiber density values for all detected connections. Per expectations, 

correlations were considerably reduced by “one-off” connections detected in the overlap 

analysis. In order to determine the reliability of density values for connections repeated across 

sessions, we performed a follow-up analysis, restricting our focus to connections detected in 



65 

common across each participant’s two sessions. We report only correlations from this focused 

analysis (Figure 20), since it communicates information complementary to the overlap analysis. 

We assessed effects of tracking condition on fiber density reliability by testing the 

significance of the difference between paired correlation coefficients. This was done by 

performing a Fisher’s r-to-z transformation (Kenny, 1987) on each coefficient, then testing it 

against the coefficient derived from the opposing tracking condition in the same fiber tract and 

participant. The test statistic, Z, is given for individual cases in Table 8; significance was based 

on a Bonferroni-corrected familywise error rate of 0.05. It is important to note that the p-values 

in Table 8 are based on a one-tailed test, corresponding to our hypothesis of greater reliability for 

targeted than global tracking. Results indicated no consistent advantage in fiber density 

correlations for targeted tracking: across the 3 tracts and 7 participants tested, only one 

observation was consistent with that hypothesis. In fact, visual inspection of the strip plot in 

Figure 20 suggests that the opposite trend was more prevalent; however, a test for greater 

correlations in the global condition was significant in only 1 of 7 participants for the AF; 2 of 7 

for callosal fibers; and 2 of 7 for the corticospinal tract. Thus, while the between-session overlap 

of binarized connection matrices did differ across tracking conditions, correlations of fiber 

density did not. 
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Figure 20. Between-session reliability of fiber density with global and targeted tracking. 

Values are based on intercortical connections that were non-zero in both sessions of a 

participant’s tractography results. Points represent the Pearson’s correlation coefficient (r) for a 

single participant, plotted separately for each tract of interest and tracking condition. All 

correlations were statistically significant. 
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Table 8. Difference between correlation coefficients from targeted vs. global tracking. The 

test statistic represents the hypothesis that between-session correlation of fiber density was 

higher under targeted than global tracking conditions. P-values reflect a one-sided test, following 

this hypothesis. The asterisk indicates a single significant result, after correction for multiple 

comparisons. 

Arcuate fasciculus Z (Targeted – global) p 
s1 -1.1 0.9 
s2 -2.5 1 
s3 -2.9 1 
s4 -0.5 0.7 
s5 2.4 0.01 
s6 2.8 0.003 
s7 0.1 0.5 

Callosal fibers 
s1 2.0 0.02 
s2 -0.4 0.7 
s3 2.2 0.01 
s4 -2.2 1 
s5 -3.8 1 
s6 -7.0 1 
s7 3.6 0.0001* 

Corticospinal tract 
s1 -1.6 1 
s2 -1.1 0.9 
s3 -0.3 0.6 
s4 -3.6 1 
s5 -1.2 0.9 
s6 -4.4 1 
s7 0.7 0.2 
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Finally, we assessed the power of global vs. targeted tractography in terms of the number of 

region-to-region connections detected (Figure 21). A connection was counted for a given 

participant if it was non-zero in both DSI sessions. A two-way ANOVA with random effect of 

participant indicated a main effect of tracking condition [F(1,30)=20.1, p<0.0001], a main effect 

of tract [F(2,30)=27.5, p<0.0001], and an interaction of tract with condition [F(2,30)=12.4, 

p<0.0001]. The effect of tracking condition reflected a greater number of connections detected 

across sessions in targeted than global tracking [t(20)=3.5, p<0.005]. The main effect of tract 

partially reflects between-tract differences in size and breadth of projection, which are incidental 

to the current analysis. However, the interaction of tracking condition with tract warrants 

comment, as it reflects a between-tract difference in the gain in detection power associated with 

targeted tracking. For the arcuate fasciculus and corticospinal tract, targeted tracking produced 

1.99 and 1.75 times as many fibers as global tracking, respectively. For the callosal tract, this 

ratio was 4.13, indicating a much larger gain in the number of intercortical connections detected 

with targeted tracking. 
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Figure 21. Comparison of detection power under global vs. targeted tracking conditions. 

Detection power was assessed by the number of connections which were non-zero in both of a 

participant’s DSI datasets.  

 

 

1.3.5 Targeted vs. Global Tracking Comparison: Voxelwise Analysis 

 

While the above results compare global and targeted tracking between anatomically-defined 

ROIs, we also wished to examine reliability and detection power on the level of a single voxel. 

We hypothesized that targeted tracking would be associated with greater between-session 

reliability, both in the spatial overlap of tracts and the voxelwise correlation of fiber counts. We 

further predicted that targeted tracking would be associated with greater detection power, 

resulting in fuller termination fields and tract bodies than in global tracking. We approached this 

question in two ways, by comparing both full-tract and endpoint-only density maps derived from 
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global and local tracking. In order to address the problem of residual spatial error after alignment 

of fiber tracts from different sessions, we also investigated the effect of spatial smoothing upon 

these results. Smoothing values between 2 and 20 mm FWHM were implemented; however, we 

report only analyses based on a smoothing kernel of 6 mm FWHM. This restriction was made, in 

part, because voxelwise correlation of participants’ unweighted DSI images (i.e., “b0” images), 

which hold richer information about anatomical structure than fiber density maps, indicated 

maximal similarity between each participant’s two sessions with smoothing of 6 mm FWHM 

(Figure 31). Furthermore, this value is the most anatomically plausible in the range of smoothing 

values investigated, since it represents approximately 1-2 voxels’ worth of residual spatial error. 

Spatial misalignment following affine registration was not expected to exceed this magnitude, so 

we reasoned that smoothing in excess of 6 mm would induce spurious similarity between density 

maps. Indeed, spatial overlap between density maps and the pairwise correlations of voxelwise 

fiber counts increased monotonically over from 2 to 20 mm FWHM.  

Table 9. Descriptive statistics for endpoint maps from global vs. targeted tracking. Results 

represent an average across tracts. Numbers in parentheses indicate standard deviations in the 

between-subject mean. 

Tracking condition Endpoint Overlap Density correlation Number of voxels 

Global 0.76 (0.12) 0.39 (0.28) 48548 (39218) 
Targeted 0.80 (0.12) 0.39 (0.27) 63578 (47503) 
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Table 10. Descriptive statistics for full-tract density maps from global vs. targeted tracking. 

Results represent an average across tracts. Numbers in parentheses indicate standard deviations 

in the between-subject mean. 

Tracking condition Full-tract Overlap Density correlation Number of voxels 
Global 0.81 (0.10) 0.62 (0.30) 58361 (39372) 
Targeted 0.83 (0.10) 0.60 (0.30) 70842 (44874) 

We first report the results of endpoint map analysis. As in region-to-region analysis, we 

conducted an ANOVA on overlap scores, with fixed effects of condition and tract, plus a random 

effect of participant. Consistent with hypotheses, we found a modest effect of tracking condition 

upon endpoint map overlap [F(1,30)=6.3, p<0.05]. Mean overlap in the global condition, 

collapsing across tract, was 0.76 (0.12), compared to 0.80 (0.12) in the targeted condition (Table 

9), representing a 4% increment. This difference was statistically reliable [t(20)=5.0, p<0.0001], 

confirming that targeted tracking was associated with higher between-session overlap of 

endpoint fields. The ANOVA also produced a robust main effect of tract [F(2,30)=66.5, 

p<0.0001]. Post-hoc tests indicated superior overlap in callosal endpoint maps, relative to the AF 

[t(13)=7.6, p<0.0001] and the corticospinal tract [t(13)=12.2, p<0.0001]. However, this result 

must be considered in terms of the much lower overlap in region-to-region connection matrices 

for callosal fibers (see Figure 19, left-hand plot): high between-session overlap in callosal 

projection fields may not actually indicate reliable fiber connectivity, but rather be a trivial 

consequence of its wide fanning throughout frontal, parietal, and posterior temporal cortices. 
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Overlap scores for corticospinal and arcuate fibers were statistically indistinguishable [t(13)=0.0, 

p<1]. 

Between-session correlation of voxelwise fiber counts (Table 9 and Figure 22, left-hand plot) 

was generally lower than the correlation of region-to-region connection densities and was highly 

variable. This difference was expected due to the much higher granularity of voxelwise analysis, 

which entails greater susceptibility to small spatial misalignments or to small deviations in fiber 

trajectory. As in the region-to-region analysis, we performed pairwise tests of the difference 

between correlation coefficients from targeted vs. global tracking. Results suggested no 

consistent difference in correlations between these conditions. For the AF, 4 of 7 participants 

exhibited improved correlations in the targeted tracking; however, only 2 of 7 participants 

showed this pattern for callosal fibers, and just 1 of 7 for the corticospinal tract. Across all 21 

comparisons, the test statistic Z had the hypothesized sign in 11 cases, and the opposite result in 

12 cases. Thus, as in ROI-based analysis of our three tracts of interest, the between-session 

correlation of fiber density values did not appear to differ by tracking condition. 

Detection power (Figure 24) did differ by tracking condition [F(1,30)=50.6, p< 0.001], 

indicating significantly more voxels detected in tract termination fields for targeted vs. global 

tracking [t(20)=6.5, p<0.0001]. Collapsing across tract, global tracking produced termination 

fields which averaged 48548 voxels (39218), compared to 63578 (47503) for targeted tracking. 

The main effect of tract was also significant [F(2,30)=780.7, p<0.0001]. This effect reflected the 

different morphology and density of the three tracts tested. In particular, callosal projection 

fibers had significantly larger termination fields than the AF [t(13)=25.9, p< 0.0001] and 

corticospinal tract [t(13)=21.2, p<0.0001]. Corticospinal termination fields were also larger than 
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arcuate termination fields [t(13)=8.0, p<0.00001]. The interaction of tract with condition was 

also significant [F(2,30)=7.9, p<0.005]. 

 

 

 

 

Figure 22. Voxelwise between-session overlap for global and targeted tracking. Results are 

plotted separately for each tract of interest and tracking condition. 
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Figure 23. Voxelwise between-session density correlations for global and targeted tracking. 

Results were calculated over the set of voxels that were non-zero in both sessions of a 

participant’s tractography results (see Figure 12). The left plot shows correlations in tract 

termination fields, while the right shows correlations of full-tract density maps. Each point 

represents the Pearson’s correlation coefficient, r, for a single combination of participant, tract, 

and tracking condition. 
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Figure 24. Voxelwise detection power for global and targeted tracking. Detection power was 

measured by the count of overlapping voxels in density maps from a participant’s two 

tractography datasets. The left plot is based on tract termination fields, while the right plot is 

based on full-tract density maps. 

 

 

Next we analyzed overlap, voxelwise correlation, and detection power in full-tract density 

maps (Figures 22-24, right-hand plots). In contrast to intercortical connection matrices or 

endpoint maps, full-tract maps convey information about the entire body of a tract and can be 

viewed as a rough summary of tract position and morphology. In contrast to endpoint maps, 

voxelwise overlap did not differ by tracking condition [F(1,30)=1.9, p<0.2]. The main effect of 

tract was significant [F(2,30)=74.3, p<0.0001]; as in the endpoint map analysis, overlap was 

significantly greater for callosal fibers than for the AF [t(13)=8.2, p<0.0001] and corticospinal 

fibers [t(13)=13.0, p<0.0001]. Between-session overlap scores for the AF vs. corticospinal tract 
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were not significantly different [t(13)=0.5, p<0.7]. Overlap in full-tract density maps was slightly 

higher than in endpoint-only maps (Table 10), and this difference was statistically reliable 

[t(41)=7.9, p<0.0001]. This difference in overlap rates is not surprising, since the bodies of fiber 

tracts exhibit more homogeneous density than the fanning portions near their termination fields, 

and thus may be less susceptible to residual spatial error; moreover, tract bodies travel in deep 

white matter, where anisotropy values are larger and more reliable than near the gray/white 

matter boundary (Farrell et al., 2007). 

Tests of correlation coefficients suggested no effect of tracking condition for the AF and 

corticospinal tract. Individual tests for both of these tracts yielded a mixture of results consistent 

with and contrary to hypotheses. Individual correlation coefficients for these tracts were also 

highly variable across individuals. Unexpectedly, higher correlations were found for the global 

condition in callosal fibers; this result, which ran contrary to hypotheses, was present and robust 

in 6 of 7 participants. This finding implied that voxelwise fiber densities in the body of callosal 

tracts were consistently more reliable for global than targeted tracking. These between-tract 

differences, which may result from differences in tract density and morphology, are addressed 

further in the discussion. 

Finally, a comparison of voxel counts in the between-session intersection of each 

participant’s density maps indicated a main effect of condition [F(1,30)=36.8, p<0.0001], a main 

effect of tract [F(2,30)=772.9, p<0.0001], and a modest interaction of the two factors 

[F(2,30)=4.2, p<0.05]. This pattern of results mirrored the results of the endpoint map analysis, 

and indeed, appeared to be attributable to differences in the size of tract termination fields. While 

a comparison of voxel counts for targeted vs. global tracking was significant [t(20)=6.6, 

p<0.0001], both the t-statistic and the difference of the means (12481) were similar to the 
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corresponding analysis of endpoint maps. Taken together, these results suggest that the global 

and targeted tracking filled similar voxel volumes along most of the length of a fiber tract’s 

body, but that targeted tracking produced fuller termination fields than global tracking. 

