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Estrogen plays essential roles in the function of normal physiology and diseases. Its effects are 

mainly mediated through two intracellular estrogen receptors, ERα and ERβ, which belong to a 

family of nuclear receptors (NRs) functioning as transcription regulators.  In the first part of this 

thesis, we aim to derive a holistic view of the transcription machineries at estrogen-responsive 

genes and further, to reveal different mechanisms of estrogen-mediated transcription regulation.  

In order to achieve this, we integrated and systematically dissected a variety of genome-wide 

high-throughput datasets, including gene expression arrays, ChIP-seq, GRO-seq, and ChIA-PET. 

Our analyses have led to the following novel findings: In the absence of the ligand, most of the 

estrogen-responsive genes assumed a high-order chromatin configuration that involved Pol II, 

ERα and ERα-pioneer factors. Without the ligand, estrogen-induced genes showed active 

transcription at promoters but failed to elongate into gene bodies, and such a pause was lifted 

after estrogen treatment.  However, the estrogen-repressed genes showed coordinated 

transcription at promoters and gene bodies in the absence and presence of estrogen. Through 

information integration, we inferred that, for estrogen-repressed genes, the majority of the high-

order chromatin complexes containing actively transcribed genes were disrupted after estrogen 

treatment.  The analyses led to the hypothesis that one mechanism for estrogen-mediated 

repression is through disrupting the original transcription-favoring chromatin structures. 
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Further, nuclear receptors such as ERs interact with co-regulators to regulate gene 

transcription. Understanding the mechanism of action of co-regulator proteins—which do not 

bind DNA directly, but exert their effects by binding to transcription factors—is important for 

the study of normal physiology as well as diseased conditions. However, due to the nature of 

detecting indirect protein-DNA interaction, ChIP-seq signals from co-regulators can be relatively 

weak and thus biologically meaningful interactions remain difficult to identify. In the second part 

of this thesis, we investigated and compared different machine learning approaches to integrate 

multiple types of genomic and transcriptomic information derived from our experiments and 

from public databases. This helped us to overcome the difficulty of identifying functional DNA 

binding sites of the co-regulator SRC-1 in the context of estrogen response. Our results indicate 

that supervised learning with the naïve Bayes algorithm significantly enhanced the peak calling 

of weak ChIP-seq signals and outperformed other machine learning algorithms. Our integrative 

approach revealed many potential ERα/SRC-1 DNA binding sites that would otherwise be 

missed by conventional peak calling algorithms with default settings.  
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INTRODUCTION 

Genes indirectly code for proteins.  The process of manufacturing proteins from the genetic code 

in DNA is called gene expression. Most of the genes are expressed in a tightly controlled manner 

in only part of the organism, or under particular conditions.  In a diseased state, this organization 

is disturbed. In order to regulate gene expression, collections of regulatory proteins interact with 

the specific sequences in the promoter as well as the enhancer regions of targeted genes. 

Transcription factors (TFs) often interact with other proteins, which further modulate the 

function and the efficacy of TFs to achieve fine-tuned regulation of gene expression. Studying 

such interactions and regulations is an increasingly important component of studying gene 

expression systems. In cancer formation, gene expression might be deregulated by misactivated 

TFs and/or by mutations and translocations of DNA regions. A large amount of oncogenic 

signaling pathways converge on such sets of TFs that ultimately control gene expression patterns 

resulting in cancer development [9].  

Nuclear receptors (NRs), such as estrogen receptor alpha (ERα), are transcription factors 

that migrate to the nucleus (often as a result of binding ligand) to regulate downstream target 

genes. NRs play important biological roles in normal physiology and certain diseases. Upon 

ligand binding, ERα and other NRs are bound by proteins called co-regulators that recruit 

transcriptional machinery and chromatin modifying enzymes. Co-regulators are therefore critical 
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in NR activity. Understanding the composition of functional NR/co-regulator complexes in 

specific signaling contexts could provide a basis for the development of novel NR- and co-

regulator-targeted therapeutics.  

The last decade has seen an explosion in the amount of genomic, proteomic and 

phenotypic data and new high-throughput technologies related to NRs: the expression patterns of 

NRs, co-regulators and their target genes (transcriptomics); the binding of ligand- and tissue-

specific functional NR and co-regulator sites to DNA (cistromics); the organization of NRs into 

higher order complexes; and the downstream effects of NRs on homeostasis and metabolism 

(metabolomics). Integrating and synthesizing this rich and heterogeneous information has great 

potential to provide novel insights into the biological mechanisms of NRs and the diseases 

related to them. Significant bioinformatics challenges lie ahead. We need new bioinformatics 

frameworks a) to solve issues related to noise in high-throughput datasets and b) to integrate 

these large-scale datasets into meaningful models of NR and co-regulator biology. 

1.1 THE ROLE OF BIOINFORMATICS IN NUCLEAR RECEPTORS 

In this section, I will describe two different bioinformatics challenges related to NRs specifically 

ERα and its co-regulators. 
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1.1.1 Integrative analysis of discovery-driven datasets 

The emergence and application of genome-wide high-throughput technologies have enabled us a 

new way of understanding how ERα functions in the cell. For instance, microarray technology 

has enabled us to explore global features of hormone-regulated gene expression through nuclear 

receptors (NRs). Moreover, by measuring instantaneous transcriptional activity, global run-ons 

sequencing (GRO-seq), can help us to address direct transcriptional responses for a particular 

hormone signaling pathway. In addition, ChIP-seq (chromatin immunoprecipitation followed by 

sequencing) enables the accurate genome-wide profiling of transcription factors, co-regulators, 

RNA Pol II, histone modification binding sites as well as DNA methylation. Lastly, ChIA-PET 

(chromatin interaction analysis with paired-end tag sequencing) captures long-range chromatin 

looping on a genome-wide scale. However, each data source provides a very narrow view of the 

transcription regulation. An important bioinformatics goal is the successful integration of these 

high-content data-sets utilizing computational and mathematical approaches to detect statistically 

significant patterns and trends across these diverse datasets. This approach allows testing new 

hypothesis, eventually leads biological discovery.  

In the first part of this thesis, I integrated a variety of recent genome-wide high-

throughput datasets, including gene expression arrays, ChIP-seq, GRO-seq and ChIA-PET in 

order to derive a holistic view of the transcription machineries at estrogen-responsive genes, and 

reveal different mechanisms of estrogen-mediated transcription regulation in MCF-7 breast 

cancer cell line.  In doing so, our analyses have led to the many novel findings. 
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1.1.2 Dealing with experimental noise in co-regulator ChIP-seq dataset 

Recently, chromatin immunoprecipitation coupled with high-throughput next-generation 

sequencing (ChIP-seq) has become the main technology for global characterization of the 

transcriptional impact of NRs and their co-regulators [1-3]. ChIP-seq involves the short-read 

(~30bp) sequencing of the ChIP-enriched DNA fragments. These short sequence reads/tags are 

then aligned to a reference genome. Then the actual binding loci from the positional tag 

distributions (i.e. sequenced DNA fragments mapped onto a reference genome sequence) are 

determined using ‘peak calling’ algorithms. Studying the indirect interactions between TFs and 

their co-regulators through ChIP-seq technology poses an additional challenge since co-

regulators do not directly bind DNA. Co-regulator ChIP-seq measures the indirect protein-DNA 

binding through primary TFs and leads to relatively weak sequencing signals—i.e. relatively 

small number of sequence tags above noise. As such, it remains a challenge for contemporary 

peak calling methods to detect weak indirect protein-DNA-binding signals and simultaneously 

maintain a high specificity.  

The ability to improve ChIP-seq peak calling by utilizing available sources of biological 

information for indirect co-regulator binding in the presence of weak ChIP-seq signal is an 

important research area. Due to the intrinsic variability in the affinity of interactions between a 

TF and its co-regulators, it is inevitable that the ChIP-seq signal of these types of studies would 

span a broad spectrum and that the weak signal scenario would be likely to occur often. The need 

for the methods to address this problem is acute considering the increasing number of studies 

using ChIP-seq to study NR and their co-regulators due to their importance in normal 

development and in many diseases such as breast cancer. 
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In the second part of this thesis, to overcome this problem, I defined a semi-supervised 

classification task and integrated multiple types of genomic and transcriptomic information 

derived from small-scale experiments and public databases.  With this approach, I showed a 

general framework for utilizing limited amounts of prior knowledge (both from small-scale 

experiments and from multiple types of biological data) to enhance the sensitivity and specificity 

of results of high-throughput technologies.  

1.2 DISSERTATION OVERVIEW 

Chapter 2 provides background information on transcription mechanism related to estrogen 

receptor alpha (ERα). Chapter 3 presents integration of a variety of recent genome-wide high-

throughput datasets in order to derive a holistic view of the transcription machineries at estrogen-

responsive genes, in order reveal different mechanisms of estrogen-mediated transcription 

regulation by using hypothesis driven statistical approach. Chapter 4 describes a machine 

learning framework general framework for utilizing limited amounts of prior knowledge (both 

from small-scale experiments and from multiple types of biological data) to enhance the 

sensitivity and specificity of results of ChIP-seq ‘peak calling’ algorithms. Chapter 5 presents 

conclusions with discussions on future research work.  
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2.0  BACKGROUND 

2.1 ESTROGEN RELATED DISEASES 

Estrogens, the most common estrogen being 17β-estradiol (E2), are a class of sex steroid 

hormones that are synthesized from cholesterol and are secreted primarily by the ovaries, with 

contributions from placenta, adipose tissue, and adrenal glands. Estrogen is essential in both 

sexes and has functions not only in reproductive system but also in the musculoskeletal system, 

central nervous system, hypothalamic pituitary axes, cardiovascular system and immune system. 

After arriving at target tissues through the blood, estrogens and their cellular receptors regulate 

many aspects of healthy physiology. Its effect is mainly mediated through two intracellular 

estrogen receptors, ERα and ERβ, which belong to a family of nuclear receptors functioning as 

transcription regulators. However, estrogens and ERs are also involved in human diseases 

including breast cancer. 

2.1.1 Breast cancer 

Estrogens play a central role in breast cancer which is the top common cancer type diagnosed in 

women. Women with higher lifelong exposure to estrogen (resulting from early menses and late 

menarche) have an elevated risk of breast cancer. In 2012, the American Cancer Society 
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estimates 226,870 new cases of invasive breast cancer and as many as 39,510 breast cancer 

deaths in the United States [1]. Since 1990, the death rates from breast cancer have been 

decreasing as a result of earlier detection through screening and increased awareness, as well as 

improved treatment.  

The first  connection between estrogen and breast cancer was recorded in 1896 when Dr. 

George Beatson of the Glasgow Cancer Hospital observed that bilateral oophorectomy in 

patients with inoperable neoplasia reduced the aggressiveness of these tumors [2]. Since then it 

has been established that estrogen metabolites are involved in the initiation process through 

oxidative DNA damage and estrogens themselves enhance cell proliferation, leading to tumor 

promotion [3].  Therefore, most breast cancer therapies focus on disruption or modulation of the 

effects of estrogen signaling using selective estrogen receptor modulators (or SERMs) such as 

Tamoxifen and Raloxifene.  Unlike estrogens, SERMs do not purely act as agonists for ERs, nor 

are they pure antagonists. They exhibit tissue-specific modulation of ER signaling, activating 

genes is some tissues which they inhibit in others[4]. In general, ERα has long been determined 

to be a prognostic marker for breast cancer. Moreover, increased survival is seen with ERα-

positive status as these tumors respond to anti-estrogen therapy. Further understanding of the 

molecular mechanism underlying estrogen-mediated ER action may result in better treatments 

for breast cancer. 
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2.2 FACTORS IN ESTROGEN SIGNALING 

2.2.1 Estrogen receptor 

ERs are classical hormone nuclear receptors and members of the nuclear receptor super family. 

ERs exist in 2 main forms, ERα and ERβ, which are encoded by separate genes ESR1 and ESR2, 

respectively.  Each has distinct tissue expression patterns, post-translational modifications, and 

cellular localization in normal and disease states. ERα is the predominant receptor in the bone, 

uterus, liver, and adipose tissue, whereas ERβ is the predominant receptor in the ovary and 

intestinal tract. The brain, mammary gland, and cardiovascular system express both ERs.  

ERα and ERβ show significant overall sequence similarity. As a member of the nuclear 

receptor super-family, ERs possesses a zinc finger DNA binding domain (DBD), a ligand 

binding domain (LBD), and two domains involved in its activation and/or repression, AF-1 and 

AF-2 respectively.  The primary transactivating domain, AF-1 resides near the N-terminus of the 

protein, occupying the A/B region. The DBD is located in region C, close to the center of the 

protein, and is flanked on the C-terminal end by an unstructured region D, also known as the 

hinge region. The LBD resides in region E, following on the C-terminal side of the hinge region. 

In ERα, the LBD is responsible for the majority of dimer stabilization following E2 binding and 

consists of 12 alpha helices which form a ligand-binding pocket[5]. This pocket binds estrogens, 

SERMs, and several estrogen-like polycyclic compounds[4]. A unique feature of this region is 

helix 12, the second transactivating domain also known as AF-2. The domain exhibits estrogen 

sensitivity and is only active once the ligand is bound. Once activated by ligand binding, the 

conformation of AF-2 shifts, enabling ERα to mediate regulation of gene expression. 
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2.2.2 Co-regulators 

Co-regulators are proteins that interact directly with nuclear receptors to form a bridge between 

the receptor and basal transcriptional machinery to regulate gene transcription [6, 7]. Co-

regulators can activate (co-activators) or repress (co-repressors) the transcription activity of 

nuclear receptors, including ERs.  They can be divided into distinct classes based on their 

biochemical and functional activity including bridging factors, protein-modifying enzymes, 

protein-demodifying enzymes, chromatin remodeling complexes, and mediator complexes [7]. 

Co-regulators are recognized to be critical for proper function of ERs, and alterations in co-

regulator function and expression are associated with cancer and other diseases. Therefore, 

assessment of ER co-regulator status and activity is crucial to determine role of ERs in disease 

progression and to predict prognosis and response to therapy. 

Steroid receptor co-activator [SRC] p160 co-activators are well known factors that are 

recruited to ERα including SRC-1 (NCOA1), SRC-2 (NCOA2, Tif2, GRIP1) and SRC-3 

(NCOA3, AIB1).  The first co-regulator discovered was SRC-1[8].  Some of the other  co-

activators of ERα are BCAS3, BRG1, CARM1, CBP, CITED1, Cyclin D1, DBC1, E6-AP, 

GCN5L2, MUC1, p300, PELP1, SRA[9].   

Co-repressors are proposed to provide a counterbalance to the estrogen-induced 

transactivation, and represent a potential mechanism employed by the cell to regulate hormonal 

responses. Some of the co-repressors of ERα are nuclear receptor corepressor-1 (NCOR1)[10], 
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silencing mediator of retinoic acid and thyroid hormone receptor (SMRT/NCOR2) [11] and  

SAFB1[12].  

 

2.2.2.1 SRC-1 role in breast cancer metastasis 

SRC-1 has been associated with execution of breast cancer metastasis and mediation of 

resistance to endocrine therapies which is increasingly prevalent among breast cancer patients. 

Currently, two distinct mechanisms have been elucidated for the role of SRC-1 in breast cancer 

metastasis [13]; SRC-1 1) impacts on the epithelial to mesenchymal transition (EMT) and 

epithelial depolarization via regulation of the EMT transcription factor Twist, 2) upregulates the 

expression of integrin α5 to promote cell migration and invasion. With respect to the 

development of resistance, SRC-1 overexpression was shown to convert Tamoxifen, a selective 

estrogen receptor modulator (SERM), from a transcriptional repressor to a transcriptional 

activator in breast cancer [14]. Tamoxifen is a common anti-estrogen therapy prescribed for pre-

menopausal ERα-positive breast cancers.  

