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The ubiquitin proteasome system (UPS) maintains cellular homeostasis by controlling the 

turnover of important regulatory enzymes and by the removal of damaged or misfolded proteins. 

The UPS serves as the basic framework of many specific catabolic pathways, including the 

Endoplasmic Reticulum-Associated Degradation (ERAD) pathway, which in particular helps to 

maintain the homeostasis of the early secretory pathway. An important component of the ERAD 

pathway is a complex containing the AAA ATPase, Cdc48p. The Cdc48p complex couples ATP 

hydrolysis with the physical dislocation of ubiquitinated substrates from the endoplasmic 

reticulum prior to degradation by a multi-subunit catabolic protease known as the 26S 

proteasome. Here I show that the loss of a Cdc48p cofactor, VCP/Cdc48p-associated 

Mitochondrial Stress-responsive-1 (Vms1p), negatively affects the turnover of the model ERAD 

substrate, the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), but does not 

affect the ubiquitination of CFTR. Strains lacking both the VMS1 gene and other select Cdc48p 

cofactors, namely genes encoding members of the Ubiquitin Regulatory X and Ubiquitin Fusion 

Degradation families, are hypersensitive to certain chemical stressors, and also display additive 

ERAD defects for certain substrates. Curiously, VMS1 mutants show increased accumulation of 

ubiquitinated proteins in total cell extracts, and also in complex with Cdc48p. These data suggest 

that Vms1p functions after substrate ubiquitination. In support of this hypothesis, I found that 
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VMS1 mutants show a decrease in the amount of proteasome that handles ubiquitinated 

substrates and an increase in the amount of free, latent 20S proteasome holoenzyme. This 

phenomenon is not a result of the altered expression of proteasome components. Additionally, 

the restoration of ubiquitinated protein accumulation and the distribution of proteasome subtypes 

to near wild-type levels require the physical interaction between Vms1p and Cdc48p. 

Furthermore, Cdc48p may be important for recruitment of Vms1p to the proteasome. Using yeast 

genetics I provide supporting evidence that indicates that Vms1p does not appear to function 

with various proteasome assembly chaperones. Quantitative mass spectrometry indicates that 

Cdc48p-associated proteasome is unaffected by loss of VMS1. Together my data indicates that 

Vms1p functions with Cdc48p to regulate proteasome subtypes that are required to degrade 

ubiquitinated substrates. 
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1.0  INTRODUCTION TO THE UBIQUITIN PROTEASOME SYSTEM 

Life is a balance between anabolic and catabolic pathways. However, for much of the 1950s 

through the 1970s, research in biology was largely skewed towards the study of anabolic 

processes such as nucleic acid and protein production with little regard to how these 

biomolecules were turned over. It was thought that protein turnover was a generally non-specific 

process, and that degradation occurred within a specialized, acidic organelle known as the 

lysosome in mammals, or the vacuole in lower eukaryotes and plants. However, a series of 

discoveries from the mid to late 1970s changed the scientific view of protein catabolism - the 

process was energy dependent and highly regulated. In the last 30 or so years, a tremendous 

amount of work has been done on the ubiquitin proteasome system, and we now know that this 

system is as important to the birth of proteins as it is to their death. In this Chapter, I will 

introduce the basic components of the ubiquitin proteasome system followed by a description of 

a specialized branch of this system at the endoplasmic reticulum (ER).  

1.1 UBIQUITIN 

The ubiquitin proteasome system (UPS) is the major eukaryotic catabolic pathway tasked with 

regulating cellular enzymes and protecting the cell from damaged or misfolded proteins. The 

targets of the UPS are modified most commonly by the covalent attachment of a highly-
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conserved 76 amino acid protein known as ubiquitin via its carboxy-terminal glycine to the ε-

amino group of a lysine residue on a recipient protein (HERSHKO and CIECHANOVER 1998). The 

fate of a ubiquitinated substrate is largely dependent on whether the target is modified by one 

(monoubiquitination) or many ubiquitin (multiubiquitination and polyubiquitination) moieties 

(Figure 1) (HICKE 2001; HOCHSTRASSER 1996). The monoubiquitination of a substrate normally 

alters a protein’s function or localization and is well documented for processes such as gene 

transcription, DNA repair, membrane trafficking, and protein endocytosis (HAGLUND et al. 2003; 

HICKE 2001; OSLEY 2004). In contrast, substrate polyubiquitination is most commonly 

associated with substrate degradation by a multi-subunit ATP-dependent protease known as the 

26S proteasome (HOCHSTRASSER 1996). Polyubiquitination, however, has an additional and 

rather complex layer of regulation. The polyubiquitin polymer is formed by the successive 

linking of one ubiquitin to another ubiquitin via one of eight different linkages between the 

ubiquitin moieties (Figure 2) (WALCZAK et al. 2012). Seven of these linkages are based on 

internal lysine residues within ubiquitin while the eighth is an amino-terminal linkage that leads 

to the formation of a linear ubiquitin chain (WALCZAK et al. 2012). Of these eight possible 

linkages, two ubiquitin linkages are highly abundant and well characterized (HERSHKO and 

CIECHANOVER 1998). The lysine 48 (K48)-linked polyubiquitin chain is the most common type 

and leads to the most recognizable consequence of ubiquitination, substrate degradation by the 

26S proteasome (CHAU et al. 1989; VAN NOCKER and VIERSTRA 1993). The lysine 63 (K63)-

linkage, alternatively, directs proteins primarily to non-degradative fates (ARNASON and ELLISON 

1994; HOCHSTRASSER 2006; SPENCE et al. 1995). Not surprisingly, the structures of K48- and 

K63-linked chains are very different. K48-chains are compact while K63-chains appear 

extended, and these structures suggest that their recognition by ubiquitin-binding proteins is a 
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strong determinant of their fate (Figure 3) (KIM and RAO 2006; PICKART and FUSHMAN 2004; 

WICKLIFFE et al. 2011). There is also very compelling evidence indicating that all ubiquitin-

linkages, aside from linear and K63 chains are candidates for proteasome-mediated degradation 

(XU et al. 2009). Though some of these linkages are highly abundant (e.g., K11 and K63), they 

cannot rescue the inviability of strains lacking the K48 linkage (XU et al. 2009). Intriguingly, 

“atypical” ubiquitin chains with mixed linkages have been detected, some of which result from 

ubiquitin chain editing (BEN-SAADON et al. 2006; IKEDA and DIKIC 2008; KIM et al. 2007; 

NEWTON et al. 2008; WINBORN et al. 2008). One exciting possibility is that a ubiquitin chain of 

mixed linkages may couple temporal and spatial information for protein function prior to 

degradation. 
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Figure 1. Mono, multi, and polyubiquitination 

In monoubiquitination, a ubiquitin (red circle) peptide is attached to a substrate. 

Multiubiquitination is monoubiquitination, but at many different sites. Polyubiquitination 

describes the formation of a ubiquitin-ubiquitin chain on a substrate.  
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Figure 2. Conservation of Ubiquitin 

Pair-wise alignment of full-length ubiquitin from Homo sapiens and Saccharomyces 

cerevisiae using Vector NTI. Identical residues are highlighted in yellow and conserved changes 

are in green. Inverted arrowheads indicate residues used to forming linkages in a polyubiquitin 

chain.  
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Figure 3. The Structure of K48 and K63-linked diubiquitin 

Ribbon diagrams of K48- and K63-linked diubiquitin. K48 diubiquitin adopts a compact 

structure while K63 diubiquitin is extended. K48-linkage is a classic degradation signal. The 

K63-linkage is involved primarily in non-degradative fates (WICKLIFFE et al. 2011). 
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1.1.1 ENZYMES OF THE UBIQUITIN PROTEASOME SYSTEM 

The process leading to substrate ubiquitination occurs in a step-wise fashion (Figure 4), and 

starts with the initial formation of a ubiquitin-adenylate intermediate by the adenylation domains 

of the E1 activating enzyme (SCHULMAN and HARPER 2009). Next, a covalent thioester bond is 

formed between the terminal glycine of the ubiquitin-adenylate intermediate and the Second 

Catalytic Cysteine Half-domain (SCCH) of the E1-activating enzyme by attack from a cysteine 

residue found within this domain (SCHULMAN and HARPER 2009). Upon thioester bond 

formation, the E1 enzyme undergoes a conformational change that exposes E2-conjugating 

enzyme interaction surfaces in the Ubiquitin Fold Domain (HUANG et al. 2007; LEE and 

SCHINDELIN 2008). The ubiquitin in the E1-ubiquitin complex is next transferred to an E2-

conjugating enzyme by a transthioesterification reaction that is mediated by attack from a 

cysteine residue in the highly-conserved UBiquitin Conjugating (UBC) domain of the E2 

enzyme (LEE and SCHINDELIN 2008). The E2-ubiquitin complex then transfers its ubiquitin 

moiety to a substrate via one of two important families of E3 ubiquitin ligases whose 

mechanisms of action are distinct (FINLEY 2009) (see below).  

 

The three step process shown in Figure 4 is highly conserved with only a few variations; 

one example is the ability of select E2 enzymes to directly monoubiquitinate some ubiquitin 

binding proteins (HOELLER et al. 2007). The initial activation of an ubiquitin moiety by an E1 

enzyme occurs at a quicker rate than that of substrate ubiquitination, and for good reason: most 

eukaryotes possess a single E1 enzyme (MCGRATH et al. 1991). The fact that E1 enzymes are 
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efficient machines is in part because they can interact with two ubiquitin moieties: one at the 

active site cysteine in the SCCH and a second at the site of ubiquitin-adenylate intermediate 

formation (SCHULMAN and HARPER 2009). By comparison, E2-conjugating enzymes are more 

abundant than E1 enzymes, but are far less common than E3 ubiquitin ligases (PICKART 2001). 

In humans, there are two E1s, ~38 E2s, and greater than 600 E3 enzymes, while yeast has a 

single E1, 13 E2, and ~60 E3 enzymes (CREWS 2003; YE and RAPE 2009). Given the number of 

potential substrates, the functional hierarchy of the UPS, and the large number of E3 ubiquitin 

ligases, it is not a surprise that the E3 enzymes are largely responsible for selecting substrates.  

 

The two important families of E3 ubiquitin ligases are the Really Interesting New Gene 

(RING) zinc finger and Homologous to the E6-AP Carboxy Terminus (HECT) domain families 

(FREEMONT et al. 1991; HUIBREGTSE et al. 1995). The RING and HECT domain families differ 

in their mode of action. RING finger E3 ligases promote the attachment of ubiquitin to a 

substrate directly from an E2-ubiquitin complex, and never come in contact with the ubiquitin 

moiety itself (BAILLY et al. 1997; KWON et al. 1998). The RING-E3 ligases do this by acting as a 

molecular scaffold that brings the active site of the E2-ubiquitin spatially closer to a lysine on a 

substrate (DESHAIES and JOAZEIRO 2009). It is worth noting the existence of a minor subfamily 

of E3 ubiquitin ligases possessing a variation of the RING zinc finger, called a U-box domain. 

U-box E3 ligases, unlike the RING zinc finger domain E3s, do not contain the key cysteine 

residues needed for zinc ion coordination (HATAKEYAMA and NAKAYAMA 2003; PATTERSON 

2002). Interestingly, some U-box family members possess a ubiquitin-extending, or E4 activity 

(KOEGL et al. 1999; NAKATSUKASA et al. 2008). The mechanism of U-box ligase activity is 

similar to that of RING E3 ligases, and both require structural flexibility to place the charged E2 
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in close proximity to a substrate for efficient polyubiquitination (QIAN et al. 2009). HECT E3 

ligases, on the other hand, directly form a thioester bond with the ubiquitin moiety prior to 

transferring the ubiquitin to a substrate (ROTIN and KUMAR 2009; SCHEFFNER et al. 1995). All 

HECT E3s have an invariant cysteine residue in the HECT domain that forms this bond, and the 

sequences surrounding the HECT domain are important for mediating interaction with E2s and 

substrate (LEE et al. 2009; ROTIN and KUMAR 2009). Like the RING domain E3s, HECT E3s are 

also structurally flexible (VERDECIA et al. 2003). While the domains that define an E3 ubiquitin 

ligase may be conserved, there can be variability in the surrounding sequences. These variable 

regions are likely determinants for E2 and substrate specificity (DESHAIES and JOAZEIRO 2009; 

ROTIN and KUMAR 2009).  

 

In a clever twist in E3 evolution, a very abundant group of RING-like domain E3 ligases 

has evolved structural flexibility by becoming entirely modular. This group of E3s is generically 

called the Skp1-Cullin-Fbox (SCF)-family of RING-like E3 ubiquitin ligases. SCF family E3s 

have both substrate recognition and E3 ligase activity in separate protein complexes that then 

assemble onto a scaffold protein (DESHAIES and JOAZEIRO 2009). In yeast, the scaffold (Cullin 

portion), substrate recognition protein (Fbox portion), and the RING E3 are encoded by the 

CDC53, CDC4, and HRT1 genes, respectively. A protein encoded by the SKP1 gene connects 

the substrate binding Fbox to the Cullin scaffold and an E2 conjugating enzyme, Cdc34p 

supplies the activated ubiquitin. SCF mediated protein degradation is particularly important for 

the regulation of the cell cycle (SKAAR and PAGANO 2009).  
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The E3 ligases are processive enzymes and can successively add ubiquitin moieties to 

form the polyubiquitin chain on a substrate (DESHAIES and JOAZEIRO 2009; ROTIN and KUMAR 

2009). This feat can be accomplished by oligomerization of the E3s, or by repeated 

association/dissociation of the E2/E3 complex in addition to other mechanisms that have yet to 

be defined (CHENG et al. 2009; KLEIGER et al. 2009). In some instances, an entire polyubiquitin 

chain can be formed on an E3, or in solution, and at least in vitro can be added to a substrate by 

the E3 ligase (LI et al. 2007a; PARKER and ULRICH 2009; WANG and PICKART 2005). It is 

unknown if E3s add entire polyubiquitin chains en bloc in vivo, but this is a formal possibility 

since di-, tri-, and tetra-ubiquitin chains can exist as free entities in vivo.  

 

As introduced above, ubiquitin linkage is an important determinant of ubiquitinated 

substrate fate. There is compelling evidence that the formation of specific linkages is mediated 

primarily by the E2 enzyme in combination with an E3, but evidence also suggests that the 

determinants for linkage may lie within the E3 itself (KIM and HUIBREGTSE 2009; KIM et al. 

2007; MASTRANDREA et al. 1999; YOU and PICKART 2001). It is quite likely that there are many 

more factors involved in determining what type of ubiquitin linkage is formed, and we are only 

beginning to understand this.  

 

Aside from these enzymes, the cell possesses additional ubiquitin-specific enzymes that 

help to modify the outcome of ubiquitination. For example, deubiquitinating (DUB) enzymes are 

a large group of proteins that can 1) remove ubiquitin from substrates and prevent degradation, 

2) process ubiquitin precursors, 3) recycle ubiquitin, or 4) assist in editing the linkage of the 

ubiquitin chain on a protein (AMERIK and HOCHSTRASSER 2004; CROSAS et al. 2006; MAYER and 
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WILKINSON 1989; NEWTON et al. 2008; PAPA and HOCHSTRASSER 1993; PICKART and ROSE 

1985). DUB enzymes are classified either as papain-like cysteine or zinc-metalloproteases 

(REYES-TURCU et al. 2009). And, examples of select DUBs in yeast illustrate the varied roles of 

this enzyme class. Doa4p, for instance, is involved in recycling ubiquitin and is also important in 

the process of ubiquitin-mediated endocytosis (AMERIK et al. 2000; SWAMINATHAN et al. 1999). 

Another example, Otu1p, is involved in regulated turnover of ubiquitin-fusion degradation 

substrates associated with the ATPase, Cdc48p (RUMPF and JENTSCH 2006). Otu1p and a protein 

known as Ufd3p compete with Ufd2p for binding to Cdc48p. The Ufd2p protein belongs to a 

group of the aforementioned E4 polyubiquitin-extending enzymes and promotes the efficient 

degradation of various substrates by extending the polyubiquitin chain (HOPPE 2005; KOEGL et 

al. 1999; NAKATSUKASA et al. 2008; SHI et al. 2009). This “tug-of-war” battle between 

deubiquitination and polyubiquitin chain extension is also demonstrated for the DUB, Ubp6p and 

the E4 enzyme, Hul5p at the 26S proteasome (CROSAS et al. 2006). Ultimately, the regulated 

turnover of the vast majority of UPS substrates is governed by the balance between the addition, 

extension, and removal of ubiquitin. 
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Figure 4. Ubiquitin cascade 

Ubiquitin (red circle) is first activated by an E1-activating enzyme (yellow) in an ATP-

dependent process. The ubiquitin-E1 complex then passes the ubiquitin to an E2-conjugating 

enzyme (green). The E2-ubiquitin complex works with an E3-substrate (blue/grey) complex 

resulting in substrate ubiquitination. 
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1.1.2 UBIQUITIN INDEPENDENT DEGRADATION 

A chain of four ubiquitin moieties is minimally required for proteasomal degradation (THROWER 

et al. 2000). It is not entirely clear why an extended polyubiquitin chain is needed, but one can 

speculate that having a long chain of ubiquitins, with perhaps mixed linkages, can potentially 

serve as recruitment platform for a large number of processing factors. Interestingly, there are a 

select number of substrates that undergo proteasomal degradation without being ubiquitinated. 

For instance, the tumor suppressor p53 can be degraded by both ubiquitin-dependent and 

independent mechanisms, while ornithine decarboxylase is degraded by the proteasome in an 

entirely ubiquitin-independent manner (ASHER et al. 2005; HOYT et al. 2003). Some proteins that 

possess ubiquitin-like or -associated domains can also be degraded independent of ubiquitination 

(BAUGH et al. 2009). And, localization to the proteasome appears to be sufficient to trigger 

protein degradation independent of ubiquitin (JANSE et al. 2004). The proteasome has also been 

shown to retrotranslocate a non-ubiquitinated substrate for degradation from the ER (LEE et al. 

2004). 

1.2 THE 26S PROTEASOME 

The K48-linked polyubiquitinated substrate is the prototypical degradation substrate of the 26S 

proteasome. The 26S proteasome is a large multi-subunit ATP-dependent protease that is 

composed of two main parts, a 20S proteolytic core particle (20S core, or CP) and the 19S 
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regulatory particle (19S cap, PA700, or RP), which accepts and processes ubiquitinated 

substrates (LIU et al. 2002; PICKART and COHEN 2004; VOGES et al. 1999). In the cell, the 

proteasome exists as three major forms: the 20S core alone and the 20S core flanked by either 

one 19S cap (RPCP) or two 19S caps (RP2CP, Figure 5) (VOGES et al. 1999). Though it is 

unknown if there are functional distinctions between the RP1CP and RP2CP forms, both 

versions are considered to be active towards ubiquitinated substrates as they are readily 

detectable with artificial fluorogenic reporters (HOUGH et al. 1986; HOUGH et al. 1987). 

Conversely, the 20S core is considered inactive under normal circumstances and undetectable by 

fluorogenic reporter substrates unless low concentrations of detergent or fatty acids are added 

(ARRIBAS and CASTANO 1990; DAHLMANN et al. 1985; MCGUIRE et al. 1989). The 20S core is 

also a latent enzyme in the presence of cellular concentrations of select cations, such as 

potassium, further suggesting inactivity (KOHLER et al. 2001; WILK and ORLOWSKI 1983). 
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Figure 5. Three forms of the proteasome 

The proteasome exists in three dominant forms. The 20S core particle (CP, grey barrel) is 

composed of four-stacked seven member rings (αββα). The CP can be flanked by one “base” and 

“lid” subassembly (boxed in yellow, RPCP) or two subassemblies (RP2CP). 



 16 

 

1.2.1 Proteasome localization 

The activation of the 20S by fatty acids is intriguing given the fact that the mammalian 26S 

proteasome is found associated with the ER – a major site of lipid and protein biosynthesis 

(ENENKEL et al. 1998; FRICKE et al. 2007; RIVETT et al. 1992). The ER/nucleus is postulated to 

be the site of the proteasome biogenesis (FRICKE et al. 2007; GORBEA et al. 2004; LEHMANN et 

al. 2002). In yeast, components of the 19S cap were shown to be more abundant at the ER than 

components of the 20S core (KALIES et al. 2005). The juxtanuclear quality control compartment, 

which is a major site of protein degradation in yeast and mammals, is situated near the ER 

(KAGANOVICH et al. 2008). In both yeast and mammals, the 26S proteasome is localized 

throughout the cytosol, nucleus, and at the surface of many endomembrane systems (RIVETT 

1998; WOJCIK and DEMARTINO 2003). Proteasomes are quite abundant in the nucleus where they 

are associated with both degradative and, surprisingly, non-degradative roles (VON MIKECZ 

2006). The roles of nuclear proteasomes include nucleotide excision repair and regulation of 

gene expression (GONZALEZ et al. 2002; RUSSELL et al. 1999). Intriguingly, a protein known as 

Sts1p may act as a proteasome receptor and aid in localizing proteasomes within the nucleus 

(CHEN et al. 2011). The localization of the proteasome has even been noted to change during 

different stages of the cell cycle (WOJCIK and DEMARTINO 2003). Overall, however, the 

regulation of proteasome localization and dynamics are currently poorly understood.  
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1.2.2 The 20S core particle  

The 20S core particle is a cylindrical, chambered protease that is composed of four-stacked 

heteroheptameric rings (GRZIWA et al. 1991; KOPP et al. 1986; LOWE et al. 1995). The two 

outer-most rings are largely structural and are composed of alpha subunits while the inner-most 

pair of rings contains the proteolytic activity and are composed of beta subunits (Figure 5). The 

chambered protease is an evolutionarily conserved structure. The 20S proteasome of 

archaebacteria, eubacteria, and eukaryotes all share this structure along with the unrelated 

chambered proteases of prokaryotes (PICKART and COHEN 2004). Although there is evidence 

suggesting that the free 20S core particle can process select types of substrates, the 20S is an 

inactive enzyme because the aperature leading into the barrel is closed by the amino-termini of 

the alpha subunits that serve as a gate (BAUGH et al. 2009; DAHLMANN et al. 1985; GROLL et al. 

1997; JUNG and GRUNE 2008). In Saccharomyces cerevisiae, the amino-terminus of the alpha3 

subunit plays an important role in 20S gating by coordinating the amino termini of other select 

alpha subunits (alpha1, 2, 6, 7) (GROLL et al. 2000; GROLL et al. 1997). Curiously, the yeast 

alpha3 subunit is the only non-essential subunit of the 20S core, and can be replaced by an 

additional alpha4 subunit (HILT and WOLF 1995; KUSMIERCZYK et al. 2008; VELICHUTINA et al. 

2004). As expected, this alternate version of the 20S core has increased basal 20S activity 

(VELICHUTINA et al. 2004). This paradigm is not uncommon as naturally-occurring alternative 

versions of select 20S subunits exist in higher eukaryotes, with some subunits being known to 

alter the proteolytic activity of the proteasome (DRISCOLL et al. 1993; GACZYNSKA et al. 1993; 

VELICHUTINA et al. 2004).  
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The constitutive catalytic subunits of the 20S core are the beta1, beta2, and beta5 

subunits, and each subunit possesses an evolutionarily-conserved but distinct proteolytic activity. 

The beta1, beta2, and beta5 subunits contain: 1) peptidylglutamyl peptide hydrolyzing, 2) 

trypsin-like and 3) chymotrypsin-like activities which cleave after: 1) acidic, 2) basic and 3) 

hydrophobic residues, respectively. In addition to these three subunits, humans have a group of 

inducible beta subunits known as beta1i, beta2i, and beta5i, which are expressed by many cell 

types in response to interferon-gamma signaling and are incorporated into the proteasome. This 

results in the formation of the immunoproteasome, or i-proteasome (DRISCOLL et al. 1993; 

GACZYNSKA et al. 1993). The i-proteasome helps process host and pathogen proteins for display 

by the Major Histocompatibility Complex I (MHCI), but also has a major function in the 

degradation of the defective ribosomal products that can occur as a result of increased protein 

translation (KINCAID et al. 2012; SEIFERT et al. 2010). As expected, the i-proteasome subunits 

confer enhanced proteolytic activity to the 26S and 20S proteasome (DRISCOLL et al. 1993; 

GACZYNSKA et al. 1993).  

1.2.3 The 19S cap and accessory complexes 

The 20S core particle can be flanked by any number of accessory complexes (HOFFMAN et al. 

1992). The accessory complex associated with ubiquitinated protein degradation, and also the 

most recognizable is the 19S cap. The highly-conserved 19S cap is composed of two main parts, 

the base and lid (Figure 5) (GLICKMAN et al. 1998a). In yeast, the base of the cap is composed of 

a heterohexameric ring of ATPases (Rpt1p-6p), which drives a deubiquitinated substrate into the 

20S core barrel, and a quartet of proteins that are involved in stabilizing the 19S cap structure 

and ubiquitin-substrate binding (Rpn1p, 2p, 10p, 13p) (ELSASSER et al. 2002; GLICKMAN et al. 
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1998a; GLICKMAN et al. 1998b; HUSNJAK et al. 2008; VAN NOCKER et al. 1996). Rpn10p, in 

particular has been proposed to be important in stabilizing the complete 19S cap structure, and 

recent cryo-electron microscopy studies of yeast 26S proteasomes with and without the Rpn10p 

and Rpn13p suggest that these two ubiquitin receptors determine the requirement of 

tetraubiquitin as a degradation signal  (GLICKMAN et al. 1998a; LANDER et al. 2012; SAKATA et 

al. 2012; THROWER et al. 2000). The base subassembly sits on top of the 20S core particle, 

forming contacts between the ATPase ring and the alpha subunits (PETERS et al. 1993; WALZ et 

al. 1998). The ring of ATPases contributes to the opening of the 20S gate via an evolutionarily-

conserved “hydrophobic-tyrosine-X” (HbYX) motif at the carboxy terminus (KOHLER et al. 

2001; SMITH et al. 2007). Many other factors also contribute to the opening of the 20S core, 

possibly by binding to and modulating the activity of the ATPase ring, or affecting the assembly 

of the 19S-20S subunits (BECH-OTSCHIR et al. 2009; LI and DEMARTINO 2009; PETH et al. 2009).  

 

Traditionally, the base subassembly was thought to be positioned below the lid 

subassembly. However, recent cryo-electron microscopy studies indicate that the lid components 

are on the side of the base and even contact the 20S core (LANDER et al. 2012). Nevertheless, the 

lid subassembly in yeast is composed of nine proteins, Rpn3p, 5p-9p, 11p, 12p, and Sem1p 

(FUNAKOSHI et al. 2004; GLICKMAN et al. 1998b; SONE et al. 2004). Many lid components (e.g., 

Rpn3p, 5p, 6p, 7p, 9p, 11p, 12p, and Sem1p) appear to be necessary for the biogenesis and 

stability of the 19S lid structure, and the 26S proteasome (CHANDRA et al. 2010; FUKUNAGA et 

al. 2010; FUNAKOSHI et al. 2004; ISONO et al. 2004; ISONO et al. 2005; JOSHI et al. 2011; 

PATHARE et al. 2012; SONE et al. 2004; TOMKO and HOCHSTRASSER 2011; YU et al. 2011). One 

structural component, Rpn11p, however, contains a specific activity. Rpn11p is one of two DUB 
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enzymes associated with the proteasome in yeast; the other is Ubp6p (see above) (GUTERMAN 

and GLICKMAN 2004; LEGGETT et al. 2002; VERMA et al. 2002; VERMA et al. 2000; YAO and 

COHEN 2002). As a core component of the 19S lid, Rpn11p is required for the stability of the 19S 

cap and as a DUB enzyme can remove ubiquitin en bloc from a substrate (LANDER et al. 2012). 

Ubp6p, on the other hand, has a processive ubiquitin trimming activity, and also a DUB-

independent function that modulates the activity and assembly of the proteasome (HANNA et al. 

2006; PETH et al. 2009; SAKATA et al. 2011). Cryo-electron microscopy of the 19S indicates that 

Rpn11p is well-positioned between the two ubiquitin receptors and nearest the entrance of the 

ATPase base subassembly, a position where the en bloc removal of an entire ubiquitin chain is 

important (LANDER et al. 2012). On the other hand, Ubp6 is at the periphery of the 19S which is 

consistent with its involvement in ubiquitin chain trimming and thus rescuing substrates from 

degradation (Figure 5) (CROSAS et al. 2006; LANDER et al. 2012).  

 

In addition to the 19S cap, the 20S core can be flanked by other accessory complexes, of 

which many seem to increase the proteolytic activity of the 20S core (HOFFMAN et al. 1992; MA 

et al. 1992; SCHMIDT et al. 2005). For example, the yeast Blm10 protein promotes the efficient 

degradation of a number of protein substrates by gating the proteasome in a manner similar to 

that of the HbYX motif of the 19S base (DANGE et al. 2011; LOPEZ et al. 2011). Interestingly, 

there are other proteins that possess this HbYX motif, most notably the multifunctional 

hexameric ATPase, p97, which is the mammalian homolog of yeast Cdc48p (see below, Dave 

Smith, West Virginia University, personal communication). Indeed it does appear that Cdc48 

and 20S form a stable and functional complex (BARTHELME and SAUER 2012). It will be 
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interesting to find out if other HbYX motif-ATPase complexes modulate the activity of this 

important protease.     

1.2.4 Proteasome assembly 

The multitude of proteasomal accessory complexes, cofactors, and alternate proteasomal 

subunits suggests that there are specialized assembly pathways. Additionally, the composition of 

the proteasome is known to change under certain stress conditions (HANNA et al. 2007; WANG et 

al. 2010; XIE and VARSHAVSKY 2001). Early hints of a proteasome assembly pathway were 

demonstrated in reconstitution experiments that originally aimed to prove that the 20S core was a 

component of the 26S proteasome (DRISCOLL and GOLDBERG 1990; EYTAN et al. 1989; GANOTH 

et al. 1988; HOFFMAN et al. 1992; ORINO et al. 1991). These experiments showed that the 19S 

cap was composed of two chief parts, the lid and base, that when mixed together with the third 

fraction containing the 20S formed the 26S particle (DRISCOLL and GOLDBERG 1990; EYTAN et 

al. 1989; HOFFMAN et al. 1992; ORINO et al. 1991). Preincubating these three fractions with ATP 

to promote assembly prevented a delay in model substrate degradation (GANOTH et al. 1988). 

Work from the late 1990s has since uncovered a host of dedicated assembly chaperones for the 

assembly of both the 20S core and 19S cap.  

 

The assembly of the 20S core particle is well-defined and evolutionarily-conserved 

between man and yeast (MURATA et al. 2009). In yeast, five different chaperones contribute to 

different stages of 20S core formation. Two heterodimeric complexes, Pba1p-Pba2p and Pba3p-

Pba4p, cooperate to form the alpha ring which then serves as a template for subsequent 

chaperone-assisted incorporation of the beta subunits (LE TALLEC et al. 2007; LI et al. 2007b). 
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This alpha and the partially-complete beta ring pair is known as the “half-mer” (Figure 6). It is 

worth noting that the Pba1p-Pba2p and Pba3p-Pba4p chaperones appear to have specific 

functions in the formation of the half-mer. For instance, Pba1p-Pba2p mutants have a specific 

defect in chymotryptic-like (beta5) activity, suggesting a specific role in beta ring formation (LI 

et al. 2007b; SCOTT et al. 2007). Pba4p mutants lead to the incorporation of the alpha4 subunit in 

place of the alpha3 subunit, suggesting a role in alpha ring formation (KUSMIERCZYK et al. 2008; 

MURATA et al. 2009). Intriguingly, Pba3p-Pba4p mutants form the alternate 20S proteasome that 

is observed when alpha3 is deleted (see above). It is still not clear if this alternative, more active 

20S core exists naturally in yeast. As mentioned, the half-mer is incomplete, and in yeast, the 

beta7 subunit is not incorporated until the dimerization of two half-mers to form the 20S core 

(Figure 7) (LI et al. 2007b; MARQUES et al. 2007). The incorporation of beta subunits and 

dimerization of the two half-mers is assisted by a fifth chaperone, Ump1p (RAMOS et al. 1998). 

Half-mer dimerization results in the encapsulation and degradation of Ump1p after the 

processing of the catalytic beta subunit propeptides, as well as the noncatalytic beta6 and beta7 

subunits (CHEN and HOCHSTRASSER 1996; HEINEMEYER et al. 1997; RAMOS et al. 1998; 

SEEMULLER et al. 1996).  

 

Interestingly, mutations in the genes-encoding Pba3p, Pba4p, Ump1p, and alpha3 lead to 

the accumulation of 19S cap precursors, suggesting that the 20S core particle can serve a scaffold 

for 19S cap formation (HENDIL et al. 2009; KUSMIERCZYK et al. 2008). Like the 20S core, the 

19S cap is also assembled by chaperone-like proteins (Figure 8). The assembly of the base of the 

19S has only been recently described. Here, four proteasome-dedicated chaperones, Nas2p, 

Nas6p, Hsm3p, and Rpn14p bind different Rpt-Rpn subunits of the 19S base to facilitate their 
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assembly (FUNAKOSHI et al. 2009; KANEKO et al. 2009; LE TALLEC et al. 2009; PARK et al. 

2009; ROELOFS et al. 2009; SAEKI et al. 2009). These chaperones bind near the carboxy terminus 

of their respective Rpt subunits, and are displaced by the presence of the 20S core particle 

(ROELOFS et al. 2009). The binding of the chaperone probably prevents the premature proteolytic 

activation by the formation of a stable complex between an unregulated, base assembly and the 

20S core particle (BESCHE et al. 2009b; HENDIL et al. 2002; KRIEGENBURG et al. 2008). 

Surprisingly, the simultaneous deletion of all four chaperones does not completely abolish the 

formation of the 26S proteasome (SAEKI et al. 2009). These data indicate that there are 

alternative back-up methods to assemble this essential protease.  