1.3.6 Sources of Error in Tractography: Summary of Follow-up Analyses 

1.3.6.1 Assessment of Reseeding Error 

Tests of reseeding error suggested that random seeding of tractography did not influence 

tractography results, except at very low fiber counts. Figure 25 shows the reliability of repeated 

within-session tracking over a range of fiber counts, as assessed by correlating intercortical 

connection matrices for two runs of tractography on each participant’s session 1 data. At a fiber 

count of 5000, all between-session correlation coefficients exceeded 0.95; with 100,000 fibers, 

all coefficients exceeded 0.99. For comparison, we note that 500,000 fibers were generated per 

dataset in the intercortical connectivity analysis. These results indicate nearly identical results 

between runs of the deterministic tractography algorithm when the diffusion space is well-

seeded. By extension, this consistency suggests that differences in random seeding did not 

contribute to between-session error. 
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Figure 25. Assessment of reseeding error. Plot shows correlation coefficients for repeated runs 

of the tractography algorithm within subject. Intercortical fiber connections were tracked at fiber 

counts of 100, 500, 1000, 5000, 10000, and 100000. Reseeding error was assessed in one session 

for each of the 7 participants; each line indicates the similarity curve for a single participant. 
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1.3.6.2 Parameter Sensitivity Analysis 

Different parameter choices and their optimality to the specific DSI dataset being analyzed 

represented another possible source of between-session error in tractography results. For a single 

dataset, we investigated differences in corticospinal tractography results across changes in three 

tracking parameters: tracking threshold (i.e., anisotropy threshold), smoothing (i.e., momentum), 

and angular threshold. We predicted that extreme parameter choices might distort tracking 

results, but that neuroanatomically valid fiber projections would be observable across a 

reasonable range of values for each of these variables. The parameter sensitivity analysis was 

performed in two steps. In Step 1, we eliminated parameter combinations or which produced 

fibers with low scores on a neuroanatomical accuracy test. Figure 16 shows the distribution of 

accuracy scores and fiber counts from Step 1. Of the 250 parameter combinations tested, 20% 

(50 combinations) failed to produce any fibers. These parameter combinations, as well as cases 

which yielded net accuracy scores of less than 0.5, were excluded from Step 2. Net accuracy was 

computed by calculating hit and false alarm rates (the proportion of ROIs in the hit and false 

alarm ROI lists which contained a non-zero number of fiber terminations), then subtracting the 

false alarm rate from the hit rate.  
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Figure 26. Results from Step 1 of the parameter sensitivity analysis. Left: net accuracy was 

computed for each tract as the proportion of “hit” regions to which it projected, minus the 

proportion of false alarm regions that it contacted. Parameter combinations that generated tracts 

with net accuracy < 0.5 were omitted from further analysis in Step 2.  Right: in Step 1, the 

stopping criterion for each tracking job was the generation of 25 million random seeds, a subset 

of which produced virtual fibers. Parameter combinations that failed to produce any fibers (20 

percent of the total count of combinations) were also omitted in Step 2. Of the 250 parameter 

combinations tested in Step 1, 119 were thus discarded, leaving 131 for re-test. 
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Of the 250 parameter combinations tested in Step 1, 131 were re-tested in Step 2. We 

generated a uniform count of 100,000 fibers with each of the surviving parameter combinations, 

then recomputed results for the neuroanatomical accuracy test. The distribution of net accuracy 

scores (Figure 27) indicates that tractography results are a complex, interactive function of these 

tractography variables. The various and combined effects of the tested tractography variables 

were assessed by regressing tracking threshold, angle threshold, smoothing values, and all 

possible interactive terms onto net accuracy scores. Parameter combinations that were not 

included in Step 2 were treated as missing observations. This model was highly significant 

overall [F(7,123)=5.8, p<0.00001] and produced an adjusted R2 valued of 0.21. Main effects 

were observed for all three tractography variables: tracking threshold was associated with a 

regression coefficient of -0.097 [s.e. of 0.03; t(123)=-3.3, p<0.005]; angle threshold was 

associated with a coefficient of -0.17 [s.e. of 0.06; t(123)=-2.8, p<0.01]; and smoothing was 

associated with a coefficient of -0.15 [s.e.=0.05; t(123)=-2.7, p<0.01]. A coefficient of 0.03 (s.e. 

of 0.009) was found for the interaction of tracking and angle thresholds [t(123)=3.5, p<0.001]. 

Additional significant effects were found for the interaction of tracking threshold with smoothing 

value [coefficient of 0.03, s.e. of 0.0097; t(123)=2.7, p<0.01] and for the three-way interaction of 

tracking threshold, angle threshold, and smoothing [coefficient of -0.007, s.e. of 0.003; t(123)=-

2.6, p<0.01]. Of the large number of model terms tested, the main effect of tracking threshold 

and the interaction of tracking threshold with angle thresholded survived a Bonferroni correction 

for multiple comparisons. The main effect of angle threshold just missed significance by this 

procedure (corrected p-value of 0.0501, compared to an alpha level of 0.05). 

Visual inspection of Figure 27 facilitates interpretation of these statistical results. Especially 

notable is the fact that very strict angle thresholds were associated with low accuracy: no 
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tractography cases using an angle threshold of 15° satisfied the inclusion criteria for Step 2. 

Moreover, lenient angle thresholds were only associated with high accuracy when tracking 

thresholds were also increased. In contrast, the combination of permissive angle thresholds and 

low tracking thresholds produced a large number of false continuations and improbably sinuous 

fibers that lowered overall accuracy considerably. This pattern of results caused the exclusion of 

a large number of parameter combinations from retesting in Step 2 (see the large n/a regions at 

angle thresholds of 60° and 75° in Figure 27). Parameter combinations with angle thresholds of 

60-75° and low tracking thresholds (less than or equal to a QA value of 0.4) had a mean hit rate 

of 1.0; however, the mean false alarm rate for these cases was also high (0.62), causing a decline 

in net accuracy. These results suggest that when tracking threshold is eased in order to allow the 

detection of strongly curving fibers, some other constraint—namely, tracking threshold—must 

be adjusted in order to maintain control over noise in tractography results. The effects of 

smoothing values were more subtle and less statistically reliable. However, it is notable that with 

an angle threshold of 30°, high smoothing values (0.8-0.9) resulted in a large number of low-

accuracy results in Step 1. Similarly, a smoothing value of 0.9 led to poor accuracy in Step 1 

results at high tracking thresholds and angle thresholds of 45-60°. These results could indicate 

that when fiber trajectories are tightly controlled (e.g., by strict angle or tracking thresholds), 

high smoothing adds a further constraint that undesirably straightens fibers and prevents them 

from following naturally curving diffusion pathways. 

We additionally computed a similarity matrix for all tracts produced in step 2, in order to test 

whether tracts that ranked in the top quartile for anatomical accuracy were also characterized by 

higher mutual similarity than tracts in lower quartiles. The similarity matrix was computed by 

converting each tract into a NifTi-format density image, transforming the voxel matrix for each 
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image into a long vector (length of 460800, resulting from image dimensions of 96 x 96 x 50 

voxels), then finding the Pearson’s correlation coefficient between each vector and every other 

vector. The average mutual correlation within each quartile is shown in Figure 29.  

We tested between-quartile differences by applying a Fisher’s r-to-z transformation to all 

correlation coefficients, then comparing quartiles using two-sample, two-tailed t-tests, assuming 

heteroscedasticity. The results indicated higher mutual similarity in the top quartile than in the 

first [t(639)=2.4, p<0.05] and second quartiles [t(504)=6.4, p<0.0001]. These results suggested 

convergence of tracking results with increasing stringency of the anatomical accuracy criterion. 

However, tracts in the top quartile were less similar on average than those in the third quartile 

[t(722)=-3.6, p<0.0005], possibly indicating a cluster of similar tracking results with lesser 

overall accuracy. 
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Figure 27. Results from Step 2 of the parameter sensitivity test. A total of 131 parameter 

combinations were tested. Net accuracy was computed as hit rate – false alarm rate. 
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Figure 28. Top-scoring corticospinal tract results from parameter sensitivity test. Image 

shows the union of fibers from 4 fiber tracts tied for the highest net accuracy score of 0.93. 
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Figure 29. Mutual similarity of tractography results from Step 2 of parameter test. Bars 

indicate mean mutual similarity, binned by quartile in net accuracy rankings. Similarity was 

quantified by computing Pearson’s correlations between full tract density images. 
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We note that of the three variables tested in the parameter sensitivity analysis, anisotropy 

threshold was the only one that we adjusted between datasets when tracking intercortical 

connections and when comparing global and targeted tracking approaches. However, the range 

of anisotropy thresholds observed in the high-accuracy tract group was considerably broader than 

the average between-session difference in tracking thresholds for a single participant, suggesting 

that reliability estimates in the above analyses were tolerant to small variations in tracking 

threshold. The mean anisotropy threshold for the top quartile of tracts in the parameter sensitivity 

test was 0.63, with a standard deviation of 0.19. By comparison, the average within-subject, 

between-session difference in the tracking thresholds used for Experiment 1 was 0.1, and the 

standard deviation across all datasets was 0.12. 

 

1.3.6.3 Assessment of Spatial Error 

 

We next addressed the contribution of spatial misalignment to between-session error. First 

we investigated the possibility that ROIs differed in size or shape due to between-run variability 

in the FreeSurfer anatomical processing pipeline (Cammoun et al., 2012). For 3 of 7 participants, 

we ran this pipeline twice on the same session’s data, then extracted the anatomical ROIs used to 

construct region-to-region connection matrices. This procedure included dilation of ROIs into 

white matter and spatial alignment with DSI data, as described in the Methods section. We then 

computed the overlap of corresponding ROIs for the two runs of the FreeSurfer pipeline. Overlap 

for all ROIs across all three participants was 100 percent, suggesting that any randomness in the 

FreeSurfer pipeline was not relevant at the level of spatial precision employed in this study. 
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While anatomical ROIs were perfectly replicated when generated iteratively on the same 

dataset, they may have differed when generated from different MPRAGE images for a single 

participant. We reasoned that if between-session differences in anatomical data (due to different 

patterns of T1 image distortion, for example) adversely affected reliability, then analysis in a 

common reference space should improve reliability. To address this question, we aligned the 

session 2 tracking files from the intercortical connectivity analysis to the session 1 DSI data and 

recomputed overlap metrics, between-session correlations of connection matrices, and detection 

power metrics, using the session 1 ROIs to determine connection matrices for both datasets. 

Following the practice adopted above, we report correlation coefficients for only the between-set 

intersection of non-zero connections. 

Overlap metrics for the two conditions (i.e., for analysis in separate image spaces vs. aligned 

data) did not differ [t(6)=0.7, p<0.6]. As shown in Figure 30, correlation coefficients for both 

conditions were high. We compared correlation coefficients for separate vs. aligned conditions 

by performing a Fisher’s r-to-z transformation on all coefficients (Kenny, 1987, p.274), then 

testing for a significant difference between these values for each participant. For 5 of 7 

participants, the comparison of transformed correlation values was statistically significant at a 

Bonferroni-corrected alpha level of 0.05, indicating significantly better between-session 

correlation for aligned than separate-space data for those participants. Thus, with some 

individual exceptions, improvements in correlation were consistent with the possibility of 

between-session differences in anatomical ROI shape. Interpretation of correlation differences is 

further complicated by consideration of detection power metrics. The average number of 

connections contributing to correlation analysis in separate-space data was greater than in 

aligned data [t(6)=2.6, p<0.05], with a mean difference 129 connections. This difference 
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suggests that the set of specific connections found to be non-zero across sessions shifted, 

depending on whether the data were analyzed in separate spaces or the session 1 space. Given 

these results, spatial mismatch in the units used for reliability analysis remains a likely 

contributor to between-session error. 

Variability in anatomical ROI definition was not relevant for the voxelwise analysis of tract 

density and endpoint maps. To evaluate spatial error at the single-voxel level, we computed the 

voxelwise correlation of aligned B0 images (Figure 31). Correlation coefficients ranged from 

0.86 to 0.95, indicating an average dissimilarity (calculated as 1 - R2) of 0.14 (0.05), with values 

ranging from 0.09 to 0.25. These images were then spatially smoothed over a range of 2-20 mm 

FWHM, in order to compensate for partial volume effects. The results of smoothing indicated 

maximal similarity between the two B0 images with a smoothing kernel of 6 mm FWHM, 

corresponding to 1-2 voxels’ worth of smoothing in every direction. At this value, dissimilarity 

between B0 images ranged from 0.04 to 0.21. These dissimilarity values cannot be interpreted 

unambiguously, as they could reflect either a failure of affine-based image alignment—that is, a 

failure to properly align the brain’s outline across sessions—or else variability in the intensity of 

well-aligned voxels. However, they are consistent with the possibility that spatial error adversely 

affects voxelwise reliability analyses. 
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Figure 30. Reliability scores for tract pairs before and after spatial alignment. The 

difference in correlations suggest spatial error, possibly due to differential patterns of non-linear 

image distortion in T1-weighted anatomical images. 
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Figure 31. Quality check of affine-based spatial transformation between sessions. In order to 

assess residual spatial error after data alignment, we performed voxelwise correlations of the 

intensity values in B0 images (i.e., EPI images without diffusion weighting). We additionally 

investigated the effect of Gaussian spatial smoothing, to assess partial volume effects. Each line 

represents one participant. 
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1.3.6.4 Assessment of Acquisition-Related Error 

 

The last source of error which we investigated was variability in the raw diffusion data, 

which could result from multiple factors, including participant head motion and hardware 

calibration differences. As a first-pass check of data reliability, we examined histograms of non-

zero values from QA0 maps. These maps record the magnitude of the largest peak in each 

voxel’s orientation distribution function (without regard to the orientation of that peak), and they 

serve as the basis for anisotropy thresholding in DSI Studio. QA0 distributions were similar in 

shape across all 14 datasets, skewing heavily to the left, with a single peak ranging between 

approximately 9500 and 16000 voxels. Paired datasets showed significant between-session 

differences in shape, however. Figure 32 plots the absolute value of the difference of each 

participant’s session 2 histogram from his/her session 1 histogram. The remainders averaged 9 

percent (std. dev. of 5 percent) of the total non-zero voxel count in each dataset. Differences in 

histogram shape were greatest at QA0 values below each dataset’s mean. This rough test 

provides evidence of between-session variations in QA, particularly in brain areas where 

anisotropy tends to be lower. This characterization is highly applicable to voxels in or near gray 

matter and at the edge of the brain. 

Next, we directly compared QA0 maps from paired sessions by spatially aligning and 

correlating them. As with B0 images, we applied Gaussian smoothing of 6 mm FWHM in order 

to compensate for partial volume effects and other small spatial errors. Table 11 compares these 

voxelwise correlations to B0-B0 correlations at the same smoothing level. QA0-QA0 

correlations were lower than B0-B0 correlations in all participants, with an average difference of 
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0.137 (0.065). These results suggest the existence of between-session differences in QA0 which 

cannot be attributed to spatial error; rather, they are likely to result from measurement error at 

the time of data acquisition. 

Finally, we used the spatially-aligned QA0 maps to visualize the distribution of “missing” or 

“masked-out voxels”: namely, voxels which survived the anisotropy threshold in one of a 

participant’s two DSI datasets, but not in the other. We reasoned that such cases could be at least 

partially responsible for the high incidence of one-off connections which we detected in the 

intercortical connectivity analysis. Figure 33 shows masked-out voxels for a single participant, as 

well as areas of greatest between-subject overlap in masked-out voxels. As predicted, these 

voxels were most prevalent near tissue boundaries: at the edge of the brain, in sulci and the 

longitudinal fissure, and around the ventricles. The spatial distribution of these voxels may 

support the possibility of error introduced by participant head motion. 
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Figure 32.  Between-session comparison of quantitative anisotropy (QA) maps. QA maps 

were the basis for thresholding tractography. Left and middle: session 1-2 QA distributions for a 

representative participant, plotted as z-scores. Right: Within-subject subtraction of session 1-2 

QA histograms, plotted as z-scores; absolute values of the differences are plotted. 

Table 11. Comparison of correlations between paired B0 images vs. paired QA0 maps. 

Subject B0-B0 correlation QA0-QA0 
correlation 

Difference 

0001 0.982 0.906 0.076 
0004 0.980 0.871 0.109 
0005 0.889 0.792 0.097 
0006 0.961 0.860 0.101 
0012 0.938 0.738 0.200 
0013 0.967 0.845 0.122 
0014 0.956 0.702 0.255 
Mean (SD) 0.953 (0.032) 0.816 (0.075) 0.137 (0.065) 
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Figure 33. Voxels masked out in one session but not the other. Top: “masked-out” voxels for 

a single participant, representing elements of the QA0 map which survived the tracking threshold 

in one dataset, but not the other. Bottom: most commonly masked-out QA0 voxels, across 

individuals. Image shows overlap in MNI space and is thresholded to show only areas of most 

frequent between-subject overlap, corresponding to 3 participants. 

  



 96 

1.4 DISCUSSION 

 

1.4.1 Between-Session and Between-Subject Reliability 

 

We investigated the between-session reliability of deterministic tractography based on 

diffusion spectrum imaging data. Reliability was investigated both on a coarse scale, by 

computing connection density between pairs of anatomically-defined ROIs, and on a fine scale, 

by voxelwise comparisons of endpoint and full-tract density maps. Importantly, we assessed the 

replicability of tractography results using multiple measures. Overlap metrics indicated the 

likelihood that a non-zero result in one session would also be present in the second, while 

correlation metrics indicated the reliability of fiber density values in those overlapping elements. 