2.2.3 Pioneer factors 

Pioneer factors are a special class of transcription factors. They physically interact with 

condensed chromatin to facilitate the binding of additional transcription factors. Several TFs 

have been shown to act as pioneer factors for ERα including FoxA1, PBX1, AP2γ and GATA 

[15-18]. These factors possibly recruit chromatin modifiers and generate a local environment that 

is more accessible for ERα binding and help rapid transcriptional response of ERα [19, 20].  
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FoxA1 (Hepatocyte Nuclear Factor 3α) is an ER pioneer factor that promotes ER binding 

to chromatin. FoxA1 was shown to be recruited to sites of H3K4me1 and H2K4me2 (please 

indicate which histones these are, and which amino acid the methylation is) and initiated 

chromatin remodeling events [20].  Furthermore, genome-wide mapping of FoxA1 and ER 

revealed that half of all ER binding sites overlap with FoxA1 binding regions in the genome [16, 

20]. The pre-bound FoxA1 appears to be required for facilitating ERα recruitment and modifying 

chromatin structure at the regulatory regions of estrogen-target genes in both induced and 

repressed genes. Moreover, after observing motifs of AP2 transcription factors are enriched 

within ER-binding motifs, AP2γ (encoded by TFAP2C) was identified as a putative pioneer 

factor for ER [17].  ChIP-seq study showed AP2γ overlaps with approximately 50% of all ERα 

binding events in the MCF-7 breast cancer genome and the majority of these shared regions also 

overlap with FoxA1[17]. In addition, recently PBX1 (Pre-B-cell leukemia homeobox 1) is shown 

to be a putative pioneer factor [18]. Approximately half of the ERα binding events were 

overlapped with PBX1 in the MCF-7 breast cancer genome. However, whether AP2 γ or PBX1 

can directly bind to condensed chromatin independently of other factors is not proven yet[21]. 

2.2.4 Histone modifications 

The fundamental unit of chromatin is the nucleosome. Each basic unit consists of DNA wound 

around an octamer of four core histones (H3, H4, H2A, and H2B). The N- and C- terminal tails 

of histones are subject to several post-translational modifications including acetylation, 

methylation, phosphorylation, sumoylation, ubiquitination, ADP ribosylation, deimination, and 

proline isomeration[22]. Some histone modifications alter the packing of chromatin by opening 
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or closing the DNA through changes in electrostatic charge or inter-nucleosomal contacts. These 

modifications control the access of transcription factors to DNA[23]. Moreover, some of these 

modifications promote the recruitment of chromatin binding proteins[23].  

Histone modifications also play a significant role in ERα-mediated transcription as well 

as in cancer progression [24]. For instance, acetylation and deacetylation of conserved lysine 

residues present in histone tails have been suggested as a mechanism by which ERα modifies 

chromatin structure[25]. Briefly, acetylation of lysine residues results in a neutralization of the 

net positive charge, resulting in a net negative charge thereby causing decreased histone-DNA 

interaction[23]. This effectively opens up the chromatin and generally associates with active 

transcription.  

The methylation of histones is also an important regulatory signal in ERα-mediated gene 

expression [26]. Methylation does not affect the histone-DNA interactions but these 

modifications regulate transcription by recruiting distinct effector proteins that alter the 

chromatin environment in favor of either activation or repression. Different methylation states, 

i.e. unmethylated, mono-, di-, or trimethylated   (Kme1, Kme2, and Kme3), recognize different 

effector proteins with unique enzymatic activities and thereby differentially influence 

transcriptional regulation[23]. For example, H3K4 methylation is linked with activation, while 

H3K9 methylation correlates with repression[24]. 
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2.3 BASIC MECHANISM OF ESTROGEN RECEPTOR REGULATION OF GENE 

EXPRESSION 

2.3.1 Transcription activation 

ERα regulation of gene expression is ligand-dependent [27, 28]. Estrogen binding to the ERα 

causes a conformational change. This allows the estrogen-ERα complex to bind to specific 

regulatory elements in the target genes. The estrogen response element (ERE) is a 13 nucleotide 

inverted palindrome and is known as the best characterized ERα regulatory element. The E2-

ERα complex binds directly to the ERE as a dimer. Besides, estrogen-ERα complex can bind 

indirectly to chromatin by protein-protein interactions with transcription factors such as AP-1 

and NFкB [29, 30]. This non-classical mechanism is often described  astranscription cross-talk. 

The estrogen-ERα complex can also bind to DNA adjacent to TFs such as FoxA1 and Sp1, 

which stabilize ERα binding and promote the assembly of the transcription complex. After the 

estrogen-ERα complex is tethered to the regulatory element, it can recruit co-regulatory proteins. 

The transcriptional activation of ERα target genes involve the interaction of estrogen-ERα 

complex and co-activators with mediator proteins and basal transcription factors. The structure 

of chromatin is changed through histone acetylation and other modifications, and then RNA Pol 

II initiates gene transcription.  
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2.3.2 Transcription repression 

The mechanisms of ERα-mediated transcriptional repression and regulatory elements are less 

unknown but co-repressors are involved in transcriptional repression. A handful of studies have 

addressed potential mechanisms of estrogen repression. Existing ERα-mediated gene repression 

through genomic actions can be divided into three main categories. Repression occurs when 

ERα; 1) binds directly to DNA, recruits co-repressors and HDACs and displaces RNA Pol II 

which result in more condensed chromatin configuration [31-33]; 2) competes with other 

transcription factors  for  co-regulators resulting in reciprocal repression[34]; 3) inhibits 

transcription activators by decreasing the recruitment of transcription factors onto the DNA or by 

interfering with their gene-activating functions[35]. 

One way of ER-mediated repression resulting in a displacement of RNA Polymerase II 

may occur through the direct binding of the ERα onto the DNA and the ERα-induced formation 

of co-repressor complexes which coincides with a more condensed chromatin conformation.   

Initially, overexpression of co-regulators has shown to repress genes in the presence of ligand. 

For example, overexpression of SAFB1 (scaffold attachment factor B) enhanced repression of E-

cadherin [33] and overexpression of SMRT and SAFB1 enhanced repression of   folate receptor 

α [36]. Later, active recruitment of repressive complexes in the presence of ligand —for 

example, NCoR, (nuclear receptor corepressor), histone deacetylase 1 (HDAC1), and CtBP1 to 

the CCNG2 promoter [32, 37]; NCoR and SMRT (silencing mediator of RAR and TR) to the 

VEGFR2 promoter [38]; NCoR and TAB2 to the BMP7, ABCG2, and BCL3 promoters [39]; 

NCoR, NRIP1 and SMRT  to PSCA and SLC35A1 promoter [40]; TTF-2 (Thyroid transcription 

factor-2) to  pS2 and cyclin D1promoter  [41]—has also been shown. Genome-wide analysis of 
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ERα binding sites implicated the involvement of the co-repressor NRIP1 (nuclear receptor 

interacting protein 1) in the estrogen-mediated repression of genes such as BCAS4, IRX4, GUSB 

and MUC1 at late time points [42]. These genes are most likely secondary targets of ERα since 

they require the estrogen-induction of NRIP1 for their repression. In another study, the 

recruitment of ERα, HDAC7, and FoxA1 to the RPRM promoter was associated with 

dissociation of RNAPII from the RPRM promoter and repression of the gene [31]. Therefore, 

HDAC7-mediated repression was suggested as a common mechanism for a subset of E2-

repressed genes. Recently, recruitment of PITX1 (paired-like homeodomain transcription factor) 

to near ERα binding sites (enhancer or promoter regions) was shown to inhibit the transcription 

of ERα target genes in the presence of ligand [43].  

Another possible mechanism for ERα-mediated repression is that ERα competes with 

other transcription factors for co-regulators resulting in reciprocal repression.  For example, 

ATBF1 significantly inhibits the ERα function by selectively competing with AIB1 (SRC3) for 

binding to ERα in ERα-positive breast cancer cells in the presence of ligand [44]. Another study 

[34, 45] demonstrated that proto-oncogene ERBB2 repression as a result of estrogen-bound ERα 

and another TF (most likely activator protein [AP]-2) for the SCR-1 because overexpression of 

SRC-1 but not SRC-2 or SRC-3 relieves repression of ERBB2. Sometimes co-repressors can 

compete with co-activators at the regulatory regions. A genome-wide ERα binding study found 

that the paired box 2 gene product (PAX2) functions as a transcriptional repressor and competes 

with AIB1/SRC3 for binding and regulation of ERBB2 transcription [46].  

A possible mechanism how estrogen-induced ER mediates repression is by inhibiting 

transcription activators. For example, estrogen induced ERα was shown to interact with HNF-4α 
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and alter binding of HNF-4α to the HBV enhancer. As a result the transcription of HBV genes 

was repressed [35]. 

Recently, the estrogen-mediated epigenetic repression of large chromosomal regions 

through DNA looping was shown. Hsu et al [47] characterized the influence of estrogen 

signaling on the long-range epigenetic silencing (LRES) and uncovered 11 large repressive zones 

including a 14-gene cluster located on 16p11.2.  Looping dynamics was lost and epigenetic 

silencing occurred after estrogen treatment in the breast cancer cells. However, in normal cells, 

estrogen caused transient formation of multiple DNA loops in the 16p11.2 region by bringing 14 

distant loci to focal ERα-docking sites for coordinate repression. 

With the availability of genome-wide binding studies, the patterns of ERα with respect to 

both estrogen induced and repressed genes has been studies.  Earlier, genome-wide ChIP-on-chip 

analyses have shown that there is an over-representation of ERα binding events near (within 50 

kb)  the transcription start sites of induced genes and an underrepresentation of ERα binding sites 

in the just early estrogen-repressed genes [42].  Later, Lin et al. [48] reported in a genome-wide 

ChIP-PET studies that there is a lower frequency of EREs in repressed sites and an enrichment of 

ERα binding events in the promoter regions of induced genes.  Whereas, they found ERα binding 

events adjacent to repressed genes are more dispersed and are not localized to a specific region 

relative to the target gene. However, in a ChIP-seq study, Stender et al [49] reported that the 

majority of genes repressed by estrogen also require the ERα with a functional DNA binding 

domain. Their result emphasizes the importance of DNA binding in some repression activities of 

the ERα. Recently, a meta-analysis of genome-wide binding studies [50] suggested that ERα and 

other NRs such as RARA and RARG in MCF7 were close to both induced and repressed  genes.  
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2.4 TISSUE SPECIFIC REGULATION OF GENES BY ESTROGEN MEDIATED 

ESTROGEN RECEPTORS 

Studies indicate that differential expression of ERs, co-regulators, and transcription factors in 

various tissues, the presence of different regulatory elements for ERs and epigenetic 

modifications are involved tissue-specific gene regulation in response to estrogen. One 

mechanism for tissue-specific gene regulation of estrogen is by binding to different regulatory 

elements. For example, many ERα and ERβ binding sites were different in U2OS and MCF-7 

breast cancer cells [51, 52]. As the binding sites are different, it is expected that the genes 

regulated by ERα and ERβ in response to estrogen will be different. In fact, previous microarray 

data demonstrated that ERα, ERβ and ERα/ERβ heterodimer regulated distinct set of genes [53, 

54]. Another way that estrogen regulates distinct genes in different tissues is through the 

existence of tissue-specific regulatory elements in ER target genes. Most of the ER regulatory 

elements require transcription factors for activity, including AP1, FoxA1, and Sp1. Different 

estrogen target genes are activated as a result of collaboration between different transcription 

factors.  Another possibility for the tissue-specific effects of estrogens is that the ERα and ERβ 

cistromes (cis-regulatory elements that ERs interacts with throughout the genome) are tissue 

specific. For example, studies based on tiling arrays and ChIP sequencing showed very little 

overlap between the binding sites for ERα in MCF-7 and U2OS cells[55, 56](Hatmerier et al). 
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Different ERα and ERβ cistromes in various tissues likely account for some differences in gene 

expression profiles observed after E2 treatment. 

 The differential expression of co-regulators in various tissues could also lead to tissue-

specific effects. For instance, coactivator-associated arginine methyltransferase 1 (CARM1) is 

shown to inhibit estrogen-mediated proliferation and gene regulation when overexpressed in 

MCF-7 cells [57]. In the presence of CARM1, nearly 16% of genes induced by estrogen, 

including proliferative genes, were repressed.  

Another likely possible mechanism whereby estrogen regulates different genes in tissues 

is through the differentiation state of the cells. During differentiation, there is different 

expression of transcription factors and co-regulatory proteins as well as epigenetic modifications 

that can determine which genes are regulated by ERs. Moreover, certain ER target genes are 

turned off by epigenetic changes. During cell differentiation, several epigenetic modifications 

occur in the chromosomes without altering the DNA sequence such as  DNA methylation, 

histone modifications, and nucleosome positioning[58]. For example, FoxA1 recognizes 

H3K4me1 and H2K4me2 near an ERα binding site [55] and interacts with ERα to open up 

chromatin structure and facilitate the recruitment of transcription factors leading to increased 

transcription [55]. These findings showed that epigenetic changes are important to mark the sites 

where transcription factors bind and interact with ERαs. Therefore, epigenetic modifications in 

different target genes that occur during differentiation can determine if the gene will bind 

transcription factors at ERα regulatory elements. 
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2.5 DNA DAMAGE AND ESTROGEN 

Previous studies have shown that transcriptional activation in response to stimuli, including 

estrogen, involves the formation of DNA damage including DNA double-strand breaks (DSBs), 

the recruitment of DNA repair proteins, and large-scale genome reorganization to allow 

movement of activated genes and regulatory loci to transcriptional hubs. The DNA damage 

during transcription might lead to the cancer formation. For example, unresolved DSBs can lead 

to cell cycle arrest, senescence and apoptosis. Moreover, if illegitimately repaired, DSBs can 

seed the formation of genomic rearrangements, amplifications, and deletions [59].  

Initially, several estrogen metabolites have shown to can cause DNA [60]. In prior animal 

models, estrogen-induced direct or indirect DNA damage was observed [61]. Ju et al. 

[62]showed that during transcriptional activation by ERα, transient DSBs generated at regulatory 

elements of ERα-regulated genes. Recently, Williamson et al. also showed the formation of 

stable TOP2B-DNA cleavage complexes leading to DSBs and initiation of homologous 

recombination repair (HRR) in ERα-present breast cancer cell line [63].  From these studies as 

well as studies related to androgen receptor (AR)  [64, 65], an emerging model suggests that 

DSB can be mediated by the class II topoisomerase TOP2B, which is recruited to the AR and ER  

regulatory sites on target genes for efficient transcriptional activation. These DSB are recognized 

by the DNA repair machinery causing the recruitment of repair proteins. Therefore, Haffner et al. 

[66] proposed a hormone cycling therapy, in hormone dependent tumors like breast and prostate 

cancers, to induce DSBs repetitively in combination with topoisomerase II poisons or inhibitors 

of the DNA repair components in order to overwhelm the cancer cells with breaks, ultimately 

leading to cell death.  
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2.6 TRANSCRIPTION FACTORIES 

The 3.4 billion base pairs of the human genomes are packed in hierarchical structures in a cell 

nucleus of 1 um diameter. The spatial organization of chromatin and proteins in the nucleus is 

extremely important for regulation of gene expression and replication. These loops often bridge 

distant chromatin locations, even located on different chromosomes. Actively transcribed regions 

in the genome have been supposed to cluster in “transcription factories” [67] with concentrated 

RNAPII (for detailed review [68, 69]).  The emerging view is that the loop is attached to a 

“transcription factory” through components of the transcription machinery (either polymerases or 

transcriptional activators/repressors [70-74]). The position of a gene within a loop might 

determine how often a gene is transcribed [75].  Moreover, loops are dynamic and their state can 

rapidly altered during activation or repression The 3.4 billion base pairs of the human genomes 

are packed in hierarchical structures in a cell nucleus of 1 um diameter. The spatial organization 

of chromatin and proteins in the nucleus is extremely important for regulation of gene expression 

and replication. These loops often bridge distant chromatin locations, even located on different 

chromosomes. Actively transcribed regions have been thought to cluster in “transcription 

factories” [67] with concentrated RNAPII (for detailed review [68, 69]).  The emerging view is 

that the loop is attached to a “transcription factory” through components of the transcription 

machinery (either polymerases or transcriptional activators/repressors [70-74]). The position of a 

gene within a loop might determine how often a gene is transcribed [75].  Moreover, loops are 

dynamic and their state can be rapidly altered during transcriptional activation or repression.  

