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Teratomas are a unique class of tumors composed of ecto- meso- and endodermal tissues, 

all foreign to the site of origin.  In humans, the most common teratoma is the ovarian 

teratoma. Not much is known about the molecular and genetic etiologies of these tumors.  

Female carriers of the Tgkd transgene are highly susceptible to developing teratomas.  

Ovaries of Tgkd/+ hemizygous female mice exhibit defects in luteinization, with 

numerous corpora lutea, some of which contain central trapped, fully-grown oocytes.  

Genetically, Tgkd teratomas originate from mature oocytes that have completed meiosis 

I, suggesting that Tgkd teratomas originate from these trapped oocytes.  The insertion of 

the Tgkd transgene 3’ of the Inpp4b gene is associated with decreased expression of 

INPP4B and changes in intracellular PI3 Kinase/AKT signaling in follicular granulosa 

cells. An increase in granulosa cell proliferation and a decrease in apoptosis is also 

observed in Tgkd GCs of late stage follicles. Because INPP4B is not expressed in fully-

grown wild-type or Tgkd oocytes, these findings suggest that enhanced activation of the 

PI3K/AKT pathway caused by the decrease in INPP4B in granulosa cells promotes an 

ovarian environment defective in folliculogenesis and conducive to teratoma formation. 
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1.0  INTRODUCTION 

1.1 STRUCTURE OF THE OVARY AND FOLLICULAR MATURATION 

1.1.1 Structure of the ovary 

The ovary is one of the primary organs of the female reproductive system. The ovary is a highly 

organized composite structure composed of germ cells (oocytes) and somatic cells (granulosa 

cells, thecal cells and stromal cells). The adult ovary is involved in 2 major processes: release of 

eggs (oocytes) for fertilization and production of the hormones estradiol and progesterone. The 

ovary fulfills 2 major objectives, which are generation of fertilizable ova and preparation of the 

endometrium for implantation of fertilized eggs through secretion of estradiol and progesterone. 

Adult human ovaries are 2-5cm in length, 1.5-3cm in width and 0.5-1.5cm in thickness 

[1]. Paired ovaries lie on either side of the uterus in the pelvic cavity and are connected to the 

uterus by ovarian ligaments. The ovaries lie close to the posterior and lateral pelvic wall and are 

attached to the posterior surface by a peritoneal fold called the mesovarium. Blood vessels, 

nerves and lymphatics traverse the mesovarium and enter the ovary at the hilium. The ovary 

consists of 3 distinct regions, which are the outer cortex, inner medulla and hilium. The cortex 

consists of an outer layer of connective tissue called the tunica albuginea covered by a single 

layer of cuboidal germinal epithelium and an inner zone of ovarian follicles. The inner medulla is 
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composed of mainly vascularized stromal tissue. Blood vessels, nerves and lymphatics traverse 

the mesovarium and enter the ovary at the hilium [2]. The ovarian follicle is a basic functional 

unit of the ovary and consists of a single oocyte surrounded by somatic cells. Follicles at earlier 

stages of development lie adjacent to the tunica in an avascularized layer while more advanced 

growing follicles are present at the cortico-medullary border, where they are surrounded by 

stromal cells and vasculature. 

1.1.2 Follicular maturation 

During embryogenesis, the mammalian gonad develops between the coelomic epithelium and the 

mesonephros adjacent to the urogenital ridge. The gonad is designated as a bipotential or 

indifferent gonad at this stage as development is identical in the male and female lineage. The 

primordial germ cells (PGCs) migrate from the yolk sac into the indifferent gonad and can be 

identified as alkaline phosphatase-positive cells. Once the PGCs colonize the female gonad, they 

proliferate and differentiate into oocytes by entering meiosis by embryonic day 13.5 (E13.5) in 

the mouse. Development of germ cells into the male or female lineage depends on their 

interactions with the surrounding somatic cells. Before the formation of the ovarian follicle, the 

oocytes exist as germ cell clusters or nests due to incomplete cytokinesis after the mitotic 

proliferation of the PGCs. These germ cell nests break down to form primordial follicles 

consisting of a single oocyte arrested early in meiosis surrounded by a single layer of flattened 

squamous pregranulosa cells (Figure 1). Breakdown of the germ cell nests occur prenatally in 

humans and shortly after birth in the mouse [3].  The formation of primordial follicles is 

associated with massive apoptosis of germ cells resulting in a decline in this cell population in 

humans from 6 million to 1 million at birth. The primordial follicle serves as the quiescent 
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ovarian reserve and recruitment of ovarian follicles for subsequent maturation from this pool 

constantly depletes the ovarian supply of female germ cells. The two types of recruitment 

processes in the ovary are initial recruitment of primordial follicles from the quiescent pool and 

cyclic recruitment of small growing follicles for further maturation and ovulation [4]. The factors 

that initiate primordial follicle recruitment are not well understood but primordial follicles 

develop into primary follicles and this is marked morphologically by the differentiation of the 

squamous pregranulosa cells to cuboidal granulosa cells (GCs). This process is thought to be 

follicle stimulating hormone (FSH) independent, as these follicles do not possess FSH receptors 

[5, 6]. Follicle maturation involves 2 simultaneous processes, which are the growth of the oocyte 

and acquisition of additional layers of GCs. Primordial follicles develop into primary follicles, 

which develop into secondary follicles when they acquire an additional layer of GCs (Figure 1). 

Subsequent preantral folliculogenesis involves oocyte growth, acquisition of several layers of 

GCs and appearance of the outermost layer of thecal cells. Preantral follicles with more than 2 

layers of GCs start expressing the FSH receptor, which is required during later stages of 

maturation. Preantral growth of the recruited follicles occurs 10-12 days after birth in the mouse 

[7]. Follicle development up until the preantral stage is considered gonadotrophin-independent as 

in mice deficient for the FSH receptor, healthy preantral follicles are observed but follicles do 

not progress beyond this stage of development [8]. However morphometric analysis of follicle 

numbers was not performed in this study and other mouse models with defective gonadotrophin 

production displayed lower numbers of healthy preantral follicles than controls with many 

preantral follicles depicting structural abnormalities [9-11]. Preantral folliculogenesis involves 

complex bidirectional communication between the oocyte and surrounding GCs. The oocyte 

relies on somatic GCs for growth and development, however the rate of follicular development is 
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determined by the oocyte. This was demonstrated in an experiment using reaggregated ovaries 

consisting of oocytes from postnatal day 12 (PD12) mice and somatic cells from ovaries from 

newborn mice [7]. These reaggregated ovaries showed accelerated folliculogenesis compared to 

control reaggregated ovaries, when both the somatic cells and oocytes were from newborn mice. 

The oocytes of PD12 ovaries were at a more advanced stage of growth hence were able to 

accelerate the rate of folliculogenesis compared to oocytes from newborn ovaries. Once the 

follicles acquire 3-6 layers of GCs, they acquire an additional outer later of thecal cells. The 

theca can be divided into the theca interna and the theca externa, which serve different roles later 

in folliculogenesis. Maturation of the ovarian follicle from the primordial stage to the preantral 

stage is classified as the phase of initial recruitment as it can occur in the absence of the cyclical 

rise in gonadotrophin levels. 

Further stages of ovarian follicle maturation and ovulation are dependent on the release 

of gonadotrophin hormones by the anterior pituitary and these stages of follicle maturation are 

designated as cyclic recruitment. The exact mechanism by which these hormones regulate 

follicle survival and selection is defined in the next section. A subset of the preantral follicles in 

the presence of the gonadotrophin FSH acquire multiple fluid-filled spaces, which eventually 

coalesce to form a single antral cavity. These antral follicles have 2 types of GCs, those that line 

the outer wall of the follicle called mural GCs and GCs that surround the oocyte called cumulus 

GCs (Figure 1) [12].  Mural GCs line the follicle wall and play a vital role in steroidogenesis and 

ovulation. Cumulus GCs are in close contact with the oocyte through connexin junctions and 

promote oocyte growth and developmental competence, while maintaining meiotic arrest of the 

oocyte. Depending on the species, one or more of the early antral follicles is able to promote its 

growth into the preovulatory stage and are known as graafian follicles. Graafian follicles are 
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known as dominant follicles as they not only are able to promote their growth but also are able to 

promote atresia of other early antral follicles [4]. The preovulatory follicle contains an oocyte 

competent to reenter meiosis and its formation precedes the rapid release or surge of the 

luteinizing hormone (LH). This surge triggers the completion of meiosis I in the oocyte, which 

then arrests in the metaphase II (MII) stage of meiosis [13] The LH surge also triggers ovulation 

of the mature oocyte and the remnants of the follicles are converted into a steriodogenic structure 

called the corpus luteum. The GCs of the ovarian follicle show a high rate of proliferation from 

the preantral stage [14]. Transformation of the preovulatory follicle into the corpus luteum 

involves cell cycle exit and terminal differentiation of GCs and thecal cells into non-proliferative 

luteal cells [15]. The main function of the corpus luteum is the production of progesterone, 

which is required for the initiation and maintenance of pregnancy [2]. In summary, the 

primordial follicle undergoes a process of initial and cyclical recruitment and matures through 

the primary, secondary, preantral, antral and preovulatory stages prior to ovulation. The adult 

ovary is heterogenous organ and multiple follicles in different stages of maturation are observed 

simultaneously in the ovarian cortex. Pedersen and Peters suggested a more robust classification 

of ovarian follicles at different stages of maturation, based on the number of GCs present at each 

stage of maturation (Figure 1) [16]. 
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Figure 1: Stages of follicular maturation 

The various stages of follicle maturation from primordial follicle recruitment to ovulation and 

corpus luteum formation are represented in the above figure. The development of the follicle up 

to the preantral stage is considered gonadotrophin independent. The gonadotrophin hormone 

FSH is required for acquisition of the antrum and subsequent maturation, while the LH surge is 

required for ovulation and corpus luteum formation. Type 2 - Type 8 represent the Pedersen and 

Peters classification [16]. 

 

 

 

1.2 THE HYPOTHALAMIC-PITUITARY-OVARIAN (HPO) AXIS AND FOLLICLE 

SELECTION 

The selection and survival of early antral follicles to the preovulatory stage is mediated by 

hormones secreted by the hypothalamus, the anterior pituitary and the ovaries, which play a very 

vital role in successful ovulation of the oocyte [17, 18]. Because this process is associated with 

cyclical changes in levels of hormones, the process is considered the cyclical stage of follicle 

recruitment (Figure 2) [4].  

The primary event in the HPO axis in the process of follicle maturation is the pulsatile 

release of a decapeptide called gonadotrophin-releasing hormone (GnRH) by GnRH secreting-

neurons in the hypothalamus [19]. The pulsatile release of GnRH causes the pulsatile release of 2 

gonadotrophins from the anterior pituitary namely FSH and LH. The pulsatile nature of GnRH is 



 8 

important as continuous levels of GnRH during early follicular maturation causes desensitization 

of the receptors and cessation of FSH and LH production [20, 21]. FSH and LH are glycoprotein 

hormones consisting of non-covalently bonded α and β subunits. They share a common α 

subunit but possess unique β subunits, which confer receptor specificity [19]. The receptors of 

FSH and LH are G-protein coupled receptors (GPCR) with 7 transmembrane domains. The 

pulsatile generation of GnRH appears to favour the rise in FSH levels during early follicular 

maturation over LH and this phenomenon may be regulated by the frequency of GnRH release 

by the hypothalamus [22, 23].  The increase in FSH levels recruits a cohort of early antral 

follicles to escape atresia and progress in follicular maturation [4]. In humans, one of the follicles 

manages to grow faster than the rest of the cohort and the reason for the growth advantage is not 

well understood. This follicle, which is known as the dominant follicle is observed to have an 

abundance of FSH receptors and abundant well-developed vasculature in the thecal layers [24, 

25]. Cells in the theca interna of the dominant follicle have LH receptors and are steroidogenic in 

nature. The thecal cells respond to LH by upregulating enzymes involved in steroid production 

and are involved in the production of androstenedione. GCs in the dominant follicle produce the 

enzyme aromatase (CYP19A1) and convert the secreted androgen from the thecal cells into 

estradiol [26]. Therefore, the increase in serum FSH seen in the early follicular phase is followed 

by an increase in the levels of serum estradiol and inhibins produced by the GCs of the dominant 

follicle. Increasing levels of estradiol exert a negative feedback on the production of FSH and 

LH from the pituitary and on the pulsatile secretion of GnRH from the hypothalamus [27]. This 

feedback inhibition by estradiol causes a drop in the levels of serum FSH.  FSH acts as a survival 

factor during late antral folliculogenesis and a drop in FSH levels causes atresia of the recruited 

antral follicles. The dominant follicle is sensitive to lower levels of FSH possibly due to the 
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abundance of FSH receptors and the GCs of the dominant follicle begin to express LH receptors 

[28]. The estradiol produced by the dominant follicle also induces FSH receptor expression in 

the GCs and promotes follicular growth in the dominant follicle through its mitogenic activity 

and stimulation of local growth factors. Through these mechanisms, the dominant follicle is able 

to promote its own follicular growth in low FSH conditions and induce atresia in the other 

recruited antral follicles. In polyovulatory species such as rodents, the only difference in the 

mechanism of follicle selection is the lowering of the FSH threshold by the negative feedback 

through estradiol [4]. Lower levels of negative feedback in polyovulatory species allow multiple 

follicles to become dominant and develop to the preovulatory stage. 
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Figure 2: Initial and cyclic recruitment of follicles 

The initital and cyclic recruitment phases are represented in the above figure. Initial recruitment 

of follicles is continuous and independent of the cyclical gonadotrophin surges and involves 

primordial recruitment to early antral follicle formation. The cyclic recruitment is affected by the 

cyclic changes of FSH, which induce the processes of dominant follicle selection, non-dominant 

follicle atresia and ovulation of the dominant follicle. Adapted from [4]. 
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There is a steady increase in estradiol production during the growth of the preovulatory 

follicle, which reaches a peak just before the LH surge. The high level of estradiol produced by a 

mature preovulatory follicle with a meiotically competent oocyte acts as a positive feedback on 

GnRH production causing a continuous surge of GnRH production from the hypothalamus [29]. 