 

The assembly of the lid is very poorly characterized, and no dedicated chaperones have 

been identified thus far. However, analyses of the lid intermediates that accumulate in various lid 

mutants have identified two main lid modules, one containing Rpn5p, 6p, 8p, 9p, 11p and a 

second consisting of Rpn3p, 7p and Sem1p (FUKUNAGA et al. 2010; ISONO et al. 2004). This 

provides evidence that Rpn12p is the last lid component to incorporate when these two modules 

form (Figure 9) (FUKUNAGA et al. 2010; ISONO et al. 2004). This conclusion is supported by the 

finding that mutations in the Rpn12p carboxy terminus accumulate the entire lid subassembly 

without Rpn12p (TOMKO and HOCHSTRASSER 2011). In vitro reconstitution experiments indicate 

that the carboxy terminus of Rpn12p drives the association of the lid and base subassemblies in 

the presence of 20S core particles (TOMKO and HOCHSTRASSER 2011). 
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Figure 6. Assembly of the 20S half-mer 

Two chaperones, Pba1p and Pba2p, facilitate the assembly of the alpha ring. The 

assembled alpha ring then serves as a template for beta ring assembly. Beta ring assembly is 

assisted by the Pba3p, Pba4p and Ump1p chaperones and is incomplete as the beta7 subunit is 

not incorporated. This incomplete structure is called the “half-mer”. 
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Figure 7. Assembly of the 20S core 

Two half-mers are joined together and incorporate two copies of the beta 7 subunit. This 

encapsulates Ump1p which is then degraded after catalytic subunit propeptide maturation and 

formation of the 20S core particle. 
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Figure 8. Assembly of the 19S base 

Hsm3p , Nas2p, and the Rpn14p/Nas6p pair facilitate the assembly of the base. Hsm3p 

interacts with Rpt1p (T1), Rpt2p (T2), Rpn1p (1) and Ubp6p. Nas6p interacts with Rpt5p (T5) 

and Rpt4p (T4). Rpn14p and Nas6p interact with Rpt6p (T6) and Rpt3p (T3), respectively. 

White indicates proteasome chaperone, red indicates deubiquitinating enzyme, blue indicates 

ubiquitin receptor, orange indicates non-ATPase subunit and yellow indicates ATPase subunit.  
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Figure 9. Assembly of the 19S lid 

Two intermediates of the 19S lid subassembly 1) Rpn3p (3) and Rpn7p (7), and 2) Rpn5p 

(5), Rpn6p (6), Rpn8p (8), and Rpn11p (11) are joined together by Rpn12p (12). This 

subassembly is then joined to the 19S base by Rpn10p (10). Red indicates deubiquitinating 

enzyme, blue indicates ubiquitin receptor, orange indicates non-ATPase subunit and yellow 

indicates ATPase subunit.  
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1.2.5 Additional Factors 

Other factors also appear to be involved in the assembly and function of the proteasome. For 

instance, yeast Hsp90 mutants or Hsp90 inhibitor treatment (geldanamycin) has been reported to 

reduce the levels of 26S proteasome (IMAI et al. 2003). Ubiquitinated substrates have been 

shown to promote the stability of the 26S proteasome, and ATP hydrolysis may destabilize the 

yeast proteasome (BABBITT et al. 2005; KLEIJNEN et al. 2007). Specific proteins such as 

Ecm29p, Not4p, and Nob1p have partially characterized roles in proteasome biology (LEHMANN 

et al. 2010; PANASENKO and COLLART 2011; TONE and TOH 2002; WANG et al. 2010). For 

example, Ecm29p is involved in the joining of the 19S cap and 20S core, and binds to both 19S 

cap and 20S core particles (LEHMANN et al. 2010). Ecm29p also serves as a quality control 

checkpoint and appears to inhibit improperly assembled proteasomes (LEE et al. 2011). This 

implies that there is some assembly of the proteasome can occur after the 19S and 20S particles 

are joined. The proteasome is also subject to environmental factors. For instance, ubiquitin 

depletion promotes the expression of the DUB, Ubp6p, which is then loaded onto the 26S 

proteasome to promote the recycling of ubiquitin (HANNA et al. 2007). Hydrogen peroxide, or 

reactive oxygen species-triggered stress promotes the disassembly of the proteasome (WANG et 

al. 2010). Organelle stress, such as that from misfolded proteins at the ER leads to changes in the 

expression of the proteasome, which is mediated by the proteasomal transcription factor Rpn4p 

(METZGER and MICHAELIS 2009; XIE and VARSHAVSKY 2001). The proteasomal stress response 

is generally conserved, but the equivalent of Rpn4p in mammals, Nrf1, has only recently been 

identified (RADHAKRISHNAN et al. 2010). 



 29 

1.2.6 Chemical targeting of the Proteasome 

Chemical modulation of the proteolytic activity of the proteasome has received considerable 

interest since it was discovered to have positive effects in the treatment of certain cancers 

(ADAMS and KAUFFMAN 2004; TAN et al. 2006). Currently, there are five proteasomal inhibitors 

in clinical trial, and one (Bortezomib/Velcade) is FDA-approved for use as a frontline cancer 

treatment for certain types of cancers, such as multiple myeloma and some types of lymphoma 

(MOLINEAUX 2012). These inhibitors are either natural beta-lactones or protected peptides with 

groups that are reactive towards the proteasome active site (MOLINEAUX 2012). These inhibitors 

take advantage of the fact that these cancers are caused by professional secretory cells that are 

under high levels of ER stress; therefore reducing proteasomal activity pushes these cells 

towards apoptosis (KISSELEV et al. 2012).  

1.3 ENDOPLASMIC RETICULUM ASSOCIATED DEGRADATION (ERAD) 

The function of the UPS underlies many cellular protein degradation pathways. These pathways 

are largely defined by specific E2, E3, DUB and E4 enzyme combinations in addition to other 

specific adaptor proteins. Some of these pathways are further divided depending on the location 

(e.g., cytoplasmic versus intraorganellar) and nature (e.g., misfolded protein versus a naturally 

regulated substrate) of a given substrate. One of the most thoroughly examined models of UPS-

mediated protein degradation is with regard to misfolded protein substrates in the ER.  
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The ER is the site of protein synthesis and folding for both transmembrane and secreted 

proteins in eukaryotes. The volume of protein traffic that enters the ER, and thus the early 

secretory pathway is very large and accounts for 20-30% of the total proteome (GHAEMMAGHAMI 

et al. 2003; LANDER et al. 2001). Proteins enter the secretory pathway by one of two modes, co-

translationally or post-translationally, both of which utilize the highly-conserved Sec61 

translocation channel complex (RAPOPORT et al. 1999). The yeast Sec61p translocation channel 

is a membrane-spanning multi-protein complex that contains two additional proteins, Sbh1p and 

Sss1p and is the docking site of the translating ribosome (ROMISCH 1999). The central pore of 

Sec61p is gated closed by the molecular chaperone, BiP/Kar2p, which allows the environment of 

the secretory pathway to be different from that found in the cytoplasm (HAMMAN et al. 1998). 

Proteins that enter the secretory gateway can be subject to: 1) proteolytic cleavage of the ER-

targeting signal sequence, 2) Asparagine-linked (Asn or N-linked) glycosylation, 3) disulfide 

bond formation, 4) chaperone-assisted protein folding and 5) propeptide processing (BRODSKY 

and SKACH 2011).  

 

The environment of the ER differs from the cytoplasm in a number of ways. For example, the 

ER is an oxidizing environment that allows the formation of disulfide bonds, and is a major site 

of lipid metabolism and calcium storage (CSALA et al. 2006; RAINA and MISSIAKAS 1997). The 

ER also acts as a protein concentrating organelle prior to secretory protein transport (MIZUNO 

and SINGER 1993). These factors can present a hurdle to proper protein folding, especially if the 

protein is mutated or damaged. Fortunately, the early secretory pathway is protected from 

misfolded proteins by a protein quality-control/processing pathway known as Endoplasmic 

Reticulum-Associated Degradation (ERAD) (MCCRACKEN and BRODSKY 1996; VEMBAR and 
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BRODSKY 2008). The ERAD pathway is composed of a cooperating set of sequential events: 

substrate recognition and targeting, ubiquitination by membrane-anchored E3 ubiquitin ligases, 

substrate retrotranslocation, and finally degradation by the 26S proteasome. Substrate 

recognition is the starting point for the ERAD surveillance pathway and is based largely on the 

location of the offending lesion (ISMAIL and NG 2006; SMITH et al. 2011; VASHIST and NG 2004; 

VEMBAR and BRODSKY 2008). 

1.3.1 ERAD-Lumenal (ERAD-L) 

Misfolded proteins inside the ER are recognized by a specific set of molecular chaperones, and 

are targeted to the protein degradation machinery that comprises the ERAD-Lumenal (ERAD-L) 

pathway (Figure 10) (BUCK et al. 2007; CARVALHO et al. 2006; DENIC et al. 2006; VASHIST and 

NG 2004). The primary ERAD-L chaperone is a 72 KDa protein known as BiP, or Kar2p in 

yeast. Kar2p is a member of the abundant Heat Shock Protein 70 (HSP70) family and couples 

ATP hydrolysis with protein binding. The ATPase activity of HSP70 proteins, as well as their 

substrate binding ability can be modulated by cofactors such as HSP40 co-chaperones (BRODSKY 

2007). The activity of HSPs can be either pro-folding or pro-degradation. In addition, chaperone-

like lectins such as Yos9p and Htm1p monitor the status of the N-linked glycosylation signals on 

ERAD-L substrates (BHAMIDIPATI et al. 2005; KIM et al. 2005; NAKATSUKASA et al. 2001; 

SZATHMARY et al. 2005). N-linked glycosylation occurs on proteins that possess the Asn-X-

Ser/Thr (NXS/T) consensus motif inside the ER lumen (HELENIUS and AEBI 2004). The N-linked 

glycosylation signal serves a dynamic timer of substrate folding and is based on the removal and 

addition of glucose residues (by glucosidases and glycosyl transferases, respectively), and the 

trimming of mannoses from the parent oligosaccharide (N-acetylglucosamine2 - mannose9 - 
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glucose3) (HELENIUS and AEBI 2004). Molecular chaperones and these lectins target misfolded 

ERAD-L substrates to the ER membrane via physical interactions with the transmembrane 

ubiquitin ligase complex. Here, they are presented to the catalytic portion of the E3 ubiquitin 

ligase found on the cytosolic side of the ER by a “retrotranslocation” mechanism that is poorly 

understood.  

 

The ubiquitin ligase of the yeast ERAD-L pathway is a transmembrane RING E3 known 

as Hrd1p (Figure 10) (BAYS et al. 2001a; HAMPTON et al. 1996). Hrd1p interacts with a number 

of different proteins to form a multi-protein complex that appears to regulate its ubiquitin ligase 

activity (CARVALHO et al. 2010; GARDNER et al. 2000). One key interactor with the Hrd1p E3 

enzyme is Cue1p, a transmembrane tether for the cytosolic E2-conjugating enzyme, Ubc7p 

(BIEDERER et al. 1997). Cue1p is part of a larger and poorly-characterized family of proteins 

defined by the monoubiquitin-binding CUE domain (SHIH et al. 2003). The ERAD-L pathway is 

defined by this particular E2 (Ubc7p) -E3 (Hrd1p) pairing. Hrd1p receives substrates via a 

physical interaction with second key partner, Hrd3p, which is a transmembrane receptor for the 

lumenal lectin-like chaperone and chaperone Yos9p and Kar2p/BiP, respectively (CARVALHO et 

al. 2006; DENIC et al. 2006; GARDNER et al. 2000; GAUSS et al. 2006). Hrd1p substrates are then 

linked to the cytosolic protein degradation machinery by a Hrd1p interaction with the 

transmembrane protein, Ubx2p (CARVALHO et al. 2006; DENIC et al. 2006; SCHUBERTH et al. 

2004). Ubx2p possesses a Ubiquitin Regulatory X (UBX) domain that is needed to recruit an 

abundant hexameric ATPase complex that contains Cdc48p (see below) (BUCHBERGER et al. 

2001; NEUBER et al. 2005; SCHUBERTH and BUCHBERGER 2005; SCHUBERTH et al. 2004; 

WILSON et al. 2006). The Cdc48p hexamer and Npl4p/Ufd1p cofactors provide the specificity 
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and mechanical force needed to retrotranslocate a substrate from the ER (see below) (BAYS et al. 

2001a; HITCHCOCK et al. 2001; JAROSCH et al. 2002; RABINOVICH et al. 2002; YE et al. 2001). 

This simplified ERAD-L model indicates that the Hrd1p complex serves as a central hub for 

receiving, ubiquitinating and recruiting the necessary cytosolic factors for substrate 

retrotranslocation from the ER.  

 

The Hrd1p protein has additional interaction partners that have incompletely characterized roles 

in the ERAD-L complex and pathway. For instance, Hrd1p interacts with Der1p, which from 

studies of the mammalian homolog Derlin-1 was proposed to be part of an undefined 

proteinaceous channel that allows substrates to pass from inside the ER to the cytosol (LILLEY 

and PLOEGH 2004; YE et al. 2004). While data supporting the Derlin-1/Der1p translocation 

channel model in yeast (and mammals) are lacking, yeast Der1p mutants have a rather significant 

protein degradation defect for many ERAD-L substrates, indicating an important and conserved 

role for this protein (HORN et al. 2009; KNOP et al. 1996; PLEMPER et al. 1999; SATO and 

HAMPTON 2006). Recently, the human Derlin-1 protein, which bears a resemblance to the 

rhomboid protease family, has been linked to ERAD, although the catalytic residue in Derlin-1 is 

mutated (GREENBLATT et al. 2011; ZETTL et al. 2011). The interaction between Hrd1p and Der1p 

is mediated by Usa1p, a transmembrane protein that contains a Ubiquitin-Like (UBL) domain 

(Horn 09). In the absence of Hrd3p, Hrd1p self-ubiquitination occurs in trans through a Usa1p-

mediated oligomerization of Hrd1p (CARROLL and HAMPTON 2010; GARDNER et al. 2000). The 

self-ubiquitination of Hrd1p ultimately leads to degradation but is largely independent of Der1p 

(CARROLL and HAMPTON 2010; HORN et al. 2009). In yeast, Dfm1p is a Der1p homolog which 

itself is an unstable protein that depends on Usa1p (HITT and WOLF 2004; STOLZ et al. 2010). 
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Unlike Der1p, Dfm1p mutants do not show defects in the ERAD-L pathway, but, conflictingly, 

may show a defect for a model, mutated transmembrane substrate (HITT and WOLF 2004; SATO 

and HAMPTON 2006; STOLZ et al. 2010). Genetic interaction studies suggest that Dfm1p may 

also function in a non-ERAD process that involves Cdc48p (SATO and HAMPTON 2006). And 

Dfm1p, but not Der1p genetically interacts with Cdc48p (SATO and HAMPTON 2006). While 

Hrd1p is best known for its role in the ERAD-L pathway, it was originally discovered as a 

protein required for the degradation of the transmembrane protein, Hmg2p (HAMPTON et al. 

1996). This example is not isolated, as Hrd1p is necessary for the degradation of other 

transmembrane proteins such as a mutated versions of the translocation channel, Sec61p, and the 

multi-drug resistance pump, Pdr5p (BIEDERER et al. 1997; PLEMPER et al. 1998). While there is 

still confusion about the roles of Hrd1p interaction partners, the simplest model is that the Hrd1p 

complex plays two roles in ERAD that are both mediated by Usa1p: a Der1p-dependent ERAD-

L, and a Der1p-independent ERAD-Membrane (ERAD-M) pathway (CARROLL and HAMPTON 

2010; HORN et al. 2009; SATO and HAMPTON 2006). In general, transmembrane proteins 

represent a complex class of ERAD substrates as they can have misfolded protein signatures on 

either side, or even within the lipid bilayer of the ER membrane. 
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Figure 10. The ERAD-L and ERAD-C Complexes 

The ERAD-L surveillance complex is composed of the chaperones Kar2p and Yos9p 

(grey), their receptor Hrd3p (orange), the ubiquitination machinery Hrd1p, Cue1p, and Ubc7p 

(dark blue, green, and light blue), and the retrotranslocation machinery, Cdc48p-Npl4p-Ufd1p 

and its receptor Ubx2p (yellow and magenta). The ERAD-C complex is composed of the 

chaperones of the HSP70 family (grey), the ubiquitination machinery Doa10p, Cue1p, and 

Ubc7p (black, green, and light blue, respectively), and the retrotranslocation machinery Cdc48p-

Npl4p-Ufd1p (yellow). In both cases, chaperones bring substrates to the ubiquitination 

machinery. Ubiquitinated substrates are then retrotranslocated into the cytosol for degradation by 

the 26S proteasome.  
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1.3.2 ERAD-Cytosol (ERAD-C) 

Proteins with offending lesions on the cytosolic side of the ER are targeted to the ERAD-Cytosol 

(ERAD-C) pathway. The ERAD-C pathway is quite similar in design to the ERAD-L pathway 

(Figure 10) (ISMAIL and NG 2006). In yeast, ERAD-C substrates are first recognized by 

cytosolic molecular chaperones (BUCK et al. 2007; HUYER et al. 2004; VASHIST and NG 2004). 

These chaperones include small HSPs, HSP70 (Ssa1p) and the Heat Shock Cognate 70 (HSC70) 

families of molecular chaperones (BRODSKY 2007). These cytosolic chaperones facilitate the 

interaction of the substrate with a second ER E3 ubiquitin ligase complex known as the Doa10p 

complex (HAN et al. 2007; NAKATSUKASA et al. 2008; SWANSON et al. 2001). It is unknown if 

there is a chaperone receptor analogous to Hrd3p, but given the location of ERAD-C substrates 

and their known interactions with chaperones, there may not be a requirement for such. 

Regardless, the Doa10p RING E3 ligase is linked to the E2-conjugating enzymes Ubc7p 

(through Cue1p), and to a transmembrane E2 known as Ubc6p (CARVALHO et al. 2006; 

SWANSON et al. 2001). Doa10p interacts with Ubx2p and Dfm1p, both of which are known to 

recruit the retrotranslocating ATPase, Cdc48p (SCHUBERTH and BUCHBERGER 2005; STOLZ et al. 

2010). Interestingly, some substrates appear to teeter between the ERAD-C and ERAD-L 

pathways. For instance, complicated transmembrane proteins such as the 12-transmembrane pass 

Ste6p and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) show dependence on 

both Hrd1p and Doa10p, and on Ubc6p and Ubc7p (GNANN et al. 2004; HUYER et al. 2004; 

VASHIST and NG 2004; ZHANG et al. 2001). Regardless of which ERAD pathway is used, 

ubiquitinated substrates are removed from the ER for degradation by the homohexameric 

Cdc48p ATPase complex. 
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1.4 CELL DIVISION CYCLE 48 (CDC48) 

The yeast Cdc48p protein is an evolutionarily-conserved ATPase of the ATPases Associated 

with various cellular Activities (AAA) family. CDC48 was first identified in a yeast screen for 

temperature-sensitive mutants of the cell cycle (MOIR et al. 1982). In mammals, a 25-amino acid 

peptide known as Valosin was identified from porcine intestine (SCHMIDT et al. 1985). Valosin 

was later discovered to be a proteolytic artifact, as its sequence corresponded to the second 

AAA-ATPase domain of a larger, 97 KDa protein called, Valosin-Containing Protein (VCP) 

(KOLLER and BROWNSTEIN 1987). The Cdc48p and p97/VCP proteins were identified as 

homologs in 1991, and both were found to form a homohexameric ring structure (FROHLICH et 

al. 1991; KOLLER and BROWNSTEIN 1987). Cdc48p is an extremely abundant protein, with some 

estimates of its abundance at over 1% of total cellular protein (LATTERICH et al. 1995).  The 

cellular functions of Cdc48p/p97/VCP are also incredibly diverse and include cell division, DNA 

repair, RNA transcription, protein translation, nuclear envelope/ER reformation, vesicle fusion, 

protein transport, endosome size formation, cell-wall integrity, autophagy, and protein quality 

control at both the ER (ERAD) and mitochondria (CAO et al. 2003; FROHLICH et al. 1991; FUJII 

et al. 2012; HETZER et al. 2001; HITCHCOCK et al. 2001; HSIEH and CHEN 2011; JAROSCH et al. 

2002; JU et al. 2009; KRICK et al. 2010; LATTERICH et al. 1995; MEERANG et al. 2011; MIYACHI 

et al. 2004; MOIR et al. 1982; PLEASURE et al. 1993; RAMADAN et al. 2007; RAPE et al. 2001; 

TRESSE et al. 2010; UCHIYAMA et al. 2006; VERMA et al. 2011; YE et al. 2001). The common 

theme in all these processes is ubiquitinated-protein processing. 



 38 

1.4.1 The medical relevance of Cdc48p/p97/VCP 

The human p97/VCP is of considerable medical interest. For instance, the upregulation of 

p97/VCP mRNA and protein is associated with negative outcomes in many cancers (BERTRAM et 

al. 2008; VALLE et al. 2011; YAMAMOTO et al. 2003). Mutations in p97/VCP are known to 

directly cause two muscle-related diseases: Inclusion Body Myopathy associated with Paget’s 

disease of bone and Frontotemporal Dementia (IBMPFD) and a subtype of familial Amyotrophic 

Lateral Sclerosis (ALS) (JOHNSON et al. 2010; WATTS et al. 2004). Both diseases have 

overlapping molecular phenotypes, such ubiquitin-positive inclusions and the aggregation of 

TAR DNA binding Protein-43 (TDP-43) (GUINTO et al. 2007; JOHNSON et al. 2010; SCHYMICK 

et al. 2007). The mutations that cause IBMPFD and ALS are also commonly found the amino 

terminus or the first of two AAA-ATPase domains (see below, Figure 11) in p97/VCP 

(HALAWANI et al. 2009). In fact, some IBMPFD and ALS mutations are exactly the same (e.g., 

R155H and R191Q), strongly suggesting the presence of additional phenotype-modifying genetic 

loci (HALAWANI et al. 2009; JOHNSON et al. 2010; WATTS et al. 2004). The R191Q mutation in 

p97/VCP has also been recently linked to a third muscular disorder called Facioscapulohumeral 

Muscular Dystrophy-1 (SACCONI et al. 2012). Neuromuscular dysfunction seems to be a 

commonality of disease-causing p97/VCP mutations and suggests a shared molecular 

mechanism. IBMPFD may ultimately result from defects in autophagy and ERAD (JU et al. 

2009; WEIHL et al. 2006).  
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Figure 11. Domain map of Cdc48p 

Cdc48p is composed of three domains, the N-domain (blue) and two-AAA ATPase 

domains (red). The location of IBMPFD mutations are marked by upward-pointing arrowheads 

(light blue) and mutations found in the commonly used CDC48 allele, cdc48-3, are marked by 

the downward pointing arrowheads (purple).  
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1.4.2 Cdc48p/p97/VCP ATPase activity 

Each monomer of yeast Cdc48p and mammalian p97/VCP contains: 1) a cofactor binding 

amino-terminal domain (termed N domain), 2) two AAA-ATPase domains (termed D1 and D2) 

and 3) a carboxy terminal end that can also bind select cofactors (Figure 12). The AAA-ATPase 

domains each contain a Walker A and a Walker B motif which coordinate the binding and 

hydrolysis of ATP, respectively (HANSON and WHITEHEART 2005). ATP hydrolysis occurs at 

both ATPase domains, and is most extensively studied using the mammalian p97/VCP as a 

model (PYE et al. 2006). The purification of p97/VCP hexamers for structural studies, however, 

indicates that the D1 domain remains tightly bound to ADP while the D2 domain can be empty, 

or bound to ADP or to transition state analogs (PYE et al. 2006). This finding has been validated 

by biochemical and genetic experiments supporting the idea that the bulk of p97/VCP ATPase 

activity comes from the D2 ATPase domain (SONG et al. 2003; WANG et al. 2003; YE et al. 

2003). The D1 ATPase domain is believed to be mainly involved in some aspect of 

Cdc48p/p97/VCP hexamerization (SONG et al. 2003; WANG et al. 2003; YE et al. 2003). 

Structural data indicate that these two ATPase domains do not function in isolation, and that 

ATPase hydrolysis in one domain contributes to structural changes in the other domain within 

the same protomer and also between neighboring protomers (DELABARRE and BRUNGER 2003; 

LI et al. 2012). ATPase activity also contributes to conformational changes in the cofactor-

binding amino-terminal N domain (NIWA et al. 2012; PYE et al. 2006; ROUILLER et al. 2002). 

This is an attractive way of converting ATP hydrolysis to mechanical work on a substrate. 

Indeed, Cdc48p/p97/VCP has been suggested to aid in protein unfolding, possibly by funneling 

proteins through the central pore of the hexamer (DELABARRE et al. 2006). Definitive evidence 



 41 

for this is still lacking, and the reality is we still have very little idea as to how Cdc48p/p97/VCP 

acts to retrotranslocate a substrate during ERAD. Interestingly, all IBMPFD mutants tested by 

Niwa and colleagues (2012) showed increased D2 domain ATPase activity, and in at least one 

known mutant (A232E), the increased ATPase activity required the presence of the N domain. 

The carboxy terminus was also required for D2 ATPase. In addition, in Arabidopsis, a Ubiquitin-

Regulatory X (UBX) domain protein known as AtPUX1 was shown to down-regulate ATPase 

activity and promote hexamer disassembly (PARK et al. 2007; RANCOUR et al. 2004). Similarly, 

the mammalian UBX protein TUG down-regulates p97/VCP ATPase activity and promotes 

hexamer disassembly (ORME and BOGAN 2012). Other mammalian UBX protein such as p47 and 

SAKS1 have also been shown to negatively regulate p97/VCP vesicle formation and ERAD 

function, respectively, but it is unknown if either affects hexamer stability (BRUDERER et al. 

2004; LALONDE and BRETSCHER 2011; MEYER et al. 1998). Only one example of cofactor 

binding increases ATPase activity: Synaptotagmin, which is a tramsmembrane protein involved 

in vesicle fusion, may increase the ATPase activity of p97/VCP, but the relevance of this 

phenomena is not currently understood (DELABARRE et al. 2006; MARTENS et al. 2007). Finally, 

cofactor binding to p97 has also been demonstrated to induce major conformational changes and 

likely modulates the activity of either the D1 or D2 ATPase domain (BEURON et al. 2006).  
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Figure 12. Cdc48p cofactors 

An abbreviated list of cofactors and their functional domains. Ubiquitin interacting 

domains (yellow) include Ubiquitin-Associated (UBA), Ubiquitin Interacting Motif (UIM), 

PLAA family ubiquitin binding domain (PFU), and Ubiquitin Fusion Degradation domain 

(UFD). Cdc48p interaction domains (pink) include Ubiquitin Regulatory X (UBX) and UBX-like 

(UBX-L), PLAP, UFD3 and Lub1 (PUL), and VCP/p97 Interacting Motif (VIM). 

Uncharacterized domains (grey) include Shp1, Eyc and p47 (SEP) and UAS. E3 or DUB 

domains (light blue) include the Ovarian Tunor (OUT) and Ubox modified ring finger (UBOX). 

Scaffold domains (dark grey) include WD-40 and the Ankyrin repeat. The C2H2 zinc finger 

motif is in green. Adapted from (SCHUBERTH and BUCHBERGER 2008).  
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1.4.3 Cdc48p/p97/VCP cofactors 

While Cdc48p has an innate ability to recognize unfolded proteins, the overwhelming majority of 

Cdc48p/p97/VCP-associated functions relies on its interaction partners (THOMS 2002; YEUNG et 

al. 2008). In this section, I will focus primarily on yeast Cdc48p interaction partners that are 

relevant to the ERAD pathway, and highlight examples from higher organisms as necessary. 

1.4.3.1 UBX-domain cofactors 

The UBX domain family of proteins represents the most abundant group of Cdc48p cofactors 

(see above, Figure 12) (SCHUBERTH and BUCHBERGER 2008). The UBX domain is an 80 amino 

acid motif that structurally resembles ubiquitin (BUCHBERGER et al. 2001). Seven UBX domain-

containing proteins exist in S. cerevisiae (UBX1-7), but only two are functionally characterized. 

The first, Ubx1p (also known as Shp1p), was originally isolated as a suppressor of lethality 

caused by the overexpression of the phosphatase Glc7p (ZHANG et al. 1995). Insights into Ubx1p 

function came from studies of the mammalian version of Ubx1p, p47 (see above) and showed 

that a complex of p97 and p47 regulated Golgi-vesicle membrane fusion (KONDO et al. 1997). In 

yeast, Ubx1p was found to be involved in the vacuolar degradation of fructose-1,6-

bisphosphatase and regulated autophagosome formation (CUI et al. 2004; KRICK et al. 2010). 

One of the earliest discovered roles for yeast Cdc48p was homotypic ER membrane fusion 

(LATTERICH et al. 1995). In addition, Ubx1p is required for the degradation of model ubiquitin-

fusion degradation substrates, the UV-response mediated degradation of RNA Polymerase II, 

and the degradation of a classic ERAD-L substrate (SCHUBERTH et al. 2004; TRAN et al. 2011; 
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VERMA et al. 2011). Ubx2p was also first characterized as being involved in ubiquitin-fusion 

substrate degradation (SCHUBERTH et al. 2004). A series of papers in 2005 and 2006 showed that 

Ubx2p is a transmembrane protein that acts as a recruitment factor for Cdc48p (NEUBER et al. 

2005; SCHUBERTH and BUCHBERGER 2005; WILSON et al. 2006). Ubx2p was found as an 

associated component of the ER E3 ubiquitin ligases, Hrd1p and Doa10p, and is required for the 

retrotranslocation of select ERAD substrates (see above) (CARVALHO et al. 2006; DENIC et al. 

2006; GARZA et al. 2009). Recent data suggest that Ubx2p, and the human homolog, UBXD8, 

are involved in ERAD substrate retrotranslocation through lipid droplets – an organelle that 

provides both storage and metabolic functions (FARESE and WALTHER 2009; SUZUKI et al. 2012; 

WANG and LEE 2012).  

 

In contrast to these two UBX proteins, relatively little is known about the yeast Ubx3p-7p 

proteins. Some data suggest that Ubx4p is involved in protein degradation either on its own or 

with other cofactors such as the UBX proteins, Ubx6p and Ubx7p (ALBERTS et al. 2009; 

DECOTTIGNIES et al. 2004; TRAN et al. 2011). Ubx4p is the yeast version of TUG (see above), a 

protein linked to the trafficking of GLUT4 upon insulin stimulation (BOGAN et al. 2003). 

Additionally, the mammalian version of Ubx7p, Erasin/UBXD2 localizes to the ER, is found in 

complex with ERAD components, and affects the degradation of a model substrate (LIANG et al. 

2006; LIM et al. 2009). The mammalian version of Ubx5p, UBXD7, has recently been linked to 

SCF-RING mediated protein degradation (ALEXANDRU et al. 2008). In addition, one study 

suggests that Ubx5p-7p plays a role in DNA damage response (LIS and ROMESBERG 2006). 

Overall, UBX domain-containing proteins contribute significantly to Cdc48p/p97/VCP 

functional diversity. 
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1.4.3.2 Ubiquitin Fusion Degradation (UFD) cofactors 

The Ubiquitin Fusion Degradation (UFD) group of cofactors was originally identified in a screen 

for mutants that stabilized a normally short-lived version of beta-galactosidase (JOHNSON et al. 

1995). A majority of UFD genes encoded for Cdc48p interaction partners, but not all. For 

instance, Ufd4p and Ufd5p are linked to proteasome function. Ufd4p is an E3 ligase associated 

with the 19S base of the proteasome and Ufd5p is Rpn4p, the transcription factor responsible for 

controlling proteasome levels (see section 1.2.6.) (XIE and VARSHAVSKY 2000; XIE and 

VARSHAVSKY 2001). Ufd1p, Ufd2p, and Ufd3p have since been identified as Cdc48p interaction 

partners (Figure 12).  

 

The UFD3 gene was found to be identical to the “Degradation of Alpha 1” (DOA1) gene, 

and encodes a WD-40 repeat protein that appears to be involved in regulating ubiquitin 

homeostasis (GHISLAIN et al. 1996; JOHNSON et al. 1995). Most recently, Ufd3p was implicated 

in the bulk degradation of ribosomes (ribophagy), DNA damage response, and the sorting of 

ubiquitinated plasma membrane proteins (LIS and ROMESBERG 2006; OSSAREH-NAZARI et al. 

2010; REN et al. 2008). Ufd3p does not seem to play a role in ERAD (MULLALLY et al. 2006). 

While the exact function of Ufd3p remains unclear, Ufd3p is one of the few Cdc48p cofactors 

that binds at the carboxy terminus, via a PLAP, UFD3 and Lub1, or PUL domain (ZHAO et al. 

2009). The Ufd3p-Cdc48p complex can bind the DUB, Otu1p (see above) and excludes the 

binding of a second PUL-domain containing protein, Ufd2p (RUMPF and JENTSCH 2006). This 

competitive binding occurs at the same site in the Cdc48p carboxy terminus, and leads to a 

Cdc48p complex that can either remove or add ubiquitin moieties to a substrate (BOHM et al. 

2011; RUMPF and JENTSCH 2006). Ufd2p is a U-box containing protein that extends K48 
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polyubiquitin chains and was discussed briefly in section 1.1.2 (KOEGL et al. 1999; 

NAKATSUKASA et al. 2008; SAEKI et al. 2004). UFD2 mutants, alone or when deleted with other 

Cdc48p cofactors, stabilize select ubiquitin proteasome substrates (LIU et al. 2011; 

NAKATSUKASA et al. 2008; TRAN et al. 2011). The mammalian version of Ufd2p, UBE4B, is 

involved in the degradation of the tumor suppressor p53 and in the pathology of certain 

neurological conditions (CONFORTI et al. 2000; WU et al. 2011). 

 

Perhaps the most recognizable UFD group member is Ufd1p. Ufd1p is an essential 

protein that forms a heterodimeric complex with Npl4p (JOHNSON et al. 1995; MEYER et al. 

2000). This heterodimeric complex binds to the N-domain of Cdc48p and can directly bind to 

ubiquitinated substrates (MEYER et al. 2000; MEYER et al. 2002; YE et al. 2001). Ufd1p and 

Npl4p mutants were initially linked to the proteasomal activation of ER-bound transcription 

factors, Spt23p/Mga2p (HITCHCOCK et al. 2001; HOPPE et al. 2000). A series of papers in 2001 

and 2002 further connected the Cdc48p-Npl4p-Ufd1p complex to the retrotranslocation of 

ubiquitinated ERAD substrate (BAYS et al. 2001b; HITCHCOCK et al. 2001; JAROSCH et al. 2002; 

RABINOVICH et al. 2002; YE et al. 2001). It is clear that these proteins, in complex with Cdc48p, 

are important for many ubiquitin-dependent processes in addition to ERAD (see above). 