Recently, many studies published related to the long-range enhancer-promoter 

interactions through chromatin looping and their possible roles in transcription regulation [16, 
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70, 76-83].  For instance, the first 3D interaction map of RNAPII occupied sites for five different 

cell-lines was recently established using chromatin interaction analysis by paired-end-tag 

sequencing (ChIA-PET) [70]. RNAPII is shown to be involved in the promoter–promoter 

interactions between proximal and distant genes. As a result, multi-gene complexes 

cooperatively regulate their activity. In another previous study, estrogen simulation of ERα 

present breast cancer cell line has shown to result in large-scale alterations in genome 

organization arising from movement of different target gene loci and distal regulatory elements 

to these transcriptional hubs, establishing cell-type specific expression patterns using ERα ChIA-

PET [82]. This kind of genome-wide high-throughput analysis not only revealed role factors in 

the network of long-range interactions of the 3D chromatin structure, but also showed the 

complexity of transcriptional states of genes in response to stimuli. Moreover, nuclear structure 

including chromatin is altered in tumor cells. Changes in the spatio-temporal organization of 

nuclear structure can induce altered gene expression programs in tumor cells [51].   Therefore, 

further investigation of 3D chromatin structure is important to advance our knowledge of 

diseases. 

2.7 EXPERIMENTAL TECHNIQUES TO STUDY TRANSCRIPTION MECHANISM 

2.7.1 Expression microarrays for analysis gene expression 

Microarray technology, first published in [84], has been widely used to explore the profile of 

gene mRNA expression patterns in the genome at once. Moreover, microarray technology has 
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enabled us to explore global features of hormone-regulated gene expression through nuclear 

receptors (NRs). Briefly, microarray technology is based on DNA hybridization process in which 

a DNA strand binds to its unique complementary strand. Briefly, DNA fragments each 

containing a nucleotide sequence that serve as a probe for a specific gene are immobilized in a 

specific surface. There exist two main types of microarrays in terms of their probe types that are 

immobilized in a predefined organization to a solid surface; (i) two channel cDNA 

(complementary DNA) arrays and (ii) single channel oligonucleotide microarrays. In cDNA 

microarrays the probes contain pre-synthesized sequences that are then placed on the array. 

These sequences can be hundreds of base pairs long. Oligonucleotide microarrays contain 

sequences that are directly synthesized onto the microarray. In the procedure for microarray 

experiment, by extracting and labeling mRNA and the hybridizing those purified mRNAs to the 

array, the amount of labeled sample specifically binding to each complementary probe/feature 

can be quantified at each probe location by measuring the fluorescent intensity. The overall 

process enables a genome-wide measurement of the expression level given the sample. 

2.7.2 Measuring instantaneous transcriptional activity by GRO-seq: nuclear run-ons on a 

genomic scale 

Microarray-based measurements of steady-state mRNA levels consider both RNA synthesis and 

degradation. However, they do not provide an accurate indication of ongoing transcription. Core 

et al. [85] developed global run-on sequencing (GRO-seq) to measure genome-wide  

instantaneous transcriptional activity. This new approach detects transcriptionally engaged Pol II 

and provides a “map” of the position and direction of engaged Pol II in the genome. The 
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application of GRO-seq helps us to measure direct transcriptional responses for a particular 

hormone-signaling pathway. 

Briefly, nuclei are isolated, purified and nuclear run-on (NRO) is used to extend nascent 

RNAs associated with transcriptionally engaged Pol II under conditions inhibiting new initiation. 

Incorporation of the ribonucleotide analog (5-bromouridine 5’-triphospahate (BrUTP)) during 

the NRO step allowed for isolation of the newly transcribed nascent RNAs via 

immunoprecipitation using an antibody specific for this analog. Following immunoprecipitation, 

the NRO-RNA was reverse transcribed and amplified for sequencing. After sequencing, reads 

were mapped to the reference human genome.  

2.7.3 ChIP based methods to determine protein-DNA interactions 

Direct measurement of genome wide possible regulatory factor binding sites in vivo and at 

different cell states has recently become possible by Chromatin immunoprecipitation (ChIP) 

coupled with high-throughput techniques such as ChIP-chip, ChIP-Seq, and ChIP-PET. ChIP 

first described by Varshavsky and colleagues [86] is a process in which isolates fragments of 

sequences in the genome that is bound by a specific protein, most commonly a transcription 

factor. Briefly, ChIP works by covalently cross linking proteins to DNA typically by treating 

cells with formaldehyde or another chemical reagent. An antibody specific to the protein of 

interest can then be used to isolate the specific DNA fragments that the protein bound. The 

antibody and protein are then removed from the DNA. The three technologies then differ as to 

how they determine the location in the genome to which the DNA fragment corresponds. In the 

ChIP-chip method, the DNA fragments are hybridized to a microarray. In the ChIP-PET method, 
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the ends of the DNA fragment are sequenced. In the ChIP-Seq method, lots of short reads from 

within the DNA sequence are obtained.  These methods only capture linear information of 

protein binding sites along the chromosomes but not interactions between them. 

2.7.4 Methods for detecting long-range chromatin looping  

Chromosome conformation capture (3C) [87] is developed to detect the frequency of interactions 

between any two DNA sequences at a time in cell populations. Briefly, formaldehyde 

crosslinking is used to fixed chromatin. Next, the cross-linked DNA is cut with a common 

restriction enzyme and ligated at diluted conditions to create a new junction between two pieces 

of DNA (i.e. between cross-linked fragments). The PCR is then used to detect these junctions. 

Over the past 10 years, many 3C-derivative methods have been developed to study long-range 

interactions genome-wide.  The chromosome conformation capture-on-chip (4C) [88] and 

circular chromosome conformation capture (also known as 4C) [89] methods aim at revealing a 

complete pattern of DNA–DNA interactions for a DNA sequence of interest. The 5C 

(Chromosome Conformation Capture Carbon Copy) method concurrently probes, by pairs, 

interactions of hundreds of different sites under study [90]. The HiC method is a genome-wide 

version of 3C that ensures identification of all possible DNA–DNA interactions (the 

‘interactome’) for a given cell population [91] .  Whereas,  ChiP-loop [92] and ChIA-PET [71] 

methods include an additional step of antibody precipitation targeting proteins potentially 

mediating interactions. Briefly, by immunoprecipitation of a factor of interest along with 

associated DNA fragments and followed by proximity ligation of distant DNA fragments 

tethered together within individual chromatin complexes, special arrangement of DNA with 
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respect to a protein complex can be revealed. These high-throughput methods provide data on 

different aspects of nuclear organization and they are complementary to each other. For example, 

ChIA-PET provides information for interactions between genomic elements that are in contact 

with specific protein, whereas Hi-C detects long-range interactions regardless of whether they 

Fbind to a specific protein. Therefore, integrating different data types might give us more 

complete picture. 
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3.0  THIRD CHAPTER: ESTROGEN REPRESSES GENE EXPRESSION THROUGH 

RECONFIGURING CHROMATIN STRUCTURES   

3.1 BACKGROUND 

Estrogen is essential for the development and function of the female reproductive system and is a 

known potent mitogen in breast cancer [93, 94]. The effects of estrogen are mediated through the 

alpha and beta estrogen receptors (ERα and ERβ), and almost an equal number of genes can be 

repressed or induced by estrogen-bound ERs [42]. While there is an extensive body of research 

studying ERα as a transcription activator (see the review articles [27, 95]), few studies 

concentrate on the mechanisms of ERα-mediated transcriptional repression (i.e. [31-34, 45]).  

Therefore, the mechanism by which estrogen-bound ERαs repress gene expression largely 

remains unclear.  Since there are other transcription factors that have both inductive and 

repressive capabilities, a better understanding of the mechanism of ERα-mediated gene 

repression may shed light on general mechanisms by which a common transcription regulator 

exerts inductive and repressive influence on distinct genes.   

The emergence and application of genome-wide high-throughput technologies enable 

studies inspecting multiple aspects of transcription processes at a whole genome scale. For 

instance, microarray technology has enabled one to study global impacts of estrogen on gene 

expression. Moreover, by measuring instantaneous transcriptional activity through global run-
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ons sequencing (GRO-seq), one can study direct transcriptional responses for a particular 

hormone signalling pathway. In addition, ChIP-seq enables the accurate genome-wide profiling 

of transcription factors, co-regulators, RNA Pol II, and histone modification markers. Lastly, 

ChIA-PET (chromatin interaction analysis with paired-end tag sequencing) and other techniques 

[88-91] capture long-range chromatin looping on a genome scale. Indeed, there is already a large 

collection of publically available datasets utilizing above technologies to study cellular responses 

to estrogen treatment [50, 82, 96-100], thus affording us a new way of understanding how ERα 

regulates gene expression in a holistic manner. 

In this study, we sought to investigate the mechanisms of estrogen-mediated transcription 

regulation by integrating public genome-scale datasets collected in the absence and presence of 

estrogen (see Supplementary Table 1 for the complete list of datasets). Through dissecting the 

diverse datasets from different angles, we aim to derive snapshots of the ERα-mediated 

transcription machinery, particularly higher-order chromatin complexes, and rend a holistic 

perspective of the regulation process. Our analyses have led to many novel findings that enhance 

our understanding of the function of estrogen as a transcription regulator.  In particular, our study 

has led to a novel hypothesis regarding estrogen-mediated gene repression.  
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Table 1 Summary of datasets used in the study 

 

 

 

Name Usage Factors Datasets Reference 
Microarray Identification 

of early E2-
responsive 
genes  

 GSE3834, 
GSE9936, 
GSE11324, 
GSE5840  

[42, 101-
104] 

GRO-seq Instantaneous 
transcription 
activity  

 GSE27463  [96] 

ChIP-seq Whole-genome 
mapping of 
protein-DNA 
interactions 

ERα, Pol II, FoxA1, 
AP2γ, PBX1, 
GATA3, CTCF, 
RAD21, STAG1,  
SRC-1, SRC-2, 
SRC-3, TRIM24,  
c-Fos, c-Jun, p300, 
CBP 

GSE14664, 
GSE26831, 
GSE24166, 
GSE23893, 
GSE28007, 
GSE23852, 
GSE25710, 
GSE25021 

[17, 18, 97-
100, 105-
108] 

Genome-wide 
histone 
modification 
patterns 

H3K4me1, 
H3K4me2, 
H3K4me3, 
H3K9me3, 
H3K9ac, 
H3K14ac, 

GSE23701, 
GSE24166 

[97, 107] 

ChIA-PET 3D 
chromosomal 
structure 
around a 
protein 

ERα, Pol II GSE33664, 
GSE39495 

[70, 82] 
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3.2 MATERIALS AND METHODS 

3.2.1 Identify consensus E2-responsive genes  

The consensus estrogen-responsive genes were identified based on a ranked-product meta-

analysis across 4 independent published datasets (GSE3834, GSE9936, GSE11324 and GSE5840 

– Affymetrix GeneChip Human Genome U133 Plus 2.0 platform), which investigated the effect 

of estrogen treatment on gene expression in MCF-7 cells at early (3–4 h) time points [101]. We 

further filtered out genes with small gene-wise mean and standard deviation.  We further selected 

genes that contain a single RefSeq TSS annotation to avoid determining which TSS was 

responsible for the transcription. 

3.2.2 ChIP-seq, GRO-seq and ChIA-PET data sets and pre-processing 

ChIA-PET data for MCF-7 cells data (pre-processed) were obtained from the original published 

supplementary data [70, 82, 96]. We merged results of IHM001F and IHH015F large scale 

ChIA-PET analysis [82] using supplement files of the original work [82]. Processed Pol II ChIA-

PET data were obtained from authors of the original work [70].  Pre-processed ChIP-seq Pol II, 

TF, co-regulator and histone mark data for MCF-7 was downloaded from Nuclear Receptor 

Cistrome Database, [50] where the peaks were called by MACS with P-value cut-off 10-5. 

Mapped GRO-seq reads (at 0 minute and 40 minute) were downloaded from GEO (GSE27463). 
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3.2.3 Consensus ERα cistrome 

We collected a total of four ChIP-seq data sets for ERα [97-100] which profiled MCF-7 in the 

absence and presence of ligand.  Since there was a large variation of ERα binding sites across 

different studies of MCF-7, we merged overlapping binding sites in at least two studies in order 

to form a consensus ERα cistrome using the completeMOTIFs pipeline[109]. This approach 

allowed us to combine the results of several studies, and provide a global picture of ERα binding 

sites.  

3.2.4 Consensus FoxA1 cistrome 

We collected three ChIP-seq datasets for FoxA1 [17, 97, 108] in the absence of ligand, as well as 

two ChIP-seq datasets for FoxA1 [17, 97] treated with estrogen, derived from the MCF-7 cell 

line. We merged overlapping binding sites in at least two studies in order to form a consensus 

FoxA1 cistrome in the absence of ligand using the completeMOTIFs pipeline[109]. We took 

overlapping binding sites (at least 1 bp) between two studies of ligand to form FoxA1 cistrome in 

the presence ligand. 

3.2.5 Genome Annotations 

Genome annotations were downloaded from the UCSC Genome Browser (www.ucsc.org), 

human genome Build 36 (hg18 assembly). Gene definitions were given by the RefSeq genes  

track. For the analysis mentioned in the paper, we have considered only those RefSeq genes 

http://www.ucsc.org/
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which have one annotated TSS. When visualizing experiments with the UCSC Genome 

Browser, we used human genome Build 37 (hg19 assembly). 

3.2.6 Pol II ChIP-seq meta-gene profiles 

To show the average Pol II ChIP-seq profiles across genes, a “metagene” profile [110] was plotted 

for each group. Genes were aligned at the first and last nucleotides of the annotated transcripts and 

sequencing tags were scaled as follows. The total sequence tag counts were directly used for the 

promoter (0.5 kb upstream of the TSS to 0.5 kb downstream) and the 3'-end (0.5 kb upstream of the 

TES to 0.5 kb downstream) of transcripts. To account for variable gene sizes, signal between 0.5 

kb downstream of the TSS to 0.5 kb upstream of the gene end was represented by 1000 values 

obtained by cubic spline interpolation. Then the resulting tags of a gene were scaled to 100 

equally sized bins (average tags in each bin) so that all genes appear to have the same length. All 

profiles were plotted on a normalized read per million (RPM) basis (by dividing the raw read 

count by the total number of mapped reads, and multiplying the result by 1,000,000). 

3.2.7 GRO-seq meta-gene profiles 

To show the average GRO-seq profiles across genes, a “metagene” profile [110] was plotted. Genes 

were aligned at the first and last nucleotides of the annotated transcripts and sequencing tags were 

scaled in the same fashion as discussed in the previous subsection.  All profiles were plotted on a 

normalized read per million (RPM) basis. 
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3.2.8 miRNA analysis 

The target prediction analysis was performed by using ComiR [111], a newly developed 

algorithm that is designed to predict the targets of a set of miRNAs. ComiR incorporates the 

miRNA expression level in the thermodynamic binding model and thus improves the prediction 

of existing algorithms. It then combines the improved predictions of four target prediction tools 

using a support vector machine trained on Drosophila Ago1 immunoprecipitation data. We used 

ComiR to compute the genes probabilities associated with each single miRNAs and we 

considered as targets the genes with a ComiR probability score greater than 0.8.  

3.2.9 Statistical Analysis 

Statistical significance of difference between gene groups was assessed using t-test and chi-

squared test using R. 

 

3.3 RESULTS  

3.3.1 Identification of early E2-responsive genes by meta-analysis 

We used the results from a recent meta-analysis of estrogen response in MCF-7 breast cancer 

cells [101], which identified a set of early estrogen-responsive genes. This consensus set of 967 

genes was based on a ranked-product meta-analysis across four independent published datasets 
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investigating the effect of estrogen at early (3–4 hr) time points [101]. The 967 genes included 

562 genes that are estrogen-activated and 405 that are estrogen-repressed.  To avoid confounding 

overlapping signatures from multiple transcription start sites (TSSs), we further selected genes 

that have a single TSS according to the annotation from RefSeq [112]. The resulting set was a 

total of 748 genes, which correspond to 429 estrogen-induced and 319 estrogen-repressed genes 

(Additional file 1).  The signals for 210 (less than half) estrogen-induced genes were categorized 

as “present” at the probe level in the absence of ligand, indicating that there were basal 

transcription activities for these genes, and the rest of the genes were categorized as “absent”. As 

expected, the basal expression value of estrogen-repressed genes was higher than estrogen-

induced genes in the absence of estrogen. While it is understood that there are additional 

estrogen-responsive genes in the human genome, this set of genes can be treated as 

representative estrogen-responsive genes to derive insights of estrogen-mediated transcription 

regulation.  