This GnRH surge is followed by a preovulatory surge in LH levels, which is responsible for 

initiating the process of ovulation [30]. The LH surge stimulates a series of ovarian gene 

expression cascades resulting in the production of inflammatory mediators such as 

prostaglandins and proteolytic enzymes, which cause degradation of the perifollicular matrix of 

the follicle [3]. The LH surge also triggers the oocyte to complete meiosis I, and the oocyte is 

ovulated through the ruptured follicular wall. The basal lamina between the GCs and thecal cells 

breaks down and the vessels in the thecal layer invade the previously avascular GC zone of the 

follicle. The GCs and thecal cells exit the cell cycle and differentiate into steroidogenic luteal 

cells, which produce estrogen and progesterone in the newly formed corpus luteum [31]. The 

progesterone and estradiol produced by the corpus luteum suppresses FSH and LH secretion by 

the pituitary [18]. In the absence of pregnancy, regression of the corpus luteum in the late luteal 

phase causes a decrease in progesterone levels allowing an increase in FSH production by the 

pituitary. This paves way for a new cycle of folliculogenesis causing cyclic recruitment of a new 

batch of antral follicles. In summary, the hormones of the HPO axis control the phases of follicle 

maturation and the stage of follicle maturation can be identified by the profile of these hormones 

(Figure 3). 
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Figure 3: Positive and negative regulation in the HPO axis 

The HPO axis plays a major role in the cyclic recruitment of follicles and follicle selection. The 

hypothalamus secretes GnRH, which induces secretion of FSH and LH from the pituitary. FSH 

and LH stimulate estradiol production by the GCs of the dominant follicle. Estradiol inhibits the 

production of FSH and LH, lowering serum FSH levels and promoting atresia in non-dominant 

antral follicles dependent on FSH for survival.  
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1.3 THE HUMAN MENSTRUAL AND MOUSE ESTROUS CYCLE 

The menstrual cycle in women illustrates the hormonal changes that take place during the 

process of cyclic follicle recruitment, selection, ovulation and corpus luteum formation (Figure 

4).  In terms of follicular development, the menstrual cycle is divided into the follicular phase 

and the luteal phase [32]. The luteal phase is marked by the preovulatory LH surge, which results 

in ovulation of the oocyte and corpus luteum formation. The corpus luteum produces 

progesterone and estrogen, which suppress levels of FSH and LH during the luteal phase [4]. 

Regression of the corpus luteum causes a decrease in progesterone and estrogen levels in the 

transition between the luteal and follicular phase, which results in an increase in FSH levels in 

the early follicular phase. Progression through the follicular phase involves follicle maturation 

and a subsequent increase in estradiol levels and decrease in FSH levels during the process of 

follicle selection. 

The menstrual cycle can also be classified into the menstrual, proliferative and secretory 

phases based on the lining of the endometrium, which is highly sensitive to ovarian steroid 

hormones [32]. The most luminal layer of the endometrium called the functionalis is thickened 

and sloughed off during the menstrual phase due to low levels of estradiol, which coincides with 

the luteal follicular transition and early follicular phase. The next phase of the cycle is termed as 

the proliferative phase as the endometrial layer thickens and has proliferation of stromal cells and 

glands due to the high levels of estradiol during the mid ovarian follicular phase. The luteal 

phase of follicle maturation is known as the secretory phase as high levels of progesterone cause 

production of glycogen and mucus, when the endometrium becomes decidualized and receptive 

to the fertilized embryo. In the absence of pregnancy, there is a drop in progesterone and 

estrogen levels leading back to the menstrual phase of the cycle (Figure 4). 
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Figure 4: Serum levels of hormones during the human menstural cycle 

The level of different hormones during the menstrual cycle is represented in the above diagram. 

In the early follicular phase, a rise in FSH levels promotes follicle maturation and increase in 

estrogen levels, which suppresses the levels of FSH. After the midcycle LH surge, ovulation 

occurs and the corpus luteum is formed. Progesterone and estrogen secretion by the corpus 

luteum suppress FSH and LH levels. Regression of the corpus luteum at the end of the luteal 

phase causes a rise in FSH levels. Adapted from [33]. 
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The main difference between the menstrual cycle and the estrus cycle is the reabsorption 

of the endometrium in the absence of pregnancy in the estrous cycle.  The mouse estrous cycle is 

4-6 days in length and consists of 4 stages [34]. The proestrous stage is the first stage when a 

new batch of follicles reach maturity in the ovarian follicle and serum estrogen levels rise. The 

estrous stage involves the final stage of selection and ovulation of the fully mature oocytes. The 

estrous stage is when the female is maximally receptive to the male and estrus begins after 

midnight lasting 6-8 hours on standard light-dark cycle. Metestrus is the phase during corpora 

lutea formation and when the mature egg moves through the oviduct and the uterus. If pregnancy 

does not occur, diestrus is the phase when unfertilized eggs are eliminated and the corpora lutea 

regress. The proestrous and estrous phase constitute the follicular phase of ovarian maturation 

while the metestrus and diestrus phases comprise of the luteal phase.  The period of 

gonadaotrophin induced cyclic recruitment and follicle selection takes 2-3 days in mice (Figure 

2). The process of follicular maturation can be mimicked to induce ovulation in immature mice 

by single precisely timed intraperitoneal injections of pregnant mare serum gonadotrophin 

(PMSG) and Human chorionic gonadotropin (HCG), which are analogs of FSH and LH 

respectively with a long half-life [35]. 

1.4 PROMINENT SIGNALING PATHWAYS DURING FOLLICULAR 

MATURATION IN THE OVARY 

 Numerous transcription factors and signal transduction pathways are involved during the entire 

process of folliculogenesis from the primordial stage to the formation of the corpus luteum [3, 

36]. FSH binds to its receptor in GCs, which is a GPCR and activates a classical adenyl cyclase/ 
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cAMP/PKA signal transduction pathway that directly regulates many target genes such as 

aromastase, inhibin and the LH receptor. FSH also activates independently or through cAMP 

mediated mechanisms many signal transduction molecules such as PI3-kinase/AKT, SRC, RAS 

and MAP kinase and their downstream pathways [36, 37]. FSH induces a pro-proliferative 

pathway in GCs, whereas LH induces cell cycle exit. LH binding to the LH receptor also 

stimulates PKA, PI3K/AKT, RAS signaling cascades, which are critical for ovulation. The LH 

surge triggers release of EGF-like factors, which is critical for cumulus cell expansion and 

ovulation [3, 36]. The LH surge turns off the FSH gene expression program in preovulatory GCs 

and turns on genes controlling matrix formation and inflammation. 

One of the primary signal transduction pathways activated in GCs by FSH is the 

phosphatidylinositol-3 kinase (PI3K)/acute transforming retrovirus thymoma (AKT) signal 

transduction pathway. The PI3K/AKT pathway plays a vital role during many stages of 

folliculogenesis. The PI3K/AKT pathway regulates PGC migration, survival and primordial 

follicle recruitment [38-40].  The pathway has also been shown to be critical for gonadotophin 

mediated-GC differentiation, cumulus cell expansion and resumption of oocyte meiosis [41-45]. 

This pathway is necessary but not sufficient for the induction of many FSH target genes in GCs 

such as LH receptor, 3β-hydroxysteroid dehydrogenase, aromatase, and inhibin [44]. One of the 

main functions of this pathway in GCs is to promote G1/S phase transition in the cell cycle. 

Activation of the PI3K/AKT pathway promotes phosphorylation and degradation of the 

transcription factor FOXO1 relieving transcriptional repression on the S phase Cyclin D2 [46]. 

An increase in Cyclin D2 levels is seen after PMSG stimulation, while Cyclin D2 null ovaries 

depict defective GC proliferation and block in folliculogenesis [47]. Deletion of the Pten 

(negative regulator of PI3K/AKT pathway) gene in GCs led to hyperactivation of AKT on 
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gonadotrophin stimulation in GCs [48]. Increased phosphorylation of AKT was associated with 

degradation of FOXO1, higher levels of Cyclin D2 and an increase in GC proliferation in this 

model. This was associated with increased rate of ovulation and litter sizes from females with 

Pten-/- GCs. The PI3K/AKT pathway also appeared to play a role in corpora lutea clearance in 

this model as persistent non-functional corpora lutea were observed in females with Pten-/- GCs. 

In summary, the PI3K/AKT pathway is one of the primary signal transduction pathways that 

promote the proliferative effects of FSH in GCs. Components of the PI3K/AKT pathway are 

examined in detail in this thesis. 

1.5 OOCYTE MATURATION AND EGG ACTIVATION 

During the process of folliculogenesis, oocytes arrest early in meiosis in the diplotene stage prior 

to completion of meiosis I in the embryonic gonad around E14.5 (Figure 5). The oocyte acquires 

competence to resume meiosis at the antral stage due to achieving a threshold in the 

accumulation of the complex maturation promoting factor (MPF) complex, which consists of the 

proteins CDK1 and cyclin B [49]. The oocyte resumes meiosis only after the LH surge, hence 

this complex is maintained in the inactive state in the antral follicle. It is known that the follicular 

milieu specifically the mural GCs maintain meiotic arrest of the oocyte as removal of cumulus 

enclosed oocytes (COCs) from antral follicles causes meiotic resumption of the oocyte. Further 

high cAMP levels in oocytes are required to maintain meiotic arrest as phosphodiesterase 

inhibitors prevent a decrease in intra-oocyte cAMP levels and meiotic resumption [50]. The 

activity of CDK1 of MPF is negatively regulated by phosphorylation on Threonine 14 and 

Tyrosine 15 residues by the protein kinases WEE1/MYT1 [3, 51]. The phosphatase CDC25 
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dephosphorylates these residues thereby activating CDK1. During meiotic arrest, high cAMP 

levels in the oocyte activate PKA, which phosphorylates CDC25 and sequesters it in the 

cytoplasm in association with the protein 14-3-3 [52]. The LH surge causes a decrease in intra-

oocyte cAMP levels resulting in dephosphorylation of CDC25. The CDC25 phosphatase 

activates CDK1 causing activation of MPF and reentry into meiosis. The first morphological 

change in the oocyte is the breakdown of germinal vesicle (GV) or nuclear membrane followed 

by asymmetric division of the cytoplasm and extrusion of the first polar body. A decline in MPF 

activity is required for progression into anaphase and telophase of meiosis I and increase in MPF 

levels is seen at metaphase II [53].  