These two metrics provided complementary information about between-session reliability.  

The utility of these multiple measures is demonstrated by the intercortical connectivity 

analysis. Our initial correlation analyses, examining the union of non-zero connections between 

sessions, indicated poor reliability. (Most individual correlation coefficients were in the range of 

0.3 to 0.4.) These results were at odds with the high reliability reported by Cammoun et al. 

(2012) using similar DSI-based tractography. However, between-session correlations in the 

intercortical connectivity analysis improved dramatically if we analyzed only connections 

present in both sessions of a participant’s DSI data. The difference in correlation cannot be 

dismissed as a consequence of “cherry-picking” data: that is, of focusing exclusively on 

overlapping cells of intercortical connection matrices. Although eliminating one-off connections 

was expected to improve correlation coefficients, variability in connection density estimates 

could still have depressed reliability considerably. Instead we found very good—nearly perfect—
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correlation in the fiber densities of connections which were repeatedly detected. This finding 

suggested that if a connection was repeatedly detected across sessions, then its density was 

highly reliable.  

A close reading of previous reliability analyses of DSI-based tractography (Bassett et al., 

2011; Cammoun et al., 2012) suggests they may have encountered a similar pattern of results. 

Both of these studies analyzed reliability at several spatial scales and reported high within-

subject, between-session correlations of connection strength, using estimates based on fiber 

counts. (In the present study, we have used the method of Cammoun et al., which normalized 

these fiber counts by the surface area of ROI pairs and included an adjustment to address a 

purported length bias in deterministic tractography.) However, we note that in the current study, 

these high levels of correlation were only observed when restricting correlation tests to the set of 

connections which were repeatedly non-zero in both of a participant’s DSI datasets; on average, 

this intersection set represented about 75% of the non-zero connections in any single dataset. 

Cammoun et al. appear to have found similarly noisy results: when comparing pairs of DSI 

datasets, the authors found a considerable number of what we have termed one-off connections 

(Cammoun et al., Figure 7B). Furthermore, a fraction of these one-off connections persisted even 

after Cammoun et al. excluded 1) connections that consisted of small numbers of fiber bundles; 

2) those that were non-significant;  and 3) most interhemispheric connections.  

Comparison to the results of Bassett et al. (2011) is complex, but it also appears to 

corroborate our findings. Although the majority of Bassett et al.’s analyses deal with graph 

theory measures based on thresholded and unthresholded binarized matrices, they also report 

within-subject, between-session r2 values well above 0.9 for DSI datasets. As in our study and 

that of Cammoun et al. (2012), these correlations were ultimately based on the number of fibers 
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connecting ROI pairs. It is unclear whether Bassett et al.’s correlations were based on 

thresholded connection matrices, but the apparent absence of one-off connections in the 

scatterplot for a single representative participant (their Figure 4B, left panel) does suggest a 

thresholding procedure. This interpretation is further supported by the low reproducibility of a 

network density measure (Bassett et al., Figure 4E). This network density measure should not be 

confused with connection density, as defined by this study and Cammoun et al. (2012); rather, it 

is a network graph property indicating the number of non-zero edges as a proportion of the 

number of possible edges. The low reproducibility of this measure indicates high within-subject 

variance in the presence or absence of particular connections across sessions; in our terminology, 

this result indicates relatively poor between-session overlap in binarized connection matrices.  

Voxelwise analysis provided information about between-session reliability of fiber 

termination fields and tract bodies. We found voxelwise between-session overlap of 

approximately 80 percent in both analyses; these results were comparable to the overlap of 

connection matrices in ROI-based analysis. While voxelwise measures did not strictly reflect 

point-to-point connectivity, as ROI-based measures did, these results nevertheless suggest that 

the reliability of binarized results is relatively high. In contrast, voxelwise correlations of fiber 

density were much lower than in ROI-based analysis, with greater variability. The combination 

of these results indicates that at fine spatial scales, assessments of the presence or absence of 

fibers in a particular brain volume were more reliable than estimates of fiber density.  

As a complement to within-subject comparisons, we examined the replicability of 

intercortical connections across participants. While between-session overlap for a single 

participant averaged about 75 percent, only 24 percent of the connections found in any single 

dataset were likely to be replicated across all 14 datasets analyzed. The difference in these ratios 
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suggests greater between-subject than within-subject variability in connectivity estimates; we 

note that this finding is consistent with Bassett et al.’s (2005) finding of higher intra-class 

correlation coefficients (ICCs) for within-subject than between-subject comparisons.  

Interestingly, the likelihood of between-subject replication did not appear to depend on 

connection density. This result was contrary to hypothesis, as we predicted that a dense 

connection in a single participant would be more likely to be observed across other sessions and 

participants than a sparse connection. However, we found that there was only a weak linear 

relationship between connection density and frequency of detection, and that the distribution of 

one-off connections in a particular dataset spanned a similar range of connection densities as the 

distribution of most-often-detected (MOD) connections. This finding is methodologically 

important, because it calls into question the practice of thresholding brain networks on the basis 

of tractographic connection strength. This thresholding procedure, which has been used by 

Bassett et al. (2011), appears reasonable and intuitive: connections consisting of only a few 

diffusion streamlines are assumed to be more likely to result from random noise in diffusion data 

than connections that involve dense bundles of fibers. Thus, dropping the sparsest connections 

from a network seems to be an objective and efficient way to filter out noise, and the surviving 

connections are expected to be highly replicable. 

However, the results of our own analyses suggest that such thresholding procedures may not 

work as intended (see Figures 8–9). In order to find possible explanations for this failure, it is 

worthwhile to consider how the behavior of both true and false connections might affect the 

relationship between connection density and reproducibility. First, if density actually were 

predictive of reproducibility, then this relationship could arise because connection density affects 

the rate of false positives. In this scenario, random noise in ODFs might create spurious diffusion 
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pathways, but the very randomness of this noise across voxels would make false connections of 

high density unlikely; thus, false connections would tend to be sparse. Conversely, very dense 

connections observed in tractography results would be likely to represent veridical diffusion 

pathways. Alternatively, density might affect the reproducibility of true positives. For example, 

sparse true connections might be more susceptible to loss or distortion of the diffusion signal, 

leading to a lower frequency of detection across datasets. In contrast, very dense connections 

would be more resistant to such noise, leading to a higher frequency of detection for dense true 

connections. 

Hypothetical influences of connection density on hit and false alarm rates thus represent 

independent factors; it is possible that one or both of these factors has no predictive relationship 

with a connection’s reproducibility. First, it is possible that false connections of high density can 

indeed be generated from noise in the raw diffusion data. For example, head motion by 

participants could create the illusion of strong diffusion in a particular orientation; importantly, 

this noise would be correlated across voxels, potentially leading to the detection of a false but 

robust diffusion pathway along the affected orientation. If realized, this scenario would 

contradict the assumption that spurious diffusion connections are more likely to be sparse. Our 

data support this possibility: in Figure 9, the distribution of connections with only 1 of 14 

possible detections  has a similar center and width as the distribution of MOD connections (14 of 

14 detections), including similar maximum densities (right-hand tail of each distribution). These 

1-time-detected connections are most likely to represent false fiber pathways, since they failed to 

replicate even within the paired dataset from the same individual. Second, it is possible that low 

connection densities do not adversely affect the detectability of true fiber pathways, and that 

even weak pathways can be consistently detected across individuals. Our results also admit this 
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possibility, since the distribution of MOD (i.e., 14-times-detected) connection densities 

encompasses a comparable minimum density as the distribution of 1-times-detected connections, 

which we have said are most likely to represent false positives. These results suggest that 

thresholding based on connection density may eliminate both true and false connections, and that 

a mixture of both connection types will survive thresholding. 

A further complication in using connection density as a thresholding criterion is the 

ambiguous relationship between fiber density measurements and true anatomical connection 

strength. Current tractography algorithms make no inference about the real-world volume 

represented by a virtual streamline; as a consequence, no physical limitation is imposed upon the 

number of streamlines traveling through a given voxel or along a certain pathway. Of course, 

decision rules that favor stronger over weaker diffusion pathways make it likely that strong 

diffusion pathways will be occupied by more streamlines than weaker pathways; however, fiber 

density measurements will not necessarily be proportional to diffusion signal strength along 

white matter pathways. It is possible that our reliance on the density-based metric of Cammoun 

et al. (2012) obscures the relationship between true connection strength and replicability. 

Clarification of the precise relationship between fiber density metrics and actual diffusion 

volume will probably depend on empirical testing under controlled conditions, such as the use of 

hardware phantoms with known diffusion structure.  

 

1.4.2 Most-Often-Detected Intercortical Connections 

 

We found that nearly 1000 intercortical connections were detected across all DSI datasets 

included; as mentioned above, this number represents an average of 24 percent of the 
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connections detected in any single dataset. The majority of these connections were 

intrahemispheric, with similar proportions in the left and right hemispheres. The remaining 7.5% 

of connections were interhemispheric; this proportion is slightly less than (but on the same order 

as) Hagmann et al.’s (2008) finding of 9–14% interhemispheric fibers. The most salient brain 

areas in the MOD connection set included the superior and middle frontal gyri, orbital gyrus, 

angular gyrus, the superior parietal lobule, and lateral temporal areas (superior temporal gyrus 

and sulcus), among others (Tables 3–4, Figure 11). These areas were highly symmetric across 

hemispheres. The observed distribution of fiber lengths (Figure 15) indicates that the majority of 

intercortical fibers detected were of medium length (approximately 6 cm); we note that a 

minimum length constraint of 30 mm was imposed during tractography in order to exclude noisy 

connections. When we focused on brain areas involved in long-distance connections (>100 mm), 

we found that the brain areas of highest degree in this subset were similar to the areas of highest 

degree in the full set of MOD connections (Tables 3–4). Notably, however, the high-degree areas 

of the long-distance subset omitted such limbic areas as anterior cingulate cortex and the insula; 

they also included portions of occipital cortex that did not rank among the highest-degree areas 

in the full MOD connection network. The FreeSurfer medial wall ROI, which may have 

encompassed fibers terminating in subcortical structures like the thalamus, was also absent from 

the highest-degree areas in the long-distance subset. 

Thus, we found that the most reliably detected connections—both between sessions and 

between subjects—involved a number of dorsal and lateral prefrontal areas, ventral and dorsal 

aspects of parietal cortex, and lateral temporal areas. Additionally, insular cortex, anterior 

cingulate cortex, and medial gray matter areas were found to have high numbers of reliable 

connections, primarily of short or medium distance; and occipital cortex was found to have 
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reliable long-distance connections. The relatively crude method used to identify these brain 

areas—that is, simple ranking of binarized connection counts—provides little characterization of 

these nodes’ place within a larger network structure. For example, it is beyond the scope of the 

present analysis to characterize nodes of the MOD connection network as “connector” vs. 

“provincial” hubs (Bassett et al., 2011; Ravasz & Barabasi, 2003); however, the high degree of 

these brain areas suggests that they are less likely to serve as provincial hubs, which have 

relatively low degree but strong connectedness within a local sub-network. In contrast, Hagmann 

et al. (2008) used iterative decomposition methods based on node degree and edge strength to 

identify core regions within an intercortical network; their results highlighted posterior midline 

structures including the precuneus, posterior cingulate cortex, isthmus of the cingulate, and 

paracentral lobule. While this set of brain areas does not overlap with our own findings, 

Hagmann et al. (2008) did note that superior parietal cortex, inferior parietal cortex, and lateral 

temporal areas—overlapping with our own results—also had high core rankings in their analysis. 

It is possible that further examination of our own data using graph theory techniques might 

resolve the apparent differences between these results. Finally, we note that our findings also 

overlap with Cole et al.’s (2009) analysis of highly globally-connected brain areas, based on 

BOLD time-series correlations. Cole et al. found high global brain connectivity in lateral and 

superior prefrontal cortex, rostral anterior cingulate cortex, precuneus, inferior parietal cortex, 

orbitofrontal cortex, anterior insula, middle occipital gyrus, and middle temporal gyrus. The 

present findings appear to display good overlap with Cole et al.’s (2009) findings, suggesting 

compatibility between structural and functional methods for brain connectivity analysis. 
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1.4.3 Global vs. Targeted Tracking Comparisons 

 

We additionally compared the reliability and detection power of targeted vs. global tracking 

approaches. Global seeding of fiber tracking is a common technique, particularly for whole-brain 

connectivity analyses. By tracking with minimal ROI constraints, a researcher can efficiently 

generate a large number of virtual fibers throughout the brain, using a common set of tracking 

parameters. In contrast, targeted tracking allows a researcher to generate fibers with parameter 

settings optimized for detecting fibers of interest. The distinction between targeted and global 

tracking is not an absolute one: rather, it can be viewed as a continuum, depending upon the 

number and nature of ROI constraints imposed by the researcher, as well as the generality vs. 

specificity of parameter values chosen. In the present study, for example, corticospinal tracking 

involved ROIs in the brainstem, midbrain, and cortex; thus, the resulting fibers were constrained 

to follow a very narrow pathway up through the internal capsule, although they diverged widely 

above that point. Tracking could be further targeted by restricting cortical endpoints to motor, 

premotor, and somatosensory cortices (e.g., Verstynen et al., 2011), or it could be made more 

global by removing one or more ROI constraints. 

The most robust result in targeted vs. global tracking comparisons was the large advantage in 

detection power for targeted tracking. In ROI-based analysis, targeted tracking resulted in the 

detection of more point-to-point connections than global tracking, for all three of the tracts 

investigated. In voxelwise analysis, targeted tracking was associated with the detection of many 

more voxels in endpoint and full-tract density maps.  

Differential detection power is probably related to the smaller number of fibers, and thus 

poorer coverage of diffusion space, in global vs. targeted tracking files. While we generated a 



 105 

uniform count of 100,000 fibers per tract in the targeted condition, fiber counts were not 

controlled in the global condition. As a result, AF fibers in the global condition averaged about 

6.0 (3.5) percent of the total in the targeted condition; corticospinal fibers averaged 1.3 (0.5) 

percent; and callosal fibers averaged 9.9 (3.1) percent. 

However, we feel that differential fiber counts are a further symptom of, rather than a trivial 

cause of, differences in detection power between targeted vs. global tracking conditions. We note 

that tracts in the global condition were extracted from whole-brain tracking files with a total 

count of 500,000 fibers. Thus, the number of seeds generated in whole-brain tracking was well in 

excess of the amount needed to provide detection power comparable to the targeted tracking 

condition. Furthermore, our detection power metrics did not depend upon specific fiber density 

values; rather, they only assessed the number of connections or voxels that were repeatedly non-

zero across sessions. If global tracking effectively saturated the space of possible diffusion 

pathways, then it could be expected to detect the same connections or voxels as targeted 

tracking, albeit with lower fiber density. 