 

3.3.2 Transcription states and Pol II chromatin complexes in the absence of ligand 

3.3.2.1 Pol II occupancy at the promoters of estrogen responsive genes in the absence of 

ligand 

Recruitment of the RNA polymerase (Pol II) transcription complex to promoters by specific 

DNA-binding proteins, e.g., TFs, is generally recognized as a key regulatory step in selective 

transcription in most eukaryotes. Therefore, Pol II is a good marker for transcriptionally active 

promoters. First, we used the existing Pol II ChIP-seq dataset derived from MCF-7 cells [98] to 
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investigate Pol II occupancy near the TSS of estrogen-responsive genes in absence of ligand. We 

performed meta-gene analysis (see Method section for details) across the promoter, the bodies of 

estrogen-responsive genes, and the transcription end site (TES), more specifically from -500 bp 

of TSS to +500 bp of TES, focusing on differences between induced and repressed genes.  As 

seen from Figure 1-A, there were strong peaks of Pol II binding at the promoter regions of the 

meta-genes in the absence of ligand. There is no significant difference between estrogen-induced 

and estrogen-repressed genes in terms of Pol II occupancy (t-test P = 0.7044), measured as the 

normalized total sequence tag counts near TSS (± 500 bp). Although we observed a decrease of 

mean Pol II counts in the gene body for all genes, this decrease might be due to an experimental 

artifact. It is known that, as Pol II progresses further into gene, it becomes hyper-phosphorylated 

and thus a less suitable target for the antibody [85]. The results indicate that Pol II recruitment to 

promoters could not be the key factor that leads to the distinct transcriptional behaviours of the 

estrogen-induced and estrogen-repressed genes in the absence of estrogen. 
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Figure 1 Transcription states and chromatin complexes in the absence of ligand 

 (A) Composite (meta-gene) profiles of Pol II ChIP-seq of E2-responsive genes, presented as 
reads per million (RPM).  Profiles for promoter and 3` end were aligned at TSS and TES 
respectively; profiles for gene bodies were scaled.  (B) Annotation of genes based on their 
relative position to the Pol chromatin complex. (C) Distribution of E2-responsive genes in terms 
of their relative position to Pol II complexes.  (D) Composite (meta-gene) profiles of GRO-seq of 
Pol II bound anchor genes, presented as reads per million (RPM).  Profiles for promoter and 3` 
end were aligned at TSS and TES respectively; profiles for gene bodies were scaled.  GRO-seq 
reads aligned to RefSeq TSSs in both sense and antisense directions relative to the direction of 
gene. (E) Boxplots show the comparison of pause ratio (TSS/gene body) for E2-repressed genes 
(blue) and E2-induced genes (coral) as determined by GRO-seq in the absence ligand. 
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3.3.2.2 RNAPII-associated chromatin interactions in the absence of ligand 

It is widely believed and supported by recent genome-scale studies [70, 82] that the formation of 

functional contacts between regulatory factors, e.g., TFs, and Pol II through local DNA looping 

introduces higher-order structures that directly impact gene expression regulation [70, 113].    

The first 3D interaction map of Pol II occupied sites for five different cell-lines, including MCF-

7, was recently established using ChIA-PET [70].  We used this Pol II ChIA-PET data to 

investigate the relationship between the spatial organization of estrogen-responsive genes and 

their transcription status.  Briefly, ChIA-PET technology detects the arrangement of DNA with 

respect to a specific protein.  For example, Li et al. used the anti-Pol-II antibody to 

immunoprecipitate Pol II complexes along with associated DNA fragments [70], followed by 

proximity ligation of DNA fragments tethered with the complexes to detect chromatin complexes 

[82].  In its simplest form, a higher-order chromatin complex includes a protein complex and 

tethered DNA that form a single loop.  The DNA involved in such a complex can be further 

divided into anchor regions and looping regions, as defined by proximity of the TSS (±5 kb) to 

an estimated anchor point (the DNA region that directly contacts the protein complex), and by 

the TSS being located within a ±5 kb region flanking the ends of the complex-encompassing 

DNA, respectively [70]. It is not uncommon to observe multiple loops and anchor regions in a 

higher-order chromatin complex. Figure 1-B shows a diagram to illustrate how a gene can be 

categorized with respect to a Pol II-bound chromatin complex (for brevity, hereafter referred to 

as Pol II complex). 

Out of 4,474 Pol II complexes, 563 complexes contained 641 (out of the total of 748, 

86%) estrogen-responsive genes identified through our meta-analysis. These estrogen-responsive 

genes tend to disperse among different complexes, a result in agreement with a previous study 
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that showed that co-localization in the nucleus was not required for coordinated expression of 

estrogen-responsive genes [114]. Further investigation showed that the majority, 624 (out of the 

total of 641 inside complexes, 97%), of these genes was categorized as anchor genes.  These 

anchor genes resided in 552 complexes. Also, 358 estrogen-induced genes (out of 429, 83%) and 

266 estrogen-repressed genes (out 319, 84%) were categorized as ‘anchor genes’ (Figure 1-C).  

These results suggest that the majority of identified estrogen-responsive genes, both estrogen-

induced and estrogen-repressed, were located in Pol II complexes within close vicinity to Pol II 

in the absence of ligand. In the rest of the analysis, we focused on these ‘estrogen-responsive 

anchor genes’—for brevity, referred to as estrogen-responsive genes—to study the impact of 

formation or disruption of higher-order chromatin complexes on regulating expression of these 

genes. Taken together, these and the previous results, indicate that Pol II not only had high 

tendency to occupy the majority of the promoters of the estrogen-responsive genes, it also 

formed higher-order chromatin complexes in the absence of estrogen. 

3.3.2.3 The transcription activity of Pol II-bound anchor genes in the absence of ligand 

To investigate the transcription activities of estrogen-responsive Pol II-bound anchor genes, we 

analysed the results of a GRO-seq experiment [96] performed in MCF-7 breast cancer cells, 

which studied the instantaneous transcriptional activities in the absence and presence of estrogen.  

GRO-seq detects de novo transcription activities of genes, thus providing a “map” of the position 

and direction of transcription activities.   First, we performed meta-gene analysis of the 

transcription activities from -1kb of TSS to +1kb of TES (Figure 1-D) to investigate whether 

their transcription activities differ between estrogen-induced and estrogen-repressed genes (see 

Method section for details).  The Figure 1-D shows that there were GRO-seq peaks within close 
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vicinity of TSS along both sense and antisense strands for estrogen-induced and estrogen-

repressed genes, indicating that transcription was actively going on for both groups. Using the 

mean GRO-seq reads near TSS (−300 to +300 bp) on the sense strand as a statistic of average 

transcription rate for each gene, we found that the transcription rates of the estrogen-induced and 

estrogen-repressed genes at their promoters were not statistically significantly different (t-test 

P = 0.5704).  On the antisense strand at TSS, we observed significantly more reads for the 

estrogen-induced genes in comparison to the estrogen-repressed genes (t-test P<10-3). Function 

of antisense transcription is unknown but their existence suggests an open structure of DNA 

permissive to transcription activity by Pol II [85, 115, 116].    

We further compared the transcription activities within the gene bodies of the estrogen-

responsive genes, and we noted that estrogen-repressed genes had more reads in the body region 

than estrogen-induced genes (t-test P<10-3).  This result indicated that, although the transcription 

activities at TSS were similar, the transcription within the gene body might have paused for the 

estrogen-induced genes. We calculated the pause ratio for each gene, i.e. the ratio of the total 

reads in the vicinity of a TSS (± 300 bp) over the total reads in the corresponding gene body, 

with both numbers normalized by the length of the regions. Then we compared the pause ratio 

between estrogen-induced and estrogen-repressed groups.  As seen in the Figure 1-E, the pause 

ratio of estrogen-induced genes was significantly higher than estrogen-repressed genes in the 

absence of ligand (t-test P<10-2). The results suggest that, while estrogen-induced genes were 

actively transcribed at the promoter region, such transcription activity failed to elongate into 

gene bodies. Overall, our results indicated that estrogen-repressed genes tend to actively 

transcribe before estrogen, whereas estrogen-induced genes were transcribed at the TSS but not 

in full length.   
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3.3.2.4 Characterization of ERα binding sites respect to Pol II complex regions in the 

absence of ligand 

To further investigate the role of ERα recruitment in formation of the Pol II complexes, we 

pooled the data from four MCF-7 ChIP-seq studies [97-100] to derive a set of 18,212 consensus 

ERα binding sites (see Method section for details). These previous studies revealed that there 

were a significant number of ERα binding sites in the absence of ligand, and the median distance 

between an ERα binding site and its nearest gene was more than 10 kb away. To relate the ERα 

binding sites with respect the Pol II complexes, we investigated whether some observed ERα 

binding sites are located within or are close to the Pol II complex regions. Recall that our 

analysis in the previous sections has identified that a total of 552 Pol II complexes contained 624 

estrogen-responsive anchor genes.  Among these complexes, a total of 434 (79%) contained ERα 

binding sites, and the majority of them (413) had ERα binding within anchor regions. Table 1 

shows the distribution of complexes containing estrogen-induced and estrogen-repressed genes 

and their relationship to ERα binding sites.  We further performed Jaccard test [117] to assess 

whether the overlap of these ERα binding sites with Pol II complexes is beyond random chances, 

and the results indicate that ERα is significantly enriched in the Pol II complexes (P < 0.01). The 

results show that even in the absence of ligand, ERαs were actively involved in the majority of 

the Pol II complexes that contain estrogen-responsive genes, both estrogen-induced and 

estrogen-repressed ones. The results also indicate that, while most ERαs are linearly remote to 

their target genes, their involvement in Pol II complexes brought them close to the genes in the 

3D space.  
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3.3.2.5 Characterization of pioneer transcription factor binding sites and histone marks in 

the absence of ligand 

Pioneer factors are a special class of transcription factors that interact with compacted chromatin 

to facilitate the binding of additional factors [118]. Pioneer factors have been shown to recruit 

chromatin modifiers and generate a local environment that is more accessible for ERα binding 

and help rapid transcriptional response of ERα [19, 20].  We next investigated whether a well-

known ERα-pioneer-factor, FoxA1, as well as other putative ERα-pioneer factors, including 

PBX1, AP2γ and GATA, are also enriched in the Pol II complexes to facilitate ERα binding in 

these regions. We identified the binding sites for these factors from the ChIP-seq data of these 

factors in   MCF-7 breast cancer cells [17, 18, 97, 105, 108].  These datasets include 24,250 

PBX1 [18], 30,976 AP2γ [17] and 20,704 GATA3 [105] binding sites without estrogen 

treatment. We also pooled 12,531 FoxA1 binding sites from three different studies [17, 97, 108] 

in order to identify consensus binding sites by merging overlapping binding sites in at least two 

studies (see Method section for details). A total of 2,120 FoxA1, 7,345 AP2γ, 3,223 GATA3 and 

4,548 PBX1 binding sites overlapped with the 552 Pol II complexes containing estrogen-

responsive genes (for the number of overlapping regions (at least 1 bp) between pioneer factor 

binding sites inside the Pol II complex region see Supplementary Figure 1).  Their distributions 

in the complexes containing estrogen-induced and estrogen-repressed genes are also shown in 

Table 1. Jaccard test [117] showed that these binding sites were significantly enriched (P < 0.01) 

in the anchor region of these complexes.  We further looked for overlap between ERα binding 

events and pioneer factor binding events inside the Pol II complex in the absence of ligand. A 

majority of ERα binding events (3045 out of 3950, 77%) inside Pol II complexes containing 

estrogen-responsive genes overlapped with at least one pioneer factor binding event in the 
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absence of ligand (see Supplementary Figure-2). The results indicate that these factors were 

providing the foundation for ERα-DNA interactions inside the complexes, which their co-

occurrence with ERα binding sites indicate that the latters are likely to be functional.  

To determine other chromatin features associated with Pol II complexes, specifically 

promoter regions of estrogen-reponsive genes, we examined the relationship of the genome-wide 

distributions of histone marks and TSS of estrogen-responsive genes (± 1kb) using the data from 

MCF-7 breast cancer cells [97, 107]. We found that the histone marks indicating active 

transcription (H3K4me1, H3K4me3, H3K9ac and H3K14ac) were spatially correlated with 

promoters of estrogen-induced and estrogen-repressed genes; the marks lie closer than expected, 

in terms of genomic distance, to these genes. Interestingly, H3K9me3 and H3K27me3, which are 

typically found at inactive or closed chromatin, were not spatially correlated with promoters of 

neither estrogen-induced nor estrogen-repressed genes. To gauge significance, we used the 

GenometriCorr package [117], which uses permutation to create a distribution of genomic 

distances that would be expected if the marks were uncorrelated. Since the distances that we 

observed lie outside this distribution, we concluded that the active histone marks were indeed 

spatially correlated with the promoters of the estrogen-induced and estrogen-repressed genes. 

(Supplementary Table 2 shows the result of the correlation test between promoter regions and 

histone marks). Overall, these results indicate that in the absence of the ligand, most estrogen-

responsive genes assumed a higher-order chromatin configuration that involved Pol II, ERα, 

ERα-pioneer factors and active histone marks. 
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Table 2 The distribution of Pol II complexes where E2-induced and E2-repressed genes reside and 

their relationship to ERα and pioneer factor binding sites inside the anchor region of complexes 

Number 
Complexes containing 
E2-induced genes (%) 

Complexes containing 
E2-repressed genes (%)  

All Pol II complex 344 238 
ERα  248 (72.1%) 194 (81.5%) 
FoxA1  199 (57.8%) 187 (78.6%) 
AP2γ  286 (83.1%) 222 (93.3%) 
PBX1  271 (78.8%) 211 (88.7%) 
GATA3  235 (68.3%) 193 (81.1%) 

 

Table 3 Summary of association between histone marks and E2-responsive gene promoters 

Correlation  
  E2- E2+ 
Histone marks E2-induced E2-repressed E2-induced E2-repressed  
H3K9ac  0.60**  0.50**  0.65**  0.51** 
H3K14ac  0.46**  0.40**  0.53**  0.48** 
H3K4me1   0.15**  0.10**  0.23**  0.21** 
H3K4me2  -0.06*  0.02 -0.02 -0.01 
H3K4me3  0.75**  0.64**  0.68**  0.65** 
H3K9me3 -0.01 -0.01 -0.04  0.00 
H3K27me3 -0.03  0.03  0.00  0.00 

P-value < 0.002 **, 0.05<P-value 0.002 * 
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Figure 2 Number of overlapping pioneer factor binding sites inside Pol II complexes in the absence of 

ligand 

 

 

Figure 3 Number of overlapping pioneer factor binding sites with ERα inside Pol II complexes in the 

absence of ligand 
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3.3.3 Impact of estrogen treatment on transcription activity of E2-responsive genes 

To understand the effect of estrogen on the transcription status and the higher-order chromatin 

structure of Pol II-bound anchor genes, we also studied Pol II ChIP-seq, GRO-seq, ERα ChIP-

seq, TF/co-regulator ChIP-seq, histone mark/variant ChIP-seq, and ChIA-PET derived using 

ERα antibody in the presence of estrogen treatment.  However, due to the lack Pol II ChIA-PET 

data after estrogen treatment, we try to infer the states of original Pol II complexes based on 

integrative analysis of the results from the above data types, particularly the ERα ChIA-PET 

data. 

 

 

Figure 4 Comparison of transcription states of E2-induced and E2-repressed genes. 

 (A) Comparison of meta-gene profiles of Pol II ChIP-seq of E2-induced and E2-repressed 
genes, presented as reads per million (RPM) aligned sequences per gene per nucleotide (density) 
versus position relative to the TSS in the absence (green) and in the presence of ligand (red).  (B) 
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Comparison of de novo transcription of E2-induced and E2-repressed genes in the absence 
(green) and in the presence of ligand (red) determined by GRO-seq. 