After completion of meiosis I, the ovulated oocyte is arrested at metaphase II due to the 

activity of the cytostatic factor (CSF). The MOS serine/threonine kinase is a vital component of 

CSF and causes oocyte metaphase II arrest by stabilizing MPF [54]. CSF stabilizes MPF by 

inhibiting the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C), which 

targets cyclin B for degradation [55]. Oocytes from mos-/- mice demonstrate an inability to 

maintain metaphase II arrest and thereby undergo parthenogenetic cleavage [56, 57]. The oocyte 

completes the final stage of meiosis after fertilization, after introduction of phospholipase C into 

the oocyte cytoplasm by the sperm [55, 58]. This triggers calcium oscillations in the oocyte 

activating APC/C leading to cyclin B degradation and completion of meiosis.   
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Figure 5: Arrests in meiosis during follicular maturation 

The landmark phases in oocyte maturation are represented. Oocytes arrest in meiosis I prior to 

birth and resume meiosis in the preovulatory follicle after the LH surge. Following completion of 

meiosis I, the oocyte arrests at metaphase II and completes meiosis after fertilization. Adapted 

from [19]. 
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1.6 OVARIAN TERATOMA BACKGROUND & INCIDENCE 

Ovarian teratomas (OTs) are tumors of the ovary derived from non-ovulated female germ cells 

that have undergone parthenogenetic activation and display a disorganized pattern of cellular 

differentiation [59, 60].  Human OTs are relatively common, constituting 95% of all ovarian 

germ cell tumors [60].  Most OTs are benign but a small percentage (1-2%) transform into 

malignant tumors [61].  OTs contributed to 1.5% of the invasive ovarian cancer cases in the 

United States between 2004 and 2008 [62].  OTs are also seen at a low frequency in other 

mammalian species, including the mouse [63].  Most OTs are benign and are composed of 

differentiated ectodermal, mesodermal and endodermal tissues, proportions varying from 

teratoma to teratoma.  Immature OTs contain undifferentiated cells (primarily immature 

neuroepithelium or embryonal carcinoma cells) in addition to the differentiated tissues and have 

malignant potential. 

1.7 GENETIC ANALYSIS OF OTS AND TYPES OF ERROR 

Human OTs arise due to the parthenogenetic activation of an oocyte caused by errors in meiosis 

or initiation of OT formation at a follicular stage prior to the resumption of meiosis. Oocytes as 

described are arrested in prophase of meiosis I until ovulation and are arrested in metaphase II 

until fertilization. Five mechanisms have been proposed to explain the origin of human OTs. 

These mechanisms can be distinguished by analyzing a series of pericentric and distal markers 

on different chromosomes in the teratoma DNA, which are identified as heterozygous in the host 

tissue (Table 1) [64]. 
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Human OTs originate from oocytes at all meiotic stages, although most develop by Type 

II error from oocytes that have completed meiosis I [64-69]. Rarely, benign cystic ovarian 

teratoma and specific malignant germ cell tumor cases have been observed within families, 

suggesting one or more underlying genetic etiologies [70-75].  However, the majority of OTs 

occur sporadically.  No associations with known genetic loci have been established in either 

familial or sporadic OT cases.  The absence of a clear genetic association raises the possibilities 

that mutations in many different genes can cause OTs or that non-genetic etiologies are common. 
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Table 1: Analysis of meiotic error in human OTs 

Heterozygous pericentric and distal markers are identified as informative in the somatic tissue 

from the OT patient. By analyzing the genotype of informative pericentric and distal markers in 

the OT tissue, the stage of meiotic failure of the oocyte resulting in an OT can be determined. 

Het – Heterozygous marker, Hom –Homozygous marker. Adapted from[64]. 

 

 

Types of Error Mechanism of OT 

development 

Ovarian Teratoma Genotype 

Pericentric marker Distal marker 

Type I Failure to complete 

meiosis I or fusion of 

oocyte with first polar 

body 

Het Het/Hom 

Type II Failure to complete 

meiosis II or fusion of 

oocyte with second 

polar body 

Hom Het/Hom 

Type III Duplication of 

genome of mature 

ovum 

Hom Hom 

Type IV Failure to complete 

meiosis I & II in PGC 

Het Het 

Type V Fusion of two ova Het/Hom Het/Hom 
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1.8 MOUSE MODELS OF OTS 

Mouse strains predisposed to developing OTs have provided insight into the genes involved in 

OT development.  LT/Sv is an inbred mouse strain in which approximately 50% of the females 

develop OTs by 90 days of age [63].  These OTs originate from parthenogenetically activated 

oocytes that have completed meiosis I [76].  LT/Sv oocytes experience a prolonged period of 

meiotic arrest at metaphase I [77].  This arrest (delayed metaphase to anaphase I transition) has 

been linked to the sustained activity of MPF [53].  Normally, a decrease in MPF activity is 

required for metaphase I to anaphase I transition, and sustained MPF activity and metaphase I 

arrest may predispose unfertilized LT/Sv oocytes to spontaneous cell division (parthenogenesis) 

and OT formation.  Prolonged metaphase I arrest and parthenogenetic activation of oocytes have 

been reported to be necessary but not sufficient for OT formation [78].  Other requirements for 

OT formation have been revealed in an analysis of crosses between C57BL/6 (B6) and LT/Sv 

mice, which identified OT susceptibility loci, including a prominent locus (Ots1) on 

chromosome 6 [79].  

Targeted mutagenesis in mice has also produced mouse strains susceptible to developing 

OTs.  The c-mos gene encodes the cytostatic factor responsible for metaphase II arrest.  

Consequently, oocytes of homozygous c-mos-null mice fail to maintain metaphase II arrest and 

spontaneously initiate parthenogenetic embryonic development in the absence of fertilization.  

Approximately 40% of c-mos-null mice develop OTs [56, 57].  Mutations in the coding region of 

the human c-mos gene have not been reported, suggesting that mutations in the c-mos gene do 

not play a role in the genesis of human OTs [80].  The MommeR1 mouse strain with a missense 

mutation in the transcription factor Foxo3a is predisposed to developing OTs; one-sixth of 

homozygous MommeRI females develop OTs [81].  The missense mutation was found to cause a 
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decrease in the transactivation potential of the transcription factor FOXO3A.  Notably, both 

FOXO3A and c-MOS proteins are primarily expressed in the oocyte, with little expression in 

somatic cells of the ovary [82, 83]. 

Genetic defects in genes expressed in follicular GCs, but not in oocytes, also lead to OT 

formation in mice.  One fifth of mFshrD580H transgenic mice expressing a constitutively active 

form of the FSH receptor in GCs develop OTs [84].  Similarly, overexpression of the Bcl-2 gene 

in mouse GCs led to a 20% incidence of OTs [85].  Hence alteration in normal cell signaling 

within the GCs can predispose to OTs.  Transgenic mice expressing small interfering RNAs 

(siRNAs) targeting the Gata4 (siGata4) gene also developed OTs [86].  In the mouse ovary 

GATA4 is primarily expressed in GCs [87].  Although the mechanism of OT formation in this 

model is presently unknown, it is possible that a decrease in granulosa-cell GATA4 indirectly 

influences oocyte function, leading to OT formation.  Taken together, the molecular and 

functional abnormalities observed in the various OT mouse models suggest that several distinct 

cell-signaling or cell-cycle defects in cells of the ovarian follicle can mediate OT development. 

We have previously reported that 15-20% of hemizygous female carriers of the imprinted 

Tgkd transgene develop OTs in the inbred FVB/N (FVB) strain [88]. Because numerous other 

transgenic mouse lines with the same or related imprinted trangenes did not develop teratomas, 

we postulated that the development of OTs in FVB-Tgkd females is due to disruptions in one or 

more genes near the genomic site of transgene integration on mouse chromosome 8. In this 

study, I have examined the mechanism by which the transgene Tgkd predisposes FVB mice to 

OT formation. 
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2.0  MATERIALS AND METHODS 

2.1 ANIMAL STUDIES 

The Tgkd transgene was maintained on the inbred FVB as described previously and on the OT 

non-permissive 129/Sv (129) background [88]. All experiments were performed in compliance 

with guidelines established by the Institutional Animal Care and Use Committee of the 

University of Pittsburgh. For determining the onset of puberty, females were examined daily for 

vaginal opening from day 22 postpartum. Primers and conditions for PCR genotyping of +/+ and 

Tgkd mice are provided in Appendix B.  

2.2 SNP GENOTYPING OF OTS 

Spleen and teratoma DNA samples were collected from female progeny of the backcross of F1 

(FVB-Tgkd X B6) to FVB mice. 20 pericentric and 20 distal SNPs (one per chromosome) were 

examined in the spleen DNA for evidence of heterozygosity. This was performed by PCR 

amplification and DNA sequencing of the region surrounding the single nucleotide 

polymorphism (SNP) allele. The heterozygous SNPs in the spleen were examined in the teratoma 

to determine the last meiotic stage completed by the oocyte before initiating OT formation [64]. 
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Detailed information of SNP locations and sequence in the spleen and OT are provided in 

Appendix A. 

2.3 IDENTIFICATION OF TGKD INSERTION SITE 

This was accomplished by identifying the two Tgkd-genome junctional fragments on Southern 

blots of FVB-Tgkd DNA probed with fragments of the Tgkd transgene, constructing Tgkd 

subgenomic libraries in the λFixII vector (Stratagene, La Jolla, CA), and identifying clones 

containing the two junctional fragments. DNA sequencing of the junctional fragments containing 

Tgkd and endogenous genomic sequence was used for mapping of the insertion site. 

2.4 COLLECTION OF EMBRYOS 

Crosses were set up between hemizygous Tgkd/+ and +/+ animals so that the parental origin of 

the Tgkd transgene was known. The day on which the plug was observed was noted as day 0.5. 

E9.5 embryos, E13.5 and E16.5 embryo heads were collected 9, 13 and 16 days after observation 

of the plug respectively. The samples were frozen at -80ºC until RNA extraction or protein 

extraction. Tail DNA was isolated from these embryos and used to determine presence or 

absence of Tgkd. 
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2.5 EMBRYONIC STEM CELL STUDIES 

2.5.1 Embryonic stem (ES) cell derivation and generation of shRNA clones 

129-Tgkd(maternal) ES cell lines were derived from 129-Tgkd X 129 crosses and 129-

Tgkd(paternal) ES cell lines were derived from 129 X 129-Tgkd crosses.  Homozygous Tgkd ES 

cell lines were derived from 129-Tgkd X 129-Tgkd crosses.  ES cell lines were generated by 

collection of E3.5 blastocysts and ES cell lines were established using previously published 

methods [89]. Briefly, blastocysts were seeded on 24 well dishes (coated with gelatin) with 

irradiated feeder cells in ES cell media containing Leukemia inhibitory factor (LIF) (1000U/ml). 

After 5 days, the inner cell mass was dissociated from blastocysts that had attached to the bottom 

of the well into clumps of 6-12 cells. The dissociated inner cell mass was transferred to a new 

plate with feeder cells.  ES cell colonies began to grow in a subset of wells and these wells were 

passaged into new wells with feeder cells every 3-4 days. After 2-3 passages, the established ES 

cell lines were frozen down until further use. 

Stable knockdown clones of INPP4B were obtained by the electroporation of linearized 

shRNA plasmid constructs TRCN0000080645 and TRCN0000080646 (Open Biosystems, 

Huntsville, AL) followed by isolation of puromycin-resistant colonies.  The extent of knockdown 

of INPP4B was determined by immunoblot analysis. 



 28 

2.5.2 IGF1 stimulation protocol in ES cells 

ES cells were passaged twice without feeders and then plated on 12 well plates coated with 0.1% 

gelatin.  The cells were serum starved for 34 hours and then stimulated with 1µg/ul of mouse 

insulin growth factor-1 (IGF1) (Sigma-I8779) for indicated periods. 

2.5.3 ELISA analysis 

Phospho-AKT activation was measured in ES cell lysates using the PathScan® Phospho-Akt1 

(Ser473) and Total Akt1 Sandwich ELISA Kit (Cell signaling: 7160 & 7170) according to 

manufacturer instructions. 