Instead, the observed pattern of results suggests that competition among alternative diffusion 

pathways, coupled with the constraints imposed by the decision rules of the deterministic 

algorithm, resulted in a failure to detect some paths. Jarbo et al. (2012) provide a specific 

illustration of this phenomenon in their tracking of callosal projection fibers: global tracking 

failed to detect parietal and occipital projections which passed through a triple fiber crossing, but 

targeted tracking was successful in finding this pathway. These results suggest that even if fiber 

counts were increased dramatically, global tracking would still be associated with lesser 

detection of unique diffusion pathways than targeted tracking. 
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We hypothesized that targeted tracking would be associated with greater between-session 

reliability than global tracking. This hypothesis was corroborated by multiple findings. In ROI-

based analyses, targeted tracking was associated with greater between-session overlap in 

binarized connection matrices; and in voxelwise analyses, between-session overlap of tract 

termination fields was likewise better for the targeted tracking condition. These results support 

the idea that tracking specific fibers of interest, with ROI constraints and tracking parameters 

optimized for detection of those fibers, leads to better between-session reproducibility of 

tractography results. 

This reliability advantage is qualified by other aspects of the global vs. targeted comparisons. 

Comparisons of fiber density values, both in ROI-based and voxelwise analyses, suggested that 

correlations were statistically equivalent for global and targeted tracking conditions. This null 

finding indicates that targeted tracking confers no greater reliability in terms of fiber density; this 

result is not unexpected, given the near-ceiling correlations that we and others have detected with 

global tracking methods (Bassett et al., 2011; Cammoun et al., 2012). Ultimately, however, the 

results support the superiority of a targeted tracking approach: the detection power differences 

discussed above imply that targeted tracking will yield fuller termination fields and 

representations of region-to-region connectivity, with between-session  correlations that are no 

worse than those based on global tracking. 

We note that reliability results partially depended on the specific fiber tracts analyzed. In 

particular, analysis of callosal projection fibers produced a curious pattern of results. ROI-based 

analysis indicated significantly lower overlap of region-to-region connection matrices for 

callosal fibers than the AF and corticospinal tract; however, voxelwise analysis indicated the 

highest overlap in density maps for this tract. This apparent contradiction may have to do with 
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the morphology of the callosal tract and the conceptual differences between ROI-based and 

voxelwise analyses. The callosal fibers that we analyzed form a structure that is known to 

diverge widely throughout the brain, contacting most portions of the frontal, occipital, parietal, 

and posterior temporal lobes. (We note, however, the low detectability of fibers in the latter two 

areas.) Simultaneous tracking of these fibers thus necessitates a nearly global seeding approach: 

the most significant constraint imposed was the requirement that fibers pass through the corpus 

callosum to the opposite hemisphere. The lack of further constraints may be responsible for poor 

overlap scores in ROI-based analyses. In contrast, the sheer brain volume occupied by callosal 

fibers may be responsible for its high overlap scores in voxelwise analysis of density maps. 

Analysis of binarized callosal maps may have been less sensitive to between-session variability 

in region-to-region connectivity and in fiber density, relative to the AF and corticospinal tract. 

 

1.4.4 Error Source Analyses 

 

We performed a series of follow-up analyses to assess possible sources of between-session 

variability in tractography results.  We considered four possible error sources: randomness in 

tractography seeding, variability in setting appropriate tracking parameters, spatial misalignment, 

and acquisition-time measurement error. Random seeding was found to have no effect on 

reliability when a reasonable number of seeds were generated. (This result is thought, but not 

known, to generalize to other tractography algorithms; we cannot dismiss the possibility that 

reseeding error might present a larger concern with other software packages or tracking 

methods.) The parameter sensitivity analysis demonstrated the robustness of tractography results 

to variations in tracking parameters: anatomically accurate results were observed over a wide 
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range of angular thresholds, smoothing/momentum values, and tracking thresholds. We note, in 

particular, that the observed range of tracking thresholds exceeded  between-session differences 

in our settings of this parameter. Between-session differences in tractography are thus unlikely to 

relate to user settings of tracking parameters.  However, the computational intensity of this 

analysis obligated us to limit it to a single dataset; with increases in computing power and more 

efficient tractography methods, we hope to repeat this analysis on a larger number of datasets 

and white matter structures. 

In contrast to random seeding and tracking parameters, between-session errors in spatial 

alignment appeared to contribute to variability in tractography results. This error was evident in 

imperfect alignment of B0 images from each participant’s DSI dataset pairs, as well as in the 

increased reliability of intercortical connectivity patterns for spatially aligned fiber tracts, relative 

to ROI-based analysis in separate image spaces. We propose that this error most likely results 

from differential non-linear patterns of image distortion between imaging sessions. These 

distortions are likely to affect automated anatomical image processing in the FreeSurfer pipeline, 

and thus the shape of anatomical ROIs; furthermore, they cannot be compensated for by affine-

based image registration techniques. Spatial alignment errors thus affect the researcher’s ability 

to correctly compare fiber tracts, in addition to any error they may introduce into the 

tractography itself. 

Finally, acquisition-related measurement error appeared to be the largest factor affecting 

between-session reliability. This error was evident in the comparison of QA0 distributions from 

paired datasets, as well as in the lower correlation observed for spatially-aligned QA0 maps, 

relative to aligned B0 images. Variability in anisotropy measurements is unlikely to result from 

between-session differences in the true diffusion signal: white matter structure is slow to change, 
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exhibiting a gradual arc of development and degradation across the lifespan (Westlye et al., 

2010). Thus, diffusion contrast is likely to remain relatively constant over time frames of weeks 

or months. (In this respect, DWI differs dramatically from functional imaging methods.) 

Furthermore, the QA metric itself does not appear to be inherently more variable than other 

measures of anisotropy: the between-session correlations which we report in Table 11 are 

comparable to prior analyses of fractional anisotropy (Pfefferbaum et al., 2003). Thus, variability 

in QA0 estimates appears most attributable to measurement error, which may result from a 

variety of causes. Post hoc, we were unable to address certain possibilities, such as between-

session differences in hardware calibration. However, the spatial distribution of “masked-out” 

voxels—that is, voxels which survived anisotropy thresholding in one session, but not the 

second—was highly suggestive of head motion artifact. These masked-out voxels were most 

prevalent around tissue boundaries, including the surface of cortex and the ventricles.  

Although it is difficult to quantitatively compare the contributions of measurement error vs. 

spatial alignment error, better control of participant head motion seems like the simplest and 

possibly most effective means of improving between-session reliability, based on these data. 

Currently, methods for post-hoc motion correction do not exist for diffusion MRI data collected 

at high b-values: insufficient anatomical detail exists in these images to allow processing with 

automated algorithms. However, this problem can be indirectly addressed by motion correction 

based on multiple B0 images, interspersed throughout the acquisition of diffusion-weighted 

images (Tuch, 2004). With the inclusion of such benchmark images, it may be possible to further 

improve data quality through post-hoc corrections, such as those typically applied to fMRI data 

or to DWI data collected at low b-values. However, it is unclear how translational and rotational 
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corrections might affect the reconstruction of ODFs in high angular resolution DWI data; 

empirical and model-based investigation of this question is desirable.  

 

 

 

1.5 INTERIM CONCLUSION 

 

Our reliability analyses yielded a mixed picture of DSI-based tractography. The fiber density 

for repeatedly-detected connections was highly reliable; however, we also found a high 

incidence of one-off connections, presumably attributable to random error in diffusion-weighted 

images. These one-off connections indicate significant noise in individual DSI datasets. 

Averaging connection matrices across sessions and/or participants appears to be a viable way to 

mask out noisy connections. In contrast, thresholding individual-dataset connection matrices 

based on fiber density does not appear to be a viable method for excluding noisy connections, as 

we found only a miniscule relationship between connection density and frequency of detection 

across datasets. Users should be aware that both averaging and density-based thresholding are 

likely to mask out not only false fibers, but also some valid ones, especially for connections 

which suffer low detectability in individual datasets. This detection problem may be particularly 

acute for global seeding and tracking approaches, in which the bias of decision rules in 

deterministic tractography algorithms causes some viable diffusion pathways to be consistently 

ignored. In contrast, we found that targeted tracking approaches significantly increased detection 

power and also provided advantages in between-session reliability, particularly when assessed in 

the overlap of binarized connectivity results. 
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Overall, the results of our study and previous investigations of DSI-based tractography 

(Bassett et al., 2011; Cammoun et al., 2012) urge caution in some applications of deterministic 

tractography. In particular, our results suggest that large-scale connectivity analyses using global 

seeding and tracking approaches may undersample the diffusion space of any single dataset. 

Furthermore, global tracking may be associated with lower reliability than targeted tracking 

approaches. Such global approaches have become more popular in the context of connectomic 

research (Hagmann et al., 2007, 2008, 2010), where they offer a computationally efficient means 

of estimating whole-brain connectivity. Of course, the objective of connectomic studies is 

ultimately to identify commonalities in brain connectivity across individuals, not to achieve 

maximal detection within a single dataset; thus, it can be argued that global tractography 

approaches represent an acceptable tradeoff between detection power and computational 

efficiency. However, we feel that applications of global tractography should be viewed with 

skepticism for now, in the absence of better quantification of hit and false alarm rates in 

tractography, as well as qualitative characterization of connections most likely to be incorrectly 

detected or rejected. Finally, we suggest alternatives to thresholding based on fiber density, such 

as taking the intersection of connections detected across multiple timepoints or subjects.  
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2.0 EXPERIMENT 2: VALIDATING DSI-BASED TRACTOGRAPHY AGAINST 

KNOWN ANATOMICAL CONNECTIONS OF THE FRONTAL EYE FIELDS 

 

 

 

2.1 INTRODUCTION 

 

Diffusion spectrum imaging (DSI) represents one technique in a broader family of diffusion-

weighted imaging (DWI) methods. Ccoupled with fiber tractography, DSI and other high-

resolution DWI techniques offer several potential advantages over invasive techniques for 

neuroanatomical investigation. As an MRI-based method, DWI enables the researcher to acquire 

comprehensive, individual-specific datasets in a single imaging session. In contrast, findings 

from invasive methods must be painstakingly synthesized across experiments, methodologies, 

and species. Moreover, because DWI is non-invasive, data about white matter structure can be 

acquired repeatedly on a given individual and combined with behavioral or functional imaging 

data. 

As a relatively new technology, however, DWI requires further validation. The ideal 

validation method for researchers of the human brain, of course, would involve the acquisition of 

DWI data on living humans who have consented to postmortem donation of their brains for 

research purposes; invasive postmortem study could then be used to validate or challenge DWI 
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results. However, the ethical challenges and logistics of coordinating such research are daunting. 

Other possible validation methods include imaging and invasive study of non-human animals, 

imaging of artificial phantoms with known diffusion properties, and comparison of tractography 

results to prior knowledge. 

In the present study, we adopted the latter approach: comparing human fiber tractography 

results to prior expectations of brain connectivity, based on findings from non-human primates. 

These findings were assessed through searches of primary and review literature, as well as by 

queries to the CoCoMac database (Kötter, 2004; Stephan et al., 2001). The advantage of this 

approach was the ability to leverage a large body of neuroanatomical knowledge gathered with 

so-called “gold-standard” techniques: that is, methods such as tracer injection that allow the 

experimenter to conclusively ascertain the presence or absence of a brain connection. We thus 

compared tractography results to prior findings of brain connectivity in a well-studied brain area: 

the frontal eye fields (FEF). This prefrontal cortical region is thought to play an important role in 

oculomotor control, particularly in memory-guided saccades (Lynch & Tian, 2006). In the 

macaque monkey, the FEF is located near the junction of the principal and arcuate sulci (Lynch 

& Tian, 2006). The human FEF is similarly located near the junction of the superior frontal 

sulcus and precentral sulcus (Nieuwenhuys et al., p. 626), and prior neuroimaging investigations 

have suggested that the FEF lies primarily along the anterior banks of these sulci (Rosano et al., 

2002, 2003). 

Of course, the process of ROI definition and hypothesis formulation is complicated by the 

difficulties of interspecies comparison. First, topographical differences in cortex and the 

localization of functionally-specialized brain areas can complicate the finding of inter-species 

homologies, which is necessary for using macaque findings to define human regions of interest. 
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Second, despite the long history of invasive neuroanatomical research in non-human primates, 

the space of possible brain connections in the macaque is likely to be undersampled: particular 

connections may be undocumented simply because they have not yet been investigated. 

Undersampling is a particular problem for formulating hypotheses of null connectivity. Third, 

and relatedly, some published null findings may be due to chance misses or to a lack of 

sensitivity in experimental techniques, a risk which is exacerbated by small sample sizes and 

infrequent replication attempts. (Of course, conservatism in invasive research is ethically 

desirable.) Finally, in addition to the previous three factors, real interspecies differences in brain 

connectivity are likely to exist. Although the frequency and nature of such differences are 

unknown, they could lead to detections of unexpected fiber connections, as well as failures to 

detect connections expected from interspecies comparison. 

We attempted to mitigate these complications through procedural choices. In specifying 

likely target areas of human FEF projections, we limited our investigations to cortical and 

subcortical structures for which strong candidate homologies exist between humans and 

macaques. We addressed the risk posed by differences in morphology and the localization of 

functional areas by defining tractography masks with a wide margin of error; thus, we were 

unlikely to miss a hypothesized connection simply because it had not been included in the mask 

of possible termination points. 

We were particularly cautious in formulating negative predictions about FEF connectivity, as 

the macaque findings that informed these could be influenced by type II statistical error. For 

these cases, we attempted foremost to identify macaque brain areas for which null connections to 

the FEF had been explicitly reported. Secondarily, we included brain areas for which no 

connections were apparent in tests likely to have detected them. We additionally performed 
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tractography at multiple levels of anisotropy thresholding, in order to confirm that observed 

connection densities were not a trivial consequence of tractography parameter choices. 

Moreover, we refrained from making absolute predictions of null connectivity for the human 

homologues of these foil regions. Rather, we frame our hypotheses in terms of denser vs. sparser 

connectivity between high- and low-density ROI sets. We reasoned that a given connection was 

evolutionarily unlikely to be completely non-existent in one primate species (i.e., macaques) but  

densely developed in a related species (humans). We predicted that across datasets, FEF 

connectivity to all hypothesized high-density ROIs would be highly significant. In contrast, we 

predicted that connections to hypothesized low-density ROIs would be generally sparser, and 

that FEF connections to most of these low-density foils would not be significantly different from 

zero when evaluated across multiple datasets. 

 

 

 

2.2 METHOD 

 

2.2.1 Participant Information 

 

Participants were the same 7 individuals (4 male, 3 female, mean age of 26.7 years) who 

contributed data in Experiment 1. For the current analysis, these individuals gave informed 

consent for additional anatomical and functional imaging at the Scientific Imaging & Brain 

Research Center (SIBR) of Carnegie Mellon University, Pittsburgh, PA. 
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2.2.2 FMRI Task Design and Procedure 

 

Participants performed a simple block-design oculomotor task while undergoing functional 

imaging (Figure 34). The display consisted of a circular yellow stimulus on a black background. 

The vertical position of the stimulus remained constant in all task conditions, at the horizontal 

meridian of the display; however, the horizontal position of the stimulus changed in one of two 

ways, depending upon the block condition. In saccade blocks, the stimulus shifted rapidly and 

unpredictably from one horizontal position to another. Stimulus shifts occurred randomly, at 

intervals between 500 and 2000 ms. In the smooth pursuit condition, the stimulus moved 

smoothly back and forth between one side of the display to the other, reversing direction at an 

average interval of 3000 ms. 