 

3.3.3.1 The transcription activity of Pol II-bound anchor genes in the presence of ligand 

After estrogen treatment, Pol II occupancy measured by anti-Pol II ChIP-seq [98] at the promoter 

(± 500 bp near TSS) showed a statistically significant increase (paired t-test P<10-19) and 

decrease (paired t-test P<10-10) for the estrogen-induced and estrogen-repressed genes 

respectively.  While paired t-tests clearly detect the trends of changes, the meta-gene analysis 

showed only a 38.8% increase and 21% decrease of the peak areas for the estrogen-induced and 

estrogen-repressed genes respectively (Figure 2-A). The change in the number of Pol II tags at 

the promoter region reflects the affinity of Pol II DNA interaction at the site, but does not 

necessarily directly entail changes in the transcription rate.  

We further studied the impact of estrogen treatment on de novo transcript rate using the 

GRO-seq data[96], and the results are shown in Figure 2-B.  For the estrogen-induced genes, the 

transcription rate at promoter regions did not change significantly (paired t-test P = 0.16), but the 

transcription rate in the gene body (sense strand) increased significantly (paired t-test P<10-19), 

and the pause ratio was significantly decreased (paired t-test P = 0.0015). We did not observe 

changes in the antisense transcription in the absence and presence of ligand (paired t-test P = 

0.85) for estrogen-induced genes.  The results indicate that estrogen mainly acts to enhance the 

elongation of transcription of these genes. 

For the estrogen-repressed genes, the transcription level decreased in both the promoter 

(paired t-test P = 0.012) and gene body regions (paired t-test P<10-6). The pause ratio of 

estrogen-repressed genes between the conditions in the absence and presence of ligand was not 
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statistically different (paired t-test P = 0.21). Antisense transcription significantly decreased in 

the presence ligand for estrogen-repressed genes (paired t-test P<10-5).  The results suggest that 

estrogen treatment suppressed transcription initialization and elongation of these genes in a 

concordant manner. 

3.3.3.2 Characterization of histone marks with respect to promoters of E2-responsive genes 

in the presence of ligand 

We analyzed the impact of estrogen treatment on histone modification at the promoters of 

estrogen-responsive genes [97] to investigate if histone modifications mediate the effect of 

estrogen on these genes. We found that the histone marks indicating active transcription 

(H3K4me1, H3K4me3, H3K9ac and H3K14ac) were spatially correlated with promoters 

estrogen-induced and estrogen-repressed genes; the marks lie closer than expected, in terms of 

genomic distance, to these genes. Interestingly, they were not spatially correlated for either 

H3K4me2 (typically found in the promoter or gene body) or for H3K9me3 and H3K27me3 

(typically found at inactive or closed chromatin). The results are shown in Supplementary Table 

2. To gauge significance, we used the GenometriCorr package [30], which uses permutation to 

create a distribution of genomic distances that would be expected if the marks were uncorrelated. 

Since the distances that we observed lie outside this distribution, we concluded that the active 

histone marks were indeed spatially correlated with the promoters of the estrogen-induced and 

estrogen-repressed genes in the presence of estrogen. The results indicate that histone 

modifications at the promoters of estrogen-responsive genes rendered chromatin accessible to 

DNA binding factors, and the lack of repressive histone markers indicate that estrogen-mediated 

gene repression is not through histone modification.  
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3.3.4 High-order configuration changes upon estrogen treatment 

We identified 30,115 consensus ERα binding sites after estrogen treatment from the four ChIP-

seq studies [97-100].  We first investigated if ERα binding sites tend to be enriched in the 

original Pol II complex regions after estrogen treatment as they did in the absence of estrogen.  

The results showed a total of 6,090 ERα binding sites overlapped with the locations of the Pol II 

complexes (552) containing estrogen-responsive genes, among which 3,035 were new binding 

sites when compared to ERα binding data without estrogen treatment. Jaccard test [117] indicate 

that the ERα binding sites are significantly enriched (P<0.01) in the region of these complexes, 

indicating that the regions of original Pol II complexes containing estrogen-responsive genes 

were “hot” regions of ERα binding. The presence of these new ERα binding events potentially 

would change the overall configuration of chromatin complexes that originally existed before 

estrogen presence, particularly if a new ERα binding event leads to new chromatin complex 

formation.  Therefore, we turned to study the higher-order chromatin structures formed after 

estrogen treatment.  

 



 48 

 

 

Figure 5 Venn diagram illustrating the overlap between the Pol II complexes containing E2-

responsive genes formed in the absence of ligand and the ERα complexes formed in the presence of ligand 

3.3.4.1 ERα binding sites tend to be enriched in the original Pol II complex regions 

We identified 30,115 consensus ERα binding sites after estrogen treatment from the four ChIP-

seq studies [97-100].  We first investigated if ERα binding sites tend to be enriched in the 

original Pol II complex regions after estrogen treatment as they did in the absence of estrogen.  

The results showed a total of 6,090 ERα binding sites overlapped with the locations of the Pol II 

complexes (552) containing estrogen-responsive genes, among which 3,035 were new binding 

sites when compared to ERα binding data without estrogen treatment. Jaccard test [117] indicate 

that the ERα binding sites are significantly enriched (P<0.01) in the region of these complexes, 

indicating that the regions of original Pol II complexes containing estrogen-responsive genes 

were “hot” regions of ERα binding. The presence of these new ERα binding events potentially 

would change the overall configuration of chromatin complexes that originally existed before 

estrogen presence, particularly if a new ERα binding event leads to new chromatin complex 
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formation.  Therefore, we turned to study the higher-order chromatin structures formed after 

estrogen treatment.  

 

 

Figure 6 The position transition patterns that E2-responsive genes with respect to Pol II and ERα 

complexes 

 (A) anchor-to-anchor, (B) anchor-to-loop, (C) anchor-to-stand-alone. Green arrow shows the 
gene. 

 

3.3.4.2 ERα-associated chromatin complex in the presence of ligand 

We analyzed the published ChIA-PET data from a study of ERα-bound chromatin complexes 

[82] in MFC-7 cells treated with estrogen. This study reported ERα binding events that led to the 

formation of higher-order chromatin complexes (4,293), as well as those that did not form 
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complexes, which were referred to as stand-alone ERα binding sites (10,729).  We then 

investigated the relationship of these ERα complex events with respect to original Pol II 

complexes containing estrogen-responsive genes, and the results are shown in Figure 3.  There is 

a significant overlap between the DNA regions encompassing the original Pol II complexes and 

those encompassing ERα complexes or stand-alone ERα binding sites; 261 of the original Pol II 

complexes partially overlapped (at least 3,000 bp) with ERα complexes and 249 of them 

overlapped with stand-alone ERα binding sites. Some Pol II complexes with DNA loops 

occupying large genomic regions overlapped with more than one ERα complex, e.g., with one 

ERα complex region at one end as well as with a stand-alone ERα binding sites at the other end.  

Our analyses showed that a total of 358 out of 624 estrogen-responsive genes were found to be 

associated with ERα complexes after estrogen treatment [82]. For the remaining estrogen-

responsive genes, the lack of an ERα involvement in the ChIA-PET data [82] may be attributed 

to the following factors: 1) the sensitivity of the ChIA-PET experiment, 2) the difference in 

experimental conditions and procedures, 3) low affinity secondary binding of ERα to chromatin 

[29, 30]. 

Since the majority of estrogen-responsive genes were involved in Pol II complexes and 

with ERα complexes before and after estrogen treatment respectively, we focused on the 

transcriptional behaviour of these estrogen-responsive genes from a perspective of the interplay 

between Pol II and ERα chromatin complexes.  We categorized the estrogen-responsive genes 

based on their relationship with respect to Pol II and ERα complexes into 3 types, as shown in 

Figure 4.  More specifically, they are: 1) anchor-to-anchor: a gene that was within a Pol II 

complex anchor region that was also an anchor gene with respect to an ERα complex (Figure 4-

A).  Since the position of chromatin complexes precipitated by anti-Pol II and anti-ER antibodies 
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overlapped, a possible interpretation is that both ERα and Pol II are involved in a common 

complex before and after estrogen treatment. 2) anchor-to-loop: an anchor gene with respect to a 

Pol II complex that became a loop gene with respect to an ERα complex (Figure 4-B).  A 

possible interpretation would be that a new ERα complex is formed which likely has disrupted 

the original Pol II complex, because it is unlikely to have two distinct chromatin complexes 

encompass each other within a relatively short range of chromatin. 3) anchor-to-stand-alone: an 

anchor gene with respect to a Pol II complex that became a stand-alone ERα gene (on the basis 

that gene promoters were within ±20 kb of non-interacting ERα binding sites [82]) (Figure 4-C). 

A possible interpretation is that the original Pol II complex is disrupted, because the current ERα 

binding sites overlaps with the original Pol II complex site and yet no complex involving ERα is 

found.   

In Figure 5, we render the relative positions and the relationships of the Pol II and ERα 

complexes of 3 genes to support the above reasoning.  Figure 5-A shows an example of an 

anchor-to-anchor gene, MYB, where the Pol II and ERα complex anchored at the same regions, 

and the ERα binding sites overlapped with the anchor regions in the absence and presence of 

estrogen, indicating the anti-Pol-II and anti-ERα antibodies had pulled down a common 

complex. An example of an anchor-to-loop gene, CALM1, is shown in Figure 5-B. Before 

estrogen treatment, CALM1 has an ERα binding event in the Pol II anchor region. When treated 

with estrogen, an ERα complex formed that included the DNA regions that subsumed the 

original Pol II complex, and the original ERα binding site in the Pol II complex disappeared.  

Therefore, it is reasonable to assume that the original Pol II chromatin complex was disrupted. 

Finally, an example of an anchor-to-stand-alone gene, TLE1, is shown in Figure 5-C.  After 

estrogen treatment, there were distinct ERα binding patterns, and importantly the ERα binding 
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sites overlapping with the Pol II complex anchor is not associated with an ERα complex, 

indicating the original Pol II complex was disrupted.  These types of reasoning enabled us to 

infer the impact of estrogen treatment on the Pol II complexes that contain estrogen-responsive 

genes prior to estrogen treatment, in other words, what happened to the Pol II complex after 

estrogen treatment. 

We first compared the pattern of positional transitions of the estrogen-induced and 

estrogen-repressed genes respectively to investigate whether the two types of genes behaved 

differently (Figure 6-A). The distribution of estrogen-induced and estrogen-repressed genes in 

terms of their positional transition is significantly different (Chi-square test P<10-11). Based on 

the distribution of genes among the categories, we inferred that the original Pol II complex 

containing 86% (124/144) estrogen-repressed genes were disrupted after estrogen treatment.  In 

comparison, the original Pol II complexes containing 49% (104/213) estrogen-induced genes 

were inferred to be disrupted.  The results also show that a significantly smaller number of 

estrogen-repressed genes are located in the anchor region of ERα complexes in comparison to 

the induced ones. 

We further studied a subset of estrogen-responsive genes that had ERα in the anchor 

region of the original Pol II complexes in the absence of ligand (Figure 6-B) and analysed the 

pattern of their relative positional transitions. For this subset of genes, ERα might participate in 

the Pol II complex in the absence of ligand, and we are interested in inferring the impact of 

estrogen binding to these ERαs on the Pol II complexes.  Among 113 estrogen-induced genes, 74 

(65%) were categorized as anchor-to-anchor genes; 10 (9%) were categorized as anchor-to-loop 

genes; and 29 (26%) were categorized as anchor-to-stand-alone genes. Whereas from 68 

estrogen-repressed genes, 13 (19%) were categorized as anchor-to-anchor genes; 20 (29%) were 
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categorized as anchor-to-loop genes; and 35 (52%) were categorized as anchor-to-stand-alone 

genes.  The proportions of anchor-to-anchor genes for estrogen-induced and estrogen-repressed 

gene were significantly different (Chi-square test P < 10-6).  The data indicate that, with a high 

likelihood, the original complexes containing the majority (55, 81%) of the estrogen-repressed 

genes were disrupted due to the formation of new ERα complexes or ERα binding events. On the 

other hand, the data indicate that the original Pol II complex containing the majority (74, 65%) of 

estrogen-induced genes might have remained, since these genes were categorized as anchor-to-

anchor with respect to both original Pol II complexes and ERα complexes.  

In summary, a large proportion of estrogen-repressed genes assumed a higher-order 

chromatin configuration in the absence of ligand, which was later disrupted after estrogen 

treatment.  The results lead to the hypothesis that original higher-order Pol II complexes provide 

ideal transcription environment for these genes.  When treated with estrogen, binding of estrogen 

to the ERαs with these complexes or formation of new ERα chromatin complexes disrupted the 

original transcription active chromatin structures, thus leading to the repression of these genes.  
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Figure 7 Examples of positional transition of Pol II and ERα ChIA-PET complexes 

The figure shows the positions and relationships of genes (RefSeq), Pol II complex anchor 
regions (Pol II Int), ERα complex anchor regions (ERα Int), ERα ChIP-seq binding sites in the 
absence and presence of estrogen for three genes: A) anchor-to-anchor, gene: MYB; B) anchor-
to-loop, gene: CALM1; C) anchor-to-stand-alone, gene: TLE1.  The estrogen treatment 
conditions are color-coded with green (absence) and red (presence). The black arrow indicates 
Pol II anchor region in the absence of ligand. 
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Figure 8 The distribution related to the positional transition patterns of the E2-induced and E2-

repressed genes 

(A) Number of gene in each positional transitional pattern group (anchor-to-anchor, anchor-to-
loop, anchor-to-stand-alone) for E2-induced and E2-repressed genes. (B) Positional transition 
pattern distribution of E2-responsive genes that had ERα binding in the anchor region of the 
original Pol II complexes in the absence of ligand. 

 

3.3.4.3 The transcription activity of Pol II complex associated genes in the presence of 

ligand 

In order to investigate whether the pattern of positional transition of the estrogen-responsive 

genes (induced vs repressed) had any effect on the transcription activity of genes after estrogen 

treatment,  we further compared the  transcription activity of genes in each group using the 
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GRO-seq dataset[96].  The transcription activities of estrogen-induced genes were not 

statistically significantly different from each other among the anchor-to-anchor, anchor-to-loop 

and anchor-to-stand-alone genes. As expected, the transcription activities of all estrogen-induced 

genes, independent of their grouping, were increased after estrogen treatment when compared to 

those in the absence of ligand (paired t-test for anchor-to-anchor genes: P<10-12, anchor-to-loop 

genes: P = 0.0002, anchor-to-stand-alone genes: P =0.0007).  The result indicates that, for 

estrogen-induced genes, position transition is not a significant factor influencing their 

transcription. 

Interestingly, in the presence of estrogen, the transcription activity of estrogen-repressed 

anchor-to-anchor genes was significantly higher (t-test P =0.04) than the pooled anchor-to-loop 

genes and anchor-to-stand-alone genes, aka, genes with disrupted original Pol II complexes. We 

further noted that, while the transcription activities of anchor-to-loop and anchor-to-stand-alone 

genes were decreased after estrogen treatment (paired t-test for anchor-to-loop: P = 0.000614, 

anchor-to-stand-alone: P = 0.0024), the transcription activity of estrogen-repressed anchor-to-

anchor genes was not significantly changed (paired t-test for anchor-to-anchor: P = 0.24).  In a 

further comparison between estrogen-induced and estrogen-repressed anchor-to-anchor genes, 

the transcription activities were not statistically significantly different (t-test P = 0.45).  The 

results indicate that, for the estrogen-repressed genes, whether retaining or disrupting the original 

Pol II complexes has a significant impact on the transcription activities of these genes. 

The discrepancies between the de novo transcription activity and steady-state mRNA 

levels of the estrogen-repressed anchor-to-anchor genes might be due to active 

posttranscriptional regulations of specific transcripts by mechanisms such as microRNAs 

(miRNAs). Several genome-wide profiling studies have characterized many estrogen-dependent 
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miRNAs, whose transcription is induced by estrogen in breast cancer cell lines [119, 120]. These 

miRNAs, including miR-22, let-7, miR-221/222, miR-18a/19b/20b and miR17-5p, were shown 

to negatively modulate the ERα-regulated genes after estrogen stimulation. We observed that out 

of 20 estrogen-repressed anchor-to-anchor genes, 13 of them were targets of these miRNAs. 

This result may explain the discrepancy between the observed high transcription activities in 

GRO-seq and the decreased mRNA levels in the microarray experiments for these genes.  