Moreover, the Cdc48p complex is proposed to have the ability to separate ubiquitinated 

substrates from unmodified proteins, and probably reflects the segregase activity of the complex 

(BRAUN et al. 2002; SHCHERBIK and HAINES 2007). 

1.4.3.3 Additional Cofactors that function with Cdc48p 

During ERAD, UBX proteins, such as Ubx2p, can recruit the Cdc48p-Npl4p/Ufd1p to sites of 

protein ubiquitination. In this model, the Cdc48p-Npl4p-Ufd1p complex can then 
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retrotranslocate the ubiquitinated substrate and the presence of additional cofactors like Ufd2p 

can further extend the polyubiquitin chain (NAKATSUKASA et al. 2008). Nevertheless, a 

polyubiquitinated substrate that has been retrotranslocated requires additional proteins to 

facilitate proteasomal degradation. This is surprising given the fact that the proteasome has 

receptors for ubiquitin itself (see above). Moreover, the Cdc48p complex can be found 

associated with the proteasome (VERMA et al. 2000). Three proteins that fit this role are Rad23p, 

Dsk2p, and Ddi1p. All three proteins possess a Ubiquitin-Like (UBL) domain that mediates 

interaction with the 26S proteasome and a Ubiquitin-Associated (UBA) domain for interaction 

with ubiquitinated substrate (DANTUMA et al. 2009). Rad23p was originally described as a DNA 

repair protein and was the first of these proteins linked to the 26S proteasome (SCHAUBER et al. 

1998). Rad23p and Dsk2p were found as a complex that could bind to ubiquitinated substrates 

and to the Rpn1p subunit of the proteasome (ELSASSER et al. 2002; RAO and SASTRY 2002; 

SAEKI et al. 2002). Rad23p-Dsk2p could also be purified with Ufd2p and competitive binding 

experiments suggested that Rpn1p competes with Ufd2p for Rad23p (KIM et al. 2004; RICHLY et 

al. 2005). A complex of Cdc48p-Rad23p-Ufd2p was also isolated (RICHLY et al. 2005). 

Interestingly, Rad23p was also found in complex with Png1p, a cytosolic enzyme that can 

deglycosylate a misfolded protein (KIM et al. 2006). Relevant to this discussion, Rad23p-Dsk2p 

mutants showed an ERAD defect (MEDICHERLA et al. 2004; RICHLY et al. 2005). These data 

ultimately suggest a model in which the substrate has its polyubiquitin chain extended by 

Cdc48p-Ufd2p, possibly in complex with Rad23p-Dsk2p. This is followed by Rpn1p 

competition, leading to the loss of Ufd2p and proteasomal degradation of the substrate. 
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Table 1. Relevant factors of the ERAD pathway 

Yeast Human Function 

CDC48 VCP Multifunctional AAA ATPase, forms hexamer. 

NPL4 NPLOC4 Dimerizes with Ufd1p/UFD1L. 

UFD1 UFD1L Dimerizes with Npl4p/NPLOC4. 

UFD2 UBE4A & UBE4B E4 polyubiquitin extending enzyme. 

UFD3/DOA1 PLAA Involved in regulating ubiquitin levels. WD40 repeat protein. 

UFD4 TRIP12 E3 ubiquitin ligase associated with the proteasome. 

UBX1/SHP1 NSFL1C UBX domain protein. Involved in homotypic vesicle fusion 

UBX2 UBXD8/ETEA UBX domain protein. Recruits Cdc48p to the Endoplasmic Reticulum 

UBX3 - UBX domain protein. Transmembrane. 

UBX4 TUG/ASPL UBX domain protein. Potentially involved in ERAD. 

UBX5 UBXD7 UBX domain protein. 

UBX6 - UBX domain protein. Potential role in ubiquitin-mediated proteolysis 

UBX7 UBXD2/Erasin UBX domain protein. Potential role in ubiquitin-mediated proteolysis 

VMS1 ANKZF1 Cdc48p/VCP cofactor. Involved in ubiquitin-mediated proteolysis. 

HRD1 SYVN1 E3 ubiquitin ligase of the Endoplasmic Reticulum. 

HRD3 SEL1L 
Protein of the Endoplasmic Reticulum, involved in ERAD. Part of the Hrd1p 
complex. 

USA1 - 
Protein of the Endoplasmic Reticulum, involved in ERAD. Part of the Hrd1p 
complex. 

YOS9 OS9 Lectin of the ER lumen. Part of the Hrd1p complex. 

DOA10 MARCH VI E3 ubiquitin ligase of the Endoplasmic Reticulum. 

UBC6 UBE2J2 E2 ubiquitin conjugating enzyme. Involved in ERAD. 

UBC7 UBE2G2 E2 ubiquitin conjugating enzyme. Involved in ERAD. 

DER1 DER2L, DER3L Protein of the Endoplasmic Reticulum. Involved in ERAD. 

CUE1 - Protein of the Endoplasmic Reticulum. Involved in ERAD. 

RPT1 PSMC2 AAA ATPase subunit of the 19S base. 

RPT2 PSMC1 AAA ATPase subunit of the 19S base. 

RPT3 PSMC4 AAA ATPase subunit of the 19S base. 

RPT4 PSMC6 AAA ATPase subunit of the 19S base. 

RPT5 PSMC3 AAA ATPase subunit of the 19S base. Candidte ubiquitin receptor.  

RPT6 PSMC5 AAA ATPase subunit of the 19S base. 

RPN1 PSMD2 Non-ATPase component of 19S base. Candidate ubiquitin receptor. 

RPN2 PSMD1 Non-ATPase component of 19S base. Binds to Rpn13 

RPN10 PSMD4 Non-ATPase component of 19S base. Ubiquitin receptor.  

RPN3 PSMD3 Non-ATPase component of 19S basse. 

RPN5 PSMD12 Component of the 19S lid. 

RPN6 PSMD11 Component of the 19S lid. 

RPN7 PSMD6 Component of the 19S lid. 

RPN8 PSMD7 Component of the 19S lid. 

RPN9 PSMD13 Component of the 19S lid. 

RPN11 PSMD14 Component of the 19S lid. Deubiquitinating enzyme. 

RPN12 PSMD8 Component of the 19S lid. 

RPN13 ADRM1 Component of the 19S lid. Deubiquitinating enzyme. 

RPN14 PAAF1 Chaperone of the 19S Regulatory Particle. 

RPN15/SEM1 SHFM1 Non-ATPase component of 19S base. 

HSM3 PSMD5 Chaperone of the 19S Regulatory Particle. 
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NAS2 PSMD9 Chaperone of the 19S Regulatory Particle. 

NAS6 PSMD10 Chaperone of the 19S Regulatory Particle. 

RAD23 RAD23A/RAD23B Ubiquitinated substrate escort factor. Also involved in DNA damage repair. 

DSK2 UBQLN1 Ubiquitinated substrate escort factor.  

DDI1 DDI1/DDI2 Possible ubiquitinated substrate escort factor. DNA damage inducible.  

PBA1 PSMG1 Chaperone of the 20S core particle. 

PBA2 PSMG2 Chaperone of the 20S core particle. 

PBA3 PSMG3 Chaperone of the 20S core particle. 

PBA4 PSMG4 Chaperone of the 20S core particle. 

UMP1 POMP1 Chaperone of the 20S core particle. 

ECM29 ECM29 Stabilizer of the proteasome. 

BLM10 PSME4 Activator of the proteasome. Human version also called PA200. 

UFD5/RPN4 - 
Transcription factor regulating proteasome levels. Functional homolog is 
NRF1. 

SCL1 PSMA6 20S core subunit alpha 1. 

PRE8 PSMA2 20S core subunit alpha 2. 

PRE9 PSMA4 20S core subunit alpha 3. 

PRE6 PSMA7 20S core subunit alpha 4. 

PUP2 PSMA5 20S core subunit alpha 5. 

PRE5 PSMA1 20S core subunit alpha 6. 

PRE10 PSMA3 20S core subunit alpha 7. 

PRE3 PSMB6 20S core subunit beta 1. 

PUP1 PSMB7 20S core subunit beta 2. 

PUP3 PSMB3 20S core subunit beta 3. 

PRE10 PSMB2 20S core subunit beta 4. 

PRE2 PSMB5 20S core subunit beta 5. 

PRE7 PSMB1 20S core subunit beta 6. 

PRE4 PSMB4 20S core subunit beta 7. 
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1.5 PREVIEW OF CHAPTERS 2 THROUGH 4 

While our view of the ERAD pathway is becoming more and more complete, there are still 

lingering questions concerning the role of Cdc48p during ERAD. For instance, Cdc48p/p97/VCP 

has been found in a stable complex with the 26S proteasome, which is counter to the processive 

and transient nature of protein degradation (BESCHE et al. 2009a; DAI et al. 1998; DUBIEL et al. 

1995; VERMA et al. 2000). Additionally, Cdc48p is known to bind to many cofactors, most of 

which are uncharacterized (KROGAN et al. 2006). One of these cofactors, encoded by the 

YDR049W gene, was isolated from a gene expression profile study of yeast expressing a model 

misfolded substrate (AHNER et al. 2007). Ydr049p was found in a large multi-protein complex 

with Cdc48p and was also linked to the DOA pathway, which includes the ERAD-C E3 ligase 

Doa10p (KROGAN et al. 2006; RAVID et al. 2006). The Ydr049p protein contains a C2H2-type 

zinc finger, an Ankyrin repeat, and a “VCP/p97-Interacting Motif” (VIM). In Chapter 2, I will 

present data indicating that Ydr049p functions at a post-ubiquitination step in the ERAD 

pathway. I specifically found that deleting the yeast YDR049W gene leads to a modest defect in 

the ERAD of a model substrate, the Cystic Fibrosis Transmembrane Conductance Regulator. I 

will also present data indicating that Ydr049p plays a redundant role with other Cdc48p 

cofactors. And finally, I show that loss of YDR049W does not affect ERAD substrate 

ubiquitination, and leads to accumulation of Cdc48p-associated ubiquitinated proteins. During 

the course of my work, an independent group led by Dr. Jared Rutter from the University of Utah 

discovered that the Ydr049 protein was involved in Cdc48p-dependent mitochondrial protein 
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degradation (HEO et al. 2010). They termed the YDR049W gene, VCP/Cdc48-associated 

Mitochondrial Stress-responsive, or VMS1. From this point on, I shall use their nomenclature for 

this gene. In Chapter 3, I will present data that indicates that Vms1p functions in proteasome 

biology. First I demonstrate that VMS1 deletion causes an increased accumulation of 

ubiquitinated proteins in total cell extracts. Second, VMS1 deletion changes the distribution of 

proteasome subtypes. Specifically, there is an increase in free latent 20S core particle and a 

decrease in the ubiquitin-processing capped forms of the proteasome. Both of these phenomena 

can be restored to near wild-type conditions with a version of Vms1p that maintains its 

interaction with Cdc48p. I also provide evidence indicating that Cdc48p recruits Vms1p to the 

proteasome, and that Vms1p does not function with select proteasome chaperones. Finally, I 

present data that Cdc48p interaction with the proteasome is preserved in VMS1 mutants. 

Cumulatively, this work suggests that Cdc48p-Vms1p aids in the efficient turnover of 

ubiquitinated proteins by promoting the stability of ubiquitin substrate-competent proteasomes. 

In Chapter 4, I will summarize my finding and detail some potential future goals. 
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2.0  VMS1 FUNCTIONS AT A POSTUBIQUITINATION STEP IN THE ERAD 

PATHWAY 

Endoplasmic Reticulum-Associated Degradation (ERAD) clears the early secretory pathway of 

misfolded proteins, and can be sub-divided into distinct stages of substrate recognition and 

membrane targeting, retrotranslocation from the ER into the cytoplasm, ubiquitination, and 

degradation by the 26S proteasome (VEMBAR and BRODSKY 2008). Given the volume and 

diversity of protein traffic through the ER, it is not surprising that the cell has evolved unique 

ERAD pathways (e.g., ERAD-L, ERAD-C, and ERAD-M) that handle substrates based on the 

location of the offending lesion (SMITH et al. 2011; VASHIST and NG 2004; VEMBAR and 

BRODSKY 2008). Irrespective of the ERAD pathway employed, the retrotranslocation of most 

substrates relies upon the Cdc48p complex, which consists of the homohexameric Cdc48p ring 

and two adaptor proteins, Npl4p and Ufd1p  (BAYS et al. 2001b; HITCHCOCK et al. 2001; 

JAROSCH et al. 2002; RABINOVICH et al. 2002; YE et al. 2001). Cdc48p, the yeast homolog of 

p97/Valosin Containing Protein (p97/VCP), is a multifunctional member of the ATPases 

Associated with various Activities (AAA) family. This family also includes the ATPase ring of 

the 26S proteasome and the MCM complex, which is involved in DNA replication. Like other 

AAA proteins, Cdc48p is thought to couple ATP hydrolysis with changes in the conformation of 

its targets (NIWA et al. 2012; PYE et al. 2006; ROUILLER et al. 2002). The specificity of Cdc48p 

function relies on the cofactors to which it binds (BUCHBERGER et al. 2010).  
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While many Cdc48p cofactors have been identified in recent years, very few of these are 

functionally characterized. Of the ones that are, it is not uncommon to find that the cofactor 

functions in many different processes. For example, Ubx1p, also known as Shp1p, was originally 

isolated as a suppressor of phosphoprotein phosphatase 1 overexpression, but was later found to 

participate in Golgi vesicle fusion, ubiquitin-mediated degradation of select substrates, and 

autophagy (CUI et al. 2004; KONDO et al. 1997; KRICK et al. 2010; SCHUBERTH et al. 2004; 

TRAN et al. 2011; ZHANG et al. 1995).  Ubx1p is one member of a larger group of generally 

uncharacterized UBX-domain containing proteins (BUCHBERGER et al. 2010). The UBX domain 

mediates binding to Cdc48p, and its tertiary structure resembles ubiquitin (BUCHBERGER et al. 

2001). Other members of the UBX family have also been linked to ubiquitin-mediated protein 

degradation. For example, Ubx2p recruits the Cdc48p-Npl4p-Ufd1p complex to the ER 

membrane and ubx2Δ yeast exhibit ERAD defects (NEUBER et al. 2005; SCHUBERTH and 

BUCHBERGER 2005; WILSON et al. 2006).   

 

Another group of Cdc48p-associated proteins were first isolated as mutants that impaired 

the degradation of Ubiquitin Fusion Degradation (UFD) substrates (JOHNSON et al. 1995).  As 

noted above, Ufd1p is a Cdc48p partner and is required for ERAD.  Ufd2p is a Cdc48p-

associated ubiquitin chain assembly factor, catalyzing the extension of ubiquitin chains (KOEGL 

et al. 1999; NAKATSUKASA et al. 2008). Additionally, a deubiquitinating enzyme (DUB), known 

as Otu1p, binds the Cdc48p complex and antagonistic interactions amongst Ufd2p, and Ufd3p-

Otu1p have been observed (RUMPF and JENTSCH 2006).  Nevertheless, it is unknown how 
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Cdc48p’s function during ERAD is altered by most of these partners, and whether additional, ill-

characterized partners of Cdc48p also impact ERAD. 

 

In this Chapter, I report on the characterization of a new Cdc48p cofactor that is encoded 

by the VMS1/YDR049W open reading frame in the yeast, Saccharomyces cerevisiae.  Large-scale 

yeast proteomic studies uncovered Vms1p in a multi-protein complex that contains Cdc48p 

(KROGAN et al. 2006).  Deletion of VMS1 was also observed to exhibit mild synthetic growth 

defects in yeast compromised for the Degradation of Alpha (DOA) pathway (RAVID et al. 2006).  

Moreover, yeast lacking VMS1 were reported to exhibit synthetic interactions in karmellae-

forming yeast, suggesting a role in ER membrane homeostasis (WRIGHT et al. 2003).  Here, I 

demonstrate that VMS1 deletion affects the ERAD of a model transmembrane substrate, the 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), and that VMS1 exhibits genetic 

interactions with select members of the UBX and UFD pathway. In some cases, the genetic 

interaction is supported by increased sensitivity to ER- and oxidative stressors and in other cases 

by synergistic ERAD defects. Finally, I show that increased levels of ubiquitinated species are 

associated with Cdc48p in vms1Δ yeast. 

2.1 EXPERIMENTAL PROCEDURES 

2.1.1 Yeast strains, plasmids, and growth assays 

Most yeast strains employed in this study (Table 2) were in the BY4742 background, and were 

obtained from Open Biosystems (Thermo Scientific, USA) or were made by disrupting the gene 
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by homologous recombination using resistance marker cassettes amplified from the plasmids 

pRS400 (KanMX4) or pFA6-His3MX (His3MX) (54,55). Synthetic primers used to construct 

linear DNA strands for gene disruption contained 50-100bp of sequence homology as well as 

sequences to amplify the cassette. A complete list of primers used to make the strains in this 

study is provided in Table 3.  Yeast harboring multiple gene deletions were made by standard 

genetic techniques (ADAMS 1997). In brief, strains were mated on rich media (YPD: 1% yeast 

extract, 2% peptone, 2% dextrose), and after 4-6 h at 30ºC diploids were selected on synthetic 

complete (SC) media lacking both lysine and histidine. Diploids were nitrogen-starved for 3-7 d 

in sporulation media (1% KOAc, 0.1% Bacto yeast extract, 0.05% dextrose) prior to tetrad 

dissection. The resulting germinated spores were screened on the appropriate media and 

deletions were confirmed by PCR. To introduce the cdc48-3 allele into the BY background, a 

cdc48-3 strain (MATa, his4-619, leu2,3,-112, ura3, pep4Δ::URA3, cdc48-3) in a S288C 

background was crossed against a BY strain of the opposite mating type. The resulting cdc48-3 

strain from this genetic cross was backcrossed three additional times against the BY background. 

The cdc48-3 strain derived from these backcrosses was then used.   

 

The plasmids used in the study (Table 4) were described previously, or created by PCR 

amplification and cloned as follows. For the construction of C-terminal HA- or myc-tagged 

Cdc48p constructs, two-PCR fragments were generated and ligated together into the desired 

plasmid. The first fragment was amplified with the forward primer: 5’-

TTGCGGCCGCGGTGGCCAGCCCAAGAAACGGA and the reverse primer: 5’-

ACGGATCCACTATACAAATCATCATCTTCC. These primers were synthesized with a NotI 

restriction site in the forward primer and a BamHI restriction site in the reverse primer 
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(underlined). The resulting PCR product started 437bp upstream of the ORF and contained the 

entire CDC48 ORF minus the termination codon. The second fragment was PCR amplified in a 

reaction with either the forward primer: 5’ACGGATCCTACCCATACGACGTCCCA 

GACTACGCTTAGTAGTTATATGCCAGGTATATTTTTATTTTAAATCG for the HA-

tagged constructs (the HA tag sequence is in boldface), or the forward primer 5’-

ACGGATCCGAACAAAAACTCATCTCAGAAGAGGATCTGTAGTAGTTATATGCCAG

GTATATTTTTATTTTAAATCG for myc-tagged constructs (the myc tag sequence is in 

boldface), paired with the reverse primer 5’-AGCTCGAGACGACCGAGGTCCTACAGCCT. 

Both forward primers contained a BamHI site while the reverse primer contained an XhoI site 

(underlined). The resulting PCR fragments encoded either a single in-frame copy of the HA or 

myc epitope tag followed by the termination codon in duplicate, and 221bp of the 3’ intergenic 

sequence. The PCR fragments were restriction digested and gel extracted prior to ligation into a 

pRS315 plasmid that was similarly digested with NotI and XhoI (SIKORSKI and HIETER 1989). 

Sequence verified constructs were used to create a library of expression vectors in the pRS316, 

pRS425 and pRS426 backbones (CHRISTIANSON et al. 1992; SIKORSKI and HIETER 1989).  

To generate plasmids for the expression of an untagged form of Cdc48p, the forward 

primer: 5’-TTGCGGCCGCGGTGGCCAGCCCAAGAAACGGA and the reverse primer 5’-

AGCTCGAGACGACCGAGGTCCTACAGCCT were used in a PCR reaction. The PCR 

fragment, which contained the full-length, untagged CDC48 gene, was digested with NotI and 

XhoI (underlined) and cloned into pRS315 (SIKORSKI and HIETER 1989). Sequence verified 

constructs were used to create a library of expression vectors in the pRS316, pRS425, and 

pRS426 backbones (CHRISTIANSON et al. 1992; SIKORSKI and HIETER 1989). A similar ligation 

strategy was used to clone the tagged and untagged versions of VMS1. The first fragment was 
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amplified using the forward primer: 5’-CTGCGGCCGCTTCTTGGAGGAGTGCCACAG and 

the reverse primer: 5’-ACGGATCCGTATTTCTTTTTCATCCTTTCTTCTGCG. The forward 

primer contains a NotI site while the reverse primer contains a BamHI site (underlined). This 

PCR fragment contains 341bp upstream of the ORF and the entire VMS1 ORF except the 

termination codon. For the second fragment, either the forward primer: 5’-

ACGGATCCTACCCATACGACGTCCCAGACTACGCTTGATGAGGAATATCTCATAT

TCAAATTTTTAGG for the HA-tagged construct (in boldface) or the forward primer: 5’-

ACGGATCCGAACAAAAACTCATCTCAGAAGAGGATCTGTGATGAGGAATATCTCA

TATTCAAATTTTTAGG for the myc-tagged construct (in boldface) was used in a PCR reaction 

with the reverse primer: 5’- CGGTCGACGGCGTCATTTTCGCGTTGAG. Both forward 

primers contained BamHI sites (underlined) while the reverse primer contained a SalI restriction 

site (underlined). The resulting PCR fragment contained the HA or Myc-tag followed by a 

termination codon in duplicate and 227bp of the 3’ intergenic sequence. For untagged VMS1 

constructs, the forward primer: 5’-CTGCGGCCGCTTCTTGGAGGAGTGCCACAG and the 

reverse primer: 5’- CGGTCGACGGCGTCATTTTCGCGTTGAG were paired in the PCR 

reaction. The primers contained a NotI and SalI restriction site, respectively. Cloning was done 

as described for the tagged and untagged forms of CDC48.  

 

To examine the growth of yeast under various conditions, log-phase cells grown at 26ºC were 

harvested and resuspended in sterile water to a final A600 of 1.0. Ten-fold serial dilutions were 

spot plated on the indicated media and grown for 2 to 6 d at 30° or 38°C. 
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Table 2. List of strains used in this study 

All strains were in the BY4742 background. 

Strain  Genotype Reference 

   

BY4742 MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15 Open Biosystems 

vms1Δ::HIS3 MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3 This study 

vms1Δ::KanMX MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::KanMX Open Biosystems 

vms1Δ MATα/A, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::KanMX, vms1Δ::HIS3 This study 

ufd2Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ufd2Δ::KanMX Open Biosystems 

ufd2Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ufd2Δ::KanMX This study 

ufd3Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ufd3Δ::KanMX Open Biosystems 

ufd3Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ufd3Δ::KanMX This study 

ubx1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx1Δ::KanMX Open Biosystems 

ubx1Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx1Δ::KanMX This study 

ubx2Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx2Δ::KanMX Open Biosystems 

ubx2Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx2Δ::KanMX This study 

ubx3Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx3Δ::KanMX Open Biosystems 

ubx3Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx3Δ::KanMX This study 

ubx4Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx4Δ::KanMX Open Biosystems 

ubx4Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx4Δ::KanMX This study 

ubx5Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx5Δ::KanMX Open Biosystems 

ubx5Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx5Δ::KanMX This study 

ubx6Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx6Δ::KanMX Open Biosystems 

ubx6Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx6Δ::KanMX This study 

ubx7Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx7Δ::KanMX Open Biosystems 

ubx7Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx7Δ::KanMX This study 

cdc48-3 MATα, his3Δ1, leu2, ura3, lys2Δ0, MET15, cdc48-3 This study 

cdc48-3 vms1Δ MATα, his3Δ1, leu2, ura3, lys2Δ0, MET15, cdc48-3, vms1Δ::KanMX This study 

pdr5Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, pdr5Δ::KanMX Open Biosystems 

pdr5Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, pdr5Δ::KanMX This study 

 



 59 

Table 3. List of oligonucleotide primers used in this study 

Restriction enzyme recognition sites are underlined and the sequences encoding epitope 

tags are in bold. 

Oligo Sequence 

  

vms1Δ::KanMX-F ggattttcaaaagatctgcacgcctgttgacaagcttccaatagcatctgtgcggtatttcacaccg 

vms1Δ::KanMX-R gcaaatgctaagaaaaatcctaaaaatttgaatatgagatattccagattgtactgagagtgcac 

vms1Δ::HIS3-F ggattttcaaaagatctgcacgcctgttgacaagcttccaatagcatcggatccccgggttaattaa 

vms1Δ::HIS3-R gcaaatgctaagaaaaatcctaaaaatttgaatatgagatattccgaattcgagctcgtttaaac 

VMS1 screen-F ttcttggaggagtgccacag 

VMS1 screen-R ggcgtcattttcgcgttgag 

ufd2Δ::His3-F ccaatagaaaggtaaagttgaccacaagttgtttaaggggaaaagttaactttgaaagtagaaccctcattccatagatccggatccccgggttaattaa 

ufd2Δ::His3-R aaatataagacacattgagcgatgaaataagccttatttgattagggtcaattttgcaatttattctatcacttattcatgaattcgagctcgtttaaac 

UFD2 screen-F ccagtttcgagaatctagtgctg 

UFD2 screen-R gaagcaaatcgctttcccacaa 

UBX1 screen-F gtagtgacaaacatgcctctggat 

UBX1 screen-R gcagcagttattcatgatgctggt 

UBX2 screen-F tggctgaggattgccgccaagctg 

UBX2 screen-R actataaaggtaggccccagctcc 

UBX3 screen-F agaccgcctaattggatcatcg 

UBX3 screen-R aaactgatgcacgtgacactt 

UBX4 screen-F aagatagcgggcgcctcaaccgct 

UBX4 screen-R gtacaagttacggaaggcggagct 

UBX5 screen-F ctcgatgtctctgcagaagcga 

UBX5 screen-R caacagcggcagatgcatcgct 

UBX6 screen-F ggatttacctctagcgcgtcaacc 

UBX6 screen-R aaccaggatttgcacgagcca 

UBX7 screen-F gtgctgcccatatacagcaactt 

UBX7 screen-R gctgagttcttttgcggtgat 

CDC48-NotI-F1 ttgcggccgcggtggccagcccaagaaacgga 

CDC48-XhoI-R1 agctcgagacgaccgaggtcctacagcct 

CDC48-Cterm-BamHI-R1 acggatccactatacaaatcatcatcttcc 

CDC48-Myc-BamHI-F1 acggatccgaacaaaaactcatctcagaagaggatctgtagtagttatatgccaggtatatttttattttaaatcg 

CDC48-HA-BamHI-F1 acggatcctacccatacgacgtcccagactacgcttagtagttatatgccaggtatatttttattttaaatcg 

vms1-NotI-F ctgcggccgcttcttggaggagtgccacag  

vms1-SalI-R tcggtcgacggcgtcattttcgcgttgag 

vms1-Cterm-BamHI-R1 acggatccgtatttctttttcatcctttcttctgcg 

vms1-Myc-BamHI-F1 acggatccgaacaaaaactcatctcagaagaggatctgtgatgaggaatatctcatattcaaatttttagg 

vms1-HA-BamHI-F1 acggatcctacccatacgacgtcccagactacgcttgatgaggaatatctcatattcaaatttttagg 
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Table 4. Plasmids used in the study 

Unless referenced, all plasmids were constructed by PCR amplification and cloning as 

detailed in the Materials and Methods section. 

Plasmid name Description Reference 

   

pSM1152 PGK1 promoter, CFTR-HA expression plasmid, 2 micron Zhang, et al., 2002 

pSM1911 PGK1 promoter, Ste6p*-HA expression plasmid, 2 micron Huyer, et al., 2006 

CPY*-3xHA Endogenous promoter, CPY* 3xHA expression plasmid, CEN Bhamidipati, et al., 2005 

pRS316-CDC48 Endogenous promoter, untagged CDC48, CEN This study 

pRS426-CDC48 Endogenous promoter, untagged CDC48, 2 micron This study 

pRS316-CDC48myc Endogenous promoter, c-terminal 1xmyc CDC48, CEN This study 

pRS316-CDC48HA Endogenous promoter, c-terminal 1xHA tagged CDC48, CEN This study 

pRS426-CDC48myc Endogenous promoter, c-terminal 1xmyc tagged CDC48, 2 micron This study 

pRS426-VMS1 Endogenous promoter, untagged VMS1, CEN This study 

pRS315-VMS1HA Endogenous promoter, c-terminal 1xHA tagged VMS1, CEN This study 

pRS316-VMS1HA Endogenous promoter, c-terminal 1xHA tagged VMS1, CEN This study 

pRS426-VMS1HA Endogenous promoter, c-terminal 1xHA tagged VMS1, 2 micron This study 

pRS426-UFD2 Endogenous promoter, untagged UFD2, 2 micron This study 
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2.1.2 Assays for ER-associated degradation (ERAD) and the degradation of other 

substrates 

To assess the rate of CFTR and Ste6p* degradation, the appropriately transformed strains were 

grown to log-phase (A600=0.5-1.5) in selective media at 26°C. The cells were then harvested and 

resuspended to a final A600 of 1.0. One ml of cells was taken as the zero time point. Next, 

cycloheximide was added to a final concentration of 100-200μg/ml and cells were incubated at 

30°C for Ste6p* or 40°C for CFTR (NAKATSUKASA et al. 2008; ZHANG et al. 2002). Aliquots 

were removed at the indicated time points. Samples were mixed with NaN3 (final concentration, 

10μM) and the cells were centrifuged at 16,000g for 1 min. The resulting supernatant was 

aspirated and the pellet was snap frozen in liquid nitrogen and stored at -80°C until use. Total 

protein was extracted from cell according to a previously established protocol (ZHANG et al. 

2002). Briefly, aliquots were thawed and resuspended in 1ml of freshly prepared alkaline lysis 

solution (0.2M NaOH, 0.11M beta-mercaptoethanol). The mixture was agitated briefly on a 

Vortex mixer and incubated on ice for 10 min. Next, 150μl of 50% TCA was added, agitated on 

a Vortex mixer and incubated on ice for an additional 10 min. The mixture was then centrifuged 

at 16,000g for 10 min. The supernatant was carefully aspirated and the pellet washed with 500μl 

of ice-cold acetone. The pellet was resuspended in SDS-PAGE sample buffer (80mM Tris-HCl 

pH 8.0, 8mM EDTA, 3.5% SDS, 15% glycerol, 0.08% Tris base, 0.01% bromophenol blue) 

containing freshly added DTT (100mM) to a final concentration of 10 OD/ml. The samples were 

solubilized by grinding with a Kontes mini-hand-held pestle. Samples were resolved by SDS-

PAGE, transferred to a nitrocellulose membrane, and detected by western blotting with the 
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appropriate antibodies. Data were quantified using ImageJ v1.42q software (ABRAMOFF et al. 

2004). The degradation of an HA epitope tagged form of CPY* (BHAMIDIPATI et al. 2005) was 

also assessed by cycloheximide chase analysis, as described above, except that the cells were 

incubated at 30°C during the chase. 

 

The pulse chase analysis of CFTR-HA was performed as previously described (GNANN et 

al. 2004). Briefly, 30 ml of cells were grown overnight to log-phase, harvested, and resuspended 

in media lacking methionine and cysteine to a final A600 of 6/ml. Cells were labeled for 1 h with 

35
S-labeled methionine (New England Nuclear, USA) at a final concentration of 100μCi/ml. A 

zero time point was then taken, and cells were chased with cold methionine and cysteine. Cells 

were disrupted by glass-bead lysis and the crude lysate was solubilized in 12.5mM Tris-HCl, pH 

7.5, 150mM NaCl, 1% SDS. The lysate was then diluted with IP buffer (50mM Tris-HCl, pH 

7.5, 150mM NaCl, 1% deoxycholic acid, 1% Triton X-100) so that the final concentration of 

SDS was 0.1%. CFTR-HA was immunoprecipitated from the solubilized lysate with anti-HA 

agarose (Roche, USA) and immunoprecipitated material was separated by SDS-PAGE and 

subject to autoradiography.  

 

The degradation of a galactose-inducible version of a ubiquitin-proline β-galactosidase 

chimera was measured by pulse-chase analysis as previously described (BACHMAIR et al. 1986). 

In brief, cells were grown to saturation, harvested, and resuspended to an A600 of ~3/ml in media 

lacking methionine. Next, 
35

S-labeled methionine (New England Nuclear, USA) was added to a 

final concentration of 11μCi/μl and total protein was labeled for 15 min at 30°C.  Cycloheximide 

was added to a final concentration of 500μg/ml, aliquots were removed at the indicated time 
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points, and samples were processed. The precipitated chimeric protein was visualized by 

phosphorimager analysis on a Fujifilm BAS-2500 and the data were quantified using ImageJ 

v1.42q software (ABRAMOFF et al. 2004). The degradation of a Deg1-β-galactosidase fusion was 

assessed by cycloheximide chase analysis, as published (HOCHSTRASSER and VARSHAVSKY 

1990). 

2.1.3 Preparation of yeast subcellular fractions and indirect immunofluorescence 

microscopy 

Yeast cytosol was prepared by liquid nitrogen lysis as described previously (MCCRACKEN and 

BRODSKY 1996).  In brief, 4-6 l of cells were grown to log-phase, harvested, and resuspended in 

Buffer 88 (20mM HEPES pH 6.8, 150mM KOAc, 250mM sorbitol, 5mM MgOAc). The 

suspension was then poured into liquid nitrogen and pulverized in a Waring blender for 10 min. 

The resulting mixture was thawed and clarified by centrifugation at 300,000g. The final 

concentration of cytosol was ~20-30mg/ml and was stored at -80°C. Yeast microsomes were 

prepared as previously described from 1-2 l of log-phase cells that were spheroplasted, lysed in a 

Potter-Elvehjem homogenizer, and isolated by differential centrifugation (BRODSKY and 

SCHEKMAN 1993; DESHAIES and SCHEKMAN 1989; NAKATSUKASA et al. 2008). The ER-enriched 

microsomes were resuspended in Buffer 88 to a final A280 of 40 (as measured in 2% SDS) and 

stored at -80°C. 