Participants were instructed to track the stimulus with overt eye movements, while 

maintaining stable head and neck position. Eye movements were not explicitly monitored; 

however, all participants had prior experience in fMRI experiments, were advised of the need to 

minimize head motion, and were highly compliant with other instructions. Task blocks lasted for 

18 s, and each block was followed by an 18 s period of passive fixation. Data were acquired in 

scanner runs comprising 2 saccade and 2 smooth pursuit blocks; tor each participant, we 

collected two scanner runs of data. The first and last halves of the run both included 1 saccade 

and 1 pursuit block, but the order of these was randomized across runs and individuals. 

Data from the saccade/pursuit task were not collected for one participant. For this individual, 

functional definition of the FEF was based on data from a demanding visual attention task, the 

line search task. Details of this task and its implementation in the MR scanner have been 

previously published (Cole & Schneider, 2007). Briefly, participants must monitor multiple 
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spatial locations for a short line segment, oriented at a target angle. Blocks of this demanding 

search task, which requires high levels of attentional control, alternate with a low-load condition 

in which participants need only respond to a brief blink of the central fixation cross. This task 

has been previously shown to robustly activate the frontal eye fields (Cole & Schneider, 2007). 

 

 

 

 

Figure 34. Oculomotor task used to localize the frontal eye fields. 

 

 

2.2.3 Image Acquisition and Processing 

 

Anatomical and functional MRI data were collected on a 3-Tesla Siemens Verio scanner with 

a 32-channel head coil. Anatomical imaging consisted of a sagittal T1-weighted MPRAGE 
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protocol with 1 x 1 x 1 mm voxels in a 256 x 256 x 176 matrix, TR = 1700 ms, TE = 2.48 ms, 

flip angle = 9˚, and no spacing between slices. Additionally, functional MRI (fMRI) data were 

collected using an echo-planar imaging (EPI) sequence optimized for blood oxygenation level-

dependent (BOLD) contrast. FMRI data were collected with voxel sizes of 3.5 x 3.5 x 3.5 mm in 

a 64 x 64 x 32 voxel matrix, TR = 2000 ms, TE = 29 ms, flip angle = 79˚, and no spacing 

between slices. MPRAGE and EPI images were aligned parallel to the plane between the anterior 

and posterior commissures, and slices were positioned to include the most superior aspect of 

cortex. 

Anatomical images were subsequently reconstructed using the FreeSurfer recon-all pipeline 

(Desikan et al., 2006; Fischl et al., 2002, 2004), as in Experiment 1. The skull-stripped, intensity-

normalized MPRAGE image was used as a reference volume for alignment and analysis of fMRI 

data, as described below. DSI images were the same datasets employed in Experiment 1: each of 

the 7 participants was represented by 2 DSI datasets. As in reliability analyses, DSI data were 

reconstructed using the generalized q-sampling imaging method (GQI; Yeh et al., 2010). 

FMRI data were pre-processed using the AFNI/SUMA (Cox, 1996; Cox et al., 1997) and 

FSL (Smith et al., 2004; Woolrich et al., 2009) software packages. BOLD timeseries were first 

corrected for slice-by-slice differences in time of acquisition. Subsequently, head movement 

parameters were calculated using a mean EPI volume as the reference image. We next calculated 

a 12-point affine transformation between the EPI reference and the processed MPRAGE image 

output by FreeSurfer. This transformation was concatenated with the motion correction 

parameters for each EPI volume and simultaneously applied, in order to prevent unnecessary 

data blurring from multiple spatial interpolations. The processed, spatially-aligned EPI time-

series were then projected onto the cortical surface; the value at each surface node represented an 
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average over 10 steps along the segment projecting normal to the cortical surface over the 

thickness of the cortical gray matter. The time-series for each surface node was normalized on a 

run-by-run basis to a mean value of 100. Finally, functional data were smoothed on the cortical 

surface to a target full-width half-maximum (FWHM) of 4 mm. 

 

2.2.4 Deterministic Tractography Methods 

 

As in Experiment 1, we performed deterministic tractography in DSI Studio, using Euler 

fiber propagation, sub-voxel random seeding, and random choice of initial fiber orientation. We 

employed the same angular threshold and smoothing values that were used in targeted 

tractography (70° and 0.8, respectively). The minimum length constraint was set to 20 mm, in 

order to ensure detection of short-range connections between the FEF and supplementary eye 

field (SEF), located proximal to one another. The maximum length constraint was set to 120 mm, 

in order to allow detection of the most distal FEF connections, but to exclude false fibers that 

might follow improbable looping trajectories throughout the brain. 

We thresholded participants’ quantitative anisotropy (QA) maps using the same tracking 

thresholds used in Experiment 1. However, we calculated additional low and high thresholds 

around this starting level, so that we could examine the consistency of tractography results over a 

range of threshold values. Low and high thresholds were determined by subtracting or adding 

one half of the standard deviation of non-zero QA values within each dataset (Table 12). 

Seed and target ROI masks were created using a process similar to that of Experiment 1. As 

above, cortical ROI masks were created by dilating surface representations of each ROI below 

the white matter surface by 1 x cortical thickness, saving them as binarized MRI volume images, 
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and spatially aligning them with DSI data. Spatial alignment was based on the previously-

computed affine transformation matrices between high-resolution MPRAGE images and DSI B0 

images; alignment was performed using FSL’s FLIRT program with trilinear interpolation and 

no spatial blurring. After alignment, a clipping threshold of 0.1 was applied to each ROI mask to 

prevent the inclusion of voxels that were only minimally occupied by the ROI, thus minimizing 

partial volume effects. Subcortical ROI masks were extracted from the FreeSurfer aparc+aseg 

volume and spatially aligned using the same process applied to cortical ROIs. 

 

 

Table 12. Low, medium, and high QA thresholds for FEF tractography. Medium thresholds 

are the same as those used in Experiment 1. Low and high thresholds were obtained by 

subtracting or adding half a standard deviation to medium thresholds. 

 

Participant Session Low Medium High 
1 1 0.1634 0.5000 0.8366 
1 2 0.2350 0.5761 0.9172 
2 1 0.1878 0.6274 1.0670 
2 2 0.0998 0.4692 0.8386 
3 1 0.1265 0.3631 0.5997 
3 2 0.0932 0.3101 0.5270 
4 1 0.1409 0.3756 0.6103 
4 2 0.0634 0.3086 0.5538 
5 1 0.1858 0.5449 0.9040 
5 2 0.3136 0.7201 1.1266 
6 1 0.1818 0.4585 0.7352 
6 2 0.1483 0.3792 0.6101 
7 1 0.3215 0.5917 0.8619 
7 2 0.2586 0.5195 0.7804 
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2.2.5 Macaque Meta-Analysis and Human ROI Definition 

 

We defined the FEF through statistical contrasts in fMRI data, based on the saccade/pursuit 

task (6 participants) and the line search task (1 participant). Masks of the left and right FEF were 

used as tractography seed points; these masks are described in greater detail in the Results 

section.  

We next reviewed published findings of macaque brain connectivity, with the goal of 

identifying possible high-density target and low-density foil areas for tractography of FEF fiber 

projections. We specifically hoped to identify regions of interest for which approximate human 

homologies could be identified, and which could be defined on the basis of anatomical 

landmarks. FEF projections in the macaque were first identified from review papers and from 

primary literature. For example, the review of Lynch & Tian (2006) identified the pontine nuclei, 

thalamus, superior colliculus, caudate nucleus, and putamen as the subcortical structures most 

strongly connected to the FEF. Notable cortical inputs included functionally-related oculomotor 

control areas: namely, the parietal, prefrontal, and supplementary eyefields, as well as the medial 

superior temporal area and area 7m (Lynch & Tian, 2006). Lynch & Tian note that parietal 

connections form the most prominent of these reciprocal links with the other cortical eyefields; 

additionally, they highlight Barbas & Mesulam’s (1981) report of FEF projections to areas V2, 

V3, and V4, as well as Brodmann’s areas 18 and 19. FEF connections to occipital and temporal 

visual association areas are corroborated by Barbas et al. (1988), who found heavy projections to 

the rostral calcarine fissure and caudal superior temporal sulcus, as well as the occipito-temporal, 

parieto-occipital, inferior occipital, and lunate sulci. Barbas and colleagues also corroborated the 

presence of heavy projections to lateral portions of the intraparietal sulcus. 
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We attempted to further verify these connections through a query to the CoCoMac database, 

which integrates findings about macaque brain connectivity over a diversity of experimental 

methods and anatomical classification schemes (Stephan et al., 2001; Kötter, 2004). Importantly, 

findings recorded in the database rate each entry for the precision of the original report and the 

density of the reported connection, when specified or apparent. Connection densities are rated 

with a zero, a number from one to five, or with an “X”. In this scheme, zero density indicates an 

explicit report of null connectivity; values from 1 to 5 indicate a coarse scale from sparsest to 

densest connectivity; and an “X” indicates that a given connection was reported or apparent, but 

that its density could not be determined. 

A connectivity search using the keyword “FEF” yielded 169 results of specified density and 

91 results of unspecified density. The FEF was identified in these results either eponymously, or 

as area 8a in the scheme of Walker & Walker (1940). Query results (Table 13) confirmed the 

presence of FEF connections with the thalamus (findings from Goldman-Rakic et al., 1985; 

Olszewski, 1952; Romanski et al., 1997; Stanton et al., 1989; and others), caudate nucleus 

(Shook et al., 1991), and putamen (Shook et al., 1991). Cortical projection areas with quantified 

connections included the mid-anterior and mid-posterior cingulate cortices (BA 23, 24), inferior 

and superior temporal cortices, the SEF, premotor cortex, and a wide range of parietal areas. 

Additional connections of unspecified density connected the FEF to dorsolateral prefrontal 

cortex (BA 8, 9, and 46) and to visual association areas in extrastriate and parieto-occipital 

cortex. No findings of collicular or pontine connections were returned by our query; however, we 

treated these connections as verified, on the basis of Lynch & Tian’s (2006) review. That survey 

noted that both superior colliculus and pontine connections were documented by Huerta et al. 

(1986) using a combination of microstimulation and tracer injections; additionally, it reported 
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independent confirmation of FEF-pontine connections by Stanton et al. (1988), Leichnetz et al. 

(1984), and others.  

Based on these findings, we chose subcortical targets for FEF tractography in the striatum 

(caudate nucleus and putamen), thalamus, and superior colliculus (Figure 36). Most high-density 

target ROIs were based on volumes created by the FreeSurfer automatic parcellation and 

segmentation scheme; however, the superior colliculus was hand-traced for each dataset on an 

MPRAGE anatomical image co-registered to the DSI data. We included mid-anterior cingulate 

cortex as an approximate homology to the macaque cingulate motor area (CMA), and the 

posterior superior frontal gyrus in order to represent the SEF. Because of the wide spatial 

distribution of parietal connections, and to compensate for ambiguities in finding macaque and 

human homologies, we deliberately included a large volume of parietal cortex in our 

tractography mask, comprising the angular and supramarginal gyri, intraparietal sulcus, superior 

parietal lobule, precuneus, and subparietal sulcus. 
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Figure 35. Map of target and foil FEF cortical projection areas. FEF connectivity was 

assessed through CoCoMac-based meta-analysis. FEF is labeled in purple; target regions are 

labeled in green; and foil regions are labeled in red. Cyan-colored regions indicate ambiguous or 

conflicting evidence for FEF connectivity. All area names refer to the macaque brain atlas of 

Lewis & Van Essen (2000). SMA: supplementary motor area; LIP: lateral intraparietal area; IT: 

inferotemporal cortex. Subcortical foils and targets are not shown. 
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Table 13. Summary of CoCoMac query of FEF connectivity. Connection density is either 

unspecified, or else rated from 0 to 5: a report of 0 indicates a reported null connection, while a 

report of 5 indicates very dense connectivity. Entries in red indicate explicitly null connections. 

Entries in blue indicate conflict between explicit reports of null and positive connections. 

 

Region Number of 
observations 

Mean density 
(0-5) 

Std. dev. Add’l. 
observations, 
unspecified 
density 

Amygdala 9 0 0  
Auditory cortex 18 0.17 0.38 4 
Caudate 7 3 0  
Claustrum 2 1.5 0.71  
Inferior temporal 3 1.33 1.15 6 
Insula 1 0 0 1 
Limbic cortex     

23 5 0.8 0.45 1 
24 5 0.8 0.45  
25 1 0 0  
32 2 0 0  

CMA 2 0.5 0.71 2 
Lateral PFC     

8    2 
9    1 
46    7 

Middle/superior 
temporal 

13 0.92 1.44 13 

Orbitofrontal cortex     
10 2 0 0 1 
11 1 0 0  
12    1 
13 1 0 0  
14 1 0 0  

orbital 
proisocortex 

1 0 0  

Parietal cortex 11 0.91 1.30 9 
Parieto-occipital    6 
Peristriate/extrastriate    13 
Premotor 7 0.57 0.79 5 
Primary motor 12 0 0 1 
Primary visual 3 0 0  
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Table 13 (continued)     
Putamen 9 3 0  
SEF 2 3 0  
Somatosensory    2 
Substantia nigra 1 1 0  
Temporal pole 1 0 0  
Thalamus 37 1.46 1.04 11 

 

 

We did not include lateral prefrontal cortex as a region of interest, due to the difficulty of 

forming hypotheses about FEF connection density in this area of the brain. The prefrontal cortex 

may represent the region of greatest elaboration in human beings, relative to non-human primates 

(Hill et al., 2010; Orban et al., 2004; van Essen, 2004); this expansion complicates interspecies 

comparison. This problem is exacerbated by the fact that connections between oculomotor 

control areas in lateral PFC and the FEF have received relatively little investigation: we note that 

in CoCoMac query results, none of the reported lateral PFC connections included assessments of 

connection density. In contrast, a number of quantified and unquantified connections were 

reported to various parts of parietal cortex. We also chose not to test visual association and 

oculomotor control areas in extrastriate cortex, inferior temporal cortex, and superior temporal 

cortex, because these targets could not be well defined using anatomical ROIs in the FreeSurfer 

segementation/parcellation scheme.  

Specification of low-density foil ROIs for FEF tractography was more complicated, as 

absence of evidence could not be taken as evidence for null connectivity. To the extent possible, 

we attempted to define ROIs on the basis of explicit negative reports of FEF connectivity. 

Defining foils was also difficult due to the relative coarseness of FreeSurfer-defined anatomical 

ROIs. As discussed above, low-density foil areas were thus not intended to represent absolute 
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hypotheses of null connectivity; however, we predicted that they would have sparser connections 

with the FEF than did target ROIs.  

On the basis of the CoCoMac query results (Table 13), we included the amygdala as a foil 

region, given multiple reports of null connections between its constituent nuclei and the FEF. We 

also included the globus pallidus as a foil region, as we could find no evidence of reported 

connections with the FEF either in CoCoMac query results or in a broader literature search. 

Although FEF connections to the caudate nucleus and putamen are well established, review 

papers that discussed them made no mention of pallidal connections (Harting & Updyke, 2006; 

Lynch & Tian, 2006). We note that this pattern of connectivity is consistent with a general theory 

of computational loops connecting cortex, the basal ganglia, and the thalamus (Narayanan, 

2003), in which the globus pallidus is only indirectly connected to cortex and tonically inhibits 

thalamic input to cortex. We were similarly unable to find any reports of FEF connectivity to the 

hippocampus; thus, this structure was also included in the foil set.  