3.3.4.4 Other TF/co-regulators associated with transition groups 

We further examined the distribution of a set of well-known ERα-partner TFs and co-regulator 

binding sites derived from ChIP-seq experiments [17, 97, 99, 100, 105-107] from MCF-7 breast 

cancer cells treated estrogen; the goal is to inspect if distributions of these factors are specific to 

certain transition groups.  After collecting publically available data for 14 different factors, we 

examined their enrichment within ± 20 kb of estrogen-responsive genes’ TSSs, including 

transcription factors: FOXA1, AP2γ, GATA3, CTCF, STAG1, RAD21, cJun, cFos, and co-

regulators; CBP, p300, SRC1, SRC2, SRC3, TRIM24. Significant differences between the 

number of genes having one particular factor and not having another particular factor in each of 

the six groups were obtained using Chi-square tests. P-values were reported with Bonferroni 

correction. Significant residual values (>2 or -2<) were shown inside the parenthesis. The results 

are shown Supplementary Table 3.  

Interestingly, SRC-1, SRC-2, SRC-3 and FoxA1 binding events were enriched in the 

anchor-to-anchor group among the estrogen-induced genes. This observation agrees with the 

knowledge that SRCs function as co-activators for nuclear receptors.  For the other factors, we 

did not find a significant association with respect to the sub-groups. Currently, we do not have 
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genome-wide co-repressor binding data. Potentially, genome-wide co-repressor data (such as 

NCoR, SMRT, NRIP1, LCoR and REA) can help to understand ligand-dependent transcriptional 

repression by ERα. 

 

Table 4 The number of genes having TF and co-regulators binding sites within ±20 kb from their 

TSSs in each transition group 

The table shows the distribution of binding sites among the 6 gene groups.  Statistical 
significance was determined using chi-square tests. P-values were reported with Bonferroni 
correction. A number that is significantly deviated from the expected value (residual values 
greater than +2 and less than -2) are indicated with ‘+’ and ‘-’ respectively. 

 

 

 
E2-induced genes E2-repressed genes 

Adj. P 

TF/ 
co-
regulator 

anchor-
to-

anchor 
(n=109) 

anchor-
to-loop 
(n=28) 

anchor-
to-SA 
(n=78) 

anchor-
to-

anchor 
(n=20) 

anchor-
to-loop 
(n=41) 

anchor-
to-SA 
(n=83) 

SRC-1 45 (+) 0 (-) 5 1 0 (-) 0 (-) <10-17 

P300 93 6 (-) 52 19 25 68 <10-8 

SRC-3 69 (+) 2 (-) 21 8 7 (-) 24 <10-7 

SRC-2  74 (+) 5 (-) 29 14 9 (-) 26 <10-7 

CBP  92 8 (-) 51 18 23 60 <10-5 

FoxA1 65 (+) 4 (-) 18 (-) 9 12 27 <10-4 
AP2γ 94 15 55 17 36 67 0.025 
TRIM24 75 16 36 11 31 61 0.058 
CTCF 89 16 53 18 36 59 0.126 
Fos 42 5 17 9 9 26 0.649 
RAD21 100 20 63 19 37 70 0.731 
GATA3 44 7 27 11 17 37 1.000 
STAG1 100 22 69 20 38 72 1.000 
c-Jun 19 5 11 5 4 10 1.000 
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3.4 DISCUSSION  

In this study, we present an integrated data analysis to derive a holistic perspective of the 

transcription machineries at estrogen-responsive genes, as shown in Figure 7. Systematic 

dissection of this data collection enabled us to ask specific questions, make inferences, and 

reveal different mechanisms of estrogen-mediated transcription regulation.  

In the absence of the ligand, most of estrogen-responsive genes assumed a higher-order 

chromatin configuration that involved Pol II, ERα, ERα-pioneer factors and active histone 

modifications. This leads to the hypothesis that estrogen is not critical for assembling of these 

transcription machineries at these genes but rather (is needed?) for regulating the states of these 

machineries. Without the ligand, estrogen-induced genes showed active transcription at 

promoters but failed to elongate into gene bodies.  The observed transcription pause at these sites 

may be due to: 1) the estrogen-free ERs in these complexes recruited co-repressors, e.g., N-CoR 

or SRMT [40], which prevented transcription from progressing into gene bodies; alternatively, 

the estrogen-free ERαs failed to recruit co-activators, e.g., SRC-1 [40], to the transcription sites.  

After estrogen treatment, a large proportion of the Pol II chromatin complexes were 

disrupted.   The results lead to the hypothesis that original higher-order Pol II complexes 

provided an ideal transcription environment for these genes, and disruption of these structures 

impaired their transcription, thus making them estrogen-repressed genes.  Disruption of these 

complexes may be due to: 1) confirmation changes of the estrogen-bound ERαs in these 

complexes reduced affinity of the complexes to DNA; 2) new high affinity binding events or 

formation of novel complexes by estrogen-bound ERαs exerted physical torque to the original 

complexes, leading to their disruption; or 3) a combination of the above mechanisms.  
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Interestingly, estrogen-repressed anchor-to-anchor genes, of which original Pol II complexes 

were likely retained, had higher transcription activities in the presence of estrogen, indicating 

that the binding of estrogen to an ERα does not necessary encode repression action, an 

observation that corroborates the aforementioned hypothesis.  In these anchor-to-anchor genes, 

the repressed expression levels were likely due to posttranscriptional regulation by transcript-

specific mechanism such as microRNAs.  

In comparison, the majority of estrogen-induced genes assumed an anchor-to-anchor 

pattern after estrogen treatment, and therefore retained active chromatin state for transcription at 

the TSS.  Estrogen treatment likely facilitated transcription elongation by recruiting co-activators 

or releasing co-repressors.  Observed enrichment of co-activators such as SRC-1, SRC-2 and 

SRC-3 in the promoter of these genes support this notion, and it will be interesting to further 

investigate if known ER co-repressors, such as N-CoR or SMRT, behave as expected. For the 

estrogen-induced genes that underwent chromatin structure transition, the formation of new ERα 

complexes might have facilitated recruiting of co-activators to enhance the transcription of these 

genes.  

Beyond providing insights for understanding the mechanisms of estrogen-mediated gene 

regulation, our study leads to a general model for gene repression: any DNA-binding protein that 

is capable of disrupting a transcription-favoring chromatin complex can function as a 

transcriptional repressor.  Disruption of a transcription-favoring complex can be simply achieved 

when the factor binds to DNA adjacent to the original complex, or forms a novel chromatin 

complex with a sufficiently high affinity to exert physical torque on the chromatin and disrupt 

the original complex.  This model expands the concept of   “transcriptional repressors” to include 

proteins that do not necessarily have any “inactivation” domain.  In the same vein, any protein 
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that cooperates with such a factor in the process can be thought of as a “co-repressor”. This 

hypothesis remains to be further tested for other transcription factors, particularly other nuclear 

receptors such as RARA and RARG, which tend to exhibit dualism in regulating gene 

expression. 
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Figure 9 Pol II and ERα ChIA-PET interactions data and ChIP-seq binding data in the vicinity of 

MYB gene in the absence (-) and presence (+) of estrogen 
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4.0  FOURTH CHAPTER:  IMPROVING CHIP-SEQ PEAK-CALLING FOR 

FUNCTIONAL CO-REGULATOR BINDING BY INTEGRATING MULTIPLE 

SOURCES OF BIOLOGICAL INFORMATION 

4.1 BACKGROUND 

Transcription factors (TFs) serve as the final molecules in signal transduction pathways that 

coordinate expression of target genes. When activated in response to upstream signals, often 

encoded as chemical ligands and protein modification, TFs bind to their cis-regulatory sites to 

exert their regulatory effects on their target genes.  During the process, TFs often interact with 

other proteins, which further modulate the function and efficacy of TFs to achieve fine-tuned 

regulation of gene expression; studying such interactions and regulations is an increasingly 

important component of studying gene expression systems.  Nuclear receptors (NRs), such as 

estrogen receptor α (ERα), are transcription factors that migrate to the nucleus (often as a result 

of binding ligand) to regulate downstream target genes. NRs play important biological roles in 

normal physiology and disease.  In particular ERα plays an important role in both breast cancer 

and osteoporosis.  Upon ligand binding, ERα and other NRs are bound by proteins called co-

regulators that recruit transcriptional machinery and chromatin modifying enzymes.  Co-

regulators are therefore critical in NR activity.  Understanding the composition of functional 

NR/co-regulator complexes in specific signaling contexts could provide a basis for the 
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development of novel NR- and co-regulator-targeted therapeutics. The problem addressed in this 

paper arose from a study of the interaction between the major ERα co-activator SRC-1 (a 

member of the p160 SRC family), also known as NCOA1, with ERα and the impact of such 

interactions gene expression [121-124].   

Recently, chromatin immunoprecipitation coupled with high-throughput next-generation 

sequencing (ChIP-seq) has become the main technology for global characterization of the 

transcriptional impact of NRs and their co-regulators [125-127].  ChIP-seq involves the short-

read (~30bp) sequencing of the ChIP-enriched DNA fragments. These short sequence reads 

(tags) are then aligned to a reference genome. Then the actual binding loci from the positional 

tag distributions (i.e. sequenced DNA fragments mapped onto a reference genome sequence) are 

determined using ‘peak calling’ algorithms. Numerous peak calling algorithms have recently 

been developed for identifying ChIP-enriched genomic regions from ChIP-seq experiments [108, 

128, 129] but there is a wide range of discordance among the peak calls from different 

algorithms [130].  Therefore, there is a need for the methods that can integrate additional 

information besides ChIP-seq tags to identify functional TF binding sites.  Furthermore, studying 

the interactions between TFs and their co-regulators through ChIP-seq technology poses an 

additional challenge since co-regulators do not directly bind DNA.  Co-regulator ChIP-seq 

measures the secondary protein-DNA binding through primary TFs and leads to relatively weak 

sequencing signals—i.e. relatively small number of sequence tags above noise. As such, it 

remains a challenge for contemporary peak calling methods to detect weak secondary protein-

DNA-binding signals and simultaneously maintain a high specificity.   

 



 65 

 

Often, a well-designed experiment studying interaction between a TF and its co-regulator 

generates critical information in addition to the ChIP-seq data for the co-regulator binding.  For 

example, ChIP-seq data reflecting the binding of the primary TF of interest to its cis-regulatory 

sites are often collected; the genomic sequence surrounding Chip-seq peaks are usually available, 

which can be used to reflect the intrinsic sequence characteristics of regulatory sites; 

transcriptomic data that reflect functional outcomes of the interaction of the TF and its co-

regulators can also be monitored.  In this study, we investigated and compared different 

statistical and machine learning approaches to integrate multiple types of information to 

overcome the difficulty of identifying functional ERα/SRC-1 interaction in presence of weak 

ChIP-seq signal. 

4.2 METHODS 

4.2.1 ChIP-seq data 

U2OS cells stably expressing Flag-tagged ERα (obtained from Dale Leitman) were used for 

ChIP as previously published [42].  SRC-1 and ERα ChIP DNA from ethanol (vehicle) and 

estradiol (E2)-treated U2OS cells were amplified for Illumina sequencing. IgG ChIP DNA was 

also amplified for Illumina sequencing. The ChIP-seq datasets used in this study had the 

following number of uniquely mapped sequence tags, ChIP_ER_E2: 10,380,852, ChIP_SRC-

1_E2:6,995,566 tags, ChIP_IgG: 8,641,543 tags. SRC-1 peaks were called using MACS 1.4.1 

[108], BayesPeak [129], and  T-PIC  [128] with IgG as negative control.   
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4.2.2 Evaluation procedure 

The selected peaks were evaluated in terms of their overlap with high-scoring sequence motifs. 

The motif analysis was performed using the program CLOVER [131] , with P value cutoff  

0.005 which compares sets of DNA sequences to a library of transcription factor-binding motifs 

and identifies whether any of the motifs are statistically overrepresented or underrepresented in 

the sets. We measured enrichment of selected motifs in sets of ± 300 bp from SRC-1 ChIP-seq 

peak summit.  

4.2.3 Computational Framework 

We investigated the following computational approaches to identify potential binding sites, 

including unsupervised classification, supervised classification and semi-supervised 

classification. The task was formulated as a binary classification problem for supervised and 

semi-supervised framework, where each ChIP-seq peak was either ‘functional’ or ‘non-

functional’. Each ChIP-seq peak was represented with a vector of binary features, where each 

feature was derived from one biological information source.  

4.2.4 Features 

We devised a total of 67 features, which can be grouped as follows. 1) Genomic information: 

trigrams (triplet of nucleotides) to represent intrinsic characteristics of genome sequence 

surround the peak summit to create a feature vector; averaged nucleosome occupancy prediction 
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results as another feature.  2) Primary TF binding events: the called ER ChIP-seq data peak that 

overlap with SRC-1/ERα ChIP-seq. 3) Functional outcome of TF activation: whether the peak is 

mapped to SRC-1 sensitive gene.   

4.2.4.1 N-gram Presence (64 Features) 

Previously, n-gram distribution of sequences have been utilized for TF binding site prediction 

[132]. An N-grams consists of a sequence of n letters, where letters are possible nucleotide 

(A,T,G,C) bases of DNA sequences in ChIP-seq peaks.  As such, a trigram has 64 possible 

combinations of three nucleotides, and we constructed a vector of length of 64 elements used the 

Galaxy Toolkit [133], each representing the presence or absence of a give trigram in the 600bp 

surrounding the summit of the peak of interest.  

4.2.4.2 Nucleosome Occupancy (1 Feature) 

Nucleosomes are fundamental repeating unit of eukaryotic chromatin.  Nucleosomes consist of 

147 bp of DNA sequence wrapped around a histone core complex, and they are separated from 

each other by linker DNA of up to 50 bp.  Recently, Tillo et al. [134] proposed that nucleosome 

occupancy of DNA sequence around functional human transcription factor binding sites (TFBSs) 

is remarkably higher.  To represent the nucleosome occupancy status of the Chip-seq peaks, we 

use the scores from Kaplan et al.’s [135] genome wide nucleosome predictions. For each base 

location of human genome, Kaplan et al. provided the “average occupancy” score, which is the 

predicted probability for each position in the genome to be covered by any nucleosome. For each 

peak, we took the mean value of average occupancy score around ±50 bp (an approximate length 

of a nucleosome) region of the peak summit.  For each candidate peak, its nucleosome 
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occupancy feature is represented as a binary variable, with value set equal 1 if the mean value 

greater than 0.75 and 0, otherwise.  

4.2.4.3 Primary TF binding events (1 Feature) 

For each candidate SRC-1 peak, we associate a binary variable to indicate if the peak overlaps 

with any ERα ChIP-seq peak.  We defined that an ERα and an SRC-1 peak overlap if they share 

at least one base pair. 

4.2.4.4 Functional outcome of TF activation (1 Feature) 

We collected the gene expression data from cells that were treated with vehicle and E2 in 

presence and absence of anti-SRC-1 siRNA have been employed for our analysis. Differentially 

expressed genes between these samples were found using limma (Linear Models for Microarray 

Analysis) package - an implementation of the empirical Bayes linear modelling approach [136] . 

We identified a list of genes that were differentially expressed between the control vs anti-SRC-1 

siRNA groups and labelled them as SRC-1 sensitive genes.  ChIPpeakAnno [137] was used to 

map each ChIP-seq peak to a gene if possible using default setting of the program.  For each 

candidate SRC-1 peak, we associate a binary variable to indicate if the peak is mapped to one of 

SRC-1-sensitive genes.   

4.2.5 Machine learning approaches 

For unsupervised learning, k-means clustering, training and classification procedures for 

supervised and semi-supervised framework are implemented using the MATLAB® (Natick, 
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MA). We rank key features by ROC class reparability criteria using also MATLAB®. The 

microarray data analysis was done with the use of the R packages from the Bioconductor project 

(www.bioconductor.org). We used DAVID [138] for GO analysis. 

4.2.5.1 Unsupervised Clustering 

We used k-means clustering (k=2) with city block distance metric to see cluster candidate peaks 

into two groups. 