2.6 OVARY STUDIES 

2.6.1 Collection of ovaries and oocytes 

Whole ovary, GV-stage oocytes and GCs were collected from immature females (21-23 day post 

partum) at designated time points following intra-peritoneal (IP) injection of 5IU PMSG 

(Calbiochem- 367222, LaJolla, CA) and 5IU of HCG (Sigma- C5297, St Louis, MO) injection 

48 hours later.  GCs and oocytes were collected in M2 medium (Millipore-MR-015-D, 

Temecula, CA) following needle puncture of the ovaries.  The oocytes were collected and the 

remaining GCs were pelleted and lysed in 1X Laemmli sample buffer. 
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2.6.2 Ovarian morphometric analysis and follicle counting 

Ovarian morphology was examined in hematoxylin and eosin (H&E)-stained paraffin sections of 

ovaries fixed overnight in 4% paraformaldehyde.  Follicle counting and classification were 

performed on every fifth adjacent section of 5µm thickness according to an established system 

described by Pederson and Peters [16]. 

2.6.3 Oocyte parthenogenetic activation assay 

Parthenogenetic activation of FVB-Tgkd oocytes was examined by isolating COCs from 

immature PD23 FVB and FVB-Tgkd mice after 48 hours of PMSG stimulation.  Oocytes were 

separated from surrounding cumulus cells after 17 hours of in-vitro maturation and the frequency 

of 2-cell embryos was determined after 24 hours of additional culture in KSOM (Embryomax- 

MR-106-D, Millipore) as described previously [78]. 

2.6.4 Granulosa cell culture 

This experiment was performed as described previously with minor modifications [90].  This 

protocol enables selective enrichment of GCs by isolating and culturing GCs from ovaries and 

excludes oocytes, and the ovarian capsule from the analysis.  Ovaries were harvested from 

immature females (day 21-23 postpartum) and incubated in 6mM EGTA and 0.5M Sucrose in 

DMEM/F12 (Cellgro-10-092-CV, Herndon, VA).  The ovaries were punctured with needles to 

release GCs in DMEM/F12.  The GCs were pelleted at 100g for 10 minutes and resuspended at a 

density 0.5 X 106 cells /well in DMEM/F12 +10%FBS.  After overnight culture the cells were 
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stimulated for indicated time points with DMEM/F12+ recombinant human FSH (LER-4161B) 

(50ng/µl-final concentration) (Kind gift from Dr. Anthony Zeleznik) and the cells were 

subsequently lysed in 1X Laemmli sample buffer. 

2.6.5 Lentiviral transduction of GCs 

For lentiviral infections, 106 GCs were subjected to centrifugation and then resuspended in 

DMEM/F12 containing 8µg/ml polybrene (hexadimethrin bromide – Sigma H9268).  The GCs 

were infected with lentivirus expressing short hairpin RNA (shRNA) constructs to Inpp4b, either 

TRCN0000080645 or TRCN0000080646 (Open Biosystems) at an MOI (multiplicity of 

infection) of 10. The GCs and the lentiviral suspension tubes were subjected to centrifugation at 

1200g at 35°C for 2 hours (4X30 minutes) and the lentivirus-cell suspension was plated in 

DMEM/F12 +10%FBS. After 48 hours of culture, the cells were stimulated with DMEM/F12+ 

FSH (50ng/µl) for the indicated times. 

2.6.6 Corpora lutea clearance assay 

Immature females were given an IP injection of 5IU PMSG and 5IU of HCG (Sigma- C5297, St 

Louis, MO) 48 hours after PMSG stimulation. The ovaries were collected 7 days after HCG 

stimulation. Presence and size of corpora lutea was examined in H&E stained paraffin sections 

of ovaries fixed overnight in 4% paraformaldehyde. 
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2.7 BISULFITE GENOMIC SEQUENCING 

Bisulfite genomic sequencing was performed using the EpiTect Bisulfite Kits (Qiagen-59104, 

Valencia, CA) [91].  Following bisulfite treatment, the RSV sequence was amplified with PCR 

primers flanking the RSV DMD (within the Ig and c-myc sequences).  Primer sequences are 

provided in Appendix B. The PCR products were cloned into the Topo-TA cloning vector 

(Invitrogen -K4550-40) and transformed into electrocompetent cells. Individual plasmid clones 

were isolated and sent for sequencing with the M13 forward sequencing primer. 

2.8 SOUTHERN BLOT ANALYSIS OF Tgkd METHYLATION 

To assess the extent of Tgkd methylation, genomic DNA was digested with the methylation 

sensitive restriction enzyme BstUI [92]. The digested DNA was subjected to electrophoresis on a 

0.7% agarose gel, transferred onto Genescreen nylon filters (NEN, Boston, MA). The filter 

membrane was hybridized with the Ca probe 42°C and subsequently washed with 2X SSC and 

0.1X SSC at 65°C. The Ca probe is a 1.75kb EcoRI – XbaI fragment of the Ca region in the 

RSVIgmyc transgene (Figure 6). DNA probes were prepared from gel-purified fragments. 100ng 

of DNA was denatured at 100°C and annealed with random primers on ice. Synthesis of a 32P Ca 

probe was done in the presence of (α-32P) dCTP and the Klenow fragment. The labeled probe 

was purified using the Probe Quant G50 microcolumns (Amersham Bioscience, Piscataway, NJ). 

Bands were visualized by autoradiography and quantified using Image J analysis software. 
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2.9 METHYLATION-SENSITIVE PCR 

Genomic DNA was isolated from ES cell lines and digested with the restriction enzyme AseI. 

The cut genomic DNA was purified by phenol/chloroform extraction, precipitated and subjected 

to another round of restriction digest by the methylation sensitive restriction enzymes HpaII or 

McrBC or the enzyme MspI. The DNA from this round was once again purified and PCR 

primers were used to amplify 10 CpG islands identified by the program CpG island searcher in a 

2 Mb region surrounding the Tgkd insertion. Primer sequences are provided in Appendix B. 

2.10 PCR FOR DETECTING NOVEL Inpp4b SPLICE ISOFORMS   

RNA from FVB and homozygous Tgkd/Tgkd E13.5 brains were converted to cDNA. A series of 

reverse transcription PCRs (RT-PCRs) were done on the cDNA samples to span the entire 

coding region and transcribed but untranslated region (UTR) of Inpp4b α and β isoforms. The 

PCR primers were designed to generate approximately 1kb amplicons and successive PCR 

products had overlap regions greater than 200bp. The PCR amplified amplicons were cloned 

followed by sequencing of 4 clones per amplicon from FVB E13.5 brains and 8 clones from 

Tgkd/Tgkd brains. The sequence from FVB and Tgkd/Tgkd embryos were compared for 

differences in cDNA sequence or novel splice isoforms. Primer sequences are provided in 

Appendix B. 
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2.11 SINGLE NUCLEOTIDE PRIMER EXTENSION (SNuPE) ANALYSIS  

RNA was isolated from adult tissues and converted to cDNA. RT-PCR was performed on the 

cDNA with primers amplifying the region surrounding the SNP allele difference between FVB 

and 129 strains for each gene (Appendix B). The RT-PCR product was gel extracted and 

resuspended in water before performing the SNuPE reaction. Each SNuPE reaction was 

performed in a 10ul reaction mix containing (32P) dNTP (appropriate nucleotide), 2mM MgCl2, 

50mM KCl, 10mM Tris-HCl at pH 8.3, 0.001% gelatin, 1µM of the appropriate SNuPE primer, 

approximately 10ng of RT-PCR product and 0.75 units of Taq polymerase (Invitrogen). Samples 

were incubated at 95°C for 30s, 42°C for 30s and 72°C for 1 minute in a thermocycler. After 

separating the products on a 15% denaturing polyacrylamide gel, the ratio of the SNP alleles 

were determined by autoradiography and quantified using a phosphoimager. RT-PCR primers 

and the SNuPE primer sequence for each gene are provided in Appendix B [93]. 

2.12 REAL TIME PCR 

RNA was extracted using the RNeasy Micro kit (Qiagen).  1µg of RNA was converted to cDNA 

using the high capacity cDNA reverse transcription kit (Applied Biosystems, Foster City CA) in 

a reaction volume of 20µl.  2µl of the cDNA was used in a 10µl Real time PCR reaction.  Real 

time PCR was performed using the SYBR Green master mix (Applied Biosystems) on the 

7900HT Fast Real-Time PCR System machine (Applied Biosystems).  Steady-state transcript 

levels were measured by real-time PCR using oligonucleotide primers located across exons 23 

and 24 of Inpp4b mRNA, a region common to all known forms of Inpp4b transcripts.  The α and 
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β isoforms were assayed separately by amplification of their alternative terminal exons.  The 

Pfaffl method was used to determine fold changes and the fold changes were determined as fold 

change over wildtype levels [94].  TATA-binding protein (TBP) (E13.5 embryo studies) and beta 

glucuronidase (GUSB) (Ovary studies) were selected as housekeeping control genes.  Primer 

sequences are provided in Appendix B and efficiency curves in Appendix C. 

2.13 IMMUNOBLOT ANALYSIS 

E13.5 heads, ovaries and ES cell proteins were extracted using RIPA lysis buffer supplemented 

with complete protease inhibitor and PhosSTOP phosphatase inhibitor (Roche, Basel, 

Switzerland).  Oocytes and GCs were lysed in 1X Laemmli sample buffer. Immunoblot analysis 

was performed as described previously [95]. In brief, samples were denatured by heating at 

100°C for 5 minutes and then separated by electrophoresis on SDS-7% polyacrylamide gels. 

Afterwards, they were transferred to PVDF membranes (Immobilon-P, Millipore). Membranes 

were blocked in 5% dry skim milk in 0.1% Tween-20 TBS (TBS-T) for 1 hour and probed with 

the indicated antibodies overnight at 4°C according to manufacturer’s instructions. Following 5 

washes of 5 minutes each in TBS-T, the membranes were incubated for 1 hour in the respective 

secondary antibody in blocking solution. Membranes were washed as above. Bound antibody 

was detected using the chemiluminescence detection kit ECL Plus (Amersham, Piscataway, NJ). 

When a blot was reprobed with a different primary antibody, the first antibody was removed by 

incubation with stripping solution (100 mM 2-Mercaptoethanol, 2% SDS, 62.5 mM Tris-HCl pH 

6.8) at 50°C for half hour, washed for an hour in TBS-T and then the blot was blocked for 1 hour 

at room temperature.  
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Membranes were probed with the following antibodies: INPP4B (Brain and ES cells - 

Santa Cruz-sc12318, Santa cruz, CA), INPP4B (Ovary and GCs - 106), Phospho-AKT (Ser-473) 

(9271), phospho-FOXO1 (Ser-256) (9461), E2F1 (3742), Cyclin D2 (3741) (Cell Signaling 

technology, Beverly, MA) and Actin (Abcam, Cambridge, MA).  The blots were stripped and 

reprobed with FOXO1 (2880), AKT (9272) (Cell Signaling technology) and  P27KIP (Santa cruz-

sc528).  Anti–rabbit (GE healthcare: NA934V, Piscataway, NJ) or anti-goat (sc-2020) secondary 

antibodies were diluted in blocking solution (5% milk). Protein levels were determined by 

comparison of intensity on autoradiography films using the BioSpectrum 500 imager and 

VisionWorks®LS analysis software (UVP, LLC, Upland, CA). 

2.14 BrDU INCORPORATION ASSAY 

PD30 mice received an IP injection of 100mg/kg of bromodeoxyuridine (BrdU) (Sigma -B9285) 

and were killed 2 hours after injection.  Ovaries were isolated and the BrdU incorporation was 

detected by immunohistochemistry. 

2.15 IMMUNOHISTOCHEMISTRY 

Ovaries were fixed in 4% PFA and embedded in paraffin.  Immunohistochemistry (IHC) was 

performed on 5µm sections using the Vectastain Elite ABC Kit (Vector laboratories, 

Burlingame, CA) according to manufacturer instructions.  Mouse anti-BrdU (Sigma- B2531) was 

used to evaluate cell proliferation and rabbit anti-cleaved caspase3 (Cell Signaling Technology- 
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9664) was used to determine the rate of apoptosis in follicles.  IHC was performed on 4 non-

adjacent sections and positive cells were counted in 25 follicles containing a clear oocyte. Rates 

of proliferation and apoptosis per follicle were determined by the number of positive cells in 

each preantral (Type 5) and antral follicle divided by the total number of cells in the follicle. 

FOXO1 IHC was performed on wildtype and Tgkd PD30 ovaries using the FOXO1 antibody 

(Cell Signaling - 2880) and the Vectastain Elite ABC Kit. 

2.16 RNA IN SITU HYBRIDIZATION (ISH) 

RNA in situ hybridization (ISH) was performed using digoxigenin-labelled cRNA riboprobes. 