 

The subcellular localization of Vms1p was determined by a previously reported method 

(KABANI et al. 2002) in which log-phase cells were harvested, washed, and lysed with glass 

beads.  After unbroken cells were removed by centrifugation at 3,000g for 5 min, a crude 
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membrane fraction was obtained as the pellet after a 16,000g centrifugation for 15 min and the 

supernatant constituted a crude cytosolic fraction. The crude cytosolic fraction was clarified by 

centrifugation at 150,000g for 15 min. Ten microliters of total lysate and each membrane and 

cytosol fraction was subject to SDS-PAGE and western blotting with the indicated antibodies.  

 

The subcellular residence of Vms1p was also determined by indirect immunofluorescence 

microscopy, as previously described (COUGHLAN et al. 2004). Diploid strains lacking VMS1 and 

expressing an HA-tagged form of Vms1p from an episomal CEN plasmid were grown to log-

phase. Cells were fixed by adding a 1/10th volume of 37% formaldehyde and incubation at room 

temperature for 60 min. Cells were harvested and washed twice with Solution A (1.2M sorbitol, 

50mM KPO4, pH 7.0) and were then treated with 2μg/ml of Zymolyase 20T (MP Biomedicals, 

USA) resuspended in Solution A for 30-40 min. Following treatment, cells were pelleted and 

washed twice with Solution A and resuspended in 200μl of Solution A. A total of 25-30μl of 

cells were pipetted onto polylysine-treated slides and allowed to adhere for 30 min at room 

temperature. Loose cells were aspirated and the slides were washed once with PBS, 0.1% BSA, 

followed by two washes with PBS, 0.1% BSA, 0.1% NP-40. The samples were incubated 

overnight at 4ºC with primary antibodies against yeast BiP/Kar2p (1:2000) and the HA epitope 

tag (1:500) that were resuspended in PBS, 0.1% BSA.  Next, the samples were washed one time 

each with PBS, 0.1% BSA and PBS, 0.1% BSA, 0.1% NP-40. Samples were then incubated with 

a 1:2000 dilution of Alexa-Fluor-conjugated secondary antibodies (Invitrogen, USA, goat anti-

rabbit, 594 and goat anti-mouse, 488) resuspended in PBS, 0.1% BSA, for 1-2 h at room 

temperature. The slides were then washed once with PBS, 0.1% BSA, twice, with PBS, 0.1% 

BSA, 0.1% NP-40, and once with PBS, 0.1% BSA. Anti-fade mounting medium plus DAPI 
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(Invitrogen, USA) was laid on top of each sample before applying a coverslip that was sealed 

with nail polish. Images were captured by QED software using a Hamamamatsu camera attached 

to an Olympus BX-60 microscope (Olympus, Japan). Images were analyzed using ImageJ 

v1.42q (ABRAMOFF et al. 2004). 

2.1.4 Measurements of substrate ubiquitination 

In vitro ubiquitination reactions were performed as previously described (NAKATSUKASA et al. 

2008).  In brief, microsomes, cytosol, an ATP regenerating system and 
125

I-labeled ubiquitin 

were mixed and incubated at room temperature for 1 h. Yeast membranes were then solubilized 

with detergent and the ERAD substrate was immunoprecipitated with a mixture of anti-HA 

antibody and protein-A sepharose (GE Healthcare, USA). The precipitated material was washed 

with 50mM Tris-HCl, pH 7.4, 150mM NaCl, 5mM EDTA, 1% Triton X-100, 0.2% SDS, and 

then released from the beads with SDS-PAGE sample buffer (80mM Tris-HCl, pH 8.0, 8mM 

EDTA, 3.5% SDS, 15% glycerol, 0.08% Tris base, 0.01% bromophenol blue) containing freshly 

added DTT (100mM) and heating at 37°C for 30 min. The resulting 
125

I-ubiquitinated material 

was resolved on a 6% SDS-polyacrylamide gel and was detected by phosphorimager analysis, as 

described above. Unmodified CFTR was visualized by western blotting using anti-HA antibody. 

Data were quantified using Image Gauge v4.0 or ImageJ v1.42q (ABRAMOFF et al. 2004). 

 

The immunoprecipitation and detection of in vivo ubiquitinated CFTR was carried-out as 

previously described (AHNER et al. 2007). A total of 100ml of cells were grown overnight to log-

phase and were harvested and disrupted by glass bead lysis. Unbroken cells were sedimented by 

low-speed centrifugation, and membranes were sedimented at 18,000g for 20 min in a 
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refrigerated table top centrifuge and resuspended in Buffer 88 to an A280 of 40 as measured in 

2% SDS. Membranes were solubilized in 1% SDS at 37ºC for 30 min, and the solubilized ERAD 

substrate was immunoprecipitated with anti-HA-conjugated agarose (Roche, USA). The 

immunoprecipitated substrate was released with SDS-PAGE sample buffer containing freshly 

added DTT and heating at 37°C for 30 min.  The protein was then resolved by SDS-PAGE, and 

transferred to nitrocellulose as in a standard western blot except with the following modification.  

After the transfer to nitrocellulose was complete, the nitrocellulose membrane was sandwiched 

between two sheets of Whatmann filter paper and placed in a boiling water bath for 45 min.  The 

sandwiched blot was allowed to cool to room temperature and after blocking, the ubiquitinated 

species were detected using anti-ubiquitin antibody. 

2.1.5 Immunoprecipitation of Cdc48p and detection of Cdc48p-associated ubiquitinated 

proteins 

To monitor the association between Cdc48p and Vms1p, cells lacking VMS1 were transformed 

with CEN plasmids containing a C-terminal Myc-tagged version of Cdc48p and/or a C-terminal 

HA-tagged version of Vms1p (Table 4), or the vectors lacking an insert. The transformed cells 

were grown in selective media to log-phase, harvested by low-speed centrifugation, resuspended 

in Buffer 88—which was supplemented with 1mM PMSF, 1μg/ml leupeptin, 0.5μg/ml pepstatin 

A, and 10mM NEM—and then disrupted with glass beads by vigorous agitation on a Vortex 

mixer 10 times for 30 sec, followed by a 30 sec incubation on ice.  The extract was removed and 

reserved, and the beads were washed with an equal volume of Buffer 88, which was then pooled 

with the reserved extract.  Unbroken cells were removed by centrifugation at 1,500g for 5 min at 

4°C.  A portion of the resulting supernatant represented the total lysate, and the protein 
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concentration was estimated by adjusting the A280 in 2% SDS such that the absorbance was 40 

(i.e., a protein concentration of ~10 mg/ml).  To separate membrane and cytosolic fractions, the 

total lysate was centrifuged at 150,000g for 20 min at 4ºC.  The resulting membrane fraction was 

washed one time with Buffer 88 and then resuspended in Buffer 88 such that the final A280 in 2% 

SDS was 40 (i.e., a protein concentration of ~10 mg/ml). The protein concentration of the 

cytosol was estimated using the BioRad protein assay kit.  To immunoprecipitate the tagged 

proteins, 200μg of lysate, cytosol, and membrane proteins were treated as follows: The total and 

membrane fractions were solubilized on ice for 30 min in Buffer A (20mM HEPES, pH 7.4, 

150mM NaCl, 1% Triton X-100). Then, an equal amount of Buffer B (20mM HEPES, pH 7.4, 

150mM NaCl) was added so that the final concentration of Triton X-100 was 0.5%. For 

consistency the cytosolic extract was treated on ice for 30 min by adding Triton X-100 to a final 

concentration of 0.5%.  For each fraction, insoluble material was removed by centrifugation at 

16,000g for 10 min at 4°C and the volume was brought-up to 500μl with Buffer C (20mM 

HEPES, pH 7.4, 150mM NaCl, 0.5% Triton X-100) prior to immunoprecipitation with anti-HA- 

or anti-Myc-conjugated agarose The immunoprecipitate was washed once with Buffer C, and 

three times with Buffer D (20mM HEPES, pH 7.4, 300mM NaCl, 0.5% Triton X-100), and the 

bound proteins were released with SDS-PAGE sample buffer, as described above. 

 

To examine Cdc48p association with ubiquitinated proteins, yeast cultures containing 

100ml of log-phase cells harboring the Cdc48p-HA expression vector or a vector control either 

were left untreated or treated with 50μM MG132 for 1 h. Cell disruption was performed using 

the medium-scale preparation, as described previously (NAKATSUKASA et al. 2008), and all 

buffers, including SDS-PAGE sample buffer were supplemented with 1mM PMSF, 1μg/ml 
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leupeptin, 0.5 μg/ml pepstatin A, and 10 mM NEM. The cells were harvested, disrupted with 

glass-beads, and following the removal of unbroken cells the crude extract was loaded onto a 

1.0M sucrose cushion and the mixture was centrifuged at 6,900g in a Sorvall HB-6 swinging 

bucket rotor for 10 min at 4°C.  The material residing above the cushion is enriched for ER-

microsomes and this was collected by centrifugation at 20,200g for 10 min at 4°C in a Sorvall 

SS-34 rotor.  The microsomes were washed and resuspended in Buffer 88 to a final A280 

(measured in 2% SDS) of 40. To immunoprecipitate epitope-tagged Cdc48p, 20μl of membranes 

were solubilized with 1% Triton X-100 in Buffer A (see above) for 30 min on ice. The 

solubilized material was then diluted with Buffer B (see above) so that the final concentration of 

Triton X-100 was 0.5%. Insoluble material was pelleted by centrifugation at 16,000g for 10 min 

at 4°C and the clarified, soluble material was brought to a final volume of 500μl with Buffer C 

(see above) prior to immunoprecipitation with anti-HA agarose (Roche, USA). The 

immunoprecipitate was washed three times with Buffer C, and the bound proteins were eluted 

with SDS-PAGE sample buffer, as described above.  After SDS-PAGE, the resolved proteins 

were transferred to a nitrocellulose membrane, and the membrane was treated as described 

above. 

2.1.6 Assays to measure autophagy 

The effect of VMS1 deletion on autophagy was assessed by two established methods (CHEONG 

and KLIONSKY 2008). In the first method, the processing of Ape1p/Lap4p was measured by 

western blot analysis. Wild-type and vms1Δ yeast were grown in 5ml YPD (1% yeast extract, 2% 

peptone, 2% dextrose) cultures to log-phase at 30°C. An aliquot (1ml) of the log-phase culture 

was taken and mixed with sodium azide (final concentration 10mM). This aliquot was 
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centrifuged at 16,000g for 1 min in a refrigerated centrifuge to pellet the cells. The supernatant 

was next aspirated and the remaining pellet was snap frozen in liquid nitrogen and stored at -

80°C until use. The remaining 4ml culture was centrifuged at 1,000g for 5 min in a clinical 

centrifuge. The media was decanted and the cells were washed with and resuspended in an equal 

volume of SC-N (1.7% Yeast nitrogen base without ammonium sulfate, 2% glucose). The final 

resuspension was placed at 30°C and grown for 4 h to induced starvation. At 4 h an aliquot (1ml) 

was taken and processed as described above in section 2.2.2.  

 

In the second method, the processing of GFP-Atg8p was measured. Wild-type and vms1Δ 

yeast expressing GFP-Atg8p were grown to log-phase. An aliquot (1ml) was taken and processed 

as described for the Ape1p/Lap4p assay. The remaining log-phase culture was centrifuged at 

1,000g for 5 min in a clinical centrifuge. The media was decanted and the cells were washed 

with and resuspended in an equal volume of SC-N. The final resuspension was placed at 30°C 

and grown for 2 h to induced starvation. Aliquots of 1ml were taken at the 1 and 2 h time points. 

The aliquots were processed as described in section 2.2.2. 

2.1.7 Antibodies and western oblot analysis  

Antibodies used in this study included: Anti-HA (Roche, USA), anti-Myc (Santa Cruz, USA), 

anti-Ubiquitin (Santa Cruz, USA), anti-GFP (Roche, USA), anti-Cdc48p (S. pombe, a kind gift 

from Dr. Rasmus Hartmann-Petersen), anti-Cdc48p (S. cerevisiae), Ufd2p, Ufd3p, Ubx1p, 

Ubx2p (a kind gift from Dr. Alexander Buchberger), anti-Otu1p, Ufd1p (a kind gift from Dr. 

Stefan Jentsch), anti-Ufd1p (a kind gift from Dr. Claire Moore), anti-Ape1p (a kind gift from Dr. 

Daniel Klionsky), and monoclonal anti-yeast BiP/Kar2p (a kind gift from Dr. Mark Rose). 
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Western blots were decorated with the indicated primary antibodies and appropriate HRP-

conjugated anti-mouse or anti-rabbit IgG secondary antibodies. The HRP-chemiluminescent 

signal was visualized by enhanced chemiluminescence (Pierce, USA). Images were captured on 

a Kodak Image Station 440CF (Kodak, USA) and were analyzed using ImageJ v1.42q 

(ABRAMOFF et al. 2004). 

2.2 RESULTS 

2.2.1 Vms1p resides primarily in the cytoplasm 

To probe the localization of Vms1p in yeast during normal cell growth, I constructed a C-

terminal, HA-epitope-tagged version of Vms1p. The protein’s expression was controlled by the 

endogenous promoter and the gene was maintained on a low-copy CEN plasmid.  By taking 

advantage of the fact that yeast lacking VMS1 are cycloheximide sensitive (Parsons AB Boone 

C 04), I established that Vms1p-HA was functional since it rescued the growth of vms1Δ cells in 

the presence of cycloheximide (Figure 13A). Next, I used differential centrifugation to assess 

the localization of Vms1p. As shown in Figure 13B, Vms1p appears to reside in both 

membrane-associated and soluble fractions, but is predominantly a cytosolic protein. In this 

experiment, I also monitored the localization of Sec61p, which is an ER membrane protein 

(STIRLING et al. 1992), and Sse1p, which like Vms1p is primarily a cytosolic protein but exhibits 

partial membrane residence (GOECKELER et al. 2002). To further analyze Vms1p's residence, I 

performed indirect immunofluorescence microscopy with the help of a colleague, Dr. 

Christopher Guerriero. As seen in Figure 13C, Vms1p-associated fluorescence was primarily 
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cytoplasmic and in some cases enriched in large intracellular punctae. In some cells these bodies 

appeared to reside just at the periphery of the ER, as evidenced by the signal corresponding to 

yeast BiP, Kar2p. These bodies did not colocalize with mitochondrial-derived DAPI staining 

(Figure 13C). As assessed by indirect immunofluorescence, the localization of Cdc48p is also 

primarily cytosolic - except in late G1 - and can also be visualized in large bodies that reside 

periphery to the ER in some cells (MADEO et al. 1998). 
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Figure 13. Vms1p is found in the cytoplasm and at the membrane 

A. Wild-type and vms1Δ yeast cells harboring an empty vector, or a construct designed to 

express VMS1 or a VMS1-HA under its endogenous promoter were tested for cycloheximide 

sensitivity. Cells were spot tested as 10-fold serial dilution on either YPD, or YPD + 0.1μg/ml 

cycloheximide. The plates were incubated at 30ºC for 4 d. B. VMS1 encodes a cytosolic protein 

with limited membrane association.  Yeast cells deleted for VMS1 were transformed with a low-

copy VMS1-HA expression vector whose expression is under the control of the endogenous 

promoter. Yeast cells were disrupted and lysates were processed for SDS-PAGE and western 

blot analysis.  The ER membrane protein, Sec61p, and the cytosolic chaperone, Sse1p, served as 

controls. “T” represents total lysate, “P1” is the membrane pellet after a 16,000g centrifugation, 

“S1” is the supernatant after 16,000g, “P2” is the membrane pellet derived from “S1” after 

160,000g, and “S2” is the supernatant derived from “S1” after the 160,000g spin. A total of 10μl 

of each fraction was analyzed. C. Yeast cells were fixed and decorated with anti-HA antibody to 

detect Vms1p and anti-BiP (Kar2p), an ER resident protein, and the appropriate secondary 
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fluorescent-conjugated antibodies. DAPI staining was used to detect nuclear and mitochondrial 

DNA. 
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2.2.2 Vms1p is associated with Cdc48p in both cytosol and membrane fractions 

Large-scale proteomic studies identified Vms1p as a component of a multi-protein complex that 

included Cdc48p (KROGAN et al. 2006). Because false-positives can arise from proteomic 

analyses, experiments were designed to determine if Vms1p and Cdc48p can be co-precipitated. 

I therefore performed reciprocal co-immunoprecipitations with a C-terminal Myc-tagged version 

of Cdc48p and the HA-tagged form of Vms1p. Expression of the epitope tagged version of 

Cdc48p rescued the growth of cdc48-3 yeast at a non-permissive temperature (Figure 14A), 

indicating that Cdc48p-Myc is active. I then isolated cytosolic and membrane fractions from 

cells grown in the absence of stress to determine whether Cdc48p and Vms1p co-precipitate. As 

shown in Figure 14B, Vms1p and Cdc48p can be co-precipitated when a total yeast lysate is 

examined (T), and when both membrane (M) and cytosolic (C) fractions are examined. As 

controls for this experiment, co-precipitation was absent when cells expressed untagged versions 

of either protein. I also noted that significantly more Cdc48p resided in the cytosol than at the 

membrane, and that the amount of Vms1p associated with Cdc48p reflected this distribution 

(Figure 14B, top). In contrast, when Vms1p was precipitated (Figure 14B, bottom), 

approximately equal amounts of the protein resided at the membrane and in the cytosol, but in 

both cases again Cdc48p co-precipitated with Vms1p. Further evidence for the functional 

significance of Vms1p-Cdc48p interaction is provided by a synthetic growth phenotype in 

vms1Δ yeast that simultaneously harbor a temperature sensitive allele of CDC48 (Figure 14C). 

Given that Vms1p can localize and associate with the Cdc48p complex at the mitochondrial 

membrane in the presence of mitochondrial and oxidative stressors (HEO et al. 2010), I also 
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tested directly whether Vms1p associates with the Cdc48p complex at the ER membrane. To this 

end, Vms1p-HA was immunoprecipitated from highly enriched ER membranes and the resulting 

precipitate was blotted for Cdc48p. As shown in Figure 14D, Cdc48p was 

coimmunoprecipitated with Vms1p-HA from ER-enriched membranes but not from strains that 

contained an untagged version of Vms1p. Because Vms1p contains a VCP/p97 Interacting Motif 

(VIM) domain (HEO et al. 2010), which is known to mediate direct interactions with VCP/p97 

(BALLAR et al. 2006), it is likely that Vms1p and Cdc48p directly associate. I also observed 

reproducible interactions between Vms1p-HA and Ubx2p and Ufd3p, which are known Cdc48p 

partners (see Chapter 1) (Figure 15). Together, these data indicate that that Vms1p is a 

component of a Cdc48p complex that exists in both the cytosol and at the ER membrane. 
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Figure 14. Vms1p co-immunoprecipitates with Cdc48p 

A. The classic temperature sensitive mutant, cdc48-3, was transformed with an empty 

vector, or a vector designed to express CDC48 or CDC48-Myc from its endogenous promoter. 

Strains were streaked onto selective media and incubated at 30 or 38°C to test for the rescue of 

the conditional allele. B. VMS1-deleted cells were transformed with a plasmid engineered for the 

expression of a functional, Myc-tagged version of Cdc48p and/or with the HA-tagged version of 

Vms1p. As controls, untagged versions of each protein were introduced into each strain. The 

resulting transformants were disrupted and a portion of the total lysate (T), the membrane 

fraction (M), and the cytosolic fraction (C) were subject to immunoprecipitation with anti-Myc 

or anti-HA antibodies. The immunoprecipitated proteins were resolved by SDS-PAGE and 

subjected to western blot analysis with the indicated antibodies. C. To test for a genetic 

interaction between VMS1 and cdc48-3, the individual strains were mated on rich media 

followed by sporulation in nutrient poor media. The genotypic results of tetrad dissection are 
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shown in the circles beneath the image. White is wild-type, grey is vms1Δ, black is cdc48-3, and 

red is cdc48-3vms1Δ. D. VMS1 deleted cells were transformed with a plasmid engineered for the 

expression of untagged or HA-tagged versions of Vms1p. ER-microsomes were enriched 

through sucrose gradient and Vms1p was immunoprecipitated with anti-HA resin. The 

immunoprecipitate was resolved by SDS and subject to western blot analysis with anti-Cdc48p 

and anti-HA. 
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Figure 15. Vms1p physically associates with other members of the Cdc48p complex 

Total lysate (T), membrane (M), and cytosolic (C), fractions were prepared from cells expressing 

Vms1p-HA from a 2μ plasmid the under control of its endogenous promoter.  Vms1p-HA was 

immunoprecipitated with anti-HA agarose and Cdc48p-Myc was immunoprecipitated with anti-

Myc agarose. A mock control using protein-A sepharose was included. The immunoprecipitated 

material was eluted with SDS-PAGE sample buffer, resolved by SDS-PAGE and followed by 

western blot analysis with the indicated antibodies.     
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2.2.3 Yeast lacking VMS1 exhibit slowed degradation of CFTR, an integral membrane 

ERAD substrate 

As described in Section 2.1, Cdc48p plays a well-defined role during ERAD. To test if Vms1p 

function is also important for ERAD, I performed degradation assays with a panel of well-

established ERAD substrates. I found first that CFTR degradation was modestly slowed in 

vms1Δ yeast (Figure 16A, compare filled versus unfilled squares), and that the CFTR 

degradation defect was fully recoverable when an extrachromosomal copy of VMS1 was 

introduced (Figure 16A, gray squares). The CFTR degradation defect caused by VMS1 loss was 

reproducible by pulse-chase analysis, which unlike cycloheximide chase follows the degradation 

of a newly synthesized subpopulation of CFTR (Figure 16B).  Interestingly, vms1Δ yeast 

proficiently degraded several other ERAD substrates, including Ste6p* and CPY* (Figure 17A 

and B). Moreover, the degradation of an N-end rule substrate, the ubiquitin-proline β-

galactosidase chimera, and the DOA pathway substrate, Deg1-β-galactosidase, were unaffected 

(Figure 17C and D). Based on these results, I conclude that loss of VMS1 modestly affects the 

ERAD of select substrates. 
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Figure 16. Loss of VMS1 results in compromised ERAD efficiency of the model substrate, CFTR 

A. The degradation of the model substrate CFTR was assessed by cycloheximide chase 

assay. Each cell type was transformed with a CFTR-HA expression plasmid and was co-

transformed with either an empty vector, or a plasmid containing VMS1 driven by its endogenous 

promoter. Wild-type cells containing the empty vector control are represented by black squares, 

vms1Δ cells containing an empty vector are represented by white squares, and vms1Δ yeast 

containing the extrachromosomal copy of VMS1 are represented by gray squares. Data represent 

the means of 6 independent experiments, +SE. T-test statistic is p < 0.01 for the 120 min time 

point, and p < 0.05 for the 60 min time point when comparing the extent of degradation between 

wild type and vms1Δ strains. A representative set of images corresponding to this experiment are 

shown in the bottom panels. B. Loss of VMS1 affects the ERAD of CFTR as assessed by pulse-

chase analysis. Wild type and vms1Δ cells expressing CFTR-HA were radio-labeled for 1 hour 

with 
35

S-methionine and cysteine and chased with unlabeled amino acids. Aliquots were taken at 

the indicated time points, the cells were lysed and CFTR-HA was immunoprecipitated with anti-

HA agarose. The immunoprecipitate was resolved SDS-PAGE and subject to radiography. Data 
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were quantitated relative to the zero time point. n = 10, +SEM. Wild-type (WT) cells are denoted 

by the filled squares and vms1Δ cells are represented by the unfilled squares. 
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Figure 17. Loss of VMS1 has no effect on the degradation of two model ERAD and two model non-

ERAD substrates 

A., B. The degradation of the classic ERAD-C substrate, Ste6p* and the classic ERAD-L 

substrate, CPY* were assessed by cycloheximide chase in both wild-type and vms1Δ. C., D. The 

degradation of the N-end rule pathway substrate, Ub-pro-beta-gal, and the DOA pathway 

substrate, Deg1-LacZ were assessed by pulse- and cycloheximide chase, respectively. In all 

cases, the wild-type is represented by filled squares and vms1Δ is represented by open squares. 

Representative images are shown below the graphs.  



 83 

 

2.2.4 Autophagy is unaffected in yeast lacking VMS1 

Cdc48p function was recently linked to autophagy (JU et al. 2009; KRICK et al. 2010; TRESSE et 

al. 2010). To rule out the possibility that the degradation defects were a result of other catabolic 

mechanisms such as autophagy, I looked at the processing of Ape1p/Lap4p and GFP-Atg8p as a 

measure of Cytoplasmic to Vacuole Transport (CVT) and autophagic induction, respectively 

(CHEONG and KLIONSKY 2008). As seen in Figure 18A, Ape1p/Lap4p processing was apparent 

in both wild-type and vms1Δ cells and under both optimal growth and nitrogen-starved 

conditions. As anticipated, processing was absent in a strain lacking ATG8. Thus, it appears that 

the CVT pathway is not affected by the loss of VMS1. When a GFP-Atg8p reporter was used to 

measure autophagic induction, I observed no obvious impairment in the vms1Δ background. As 

expected, atg14Δ, was unable to process GFP-Atg8p (Figure 18B). I conclude that vms1Δ has 

no obvious role in autophagy.  
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Figure 18. Strains lacking VMS1 do not exhibit a defect in the Cytoplasmic-to-Vacuole Transport 

(CVT) or autophagic pathways 

A. Wild-type (WT), vms1Δ, and atg8Δ cells were grown in rich medium (YPD) and then 

shifted to nitrogen-poor medium (-N) for four hours. Total lysates were prepared by TCA 

precipitation, and equal amounts of lysate were resolved by SDS-PAGE for western blotting with 

a marker of CVT activity, anti-Ape1p. Autophagic induction increases the amount of processed 

Ape1p. Sec61p was analyzed as a loading control. B. Wild-type, vms1Δ, and atg14Δ were 

transformed with a reporter expressing GFP-Atg8p, which is processed during the early steps of 

autophagy. Cell were grown in rich media and then shifted to nitrogen-poor media for the 

indicated times. Total protein was prepared by TCA precipitation, resolved by SDS-PAGE, and 

the western blotted with anti-GFP. Induction of autophagy by nitrogen starvation results in the 

processing of the GFP-Atg8p. In both experiments, the * denotes the unprocessed formed and the 

** denotes the processed form. 
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2.2.5 VMS1 genetically interacts with members of the UBX and UFD gene families during 

ERAD 

Cdc48p is a multifunctional protein that physically interacts with a large number of cofactors. It 

is unlikely that all of these cofactors are bound simultaneously to Cdc48p (SCHUBERTH and 

BUCHBERGER 2008). Indeed, evidence indicates competition between distinct cofactors (RUMPF 

and JENTSCH 2006). However, the many complex genetic interactions between Cdc48p partners 

have not been fully explored. 

 

Based on the data presented above, I hypothesized that Vms1p might act in parallel 

and/or complementary with established Cdc48p partners during ERAD and in the presence of 

specific stress-inducing agents. Therefore, Lauren Tomsic (undergraduate, University of 

Pittsburgh) and I performed genetic crosses between vms1Δ yeast and strains lacking the genes 

encoding select Cdc48p cofactors (Table 5). I focused on UBX-domain containing proteins since 

yeast lacking the genes encoding some members of the UBX (UBX1 and UBX4) family share 

phenotypes with vms1Δ (e.g., cycloheximide and rapamycin sensitivity) and because most of the 

UBX and UFD proteins have not been examined for their roles during ERAD. Therefore, the 

resulting tetratype progeny were first screened for growth on tunicamycin and cadmium-

containing media, which respectively induce ER and heavy metal stress.  Under each condition, 

an exaggerated requirement for the protein quality control machinery is evident. In these assays, 

yeast deleted for IRE1, which is required to induce the unfolded protein response (COX et al. 

1993), were used as a positive control for sensitivity on tunicamycin, and yeast deleted for 
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RPN4, which is required for the induction of genes encoding proteasome subunits (XIE and 

VARSHAVSKY 2001), were used as a positive control for sensitivity on cadmium. Consistent with 

previous data, I observed that yeast deleted for UBX1 were sensitive to tunicamycin (PARSONS et 

al. 2006), but I also noted that deletion of VMS1 exacerbated the growth defect (see Table 5; 

growth defects are denoted by a “+”, and a heightened defect is denoted by a “++”; also see 

Figure 19A for select examples of synergistic growth defects). This result suggests that Ubx1p, 

which is the yeast homolog of the p97 partner, p47, may contribute to ER homeostasis (see 

below). In addition, I discovered that VMS1 interacted genetically with other genes encoding 

Cdc48p cofactors, including UBX2, UBX3, UBX4, and UFD3, when growth was assessed in the 

presence of cadmium (Table 5, Figure 19). These data suggest that Vms1p functions in parallel 

with several Cdc48p-associated proteins and helps mitigate the toxic effects of oxidative stress. 

 

Because loss of VMS1 led to a substrate-specific ERAD defect (see above), I reasoned 

that the simultaneous deletion of VMS1 and other Cdc48p partners would result in synthetic 

effects on ERAD. To date, the coordinated action of Cdc48p partners during ERAD has not been 

examined. Therefore, the degradation of CFTR, as a representative misfolded membrane protein 

was examined, and the turnover of CPY*, a model misfolded soluble ERAD substrate, was 

assessed in each of the tetratype progeny. The most striking example of a synergistic ERAD 

defect was observed when VMS1 and UFD2 were simultaneously deleted. Specifically, I found 

that CFTR was significantly stabilized when UFD2 was disrupted in vms1Δ cells (Figure 20A, 

open triangles). This strong effect is comparable to the CFTR degradation defect observed when 

Cdc48p function is disabled or when the Hrd1p and Doa10p ubiquitin ligases are both absent 

(GNANN et al. 2004).  Furthermore, I found that ufd2Δ yeast exhibit a modest delay during the 
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CFTR degradation time course (Figure 20A, compare closed triangles and closed squares), 

which is reminiscent of the ufd2Δ defect when Ste6p* degradation was assessed (NAKATSUKASA 

et al. 2008).  Finally, I discovered that vms1Δufd2Δ yeast proficiently degraded CPY* and robust 

growth was noted on stress-inducing media. One explanation for these data is that the ERAD 

defect in this mutant strain is confined to ERAD-C substrates.  A summary of the degradation 

assays for the ERAD substrates Ste6p* and CPY*, and the N-end rule substrate and Ub-Pro β-

galactosidase in these strains is provided in Table 6. 

 

That Vms1p contributes to the ERAD pathway in a substrate-specific manner was also 

evident in vms1Δubx4Δ yeast. Although CPY* degradation proceeded maximally when VMS1 

and UBX4 were individually deleted, the proteolysis of CPY* was slowed in the double mutant 

(Figure 20B).  In other cases, I observed that ERAD defects were notable in mutants lacking a 

single Cdc48p cofactor, but the absence of VMS1 had no further effect on ERAD efficiency. For 

example, the degradation of CPY* is significantly attenuated in ubx2Δ yeast (NEUBER et al. 

2005), but the magnitude of the defect was not exacerbated in vms1Δubx2Δ yeast (Figure 20C, 

Table 6).  This phenomenon was also apparent when the degradation of CPY* was examined in 

ubx1Δ and ubx1Δvms1Δ yeast (Figure 20D, Table 6): An ERAD defect in ubx1Δ yeast has, to 

our knowledge, not previously been reported, and the effect on the degradation of an ERAD-L 

substrate in the ubx1Δ strain is consistent with the tunicamycin sensitive growth phenotype 

observed in this strain (Table 5 and Figure 19).  

 

A variety of other vms1Δ combined mutants were also examined. In brief, I confirmed 

first that the deletion of UFD2 slows the degradation of Ste6p* (NAKATSUKASA et al. 2008) and 
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I found that the loss of VMS1 in the strain had no further effect on degradation. Second, I 

discovered the loss of both UBX1 and VMS1 slowed the degradation of Ste6p* (Table 6). 

Finally, as anticipated, loss of UBX1, UBX2, or UFD2 slowed degradation of Ub-Pro β-

galactosidase and that the deletion of VMS1 in these backgrounds was without an added effect on 

degradation. I observed no effect of VMS1 deletion on the degradation of the Deg1-LacZ 

substrate (Table 6). 
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Figure 19. VMS1 genetically interacts with genes encoding several Cdc48p partners 

Yeast cells with the indicated genotypes were grown to log-phase and harvested. The 

cells were then serially diluted and spot-plated on rich media (YPD) or rich media containing 

either tunicamycin (tuni) or cadmium (CdCl2). The plates were incubated at 30°C for 2-6 d.  The 

images are representative of several independent experiments. 
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Figure 20. ERAD defects are exacerbated in yeast lacking VMS1 and UFD2 or UBX4 but not UBX1 

or UBX2 

A. The stability of CFTR was examined by cycloheximide chase analysis as described for 

Figure 16. Anti-HA antibody was used to detect each epitope-tagged ERAD substrate and 

Sec61p served as a loading control. B-D. The ERAD of CPY* was assessed in the indicated 

strains. Anti-HA was used to detect the substrate and Sec61p was used as a loading control. For 

all graphs, wild type cells are represented by black squares and vms1Δ yeast is represented by 

white squares. Black triangles represent ufd2Δ in the graph seen in A., ubx4Δ in B., ubx2Δ in C., 

and ubx1Δ in D. The white triangles represent ufd2Δvms1Δ in the graph seen in A., ubx4Δvms1Δ 

in B., ubx2Δvms1Δ in C., and ubx1Δvms1Δ in D. The panels at the bottom of each graph are 

representative western blots. Data represent the means of at least three independent experiments, 

+SD. 
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Table 5. A summary of genetic interactions observed when double deletions between VMS1 and 

genes-encoding select Cdc48p cofactors were tested on chemical stressors 

The “+” indicates sensitivity, “++” indicates additive sensitivity and “-“ indicates no 

sensitivity. 
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Table 6. A summary of protein degradation assays for the indicated substrates 

The strains either lacked VMS1-only or lacked both VMS1 and a gene encoding a select 

Cdc48p cofactor. The “+” indicates a protein degradation defect and “-“ indicates no effect. 
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2.2.6 Substrate ubiquitination is proficient in yeast deleted for VMS1 

The results presented above implicate Vms1p as a contributing factor during the ERAD of 

specific substrates, and highlight the complex functional interplay amongst Cdc48p-associated 

factors.  One mechanism by which loss of Vms1p might inhibit ERAD is by impeding substrate 

ubiquitination.  However, because Cdc48p acts after ERAD substrates have been ubiquitinated, I 

instead predicted that the loss of Vms1p would have no effect on substrate ubiquitination, nor 

would the loss of VMS1 lead to synergistic effects on ubiquitination in mutant strains with 

known defects in the ubiquitin pathway.   