4.2.5.2 Supervised Classification 

To build this type of classifiers, labelled data of both true-positive peaks and false-positive peaks 

were required. We experimentally validated 18 SRC-1 peak by quantitative PCR (qPCR) 

experiments (data not shown), which were used as positive training cases, together with a set of 

randomly drawn control (anti-IgG) ChIP-seq peaks as negative training cases, to train supervised 

classifiers. We investigated the performance of three state-of-the-art classifiers:  Naive Bayes 

(NB) [139] implemented by the MATLAB, Support Vector Machines (SVM)[140]  and Random 

Forest (RF) [141].  Different ratios of positive to negative cases, (1:1, 1:2 and 1:3), were 

considered in this study for testing, and training.  

NB classifier with Bernoulli distribution was used where each peak represented as 

binary-valued feature vectors.  For SVM, we studied different types of kernels and chose the 

polynomial kernel in this study.  For training RF classifiers, we grew 50 trees. For the number of 

variables randomly selected at each node, we used the default value that was equal to the square 

root of the feature dimension. 

http://www.bioconductor.org/
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We measured performance of classifiers with 9-fold cross-validation process and report 

precision, recall and accuracy values. Precision and recall were used in order to evaluate model 

performance of classifier. Precision was measured as the fraction of correctly predicted TP 

binding sites (experimentally verified) among all binding sites predicted by the classifier to be 

TP binding site. Recall is the fraction of the TP binding sites that are also predicted to TP.  

Accuracy is calculated as the fraction of correct calls (TP + TN) overall total number of 

predictions. 

4.2.5.3 Semi-supervised Classification 

Self-training is one of the common algorithms used for semi-supervised learning [142]. In self-

training [143], a classifier is built from labeled instances (L) and used to predict the labels for 

instances in unlabeled set (U). Then m instances in U that the current classifier has high 

classification confidence are labeled and moved to enlarge L. The whole process iterates until 

stopped. The stopping criterion in self-training is that, either there is no unlabeled instance left or 

the maximum number of iterations has been reached. Different ratios of positive to negative 

cases, (1:1, 1:2), were considered in this study for testing, and training The detailed algorithm is 

shown below. 

Algorithm  

Input: positively labeled data (P)  , negatively labeled data (N) , and 

unlabeled data  (U)  
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1. Initially, let  and   where ln = lp. 

2. Set t, the iteration counter, to 0. 

3. Repeat until the stopping criteria are not satisfied, 

a. Build a classifier Ct on Lt 

b. Apply Ct to the unlabeled instances in Ut to predict a label for each instance in Ut. 

c. Generate by selecting unlabeled instances that Ct has the highest classification 

confidence as positive label and select randomly equal number of negatively 

labeled instances from Nt.  

d. Delete the selected instances positively and negatively labeled from Ut and Nt 

respectively 

e.   

f. Increase t by 1 

4. Return the final classifier and apply it to the U. 

4.3 RESULTS AND DISCUSSION 

The biological study underlying this paper aims to investigate the impact of ERα/SRC-1 

interaction on estrogen induced gene expression in a bone cell line transfected with ERα (U2OS-

ERα), which may shed light on the effect of estrogen-related bone development, bone loss, and 

potentially bone metastasis.  We have generated ChIP-seq data using anti-ERα and anti-SRC-1 
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antibodies in presence and absence of estradiol (E2).  To further investigate the impact of 

interactions between this NR//co-regulator pair, we collected expression array data from the 

same cell lines with a combination of E2 treatment and SRC-1 knock down.  In general, the 

results of an SRC-1 ChIP-seq experiment would reflect secondary, indirect binding of SRC-1 to 

DNA through multiple NRs..  However, in this study our experimental design aims to investigate 

specifically estrogen-induced interactions between ERα, SRC-1, and DNA. The detailed results 

of the experiments are being prepared for a separate publication (Hartmaier et al., manuscript in 

preparation).  In the current paper, we address the fundamental issue of identifying reliable and 

functional ERα/SRC-1 DNA binding sites.   

4.3.1 Identifying SRC-1 binding sites based on anti-SRC-1 ChIP-seq 

We first set out to investigate the efficacy of studying ERα/SRC-1 DNA binding sites only based 

on the results of ChIP-seq experiments performed using an anti-SRC-1 antibody.  Potential SRC-

1 binding peaks were identified using three different algorithms: MACS 1.4.1 [108], BayesPeak 

[129], and  T-PIC  [128]. Table 5 shows the number of peaks identified by the above algorithms 

with different cut-off thresholds and the corresponding number of genes to which the peaks are 

mapped.   
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Table 5 The number of peaks called by different algorithms and at thresholds, and corresponding 

number of mapped genes. 

* Union and intersection of the peaks by the three methods, as shown in Figure 10. 

Method 
Total 

number of 
peaks 

Number of 
genes 

mapped 
MACS, p=1E-8 1,966 996 
MACS, p=1E-5 4,678 2,054 
MACS, p=1E-3 23,306 6,341 
T-PIC,  p=1E-3 4,453 1,676 
T-PIC,  p=1E-2 6,598 2,318 
BayesPeak (PP=0.90) 15,622 4,495 
BayesPeak (PP=0.70) 21,373 5,507 
BayesPeak (PP=0.5) 27,990 6,533 
Union* 38,324 8,057 
Intersection* 4,811 2,029 

 

The results of the table raise the following issues during interpretation:  First, as 

expected, applying different cut-off thresholds to the results by a given algorithm leads to a 

different number of peaks being identified: there is inevitably a trade-off between the number of 

peaks recovered and the quality of the peaks.  Second, different algorithms assess the quality of 

the peaks based on different assumptions and methodologies: there is no consensus on the 

“goodness” of quality scores of these algorithms.  We further noted that different versions of a 

same algorithm return different quality scores.  Finally, different algorithms return disjointed sets 

of peaks, as shown in Figure 10, indicating that distinct assumptions and approaches enable an 

algorithm to discover some potential peaks that evade detection by other algorithms. These 

issues force decisions that potentially impact the conclusions of the study such as: which 

algorithm performs better, what cut-off threshold for a given algorithm to pick, and how to 
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consolidate the results from different algorithms so that one can maximize the number of high 

quality peaks.  Making these choices remains challenging due to the lack of consensus in the 

field [130, 144].   

 

Figure 10 Peak calling by different algorithms 

A Venn diagram shows the overlaps among the peaks called by MACS (P value cutoff of 10-3), 
T-PIC (P value cutoff of 10-2) and BayesPeak  (PP  cutoff of 0.5). The number of peaks are 
shown.  The numbers of the union and intersection of the peaks and the mapped genes by the 
algorithms are shown in Table 5.  

 

In order to compare our results with a recently published study by Lanz et al [145], which 

analyzed DNA recruitment of the co-regulators SRC-3, we studied the estrogen-induced SRC-1 

peaks identified from our data using MACS algorithm with a cut-off threshold of P value at 10-

10, a threshold based on their study.  Our analysis yielded a total of 1,286 peaks, which were 

further mapped to 684 genes.  The number of peaks identified by us with the above condition is 

far fewer compared to their study.  The discrepancy is likely to be, at least in part, due to 

amplification of SRC-3 in MCF-7 cells used in their study and possible differences in antibody 
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affinities.  However, these results also raised the hypothesis that ChIP-seq signals of secondary 

binding at physiologic levels are usually weaker.  This suggests that conventional cutoff 

thresholds for peak calling algorithms may be too stringent, neglecting weak peaks (peaks with 

relatively small number of tags) potentially resulting from real ER /SRC-1/DNA interactions. 

Therefore, additional information besides SRC-1 ChIP-seq tags should be capitalized to enhance 

identification of functional binding sites. 

4.3.2 Integrating multiple sources of biological information for identifying SRC-1 binding 

sites 

To corroborate the results of SRC-1 ChIP-seq, we also studied the ERα ChIP-seq data (reflecting 

the expected dominant SRC-1-interacting TF) and investigated peaks overlapping between the 

ERα and the SRC-1 ChIP-seq results.  By varying the cut-off threshold of MACS, we identified 

different numbers of overlapping peaks between ERα and SRC-1, with the number of 

overlapping peaks increasing as the cut-off threshold relaxes (data not shown).  The results again 

indicated that the conventional cut-off thresholds are failing to identify putative ERα/SRC-1 

DNA binding sites (false negatives). On the other hand, simply relaxing the cut-off threshold is 

likely leading to increased false positive peak calls.  Thus a principled method is needed to 

further identify functional ERα/SRC-1 DNA binding sites.   

To elucidate functional ERα/SRC-1 DNA binding events, i.e., the binding events that 

influence gene expression, we generated and analyzed expression array data from cells that were 

treated with vehicle and E2 in the presence and absence of SRC-1 siRNA (Hartmaier et al, 

manuscript in preparation).  The microarray data enabled us to identify 634 genes whose 
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expression response to estrogen treatment required SRC-1, which are hereto referred to as SRC-

1-sensitive genes.  When we compared the list of SRC-1-sensitive genes and the list of genes 

with SRC-1 binding sites derived by MACS at P value = 10-10, we noted that only 44 genes 

overlapped among the lists.  While the discrepancy between the number of SRC-1-sensitive 

genes and genes with SRC-1 peaks could be explained by other biological factors, such as that 

many SRC-1 peaks were not functional or secondary expression effects, it also supported our 

general hypothesis that ERα/SRC-1 interaction ChIP-seq signal is relatively weak and potentially 

true functional ERα/SRC-1 DNA binding sites were missed by the stringent setting of the peak 

calling algorithm.  

While it may be tempting to directly combine the information from SRC-1 ChIP-seq, 

ERα ChIP-seq and microarray data by identifying the intersections of overlapping genes and 

peaks, such an approach is overly simplistic and ignores other potentially informative data, e.g., 

the genome-sequence characteristics of ERα/SRC-1 interaction sites and the prior information of 

known ERα/SRC-1 interactions. These considerations motivated us to investigate and compare 

different principled machine learning approaches in order to improve the sensitivity and 

specificity of detecting ERα/SRC-1 DNA binding sites by integrating multiple types of 

information.   

4.3.3 An integrative approach to detect ERα/SRC-1 DNA binding sites 

The overall framework and rationale of our information integration approaches are as follows. 

We formulated the task of identifying functional ERα/SRC-1 DNA binding sites as a 

classification task, in which we performed a binary classification to label a potential SRC-1 
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binding site derived from ChIP-seq analysis as either functional or nonfunctional.  We 

investigated both supervised learning, which allows us to take advantage of existing knowledge 

of ERα/SRC-1 interactions, and unsupervised learning, which allowed us to take an unbiased 

approach.   

The classification formulation allowed us to pool more candidate peaks identified by 

different peak calling algorithms at relaxed cutoff thresholds so that we did not have to rely on a 

single “best” algorithms and “optimal” parameterization but resorted to our classification to 

identify functional ERα/SRC-1 DNA binding.  In this study, we collected the union of the peaks 

returned by all three algorithms at the cutoff threshold as follows, MACS: P value cutoff 10-3, 

BayesPeak: Posterior Probability (PP) ≥ 0.5 and T-PIC: P value cutoff 10-2.  This led to a pool of 

38,324 candidate peaks.  

Another important advantage of the classification approach is that it allows us to integrate 

multiple types of biological information collected from our experiments and public databases by 

representing them as features for a classifier.  In this way, multiple types of information 

contribute to the classification of potential peaks and their impact can be determined by learning 

algorithms.   For each candidate SRC-1 peak, we constructed the following features: a vector of 

binary features representing presence/absence of nucleotide trigrams (triplet of nucleotides), 

which reflects the intrinsic characteristics of genome sequence surrounding the summit of a peak 

region; an average of predicted nucleosome-occupancy scores, which represents the chromatin 

structure characteristics around the peak summit; a binary feature reflecting if a primary binding 

peak, i.e., the ERα ChIP-seq peak, overlaps with the SRC-1 peak; and a binary feature 

representing the functional outcome of ERα/SRC-1 interaction, i.e., whether the peak is mapped 

to an SRC-1 sensitive gene.  Detailed descriptions of features are presented in Methods section. 
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We evaluated the results of predictions from classification algorithms by determining if 

conserved ERα binding motif can be found in the classified peaks, as an indication that a peak is 

the result of ERα/SRC-1 DNA binding.  Searching for instances of conserved TF binding motifs 

at the predicted binding loci is considered the most prominent verification method for validating 

peaks [146]. 

Table 6 Comparison of the performances by different machine learning algorithms 

  
Number of 
peaks  

Number of 
peaks with ERE 
motif 

Ratio of peaks 
with ERE motif 
match  

MACS  p=1E-10 1,286 941 0.73 
MACS  p=1E-8 1,966 1,416 0.72 
MACS  p=1E-5 4,678 3,077 0.66 

k-means (city block) 
Cluster 1 26,211 11,943 0.46 
Cluster2  12,113 3,245 0.27 

supervised-NB(th=0.8,1:2) 
Positively Labeled 11,835 8,196 0.69 
Negatively Labeled 26,489 6,992 0.26 

supervised-SVM(kernel=polynomal,1:2) 
Positively Labeled 14,915 8,425 0.56 
Negatively Labeled 23,409 6,763 0.29 

supervised-RF(th=0.7,1:2) 
Positively Labeled 10,428 6,514 0.62 
Negatively Labeled 27,896 8,674 0.31 

semi-supervised-NB(th=0.8,1:2, I=75) 
Positively Labeled 12,597 8,458 0.67 
Negatively Labeled 25,727 6,730 0.26 

4.3.4 Unsupervised classification 

First, we explored if the candidate peaks could be divided into two distinct groups by 

unsupervised learning in an unbiased manner.  We applied a K-means clustering procedure to the 
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data and the results are listed in Table 6.  We inspected the genome sequences of the peaks to 

assess if a conserved motif for estrogen response element (ERE) was detected by a motif 

classification algorithm referred to as CLOVER[131].  In cluster 1, 46% of 26,211 peaks 

contained the ERE motif, and, in cluster 2, 27% of 12,113 peaks contained the ERE motif.  We 

believe this is not a good separation of the peaks in that, even though cluster 1 has more ERE-

containing peaks, it is a bigger cluster and only 46% of peaks contain EREs.  Thus the results 

would likely lead to a high false positive rate with respect to SRC-1 binding.  

 

4.3.5 Supervised Classification 

Supervised learning requires labeled data as training cases.  Obtaining a training set through 

large-scale experimental validation of ERα/SRC-1 DNA binding is costly and difficult to 

perform. Therefore, we investigated whether a relatively small amount of labeled data in the 

supervised learning task would result in better separation compared to unsupervised clustering 

with our feature set.  We experimentally validated 18 SRC-1 peaks as functional peaks by 

quantitative PCR (qPCR) experiment (data not shown). We used these peaks as positive training 

cases, together with a set of randomly drawn control (anti-IgG) ChIP-seq peaks as negative 

training cases, to train supervised classifiers. We investigated the performance of three state-of-

the-art classifiers:  Naive Bayes (NB), Support Vector Machines (SVM) and Random Forest 

(RF).  For NB and Random Forest classifiers, we set the classification thresholds at 0.8 and 0.7 

respectively. Since the ratio of the positive and negative training cases may have impact on 

classification algorithms, e.g. NB and SVM, we explored using different ratios for training, 
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between 1:1, 1:2, and 1:3, and classifiers were built from these training sets.  Our test set 

consisted of all 38,324 candidate peaks.  Table 6 lists the total number of peaks in each class, the 

number ERE-containing peaks in each class and the ratio reflecting ERE enrichment.  Results for 

classifiers with 1:1, 1:2, and 1:3 training ratio (positive over negative) were very similar to each 

other (data not shown). Therefore, just results for the 1:2 ratio were shown.   

We noted that the supervised classification approaches have significantly increased the 

number of positive peaks when compared to those derived by peak calling algorithms based on 

recommended cutoff thresholds.  For example, NB returned 11,835 positive peaks in comparison 

to 1,966 and 4,678 peaks returned by MACS with cutoff P value set at 1E-8 and 1E-5, which 

reflected a 6-fold and 2.5-fold increase, respectively.  Through further evaluation enrichment of 

ERE in the genome sequences surrounding the peaks, we found that a similar percentage of 

peaks contained ERE element: 69% for NB, and 72% and 66% MACS at 1E-8 and 1E-5 

respectively.  Thus, the results indicate that the qualities of the positive peaks returned by NB 

were as good as those returned by the stringent peak calling in terms of ERE enrichment.  