The unique terminal exon (exon 25) of Inpp4b α and β isoforms were amplified by RT-PCR 

from E13.5 brain cDNA and cloned into the pBluescript vector (Primers for RT-PCR – 

Appendix B). The resultant vectors were linearized and antisense plus sense riboprobes were 

prepared by in vitro transcription using the Riboprobe Combination System-T3/T7 RNA 

Polymerase (Promega –P1450) and DIG RNA Labeling Mix (Roche – 11277073910). Ovaries 

from 7-week-old mice were dissected in M2 media, washed in 1X PBS and fixed in fresh 4% 

paraformaldehyde.  Paraformaldehyde-fixed samples were immersed in 10%, then 20% sucrose 

in PBS, followed by OCT embedding. Cryosections (10 µm) of the OCT-embedded placentas 

were used for ISH as previously described [96]. Briefly, sections were fixed in 4%PFA, washed 

in PBS (3 X 5 min), acetylated for 10 minutes at room temperature and washed again in PBS. 

Prehybridization (Hybridization solution - 50% Formamide, 5X SSC, 5X Denhardts solution, 

0.25mg/ml tRNA, 0.5mg/ml Herring sperm DNA) was performed in a humidified chamber for 2 

hours at room temperature. Hybridization (denatured riboprobe in hybridization solution) was 
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performed at 65°C overnight in a humidified chamber.  Sections were stained overnight with 

anti-digoxigenein antibody conjugated to alkaline phosphatase (Roche - 11093274910).  

Detection was performed with nitro blue tetrazolium chloride (NBT) and 5-bromo-4-chloro-3-

indolyl-phosphate, toluidine-salt (BCIP) and levamisole (Roche 11681451001) reagent solutions.  

The slides were subsequently dehydrated and mounted in cytoseal. 

2.17 STATISTICAL ANALYSIS 

Each experiment was repeated a minimum of 3 times. A mean and standard error was calculated. 

Significance was assessed using the Wilcoxon Rank-sum test. Results were considered 

significant (*) if the p value was less than 0.05. 
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3.0  THE FVB-Tgkd STRAIN AS A MODEL TO STUDY OVARIAN TERATOMA 

FORMATION 

3.1 INTRODUCTION: THE FVB-Tgkd MOUSE STRAIN 

The FVB-Tgkd mouse strain carries a randomly inserted transgene Tgkd on the FVB mouse 

strain background. The Tgkd transgene is a genomically imprinted transgene that is methylated in 

offspring when inherited from the mother and unmethylated on paternal inheritance [92]. The 

Tgkd transgene is imprinted irrespective of the location of genomic integration. The Tgkd 

transgene is a modified version of the RSVIgmyc transgene, which also exhibits maternal allele 

specific methylation [97]. The RSVIgmyc transgene was originally designed to express the c-myc 

oncogene in the mouse. The Tgkd transgene consists of the Rous Sarcoma Virus (RSV) Long 

Terminal Repeat (LTR) sequence and the Igα/c-myc Burkitt-like fusion gene product from the 

S107 plasmacytoma cell line in which the 5’ region of the switch recombination sequences of 

IgA (Sa) has translocated into the 5’ region of c-myc [92, 98] (Figure 6A). The c-myc/Igα regions 

within the transgene are organized such that the constant and switch regions of the 

immunoglobin locus are immediately followed by the c-myc gene having a truncated exon 1. The 

RSV LTR serves as the differentially methylated domain (DMD) of the Tgkd transgene and the 

Tgkd transgene is not genomically imprinted in the absence of the RSV LTR sequence (Figure 

6B). 
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Figure 6: Structure and description of the Tgkd transgene 

Figure and legend adapted from [92] (A) The Tgkd transgene is a fusion gene product composed 

of the IgA/c-myc translocation with the switch region (Sa) of the immunoglobin locus adjacent to 

the truncated exon 1 of c-myc. Numbers 1-3 represent exons 1-3 of the endogenous c-myc gene. 

Sa and Ca represent the switch recombination sequences and constant region coding exons of the 

endogenous immunoglobin Igα. The hatched region is a 440bp fragment of the LTR of the RSV 

of the Schmidt-Ruppin strain (subgroup D). (B) The RSV region constitutes the DMD of the 

Tgkd transgene. The Tgkd transgene is methylated on maternal inheritance and Tgkd loses this 

genomic imprinting property in the absence of the RSV region. 
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Hemizygous carriers of the Tgkd transgene on the FVB strain background (FVB-Tgkd 

mice) are observed to develop OTs at a frequency of 15-20% between 12-22 weeks of age [88]. 

The OTs in the FVB-Tgkd mice exhibit a malignant mixed germ cell phenotype 

(teratocarcinoma) with evidence of metastases to the mesenteric lymph node and lung. The 

tumors contain areas of well-differentiated benign teratoma structures such as keratinizing 

squamous epithelium, respiratory epithelium, cartilage, sebaceous glands, hair follicles, intestine, 

bone, fat, smooth muscle and nerves which constitute derivatives of the embryonic layers: 

ectoderm, mesoderm and endoderm. The FVB-Tgkd OTs also contain immature malignant 

components such as areas of undifferentiated highly mitotic embryonal carcinoma cells, 

embryoid bodies, Schiller-Duval bodies (characteristic of endodermal sinus tumors) and 

malignant trophoblasts (characteristic of choriocarcinoma). The central areas of the larger tumors 

also exhibited substantial amounts of necrosis [88]. 

Homozygous carriers of the Tgkd transgene on the FVB strain exhibit perinatal lethality. 

To determine the time of death of homozygous FVB-Tgkd mice, embryos from crosses between 

hemizygous FVB-Tgkd mice were genotyped at various time points during gestation (Table 2) 

[88]. The observed percentages of the different genotypes of embryos were equivalent to the 

expected mendelian ratios from the cross at days 8.5 and 10.5 of embryogenesis. However at 

birth, the expected number of homozygous Tgkd/Tgkd embryos was one-half of the expected 

mendelian ratio and adult Tgkd/Tgkd mice were absent at 3 weeks of age (Table 2). Both the OT 

phenotype in hemizygous Tgkd mice and the perinatal lethality phenotype of Tgkd/Tgkd mice on 

the FVB strain are integration-site dependent as other independently derived transgenic lines 

with the Tgkd transgene construct do not develop OTs or exhibit perinatal lethality, even though 

the Tgkd transgene is imprinted in all these lines [88, 92]. In initial studies, the Tgkd transgene 
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array was found to be inserted on chromosome 8 in the FVB-Tgkd strain [88]. Hence, the 

development of the OT phenotype is most likely due to the disruption or interference by Tgkd of 

genes surrounding the genomic integration site on chromosome 8. 
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Table 2: Analysis of viability of hemizygous and homzygous FVB-Tgkd embryos 

Crosses were set up between hemizygous FVB-Tgkd males and females. 78 carrier offspring out 

of 115 tested were hemizygous Tgkd mice when analyzed at 3 weeks of age. The ratio of 

hemizygous to wildtype offspring (78:37) is close to the expected mendelian ratio of 2:1 

confirming normal viability of hemizygous offspring at this age. However homozygous 

Tgkd/Tgkd offspring were absent at 3 weeks of age. Further at birth, the number of Tgkd/Tgkd 

offspring observed was half the expected value (wildtype=15, Tgkd/Tgkd=7) indicating perinatal 

lethality of homozygous FVB-Tgkd embryos. +/+ - Wildtype embryos, Tgkd/+ - Hemizygous 

FVB-Tgkd embryos, Tgkd/Tgkd  - Homozygous FVB-Tgkd embryos. Data adapted from [88]. 

 

 

Embryonic 

Stage 

Embryo Genotype 

+/+ Tgkd/+ Tgkd/Tgkd 

Day 8.5 5 14 5 

Day 10.5 5 13 5 

Birth 15 40 7 

Adult 37 78 0 
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3.2 ADVANTAGES OF THE FVB-Tgkd OT MODEL 

The aim of these studies was to characterize the process by which the insertion of the Tgkd 

transgene leads to the development of OTs on the FVB strain background. The FVB-Tgkd mouse 

strain is an excellent model to study teratoma formation as the defined insertion of the Tgkd 

transgene array at a single genomic integration site causes the OT-free FVB females to become 

susceptible to formation of teratomas. This suggests that OT formation in this model may be 

linked a limited set of gene/genes close to the site of the transgene insertion on chromosome 8. 

The integration site (characterized later on in the thesis) is distinct from previously described OT 

susceptibility loci or genes; hence the evaluation of the FVB-Tgkd OT model may provide new 

insights into distinct pathways to OT formation. 

Another important aspect in the FVB-Tgkd model is the requirement of the FVB strain 

background for the development of the OT phenotype. We have presented some preliminary 

experiments in this section that illustrate the strain specific features of the OT phenotype and 

have aimed to identify chromosomal regions associated with the strain specific modifier alleles 

that confer susceptibility to this phenotype (Eicher et al., manuscript in preparation). 

3.3 GENOTYPING OF THE Tgkd MOUSE 

To identify carriers of the Tgkd transgene, genotyping studies were performed with primers 

designed across the Igα/c-myc translocation of the Tgkd transgene (Figure 7A). The design of 

these primers across the translocation prevented PCR amplification from the endogenous IgA or 

c-myc genomic sequence. Further primers were designed to be complementary to endogenous 
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sequences lost by the insertion of Tgkd on chromosome 8. These primers were used to detect the 

wildtype allele as PCR amplification occurred only when the Tgkd transgene array was absent. 

Using a combination of the wildtype allele and Tgkd transgene PCR, I was able to distinguish 

wildtype (+/+), homozygous (Tgkd/Tgkd) and hemizygous (Tgkd/+) Tgkd genotypes (Figure 7B). 
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Figure 7: Genotyping of the Tgkd transgene in FVB-Tgkd mice 

The above figures illustrate (A) PCR primers to detect the Tgkd transgene were designed across 

the c-myc/Igα translocation to obtain a specific PCR product for the transgene and avoid 

amplification from the endogenous c-myc and Igα genomic sequence. (B) Two sets of primers 

were used for genotyping mice containing the Tgkd transgene. The first set of primers was 

designed to detect endogenous sequences present only on the wild-type allele; PCR amplification 

occurred only in the absence of the Tgkd transgene array. The Tgkd transgene primers 

represented in 7A were used to detect the Tgkd transgene array. Using these 2 sets of primers, I 

could distinguish between a homozygous Tgkd genotype (1), hemizygous Tgkd genotype (2) and 

wildtype allele (3). 
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3.4 STRAIN SPECIFICITY OF THE OT PHENOTYPE 

The OT phenotype in the FVB-Tgkd strain is observed to be highly dependent on the FVB strain 

background. As described before, 17% of the hemizygous female carriers of Tgkd develop OTs 

on the FVB strain background. However none of the females carrying the Tgkd transgene (at the 

same genomic integration site) develops OTs on the B6 or 129 strain background (Table 3).  This 

data suggests that besides the gene disrupted by the Tgkd insertion, there are additional FVB 

modifier alleles required for the OT phenotype. 

Further studies to characterize the FVB strain specific effect on Tgkd induced OTs were 

performed by Dr. Eva Eicher at Jackson Laboratories (Bar Harbor, Maine). In these studies, 

FVB-Tgkd females were crossed to B6 males and no OTs were observed in the Tgkd females of 

the F1 generation (Table 3). The absence of the OT phenotype was also observed in the Tgkd 

females of the reciprocal cross. When the Tgkd females from the F1 cross (FVB-Tgkd X B6) 

were backcrossed to FVB males, 8% of the F2 Tgkd females developed OTs by 120 days of age 

(Table 3) (Eicher et al., manuscript in preparation).  These experiments illustrate two aspects of 

the FVB strain effect on OT development in FVB-Tgkd mice. The first aspect is that there is an 

absolute requirement of the FVB strain background for Tgkd induced teratoma development. 

Further, the gene/genes promoting OT development in the FVB background are recessive in 

nature and have to be in the homozygous state to promote teratoma formation in Tgkd females. 

The genomic region/regions carrying the FVB strain specific modifier alleles for the OT 

phenotype was designated as ovarian teratoma susceptibility region 2 (Ots2). Lee et al identified 

a similar susceptibility locus in OT-susceptible LT/Sv mice, which has a semi-dominant effect 

on OT development in this strain. This locus was designated as ovarian teratoma susceptibility 
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region 1 (Ots1) and linkage analysis studies identified an OT susceptibility region on mouse 

chromosome 6 [79].   