Cortically, we included the anterior cingulate cortex as a low-density foil, representing an 

approximate homologue of Brodmann’s areas (BA) 25 and 32. Additionally, we included 

frontomarginal and frontopolar areas, given explicit reports of null connectivity to BA 10. We 

note, however, that the evidence for null connectivity in BA 10 is apparently contradicted by one 

report of an unquantified connection to this area, possibly indicating differences in methodology 

or taxonomy across studies. Similarly conflicting evidence existed for the insula; however, we 

chose to include this region in the foil set, reasoning that weak support for its connectivity to the 

FEF implied, at most, a sparse connection. Given several reports of null connectivity to primary 

motor areas, and the sparsity of evidence for projections to somatosensory cortex, we also 

included the central sulcus and postcentral gyrus as foil regions. We note, however, that 
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CoCoMac results included two reports of unquantified connections between BA 8 (approximate 

location of the macaque FEF) and somatosensory cortex, to BA 1 and 3a (Barbas et al., 1988). In 

light of multiple reports of null connectivity to macaque area V1, we included the occipital pole 

and calcarine sulcus as low-density foils; however, we note that overlap of these anatomically-

defined ROIs with functional areas V2, V3, or V4 could result in some detection of FEF fiber 

projections, most likely near the borders of those ROIs. We also included portions of the 

transverse temporal gyrus, transverse temporal sulcus, and mid-anterior superior temporal gyrus 

in the foil set, due to multiple reports of null FEF connectivity to auditory cortex. However, we 

note that a minority of observations (3 of 18, all from Hackett et al., 1998) did report positive 

connections in the vicinity of the caudal auditory belt; given these findings, we considered sparse 

connectivity to this part of temporal cortex as a possibility. Finally, we included the temporal 

poles as foils, given a previous report of null connectivity. 
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Figure 36. High-density target and low-density foil masks for FEF tractography. Target and 

foil ROIs are green and red, respectively. Masks are shown for one representative participant. 

FEF ROIs are not shown. 

 

 

2.2.6 Statistical Methods & Hypotheses 

We compared the fiber projections to ROIs in the high-density target and low-density foil set 

using a combination of repeated measures ANOVAs and post-hoc one- and two-sample t-tests. 

Omnibus ANOVAs were performed separately for each level of tracking threshold tested (low, 

middle, and high); they included fixed factors of ROI group (high-density targets vs. low-density 

foils) and hemisphere (left/right), plus a random factor of participant. We predicted greater fiber 

density for targets than foils. No effect of hemisphere or interactive effect was predicted. We 
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performed subsequent one-sample t-tests on fiber density values for each ROI tested versus a 

null hypothesis of zero density, collapsing across hemisphere and participant. Due to the large 

number of tests involved (30 ROIs), a Bonferroni correction was applied to adjust the familywise 

error rate. We predicted that connection density for all targets would be significantly greater than 

zero; in contrast, we predicted that connection density for many foil ROIs would be less reliable. 

Finally, we conducted post-hoc tests to compare the density of each connection from the target 

set to the total distribution of fiber densities in the foil set; we predicted that individual target 

connections would be significantly greater than foil connections. As above, a familywise error 

rate of alpha=0.05/30 was employed to compensate for multiple comparisons. 

 

 

 

2.3 RESULTS 

 

2.3.1 ROI Definition 

 

Tractography seed masks were created by defining the FEF through statistical contrasts in 

fMRI data. For 5 of 7 participants, the left and right FEF were defined through a contrast of all 

task conditions against a resting baseline in the saccade/pursuit localizer task. This contrast was 

thresholded at a significance level of at least p<0.01, corrected for multiple comparisons using 

the false discovery rate technique (Benjamini & Hochberg, 1995; Logan & Rowe, 2004); an 

exception to this criterion was made for defining the right FEF in one participant, and an FDR-

corrected level of p<0.05 was used instead. For the sixth participant in the saccade/pursuit task, 
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the contrast of all blocks vs. baseline produced noisy results, unsuitable for functional 

localization of the FEF; instead, the FEF was defined from the overall F statistic for the general 

linear model, thresholded at an FDR-corrected significance level of p<0.001. For the remaining 

participant, the FEF was defined from the contrast of high-control search vs. the low control 

baseline in the line search task (Cole & Schneider, 2007), thresholded at a corrected value of 

p<0.001. 

Previous functional imaging investigations of the human FEF have localized it to the 

precentral sulcus (particularly the anterior bank) and the posterior portion of the superior frontal 

sulcus (Rosano et al., 2002, 2003). In all datasets, the FEF was identified as the cluster of 

functional activation at this location. In some cases, FEF activation was continuous with motor-

related activation in the precentral gyrus and with activation of the supplementary eye field 

(SEF), located on the medial wall and most dorsal aspect of the posterior portion of the superior 

frontal gyrus. In these cases, anatomical masks of the SFG and precentral gyrus were used to 

mask activation maps and isolate the core of the FEF. 

Table 14 reports volumes of the final left and right FEF ROIs for all datasets, as well as the 

ratio of left vs. right FEF volume. As expected, the between-session, within-subject correlations 

of FEF volume were high [r=0.89, p<0.0001, 95% confidence interval=0.74, 1.0]. This 

correlation was unsurprising, since FEF masks for paired DSI datasets were based on the same 

fMRI data, collected in a third imaging session. Less expected were the hemispheric differences 

in ROI volume: in all but one dataset, right FEF activation was more extensive than in left FEF, 

creating a reliable hemispheric bias [t(13)=4.8, p<0.001]. Although unanticipated, this effect is 

consistent with a theorized right-hemisphere bias in attentional and perceptual processing. 
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Table 14. Mask sizes for left and right FEF. 

Participant Session Left FEF voxel 
count 

Right FEF voxel 
count 

Left/right ratio 

1 1 539 998 0.54 
1 2 563 962 0.59 
2 1 257 443 0.58 
2 2 241 210 1.15 
3 1 480 494 0.97 
3 2 576 630 0.91 
4 1 383 489 0.78 
4 2 391 485 0.81 
5 1 333 762 0.44 
5 2 323 701 0.46 
6 1 368 438 0.84 
6 2 372 461 0.81 
7 1 432 530 0.82 
7 2 294 471 0.62 

We additionally compared the volumes of ROI masks for high- and low-density sets, since a 

large discrepancy would raise the possibility that overall differences in fiber density were simply 

due to the difference in mask size. Figure 37 shows the mean across sessions and hemispheres of 

total target mask vs. total foil mask volume, with standard error bars. Target masks were reliably 

larger than foil masks [t(27)=4.9, p<0.0001]. However, this effect was relatively modest: the 

mean difference of 803 voxels was equivalent to approximately 10% of total foil mask volume. 

Still, in later analysis we considered whether the difference in mask volumes could have biased 

the comparison of fiber densities for target vs. foil ROI sets. 
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Figure 37. Combined mask sizes for high-density targets and low-density foils. 

 

 

2.3.2 Target vs. Foil Comparison 

 

We first tested the overall density of target vs. foil ROI connections at the medium 

anisotropy threshold, corresponding to the thresholds used in Experiment 1. An ANOVA with 

fixed factors of ROI group and hemisphere, as well as a random factor of participant, was 

conducted on fiber density values. This analysis indicated a main effect of ROI group [F(1, 

830)=42.5, p<0.0001]. Neither the main effect of hemisphere [F(1,830)=0.1, p<0.8] nor the 

interaction of ROI group with hemisphere [F(1,830)=2.5, p<0.2] were significant. As previously 

noted, the total volume of ROI masks for the high-density target set was consistently larger than 

in the low-density foil set, raising the concern that tractography could have been biased to detect 
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in the low-density foil set, raising the concern that tractography could have been biased to detect 

fibers projecting to target ROIs. However, the observed pattern of results makes this artifactual 

explanation unlikely. The mean density of projections to target ROIs was 26.5 (41.5), compared 

to 5.0 (6.2) for foil ROIs; this difference is disproportionately larger than the difference in 

tractography mask volumes. 

We also found a consistent hemispheric asymmetry in the volume of FEF ROI masks, as 

described above. We thus asked whether or not an effect of hemisphere could be found upon 

simple fiber counts, unnormalized by ROI volume. However, an ANOVA on fiber count values 

produced the same pattern of effects as fiber density analysis: although the effect of ROI group 

was highly significant [F(1,830)=101.2, p<0.0001], we again found null effects of hemisphere 

[F(1,830)=0.0, p<0.9] and condition by hemisphere [F(1,830)=0.6, p<0.5]. 

Post-hoc tests on the low-density foil set revealed only two connections that were 

significantly different from zero, after correction for multiple comparisons: projections from FEF 

to the central sulcus and to the postcentral gyrus. These projections most likely indicate 

connections with primary motor and somatosensory cortices. Although connections to 

homologous areas in the macaque have not been widely reported, they have precedence in 

Barbas et al.’s (1988) finding of connections from macaque area 8 to areas 1, 3a, and 4c. 

Connection density values for other ROIs exhibited significant variability across datasets: 

notably, the insula, globus pallidus, and hippocampus received dense FEF projections in some 

datasets, but no projections in others. This variability is discussed below in greater detail. 
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Figure 38. Fiber connections from FEF to subcortical targets. FEF is shown in yellow, 

thalamus in green, putamen in red, and caudate in blue) Top: coronal view of representative 

tracts for participant 1. Session 1 results are on the left; session 2 results are on the right. Images 

are presented in radiological orientation. Bottom: coronal view of subcortical projections for 

participants 2–7. For these 6 participants, results are shown for only the first session; however, 

tractography and subsequent analysis were performed in all 14 available DSI datasets. 



 136 

 

 

 

Figure 39. Fiber connections from FEF to posterior parietal cortex.  Top: axial view of 

representative tracts for participant 1. Session 1 results are on the left; session 2 results are on the 

right. Images are presented in radiological orientation, with the left hemisphere displayed on the 

right side of each image. Bottom: sagittal view of PPC projections for participants 2–7. For these 

6 participants, results are shown for only the first session; however, tractography and subsequent 

analysis were performed in all 14 available DSI datasets. 
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Figure 40. Fiber connections from FEF to the superior frontal gyrus. SFG projections 

represent probable connections to the supplementary eye fields (SEF). Top: axial view of 

representative tracts for participant 1. Images are presented in radiological orientation. Bottom: 

coronal view of SFG/SEF projections for participants 2–7. For these 6 participants, results are 

shown for only the first session; however, tractography and subsequent analysis were performed 

in all 14 available DSI datasets. 
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Figure 41. Mean fiber density of connections to foil ROIs. Asterisks indicate significant 

differences from a zero baseline, determined using a one-tailed t-test. Error bars represent 1 

standard error above and below the mean. The abbreviation “g.” indicates gyrus; “s.” indicates 

sulcus. Fiber density is calculated as the total number of virtual fibers in a tract (and thus, the 

number of endpoints) divided by the number of voxels in the ROI. 
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Table 15. Significance of FEF connections to foil ROIs. Significance vs. a zero baseline is 

indicated by an asterisk; the threshold for significance was p<0.05/30, representing a Bonferroni-

adjusted familywise error rate of 0.05. 

Region t, df=27 p (uncorrected) 95% C.I. of connection density 
(fibers per voxel) 

Amygdala 1.2 0.3 -7.2 26.6 
Anterior cingulate cortex 1.9 0.07 -0.1 4.1 
Frontomarginal G/S 2.5 0.02 0.1 0.9 
Transverse frontopolar G/S 2.5 0.02 0.0 0.3 
Insula (lg/central S) 2.4 0.03 2.6 37.8 
Short insular G 1.9 0.06 -0.7 24.2 
*Postcentral G 3.7 0.001 1.2 4.2 
STG/transverse temporal G 2.1 0.05 0.0 3.0 
STG/polar plane 2.1 0.05 0.1 6.8 
Hippocampus 1.4 0.2 -4.3 24.7 
Pallidum 2.3 0.03 1.9 35.1 
Occipital pole 0.0 1.0 0.0 0.0 
Temporal pole 2.0 0.05 0.0 0.2 
Calcarine S 1.0 0.3 0.0 0.1 
*Central S 6.0 0.0000 3.1 6.4 
Anterior insula (circular S) 1.5 0.15 -0.8 5.0 
Inferior insula (circular S) 2.5 0.02 0.3 2.9 
Transverse temporal S 1.4 0.2 0.0 0.1 
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Figure 42. Mean fiber density of connections to target ROIs. Asterisks indicate significant 

differences from a zero baseline, determined using a one-tailed t-test. Error bars represent 1 

standard error above and below the mean. Parietal cortex ROIs were collapsed into a single test. 

SFG/SEF indicates the superior frontal gyrus, including the supplementary eye field. Fiber 

density is calculated as the total number of virtual fibers in a tract (and thus, the number of 

endpoints) divided by the number of voxels in the ROI. 
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Table 16. Significance of FEF connections to target ROIs. Significance vs. a zero baseline is 

indicated by an asterisk; the threshold for significance was p<0.05/30, representing a Bonferroni-

adjusted familywise error rate of 0.05. 

 

Region t, df=27 p (uncorrected) 95% C.I. of connection 
density (fibers per voxel) 

*Caudate 3.9 0.0005 62.9 201.0 
*Mid-anterior cingulate 4.3 0.0002 1.5 4.4 
*Posterior SFG/SEF 8.0 0.0 34.0 57.6 
*Angular gyrus 4.1 0.0003 3.6 10.8 
Supramarginal gyrus 3.4 0.002 0.1 0.3 
*Superior parietal lobe 3.7 0.0009 3.2 11.0 
Precuneus 3.1 0.005 0.3 1.7 
*Putamen 7.2 0.0 67.9 121.9 
*IPS 3.9 0.0005 1.6 5.0 
Subparietal sulcus 1.6 0.13 -0.1 0.5 
Superior colliculus 2.5 0.02 0.4 3.7 
*Thalamus 7.1 0.0000 15.3 27.6 
 

 

 Deterministic tractography results for target ROI connections are shown in Figures 38-40. 

Hypothesized projections from the FEF to target ROIs were found for nearly all participants and 

sessions (Table 17), although the density of these connections exhibited considerable variability. 

Post-hoc tests on the target set indicated significantly non-zero connections to 8 out of 12 ROIs, 

corresponding to a hit rate of 75 percent. The densest of these connections were to the posterior 

SFG (the anatomical location of the SEF), the thalamus, and the putamen. In some datasets, no 

FEF projections were found to the supramarginal gyrus, superior colliculus, or subparietal 

sulcus. The fiber density confidence intervals for these three ROIs and the precuneus had lower 

bounds near or below zero (Table 16); consequently, these connections were non-significant at 

the corrected significance threshold that we employed (p=0.05/30, due to the 30 target and foil 
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ROIs tested per hemisphere). Connections to the supramarginal gyrus, in particular, closely 

missed significance at our adjusted criterion.  

We next compared each connection from the target set to the total distribution of fiber 

density values in the foil set, using two-sample, two-tailed t-tests and assuming unequal variance 

between samples. The results confirmed that the caudate nucleus, posterior SFG/SEF, putamen, 

and thalamus exhibited significantly denser connectivity than did ROIs in the low-density foil 

set. However, connections to other target ROIs were not significantly denser than to foils. Of 

those ROIs that failed to show significantly non-zero connections, three (supramarginal gyrus, 

precuneus, and subparietal sulcus) had significantly lower mean fiber density than in the foil 

distribution. 