 
Table 7 Comparison of different methods for identifying functional peaks 

Method 

Total 
number of 
peaks 

Number of 
genes mapped 

Intersection 
with SRC-1-
dependent 
genes 

MACS  p=1E-10 1,286 684 44 
MACS  p=1E-8 1,966 996 57 
MACS  p=1E-5 4,678 2,054 123 
supervised-NB(th=0.8,1:2) 11,835 3,875 238 
 

We further inspected if the classification approaches retrieved additional functional 

peaks, i.e., the peaks that were mapped to SRC-1-sensitive genes derived from microarray 
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experiment.  Table 7 shows the results of the SRC-1 peaks returned by different peak calling 

approaches that were mapped to SRC-1-sensitive genes.  We noted that, by setting MACS cutoff 

P values at 1E-10, 1E-8, and 1E-5, a total of 44, 55, and 123 peaks were mapped to SRC-1-

sensitive genes.  On the other hand, NB has identified 238 peaks that overlap with SRC-1-

sensitive genes.  We also note that BayesPeak exclusively identified some of the newly 

“discovered” functional peaks.  Similarly MACS also exclusively discovered some new peaks.  

These results indicate that, based on different assumptions and criteria, different peak calling 

algorithms are capable of identifying potential peaks to complement other peak calling 

algorithms.  Thus it is more sensible to consider candidate peaks from more than one peak-

calling algorithm as long as an objective approach can be further applied to consolidate the 

results. 

We also performed a 9-fold cross-validation experiment to assess if the algorithm can 

correctly identify the experimentally validated ERα/SRC-1 training cases from the candidate 

peak pool.  Results were listed in Table 8. NB classifier showed 86% precision, 100% recall and 

96% accuracy, see Methods section for the descriptions of the metrics. This result increased our 

confidence that positive calls from our algorithm are likely to reflect real ERα/SRC-1 DNA 

binding.  The results in the table indicate that the NB classifier performed better than the SVM 

and RF classifiers, judging from relative enrichment of ERE containing binding sites in the 

predicted positive peaks.  Among the three classifiers tested in this study, the RF classifier 

performed worst. We noted that the number of features that were used by RF during the learning 

was much smaller than the number of features utilized by other classifiers, which may partially 

explain the inferior performance of this algorithm in this experiment.  The SVM method also 

performed worse on this task than probabilistic NB. We conjecture that the reason might be that 
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SVM is complex algorithm with many parameters to adjust and therefore finding optimal 

parameters for decision boundary might be challenging for this task.  We therefore concentrated 

on the NB classifier because it could be readily used in both supervised and semi-supervised 

learning environment. 

Table 8 Performance of different classifiers under 9-fold cross-validation setting 

Classifier Precision Recall Accuracy 
NB(th=0.8,1:2) 0.89 1 0.96 
SVM(kernel=polynomial, 1:2) 0.89 0.96 0.94 
RF(th=0.7,1:2) 0.72 1 0.91 

4.3.6 Semi-supervised Classification 

Our number of training cases is relatively sparse compared to a conventional machine learning 

setting. Semi-supervised approaches have been applied to conquer limitations of supervised and 

unsupervised methods when labeled data is scarce and obtaining large amounts of labeled data is 

expensive and time consuming [142, 143]. This is done by incrementally assigning instances, 

which are called with high confidence by a classifier, from unlabelled data into training cases in 

order to increase the number of training cases and thus enhance the generalizability of 

classification.  Therefore, we investigated semi-supervised classification to see whether we could 

further increase the performance in identifying ERα/SRC-1 DNA binding.  
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Figure 11 Self-training.  

Percentage of predicted positive peaks with ERE motifs (over iterations for different TP:TN 
ratios for training set as indicated in the legends.  

 

In this study, we applied a self-training algorithm [143] using NB as the base classifier 

because of its probabilistic outputs. We iteratively assigned the most confident positive instances 

called by our classifier into training cases and found that performance of the self-training became 

stable after 75 iterations and stopped further training.  Figure 11 shows the trends of percentage 

of ERE-containing peaks in the positive calls in semi-supervised learning.  It is interesting to 

note that initially as a few pseudo-positive cases were imputed into the training cases the 

precision of the called positive peaks decreased but later became stable after 75 iterations.  A 

similar total number of peaks and the percentage of ERE-containing peaks were identified by our 

semi-supervised learning algorithm when compared to other supervised learning experiments, 

see Table 2.  Thus the results do not show obvious advantage of semi-supervised learning over 

supervised learning algorithms in our experiment. 
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4.3.7 Identification of Informative Features 

Biologically, it is of interest to identify the features that significantly contribute to the 

classification in that it will reveal the relationships between input features and outcome. We rank 

key features by ROC class reparability criteria using MATLAB (Bioinformatics Toolbox) [147], 

using a training dataset containing the 18 true positive peaks and 36 random non-binding sites 

from IgG peak calls. Following were the 15 top ranked features: “AAC”, peaks-mapped-to-SRC-

1-dependent-genes, “GCG”, “CGT”, overlapping-with-ERα-peak, “AAG”, “ACA”, “ACC”, 

“CGC”, “AGA”, “AGC”, “AGG”, “CGA”, “ACT”, “ATC”, see Methods section for detailed 

descriptions of the features. Among the top-ranking features, we noted that the features reflecting 

the function outcome (peaks-mapped-to-SRC-1-dependent-genes) and the interaction between 

ER and SRC-1 (overlapping-with-ERα-peak) were ranked high, indicating the learning algorithm 

correctly recognized their importance in classification.  It is interested to note that many 

nucleotide trigrams, which reflect the characteristics of sequences of peaks, were among the 

high-ranking features.   We aligned the top-ranking trigrams to the ERE motif, as shown in 

Figure 12.  Indeed, the trigrams correspond well with the important components of the ERE 

motif.  These results indicate that the classification learning algorithm, like the motif searching 

algorithms (i.e. [148-151]), is able to identify highly conserved “words” that constitute one of the 

important motifs of the training sequences.   We noted that the feature reflecting nucleosome 

occupancy at peak regions was ranked as 48th.  This may indicate either that nucleosome 

occupancy is a dynamic process and our static feature does not reflect the true occupancy status 

during the experiments or that the ERa/SRC-1 DNA binding is not heavily dependent on 

nucleosome occupancy.   
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Figure 12 Overlapping top trigrams with ERE motif.  

This figure shows potential matching locations of the top-ranking nucleotide trigrams identified 
by feature selection algorithms. 

 

4.3.8 Biological Insights from Improved Peak Calling  

We further examined the impact of the improved SRC-1 peak calling on biological insights 

drawn from the dataset.  We conducted Gene Ontology Analysis using the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) [138] on genes with an SRC-1 

peak within 50kb of the TSS as determined by MACS (P<10-5) or by our method.  We observed 

a dramatic difference in the identification of genes enriched in specific biological processes.  

Specifically, our method yielded in the calling of peaks in gene sets which were highly enriched 

for genes involved in blood vessel development (enrichment: 4.61, Benjamani: 7.9x10-4) and 

actin filament-based processes (enrichment: 3.18, Benjamani: 1.3x10-3). Indeed blood vessel 

development has previous been implicated in bone generation [152, 153]Further, within the 
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genes enriched in these biological processes, we identified a number of genes with known 

functions in bone development.  Since SRC-1 has already been implicated in E2 mediate bone 

maintenance, this observation provides evidence for the mechanism underlying this phenotype.  

In contrast, genes with SRC-1 peaks determined by MACS were not significantly associated with 

any biological processes.  

4.4 CONCLUSIONS 

We believe that the ability to improve ChIP-seq peak calling by utilizing available sources of 

biological information for indirect co-regulator binding in the presence of weak ChIP-seq signal 

is an important research area. Due to the intrinsic variability in the affinity of interactions 

between a TF and its co-regulators, it is inevitable that the ChIP-seq signal of these types of 

studies would span a broad spectrum and that the weak signal scenario, as in this study, would be 

likely to occur often.  The need for methods to address this problem is acute considering the 

increasing number of studies using ChIP-seq to study NR and their co-regulators due to their 

importance in normal development and in many diseases such as breast cancers.  Our work 

strives to explore whether the peak calling can be improved through the integration of available 

diverse biological sources via machine learning approaches. Our results demonstrate that it is 

informative to generate, collect, and integrate the following information: ChIP-seq data 

reflecting location of the primary interaction of the TF of interest to its cis-regulatory sites, gene 

expression data reflecting functional outcomes of interaction of the TF and its co-regulators, and 

finally genomic sequence data of the identified regions.  Other types of data which is highly 
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likely to be useful include histone modification marks, recruitment of RNA polymerase II, and 

relative location of the insulator protein CTCF[154] 

In summary, our results indicate that a supervised classification approach enables one to 

utilize even limited amounts of existing knowledge together with multiple types of biological 

data to enhance the sensitivity and specificity of identifying DNA binding sites for co-regulators 

proteins.  Our feature selection experiments indicate that experimental inputs complementary to 

ChIP-seq are critical in identifying biological significant signals from ChIP studies with weak 

signals due to indirect DNA binding. 
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5.0  CONCLUSIONS AND FUTURE WORK 

ERαs transduce estrogen response in many tissues including the breast and bone. Estrogen-

induced ERαs activate and inhibit specific genes involved in cell cycle progression and cell 

survival. Genes regulated by estrogen are important for proliferation, differentiation, survival and 

particularly in cancer the stimulation of invasion, metastasis and angiogenesis. ERα action in 

response to E2 exposure is necessary for healthy physiology, but it is also a hallmark of 

malignant breast cancer.  

The advent of genomic technologies for examining signal-regulated transcriptional 

responses and TF binding sites, including ERα, has increased our understanding of the factors 

that control hormone signaling and transcriptional regulation of genes. However, we are still 

facing bioinformatics challenges including integration of various data sources as well as dealing 

with noise from the experiments in order to analyze this rich genomic data sources.  

In the first part of this thesis, I integrated a variety of recent genome-wide high-throughput 

datasets, including gene expression arrays, ChIP-seq, GRO-seq and ChIA-PET in order to derive 

a holistic perspective of the transcription machineries at estrogen-responsive genes, and reveal 

different mechanisms of estrogen-mediated transcription regulation.  Our analyses have led to 

the following some novel findings: In the absence of the ligand, most of the estrogen-responsive 

genes assumed a high-order chromatin configuration that involved Pol II, ERα and ERα-pioneer 



 89 

 

factors. Without the ligand, estrogen-induced genes showed active transcription at promoters but 

failed to elongate into gene bodies, and such a pause was lifted after estrogen treatment.  

However, the estrogen-repressed genes showed coordinated transcription at promoters and gene 

bodies in the absence and presence of estrogen. Through information integration, we inferred 

that, for estrogen-repressed genes, the majority of the high-order chromatin complexes 

containing actively transcribed genes were disrupted after estrogen treatment.  The analyses led 

to the hypothesis that one mechanism for estrogen-mediated repression is through disrupting the 

original transcription-favoring chromatin structures. 

 

Further, ERs interact with co-regulators to regulate gene transcription. Understanding the 

mechanism of action of co-regulator proteins—which do not bind DNA directly, but exert their 

effects by binding to transcription factors—is important for the study of normal physiology as 

well as diseased conditions. In the second part of this thesis, I investigated and compared 

different statistical and machine learning approaches including unsupervised, supervised, and 

semi-supervised classification (self-training) approaches to integrate multiple types of genomic 

and transcriptomic information derived from our experiments and public database to overcome 

difficulty of identifying functional DNA binding sites of the co-regulator SRC-1 in the context of 

estrogen response. Our results indicate that supervised learning with naïve Bayes algorithm 

significantly enhances peak calling of weak ChIP-seq signals and outperforms other machine 

learning algorithms. Our integrative approach revealed many potential ERα/SRC-1 DNA binding 

sites that would otherwise be missed by conventional peak calling algorithms with default 

settings. Our results indicate that a supervised classification approach enables one to utilize  
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limited amounts of prior knowledge together with multiple types of biological data to enhance 

the sensitivity and specificity of the identification of DNA binding sites from co-regulator 

proteins. 

5.1 FUTURE WORK 

There are several potential directions for future extensions of this research. Some of them are 

outlined below.   

In this thesis, I combined various next-generation sequencing data related to ERα to 

decipher new transcriptional mechanism in MCF7 breast cancer cells. With the rapid 

development of sequencing technologies, ChIP-seq, GRO-seq, ChIA-PET as well as other 

technologies such as Hi-C, data collection is becoming more readily available for a variety of 

cell types. Therefore, this kind of framework could be applied to other tissue types as well as 

other NRs.  By integrating these data sources, one could further explore a fundamental question 

in the gene regulation: why do the same factors (i.e. transcription factors, co-regulators) 

differentially regulate gene transcription in different tissues and diseases, particularly in cancer? 

Moreover, one could identify previously unrecognized regulatory mechanisms that contribute to 

gene regulation under different conditions as well as in different tissues which may provide new 

approaches for treatment. There is an increasing flood of genomic data from research 

consortiums such as TCGA (the Cancer Genome Atlas) and ENCODE (The Encyclopedia of 

DNA Elements). Eventually, by mining these datasets, an automatic hypothesis generation 
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pipeline can be developed in order to study transcription regulation under different conditions as 

well as different tissues. 

Another future aim of my work is to improve and extend the framework developed in the 

second part of the thesis. Due to the intrinsic variability in the affinity of interactions between a 

TF and its co-regulators, it is inevitable that the ChIP-seq signal of these types of studies would 

span a broad spectrum and that the weak signal scenarios would occur often. The binary 

classification setting I provide, and most of the features I derive, can be extended to improve 

ChIP-seq ‘peak calling’ for other co-regulators as well as for transcription factors in the presence 

of weak signal from experiments. The framework developed in this thesis proved that it is 

informative to generate,   collect, and integrate the following information: 1) ChIP-seq data that 

reflects the location of primary-interacting TFs of co-regulators; 2) gene expression data that 

reflects functional outcomes of interactions between TF and its co-regulators; and finally 3) the 

genomic sequence data of the identified binding regions. The features of this framework can be 

further extended by mining additional data sources including histone modification marks, Pol II 

binding events, relative locations of CTCF binding events, and 3D chromatin interaction data. 

Another direction would be to extend this framework to the other relevant TF-DNA 

binding problems. For example, the majority of NR binding sites (including ERα, RARA and 

AR) are away from the TSS of genes. These NRs bind to the distal enhancer elements, which are 

the key drivers of spatiotemporal specificity in gene regulation. Although with the development 

of ChIP-seq technology global binding sites can be detected genome-wide, we do not know 

which binding sites are functional enhancers. The identification of functional-enhancer binding 

sites is one step in a larger effort to understand the DNA sequence features that underlie the 

enhancer function as well as to identify tissue-specific enhancers.  The semi-supervised machine 
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learning framework developed in this thesis—which makes use of the results of small scale wet-

lab experiments as well as other information such as sequence characteristics and available 

genomic information—can be applied to the identification of genome-wide “functional enhancer 

sites” in a similar fashion.   
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information. BMC Genomics 13 Suppl 1: S1. 

2. Kohle-Ersher A, Chatterjee P, Osmanbeyoglu HU, Hochheiser H, Bartos C (2012) 

Evaluating the Barriers to Point-of-Care Documentation for Nursing Staff. Comput Inform 

Nurs 30: 126-133. 

3.    Osmanbeyoglu HU, Ganapathiraju MK (2011) N-gram analysis of 970 microbial organisms 

reveals presence of biological language models. BMC Bioinformatics 12: 12. 

4.    Osmanbeyoglu HU, Ganapathiraju MK (2011) Rapid deployment of viral-human                   

interactome prediction for new viruses. Proc of the American Medical Informatics 

Association Summit on Translational Bioinformatics.  

5.    Chalancon G, Kosloff M, Osmanbeyoglu HU, Saraswathi S (2010) PLoS Computational 

Biology conference postcards from ISMB 2010. PLoS Comput Biol 6: e1002000. 
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learning for transmembrane helix prediction. BMC Bioinformatics 11 Suppl 1: S58. 
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1. Osmanbeyoglu HU, Day R, Oesterreich S, Benos PV, Lu X.  Estrogen represses gene 

expression through reconfiguring chromatin structures. 

2. Hartmaierr R, Osmanbeyoglu HU, Benos PV, Lu X, Oesterreich S. SRC-1 recruitment 

reveals functional binding sites. 
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