Linkage analysis studies were also performed on Tgkd positive females that developed 

OTs to identify the FVB strain specific modifier alleles required for the phenotype. Linkage 

analysis was performed on DNA isolated from 31 OT positive females from the Tgkd progeny of 

the backcross [(B6 X FVB-Tgkd) F1 X FVB]. Besides the region on chromosome 8 associated 

with the Tgkd insertion, a significant linkage score was associated with markers between 20-50 

cM on mouse chromosome 6 (Eicher et al., manuscript in preparation). These results indicate 

that both Ots1 and Ots2 loci reside on chromosome 6. 

To investigate whether Ots1 and Ots2 involve the same susceptibility genes, FVB-Tgkd 

mice were crossed with LT/Sv mice and the progeny were scored at 120 days for the presence of 

OTs (Table 3).  43 out of 48 Tgkd positive F1 progeny (89.5%) from the above cross developed 

OTs indicating that Ots1 and Ots2 loci may involve the same subset of genes or the two loci 

complement each other to increase the penetrance of the Tgkd induced OT phenotype (Eicher et 

al., manuscript in preparation). These studies indicate in addition to the genes disrupted by the 

insertion of Tgkd transgene on chromosome 8, additional modifier alleles exist on mouse 

chromosome 6 of the FVB strain that contribute to the development of OTs. The identity of these 

genes is not known; however; they may constitute susceptibility loci that are common to 

different OT mice models.  These susceptibility loci may be necessary but not sufficient for OT 

formation.  Identification of these loci may help identify common processes involved in OT 

formation.  
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Table 3: Strain specific effects on OT phenotype 

Data for table adapted from Eicher et al., manuscript in preparation. The table illustrates that 

Tgkd females develop OTs only on the permissive FVB strain background. A heterozygous 

FVB/B6 background is not permissive to OT formation in F1 females between FVB-Tgkd and 

B6 mice. However on backcrossing these F1 progeny to FVB mice, half of the F2 mice possess 

homozygous FVB loci and the frequency of the OT phenotype (8%) is correspondingly reduced 

to about half of that in the FVB-Tgkd frequency (17%). On crossing the FVB-Tgkd mice to the 

OT susceptible LT/Sv mice, 89.5% of the Tgkd positive mice develop OTs. 

 

 

Mouse Strain OT incidence (%) 

FVB-Tgkd 17 

B6-Tgkd 0 

129-Tgkd 0 

(B6 X FVB) F1 – Tgkd 0 

[(B6 X FVB) F1 X FVB] F2 – Tgkd 8 

(LT/Sv X FVB) F1 – Tgkd 89.5 
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3.5 CONCLUSIONS 

This section summarized the abnormalities observed in the FVB-Tgkd strain of mice. 

Hemizygous carrier females of the imprinted Tgkd transgene developed OTs at a frequency of 

17-20% while homozygous Tgkd mice exhibited perinatal lethality. These phenotypes were 

consistent with the notion of the Tgkd disrupting one or more genes surrounding the insertion site 

on chromosome 8. 

In addition to the Tgkd insertion, there was a strain specific modifier effect on the Tgkd 

induced OT phenotype. Tgkd positive females only developed OTs on the FVB strain 

background and homozygosity of the FVB background was required for teratoma formation. The 

only other strain background with predisposition to OT formation was the LT/Sv strain 

background, which appeared to enhance the frequency of OT formation in FVB-Tgkd mice. 

In this thesis, I have focused on the genetic and molecular effects of the Tgkd transgene 

on OT formation in hemizygous FVB-Tgkd (henceforth designated Tgkd) mice. 



 50 

4.0  OVARIAN DEFECTS ASSOCIATED WITH THE Tgkd OT MODEL 

4.1 AIMS OF THESE STUDIES 

The aims of these studies are to characterize the defects present in Tgkd ovaries and assess how 

they may relate to OT formation. Many OT models exhibit several follicular defects such as 

oocyte growth asynchronous with ovarian follicle growth, alterations in the distribution of 

various follicle types, depletion of the primordial follicle pool and associated decrease in 

reproductive fitness [81, 84]. I wanted to evaluate whether there were any alterations in ovarian 

follicle development between FVB (wildtype) and Tgkd ovaries or whether the defects leading to 

OT development are confined to the oocyte. 

Further studies also aimed to evaluate the properties of wildtype and Tgkd oocytes in 

terms of potential of parthenogenetic activation as oocyte parthenogenetic activation has been 

reported to be a necessary requirement but not sufficient for OT formation [78].  Additionally, I 

have analyzed the type of error or the last stage of meiosis completed by Tgkd oocytes before 

initiating OT formation.  In terms of oocyte requirements for OT formation, I evaluated whether 

methylation on the Tgkd transgene is required for the OT phenotype and whether this 

methylation plays a role in the strain specificity of the OT phenotype. In summary, I have 

evaluated the contribution of various aspects of ovarian development to the OT phenotype. 
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4.2 ABNORMAL FOLLICLE MATURATION AND LUTEINIZED FOLLICLE 

SYNDROME IN Tgkd OVARIES 

The ovarian follicle comprising of the oocyte and the surrounding GCs form the main 

developmental component of the ovary. The ovarian follicle goes through various stages of 

development and all these stages can be seen in serial sections of the whole mouse ovary. The 

earliest stage of the follicular development is the quiescent ovarian reserve of primordial 

follicles, which consist of oocyte surrounded by a single layer of squamous GCs. Once a follicle 

is recruited from the primordial follicle pool towards further development, the follicle either 

successfully ovulates the oocytes or undergoes atresia during development.  A reliable way of 

assessing follicular function is by counting the number of different follicle types in the ovary and 

defects in follicle development are manifested as significant changes in one or more follicle 

stages. Recruited follicles were classified as primary (1 layer of cuboidal GCs – Type 3b), 

secondary (2 layers of GCs – Type 4), preantral (3 or more layers of GCs – Type 5) and antral 

follicles (Type 6-8) according to Pedersen and Peters method of classification [16]. Primordial 

follicles quantification is presented along with fertility studies in the next section. In these 

studies, I have quantified the different activated follicular types in pre-pubertal PD23 mice and 

just after puberty at PD30 to evaluate if the gonadotrophin hormones play a role in promoting 

follicular defects. Both wildtype and Tgkd mice attained puberty on PD28 (n=4 mice) consistent 

with normal gonadotrophin signaling during puberty in Tgkd female mice. 

The distribution of follicle types differed in PD23 wildtype and Tgkd mice, although the 

total number of activated follicles was not significantly different.  Absolute numbers of primary 

(Type 3b) and secondary follicles (Type 4) were similar in wildtype and Tgkd ovaries, but there 

were twice the number of preantral  (Type 5) follicles in Tgkd ovaries (Figure 8A, p<0.05).  This 
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was accompanied by a decrease in the absolute number of early and late antral (Type 6-8) 

follicles per ovary.  Similar defects in folliculogenesis were seen in post-pubertal PD30 Tgkd 

female mice.  Specifically, I observed a significant 1.6-fold increase in the number of preantral 

follicles in PD30 Tgkd mice, which was accompanied by a 0.4-fold decrease in the number of 

antral follicles (Figure 8A).  A subset of large preantral follicles without antrum formation was 

observed in PD30 Tgkd ovaries, which may contribute to the increase in the number of preantral 

follicles and decrease in the number of antral follicles (# - Figure 8C). The cause for this lag in 

antrum formation in these follicles is not known but these follicles manifest defects in follicle 

maturation. 

PD30 Tgkd ovaries showed additional follicular defects, not present in age-matched 

wildtype mice, which are indicative of perturbed follicle maturation.  An average of 4.4 corpora 

lutea were observed, whereas no corpora lutea were observed in control wildtype mice (Figure 

8B).  In addition, trapped oocytes were observed in many PD30 Tgkd corpora lutea (& - Figure 

8C); one examined ovary contained four corpora lutea with trapped oocytes.  A corpus luteum is 

formed from the remnants of the follicle after ovulation of the oocyte; hence a trapped oocyte 

indicates that the follicle has luteinized prior to ovulation of the oocyte. These luteinized, 

unruptured follicles are a further indication of defective ovarian follicle maturation in Tgkd mice 

that may be directly relevant to teratoma formation as the associated OTs may form via 

parthenogenetic activation of these trapped oocytes.  
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Figure 8: Defects in follicular maturation in Tgkd ovaries 

Premature corpora lutea formation and luteinized unruptured follicles were observed in OT 

susceptible Tgkd mice.  (A) Classification and numbers of ovarian follicles in the OT susceptible 

Tgkd strain compared to wildtype mice (n>6 ovaries).  (B) Corpora lutea formation was observed 

in the Tgkd strain (n=10 ovaries) at PD30 but not in wildtype PD30 mice (n=6) (Scale bar: 

200µm). (C) Depicts follicular defects observed in Tgkd ovaries not observed in wildtype ovaries 

such as large preantral follicles (#) and unruptured lutenized follicles (&), which consist of 

corpora lutea with oocytes trapped within them (scale bar in upper panels 200µm; scale bar in 

lower panels 100µm). * - p<0.05. 

 

 

 

4.3 ABSENCE OF PREMATURE OVARIAN FAILURE IN Tgkd MICE 

In addition to the follicular defects, alterations in reproductive fitness have been reported in 

many OT models. Homozygous MommeR1 mice carrying a missense mutation in the Foxo3a 

gene exhibit infertility in early adult hood consistent with the phenotype of premature ovarian 

failure (POF) [81]. Mice developing OTs due to expression of constitutively active FSH receptor 

(mFshrD580H) are either infertile due to irregular estrous cycles or mice with regular estrous 

cycles depict an initial increase in litter size followed by premature ovarian failure [84]. Female 

infertility can be caused by defective maturation at any stage of folliculogenesis, however 

premature ovarian failure is characterized by depletion of the primordial follicle reserve due to 
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excessive recruitment, which leads to a sudden decrease in fertility in early adulthood. Some OT 

models such as the mice overexpressing Bcl-2 in GCs (Inhα-bcl2) display an increase in litter 

size compared to wildtype controls [85]. 

These reports on the relationship of the OT phenotype with female fertility led me to 

examine the effect of the Tgkd transgene on the reproductive fitness of the Tgkd mice. Further I 

have evaluated the effect of Tgkd on the number of primordial follicles in PD23 and PD30 

ovaries to assess for premature follicle depletion. Despite the observed abnormalities in Tgkd 

ovary morphology, there was no evidence of a significant reduction in the fertility of hemizygous 

Tgkd females, and no differences in primordial follicle numbers between wildtype and Tgkd mice 

at both PD23 and PD30 (Figure 9A and 9B). A decrease in fertility in older Tgkd females was 

seen due to the death of OT positive females set up for mating. Once the OTs reached a large 

size, the females died or were sacrificed due to the large size of the teratomas. When the fertility 

data was examined only in the Tgkd females without palpable OTs, there was no difference in 

fertility from wildtype controls. Consequently there was no evidence of premature ovarian 

failure (POF) in Tgkd females, which is associated with OT formation in other mouse strains. 

 

 

 

 

 

 

 



 56 

 

 

 

Figure 9: Fertility studies with Tgkd mice 

Reproductive fitness and primordial follicle reserve in Tgkd mice was comparable to that in 

wildtype mice.  (A) Litter sizes were recorded in wildtype (n=4) and Tgkd (n=5) females crossed 

with Tgkd males till the mother was 30 weeks of age or Tgkd females developed OTs (n=2).  

Tgkd females with palpable OTs were killed. (B) Number of primordial follicles in immature 

PD23 and post pubertal PD30 ovaries of Tgkd mice compared to wildtype mice. NS – non-

significant 
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4.4 OVARIAN TERATOMAS ARISE FROM OOCYTES THAT HAVE 

COMPLETED MEIOSIS I 

Both follicle luteinization and meiotic maturation of fully-grown oocytes require the LH surge. 