The relative weakness of parietal connections, particularly to the IPS, was surprising given 

the functional significance of connections between FEF and parietal eyefields (Lynch & Tian, 

2006). We speculated that reliable connections to the central sulcus and postcentral gyrus might 

have skewed the distribution of density values in the foil set and blurred its distinction from the 

target ROI set. However, the FEF-IPS connection remained statistically equivalent to the foil set 

after exclusion of the central sulcus and postcentral gyrus [t(171)=-1.3, p<0.2]; the same was 

found for the FEF-SPL connection [t(48)=0.9, p<0.4]. Under these test conditions, connections 

to the subparietal sulcus, supramarginal gyrus, and precuneus remained significantly sparser than 

the average connection to foil ROIs. Thus, the apparent sparseness of parietal projections did not 

result from the inclusion of outlier values in the low-density foil set. Rather, it may be due to the 

size of these areas: the anatomical ROIs employed in this analysis may include a large proportion 

of functionally non-relevant cortical surface, diluting the fiber density values that we employ. 
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Table 17. Count of detected FEF connections to target ROIs. Values indicate number of 

subjects, summed separately by hemisphere and session. Maximum possible count in each case 

is 7, based on the number of participants tested. 

Session 1 Session 2 
Left Right Left Right 

Caudate 7 7 7 7 
Mid-anterior cingulate 7 7 7 6 
Posterior SFG/SEF 7 7 7 7 
Angular gyrus 7 7 7 7 
Supramarginal gyrus 6 5 6 6 
Superior parietal lobe 7 7 7 7 
Precuneus 7 7 7 5 
Putamen 7 7 7 7 
IPS 7 7 7 7 
Subparietal sulcus 4 3 2 5 
Superior colliculus 5 5 7 6 
Thalamus 7 7 7 7 
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Table 18. Significance of target ROI connections relative to foil connection density. Baseline 

was the mean density of FEF connections to foil ROIs. Significance is indicated by an asterisk; 

the threshold for significance was p<0.05/12, representing a Bonferroni-adjusted familywise 

error rate of 0.05. 

 

Region t df (adjusted) p (uncorrected) 
*Caudate 3.8 27 0.0008 
Mid-anterior cingulate -1.7 205 0.09 
*Posterior SFG 7.0 29 0.0 
Angular gyrus 1.1 46 0.3 
*Supramarginal gyrus -4.9 505 0.0 
Superior parietal lobe 1.0 43 0.3 
*Precuneus -3.8 505 0.0002 
*Putamen 6.8 27 0.0 
IPS -1.3 138 0.2 
*Subparietal sulcus -4.8 518 0.0 
Superior colliculus -2.3 147 0.03 
*Thalamus 5.2 33 0.0 
 

 

  



145 

2.3.3 Topography of Target Projection Endpoints in FEF 

Relatively little is known about the topography of fiber terminations within the FEF from 

various cortical and subcortical sources. To address this question, we plotted average endpoint 

fields (computed across all 14 datasets) for ROIs in the target set. The results are shown 

separately for subcortical and cortical sources in Figures 43 and 44. The densest and most 

widespread projections were from the putamen: these covered the fundus, anterior bank, and 

posterior bank of the precentral sulcus; they also extended anteriorly into the posterior portion of 

the superior frontal sulcus. Laterally, putamen projections reached approximately to the border 

between the upper and lower portions of the precentral sulcus. Medially, they included portions 

of the superior frontal gyrus, although a portion of these most medial endpoints may represent 

projections to the supplementary eye fields (SEF). Caudate projections were also widespread, 

and in the right hemisphere they extended further laterally than putamen fibers, to encompass 

part of the inferior portion of the precentral sulcus. Thalamic projections also extended laterally. 

Importantly, termination fields from all three subcortical sources appeared to have roughly the 

same center of mass, lying approximately in the precentral sulcus, near its intersection with the 

superior frontal sulcus and close to the middle frontal gyrus. This localization agrees with current 

consensus regarding the location of the human FEF (Amiez & Petrides, 2009; Paus, 1995; 

Rosano et al., 2002, 2003).  

Cortical projections to the FEF were centered around the same location but exhibited more 

region-by-region heterogeneity in their termination fields (Figure 44). Projections from the 

SFG/SEF, like putamen projections, extended into the posterior portion of the SFS and covered 

the fundus and banks of the superior precentral sulcus. In contrast, projections from posterior 
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parietal cortex (PPC) were more selective: PPC terminations were densest in the SFS, just 

anterior to its junction with the precentral sulcus, and in the lateral portion of superior precentral 

sulcus. Middle/anterior cingulate cortex projections principally terminated at the dorsomedial 

extreme of the precentral sulcus, near the junction of the precentral and superior frontal gyri. 

These cingulate terminations were much more prominent in the left hemisphere than in the right. 

 

2.3.4 Effects of Anisotropy Threshold 

 

In addition to the results reported above, we tested FEF connectivity to target and foil ROIs 

at lower and higher anisotropy thresholds. In doing so, we sought to determine whether the 

observed pattern of results was specific to a single threshold, or else generalized across a range 

of possible parameter values. An ANOVA on tractography generated using a low QA threshold 

(half a standard deviation below the thresholds used above) revealed a main effect of ROI group 

[F(1,830)=10.7, p<0.001], but no main effect of hemisphere [F(1,830)=0.0, p<1] or interaction of 

ROI group with hemisphere [F(1,830)=0.8, p<0.4]. Tests of tractography generated at a high 

threshold indicated a qualitatively identical pattern of results: a significant effect of ROI group 

[F(1,830)=56.6, p<0.0001], but no effect of hemisphere [F(1,830)=0.0, p<1] or interactive effect 

[F(1,830)=0.0, p<0.9]. These results corroborated our initial findings, based on the anisotropy 

thresholds used in Experiment 1. Furthermore, they confirm that although fiber tracking results 

are influenced by tractography parameters, qualitative conclusions about fiber connectivity can 

remain consistent over substantial variability in procedural choices like tracking threshold. 
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Figure 43. Endpoint fields of subcortical projections to FEF. Red=putamen, green=thalamus, 

yellow=caudate. Average results (across subjects and sessions) shown on an inflated surface 

representation of MNI template brain. Darker gray indicates concavities (i.e., sulci), while lighter 

gray indiciates convexities (i.e., gyri). FEF label indicates frontal eye field location; MFG, 

middle frontal gyrus; SFS, superior frontal sulcus; PrCG, precentral gyrus. All maps were 

thresholded to mask out nodes with density less than 5 fibers. 
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Figure 44. Endpoint fields of cortical projections to FEF. Red=superior frontal 

gyrus/supplementary eye field (SFG/SEF), green=dorsal and medial posterior parietal cortex 

(superior parietal lobule, precuneus, intraparietal sulcus, and subparietal sulcus), yellow=ventral 

and lateral posterior parietal cortex (angular and supramarginal gyri), blue=middle/anterior 

cingulate cortex. Average results (across subjects and sessions) shown on an inflated surface 

representation of MNI template brain. Darker gray indicates concavities (i.e., sulci), while lighter 

gray indiciates convexities (i.e., gyri). FEF label indicates frontal eye field location; MFG, 

middle frontal gyrus; SFS, superior frontal sulcus; PrCG, precentral gyrus. All maps were 

thresholded to mask out nodes with density less than 5 fibers. 
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2.4 DISCUSSION 

 

Tractography results broadly conformed to hypotheses based on extant knowledge of 

macaque brain connectivity. Expected FEF connections were consistent across sessions and 

individuals, particularly projections to the thalamus, striatum, and the supplementary eye fields. 

Importantly, connection density to subcortical targets and the SEF was significantly greater than 

in a set of foil connections, which we predicted to have sparser connections with the FEF. 

Across datasets, the FEF was also reliably connected to the angular gyrus, superior parietal 

lobule (SPL), and intraparietal sulcus. We note that functional connectivity analysis has 

previously linked two of these regions (SPL and anterior IPS) to the FEF (Nelson et al., 2010). 

Despite their reliability, however, parietal connections were not reliably denser than connections 

to ROIs in the low-density foil set. Post-hoc testing suggested that this relative weakness, 

compared to low-density foil ROIs, was not a consequence of connections to the central sulcus 

and postcentral gyrus. Rather, we speculate that the wide fanning of FEF projections across 

parietal cortex may have diluted the density of these projections in any single parietal region. 

We also detected reliable connections from the FEF to areas of the central sulcus and 

postcentral gyrus, which are associated with the posterior extent of primary motor cortex and 

with primary somatosensory cortex (Niewenhuys et al., p. 607, 623). In CoCoMac query results, 

corresponding reports in the macaque were limited to a single study, in which the FEF was not 

functionally identified (Barbas, 1988). Thus, it is unclear whether our findings indicate real 

connections with the FEF, or else false fiber streamlines resulting from confusion of FEF 

projections and independent inputs to motor and somatosensory cortex. 
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The variability of fiber density across datasets was not surprising, given our results in 

Experiment 1. We note that some foil ROIs showed dense connections in a few individual 

datasets (evident in the breadth of 95% confidence intervals in Table 15), but that those 

connections were ultimately non-significant when assessed across all participants, sessions, and 

hemispheres. Particularly dense projections were observed to the globus pallidus, hippocampus, 

and insula. Given the proximity of these areas to target ROIs, such as the thalamus, caudate, and 

putamen, we speculate that these dubious foil connections may result from false continuations or 

branchings off of valid FEF projection pathways. We note that while such false continuations 

represent a pervasive problem in DWI-based tractography, they are rarely reported or discussed. 

We additionally found consistent hemispheric differences in the volume of the functionally-

defined FEF; however, no hemispheric differences in FEF connection density or fiber count were 

found. It is unclear whether the differences in ROI mask size correspond to true differences in 

the spatial extent of the right vs. left FEF. Alternatively, the greater volume of right hemisphere 

FEF masks could be an artifact of the BOLD response: that is, more intense neuronal activation 

in FEF could lead to a larger metabolic response, distributed over a wider volume in the right 

hemisphere than the left. It is possible that more detailed analysis of the spatial dispersion of 

fiber endpoints in left vs. right FEF can help clarify this ambiguity. 
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2.5 INTERIM CONCLUSION 

 

Comparison of DSI-based tractography to prior neuroanatomical knowledge represents one 

form of methodological validation. In the current study, hypothesis-driven investigation of the 

frontal eye field revealed known connections to both subcortical and cortical targets. We further 

compared the density of fiber projections to these targets with connections to an alternate set of 

brain areas hypothesized to have null or sparse connectivity with FEF. This comparison of 

targets and foils produced mixed results, suggesting possible overlap in the fiber density 

distributions for true and false connections. However, given the difficulty of making absolute 

predictions of connection presence or absence, it is also possible that some observed projections 

to foil set ROIs represent true but previously undocumented connections with the FEF. 

Methods are still under development for applying fiber tractography to cognitive 

neuroscience hypotheses. Our research group has previously used DSI-based tractography to 

address questions about topographic relationships in fiber data, such as the preservation of 

somatotopic mapping in the brainstem (Verstynen et al., 2011) and the relation of attendotopic 

mapping in parietal cortex to retinotopic representations in early visual cortex (Greenberg et al., 

2012). In contrast, the current paper presents an approach for testing hypotheses about relative 

connection density. Our results indicate that DSI-based tractography produces assessments of 

white matter connectivity which conform to extant data from invasive research in non-human 

animals. At the same time, these results confirm our findings in Experiment 1 of significant noise 

levels in tractography results, which can result from both random fluctuations in anisotropy 

estimates and systematic biases in tractography algorithms. The effect of this noise upon tract 

detection and reliability must be taken into account in applications of DSI-based tractography. 
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3.0 GENERAL DISCUSSION 

 

 

 

3.1. RELIABILITY AND VALIDITY OF DSI TRACTOGRAPHY 

 

The current study has made a significant contribution to the understanding of between-

session reliability in DSI-based tractography, using complementary overlap and correlation 

metrics to illustrate both strengths and weaknesses of the method. We feel that these results 

present a valuable counterpoint to two previous studies on the reliability of DSI-based 

tractography (Bassett et al., 2011; Cammoun et al., 2012) , which reported near perfect 

replicability of global tracking results. In contrast, we have demonstrated the presence of 

significant noise levels within individual DSI datasets; fortunately, this noise appears to be 

remediable through between-session and between-subject comparison. 

Based on results of the intercortical connectivity analysis (Part 1), we propose that averaging 

of multiple observations from a single individual is a viable (and perhaps preferable) alternative 

to post-hoc thresholding of a single dataset from that individual. Our analyses indicated that the 

most and least reliably detected fiber tracts spanned similar ranges of fiber density. This high 

degree of overlap suggests that thresholding tractography based on fiber density may both mask 

out valid fibers and fail to eliminate some false fibers. Of course, we note that Cammoun et al. 
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(2012) and Bassett et al. (2011) appear to have achieved high reliability scores partly through the 

use of thresholding methods based on fiber density or counts. It is possible that in these two 

studies, thresholding was sufficient to filter out most fibers resulting from randomly-distributed 

noise in the underlying diffusion data. However, the results of the current studies suggest that 

such thresholding might simultaneously have filtered out an unknown number of true but sparse 

fiber tracts. 

Systematic examination of hit and false alarm rates in DWI-based tractography could help in 

determining the merits of post-hoc thresholding of brain graphs vs. other techniques for noise 

reduction. Our investigation of projections from the frontal eye fields (FEF) to various target and 

foil brain areas provided evidence of discriminability between true and false fiber distributions. 

In comparison to a zero baseline, eight of 12 target ROIs had significant FEF projections, while 

only 2 of 18 foil ROIs did. However, putative target connections had significant variability in 

fiber density, even for connections known to exist on the basis of evidence from invasive studies. 

Furthermore, only 4 of 12 target ROIs (caudate nucleus, posterior SFG/SEF, putamen, and 

thalamus) exhibited reliably greater fiber density than foil connections when compared directly. 

These findings again suggest that density- and count-based metrics may not be an optimal basis 

for removing noise from deterministic tractography results, due to the overlap in true and false 

fiber density distributions. 

One caveat to the approach of reducing noise through multiple DSI scans is the variability 

that we observed in the intercortical connectivity analysis when all datasets were compared, 

collapsing across factors of subject and session. The set of MOD connections—that is, 

connections detected across all 14 DSI datasets—numbered only about 1000 of a possible 11175 

intercortical connections and represented, on average, 24 % of the connections detected in any 
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single dataset. Further investigations should attempt to verify that this variability truly relates to 

brain connectivity differences between individuals. Alternatively, it is possible that similar 

variability would be observed by making a large number of observations within a single 

individual—for example, 14 DSI scans from the same participant, rather than the 2 scans 

performed in the current study. We note that prior studies by Bassett et al. (2011) and Cammoun 

et al. (2012) were also limited to only two observations per participant. If reliability scores 

reported by those authors and the current study are inflated by chance overlap in noisy fibers, 

including a larger number of replications per individual will reduce such overlap and yield a 

corrected reliability score. 