 

To test this hypothesis, I assessed the extent of CFTR ubiquitination in the ufd2Δvms1Δ 

strain due to the significant stabilization of this substrate in the double mutant (Figure 20A). I 

also wished to investigate whether the extent of CFTR ubiquitination decreased in ufd2Δ yeast 

because Ufd2p is required for ubiquitin chain extension, and the loss of UFD2 results in reduced 

Ste6p* ubiquitination (NAKATSUKASA et al. 2008). To this end, CFTR was immunoprecipitated 

from wild type cells and from vms1Δ, ufd2Δ, and ufd2Δvms1Δ yeast (Figure 21A). As a positive 

control for this experiment, the amount of ubiquitinated CFTR in doa10Δhrd1Δ yeast was also 

measured. As anticipated, I first noted that CFTR ubiquitination decreased in the 

doa10Δhrd1strain compared to wild type cells (compare lanes 1 and 3),Δ and that a signal 

corresponding to ubiquitinated CFTR was absent when immunoprecipitations in the absence of 

anti-HA antibody were performed (“Mock”, lane 2). In addition, I noted that the amount of 

polyubiquitinated CFTR decreased by ~30% and there appeared to be a shift to lower molecular 
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weight ubiquitinated species when CFTR was examined in ufd2Δ-derived lysates. As predicted, 

the loss of VMS1 did not decrease the extent of CFTR ubiquitination, consistent with Vms1p 

acting in the ERAD pathway after substrate ubiquitination. In fact, the loss of VMS1 led to a 

small but reproducible increase in the amount of ubiquitinated CFTR, in either the presence 

(compare lanes 3 and 4) or absence (compare lanes 5 and 6) of Ufd2p. Similar results were 

obtained when the ubiquitination of Ste6p* was monitored in these strains and in an in vitro 

ubiquitination assay (NAKATSUKASA et al. 2008). Together, these data are consistent with the 

notion that Vms1p acts in the ERAD pathway after substrate ubiquitination. 
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Figure 21. Increased levels of ubiquitinated proteins are associated with the Cdc48p complex in yeast 

lacking Vms1p 

A. The indicated yeast strains expressing CFTR-HA were grown to log-phase, collected 

and processed for immunoprecipitation. Immunoprecipitated material was resolved by SDS-

PAGE and subjected to anti-ubiquitin (top) and anti-HA (CFTR, bottom) western blotting. 

Polyubiquitinated CFTR resolves by SDS-PAGE as a smear ≥140 kDa, which is the approximate 

molecular mass of CFTR. B. Wild type (“WT”) and vms1Δ cells in which the PDR5 locus was 

also disrupted were transformed with either an untagged or HA-tagged version of Cdc48p. The 

vms1Δ strain was also transformed an HA-tagged version of Vms1p. Each indicated cell type 

was treated with MG132 (100μM) or an equal volume of DMSO for 1 h. ER fractions were 

isolated and the Cdc48p or Vms1p complexes were immunoprecipitated with anti-HA agarose 

after Triton X-100-solubilization. The isolated proteins were resolved by SDS-PAGE and 

processed for western blot analysis. The top panel depicts the results of the western blot with 

anti-ubiquitin antibody and the bottom panel depicts the results of the western blot with anti-HA 

antibody. 
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2.2.7 Polyubiquitinated species associated with Cdc48p increase in vms1Δ yeast 

Based on the data presented in Figure 21A, and because Vms1p associates with the Cdc48p 

complex (Figure 14B), I next asked whether Vms1p regulates the ability of the Cdc48p complex 

to bind ubiquitinated substrates or the ability of the complex to release substrates. If Vms1p is 

required for the association of ubiquitinated substrates with the Cdc48p complex, then decreased 

amounts of these substrates should be associated with the Cdc48p complex in the vms1Δ mutant. 

In contrast, if Vms1p aids in a post-ubiquitination step, then increased levels of ubiquitinated 

proteins should associate with the Cdc48p complex in vms1Δ yeast.   

 

To differentiate between these models I immunoprecipitated Cdc48p under native 

conditions from ER-enriched membranes. I then performed an anti-ubiquitin immunoblot to 

detect Cdc48p-associated ubiquitinated species. This protocol was conducted in a wild type and 

vms1Δ strain. In addition, to bias the analysis toward the spectrum of proteasome-targeted, 

Cdc48p substrates, the wild type and vms1Δ strains also lacked the gene encoding the multidrug 

resistance pump, PDR5, which sensitizes yeast to proteasome inhibitors (FLEMING et al. 2002). 

In a control experiment, a signal corresponding to ubiquitinated proteins was absent when an 

anti-HA immunoprecipitate from lysates containing an untagged version of Cdc48p was 

examined (Figure 21B, lanes 1 and 2).  Also, as expected, the addition of MG132 resulted in 

increased association of ubiquitinated species with the Cdc48p complex (compare lanes 3 and 4).  

Most striking, I observed an increase in the amount of ubiquitinated-species in association with 

Cdc48p when solubilized ER-enriched membranes from vms1Δ yeast were examined (compare 
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lanes 3 and 5), an effect that was significantly enhanced when proteasome-mediated degradation 

was blocked with MG132 (compare lanes 4 and 6). When the co-immunoprecipitation was 

performed in the presence of SDS, no ubiquitin signal was detected, indicating that the ubiquitin 

profile was not attributable to ubiquitin-modified Cdc48p. Additionally, I immunoprecipitated a 

carboxy terminus HA-tagged version of Vms1p under these same conditions and found that 

Vms1p was not detectably associated with ubiquitinated proteins (lanes 7 and 8). I therefore 

conclude that Vms1p plays a role in regulating the population of proteasome-targeted, 

ubiquitinated species in association with Cdc48p, but itself does not detectably associate with 

ubiquitinated proteins.  

2.3 DISCUSSION 

A large and increasing number of Cdc48p-associated partners in yeast have been identified, and 

with few exceptions the activities of most of these partners is not clear.  Notable partners with 

established activities include Otu1p, a DUB, Ufd2p, a ubiquitin extension enzyme (also referred 

to as an E4), and Ufd3p, which competes with Ufd2p and can consequently rescue ubiquitinated 

proteins from being destroyed (RICHLY et al. 2005; RUMPF and JENTSCH 2006). Ubx2p has been 

reported to help anchor the Cdc48p complex to the ER membrane, although the magnitude of 

Cdc48p release from the membrane in ubx2Δ yeast is variable (NEUBER et al. 2005; SCHUBERTH 

and BUCHBERGER 2005; WILSON et al. 2006). The Cdc48p complex has also been found in 

association with multi-protein membrane complexes that include Hrd1p and Doa10p (CARVALHO 

et al. 2006; DENIC et al. 2006; GAUSS et al. 2006). And, Ufd1p-Npl4p, which compete with 

Ubx1p/p47, aid in the binding of ubiquitinated substrates and designate Cdc48p function for 
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ERAD. In contrast, the functions of most other Cdc48p partners are ill-defined, and the list of 

Cdc48p/p97 partners is more complex in higher eukaryotes. 

2.3.1 Vms1p is linked to ERAD and protein quality control 

In this study, I report on the characterization of a new Cdc48p partner, the product of the 

YDR049W gene, which is now termed VMS1 (HEO et al. 2010). Vms1p is a conserved, soluble, 

cytosolic protein that exhibits limited residence on membranes in non-stressed cells and is found 

in the Cdc48p-containing complex. Heo and colleagues (2010) also found that Vms1p is 

localized throughout the cytosol, and partially relocalizes, under mitochondrial stress conditions, 

to the mitochondrial membrane where it plays a role in protein degradation (HEO et al. 2010).  

 

In my hands, the loss of VMS1 leads to a modest ERAD defect that is significantly 

enhanced when either UFD2 or UBX4 are deleted.  Based on the growth phenotypes of the 

vms1Δ allele in the context of mutations in the genes encoding diverse Cdc48p partners (i.e., 

UBX1, UBX2, UBX3, UBX4, and UFD3), I suggest that Vms1p participates in other quality 

control and stress-relief pathways in yeast, besides ERAD. Indeed, the recent discovery of 

Vms1p as a contributor to Cdc48p-associated mitochondrial protection under conditions of 

mitochondrial stress (HEO et al. 2010) is consistent with this hypothesis. Of note, an increasing 

body of data indicates that cellular quality control processes that operate under both stressed and 

unstressed conditions affect lifespan (BALCH et al. 2008).  
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2.3.2 VMS1 genetically interacts with genes encoding Cdc48p cofactors 

In accordance with this proposal, one UBX protein that was recently shown to contribute to 

Cdc48p function and to alter ERAD efficiency is Ubx4p.  Alberts and colleagues (2009) recently 

reported that ubx4Δ yeast exhibit a defect in the degradation of both CPY* and Ste6p* which 

results in a build-up of ubiquitinated proteins on Cdc48p (ALBERTS et al. 2009). Thus, Ubx4p 

may cooperate with Vms1p as a release factor. Notably, I observed a genetic interaction between 

VMS1 and UBX4, and a CPY* degradation defect was enhanced in the double mutant. However, 

I failed to observe an ERAD defect for CPY* or CFTR in the ubx4Δ mutant (Figure 20B), 

possibly because of the unique strain backgrounds used in this study and in the previously 

published report. The importance of strain background in analyzing the phenotypes in strains 

deleted for Cdc48p partners is highlighted by the fact UBX1 is an essential gene in the W303 

strain (CHENG and CHEN 2010), but the knock-out is viable in the BY background, as employed 

in this study. Additionally, the single deletion of UBX2 is not sensitive to cadmium in the BY 

background, but is sensitive in another genetic background (SCHUBERTH et al. 2004). 

 

In our hands, the strongest effect on ERAD was apparent in the vms1Δufd2Δ strain. The 

loss of VMS1 did not exacerbate the decrease in ubiquitinated proteins or alter the profile of 

ubiquitinated proteins observed in the ufd2Δ strain. However, the synergistic effect may best be 

explained by positing that Ufd2p and Vms1p regulate unique steps in the ERAD pathway. For 

example, Ufd2p is required for ubiquitin chain elongation, and consistent with its role as a 

processivity factor the absence of this enzyme does not alter the extent of ubiquitination but only 

the rate at which polyubiquitination is achieved. ERAD is, therefore, initially delayed in the 

ufd2Δ strain but over time the amount of degradation catches-up with that observed in wild type 
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yeast (Figure 20A) (NAKATSUKASA et al. 2008). If Vms1p also catalyzes a relatively slow but 

non-essential step in the ERAD pathway, then the combined effect of deleting VMS1 and UFD2 

may result in synergism. It is also formally possible that the loss of Vms1p reduces the cellular 

levels of Ufd2p, or that its absence prevents Ufd2p association with the Cdc48p complex. I have 

tested these hypotheses but observed wild type levels of Ufd2p in vms1Δ yeast and in the 

Cdc48p complex. 

2.3.3 Vms1p affects a post-ubiquitination event 

By developing new genetic and biochemical tools, I have also obtained data consistent with a 

role for Vms1p in a post-ubiquitination event. I find that: 1) there is a synthetic ERAD defect 

when both VMS1 and UFD2 are deleted and 2) that there is an increase in the amount of Cdc48p-

associated ubiquitinated proteins in vms1Δ cells (Figure 21B). Other factors that may contribute 

to this critical step are Rad23p and Dsk2p, which contain both ubiquitin-like domains and 

ubiquitin-binding domains (ELSASSER et al. 2002; RAO and SASTRY 2002) and help link the 

Cdc48p complex and the proteasome. Future efforts may indicate whether Vms1p functions in 

tandem with Rad23p-Dsk2p to affect the release of ubiquitinated substrates from the Cdc48p 

complex. The loss of VMS1 might lead to the absence of the bona fide release factor(s). In 

addition, future efforts may identify the spectrum of substrates that are enriched in complex with 

Cdc48p when the proteasome is disabled and Vms1p function is ablated. I suspect that ERAD 

substrates, as well as cytoplasmic substrates en route to the proteasome, will be present in 

association with the Cdc48p complex under these conditions.  
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In sum, I provide genetic evidence that a previously uncharacterized, Cdc48p partner 

performs an important house-keeping function during ER and cellular homeostasis.  Consistent 

with our genetic data that suggest a role for VMS1 in the ubiquitin-proteasome system, Costanzo 

and colleagues (2011) showed that VMS1, UBX1, UBX4, and UFD2 negatively interact with 

genes that encode non-essential components of the 19S proteasome particle and PRE9, the only 

nonessential component of the 20S core (COSTANZO et al. 2011). These data suggested that 

Vms1p, Ubx1p, Ubx4p and Ufd2p may play a role in substrate recognition, transfer of substrate 

to the proteasome, and/or deubiquitination. When combined with our genetic and biochemical 

data, we favor the view that Vms1p is a regulator of an important but poorly defined step in the 

ubiquitin-proteasome pathway. 
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3.0  VMS1 PROTEIN IS INVOLVED IN REGULATING THE PROTEASOME 

In Chapter 2, I showed that 1) loss of VMS1 affected the ERAD of a model substrate but not its 

ubiquitination, 2) Vms1p physically interacts with Cdc48p in both membrane and cytosolic 

fractions, 3) VMS1 genetically interacts with genes encoding Cdc48p cofactors, and that this led 

to additive ERAD defects and exaggerated sensitivity to stress agents, and 4) loss of VMS1 led to 

an accumulation of ubiquitinated proteins bound to Cdc48p. These data suggest that Vms1p 

functions at a post-ubiquitination step in the ERAD pathway. In this chapter, I demonstrate that 

loss of VMS1 increases the total cellular level of ubiquitinated proteins. Further, I provide 

evidence to indicate that this arises because the loss of VMS1 also decreases the amount of 

ubiquitin-processing 26S proteasome, and increases the free, inactive 20S proteasome core 

particle. Both of these phenomena can be restored to near wild-type levels, but only with a 

version of Vms1p that can interact with Cdc48p.  

3.1 EXPERIMENTAL PROCEDURES 

3.1.1 Yeast strains, growth conditions, and plasmids 

Yeast strains were from either the BY4741 or BY4742 genetic backgrounds and were grown at 

either room temperature (~24 ºC) or 30 ºC, as indicated. All strains used in this study are listed in 
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Table 7. Strain construction was identical to that described in Chapter 2. Plasmids used in this 

study are listed in Table 8. The construct expressing Vms1p-ΔVIM HA was a generous gift from 

Dr. Jared Rutter (University of Utah). 
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Table 7. List of strains used in this study. 

All strains were in BY4742 background, unless noted otherwise. 

Strain  Genotype Reference 

   

BY4742 MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15 Open Biosystems 

BY4741 MATA, his3Δ1, leu2Δ0, ura3Δ0, LYS2, met15Δ0 Open Biosystems 

KFY100 MATA, his4-619 leu2-3,112 ura3-52 Dr. Kai Uwe Frohlich 

KFY100-vms1Δ MATA, his4-619 leu2-3,112 ura3-52, vms1Δ::KanMX This study 

YPH500 MATα, his3Δ200, leu2Δ1, ura3-52, lys2-801, ade2-101, trp1Δ63 ATCC 

YPH500-vms1Δ MATα, his3Δ200, leu2Δ1, ura3-52, lys2-801, ade2-101, trp1Δ63, vms1Δ::KanMX This study 

vms1Δ::HIS3 MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3 This study 

vms1Δ::KanMX MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::KanMX Open Biosystems 

vms1Δ::KanMX MATA, his3Δ1, leu2Δ0, ura3Δ0, LYS2, met15Δ0, vms1Δ::KanMX Open Biosystems 

cdc48-3 MATα, his3Δ1, leu2, ura3, lys2Δ0, MET15, cdc48-3 This study 

vms1Δcdc48-3 MATα, his3Δ1, leu2, ura3, lys2Δ0, MET15, cdc48-3, vms1Δ::KanMX This study 

ubx2Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx2Δ::KanMX Open Biosystems 

ubx2Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx2Δ::KanMX This study 

rad23Δdsk2Δ MATA, his3Δ1, leu2Δ0, ura3Δ0, LYS2, met15Δ0, rad23Δ::KanMX, dsk2Δ::KanMX Dr. Susan Michaelis 

rad23Δdsk2Δvms1Δ MATA, his3Δ1, leu2Δ0, ura3Δ0, LYS2, met15Δ0, rad23Δ::KanMX, dsk2Δ::KanMX, vms1Δ::HIS3 This study 

rpn4Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, rpn4Δ::KanMX Open Biosystems 

rpn4Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, rpn4Δ::KanMX This study 

hsm3Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, hsm3Δ::KanMX Open Biosystems 

hsm3Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, hsm3Δ::KanMX This study 

ump1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ump1Δ::KanMX Open Biosystems 

ump1Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ump1Δ::KanMX This study 

rpn10Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, rpn10Δ::KanMX Open Biosystems 

rpn10Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, rpn10Δ::KanMX This study 

rpn13Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, rpn13Δ::KanMX Open Biosystems 

rpn13Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, rpn13Δ::KanMX This study 

rpn14Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, rpn14Δ::KanMX Open Biosystems 

rpn14Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, rpn14Δ::KanMX This study 

otu1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, otu1Δ::KanMX Open Biosystems 

otu1Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, otu1Δ::KanMX This study 

cdc48Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, cdc48Δ::KanMX, pRS315-CDC48MYC This study 

cdc48Δvms1Δ MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, cdc48Δ::KanMX, pRS315-CDC48MYC This study 
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Table 8. Plasmids used in the study. 

Unless referenced, all plasmids were constructed by PCR amplification and cloning as 

detailed in the Materials and Methods section of Chapter 2. 

Plasmid name Description Reference 

   

pRS316-VMS1 Endogenous promoter, c-terminal 1xHA tagged VMS1, CEN This study 

pRS316-VMS1HA Endogenous promoter, c-terminal 1xHA tagged VMS1, CEN This study 

pRS416-VMS1-ΔVIM-HA Endogenous promoter, c-terminal 3xHA tagged VMS1-ΔVIM, CEN Dr. Jared Rutter 
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3.1.2 Measurements of total cellular ubiquitin levels 

The indicated yeast strains were grown overnight to log phase (OD600 = ~0.6-0.8). A total of 1ml 

was dispensed into 10mM sodium azide and harvested by centrifugation in a refrigerated 

tabletop centrifuge at 18000g for 2 min. The supernatant was aspirated and the pellets were snap-

frozen in liquid nitrogen. Thawed cell pellets were precipitated with 10% trichloroacetic acid, 

resuspended in SDS-sample buffer (80mM Tris-HCl, pH 8.0, 8mM EDTA, 3.5% SDS, 15% 

glycerol, 0.08% Tris base, 0.01% bromophenol blue) containing 100μM DTT to a final 

concentration of 10 OD600/ml and resolved by SDS-PAGE (10% or 12.5% polyacrylamide gels). 

Proteins were transferred onto a piece of nitrocellulose that was then sandwiched between two 

sheets of filter paper and placed in a boiling water bath for 30 min. Blots were probed with anti-

ubiquitin and anti-GPD antibodies and visualized as described in section 3.2.7, below. 

3.1.3 In gel proteasome assay 

An in gel proteasome assay was performed as described, but with minor modification (ELSASSER 

et al. 2005). All steps were performed on ice or at 4 ºC unless indicated otherwise. First, yeast 

were grown overnight in liquid culture (100ml) to log-phase (OD600 = 0.6-0.8) and harvested by 

centrifugation at 1000g for 5 min in a room temperature clinical centrifuge. Cell pellets were 

used immediately to prepare lysates, or snap frozen in liquid nitrogen and stored at -80 ºC. In 

each case, cell pellets were thoroughly resuspended in buffer containing 50mM Tris-Cl, pH 7.4, 

5mM MgCl2, 5mM ATP and 1mM DTT and disrupted by glass bead lysis (6 x 1 min pulses with 

1 min rests on ice) on a Vortex mixer. Unbroken cells were removed by centrifugation at 1000g 
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for 5 min, and the lysate as clarified by centrifugation in a refrigerated centrifuge at 18000g for 

30 min. The protein concentration of the final lysate was measured by BioRad assay. The typical 

protein concentration was ~10mg/ml, and the prepared lysates were immediately used.  

 

Native 3.5% polyacrylamide gels were prepared in 90mM Tris-base, pH 8.0, 90mM boric 

acid, 5mM MgCl2, 0.5mM EDTA, 5mM ATP, and 1mM DTT. Ammonium sulfate and TEMED 

were used to polymerize the gel. The gels were prepared at room temperature but were allowed 

to polymerize at 4 ºC. The running buffer was the same as the gel buffer, but lacked the 

polyacrylamide. A total of 60μg of lysate was mixed with an appropriate volume of 5x sample 

buffer (250mM Tris-Cl, pH 7.4, 50% glycerol, 60ng/ml xylene cyanol) and gels were loaded and 

run at 110V at 4 ºC until the ferritin (~440KDa) marker was three-fourths of the way to the 

bottom of the gel. The gel was then carefully transferred to a clean dish containing room 

temperature developer solution (50mM Tris-Cl, pH 7.4, 5mM MgCl2, 0.5mM EDTA, and 5mM 

ATP) and briefly incubated to bring the gel to room temperature. This solution was then 

carefully decanted and fresh developer solution containing 100μM of the proteasome substrate 

Suc-LLVY-AMC (Enzo) was added and the gel was incubated with gentle rocking for 30 min at 

37 ºC. Proteasome activity was visualized using a Kodak Image Station 440CF (Kodak). To 

visualize the activity of the 20S core particle, the gel was placed back into the developer 

solution, SDS was added to a final concentration of 0.02%, and the gel was incubated with gentle 

rocking at 37 ºC for 10-15 min. The activity was visualized as above. For western blot analysis, 

the native gels were preincubated with transfer buffer (0.025M Tris, 0.192M glycine pH 8.3, 

0.1% SDS, and 20% methanol) for 10-15 min and transferred overnight onto nitrocellulose. Gels 

were probed with the indicated antibodies and visualized as described in section 3.2.7. 
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3.1.4 Real-time proteasome activity assay 

Cell growth conditions and lysate preparation were identical to that described in section 3.2.3. To 

measure proteasome activity in solution, 60μg of lysate/ml was brought to a final volume of 2ml 

with a buffer containing 50mM Tris-Cl, pH 7.4, 5mM MgCl2, 5mM ATP, 1mM DTT, and 10% 

glycerol. At this point, additives such as MG132 and SDS (0.02%) were added as indicated, to 

inhibit the proteasome or visualize the contribution of the 20S core particle, respectively. These 

lysates were preincubated at 30 ºC for 30 min. The fluorogenic proteasome substrate, Suc-

LLVY-AMC was next added to a final concentration of 100μM and fluorescence (excitation 

380nm, emission 460nm, bandpass = 4) was manually read using an Aminco-Bowman Series 2 

Luminescence Spectrometer over the course of 2 h. The reaction was kept at 30 ºC for the 

duration of the experiment. Data were plotted and analyzed in Microsoft Excel 2003. 

3.1.5 Glycerol gradient fractionation 

Cell growth conditions and lysate preparation was identical to those described in section 3.2.3 

and 3.2.4. To fractionate proteasomes, a 10-30% linear glycerol gradient was prepared in 50mM 

Tris-Cl, pH 7.5, 5mM MgCl2, and 5mM ATP using a Gradient Master (BioComp Instruments) 

according to the manufacturer’s instruction. The gradients were used either immediately, or 

stored overnight at 4 ºC before use. A total of 10mg of cell lysate was layered on top of the 

gradient and centrifuged at 83,000g for 24 h. Fractions (1ml) were collected from the top, and 

were TCA precipitated and resolved by SDS-PAGE as described above. Western blotting was 

performed using the indicated antibodies as described in 3.2.7, below. 
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3.1.6 Immunoprecipitation and Stable Isotopic Labeling by Amino acids in Cell culture 

(SILAC) analysis 

Immunoprecipitation of Cdc48p-Myc was performed as described in Chapter 2, section 2.1.5. 

Briefly, transformed cells were grown in selective media to log-phase, harvested by low-speed 

centrifugation, resuspended in Buffer 88 (20mM HEPES pH 6.8, 150mM KOAc, 250mM 

sorbitol, 5mM MgOAc) supplemented with 1mM PMSF, 1μg/ml leupeptin, 0.5μg/ml pepstatin 

A, and 10mM NEM. Cells were disrupted with glass beads by vigorous agitation on a Vortex 

mixer 10 times for 30 sec, followed by a 30 sec incubation on ice between each agitation. 

Unbroken cells were removed by centrifugation at 1,500g for 5 min at 4°C. Total lysate was 

separated into membrane and cytosol fractions by centrifugation at 150,000g for 20 min at 4ºC. 

The supernatant (cytosol) was collected and the protein concentration was estimated using the 

BioRad protein assay kit. The membrane fraction was washed one time with Buffer 88 and then 

resuspended in Buffer 88 such that the final A280 in 2% SDS was 40, which corresponds to a 

protein concentration of ~10mg/ml. Both fractions were stored at -80 ºC. To immunoprecipitate 

Cdc48p-Myc, 1mg of cytosol and resuspended membrane protein were treated as follows: The 

membrane fractions were solubilized on ice for 30 min in Buffer A (20mM HEPES, pH 7.4, 

150mM NaCl, 1% Triton X-100). Then, an equal amount of Buffer B (20mM HEPES pH 7.4, 

150mM NaCl) was added so that the final concentration of Triton X-100 was 0.5%. The 

cytosolic extract was treated on ice for 30 min by adding Triton X-100 to a final concentration of 

0.5%.  For each sample, insoluble material was removed by centrifugation at 16,000g for 10 min 

at 4°C and the volume was brought-up to 500μl with Buffer C (20mM HEPES, pH 7.4, 150mM 

NaCl, 0.5% Triton X-100) prior to immunoprecipitation with anti-HA- or anti-Myc-conjugated 

agarose (Santa Cruz). The immunoprecipitate was washed once with Buffer C, and three times 
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with Buffer D (20mM HEPES, pH 7.4, 300mM NaCl, 0.5% Triton X-100), and the bound 

proteins were released with SDS-PAGE sample buffer, as described above. 

 

For the Stable Isotopic Labeling with Amino acids in Culture (SILAC) experiment, wild-

type cells expressing Cdc48p-Myc from a low-copy plasmid were grown to log phase in standard 

minimal medium containing unlabeled L-Lysine-2HCl (Cambridge Isotope Labs) and vms1Δ 

cells expressing Cdc48p-Myc were grown in minimal medium containing L-Lysine-2HCl 

13
C6,

15
N2 (Cambridge Isotope Labs). Cells were processed and the immunoprecipitations were 

carried out as described above. Immunoprecipitated proteins were eluted by incubating the beads 

four times with 100μl of 0.1M glycine, pH 2.2 for 10 min at room temperature. The combined 

eluate was methanol/chloroform (4:1) extracted and lyophilized prior to mass spectrometry. The 

mass spectrometry was performed by our collaborators, Drs. Woong Kim and Steven Gygi 

(Harvard Medical School). 

3.1.7 Antibodies and western blot analysis  

Antibodies used in this study included: Anti-HA (Roche, USA), anti-Myc (Santa Cruz, USA), 

anti-FLAG M2 (Sigma), anti-Ubiquitin (Santa Cruz, USA), anti-Hsm3p (a generous gift from 

Dr. Daniel Finley, Harvard Medical School), anti-Blm10p (Enzo), anti-Rpt5p (Enzo), anti-

Rpn10p (a generous gift from Dr. Dorota Skowyra, St. Louis University), anti-Rpn3 (Abcam),  

anti-yeast alpha and beta 20S subunits (Enzo), and anti-GPD (Sigma). Bound antibodies were 

visualized with HRP-conjugated anti-mouse (Roche) or anti-rabbit (Roche) IgG. Western blot 

detection was performed as described in Chapter 2, section 2.1.7. 



 111 

3.2 RESULTS 

3.2.1 Loss of VMS1 leads to the accumulation of cellular ubiquitinated proteins 

In Chapter 2, I showed that loss of VMS1 led to an increase in the amount of ubiquitinated 

species that was associated with an epitope-tagged version of Cdc48p (Figure 21B). In order to 

assess if the effect of Vms1p was specific for Cdc48p bound species, or represented a more 

global phenomenon, I compared the levels of ubiquitinated proteins found in total cellular 

extracts from a panel of strains possessing or lacking VMS1 and that were mutated for other 

genes. Specifically, these strains represent a range of defects at various stages of the ERAD 

pathway: ubx2Δ shows reduced recruitment of the Cdc48p complex to the ER membrane, the 

cdc48-3 mutant exhibits retrotranslocation defects, and rad23Δdsk2Δ has defects in shuttling 

ubiquitinated substrates to the 26S proteasome (ELSASSER et al. 2002; JAROSCH et al. 2002; RAO 

and SASTRY 2002; SCHUBERTH and BUCHBERGER 2005). As seen in Figure 22A, I found that 

strains lacking VMS1 consistently showed an increase in the amount of total cellular 

ubiquitinated protein regardless of genotype. This was evident regardless of strain background or 

mating type (Figure 22B and C). Select double mutants had pronounced levels of ubiquitin 

accumulation. For example, the ubx2Δvms1Δ accumulated ubiquitinated proteins to a greater 

extent than other combinations tested. On the other hand, the rad23Δdsk2Δvms1Δ strain showed 

only a modest accumulation. Regardless, this result suggests two things. First, it suggests that 

Vms1p functions in a parallel pathway with Ubx2p, Cdc48p, and Rad23p/Dsk2p. Second, it 

suggests that Vms1p may function in a pathway separate from its involvement in ERAD.  
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Based on these findings, I decided to test whether the accumulation of polyubiquitinated 

proteins required Vms1p-Cdc48p interaction by using a well-characterized mutant version of 

Vms1p that is unable to physically interact with Cdc48p. In this experiment, strains lacking 

VMS1 were supplemented with an empty vector and either a low-copy plasmid harboring a wild-

type, HA-epitope tagged version of Vms1p or an HA-epitope tagged version lacking the 

VCP/p97 Interacting Motif (VIM) (BALLAR et al. 2006; HEO et al. 2010; STAPF et al. 2011). The 

VMS1 deletion harboring an empty vector shows the expected increase in total ubiquitinated 

protein when compared to a wild-type strain, or to a vms1Δ strain harboring a wild-type copy of 

VMS1 (Figure 23B). However, when vms1Δ strains were supplied with a copy of Vms1p that 

cannot physically interact with Cdc48p (ΔVIM), the level of cellular ubiquitinated protein was 

similar to that seen in the vms1Δ strain harboring an empty vector. In addition, I examined 

whether protein expressed from these plasmids can also rescue the cycloheximide-sensitive 

phenotype of vms1Δ cells (PARSONS et al. 2006). I found that rescue also requires the VIM 

domain of VMS1 (Figure 23A). It is noteworthy to mention that I consistently observed that the 

level of “VIM-less” Vms1p appears to be somewhat higher than that of the wild-type version 

(Figure 23B), so that the inability to rescue this phenotype does not arise from poor protein 

expression. These data suggest that Vms1p interaction with Cdc48p is required to off-set the 

accumulation of ubiquitinated proteins in the cell.  
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Figure 22. Loss of VMS1 leads to an accumulation of ubiquitinated proteins in the cell 

A. Whole cell extracts from strains containing or lacking VMS1 were examined for total 

ubiquitinated proteins by western blotting with anti-ubiquitin antibody. Strains examined include 

those defective for various steps in the ERAD pathway, such as Cdc48p localization (ubx2Δ), 

retrotranslocation (cdc48-3), and ubiquitinated substrate escort (rad23ΔdskΔ). Anti-GPD was 

used as a loading control. B. Lysates from BY4741 (“a”) and BY4742 (“α”) were separated by 

SDS-PAGE and subjected to western blotting as described in part A. Ubiquitin levels in vms1Δ 

strains increased approximately 50%. C. Lysates from wild-type and vms1Δ strains from the 

KFY100 and YPH500 genetic backgrounds were resolved by SDS-PAGE and subject to western 

blotting with anti-ubiquitin and anti-GPD (loading control). D. Quantitation of polyubiquitin 

(>72KDa) signal from wild-type and vms1Δ strains. Sample size is 6. 
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Figure 23. Vms1p regulation of ubiquitinated protein homeostasis requires interaction with Cdc48p 

A. The function of the wild-type Vms1p-HA and Vms1p-ΔVIM-HA proteins was 

assessed by 10-fold serial dilution spot plating onto either YPD or YPD plus 0.1μg/ml 

cycloheximide. B. To assess whether Vms1p-Cdc48p interaction was required for the recovery 

of the ubiquitinated protein accumulation phenotype, whole cell extracts were prepared from 

strains harboring an empty vector, or a vector engineered for the expression of either wild-type 

Vms1p-HA or Vms1p-ΔVIM-HA (ΔVIM, a generous gift from Dr. Jared Rutter) and western 

blotted with anti-ubiquitin. Blots were also probed with anti-HA to detect the expression of the 

tagged forms of Vms1p and with anti-GPD as a loading control. C. Quantitation of ubiquitin 

signal (>72KDa) in B.  Sample size is 4. 
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3.2.2 Loss of VMS1 alters the distribution of proteasome subtypes 

The data from Chapter 2 and section 3.3.1 of this chapter suggest that Vms1p functions at a late 

stage (i.e., post-ubiquitination event) in protein degradation. Therefore, I examined the 

architecture and activity of the proteasome from total cell lysates using a previously established 

in gel proteasome activity assay (ELSASSER et al. 2005; HOUGH et al. 1987). As seen in Figure 

24A, lysates from vms1Δ cells showed a reproducible increase in the amount and activity of free 

20S core particles (CP) and a corresponding reduction in the amount and activity of capped 

proteasome particles (RPCP, RP2CP). The results of several experiments were quantified and 

these differences were found to be statistically significant (Figure 24B). To confirm these 

results, 20S CP activity was assessed in solution and over time using fluorometry and again there 

was a significant increase in the activity of the 20S CP (Figure 24C).  