Therefore if trapped oocytes were postulated to give rise to OTs, we would expect the OTs to 

develop from mature oocytes that have completed meiosis I. To test this hypothesis and more 

definitively determine the cellular etiology of Tgkd OTs, I studied genomic DNA samples from 

Tgkd OTs and paired host spleens obtained from Tgkd transgenic offspring of F1 (FVB-Tgkd x 

B6) hybrid male mice backcrossed to inbred FVB female mice.  Genotypes of paired OT and 

spleen DNA samples were compared using pericentric and distal single nucleotide 

polymorphisms (SNPs) between FVB and B6 strains for each autosome and the X chromosome.  

If OTs arise from oocytes that have failed to complete meiosis I, pericentric markers of the OTs 

would be genetically identical to the paired spleen. However if they arise from oocytes that have 

completed meiosis I, the pericentric markers (FVB/B6) heterozygous in the host spleen would 

become homozygous in the OT. For the majority of informative (heterozygous FVB/B6) 

pericentric markers in each spleen DNA sample, genotypes of the paired OT DNA sample were 

homozygous (Table 4).  In contrast, the majority of the informative distal SNPs in each spleen 

DNA sample remained heterozygous in the OT, consistent with frequent meiotic recombination 

between a distal SNP marker and the centromere of the same chromosome.  Detailed description 

of the SNPs and their chromosomal location are provided in Appendix A. The small number of 

pericentric SNPs that were heterozygous in both paired OT and spleen DNA was likely due to a 

low frequency of recombination events near the centromere.  These studies are consistent with 

OTs arising from oocytes through Type II meiotic error (Table 1)[64]. I could conclude from 
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these findings that each of the seven examined Tgkd/+ OTs originated from a single mature 

oocyte that had completed meiosis I. 
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Table 4: OTs arise from mature oocytes that have completed meiosis I 

Heterozygous pericentric and distal SNPs were identified in the spleens of 7 females with OTs 

from the cross between F1 (FVB-Tgkd X B6) and FVB mice. Genotypes (heterozygous or 

homozygous FVB) of these SNPs were then determined in each of the paired OTs.  SNP 

information and location are provided in Appendix A. 

 

 

 

Tgkd ovarian teratoma 

Genotype (b/a) 

Pericentric Distal 

1 0/11 6/7 

2 0/11 7/7 

3 1/12 6/6 

4 2/11 4/4 

5 0/7 5/5 

6 1/7 6/8 

7 0/8 6/8 

a – Number of heterozygous SNPs in spleen of mouse with OT 

b – Number of SNPs heterozygous in both OT and spleen of host Tgkd/+ female 
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4.5 PARTHENOGENETIC ACTIVATION OF Tgkd OOCYTES 

From the above studies, it is clear that abnormal follicular development, specifically the presence 

of lutenized unruptured follicles (trapped oocytes), may play a crucial role in OT formation. 

Trapped oocytes have been observed in other OT models such as the constitutively active FSH 

receptor (mFshrD580H) mice, however all mouse models with luteinized unruptured follicles do 

not develop OTs [3]. This observation indicates that some property of oocytes may have a role in 

increasing the propensity of OT development.  

 Parthenogenetic activation of oocytes has been reported to be necessary for OT formation 

[78]. Given this, I measured spontaneous parthenogenetic activation in cultured unfertilized Tgkd 

oocytes by measuring the frequency of oocytes that progressed to the 2-cell stage [78]. COCs 

were collected and matured for 17 hours in vitro after which the oocytes were separated from the 

surrounding cumulus cells. Parthenogenetic activation was scored as the number of oocytes that 

progressed to the 2-cell stage after an additional 24 hours of culture [78]. Approximately 30% of 

cultured Tgkd oocytes underwent cell division, similar to the percentage of 2-cell embryos seen 

in cultured wildtype FVB oocytes (Figure 10).  The presence of the Tgkd transgene did not seem 

to significantly increase the rate of parthenogenetic activation seen in FVB oocytes. However the 

rate of parthenogenetic activation of FVB oocytes was much greater than that reported in B6 

oocytes (3%) and even the OT susceptible LT/Sv mice (18%) (Eppig et al., 1996), suggesting 

that mature oocytes in inbred FVB mice have a propensity toward parthenogenetic activation.  

The absence of OTs in inbred FVB female mice however indicates that the FVB strain 

background alone is not sufficient for OT formation reiterating a previously reported observation 

that parthenogenetic activation is necessary but not sufficient for OT formation [78]. In this 
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regard, we speculate that the strain-specific modifier alleles (e.g. Ots2) promoting Tgkd-induced 

OT development in the FVB background also promote oocyte parthenogenetic development. 
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Figure 10: Parthenogenetic activation studies in wildtype and Tgkd oocytes 

Parthenogenetic activation and development to 2-cell stage was examined in wildtype (43 COCs 

from 4 females) and Tgkd oocytes (37 COCs from 4 females). Both wildtype and Tgkd oocytes 

of the FVB strain exhibited a high rate of parthenogenetic activation, which was not increased in 

the presence of the Tgkd transgene. 
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4.6 ROLE OF OOCYTE Tgkd METHYLATION IN DEVELOPMENT OF OTS 

Because the Tgkd transgene is maternally imprinted in Tgkd mice, I determined whether the loss 

of Tgkd transgene methylation influenced the formation of Tgkd OTs.  The RSV sequences of 

Tgkd are methylated on the maternal and unmethylated on the paternal Tgkd alleles [92]. To 

assess the importance of Tgkd methylation on OT formation, Tgkd mice were crossed to Dnmt3l-

/- mice (FVB strain) in order to obtain Dnmt3l-/-Tgkd females as DNMT3L protein is vital to the 

establishment of genomic methylation, including imprinted methylation, during development of 

mouse oocytes [99]. As expected, RSV sequences were highly methylated in Tgkd Dnmt3l+/+ MII 

oocytes (82%) and Tgkd OTs (84%), but poorly methylated in Tgkd Dnmt3l -/- MII oocytes (26%) 

(Figure 11A).  

OTs were correspondingly found in Tgkd and Tgkd Dnmt3l+/- heterozygous female mice, 

but not in Tgkd, Dnmt3l-/- female mice (Figure 11B).  These findings support the notion that 

Tgkd transgene methylation may be required for OT formation in Tgkd female mice. However 

since the phenomenon of genomic imprinting is perturbed in Dnmt3l-/-oocytes, I cannot exclude 

the possibility that abnormal maternal imprints and not the unmethylated Tgkd transgene 

precludes OT formation in these mice. 
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Tgkd MII oocytes

(81.7%)

Tgkd teratoma 

(84.0%)

Tgkd Dnmt3l -/- MII oocytes 

(26.5%; p<0.05)

Genotype OT incidence (%)

12/80 (15)Tgkd, Dnmt3l
+/+

5/31 (16)Tgkd, Dnmt3l
+/-

0/14 (0)Tgkd, Dnmt3l -/-

A

B

 

 

 

Figure 11: Role of oocyte Tgkd methylation in OT formation 

Loss of oocyte Tgkd methylation is associated with the loss of the OT phenotype in the Tgkd 

strain. (A) Methylation of RSV region of Tgkd in MII oocytes (from 4 Tgkd mice), teratomas 

(from 2 Tgkd mice) and MII oocytes (from 2 Tgkd, Dnmt3l-/- mice) determined by bisulfite 

genomic sequencing. Filled circles – Methylated CpGs and absence of circle – Unmethylated 

CpGs (B) The OT phenotype is present in 15% of Tgkd hemizygous females but is lost in the 

Dnmt3l -/- background. *- p value < 0.05. 
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4.7 ROLE OF Tgkd METHYLATION IN STRAIN SPECIFICITY OF OT 

PHENOTYPE 

Since the loss of Tgkd methylation in FVB-Tgkd Dnmt3l -/- MII oocytes was associated with lack 

of OTs, I assessed whether strain permissiveness for OT formation was a function of Tgkd 

methylation. To do this, I examined whether the Tgkd transgene was genomically imprinted 

(methylated on maternal allele) in the OT non-permissive 129 strain background. The FVB-Tgkd 

strain was backcrossed to the 129 strain for several generations (n>10) and 129-Tgkd females did 

not develop OTs.  

Methylation of genomic imprints that are established in the female oocyte are maintained 

post fertilization and during adult development of most somatic tissues [100]. Hence I analyzed 

the methylation of Tgkd in the genomic DNA of F1 mice that either inherited the Tgkd transgene 

from the mother or from the father. The methylation of the Tgkd transgene in F1 progeny that 

inherit Tgkd only from the female recapitulate the state of Tgkd methylation in the oocytes of 

129-Tgkd mother. On assessing the methylation state of the RSV sequences in the maternal Tgkd 

allele and the paternal Tgkd allele in genomic DNA from adult spleen, I found that the Tgkd 

transgene methylation is intact on the maternal allele and the Tgkd transgene is more highly 

methylated on the maternal allele (62.3%) than on the paternal allele (41.1%) (Figure 12). The 

methylation of maternally inherited Tgkd on the 129 background (62.3%) is lower than the level 

in Tgkd oocytes on the FVB background (81.7%), however Tgkd methylation is not depleted to 

levels observed in Tgkd Dnmt3l -/- MII oocytes (26%), where OTs are absent. These studies led 

me to conclude that a high level of Tgkd methylation exists in 129-Tgkd oocytes and the non-

permissiveness of the OT phenotype on this background is not connected to the loss of Tgkd 

methylation.  
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129 -Tgkd(m)/+ spleen
(62.3%)

129 -Tgkd(p)/+ spleen
(41.1%, p<0.05)

 

 

 

Figure 12: Tgkd transgene methylation on the 129 background 

The methylation on the RSV sequence on the Tgkd transgene was measured in adult spleen DNA 

of F1 progeny that inherit Tgkd either maternally or paternally by bisulfite genomic sequencing. 

The maternal allele reflects the methylation state of Tgkd in 129-Tgkd oocytes. The methylation 

of maternally inherited Tgkd is maintained on the 129 strain and is higher than the methylation of 

paternally inherited Tgkd transgene. Filled circles – Methylated CpGs and absence of circle – 

Unmethylated CpGs. 
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4.8 CONCLUSIONS 

In this chapter, I have examined the development defects in Tgkd ovaries. The Tgkd OT model is 

a complex model with several features contributing to the OT phenotype. I have observed a 

number of dramatic follicular defects such as premature corpora lutea formation and the presence 

of trapped oocytes in a subset of these follicles in Tgkd ovaries. OTs in Tgkd mice arise from 

mature oocytes that have competed meiosis I supporting the hypothesis that a subset of the 

trapped oocytes may develop into OTs. The oocytes of these mice display a high frequency of 

parthenogenetic activation, which is independent of the Tgkd transgene but highly dependent on 

the FVB strain. The parthenogenetic activation property may be linked to Ots2 alleles on 

chromosome 6, which is associated with the FVB strain specificity of the phenotype. Previous 

studies by Lee et al also suggested that oocyte parthenogenetic development in the OT 

susceptible LT/Sv mice might be linked to Ots1 alleles on chromosome 6 [79].  Surprisingly I 

found that OT development in Tgkd mice was not associated with fertility defects or premature 

ovarian failure observed in other reported OT mouse models. 

Another important aspect in the Tgkd model was the requirement of the oocyte DNMT3L 

protein for subsequent OT formation. This observation indicated that either oocyte Tgkd 

methylation or the presence of intact maternal imprints was necessary for OT development. Tgkd 

methylation in oocytes was maintained in the non-permissive strains such as the 129 strain. 

Therefore strain specific OT non-permissiveness was not connected to the inherited methylation 

of Tgkd in the 129 strain.  

I have characterized the ovarian follicular and oocyte defects that are associated with the 

OT phenotype [101]. In the next sections, I aim to identify the molecular and signaling defects 

that lead to these maturation defects in Tgkd ovaries. 
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5.0  INSERTIONAL EFFECTS OF THE Tgkd TRANSGENE 

5.1 AIMS OF THESE STUDIES 

The aim of these studies was to identify the gene or genes affected by the Tgkd insertion in order 

to explain the molecular and signaling defects that lead to OT formation in Tgkd females. To 

explore this possibility, we first mapped the precise insertion site of the Tgkd transgene array and 

surveyed the effect of the Tgkd insertion on the transcription of the surrounding genes. Because 

OTs arise from oocytes and the quantity of oocytes from female mice is limited (20 

oocytes/mouse), each gene was characterized in tissues where the gene was highly expressed. 