 

 

 

3.2. PROCEDURAL CHOICES IN DETERMINISTIC TRACTOGRAPHY 

 

The current study also examined a key procedural question that many DWI studies address in 

passing, if at all: namely, the choice between targeted and global approaches to seeding and fiber 

propagation. As we have demonstrated, these two approaches are characterized by large 

differences in detection power, as well as modest differences in between-session reliability. This 

difference is crucial to communicate to the broader imaging community, as more researchers 

begin to adopt DWI-based tractography into their research. At present, the global approach 

appears to be widespread in studies of whole-brain connectivity using deterministic tractography. 

The global approach is appealing because of its computational efficiency and because it ensures 

that all fibers of interest are generated using the same set of parameters. The converse of this 
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argument, of course, is that global seeding and propagation may compel the researcher to accept 

trade-offs, choosing tracking parameters and/or ROI constraints that are sub-optimal for some 

fibers of interest. Furthermore, global tractography usually involves a much larger array of 

possible seed points than targeted tractography, lowering the probability that any one trajectory 

will be sampled. Finally, a considerable downside of global tractography is the sheer volume of 

results generated: at present, the field has no automated tool for assessing the validity and quality 

of all the elements in a whole-brain connectivity matrix, even one based on simple anatomical 

units such as those provided by the FreeSurfer parcellation scheme. Given these practical 

concerns, we presently advocate for the use of targeted tractography to address limited 

anatomical hypotheses. 

Of course, one concern with targeted tractography is that it may allow researchers, 

intentionally or unwittingly, to shape tractography results to match expectations. While this 

concern is reasonable, we feel that aspects of the current results help to mitigate the concern. In 

particular, a systematic parameter sensitivity test (Part 1) indicated that while tractography 

results did depend on user-set tractography variables, this dependency followed interpretable 

patterns, and accurate results were not limited to an arbitrary combination of parameter values. 

Likewise, our core finding in Part 2—greater fiber density in FEF projections to target than foil 

ROIs—was consistent over low, medium, and high values of the user-set tracking threshold (i.e., 

quantitative anisotropy). 

On the basis of these findings, we conclude that tractography results are resistant to 

reasonable variations in key tractography variables. However, it is worthwhile to describe in 

greater detail the effects we observed in response to parameter manipulations. In the 

corticospinal tract parameter test of Part 1, we orthogonally manipulated tracking threshold, 
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angle threshold, and smoothing (a momentum parameter). Statistical analysis of accuracy scores 

for the resulting tracts suggested that angle and tracking thresholds exerted the largest effects 

upon results, both independently and in interaction with one another; these variables are also 

employed in other tractography software packages. In general, as one of these parameters 

became more lenient, it appeared that the other parameter must be more strictly controlled in 

order to maintain accuracy in the results. We found a range of optimal angle thresholds between 

45° and 75°, spanning 3 of the 5 values tested; smaller values of this parameter (i.e., stricter 

angle thresholds) appeared too strict to produce valid fiber pathways. Interestingly, as the angle 

threshold was made laxer, accuracy declined if not accompanied by an increase in tracking 

threshold (Figure 27). With a stricter angle threshold, we found that a tracking threshold of 

QA=0.5 produced fairly accurate results; however, lower values appeared to reduce accuracy by 

allowing fiber propagation in areas of unstable diffusion contrast. In general, users should avoid 

very low tracking thresholds, although they may be useful in targeted tractography for detecting 

fibers with low diffusion contrast. In our study of FEF connections, for example, lowering the 

tracking threshold might have allowed us to detect projections to the superior colliculus in those 

datasets where none were visible at a threshold of QA=0.5. On the high end, QA values up to 1.0 

allowed the generation of accurate tractography results, provided that they were coupled with lax 

angle thresholds. 

We note that these specific values are unlikely to be relevant for most investigators, for two 

reasons. First, the corticospinal tract is among the structures with strongest diffusion contrast in 

the brain; while these fibers can still be detected at a threshold of QA=1.0, this threshold will 

probably be too strict for detecting sparse white matter structures or tracts that pass through areas 

of low diffusion contrast. Second, we note that the use of quantitative anisotropy as a basis for 
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thresholding diffusion data is peculiar to DSI Studio (at least presently). In contrast, most other 

tractography software packages use fractional anisotropy, which is not specific to a particular 

orientation and which scales differently from QA. Nevertheless, the pattern of interaction 

between angle and tracking thresholds should apply to other software packages and tracts of 

interest. One should thus perform empirical testing, preferably with targeted tracking, to 

determine the range of tracking thresholds best suited for detecting fibers of interest. This can be 

done by specifying a subset of data a priori for testing (should represent more than one 

individual, in order to ensure some generality across individuals), then applying similar values to 

other datasets. 

One tractography parameter that we did not manipulate is step size, the linear distance that a 

virtual fiber grows every time the tractography algorithm chooses an orientation to proceed in. 

This variable is likely to interact heavily with angle threshold, since they jointly determine the 

curvature of a fiber—that is, at what angle does a fiber turn within some fixed distance. Small 

step sizes tend to allow the detection of more sharply curving fibers, while larger step sizes will 

tend to produce fibers with more gradual curves. It is also important to note that a short step size 

increases the computational intensity of tractography, as more segments have to be calculated in 

order to produce each fiber. A small step size may be useful for resolving fibers in complex 

configurations, such as crossings. However, researchers are likely to encounter a point of 

diminishing returns, as very small step sizes require sub-voxel spatial interpolation that is limited 

by the amount of information present in the acquired DSI data. Following the general trade-off 

principle described above, as step size becomes very small, angle threshold does not need to be 

so lenient; for example, a step size of 0.5 mm and an angle threshold of 0.70 is likely to be 

computationally inefficient, excessively lenient, and anatomically implausible. In the present 
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study, all tractography was performed with a step size of 1 mm; for comparison’s sake, the 

length of a voxel edge during DSI acquisition was 3.5 mm. 

 

 

 

3.3. ALTERNATIVE METRICS OF ANATOMICAL CONNECTION STRENGTH 

 

Like most tractographic studies of brain connectivity, Experiments 1 and 2 used metrics of 

connectedness that are ultimately based on virtual fiber counts. Because virtual streamlines have 

no volume and are not modeled as having so by tractography programs, they are a less than ideal 

basis for quantifying connectivity. Furthermore, it is likely that fiber count-based metrics will not 

be comparable between different tractography algorithms and software packages, or across 

studies. Our own results in Experiment 1 indicate the arbitrariness of fiber count-based metrics, 

and their dependence on tracking conditions. In particular, targeted tracking produced much 

greater fiber density estimates and greater spatial coverage than global tracking. Furthermore, the 

reproducibility of fiber count-based metrics depended upon the context of the analysis: in our 

results, between-session correlation of fiber density values was high in ROI-based analysis, but 

was more variable and generally lower in voxelwise analysis. Thus, comparisons of fiber density 

values should be made with caution, ensuring that tractography results were generated under 

comparable tracking conditions. Likewise, comparison of statistics based on fiber density data 

(such as correlation coefficients) should be made with an awareness of the analysis context (e.g., 

spatial scale).  
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Ultimately, voxel-based anisotropy metrics may offer an alternative to connectivity 

measurements based on arbitrary fiber counts. In the current study, tracking threshold is set in 

terms of quantitative anisotropy (QA), a measurement of diffusion at a single orientation in 

three-dimensional space (Yeh et al., 2010). This directional specificity distinguishes QA from 

fractional anisotropy (FA), which is more commonly used as a basis for thresholding diffusion 

data. Both FA and QA are directionally non-specific: conceptually, they provide a summary 

measure of the “pointed-ness” or degree of constraint of diffusion within a voxel over all 

observed diffusion orientations, without indicating the specific orientation(s) of greatest 

diffusion (Jones, 2009). This generality makes FA unsuitable for estimating the strength of a 

particular anatomical connection. 

In contrast, it may be possible to estimate connection strength by combining the QA values 

for ODF axes tangent to a fiber at each segment of its propagation. In this scenario, tractography 

would serve to label possible diffusion pathways; the number of fibers occupying each voxel in 

tractography results would be less relevant than characteristics of the QA values associated with 

a tract, such as the magnitude or variance of anisotropy, both along the tract’s length and over its 

cross-sectional area. However, devising a QA-based measurement of connection strength would 

require answering several challenging questions, such as whether to operate on individual fiber 

streamlines or on a reduced dataset, in which closely related streamlines were consolidated 

and/or fibers were clustered into discrete tracts. Relatedly, an anatomically plausible metric 

would have to treat QA as a finite quantity, which would rise or fall along the length of a tract as 

fibers converge into or diverge from it. Given these complexities, a QA-based measurement of 

connection strength represents a future objective, beyond the scope of the current study. 
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3.4. MERITS OF DWI-BASED TRACTOGRAPHY FOR LARGE-SCALE 

INVESTIGATION OF BRAIN CONNECTIVITY 

 

Much recent research in cognitive neuroscience centers around integrating knowledge of 

brain structure with models of brain function. In human brain imaging studies, a detailed 

knowledge of brain connectivity can, at least in theory, allow researchers to constrain functional 

models, reducing uncertainty and increasing biological relevance. In studies of development and 

pathology, the ability to make repeated concurrent measurements of structural integrity and 

functional capacity may allow researchers to better understand the nature and timecourse of 

normal and abnormal changes in the brain. This contemporary interest in integrated 

structure/function studies is illustrated foremost in the NIH Human Connectome Project 

(http://www.humanconnectome.org/), which seeks to discover a template for human brain 

connectivity; such a template would probably supersede anatomical and cytoarchitectonic 

schema in providing a detailed, objective description of the average human brain. 

It is interesting to speculate about what technologies and data formats will ultimately allow 

successful mapping of the human connectome. First and foremost, it is important that the 

biological basis of the derived information be well understood. Furthermore, because the 

connectivity of the human brain changes across the lifespan and as a result of pathology, a non-

invasive technology that permits longitudinal studies is highly desirable; this will allow the 

collection of repeated measurements within specific individuals. Connectome mapping 

technology should have verified external validity, and any error or limits on its precision should 

be well quantified. For ease of analysis, connectome mapping results should be reported in a 

standardized digital format. Finally, these results should be scalable, so that they can be 
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examined at multiple levels of detail. This flexibility is important because it is not clear what the 

most meaningful or finest-grain units for describing the human connectome will turn out to be; in 

this respect, the connectome conceptually differs from its analogue, the human genome, which is 

ultimately reducible to an ordered list of DNA base pairs. 

Despite its possible limitations in reliability and validity, we propose that DWI-based fiber 

tractography represents one of the most promising candidate technologies for large-scale, 

quantitative studies of brain connectivity. DWI-based fiber tractography can be used to examine 

white matter change or to look at changes in anatomical brain connectivity over the lifespan, 

observations which are otherwise impossible with invasive methods. It produces very high 

resolution data—fiber pathway information at millimeter or sub-millimeter scale—that can be 

easily scaled to coarser grain sizes. The essential physical cause of the diffusion signal is also 

clear—the constraint of water diffusion by white matter structures—even if important details are 

not, such as the quantitative relationship between the observed signal and actual diffusion 

volume (Basser & Özarslan, 2009). Until recently, the duration and expense of DSI data 

acquisition have made the collection of repeated observations impractical. However, optimized 

data acquisition is likely to substantially reduce this cost in the future, through innovations such 

as compressed sensing (Lee et al., 2012). Reduced time frames increase the feasibility of 

collecting multiple DSI scans, possibly within a single session, for clinical and research purposes 

alike. At present, the greatest shortcoming of DWI-based tractography for mapping brain 

connectivity remains the paucity of information about its reliability, external validity, noise 

levels, and effective spatial resolution. Although the current study partially addresses these 

questions, clarifying the methodological limits of DWI-based tractography will require further 

empirical and computational testing. These studies must elaborate upon the rates of true and false 
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fiber detection, the between-session and between-subject variability in tractography results, and 

the relationship between diffusion contrast and the real-world volume of diffusion in measured 

biological tissue.  
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4.0 CONCLUSION 

 

 

 

The early adopters of a research technology must often deal with unresolved questions about 

proper procedure and statistical analysis; in confronting those questions, they tend to establish 

norms which later users will follow. Brain connectivity research using fiber tractography is 

presently in transition from a developmental stage to a period of wider usage by the cognitive 

neuroscience community, much as functional MRI was in the mid-1990s. Thus, standards and 

habits for performing tractography research are being rapidly established, and current users have 

a vested interest in clearly communicating both the capabilities and shortcomings of their 

methods to new users. We hope that the current study has succeeded in demonstrating DSI-based 

tractography’s ability to reproduce known features of the brain’s connective architecture, while 

also communicating the need for further validation and reliability testing. We note that the 

validation approach of Experiment 2, driven by brain connectivity findings from other species, 

represents one of multiple possible sources of validation. Alternative approaches include the use 

of hardware and software phantoms, which can demonstrate a technique’s ability to resolve the 

ground truth in complex diffusion patterns; comparison to empirical results obtained with higher-

resolution techniques, like polarized light imaging (Axer et al., 2011); and the comparison of 

abnormal tractography results to direct observations made during surgery (Fernandez-Miranda et 
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al., 2010) or to related behavioral deficits. With the current state of the art, we strongly advocate 

that investigators base their research on sufficient sample sizes, including multiple observations 

per individual, and that they rely on extant neuroanatomical findings from “gold-standard” 

sources in evaluating tractography results. 
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APPENDIX 

EXPLANATION OF TRACTOGRAPHY VARIABLES 

 

1. Fiber count: the number of virtual fibers which must be generated in order to complete 

tracking. Seed count and fiber count are mutually exclusive: only one can be set in a given 

tracking job. If fiber count is set, random seeds will continue to be generated until that limit is 

met. In practice, system memory limitations can cause tractography to fail before the fiber count 

is met, if a large enough number of seeds are generated. 

2. Seed count: the number of random seeds generated in a single tractography job. While each of 

these seeds has the potential to generate a virtual fiber, in practice some proportion of these seeds 

fails for various reasons. Failure reasons include 1) stopping outside of allowed fiber lengths; 2) 

stopping outside of a user-set mask; 3) not passing through user-set ROIs. Seed count and fiber 

count are mutually exclusive: only one can be set in a given tracking job. 

3. Smoothing: a momentum parameter to determine the direction of the next step in fiber 

propagation. Without smoothing, a fiber continues along the ODF axis closest in angle to its 

incoming direction—that is, the direction of propagation is independent of the fiber’s incoming 

direction. With smoothing, the incoming direction influences the direction of the next step, with 

the weight indicated by the smoothing value. 
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4. Step size: the length in mm of each propagation step. Larger step sizes are less 

computationally demanding and tend to produce smoother fiber trajectories; however, they may 

make the tractography algorithm less sensitive to sharp curvature in fibers. Tracking with smaller 

step sizes can increase computing time considerably and may produce “wavier” fibers. 

5. Tracking threshold: a minimum anisotropy value for voxels. This threshold serves to mask out 

voxels as potential seed points. It also acts as a stopping criterion in tractography: when a fiber is 

propagated into a voxel and/or orientation below the threshold, propagation stops. When GQI 

reconstruction is used, this threshold represents quantitative anisotropy (QA), a measure specific 

to a single orientation and voxel. When DTI is used, the thresholded value is typically fractional 

anisotropy; other methods may use generalized fractional anisotropy. 

6. Turning angle: a maximum angular deviation between steps during fiber propagation. If a fiber 

must turn at a sharper angle in order to propagate further, the fiber is terminated.  
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