 

Since there is more free 20S core particle in the vms1Δ, it is a formal possibility that 

vms1Δ mutant cells upregulate the protein levels of proteasome components, including the alpha 

and beta subunits of the 20S core particle, which in turn leads to a decrease in the relative 

amount of 26S particle. To rule out this possibility, I performed western blotting with a panel of 

antibodies against different components of the proteasome. As observed in Figure 25A, wild-

type and vms1Δ mutant cells have similar levels of all proteasome components tested. To further 

support these data, I compared the proteasome profile in rpn4Δ strains possessing or lacking 

VMS1 by the in gel proteasome overlay assay. Rpn4p is a transcription factor that regulates the 

expression of proteasome subunits, and in rpn4Δ cells there is a reduction in the amount of 
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proteasome subunits (XIE and VARSHAVSKY 2001). I observed that rpn4Δ strains show the 

expected reduction in the amount of total proteasome, but when rpn4Δ strains were also deleted 

for VMS1, lysates prepared from this strain again showed an increase in the amount and activity 

of the free 20S CP (Figure 25B and C). I conclude that the gene product of VMS1 plays a role in 

regulating the distribution of proteasome subtypes, but does not regulate the expression or 

translation of proteasome components.  

 

So far, I have shown in this chapter that loss of VMS1 leads to: 1) the accumulation of 

ubiquitinated proteins in total cell lysates and 2) a change in the distribution of proteasome 

subtypes. However, ubiquitin accumulation can be decreased back to approximate wild-type 

levels when the vms1Δ strain is supplied with a full-length copy of wild-type VMS1, but not with 

a version that fails to interact with Cdc48p. To examine whether the ubiquitin accumulation and 

proteasome distribution phenotypes correlated, I performed an in gel proteasome activity assay 

using lysates from vms1Δ strains that were supplemented with an empty vector or vectors for the 

expression of wild-type Vms1p-HA or Vms1p-HA lacking the VIM domain. As shown in 

Figure 26A and B, vms1Δ strains harboring an empty vector yielded the expected increase in the 

free 20S CP activity when compared to a wild-type strain. When vms1Δ strains were 

supplemented with a plasmid carrying wild-type Vms1p-HA, the amount of 20S CP activity 

decreased to near wild-type levels. However, vms1Δ strains expressing Vms1p-HA lacking the 

VIM domain did not show a significant decrease in 20S CP activity. These effects on the 

activities of the 20S CP were correlated to the levels of alpha and beta subunits by western 

blotting analysis.  
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Interestingly, a western blot against the HA-tag on Vms1p indicated that Vms1p-HA co-

migrates with capped proteasomes (Figure 26A, lower right). In addition, the Vms1p-HA 

mutant lacking the VIM domain showed a reproducible decrease in the amount of HA-signal co-

migrating with the capped proteasome. These results suggest that Vms1p is in a complex with 

the 26S proteasome and that the inability to interact with Cdc48p reduces the amount of 

associated Vms1p. Thus, Cdc48p may bridge Vms1p to the 26S proteasome. 
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Figure 24. The vms1Δ strain shows increased levels of 20S core particles 

A. Lysates from wild-type and vms1Δ cells (60μg) were resolved on a 3.5% native gel 

and the gels were incubated in a solution containing ATP and the fluorogenic chymotrypsin-like 

proteasome substrate, Suc-LLVY-AMC (100μM) to assess capped proteasomes. After imaging, 

the gels were incubated with the same solution, but with the addition of 0.02% SDS to visualize 

20S core activity. B. Wild-type and vms1Δ cell extracts were resolved on a 3.5% native gel and 

proteasome activity was visualized as described in A. Western blotting with antibodies against 

yeast 20S core alpha and beta particles and the 19S cap subunit, Rpt5p (bottom two panels, B). 

C. The left graph represents capped proteasome signal while the graph on the right represent 

signal corresponding to the 20S core. The units are arbitrary and the error bars represent + 

standard error (n ≥ 10). Quantitation was performed using ImageJ v4.16e. The activity from the 
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wild-type strain was set as 100%. D. The proteasome activity from lysates prepared from wild-

type or vms1Δ cells (60μg) were assessed in solution by fluorometry. Reactions were prepared in 

a buffer containing ATP and 100μM of the proteasome substrate Suc-LLVY-AMC. Where 

indicated, MG132 was added to a final concentration of 100μM. The error bars represent + 

standard error from at three independent experiments.  
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Figure 25. Maintenance of proteasome components are unaffected in vms1Δ strains 

A. Equal amounts of whole cell extracts from wild-type and vms1Δ strains were resolved 

by SDS-PAGE. Western blot analysis was used to detect the levels of the proteasomal activator 

(Blm10p), 19S cap components (Rpn3p, Rpt5p, and Rpt3p), a proteasome chaperone (Hsm3p), 

and the 20S core particle (alpha and beta Subunits). Anti-GPD was used as a loading control. B. 

In gel proteasome activity assay was performed to assess the effect of VMS1 deletion in strains 

lacking the proteasome transcription factor, Rpn4p. Wild-type, rpn4Δ, and rpn4Δvms1Δ yeast 

lysates were resolved by native gel. The gel was incubated in a solution containing ATP and 

Suc-LLVY-AMC (100μM) to assess capped proteasome activity (upper left panel, B). Next, the 
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gel was incubated in the same solution except 0.02% SDS was added to assess 20S core activity 

(right upper panel, B). Western blot analysis was performed with anti-yeast 20S CP and anti-

Rpt5p to assess the amount of 20S core and 19S cap, respectively. C. Quantitation of 20S CP 

activity (left) and anti-alpha and beta proteins corresponding to the 20S CP (right) from four 

independent experiments. The error bars indicate + standard error. The difference between rpn4Δ 

and rpn4Δvms1Δ in the in gel activity assays (corresponding to 20S core) was not statistically 

significant. The rpn4vms1 strain is being validated. Sample size is 4. 
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Figure 26. Proteasome architecture requires Vms1p-Cdc48p interaction 

A. Proteasome activity in lysates (60μg) from wild-type or vms1Δ cells containing an 

empty vector, or a vector expressing either wild-type Vms1p-HA or Vms1p-ΔVIM-HA (ΔVIM) 

were examined by native gel and Suc-LLVY-AMC (100μM) substrate overlay assay. The 

activity of the capped proteasome (RP2CP, RPCP, left panel A) and 20S core (CP, right panel A) 

were both assessed. Western blotting for Vms1p-HA (anti-HA) and 20S CP (alpha and beta) was 

also performed. B. Quantitation of 20S activity (top) and anti-20S CP signal (bottom) from four 

independent experiments in the indicated strains. The error bars represent + standard error of 

four independent experiments. Sample size is 4. “NS” means not significant.  
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3.2.3 VMS1 function appears to be independent of proteasome assembly chaperones 

To determine if Vms1p facilitates proteasome assembly or stability, I examined ubiquitinated 

protein levels and proteasome distribution phenotypes in a panel of double deletion mutants that 

lacked VMS1 and genes known to be involved in proteasome assembly/stability. The genes tested 

were: RPN10 – a ubiquitin receptor that is involved in connecting the base and lid of the 19S cap 

(GLICKMAN et al. 1998a), RPN13 – a ubiquitin receptor and core component of the 19S particle 

(HUSNJAK et al. 2008), RPN14 -  a chaperone of the 19S cap (FUNAKOSHI et al. 2009; LE TALLEC 

et al. 2009; PARK et al. 2009; ROELOFS et al. 2009; SAEKI et al. 2009), HSM3 – another 

chaperone of the 19S cap (FUNAKOSHI et al. 2009; LE TALLEC et al. 2009; PARK et al. 2009; 

ROELOFS et al. 2009; SAEKI et al. 2009), and UMP1 – a chaperone of the 20S core (RAMOS et al. 

1998). The analysis presented in Figure 27A revealed that loss of VMS1 resulted in an additive 

increase in ubiquitinated protein levels in most of the genotypes tested. This result suggests that 

Vms1p functions in parallel to Rpn13p, Rpn14p, Hsm3p, and Ump1p. The exception to this 

finding, however, was the rpn10Δ and rpn10Δvms1Δ strains, which both showed similar levels 

of ubiquitinated protein accumulation. Rpn10p is a ubiquitin receptor that also helps link the 19S 

base and lid (GLICKMAN et al. 1998a). This intriguing result suggests that these two gene 

products function in series. To further support this hypothesis, I examined the distribution of 

proteasome subtypes in these same mutants. As seen in Figure 27B, the accumulation of 20S CP 

was evident in all strains examined, as assessed with the fluorogenic substrate and by western 

blotting. Finally, I used glycerol gradient analysis to examine the distribution of proteasome 

components. Western blotting with antibodies against the 19S cap (Rpt5p), accessory proteins 
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(Blm10p), Cdc48p, 19S chaperone (Hsm3p) and the core components indicated that the 

sedimentation distribution was not significantly altered by the deletion of VMS1 (Figure 27C). 

On occasion, I have observed that both 20S core particle subunits and Rpn10p distributed 

differently (Figure 27D. see upward bracket). These data collectively suggest that Vms1p 

functions in a parallel and possibly independent proteasome assembly/stability pathway, and that 

Rpn10p and Vms1p may function in series. 
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Figure 27. Loss of VMS1 does not appear to affect proteasome assembly 

A. The effect of VMS1 deletion on ubiquitinated cellular proteins was assessed in 

different strains representing a panel of defects in proteasome stability (rpn10Δ, rpn13Δ) and 

assembly (hsm3Δ, ump1Δ, rpn14Δ). Wild-type and vms1Δ strains were also assessed. Equal 

amounts of whole cells extracts were resolved by SDS-PAGE and western blotted with anti-
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ubiquitin. Anti-GPD was used as a loading control. B. Proteasome activity from the strains used 

in (A) was assessed by native gel overlay assay with Suc-LLVY-AMC followed by the addition 

of 0.02% SDS to assess 20S core activity. The 20S core particle components were assessed by 

western blotting with an antibody against yeast 20S alpha and beta subunits. C. Whole cell 

extracts (5mg) from wild-type and vms1Δ strains were resolved on a glycerol gradient (10-30%). 

To examine the distribution of proteasome components, individual fractions were collected, 

precipitated and resolved by SDS-PAGE. Western blotting was performed with antibodies 

against the 19S cap (Rpt5p), the proteasome activator (Blm10p), Cdc48p, the proteasome 

chaperone (Hsm3p) and the 20S core (alpha and beta subunits). D. An independent example of 

the glycerol gradient analysis. The antibodies used in this experiment are Rpt5p (19S cap), 

Blm10p (proteasome activator), Cdc48p (ERAD-associated ATPase), Hsm3p (proteasome cap 

chaperone), alpha and beta subunits (20S core) and Rpn10p (ubiquitin receptor).  
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3.2.4 VMS1 does not significantly affect the Cdc48p association with the proteasome 

Based on the data presented in section 3.3.2, the Vms1p-ΔVIM mutant shows reduced co-

migration with capped proteasomes, which suggests two intriguing possibilities. 1) Cdc48p is at 

the proteasome at normal levels and the Vms1p-ΔVIM mutant shows reduced binding or 2) the 

Vms1p-ΔVIM mutant shows a reduced association and Cdc48p interaction with capped 

proteasomes is also lower. To begin to differentiate between these two possibilities, I performed 

immunoprecipitation experiments with an epitope-tagged version of Cdc48p from strains 

containing or lacking VMS1. I examined Cdc48p-Myc precipitates from both crude membrane 

and cytosolic fractions. The immunoprecipitated proteins were identified by mass spectrometry 

in collaboration with the laboratory of Dr. Steven Gygi (Harvard Medical School), and with the 

help of Dr. Kim Woong (Harvard Medical School). Cdc48p immunoprecipitations from the 

cytosolic fraction yielded ~400 interactors while material from the membrane fraction yielded 

~350 interactors (Table 9). Of these interactions, only 126 and 95 unique interactions were 

identified from the cytosol and membrane fractions, respectively. This indicates that the vast 

majority of interactors overlap. Additionally, I only observed 27 of the 79 (34.1%) known 

Cdc48p physical interactions annotated on the Saccharomyces Genome Database 

(www.yeastgenome.org, Biogrid) (STARK et al. 2006). Of the 79 known Cdc48p interactors, 54 

were identified by mass spectrometry. Thus, I was able to identify 50% of the known Cdc48p 

interactions that were detectable by mass spectrometry.  
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When I focused on specific UPS/ERAD relevant interactions and their peptide (spectral) 

counts, I noted that Cdc48p-Myc interactions with the 20S core appeared to be reduced in the 

cytosol of vms1Δ yeast (Table 10). In contrast, interactions with the 19S cap were largely 

similar. To test this possibility in a quantitative manner, I performed a Stable Isotope Lableing 

by Amino acids in Cell culture (SILAC) experiment, which is a form of quantitative mass 

spectrometry. In the SILAC experiment, wild-type cells were grown under normal conditions 

and vms1Δ yeast were grown in the presence of heavy, isotopic lysine. Cdc48p-Myc was 

immunoprecipitated from these the strains and again mass spectrometry was performed by the 

Gygi lab. The relative amount of “normal” (WT) and “heavy, isotopic” (vms1Δ) signal was 

compared between shared co-precipitating proteins. Unexpectedly, and in contrast to the spectral 

counting, I discovered that the interaction between Cdc48p and the proteasome was largely 

unaffected by the vms1Δ genotype (Figure 28). Rpt3p may be enriched in VMS1 mutants, but 

this is likely an outlier. Rpt3p has no known function outside of the proteasome. These data 

further support a model in which Cdc48p binds independent of Vms1p function to the 

proteasome, and most likely then recruits Vms1p.  
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Table 9. Complete list of membrane and cytosolic fraction Cdc48p interactors from wild-type and 

vms1Δ strains 

Cdc48p-Myc was immunoprecipitated from 2-3mg of cytosol or membrane from wild-

type and vms1Δ strains. The Cdc48p-Myc was the only copy of Cdc48p in these strains. The 

immunoprecipitated material was methanol/chloroform extracted, lyophilized and subject to 

mass spectrometry in collaboration with Drs. Steven Gygi and Woong Kim (Harvard Medical 

School). Included with the gene name are unique peptide counts, which represents how many 

different proteolyzed fragments of a protein were observed, and total peptide counts, which 

represents the absolute total number of peptides seen in the experiment. This is sorted by unique 

peptide counts and the most abundant are shown at the top.  

 

 



 130 

                               CYTOSOL                                                              MEMBRANE                             

                WT                         vms1 Δ                                 WT                              vms1 Δ           

Gene Unique Total Gene Unique Total Gene Unique Total Gene Unique Total

CDC48 64 288 CDC48 77 319 CDC48 42 124 CDC48 54 133

SSA2 27 39 SSA2 33 54 SSA2 28 39 SSA2 27 32

CDC19 24 60 MET6 31 40 CDC19 21 26 HSP82 23 28

HSP82 22 28 HSP82 30 38 HSP82 20 24 KAR2 17 20

TFP1 21 27 MET10 30 37 ENO2 15 17 FKS1 15 17

THS1 20 25 THS1 29 34 KAR2 14 21 NPL4 15 17

ENO2 19 31 ECM17 29 31 NPL4 14 18 ENO2 14 20

PGK1 19 25 CDC19 28 58 EFT1 14 18 TDH2 13 17

DDR48 16 74 TFP1 27 31 PGK1 11 12 CDC19 13 15

NUP2 16 21 TDH2 22 41 TEF1 10 17 SSB2 13 14

MET6 16 17 FAS2 22 26 ADH1 10 10 PGK1 12 12

TDH2 15 39 RPO21 22 24 FKS1 9 16 EFT1 11 14

NPL4 15 22 ENO2 21 37 TDH2 9 13 ECM17 11 12

PAN1 15 18 ADH1 20 38 TIF1 9 10 PAB1 11 11

RPB2 15 18 YHR020W 20 26 SSA1 8 11 MET6 11 11

SHP1 14 53 PGK1 20 26 NUP2 8 10 SSA1 10 12

LEU2 14 31 PDC1 20 25 SSB2 8 9 TRM1 10 11

GPM1 14 23 ILS1 20 23 DEF1 7 11 PAN1 10 11

SPT5 14 19 CHC1 20 22 RPL3 7 11 DDR48 9 19

ADH1 14 19 LEU2 19 37 LEU2 7 9 DEF1 9 16

GPH1 14 17 VMA2 19 30 RPS6A 7 9 TFP1 9 11

ALA1 14 16 EFT1 18 22 GPM1 7 9 TEF1 9 11

EFT1 13 18 SHP1 17 30 URA2 7 8 SSE1 9 10

GSY2 13 17 HSP60 17 22 UBX2 7 7 SPT5 9 9

PAB1 13 15 MES1 17 19 HRD3 7 7 SSC1 8 10

PGI1 13 15 SSE1 17 19 RPS31 6 15 LEU2 8 9

PDC1 12 17 SPT5 17 19 PIL1 6 9 ADH1 8 9

HSP60 12 15 FAS1 17 18 ILV2 6 8 CBR1 8 9

SUP35 12 13 ALA1 17 18 PAB1 6 7 SUP35 8 8

SAH1 12 12 MET3 16 25 UFD1 6 7 CHC1 8 8

TPI1 11 13 GPM1 16 22 CHC1 6 6 CHS1 7 8

SES1 11 12 GSY2 16 21 RPL27A 6 6 ILV2 7 8

RPO21 11 12 GPH1 16 18 RPL19A 6 6 UFD1 7 8

CHC1 11 11 NPL4 16 17 SHP1 5 12 RPL1A 7 8

RPN2 11 11 DDR48 15 30 TPI1 5 7 HRD3 7 8

KAR2 10 13 DPS1 15 21 RVB1 5 7 PDI1 7 7

SSA1 10 12 CYS4 15 17 RPS18B 5 6 YEF3 7 7

HXK2 10 12 NUP2 15 16 PDC1 5 6 ACT1 7 7

TEF1 9 16 SES1 15 15 RPL25 5 6 SHP1 6 11

SSC1 9 12 CPA2 14 18 SPT5 5 5 VMA2 6 9

SSB2 9 11 PAB1 14 16 RPL4B 5 5 RPL3 6 8

MES1 9 11 RPB2 14 16 RPL7B 5 5 GPM1 6 8

HIS4 9 10 KAR2 14 15 RPL2B 5 5 RPS6A 6 7

CYS4 9 9 ADE3 14 15 PMA2 5 5 RPL8B 6 7

VMA2 8 23 VAS1 14 14 GCN20 5 5 PHO88 6 7

ILV5 8 11 ALD6 13 18 LSP1 5 5 TIF1 6 7

UFD1 8 11 PYC1 13 18 VMA2 4 8 FAA1 6 6

ACT1 8 11 SSA1 13 17 RPS14B 4 6 URA2 6 6

YHR020W 8 10 SSC1 13 17 SSC1 4 5 RPL7B 6 6

SHM1 8 10 PFK1 13 16 RPL1A 4 5 RPS31 5 13

BMH1 8 9 SSB2 13 15 PET9 4 5 HSC82 5 8

ADE3 8 9 HIS4 13 15 RPL6B 4 5 VMA4 5 7

URA2 8 9 SAH1 13 14 FAA1 4 4 BMH1 5 6

TIF1 8 9 GDB1 13 13 RPN1 4 4 PDC1 5 6

DEF1 7 15 RPN1 12 13 SEC21 4 4 TPI1 5 5

PSA1 7 12 RPA190 12 13 SUP35 4 4 NUP2 5 5

DPS1 7 12 ACT1 12 13 GCD11 4 4 GCN20 5 5

ATP1 7 9 CLC1 11 16 RPS3 4 4 RPL19A 5 5

ALD6 7 9 TEF1 11 16 PGA3 4 4 RPL2B 5 5

ATP3 7 7 SAM1 11 14 THS1 4 4 TRP5 5 5

SSE1 7 7 PGI1 11 14 CHO2 4 4 PET9 4 6

PYC1 7 7 GRS1 11 13 RPS4A 4 4 PIN4 4 5

PIN4 6 10 ATP2 11 13 RPL21B 4 4 RPS18B 4 5

RHR2 6 10 PAN1 11 12 ABP1 3 6 PMA2 4 5

RPS31 6 9 TRP3 11 12 FBA1 3 6 RPL20B 4 5

SAM1 6 8 HOM6 11 11 RPL17A 3 5 RPL10 4 5

IPP1 6 8 SHM1 11 11 USA1 3 5 RPS14B 4 5

GUS1 6 8 TPI1 10 12 RPL16B 3 5 RPL6B 4 5

ASN1 6 8 TRM1 10 11 URA7 3 4 STM1 4 5

CLC1 6 7 FRS2 10 10 RPT5 3 4 RPL16B 4 5

ILS1 6 7 TDH1 10 10 LCB1 3 4 RPL17A 4 4

RPN1 6 6 ENO1 9 18 RPL8B 3 4 TRX2 4 4

VAS1 6 6 ILV5 9 13 HSC82 3 4 POR1 4 4

TRP3 6 6 PSA1 9 12 PMA1 3 4 RPL4B 4 4  
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RPN7 6 6 DLD3 9 12 CBR1 3 4 RPN1 4 4

FBA1 5 10 GFA1 9 12 RPL20B 3 4 ERG6 4 4

APA1 5 9 DED81 9 11 RPL28 3 4 RPL12A 4 4

RTG2 5 9 PDI1 9 9 RPL13B 3 4 ERG11 4 4

RPT5 5 8 YDR341C 9 9 HRD1 3 3 RPS20 4 4

ALF1 5 8 APE2 9 9 SEC4 3 3 RPP0 4 4

DED81 5 7 LEU1 9 9 CDC33 3 3 YOS9 4 4

NAP1 5 7 DUG2 9 9 YOS9 3 3 UBX2 4 4

FAS1 5 7 FBA1 8 15 RPT2 3 3 RPO21 4 4

FAS2 5 7 ALF1 8 14 SGM1 3 3 THS1 4 4

GFA1 5 7 IPP1 8 11 ACT1 3 3 PSA1 4 4

CTS2 5 6 BMH1 8 10 POR1 3 3 GGC1 4 4

RPT6 5 6 UFD1 8 10 SRP1 3 3 SAM1 4 4

ABP1 5 6 GSY1 8 9 RPN2 3 3 MIR1 4 4

GSY1 5 6 TKL1 8 9 HSP60 3 3 RPL25 4 4

GCD11 5 6 PYC2 8 8 RPS12 3 3 SAH1 4 4

PYC2 5 6 PFK2 8 8 YEF3 3 3 RPS17A 4 4

PDI1 5 6 GDH1 8 8 YPR158W-B 3 3 RPS12 4 4

ENO1 5 6 CDC60 8 8 BMH1 3 3 RPL27A 4 4

TRM1 5 6 DEF1 7 9 RPL6A 3 3 RPL28 4 4

RPS18B 5 6 HXK2 7 9 RPS17A 3 3 RPL21B 4 4

LEU1 5 6 RPT5 7 8 TRP5 3 3 END3 4 4

TKL1 5 6 EFB1 7 8 RPL16A 3 3 RPL6A 4 4

GRS1 5 5 TAL1 7 8 RPL11A 3 3 ILV5 4 4

YDR341C 5 5 YGR117C 7 8 RPT6 3 3 GSY2 4 4

GDB1 5 5 PIN4 7 7 PFK2 3 3 PMR1 4 4

HOM6 5 5 YOL098C 7 7 GGC1 3 3 RPL13B 3 5

AAP1 5 5 RPT6 7 7 RPS19A 3 3 SEC4 3 4

YEF3 5 5 TRR1 7 7 RPG1 3 3 RPT5 3 4

RPA190 5 5 AAP1 7 7 RPN9 3 3 YPR158W-B 3 4

TAL1 5 5 ADO1 7 7 GUS1 3 3 RPL33A 3 4

GDH1 5 5 ATP3 7 7 RPS9A 3 3 UBX7 3 4

ERG13 5 5 END3 7 7 HTB1 3 3 CDC33 3 4

DLD3 5 5 URA2 7 7 IST2 2 4 RPL24B 3 4

ADH3 5 5 ADE13 7 7 RPL15B 2 4 PMA1 3 4

HSC82 4 6 ASC1 7 7 PHO84 2 3 GAS1 3 4

SAM2 4 5 RPN7 7 7 RPS20 2 3 RPL32 3 4

END3 4 5 GUS1 7 7 PGI1 2 3 TDH3 3 4

CDC60 4 5 ADH3 7 7 OLE1 2 3 RPL26A 3 4

YAK1 4 5 HSC82 6 10 ERG26 2 3 RPS1B 3 4

ADE13 4 5 CPR1 6 9 SSE1 2 3 SEC27 3 3

RPP2A 4 4 NAP1 6 8 DDR48 2 3 FBA1 3 3

FRS2 4 4 RHR2 6 8 RPL30 2 3 TRX1 3 3

GLE2 4 4 MET17 6 8 LEU1 2 3 RNR4 3 3

TRR1 4 4 TIF1 6 8 YPT1 2 3 RPP2A 3 3

ARO2 4 4 RNR2 6 7 RPL33A 2 3 SEC21 3 3

TRP2 4 4 THR4 6 7 SCS2 2 3 MET10 3 3

VMA4 4 4 ERG13 6 7 DFM1 2 3 CLC1 3 3

GLN4 4 4 SUP35 6 6 RPP0 2 3 GCD11 3 3

KAP123 4 4 SOD2 6 6 RPS1B 2 3 EFB1 3 3

ASC1 4 4 LYS4 6 6 ARO2 2 2 ARC1 3 3

ATP2 4 4 RPS6A 6 6 SEC26 2 2 ARO2 3 3

DAK1 4 4 YEF3 6 6 NAP1 2 2 RPB2 3 3

CPA2 4 4 YBR056W 6 6 SUB2 2 2 DED1 3 3

RPL27A 4 4 ATP1 6 6 KAP123 2 2 PIL1 3 3

RPS20 3 5 TYS1 6 6 RPS2 2 2 PGA3 3 3

RPS6A 3 5 ARO8 6 6 YDR341C 2 2 RPL11A 3 3

RNR4 3 5 ACC1 6 6 RTN1 2 2 HSP60 3 3

TUB3 3 5 SAM2 5 9 TMA19 2 2 SCS2 3 3

RPT2 3 4 RPS31 5 8 PHO88 2 2 RPL9B 3 3

TMA19 3 4 AAT2 5 7 RPP2A 2 2 ILV1 3 3

CPR1 3 4 RPT2 5 6 RPP2B 2 2 GUA1 3 3

RPL17A 3 4 RPS18B 5 6 RPN5 2 2 ERG26 3 3

AAH1 3 4 SGM1 5 6 BMH2 2 2 SEC63 3 3

PNC1 3 4 HEM1 5 6 RPL12A 2 2 RPL14A 3 3

RPN9 3 4 DUG3 5 6 YGR117C 2 2 LEU1 3 3

RPL25 3 4 DED1 5 6 RNA1 2 2 GSP2 3 3

YHB1 3 4 RPN6 5 6 ARC1 2 2 YKT6 3 3

ERG10 3 3 CTS2 5 5 RPN7 2 2 RPL5 3 3

FKS1 3 3 ERG10 5 5 YKT6 2 2 RPS4A 3 3

RPP2B 3 3 GCD11 5 5 SPF1 2 2 SHM2 3 3

LYS4 3 3 RPA135 5 5 TFP1 2 2 TEF4 3 3

CDC33 3 3 TRX2 5 5 UBX7 2 2 CCT8 3 3

SRP1 3 3 KRS1 5 5 RPL35A 2 2 TIF4631 3 3

TRX1 3 3 WTM1 5 5 RPS15 2 2 VMA13 3 3  
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EFB1 3 3 PGM1 5 5 RPL5 2 2 GUS1 3 3

ERG20 3 3 RTG2 5 5 GAS1 2 2 RPN2 3 3

HOM2 3 3 APA1 5 5 RPS8B 2 2 RPS11A 3 3

CYS3 3 3 RPN12 5 5 GSP2 2 2 ERV41 3 3

SHM2 3 3 UBA1 5 5 RPL32 2 2 CHO2 3 3

YOL098C 3 3 TRP5 5 5 WHI4 2 2 IST2 2 4

HIS1 3 3 RPN2 5 5 RVB2 2 2 RAS2 2 4

RPL3 3 3 TDH3 4 25 RVS161 2 2 OLE1 2 3

RNR2 3 3 LIA1 4 6 FAS2 2 2 SPF1 2 3

TRP5 3 3 AAH1 4 6 TDH3 2 2 ALF1 2 3

RPS3 3 3 SEC53 4 5 NDE1 2 2 PHO84 2 3

GSP2 3 3 NAB3 4 5 RPL9B 2 2 RPL15B 2 3

YGR117C 3 3 CYS3 4 5 TIF4631 2 2 SAM3 2 3

RPN6 3 3 HOM2 4 5 RPL42A 2 2 RPN7 2 3

GUA1 3 3 ARC1 4 5 RPS25B 2 2 SEC26 2 3

TYS1 3 3 GSP2 4 5 RPL26A 2 2 ATP1 2 3

URA5 3 3 GND1 4 5 ERG1 2 2 ALA1 2 3

RPL21B 3 3 RPP2A 4 4 RPL18A 2 2 SAM2 2 3

KRS1 3 3 RPP2B 4 4 PMR1 2 2 PEP4 2 2

PDC5 3 3 SSA4 4 4 FAA4 2 2 HYP2 2 2

BET4 3 3 YMR315W 4 4 ARF1 2 2 TOM70 2 2

RPT1 3 3 GUA1 4 4 YET3 1 2 HRD1 2 2

SEC13 3 3 RPP0 4 4 AHA1 1 2 SEC28 2 2

STI1 3 3 GLE2 4 4 RPS9B 1 2 ABP1 2 2

PRO2 3 3 ADK1 4 4 CHS1 1 2 RHR2 2 2

ACC1 3 3 ERG20 4 4 UGP1 1 2 YET3 2 2

RPS9A 3 3 PRO3 4 4 EGD2 1 2 SRV2 2 2

APE3 3 3 RPS12 4 4 HXT4 1 2 ASC1 2 2

HSP10 2 4 HIS7 4 4 RPL24B 1 2 NAP1 2 2

RPB4 2 4 ARG5 4 4 YJR015W 1 2 VMA5 2 2

THR4 2 4 STI1 4 4 RPL14A 1 2 RPL16A 2 2

PDC6 2 4 PRD1 4 4 SEC27 1 2 RPS7A 2 2

YMR226C 2 4 SHM2 4 4 USO1 1 2 LCB1 2 2

RPB11 2 4 GLN4 4 4 TRM1 1 2 RTN1 2 2

NUP100 2 3 IKI3 4 4 RPS24B 1 2 YDR341C 2 2

SGT2 2 3 MET13 4 4 PRS2 1 2 VAS1 2 2

ADK1 2 3 APE3 4 4 TOM70 1 1 YGR117C 2 2

ADO1 2 3 RPT1 4 4 MKT1 1 1 TSA1 2 2

HIS7 2 3 TUB3 4 4 STM1 1 1 GET1 2 2

RPL4B 2 3 AHP1 3 7 CLC1 1 1 NSP1 2 2

RPN3 2 3 TEF4 3 4 TSA1 1 1 TMA19 2 2

PRO3 2 3 SPE3 3 4 SUR4 1 1 AHA1 2 2

WTM1 2 3 MAE1 3 4 SUP45 1 1 YKL100C 2 2

NAB3 2 3 GCD10 3 4 PRE9 1 1 FAS2 2 2

UBA1 2 3 YMR226C 3 4 GET1 1 1 SUB2 2 2

AAT2 2 3 RPB5 3 3 ALG2 1 1 RPP2B 2 2

ARO8 2 3 HNT1 3 3 SEC11 1 1 RPT6 2 2

RPP0 2 3 RPB3 3 3 ASC1 1 1 YCP4 2 2

RPL16B 2 3 RNR4 3 3 CHS3 1 1 RPS15 2 2

RPP1B 2 2 BSP1 3 3 RPS5 1 1 CUE5 2 2

GUK1 2 2 YPL247C 3 3 RPS13 1 1 COF1 2 2

RPN5 2 2 TMA19 3 3 ALF1 1 1 GET3 2 2

NSP1 2 2 TRX1 3 3 ECM33 1 1 USA1 2 2

ARC1 2 2 HSP10 3 3 RPN13 1 1 ALD6 2 2

COF1 2 2 HSP26 3 3 RFA2 1 1 ARO4 2 2

LIA1 2 2 HEM2 3 3 UBX6 1 1 RPS3 2 2

TRX2 2 2 RPS20 3 3 MIR1 1 1 GSF2 2 2

NUP116 2 2 COF1 3 3 RAS2 1 1 FPR1 2 2

PRE9 2 2 NSP1 3 3 SCS7 1 1 RPS19A 2 2

VMA10 2 2 RPN5 3 3 ECM10 1 1 SUR4 2 2

ADE12 2 2 SRP1 3 3 RNR2 1 1 RNR2 2 2

MET17 2 2 TSA1 3 3 FEN1 1 1 RPL35A 2 2

EDE1 2 2 ILV3 3 3 CSE1 1 1 RVB2 2 2

SEC18 2 2 YLR301W 3 3 RHR2 1 1 PMT4 2 2

MMF1 2 2 DAK1 3 3 TRX2 1 1 RVB1 2 2

MDE1 2 2 HTS1 3 3 RPS7B 1 1 KAP123 2 2

RPS14B 2 2 YHB1 3 3 ATP3 1 1 NRP1 2 2

LYS21 2 2 LYS9 3 3 RPO21 1 1 MET17 2 2

PRT1 2 2 WHI4 3 3 GCN1 1 1 RPL36B 2 2

RPS15 2 2 RPS17A 3 3 SAM1 1 1 ERG9 2 2

SGM1 2 2 CCT8 3 3 PEP4 1 1 RPL37A 2 2

RNA1 2 2 DLD2 3 3 ADE3 1 1 RPN6 2 2

ARP3 2 2 RPN9 3 3 PIM1 1 1 RPS5 2 2

RVB2 2 2 BLM10 3 3 BFR1 1 1 WHI4 2 2

BMH2 2 2 ADE2 3 3 EDE1 1 1 YDJ1 2 2  
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RPS4A 2 2 CCT5 3 3 RPS10A 1 1 FAA4 2 2

ALD4 2 2 GUK1 3 3 RPL33B 1 1 PUB1 2 2

FPR1 2 2 MMF1 3 3 ITR1 1 1 PFK2 2 2

YKT6 2 2 LSC2 3 3 SEC63 1 1 DPS1 2 2

PRE1 2 2 BET4 3 3 YKL100C 1 1 ARF1 2 2

ARG5 2 2 HIS1 3 3 ZEO1 1 1 MRH1 2 2

ZEO1 2 2 IDI1 3 3 PSD1 1 1 DFM1 2 2

RPL32 2 2 UBX4 3 3 SOD1 1 1 FSF1 2 2

LYS9 2 2 FRS1 3 3 ACC1 1 1 RPS9A 2 2

ILV3 2 2 SUB2 3 3 RPL23B 1 1 RPL18A 2 2

GCD10 2 2 ARC35 3 3 FPR1 1 1 HXK2 2 2

WHI4 2 2 SEC13 3 3 PDR5 1 1 RAS1 2 2

RVB1 2 2 URA1 3 3 RPT1 1 1 ERG3 2 2

AHP1 2 2 ACO1 3 3 ERG11 1 1 TPO3 2 2

RPA135 2 2 PDC6 2 4 FSF1 1 1 LCB2 2 2

SPE3 2 2 VMA4 2 3 PDI1 1 1 ERG1 2 2

SPT6 2 2 TUB2 2 3 RPS26A 1 1 ANB1 2 2

RPS17A 2 2 RPB11 2 3 OLA1 1 1 RPS23B 2 2

YPL247C 2 2 GCD14 2 3 IRC22 1 1 ENO1 1 3

CCT8 2 2 IMD3 2 2 SEC28 1 1 RPP1B 1 2

RPL35A 2 2 SEC27 2 2 RPL10 1 1 RPL30 1 2

GPR1 2 2 RPP1B 2 2 TOM22 1 1 VPH1 1 2

APE2 2 2 ARO2 2 2 RPL22A 1 1 ALO1 1 2

TDH1 2 2 NUP116 2 2 ILV1 1 1 MNN2 1 2

YRB1 2 2 MDE1 2 2 RPB2 1 1 RPL8A 1 2

ASP1 2 2 RPN8 2 2 CTS2 1 1 PMT2 1 2

RPL9B 2 2 MAM33 2 2 TIF11 1 1 HSP26 1 1

CPR6 2 2 ADE5 2 2 HXK2 1 1 RPS2 1 1

HSP104 2 2 PNC1 2 2 RPL21A 1 1 YNL208W 1 1

RPS19A 2 2 YDL124W 2 2 MES1 1 1 NAB3 1 1

SOD2 2 2 ABP1 2 2 LYS20 1 1 KAP95 1 1

PMA2 2 2 CDC33 2 2 PTP2 1 1 RFA2 1 1

ARC35 2 2 YAK1 2 2 YPR158C-C 1 1 RPB5 1 1

RPL34B 2 2 BMH2 2 2 RPL7A 1 1 PGI1 1 1

TDH3 1 3 ILV2 2 2 TVP38 1 1 MET3 1 1

TUB2 1 2 YGL039W 2 2 PMT1 1 1 YEL007W 1 1

SNF7 1 2 DUG1 2 2 HTA1 1 1 YPT1 1 1

ECM10 1 2 RAD9 2 2 HCH1 1 1 ALG2 1 1

ENP1 1 2 RPS14B 2 2 ALA1 1 1 NPL3 1 1

RPL11A 1 2 URA7 2 2 ILV5 1 1 RPN5 1 1

TIF3 1 2 DYS1 2 2 RNR4 1 1 RPS9B 1 1

SSA4 1 2 YNL134C 2 2 RPS11A 1 1 CYS4 1 1

GAS1 1 2 PRT1 2 2 SMI1 1 1 EDE1 1 1

SEC4 1 2 YJR096W 2 2 CAM1 1 1 ECM33 1 1

TUB1 1 2 RPS15 2 2 SHM2 1 1 EPT1 1 1

YPR158W-B 1 2 KAP123 2 2 PDC6 1 1 SPT6 1 1

LSB3 1 2 ARO9 2 2 RRB1 1 1 VPS74 1 1

IMD3 1 1 TRP2 2 2 PYK2 1 1 TIF3 1 1

TSA1 1 1 ALD5 2 2 RPN12 1 1 EBP2 1 1

CDC53 1 1 URA4 2 2 MGM101 1 1 RPL33B 1 1

KAP95 1 1 ZEO1 2 2 ENO1 1 1 RPS13 1 1

SOD1 1 1 HEM13 2 2 RPS30B 1 1 SKG6 1 1

YJL055W 1 1 ARP2 2 2 ERG3 1 1 SEC17 1 1

RNR1 1 1 PMI40 2 2 YJR003C 1 1 UBP14 1 1

AHA1 1 1 RPS16A 2 2 RPL34B 1 1 DBP5 1 1

RPL16A 1 1 APT1 2 2 TEF4 1 1 PMT1 1 1

PIN3 1 1 ADE6 2 2 TPO3 1 1 SEC11 1 1

SUP45 1 1 HXK1 2 2 ATP1 1 1 RPS7B 1 1

RPL30 1 1 FPR1 2 2 ILV3 1 1 CAP2 1 1

YMR315W 1 1 RPS3 2 2 RPL15A 1 1 HYR1 1 1

NPL3 1 1 YGP1 2 2 HSP104 1 1 RPS16A 1 1

THR1 1 1 ASP1 2 2 GUA1 1 1 YJR015W 1 1

RPL33A 1 1 SVF1 2 2 YDJ1 1 1 RPN13 1 1

PAN5 1 1 RPS21A 2 2 CHL1 1 1 YOP1 1 1

YEL007W 1 1 UBP14 2 2 PDC5 1 1 ECM10 1 1

SEC26 1 1 RPS11A 2 2 FAS1 1 1 CHS3 1 1

YPT1 1 1 MET14 2 2 CPR1 1 1 TAF14 1 1

ACF4 1 1 ASN1 2 2 ARO1 1 1 SGM1 1 1

YBR056W 1 1 LEU9 2 2 RPS0B 1 1 ALG5 1 1

RPL24B 1 1 ARP3 2 2 TRX1 1 1 GNP1 1 1

HYR1 1 1 YPR158W-B 2 2 RPS16A 1 1 MBF1 1 1

EGD2 1 1 ARG4 2 2 ENP1 1 1 ACC1 1 1

NAM8 1 1 URA5 2 2 UBX3 1 1 GCN1 1 1

VPS74 1 1 PAA1 2 2 ACS2 1 1 VBA4 1 1

RPS12 1 1 ARO1 2 2 SAC1 1 1 VTC4 1 1  
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RPS12 1 1 ARO1 2 2 SAC1 1 1 VTC4 1 1

URA7 1 1 HOR2 2 2 ADK1 1 1 MES1 1 1

RPB3 1 1 CCT3 2 2 RPL24A 1 1 MNN5 1 1

RPS7B 1 1 HMF1 2 2 UBX4 1 1 CTS2 1 1

CAF16 1 1 CPR6 2 2 RPN6 1 1 IRC22 1 1

IDH2 1 1 ADH6 2 2 DHH1 1 1 TSC13 1 1

BSP1 1 1 RPS4A 2 2 ATP2 1 1 FEN1 1 1

IMD4 1 1 SUI3 2 2 MMF1 1 1 YMR046C 1 1

ECM33 1 1 RPL3 2 2 SEC13 1 1 TOM5 1 1

SEC21 1 1 PDX3 2 2 SUR2 1 1 RPT2 1 1

HNT1 1 1 RNA1 2 2 PSD1 1 1

RPS1A 1 1 YRB1 2 2 RPT1 1 1

RPL14A 1 1 RPL25 2 2 HTB1 1 1

OLA1 1 1 LSP1 2 2 MET14 1 1

ADE5 1 1 HIS2 2 2 ARB1 1 1

TIF34 1 1 ELP3 2 2 SCD6 1 1

RPS21A 1 1 RPS9A 2 2 TIF11 1 1

MED2 1 1 ARF1 2 2 DIC1 1 1

CRM1 1 1 HEF3 2 2 ENT2 1 1

PHO3 1 1 YNL010W 2 2 VMA8 1 1

RPS13 1 1 RPN11 2 2 YMR124W 1 1

DUG3 1 1 PDC5 1 3 NUP100 1 1

YER156C 1 1 YEL007W 1 2 APT1 1 1

RPN13 1 1 TAF14 1 2 FRE1 1 1

PFK1 1 1 PIL1 1 2 MNN9 1 1

HEM1 1 1 AHA1 1 2 YGR001C 1 1

RDI1 1 1 ARO4 1 2 ERG25 1 1

ADE6 1 1 NRD1 1 2 RPS25B 1 1

ADE17 1 1 LAP3 1 1 SAC1 1 1

SCS2 1 1 RPB4 1 1 DBP2 1 1

FBP26 1 1 RNR1 1 1 SES1 1 1

LSC2 1 1 NAM8 1 1 RPS24B 1 1

RPN12 1 1 BNA3 1 1 SSA4 1 1

NUP60 1 1 PIN3 1 1 PYK2 1 1

SUB2 1 1 MDH1 1 1 ADE5 1 1

RPL12A 1 1 PRE9 1 1 CPR1 1 1

MET10 1 1 KAP95 1 1 ZRT1 1 1

YPR1 1 1 HAM1 1 1 RFA1 1 1

NRP1 1 1 PEP4 1 1 RPB3 1 1

UBX7 1 1 RPS9B 1 1 ERV46 1 1

UBP14 1 1 RPL24B 1 1 RPL24A 1 1

ARB1 1 1 NPL3 1 1 RPN8 1 1

RPL1A 1 1 CCP1 1 1 BMH2 1 1

SAP185 1 1 EDE1 1 1 RPL37B 1 1

SIT4 1 1 CAF16 1 1 RPS25A 1 1

DED1 1 1 CAP2 1 1 RPS29A 1 1

BNA1 1 1 DOA1 1 1 TIM44 1 1

RPS11A 1 1 RTN1 1 1 KRE9 1 1

SAC6 1 1 RPL11A 1 1 MAE1 1 1

MAM33 1 1 ZWF1 1 1 ZRT2 1 1

APT1 1 1 HYR1 1 1 BUG1 1 1

PMI40 1 1 GET3 1 1 HCH1 1 1

PYK2 1 1 THR1 1 1 YPT7 1 1

CTS1 1 1 RPT3 1 1 EMC4 1 1

TOM1 1 1 SUP45 1 1 CAM1 1 1

YMR099C 1 1 PAN5 1 1 ARP2 1 1

LYS20 1 1 ECM10 1 1 LAG1 1 1

RPS5 1 1 TUB1 1 1 YPR158C-C 1 1

PTC3 1 1 SNF7 1 1 TUB3 1 1

RPL8B 1 1 RPS1A 1 1 PRE9 1 1

RPL6A 1 1 PRE10 1 1 TAL1 1 1

GRE3 1 1 TIF4631 1 1 DED81 1 1

HXK1 1 1 RPS13 1 1 TFC4 1 1

HMF1 1 1 ACO2 1 1 PIS1 1 1

RPC40 1 1 SOD1 1 1 GND1 1 1

HAT2 1 1 BAT1 1 1 RPB11 1 1

YJR096W 1 1 ECM33 1 1 SCM4 1 1

ASF1 1 1 UBX7 1 1 NDE1 1 1

RPL2B 1 1 CIA1 1 1 TRR1 1 1

PFK2 1 1 RPA12 1 1 APE3 1 1

PTP2 1 1 RPS7A 1 1 CPR6 1 1

ACS2 1 1 RVB2 1 1 HSP104 1 1

PIL1 1 1 SGT2 1 1 APA1 1 1

NPA3 1 1 RPG1 1 1 ELO1 1 1

RPS29A 1 1 PRO1 1 1 SSZ1 1 1  
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FRS1 1 1 SER33 1 1 FAS1 1 1

NGL2 1 1 RPN13 1 1 SER1 1 1

OYE2 1 1 SSZ1 1 1 RPL26B 1 1

FUR1 1 1 YPR1 1 1 FKS3 1 1

DBP2 1 1 GCY1 1 1 SSM4 1 1

HCH1 1 1 SIT4 1 1 NUP116 1 1

CIC1 1 1 YJL055W 1 1 ATP2 1 1

PAA1 1 1 MGE1 1 1 SNL1 1 1

TEF4 1 1 RPL14A 1 1 CCT5 1 1

UBR1 1 1 RPL16B 1 1 YOR342C 1 1

RPL10 1 1 CPS1 1 1 CCC1 1 1

RPL20B 1 1 VPS74 1 1 YTA12 1 1

HTB1 1 1 ARG1 1 1 GBP2 1 1

ILV2 1 1 YLR179C 1 1 RPN12 1 1

RPS24B 1 1 BNA1 1 1 COP1 1 1

YLR301W 1 1 YMR099C 1 1 BNA1 1 1

NFU1 1 1 RPS25A 1 1 WTM1 1 1

RPS16A 1 1 PRE8 1 1 RPL23B 1 1

PPH22 1 1 SAM4 1 1 ARV1 1 1

PMA1 1 1 RVB1 1 1 RPS0B 1 1

MAE1 1 1 GCN20 1 1 PRO2 1 1

RPS0B 1 1 CPR3 1 1 RNA1 1 1

RPS30B 1 1 PRI1 1 1 CCT6 1 1

VMA7 1 1 NRP1 1 1 GLE2 1 1

RPS25B 1 1 ATP15 1 1 GFA1 1 1

PAN3 1 1 UBP15 1 1

RPC10 1 1 RPC10 1 1

RPL6B 1 1 MET8 1 1

RPL42A 1 1 YKR070W 1 1

ARO9 1 1 NUP100 1 1

CHL1 1 1 ILV1 1 1

IDI1 1 1 RPN10 1 1

CAM1 1 1 SER1 1 1

RPT4 1 1 PKP1 1 1

SEC53 1 1 SCW4 1 1

RPL24A 1 1 RIB4 1 1

UBX4 1 1 VMA7 1 1

FAA4 1 1 GLY1 1 1

RPL7B 1 1 SEC21 1 1

RPL15B 1 1 YKL215C 1 1

FET4 1 1 TUF1 1 1

CCT5 1 1 LSM4 1 1

ASN2 1 1 PYK2 1 1

HTA1 1 1 LSC1 1 1

DHH1 1 1 BUD14 1 1

CPR3 1 1 LSB1 1 1

RPL28 1 1 RPS19A 1 1

URA1 1 1 QCR2 1 1

MOT3 1 1 CAM1 1 1

SEC27 1 1 PRS2 1 1

ASN2 1 1

PPH22 1 1

RPC19 1 1

MEU1 1 1

FUR1 1 1

FRE1 1 1

PRE1 1 1

RPC40 1 1

RPL6A 1 1

PGM2 1 1

PRC1 1 1

MRH1 1 1

POR1 1 1

NOP58 1 1

OYE2 1 1

GLC7 1 1

CFT2 1 1

ADE12 1 1

SPT6 1 1

RPP1A 1 1

TFC4 1 1

PRO2 1 1

TRM7 1 1

RPL21B 1 1

MOT3 1 1  
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Table 10. Select ERAD/UPS-related interactions found in Table 9 

Data from Table 8 were mined for relevant interactions related to ERAD/UPS process. 

Included with the gene name are unique and total peptide counts. 

                          CYTOSOL                                                    MEMBRANE                  

               WT                       vms1 Δ                        WT                     vms1 Δ     

Gene Unique Total Gene Unique Total Gene Unique Total Gene Unique Total

CDC48 64 288 CDC48 77 319 CDC48 42 124 CDC48 54 133 Cdc48p

NPL4 15 22 NPL4 16 17 NPL4 14 18 NPL4 15 17 complex

UFD1 8 11 UFD1 8 10 UFD1 6 7 UFD1 7 8

SHP1 14 53 SHP1 17 30 SHP1 5 12 SHP1 6 11 UBX

UBX2 UBX2 UBX2 7 7 UBX2 4 4

UBX3 UBX3 UBX3 1 1 UBX3

UBX4 1 1 UBX4 3 3 UBX4 1 1 UBX4

UBX5 UBX5 UBX5 UBX5

UBX6 UBX6 UBX6 1 1 UBX6

UBX7 1 1 UBX7 1 1 UBX7 2 2 UBX7 3 4

RPT1 3 3 RPT1 4 4 RPT1 1 1 RPT1 1 1 19S base

RPT2 3 4 RPT2 5 6 RPT2 3 3 RPT2 1 1

RPT3 1 1 RPT3 1 1 RPT3 1 1 RPT3

RPT4 1 1 RPT4 RPT4 2 2 RPT4

RPT5 5 8 RPT5 7 8 RPT5 3 4 RPT5 3 4

RPT6 5 6 RPT6 7 7 RPT6 3 3 RPT6 2 2

RPN1 6 6 RPN1 12 13 RPN1 4 4 RPN1 4 4

RPN2 11 11 RPN2 5 5 RPN2 3 3 RPN2 3 3

RPN10 RPN10 1 1 RPN10 RPN10

RPN3 2 3 RPN3 RPN3 RPN3 19S lid

RPN5 2 2 RPN5 3 3 RPN5 2 2 RPN5 1 1

RPN6 3 3 RPN6 5 6 RPN6 1 1 RPN6 2 2

RPN7 6 6 RPN7 7 7 RPN7 2 2 RPN7 2 3

RPN8 RPN8 2 2 RPN8 RPN8 1 1

RPN9 3 4 RPN9 3 3 RPN9 3 3 RPN9

RPN11 RPN11 2 2 RPN11 RPN11

RPN12 1 1 RPN12 5 5 RPN12 1 1 RPN12 1 1

RPN13 1 1 RPN13 1 1 RPN13 1 1 RPN13 1 1

SCL1 6 8 SCL1 SCL1 SCL1 20S

PRE8 2 4 PRE8 1 1 PRE8 PRE8 (alpha)

PRE9 2 2 PRE9 1 1 PRE9 1 1 PRE9 1 1

PRE6 2 2 PRE6 PRE6 PRE6

PRE2 2 2 PRE2 PRE2 PRE2

PRE5 7 7 PRE5 PRE5 1 1 PRE5

PRE10 3 5 PRE10 1 1 PRE10 PRE10

PUP1 2 2 PUP1 PUP1 PUP1 20S

PUP3 2 3 PUP3 PUP3 PUP3 (beta)

PRE1 2 2 PRE1 1 1 PRE1 PRE1

PRE2 2 2 PRE2 PRE2 PRE2

BLM10 BLM10 3 3 BLM10 BLM10

CIC1 1 1 CIC1 CIC1 CIC1

SIT4 1 1 SIT4 1 1 SIT4 SIT4

HRD1 3 3 HRD1 2 2 HRD1 HRD1 ERAD

HRD3 7 7 HRD3 7 8 HRD3 HRD3

YOS9 3 3 YOS9 4 4 YOS9 YOS9

USA1 3 5 USA1 2 2 USA1 USA1

CUE1 1 1 CUE1 CUE1 CUE1

SSM4 SSM4 1 1 SSM4 SSM4

DFM1 2 3 DFM1 2 2 DFM1 DFM1

UBA1 2 3 UBA1 5 5 UBA1 UBA1 Misc UPS

UBA3 1 1 UBA3 UBA3 UBA3

UBR1 1 1 UBR1 UBR1 UBR1

UBP14 1 1 UBP14 2 2 UBP14 UBP14 1 1

UBP15 UBP15 1 1 UBP15 UBP15

CDC53 1 1 CDC53 CDC53 1 1 CDC53

DOA1 DOA1 1 1 DOA1 DOA1
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Figure 28. Cdc48p interaction with the proteasome is unaltered by the loss of VMS1 

Wild-type and vms1Δ strains expressing Cdc48p-myc as their sole version of Cdc48p 

were grown in media containing standard and heavy (
13

C6,
15

N2) lysine, respectively. Extracts 

were prepared and Cdc48p-myc was immunoprecipitated with myc-agarose. Precipitated 

material was methanol/chloroform extracted and mass spectrometry was performed. The data 

from this SILAC analysis are presented as a ratio of WT (light) to vms1Δ (heavy). Ratios below 

“1” (horizontal red line) represent enrichment in vms1Δ (heavy-labeled) strain. Ratios above “1” 

represent enrichment in the wild-type (standard) strain. 
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3.3 DISCUSSION 

3.3.1 Loss of VMS1 increases cellular ubiquitinated proteins 

As discussed in Chapter 2, loss of VMS1 results in the accumulation of ubiquitinated proteins 

associated with Cdc48p. In this chapter, I report that the loss of VMS1 also results in the 

accumulation of total cellular ubiquitinated proteins. This finding suggests that ubiquitinated 

protein homeostasis represents one of Vms1p’s functions. Two apparent models can explain 

these data. In the first model, Vms1p modulates Cdc48p (or a Cdc48p cofactor) so that it 

promotes the efficient transfer or processing of ubiquitinated substrates. The second possibility is 

that Vms1p affects a downstream process such as proteasome function, which will in general 

increase the amount of ubiquitinated proteins in the cell. Using a panel of yeast strains mutated 

for various steps in the ERAD pathway, I discovered that the additional loss of VMS1 

consistently resulted in a further increase in ubiquitinated proteins (Figure 22A). This suggests 

that Vms1p functions in a largely additive parallel pathway with the tested genes. Interestingly, 

the level of ubiquitinated protein accumulation does not correlate with the presence of synthetic 

growth defects. For instance, ubx2Δvms1Δ accumulate far more ubiquitin than cdc48-3,vms1Δ 

strains, yet the latter has a severe growth defect on rich media (see Figure 14C, Chapter 2). 

This likely reflects the additional functions of Cdc48p. Moreover, I found that loss of VMS1 

results in accumulation of total ubiquitinated proteins irrespective of strain background and 
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mating type (Figure 22B and C). This strongly suggests that ubiquitinated protein homeostasis 

is the conserved function of Vms1p. 

3.3.2 Vms1p regulates proteasome subtype distribution 

There are at least three scenarios which would result in the accumulation of total ubiquitinated 

protein: 1) defects in deubiquitinating enzymes, 2) aberrant regulation of ubiquitinated substrate 

transfer to the proteasome and 3) defects in proteasome function. While it is still possible that 

Vms1p plays a role in deubiquitination (but see Figure 29, in which no growth defect was 

observed in strains deleted for VMS1 and the Cdc48p-associated DUB, OTU1) or substrate 

transfer, I chose to examine proteasome activity because this system was readily testable. In fact, 

I discovered that the distribution of proteasome subtypes was altered in vms1Δ mutants. The 

most prominent effect was with regard to the increase in the amount and activity of the 20S core 

as measured by both western blot analysis and Suc-LLVY AMC activity observed in the vms1Δ 

strain (Figure 24A-C). This was partially restored when the vms1Δ strain was supplied with a 

vector expressing wild-type Vms1p (Figure 26A). I also observed a significant decrease in 

proteasome activity associated with capped proteasomes in vms1Δ mutant cells, which is 

consistent with data showing an accumulation of ubiquitinated proteins. The former phenomenon 

was observed in 14 different experiments, without exception (Figure 30, left). By contrast, the 

decrease in 26S capped proteasome activity was observed in 8 out of 10 experiments (Figure 30, 

right). This might reflect the technically demanding nature of these experiments.  

 

Surprisingly, I did not observe a decrease in the signal corresponding to 19S capped 

proteasomes when I compared wild-type and vms1Δ strains harboring an empty vector (grown in 
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a minimal media). In fact, the levels of capped proteasomes from vms1Δ cells expressing wild-

type Vms1p-HA or the VIM mutant all appeared to increase. This phenomenon may be due in 

part to the effect of growth in minimal selective media. It is known that proteasomes play an 

important role in cell growth in minimal media (HEINEMEYER et al. 1991), where amino acids are 

limiting, but whether or not minimal media affects the distribution of proteasomes has not been 

tested, at least to my knowledge. At the most basic level, these data suggest that Vms1p affects 

the assembly or stability of the 26S proteasome.  
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Figure 29. VMS1 does not genetically interact with the gene encoding the deubiquitinating enzyme, 

OTU1 

A genetic cross was performed between Mat alpha (BY4742) vms1Δ and Mat a 

(BY4741) otu1Δ strains. Diploid cells were sporulated and tetrads were dissected. White circles 

represent wild-type, black circles represent vms1Δ, grey circles represent otu1Δ, and red circles 

represent otu1Δvms1Δ. The plate was incubated at 30°C. 
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Figure 30. Individual experiments from Figure 24B 

The individual experiments from Figure 24B are displayed as a scatter plot. The left plot 

is an assessment of 20S CP (Suc-LLVY-AMC) signal whereas the right plot is an assessment of 

26S capped proteasome. In both examples, the strains used are wild-type and vms1Δ. The 

activity seen in the wild-type strain was set to 100%. 
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3.3.3 Vms1p most likely functions in proteasome stability 

As mentioned above, my data can not rule out the possibility of defects in substrate transfer or 

DUB activity. I found that a strain double deleted for the genes encoding the ERAD DUB, 

OTU1, and VMS1 showed no apparent growth defect (Figure 29). However, two other very 

prominent proteasome-associated DUBs exist (Ubp6p and Rpn11p), and these need to be tested. 

This could be done by: 1) examining the expression levels of these DUBs and 2) testing for the 

association of these DUBs with capped proteasomes in WT and vms1Δ yeast.  

 

A defect in substrate transfer, due to loss of VMS1, was suggested in Chapter 2, and is 

based on the accumulation of ubiquitinated proteins associated with Cdc48p. This brings up the 

possibility that Vms1p serves as an escort factor or receptor for Cdc48p-ubiquitinated substrate 

complexes. This idea is further supported by the observation that both wild-type and a ΔVIM 

version of Vms1p co-migrated with the capped forms of the proteasome (Figure 26A). However, 

I have never been able to show association between Vms1p and ubiquitinated substrates as 

assessed by Vms1p immunoprecipitation followed by western blotting with antibodies against 

ubiquitin. Furthermore, the decrease in the amount of co-migrating Vms1p-ΔVIM with the 

proteasome suggests that Cdc48p may be required to link Vms1p with the proteasome, and this is 

further supported by the mass spectrometry data from (Figure 28) which indicates that the 

amount of Cdc48p-associated with the proteasome is unchanged in the vms1Δ background. This 

supports the possibility that Vms1p is recruited to the proteasome by Cdc48p, where Vms1p 

functions to maintain 26S proteasome homeostasis. The analysis of Vms1p-interaction partners 
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could validate this notion, especially if Vms1p is found in complex with Cdc48p and the 

proteasome, which is then reduced by a VIM mutant. Additionally, it would be interesting to see 

if gross overexpression of the Vms1p-ΔVIM mutant leads to any additional effects on the 

architecture of the 26S proteasome.  

 

The co-migration of Vms1p with the 26S proteasome raises two exciting possibilities: 1) 

Vms1p plays a role in stabilizing the 26S proteasome, or 2) Vms1p helps assemble the 26S 

proteasome. Data from section 3.3.3 (Figures 27A, B) showed that there was no effect of doubly 

deleting between VMS1 and select genes involved in proteasome assembly. While this result 

argues against a role in proteasome assembly, these experiments need to be further expanded to 

cover all possible proteasome chaperones (e.g., Pba1p-4p, Nas2, Nas6, Ecm29p) (FUNAKOSHI et 

al. 2009; KUSMIERCZYK et al. 2008; LE TALLEC et al. 2009; LEHMANN et al. 2010; LI and 

DEMARTINO 2009; PARK et al. 2009; ROELOFS et al. 2009; SAEKI et al. 2009; SCOTT et al. 2007). 

An alternative approach is to examine the proteins associated with Vms1p by 

immunoprecipitation under conditions that maintain proteasome stability (i.e., in the presence of 

ATP), or by yeast-two-hybrid. To date, there are no identified physical interactions between 

Vms1p and proteasome assembly chaperones, but these large-scale studies have relied on the 

bulky TAP tag for purification and conditions that deplete ATP (Biogrid) (STARK et al. 2006).  

 

Notably, some mutants like rpn10Δ cells already showed very high levels of ubiquitin 

accumulation, and a further increase in ubiquitin accumulation caused by VMS1 loss was modest 

(Figure 27A). The rpn10Δvms1Δ double mutant, however, showed a pronounced increase in 

free 20S core particle. These data suggest that Vms1p functions in series with Rpn10p. In this 
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scenario, Rpn10p loss cripples ubiquitinated protein homeostasis because of the accumulation of 

non-, or partially functional proteasome intermediates that have the 19S base attached to the 20S 

CP. Vms1p loss further reduces the stability of the 19S base-20S CP intermediate, but the 

severity of the ubiquitin degradation defect is already maximal because the proteasome in 

RPN10 mutants is defective. There is also evidence that overexpressed Dsk2p competes with 

Rpn10p for binding to substrate and this leads to the accumulation of ubiquitinated proteins 

(MATIUHIN et al. 2008). One possibility is that vms1Δ leads to Dsk2p overproduction, or 

prevents substrate association with Rpn10p. I have observed, on occasion, that Rpn10p 

distribution in a glycerol gradient is altered in vms1Δ lysates (see lower panel Figure 27D for 

one example). 

3.3.4 Additional considerations 

It is notable that mutations in genes encoding many proteasome-related factors showed a 

decrease in the amount of the di-ubiquitin signal (Figure 27A, Ub x 2). The relevance of this is 

not known.  

 

Cdc48p immunoprecipitations yielded approximately 400 cytosolic and 350 membrane 

interactors (Table 8). However, only ~34% previously known interactors were identified. While 

the data from spectral counting and from the SILAC experiment differ, this is not uncommon and 

reflects the inaccuracy of using spectral counting for proteomic quantitation. I am currently 

working on improving the analysis of the SILAC data sets in collaboration with Dr. Woong Kim 

from the Gygi lab. The current hypothesis, which is based on the SILAC data, is that Cdc48p is 

at the proteasome at equal levels in WT and vms1Δ yeast. This can be examined by performing 
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the in gel proteasome substrate overlay assay, and then western blotting for Cdc48p and possibly 

other relevant cofactors such as Ufd1p. Finally, I have shown in Chapter 2 that VMS1 genetically 

interacts with members of the UBX domain family. It would be interesting to see if the UBX 

family members, on their own, have any effect on the distribution of proteasome subtypes, as 

observed in this chapter for vms1Δ.  
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4.0  CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 CONCLUSIONS 

In Chapters 2 and 3, I showed that the Vms1 protein, which was previously uncharacterized, 

functions in the ubiquitin proteasome system. Specifically, co-immunoprecipitation experiments 

show that Vms1p is a Cdc48p-interacting partner that resides in the cytoplasm and at 

intracellular membranes. I demonstrate that loss of VMS1 results in an ERAD defect that is 

further exaggerated by the additional loss of select Cdc48p cofactors. Additionally, select double 

mutant combinations showed sensitivity to cellular stressors such as cadmium and tunicamycin. I 

showed that VMS1 mutants accumulate total cellular ubiquitinated proteins, and accumulation 

was also evident in the population that is associated with Cdc48p. I also found that the 

accumulation of ubiquitinated proteins observed in the VMS1 mutants can be mimicked by a 

yeast strain expressing only a version of Vms1p lacking its VIM domain, a Cdc48p interacting 

motif. These results indicate that ubiquitinated protein homeostasis requires the formation of the 

Cdc48p-Vms1p complex. Furthermore, I found that the ubiquitinated protein accumulation 

phenotype in vms1Δ yeast correlates with the accumulation of the latent 20S proteasome. I then 

showed that Vms1p co-migrates with the 26S proteasome and that the VIM mutant showed a 

reduced signal. Finally, I observed that the effect of vms1Δ on the proteasome was not due to 

changes in subunit expression, and did not appear to be the result of defects in the proteasome 
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assembly pathway. My data suggest, for the first time, that a complex of Cdc48p and Vms1p 

regulates the stability of the 26S proteasome.  It is curious that the loss of VMS1 leads to 

selective degradation defect of CFTR. This may imply that CFTR is hypersensitive to changes in 

proteasome levels in yeast.  

4.2 FUTURE DIRECTIONS 

4.2.1 Cycloheximide sensitivity 

I have shown that the loss of VMS1 on its own has only modest effects on protein degradation. 

Virtually all substrates tested to date had little to no detectable impairment in their degradation. 

A potential issue in these experiments is the use of the protein translation inhibitor, 

cycloheximide. VMS1 mutant cells are extremely sensitive to cycloheximide. And, while this 

phenotype was not enough to occlude the ERAD defect for CFTR, it is evident that the effect of 

vms1Δ on CFTR degradation was better assessed in a pulse chase experiment (Figure 16A and 

B). One possible remedy would be to examine additional ERAD substrates, for instance, the 

ERAD-L substrate CPY* by pulse chase analysis. I would also be interested in performing a 

pulse chase, without cycloheximide, for the N-end rule substrate, Ub-pro-beta-gal. Alternatively, 

it is possible to define in vivo substrates that are dependent upon Vms1p for efficient degradation 

by mass spectrometry. This is currently under consideration and could be performed as a SILAC 

experiment using whole cell extracts, or isolated cellular fractions from wild-type and vms1Δ 

cells. Defining the in vivo substrates by this method is in theory applicable to any ERAD/UPS 

mutant, and would help characterize overlapping and unique pathways of protein degradation.  
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A prominent phenotype of VMS1 loss is hypersensitivity to the protein translation 

inhibitor, cycloheximide. Cycloheximide exposure results in the depletion of ubiquitin and is 

suppressed by proteasome mutants (Figure 31A) (GERLINGER et al. 1997; HANNA et al. 2003). 

In my hands, vms1Δ yeast plated onto a low concentration of cycloheximide yielded suppressors 

of this phenotype, and indeed these suppressors accumulate ubiquitinated protein to a greater 

extent than the original mutants (Figure 22C, Figure 31B). This strongly suggests that 

cycloheximide sensitivity suppression is the result of proteasomal inactivation. My data indicate 

that proteasome instability is a relevant feature in the vms1Δ strain. It would be interesting to 

analyze proteasome distribution in vms1Δ strains that are sensitive and resistant to 

cycloheximide. If there is no effect, whole genome sequencing could be used to determine if 

these suppressors harbor mutations in additional proteasome components, or perhaps in novel 

genes that regulate the UPS. As an alternative to the whole genome approach, sequencing genes-

encoding known proteasome genes could be performed. The spontaneous rescue of this 

phenotype has the potential to reveal much about regulation of proteasome function. 
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Figure 31. Suppressor mutants of the vms1Δ cycloheximide sensitive phenotype accumulate higher 

levels of ubiquitinated proteins 

A. Cycloheximide depletes ubiquitin and ubiquitinated proteins in wild-type and vms1Δ 

yeast. Wild-type and vms1Δ cells were grown to log-phase and treated with 100μg of 

cycloheximide for 2.5 h. Cells before or after treatment were processed for western blot analysis 

with anti-ubiquitin antibodies. B. As seen in Figure 22C, vms1Δ yeast plated on cycloheximide 

show suppressor mutants. Suppressors (#3 and #4) were isolated and total protein was prepared 

by TCA precipitation. The protein extract was resolved by SDS-PAGE and subject to western 

blotting with anti-ubiquitin.  
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4.2.2 Cdc48p ATPase activity 

VMS1 genetically interacts with many members of the UBX family of Cdc48p cofactors (Table 

5). UBX family members from a diverse number of organisms have been shown to modulate 

Cdc48p/p97 ATPase activity (see section 1.4.2). In addition, VMS1 genetically interacts with two 

different temperature sensitive CDC48 alleles (cdc48-2 and cdc48-3). The mutations have been 

partially characterized (see Figure 11), and affect the function of the first AAA-ATPase domain 

(D1). While the first ATPase domain is thought to be largely involved in hexamerization, there is 

evidence indicating that the ATPase domains communicate with each other during the hydrolysis 

cycle (DELABARRE and BRUNGER 2003; LI et al. 2012). It would be interesting to see if purified 

Vms1p can modulate the ATPase activity of Cdc48p in an in vitro assay. Currently, I have 

obtained purified Vms1p from our collaborator, Dr. Angela Gronenborn and with assistance 

from Dr. Leonardus Koharudin. Additionally, the Brodsky lab is well equipped to perform these 

assays as the lab routinely performs ATP- hydrolysis experiments for the HSP70s.  

4.2.3 The Cdc48p-Vms1p complex at the proteasome 

Recently, the Cdc48 hexamer was shown to form a tight functional complex with the 20S core 

particle in Archaea (BARTHELME and SAUER 2012). Three conclusions could be drawn from this 

elegant study. First, the Cdc48 complex dramatically increases 20S-mediated peptide 

degradation, suggesting that the peptide is being channeled into the 20S core by this ATPase. 

Second, the Cdc48 hexamer interaction with the 20S is not entirely dependent upon the HbYX 
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motif (see section 1.2.4). This result indicates that the Cdc48 hexamer has additional physical 

contacts with the proteasome that can stimulate the opening of the gate, and also alludes to the 

presence of additional bridging factors between the Cdc48 hexamer and the 20S core 

proteasome. Third, ATP, but not ADP binding to Cdc48 supported interaction with the 20S 

particle. This raises the possibility that UBX proteins, which are known to decrease the ATPase 

activity of yeast Cdc48p and genetically interact with VMS1, may be involved in modulation this 

type of interaction, or the interaction of the 19S cap and 20S core. 

 

I have shown that Vms1p and a mutant version lacking the VIM domain co-migrate with 

the 26S proteasome (Figure 26A). Most interestingly, the Vms1-ΔVIM protein showed reduced 

co-migration compared to the wild-type version. This implies that Cdc48p may, in part, help 

recruit Vms1p to the proteasome to maintain proteasome stability. Further support for this 

hypothesis comes from the SILAC experiment, which showed that Cdc48p-association with 

proteasomal components was largely unaffected in the vms1Δ background (Figure 28). 

However, a major caveat with the SILAC data is that there are many different Cdc48p-

complexes. It was simply not possible to determine whether Cdc48p-complexes were associated 

with the 19S cap and 20S core particle as a single entity or individually. Further, the conditions 

for the SILAC experiment were not optimal for maintaining the 26S proteasome complex and 

this apparent because the beta7 (Pre4p) subunit of the proteasome was never identified in any of 

my mass spectrometry experiment. It is likely then that Cdc48p interacts with the 19S and 20S 

particles individually.  
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Taking all these data into account, two formal possibilities exist: 1) Cdc48p may recruit 

Vms1p to the proteasome, and 2) Vms1p is recruited to the proteasome independent of the 

Cdc48p hexamer, and then recruits Cdc48p. The reason that the bulk of the Vms1-ΔVIM protein 

is reduced may be that the Cdc48p interaction prevents its degradation. To distinguish between 

these two possibilities, I would like to perform the native gel proteasome activity assay with 

lysates from wild-type and vms1Δ yeast expressing Cdc48p-myc followed by western blotting 

with the anti-myc serum. My expectation is that Cdc48p will co-migrate with the 20S core 

particle, and the interaction will be entirely unaffected by the vms1Δ genetic background. This 

would imply that the Cdc48p complex is at the proteasome to recruit Vms1p is a 26S stabilizing 

factor. 

4.2.4 Testing additional fluorogenic substrates 

I have shown that VMS1 deletion leads to an increase in the amount of 20S activity for a 

fluorogenic substrate, Suc-LLVY-AMC. This substrate is specific only for the chymotryptic-like 

activity of the beta5 subunit of the proteasome. There are other substrates that can be used to test 

the additional activities of the proteasome. For instance, the Z-LLE-AMC substrate measures the 

PGPH-like activity and the BOC-RRL-AMC assesses the trypsin-like activity. I have recently 

purchased these substrates and plan on testing the affect of VMS1 loss on their degradation.  

4.2.5 An in vitro system for proteasome function 

My work indicates that proteasome function is ultimately hampered by the loss of the VMS1 

gene. To further test this model, I would like to develop an in vitro assay for protein degradation. 



 154 

The assay is based on a protocol originally developed to measure the in vitro degradation of a 

Cyclin inhibitor, Sic1p (SAEKI et al. 2005). Cdc48p complexed to ubiquitinated species can be 

purified from both wild-type and vms1Δ mutant yeast and can be used as a starting material, 

instead of the isolated ubiquitinated Sic1p (see Figure 21B). The precipitate can be mixed with 

purified 26S proteasome in the presence or absence of ATP to stimulate degradation (Figure 

32A). In fact, I have attempted this assay. In Figure 32B, I found that mixing these components 

results in a reduction in the ubiquitinated signal (compare lanes 1-3 and 4-6). This might 

represent true substrate degradation, but I can not rule out DUB activity in this assay at the 

moment. Additionally, it is uncertain whether or not the ubiquitinated species are derived from 

Cdc48p or from the pool associated with the proteasome. To address this issue, I could in 

practice express an epitope-tagged form of ubiquitin (HA-tagged) along with Cdc48p-Myc, and 

purify the Cdc48-Myc complex as the starting material. This would let me monitor the 

ubiquitinated proteins specifically associated with Cdc48p. Regardless this is a very promising 

first step, and may allow the community to reconstitute the last steps prior to degradation in the 

ERAD pathway. 
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Figure 32. Development of an in vitro degradation assay 

A. Lysates from yeast strains expressing Rpn11p-FLAG were prepared for affinity 

purification with FLAG-agarose. Affinity purified 26S proteasome was resolved, in duplicate, by 

SDS-PAGE and silver stained. B. In vitro degradation assay. Cdc48p-ubiquitinated protein 

complexes were purified as in Figure 21B. Affinity purified proteasome from (A) and either ATP 

or a cocktail of Apyrase/NEM was added to the Cdc48p-ubiquitinated protein precipitate, and the 

reaction was allowed to proceed at 30°C for the indicated times. The reaction was quenched by 

adding SDS-PAGE sample buffer, and resolved by SDS-PAGE for western blotting with anti-

ubiquitin antibody. 
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Appendix A 

MODELING IBMPFD MUTATIONS IN YEAST 

The human homolog of Cdc48p, VCP/p97, has been linked to several diseases including a 

number of neuromuscular disorders (see section 1.4.1). A commonality among these diseases is 

the presence protein aggregates, suggesting that the pathology of the disease is caused by 

aberrant protein quality control (JU et al. 2009; WEIHL et al. 2006).  

 

In this study, I used yeast to model the molecular pathology associated with the human 

disease, Inclusion Body Myopathy associated with Paget’s disease of bone and Frontotemporal 

Dementia (IBMPFD). Specifically, I constructed several CDC48 yeast mutants that corresponded 

to the most common IBMPFD mutations, R95G, R155H, and A232E (WATTS et al. 2004). I 

found that R95G and the A232E mutations caused temperature sensitivity in yeast and an 

autophagy-related defect. However, a more detailed analysis, which was done with the help of 

Bill Glassford (graduate rotation student, University of Pittsburgh), revealed that the temperature 

sensitivity of the R95G and R155H alleles were the result of the HA-epitope tag at the end of 

carboxy terminus of Cdc48p. A Myc-tagged version of these alleles displayed no temperature 

sensitivity and no defect in autophagy. Further, the Myc-tagged alleles showed no growth 
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phenotypes on various stress agents and no ERAD defects. This study, however, does reveal that 

epitope tagged versions of Cdc48p are very stable and thus the differences between these two 

versions of Cdc48p are likely related to some aspect of Cdc48p function. In fact, I discovered 

that there are differences in the apparent migration of the Cdc48p hexamer, depending upon the 

epitope tag used. Additionally, I show for the first time that a classic temperature sensitive allele 

of CDC48, cdc48-3, is devoid of detectable free hexamer. I conclude that the yeast model of 

IBMPFD might be used in the future to study basic Cdc48p function such as hexamer assembly 

and cofactor binding. (This study was started as a collaboration between the Brodsky lab and the 

lab of Dr. John Paul Taylor at St. Jude’s Childrens Hospital (Memphis, Tennessee)).  

A.1 EXPERIMENTAL PROCEDURES 

A.1.1 Yeast strains, oligos, plasmids, and growth assays 

Yeast strains used in this study are listed in Table 10. Strain construction and growth 

assays were performed as described in Chapter 2 section 2.1.1. A notable exception is that cells 

were selected on media lacking uracil to maintain the CDC48 encoding plasmid. Schematic for 

creating yeast harboring IBMPFD mutations is shown in Figure 33. Plasmids and 

oligonucleotides used in this study are listed in Table 11 and 12. 

 



 158 

Table 11. List of strains used in this study 

Strain  Genotype Reference 

   

BY4742 MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15 Open Biosystems 

cdc48-3 MATα, his3Δ1, leu2, ura3, lys2Δ0, MET15, cdc48-3 Tran, et al., 2011 

cdc48ΔWTMyc MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, cdc48Δ::KanMX, pRS315-CDC48Myc This study 

cdc48ΔR95GMyc MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, cdc48Δ::KanMX, pRS315-CDC48Myc(R95G) This study 

cdc48ΔR155HMyc MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, cdc48Δ::KanMX, pRS315-CDC48Myc(R155H) This study 

cdc48ΔA232EMyc MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, cdc48Δ::KanMX, pRS315-CDC48Myc(A232E) This study 

cdc48ΔWTHA MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, cdc48Δ::KanMX, pRS315-CDC48HA This study 

cdc48ΔR95GHA MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, cdc48Δ::KanMX, pRS315-CDC48HA(R95G) This study 

cdc48ΔR155HHA MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, cdc48Δ::KanMX, pRS315-CDC48HA(R155H) This study 

cdc48ΔA232EHA MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, cdc48Δ::KanMX, pRS315-CDC48HA(A232E) This study 

ufd2Δcdc48ΔWTHA MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ufd2Δ::HIS3MX, cdc48Δ::KanMX, pRS315-CDC48HA This study 

ufd2Δcdc48ΔR95GHA MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ufd2Δ::HIS3MX, cdc48Δ::KanMX, pRS315-CDC48HA(R95G) This study 

ufd2Δcdc48ΔR155HHA MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ufd2Δ::HIS3MX, cdc48Δ::KanMX, pRS315-CDC48HA(R155H) This study 

ufd2Δcdc48ΔA232EHA MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ufd2Δ::HIS3MX, cdc48Δ::KanMX, pRS315-CDC48HA(A232E) This study 

ufd2Δ::HIS3MX MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ufd2Δ::HIS3MX This study 
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Table 12. Plasmids used in this study 

Plasmid name Description Reference 

   

pSM1911 PGK1 promoter, Ste6p*-HA expression plasmid, 2 micron Huyer, et al., 2006 

CPY*-3xHA Endogenous promoter, CPY* 3xHA expression plasmid, CEN Bhamidipati, et al., 2005 

pRS315-CDC48myc Endogenous promoter, c-terminal 1xmyc CDC48, CEN Tran, et al., 2011 

pRS315-CDC48myc(R95G) Endogenous promoter, c-terminal 1xmyc CDC48 (R95G), CEN This study 

pRS315-CDC48myc(R155H) Endogenous promoter, c-terminal 1xmyc CDC48 (R155H), CEN This study 

pRS315-CDC48myc(A232E) Endogenous promoter, c-terminal 1xmyc CDC48 (A232E), CEN This study 

pRS316-CDC48HA Endogenous promoter, c-terminal 1xHA tagged CDC48, CEN Tran, et al., 2011 

pRS316-CDC48HA(R95G) Endogenous promoter, c-terminal 1xHA tagged CDC48 (R95G), CEN This study 

pRS316-CDC48HA(R155H) Endogenous promoter, c-terminal 1xHA tagged CDC48 (R155H), CEN This study 

pRS316-CDC48HA(A232E) Endogenous promoter, c-terminal 1xHA tagged CDC48 (A232E), CEN This study 
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Table 13. List of oligonucleotides used in this study 

Name  Sequence 

  

R95G-F agttcgtaacaatttacgtattgggctgggtgatttagttacaattcatc 

R95G-R gatgaattgtaactaaatcacccagcccaatacgtaaattgttacgaact 

R155H-F gaaaggcgaccattttgttgtccatggcggtatgagacaagtcgaattca 

R155H-R tgaattcgacttgtctcataccgccatggacaacaaaatggtcgcctttc 

A232E-F tgagacatcctcagttgttcaaggagatcggtatcaagccaccaagaggt 

A232E-R acctcttggtggcttgataccgatctccttgaacaactgaggatgtctca 
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Figure 33. The general scheme used to model IBMPFD mutations in yeast 

Diploid strains heterozygous for the deletion of CDC48 (cdc48Δ::KanMX) were transformed 

with the indicated plasmids and grown on selective media. Diploids were then sporulated and 

tetrads were dissected on selective media to force the maintenance of the plasmid. Strains 

positive for growth on both G418 and the plasmid selective marker were saved. Total DNA was 

extracted from these strains and the CDC48 gene was amplified and sequenced to ensure that the 

only allele present was from the plasmid. 
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A.1.2 Cycloheximide chase assay 

Cycloheximide chase assays were performed as described in Chapter 2 section 2.1.2. 

A.1.3 Assays to measure autophagy  

Autophagy and CVT pathways were assessed using the assays described in Chapter 2 section 

2.1.6. 

A.1.4 Immunoprecipiation  

Immunoprecipitation of the Cdc48p-HA and Cdc48p-Myc tagged constructs was done as 

described in Chapter 2 section 2.1.5.  

A.1.5 Native PAGE 

Cdc48p hexamers were analyzed using native PAGE. Briefly, 100ml of log-phase cells were 

harvested, resuspended in Buffer 88 (20mM HEPES pH 6.8, 150mM KOAc, 250mM sorbitol, 

5mM MgOAc) supplemented with 1mM PMSF, 1μg/ml leupeptin, and 0.5μg/ml pepstatin A, 

and disrupted by glass bead lysis at 4°C. The unbroken cells were removed by low-speed 

centrifugation, and the resulting crude supernatant was centrifuged at 18,000g for 20 min in a 

refrigerated table top centrifuge to obtain the cytosolic fraction. The cytosolic fraction (25μg) 

was resuspended in native PAGE sample buffer (80mM Tris-HCl, pH 8.0, 8mM EDTA, 15% 

glycerol, 0.08% Tris base, 0.01% bromophenol blue) and resolved on a 6% native 
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polyacrylamide gel (8.5 x 10 cm). To denature select samples, SDS was added to a final 

concentration of 0.5% and the mixture was incubated at 75°C for 10 minutes. The samples were 

cooled on ice prior to loading. Proteins were then transferred on nitrocellulose and western blot 

analysis was performed with the indicated antibodies. 

A.1.6 Gel filtration analysis 

Gel filtration analysis was used to analyze the distribution of Cdc48p complexes. The source 

material was cytosolic extracts prepared as described in section 5.1.5. Sephacryl S300HR gel 

filtration media resuspended in Buffer 88 (~80ml) was packed by gravity in a 2.5 x 50 cm 

column. The column was flushed with 5-6 volumes of Buffer 88 prior to use, and stored in 10% 

ethanol. To fractionate the Cdc48p complex, 10mg of cytosol was applied to the column. A 

peristaltic pump (1mm tubing) was used at a setting of 150ml/h to flush the column with Buffer 

88. Fractions were collected with an automated fraction collector at a setting of 1.5 min/fraction. 

The total protein from each fraction was isolated by TCA precipitation and resolved by SDS-

PAGE. Western blotting was performed with the indicated antibodies.  

A.1.7 Antibodies and western blot analysis 

Antibodies used in this study included: Anti-HA (Roche, USA), anti-Myc (Santa Cruz, USA), 

anti-GFP (Roche, USA), anti-Ape1p (a kind gift from Dr. Daniel Klionsky), anti-Cdc48p (a kind 

gift from Dr. Rasmus Hartmann-Petersen) and Ubx1p (a kind gift from Dr. Alexander 

Buchberger). Western blots were decorated with the indicated primary antibodies and 

appropriate HRP-conjugated anti-mouse or anti-rabbit IgG secondary antibodies. The HRP-
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chemiluminescent signal was visualized by enhanced chemiluminescence (Pierce, USA). Images 

were captured on a Kodak Image Station 440CF (Kodak, USA) and were analyzed using ImageJ 

v1.42q (Abramoff). 

A.2 RESULTS  

A.2.1 Yeast strains carrying IBMPFD mutations do not exhibit growth defects at 

permissive temperatures 

The indicated IBMPFD mutation was introduced at the corresponding location in the yeast 

CDC48 gene by site directed mutagenesis (Figure 34A). The mutagenized version of CDC48 

was cloned into a low-copy CEN plasmid and introduced into a diploid strain heterozygous for 

the deletion of CDC48. A single HA-epitope tag was also introduced at the carboxy terminus of 

the Cdc48 protein to facilitate detection. Haploid strains containing both a deletion of the CDC48 

chromosomal locus and the plasmid containing CDC48 were selected for by the scheme seen in 

Figure 33. For convenience, the human nomenclature is used for the yeast-modeled IBMPFD 

alleles. 

 

As seen in Figure 34B and 34C, yeast strains harboring the IBMPFD mutations in their 

only copy of Cdc48p displayed no obvious growth defect. Additionally, the expression level of 

Cdc48p-HA from the CEN plasmid in these strains was unaffected by the presence of the 

IMBPFD mutations, and comparable to a wild-type construct (Figure 34B, bottom panel). This 
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indicates that the IBMPFD mutations, under standard growing conditions, are not detrimental to 

cell viability and growth.  
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Figure 34. IBMPFD mutations modeled in the CDC48-HA gene show no viability or growth defects 

under standard growth conditions 

A. The three different IBMPFD mutations selected are indicated by the upward pointing 

arrowheads. The alignment between human and yeast p97 and Cdc48p, respectively, was done 

using Vector NTI. These three mutations represent the most common IBMPFD mutations. B. 

Tetrads carrying the individual IBMPFD alleles were dissected and grown at 30ºC (top). Western 

blot analysis (anti-HA and anti-Sec61p) was performed on total protein from the indicated strains 

to determine their relative expression levels (bottom). C. Growth of the indicated strains was 

measured (OD600) in liquid culture. The doubling times were calculated and plotted using 

Microsoft Excel.  



 167 

A.2.2 Yeast strains carrying IBMPFD mutations are temperature 

To test if IBMPFD mutations in the CDC48-HA gene compromise tolerance to general cell 

stress, 10-fold serial dilutions of the indicated strains were spot plated and grown at permissive 

(30ºC) and at high temperature (38ºC). The IBMPFD alleles R95G and A232E displayed a 

pronounced and reproducible temperature sensitive phenotype at high temperature (Figure 35A, 

right). High temperature is known to induce, among other things, the autophagic pathway 

(MELENDEZ and NEUFELD 2008). IBMPFD mutations in humans have also been shown to cause 

defects in the autophagic pathway (JU et al. 2009). I therefore analyzed the processing of an 

autophagic/CVT marker in IBMPFD-modeled CDC48-HA mutants. Consistent with the 

temperature sensitive phenotype, both the R95G and A232E mutants showed an increase in the 

processing of Ape1p, which indicated that the autophagic/CVT pathways were activated (Figure 

35B, compare lanes 2 and 4). Interestingly, when these strains were challenged at higher 

temperature, the processing of Ape1p was reduced in both the R95G and A232E mutants (Figure 

35B, compare lanes 6 and 8). This suggests that the temperature sensitivity observed in these 

select IBMPFD strains could be due to an autophagic defect.  

 

One possible explanation for the temperature sensitivity seen in R95G and A232E 

CDC48-HA mutants is protein instability. Elevated temperature is known to exacerbate the 

misfolding of some proteins and promote their degradation (ZHANG et al. 2002). To test protein 

stability, I performed a cycloheximide chase analysis of the IBMPFD CDC48-HA mutants. As 

seen in Figure 36A and B, the IBMPFD mutants were not grossly unstable when compared to 

wild-type Cdc48p-HA. Thus, it is more likely that the observations of temperature sensitivity and 

the mild autophagic defect are due to the altered function of Cdc48p.  
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Figure 35. Select IBMPFD mutations modeled in the CDC48-HA gene show temperature sensitivity 

and autophagic defects 

A. The indicated yeast stains were spot tested (10-fold serial dilutions) on the appropriate media 

and the plates were incubated at the indicated temperatures. B. Autophagic/CVT pathway was 

assessed as described in the Experimental Procedures section. Total TCA precipitated protein 

from the indicated strains was resolved by SDS-PAGE and western blotting was performed with 

the indicated antibodies. 



 169 

 

Figure 36. Cdc48p-HA is a stable protein 

A and B. The stability of Cdc48p-HA was assessed by cycloheximide chase assay as described 

in the Experimental Procedures sections. A. represents the quantitation of two independent 

experiments and B. are representative figures from the experiment.  
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A.2.3 Temperature sensitive IBMPFD mutants are due to a genetic interaction between 

the mutant allele and the epitope tag 

To ensure that effects seen in the IBMPFD mutations were due solely to the mutation, a graduate 

rotation student, Bill Glassford and I tested the recoverability of the temperature sensitive 

phenotype. This assessment was important because epitope tagging at the carboxy terminus of 

Cdc48p might impair the binding of select cofactors, such as (BOHM et al. 2011; RUMPF and 

JENTSCH 2006). In this experiment, the temperature sensitive R95G and A232E strains were 

transformed with an empty vector, or a vector designed to express wild-type versions of Cdc48p 

that were untagged, HA-tagged or Myc-tagged at the carboxy terminus. As seen in Figure 37, all 

strains grew normally at the permissive temperature (30ºC). However, when the strains were 

incubated at high temperature (38ºC), only the strains expressing the untagged or Myc-tagged 

versions of Cdc48p recovered the temperature sensitive phenotype of the R95G and A232E 

mutations. This result was quite surprising and suggested that the phenotype of the R95G and 

A232E CDC48-HA mutant constructs was due to a combined effect of the mutant allele and the 

epitope tag.   
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Figure 37. The temperature sensitivity seen in select IBMPFD-CDC48-HA alleles is the result of a 

compound effect of the mutant allele and the HA-epitope tag 

The indicated strains (left of the vertical bar) were transformed with the indicated plasmids (right 

of the bar). The strains were spot plated (10-fold serial dilutions) and selective media and 

incubated at the indicated temperatures.  
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A.2.4 Cdc48p-HA hexamers exhibit slower migration than Cdc48p-Myc hexamers 

Many IBMPFD mutations affect the amino-terminus and the first AAA ATPase domain of 

p97/Cdc48p (HALAWANI et al. 2009). A classic temperature sensitive of CDC48, cdc48-3, 

possesses mutations in the first AAA ATPase domain (see Figure 11 in Chapter 1). During the 

course of my studies, I discovered that the cdc48-3 mutant, when incubated at a permissive 

temperature, lacked detectable free hexamers as assessed by native PAGE (Figure 38). Thus, one 

possible explanation for the temperature sensitivity of Cdc48p-HA is that free hexamers may be 

depleted. To test examine this, a graduate rotation student, Bill Glassford and I performed a 

native gel assay using lysates from yeast expressing Cdc48p-HA or Cdc48p-Myc alone, or both 

Cdc48p-HA and Cdc48p-Myc. We also assessed the effect of temperature on Cdc48p-HA and 

Cdc48p-Myc hexamers. As observed in Figure 39A, Cdc48p-HA hexamers showed a slower 

apparent migration when compared to Cdc48p-Myc hexamers (compare lanes 3, 4, 7, 8, 11-14 in 

Figure 39A). The signal corresponding to the Cdc48p-Myc hexamer consistently migrated faster 

than Cdc48p-HA hexamers (compare lanes 3 and 4 with 11 and 12 in Figure 39A). Cdc48p-HA 

and Cdc48p-Myc also displayed altered gel filtration profiles (Figure 39B). Interestingly, mixed 

Cdc48p-HA and Cdc48p-Myc hexamers also migrated with the same apparent mobility as the 

Cdc48p-Myc hexamer alone (compare lanes 7 and 8 with 11-14 in Figure 39A). The presence of 

mixed Cdc48p-HA and Cdc48p-Myc hexamers was confirmed by reciprocal immunoprecipation 

experiments (Figure 39C). These results indicate that Cdc48p-Myc confers this type of hexamer 

mobility even in the presence of temperature sensitive Cdc48p-HA subunits.  

 



 173 

The incubation of cells at 38ºC led to a noticeable decrease in Cdc48p-HA hexamers 

(compare lanes 3 and 4 in Figure 39A), whereas Cdc48p-Myc hexamers appeared to increase 

with high temperature exposure (Figure 39A, lanes 11 and 12). Intriguingly, these two 

aforementioned properties were quite apparent when strains expressed both Cdc48p-HA and 

Cdc48p-Myc (compared the upper and lower bands seen in lanes 7 and 8 of Figure 39A). These 

data collectively suggest that temperature sensitivity of Cdc48p-HA may be caused by the loss of 

free hexamers, and that the R95G and A232E IBMPFD mutations further compromise a Cdc48p-

HA hexamer-associated process.  

 

In Figure 38, I found that the loss of UFD2 results in faster Cdc48p hexamer migration. 

Given that Ufd2p binds to the carboxy terminus of Cdc48p, I wondered if the slower migration 

of the Cdc48p-HA hexamer was caused by the tight binding of Ufd2p to the carboxy terminus. 

The tight binding of Ufd2p to Cdc48p-HA would exclude the binding of the DUB, Otu1p 

(RUMPF and JENTSCH 2006). Thus the HA tag may lead to an overrepresentation of pro-

degradative Cdc48p-Ufd2p within the cell. To test this idea, I deleted the UFD2 gene in the 

different IBMPFD mutant CDC48-HA backgrounds and tested for the recovery of temperature 

sensitivity. As seen in Figure 40, the deletion of UFD2 did not rescue temperature sensitivity in 

any of these strains tested.   
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Figure 38. The cdc48-3 allele causes the loss of free hexamer 

Cytosolic extracts were prepared from the indicated strains. A total of 25μg of protein was 

resolved by native PAGE as described in the Experimental Procedures section. Western blotting 

was performed with the anti-Cdc48p antibody (a kind gift from Dr. Rasmus Hartman-Petersen). 

For SDS treatment, SDS was added to a final concentration of 0.5% and the sample was 

incubated at 75ºC. 
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Figure 39. Cdc48p-HA hexamers display a different migration pattern than Cdc48p-Myc hexamers 

A. The indicated cells were grown at either permissive (30ºC) or non-permissive (38ºC for 2-4 h) 

temperatures. Cytosolic extracts were prepared from the indicated strains and 25μg of the 

cytosolic extract was resolved by native PAGE as described in the Experimental Procedures 

section. Western blotting was performed with antibodies against the epitope tags found at the 

carboxy terminus of Cdc48p. B. A total of 10mg of cytosolic extract from wild-type Cdc48p-HA 
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and Cdc48p-Myc was separated by gel filtration (Sephacryl S300HR) column chromatography 

as described in the Experimental Procedures section. Total protein from each fraction was TCA 

precipitated and resolved by SDS-PAGE. Western blotting was performed with the indicated 

antibodies to assess the distribution of Cdc48p complexes. C. Immunoprecipitation experiments 

were performed to assess the formation of mixed hexamers and were done as described in the 

Experimental Procedures section. Immunoprecipitated proteins were resolved by SDS-PAGE 

and western blotted with the indicated antibodies.  
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Figure 40. The loss of UFD2 does not rescue the temperature sensitive IBMPFD-CDC48-HA alleles 

The indicated strains were spot tested (10-fold serial dilution) for sensitivity at permissive (30ºC) 

or non-permissive (38ºC) temperatures, and also for sensitivity towards the indicated chemical 

stress agents.  
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A.2.5 IBMPFD mutations modeled into CDC48-MYC are not temperature sensitive 

Given that the original goal of this project was to model IBMPFD disease-causing mutations in 

yeast, I created a second series of strains containing IBMPFD mutations in a CDC48-Myc gene 

and tested for the expression of these alleles. The strategy was identical to that used to create the 

IBMPFD CDC48-HA strains (Figure 33). Like their IBMPFD CDC48-HA counterparts, the 

Cdc48p-Myc versions all expressed the mutant proteins to levels comparable to that of the wild-

type protein (Figure 41A). To see if the IBMPFD CDC48-Myc strains had compromised stress 

tolerance, I performed the serial dilution spot test at permissive (30ºC) and non-permissive 

(38ºC) temperatures, and also on media containing different chemical stress agents. As observed 

in Figure 41B, the modeling of IBMPFD mutations in the CDC48-Myc gene did not lead to 

sensitivity at higher temperature or on any tested chemical stressors. Additionally, the IBMPFD-

CDC48-Myc alleles displayed no apparent ERAD defect for two different substrates (Figure 42A 

and B) and no defect in autophagy (Figure 43). Thus, I conclude that select IBMPFD mutations 

when combined with the HA epitope tag at the carboxy terminus, mimic some aspects of the 

molecular pathology of IBMPFD.    
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Figure 41. IBMPFD mutations modeled in the CDC48-Myc gene is not temperature sensitive 

A. IBMPFD mutants were constructed as described in the Experimental Procedures section. The 

procedure is illustrated in Figure 1. Western blot was performed from total protein extracts from 

the indicated strains to assess the level of protein expression between the various IBMPFD 

alleles. B. The indicated strains were spot tested (10-fold serial dilution) for sensitivity at 

permissive (30ºC) or non-permissive (38ºC) temperatures, and also for sensitivity towards the 

indicated chemical stress agents.  
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Figure 42. IBMPFD mutations modeled in the CDC48-Myc gene do not negatively affect the ERAD 

of two model substrates 

A. and B. The ERAD of Ste6p*, a transmembrane substrate and CPY*, a soluble ER-lumenal 

substrate was assessed by cycloheximide chase as described in the Experimental Procedures 

section. A. Quantitation of protein levels from three independent experiments. Representative 

figures are shown in B.  
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Figure 43. IBMPFD mutations modeled in the CDC48-Myc gene do not show autophagy defects 

The indicated strains were transformed with a vector designed to express GFP-ATG8, a reporter 

of autophagy. The induction of autophagy was performed as a time-course experiment as 

described in the Experimental Procedures section. Total protein was precipitated and resolved by 

SDS-PAGE and western blotting was performed with the indicated antibodies. Ponceau S red 

staining is included as an indicator of relative protein loading.  
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A.3 DISCUSSION 

 

The modeling of IBMPFD mutations in epitope tagged versions of the yeast CDC48 gene has led 

to a number of insights. First, the HA-, but not the Myc-epitope tag compounds the effects of the 

R95G and A232E alleles to cause temperature sensitivity and autophagic defects. This finding is 

remarkable given the fact that the HA tag (amino acids sequence: YPYDVPDYA) is a single 

HA, which was presumed to be minimally obstructive to Cdc48p function. The Myc-tag (amino 

acid sequence: EQKLISEEDL) is also present as a single copy. The observed difference in 

temperature sensitivity is likely due to the sequence of the HA tag.  

 

Incubating “wild-type” Cdc48p-HA yeast at high temperature led to a noticeable decrease 

in the amount of free hexamer (Figure 39A, lanes 3, 4, 7, 8). The classic temperature sensitive 

allele, cdc48-3, which possesses a pair of mutations in the first AAA ATPase domain, is largely 

devoid of free hexamers. Wild-type Cdc48p-HA, when incubated at high temperature, may 

mimic the cdc48-3 allele at permissive temperature. This is conceptually interesting since the HA 

tag and cdc48-3 allele reside on opposite ends of the protein. Given that the first AAA ATPase 

domain, which is the domain mutated in cdc48-3, is involved in hexamerization, this implies that 

the carboxy terminus affects the hexamerization domain. This is further supported by the fact 

that the R95G and A232E IBMPFD alleles and HA tag are on opposite ends the Cdc48p protein. 

Intriguingly, the R95G temperature sensitivity is less severe than that caused by the A232E 

allele, but more severe than the non-mutated version of CDC48-HA. The R95G mutation is in the 
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amino-terminus domain which binds cofactors. It is formally possible that the effects seen in the 

R95G mutant/HA-tag combination is due to changes in cofactor binding in addition to whatever 

effect the HA tag causes. One suggested experiment would be to immunoprecipitate the different 

mutant proteins and perform mass spectrometry. The expectation is that the R95G/HA-tag 

combination will show a different spectrum of associated cofactors.  

 

Additionally, performing the native gel assay with both HA- and Myc- tagged versions of 

IBMPFD mutants might prove insightful. A comparison between the IBMPFD mutants and other 

temperature sensitive alleles of CDC48, such as cdc48-1, 2 and 10, and mutants defective in 

nucleotide binding and hydrolysis would be most interesting. Further, assessing the distribution 

of hexamers in the UFD2/IBMPFD double mutants could shed light on the anomalous hexamer 

migration observed in yeast expressing Cdc48p-HA. In addition, overexpressing UFD2 may be 

insightful.  

 

The anomalous migration of Cdc48p-HA hexamer is particularly intriguing because it 

appears that incubation at high temperature causes a loss of free hexamer (Figure 39A lanes 3 

and 4). I believe that this is a result of protein aggregation, which is supported by the following 

two reasons. First, the high temperature incubation does not lead to an increase in monomer or 

HA-reactive signal found in the loading well of the native gel. Second, the extracts are clarified 

cytosolic extracts, so insoluble material is largely removed. This notion could be easily tested by 

comparing the total Cdc48p-HA levels in insoluble and cytosolic fractions by SDS-PAGE.  
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