The tissues of interest to study the expression of each gene was chosen on the basis of expression 

data curated in Mouse Genome Informatics (http://www.informatics.jax.org/) website. These 

gene transcription studies were performed on the assumption that the effect of the transgene Tgkd 

on the surrounding genes would be similar in the tissue analyzed and the Tgkd oocyte that leads 

to OTs. I also separated the tissues based on parental inheritance of Tgkd to analyze whether 

methylation of the transgene contributing to its effect on gene transcription. Alterations of gene 

transcription observed in Tgkd tissues would be independently confirmed in Tgkd oocytes that 

lead to the OT. 
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5.2 MAPPING OF THE Tgkd TRANSGENE INTEGRATION SITE  

To explore the molecular basis of Tgkd OTs, we first identified the genomic location into which 

the Tgkd transgene array had inserted. The integration site of Tgkd was determined by 

identifying the genomic fragments flanking both sides of the Tgkd insertion by Dr. Richard 

Chaillet (University of Pittsburgh, Pittsburgh, PA). This was accomplished by identifying single 

copy junction fragments on southern blots of DNA from FVB-Tgkd mice probed with Tgkd 

transgene fragments. Two junctional fragments, one from either side of the Tgkd insertion were 

cloned from sub-genomic libraries of FVB-Tgkd DNA. Sequences of the endogenous genomic 

ends of both junctional fragments containing endogenous and Tgkd transgene sequences aligned 

with sequences on mouse chromosome 8, between the Inpp4b and I15 genes.   

Further analysis of the junctional fragments indicated that approximately one kilobase of 

endogenous genomic DNA was deleted from the insertion site in Tgkd mice.  The Tgkd transgene 

is located ~65 kilobases 3’ of the known 3’ end of the inositol polyphosphate-4-phosphatase type 

II (Inpp4b) gene and ~120 kilobases 5’ of the known 5’ end of the Interleukin 15 (Il5) gene 

(Figure 13A).  The location of the large Tgkd transgene array in the intergenic region of Inpp4b 

and Il15 suggested that the phenotypic abnormalities in Tgkd mice were due to disruption of one 

or more unidentified genes in the intergenic region or due to effects on the gene function of 

surrounding genes on chromosome 8.  No spliced or unspliced transcripts have been reported in 

the Inpp4b-Il15 intergenic region and multiple attempts to recover exons in this intergenic region 

using exon-trapping strategies failed. Therefore we postulated that the abnormalities observed in 

Tgkd mice were due to effects of the transgene on transcription of surrounding genes. In terms of 

the genes surrounding the integration site, I hypothesized that the novel inositol phosphatase 

Inpp4b was more likely to play a role in the etiology of OTs for a number of reasons. The first 
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reason was that the Tgkd insertion site was closest to the 3’ end of the Inpp4b gene. Secondly the 

gene downstream of the Tgkd insertion Il15 has been mainly reported to be involved in the 

control of the innate immune system and neither Il15-/- mice nor mice that overexpress IL15 have 

been reported to develop OTs [102, 103]. However there have been reports of long-range 

transcriptional effects of DNA hypermethylation on surrounding genes [104, 105].  Therefore to 

perform an unbiased survey of the effect of the Tgkd transgene on genes surrounding the 

insertion site, I assessed the effect of Tgkd on transcription of protein-coding genes in a 2Mb 

region (1Mb on either side) on chromosome 8 surrounding the Tgkd insertion site (Figure 13B). 

Two genes 4930579O11Rik and Gm9725 encoding long intergenic non-coding RNAs 

(lincRNA) have been reported to be present 0.5Mb and 1Mb centromeric to the Tgkd transgene 

on chromosome 8, but no function has been attributed to either lincRNA transcript 

(http://www.informatics.jax.org/). The effect of the Tgkd transgene in altering the levels of these 

lincRNA transcripts was not examined in this thesis. 
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Figure 13: Schematics of the location of the Tgkd insertion site on chromosome 8 

Representation of the insertion site of Tgkd transgene and surrounding genes on chromosome 8 

(A) The Tgkd allele is inserted on chromosome 8 between the genes Inpp4b and Il15 as a 

transgene tandem array in head-head, tail-tail or head-tail orientation. Each arrow represents a 

single copy of the transgene. (B) Genes located on chromosome 8 in a 2Mb region surrounding 

the insertion of the Tgkd transgene array. The effect of the Tgkd insertion on the transcription of 

the genes represented in the figure was analyzed in adult Tgkd tissues. Description of the 
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function and nomenclature of each of the genes are provided in subsequent sections. Arrow on 

each gene indicates sense or antisense transcription from the genomic strand. 

 

 

 

5.3 ALLELE SPECIFIC TRANSCRIPTION STUDIES ON GENES SURROUNDING 

Tgkd INSERTION 

The hemizygous Tgkd transgene on the FVB strain causes the OT phenotype in 15-20% of mice. 

Therefore, if we envision a cis-acting effect of Tgkd on the surrounding genes on chromosome 8, 

we would expect only the allele on the chromosome with the transgene to be affected by the 

insertion. As a result, we would expect an affected locus to have a normal wildtype allele on 

chromosome 8 without the Tgkd insertion and an altered allele on the copy of chromosome 8 

with the Tgkd transgene. If we presume that Tgkd completely suppresses the expression of a gene 

by 100%, the overall reduction in the cellular levels of the gene product would be 50% due to the 

contribution of the wildtype allele in hemizygous Tgkd mice. 

I first decided to examine whether the Tgkd transgene array affected the transcription of 

the genes surrounding the insertion site. To magnify the difference in gene expression caused by 

the Tgkd transgene and eliminate the contribution of the wildtype allele, we decided to use allele 

specific expression studies to specifically analyze cis-acting effects of Tgkd in a 2Mb region only 

on the copy of chromosome 8 where it is inserted. I analyzed the expression of each gene in the 

presence and absence of Tgkd in adult tissues, where they have previously been reported to be 
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highly expressed (http://www.informatics.jax.org/). To distinguish the gene expression between 

the 2 parental copies of chromosome 8, I utilized previously described SNP differences between 

mouse strains in the transcribed but untranslated UTRs or the coding exons of the gene. I set up 

crosses between FVB and 129 mice and analyzed allelic differences in the tissues of the F1 

hybrid progeny. Further the crosses were set up such that the Tgkd transgene was always on the 

FVB copy of chromosome 8 and we could modify the parental inheritance of the transgene Tgkd 

and accordingly modify the methylation of the transgene by the design of the parental cross 

(Table 5).   

I was able to subsequently analyze allele specific transcription in F1 hybrid tissues by the 

use of the method Single Nucleotide Primer Extension (SNuPE) assay (Figure 14) [93]. In this 

technique, RNA isolated from the F1 hybrid tissues was converted to cDNA and subsequently 

reverse transcriptase PCR was performed on the converted cDNA.  Both the FVB allele and 129 

allele of the specific gene are amplified by the RT-PCR, however they are amplified in 

proportion to the expression level in the tissue. Therefore if the Tgkd transgene has an effect on 

the FVB allele of the specific gene, the contribution of the FVB allele would be unequal to that 

of the 129 allele in the RT-PCR product. To measure this bias in the RT-PCR product, a single 

cycle of PCR is performed with a common primer (SNuPE primer) exactly 5’ of a reported SNP 

in the RT-PCR product and radioactive nucleotides corresponding to the respective SNPs of the 

FVB and 129 alleles (Figure 14). The extent of radioactive incorporation of the FVB SNP is a 

measure of the transcript levels of the FVB allele. When both alleles are equally transcribed as in 

wildtype (+/+) F1 hybirds, the FVB to 129 allele incorporation ratio is 1:1. Significant deviations 

from this ratio of 1:1 indicate the effect of the Tgkd transgene on the FVB allele of the gene as it 

is normalized to the unaffected 129 allele. Since we are analyzing cis-acting effects of the Tgkd 
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transgene, I restricted the allele specific expression studies to a 2Mb region surrounding the Tgkd 

insertion on chromosome 8. 

 

 

 

Table 5: Analysis of F1 hybrids for allelic specific expression 

Allele specific expression was analyzed in adult tissues of F1 progeny obtained from the 

following crosses. The crosses were set up such that the Tgkd transgene was always on the FVB 

chromosome in the progeny. Further Tgkd transgene was inherited maternally in the progeny of 

the first cross and paternally in the progeny of the second cross. 

 

 

Cross  

(Female X Male) 

Transgene 

Inheritance 

Expected Methylation of 

Tgkd 

FVB-Tgkd X 129 Maternal Highly Methylated 

129 X FVB-Tgkd Paternal Relatively Unmethylated 

FVB X 129 None None 
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Figure 14: Representation of the SNuPE Assay 

The SNuPE assay was used to detect allele specific gene expression from the FVB allele on 

chromosome 8 with the Tgkd transgene insertion. RT-PCR for each gene was performed on 

cDNA from equal quantities of RNA. A single round of primer extension on the RT-PCR 

product with radioactive nucleotides revealed allele specific differences in transcription.  
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Once we obtained progeny from the F1 crosses described in Table 5, I wanted to first 

confirm that the imprinted methylation of the Tgkd transgene is maintained in the F1 hybird 

background. Tgkd as previously described in methylated on maternal inheritance and relatively 

unmethylated on paternal inheritance in both the FVB and 129 strain (Figure 12) [92].  I used a 

Southern blot approach with a probe located in the Tgkd transgene to confirm the imprinted 

status of Tgkd in the F1 hybrids [92].  

The Tgkd transgene was heavily methylated on maternal inheritance (F1 Tgkd(m)/+) and 

relatively unmethylated on paternal inheritance (F1 Tgkd(p)/+) in F1 hybrid progeny from 

crosses between FVB-Tgkd and 129 mice (Figure 15). The specificity of the probe is confirmed 

by the absence of Tgkd methylated and unmethylated bands in the F1 hybird (+/+) mice (Figure 

15). The 129 strain also depicted an imprinted methylation state similar to FVB-Tgkd mice as 

determined by Southern blot and bisulfite genomic sequencing analysis. 

Since I have confirmed that the methylation of Tgkd can be altered by parental 

inheritance in F1 hybrid mice, I subsequently analyzed the effect of Tgkd methylation on the 

transcription of the FVB allele of each of the genes analyzed on chromosome 8. 
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Figure 15: Imprinting status of the Tgkd transgene in F1 hybrid progeny 

The methylation of the Tgkd transgene was analyzed by Southern blot analysis as previously 

described [92].  Spleen DNA was digested with the methylation sensitive enzyme BstUI and the 

southern blot was hybridized with the Ca probe located in the Tgkd transgene (Described in 

methods section). The Tgkd transgene in F1 hybrid progeny from the FVB-Tgkd and 129 cross is 

methylated on maternal inheritance and unmethylated on paternal inheritance as in the parent 

FVB and 129 strain. Lanes 1-4 – F1 progeny (Tgkd –Maternal inheritance), Lanes 5-8 – F1 

progeny (Tgkd –Paternal inheritance), Lanes 9-12 – F1 progeny (Tgkd absent), Lanes 13-14 – 

Controls 129-Tgkd (Maternal inheritance) and Lanes 15-16 – Controls 129-Tgkd (Paternal 

inheritance). M - Methylated Tgkd band. UM - Unmethylated Tgkd band. 
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Allele specific expression studies using SNuPE analysis were performed on F1 hybrid 

tissue on 8 genes located either 1Mb upstream or downstream of the Tgkd insertion site (Figure 

13B). Expression studies for each gene were performed on a tissue reported to have a high level 

of expression. We assumed that the Tgkd transgene would have the same effect on gene 

transcription in all tissues with sufficient expression and I would subsequently confirm 

alterations in oocytes, which give rise to OTs. The SNP differences between the FVB and 129 

allele were confirmed in the RT-PCR product by sequencing prior to SNuPE analysis. RT-PCR 

primers and the SNuPE reaction primer for each gene are provided in Appendix B. 

On the centromeric side of the Tgkd transgene, I analyzed 4 genes – SWI/SNF related, 

matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 (Smarca5), 

growth factor receptor bound protein 2-associated protein 1 (Gab1), ubiquitin specific peptidase 

38 (Usp38) and inositol phosphatase Inpp4b. Smarca5 and Inpp4b were previously reported to 

depict high expression in the adult brain [106, 107]. Gab1, Usp38 and Inpp4b were reported be 

highly expressed in the adult spleen. I analyzed allele specific expression of Inpp4b in brain and 

spleen, as it is located closet to the Tgkd insertion site [108]. For each SNuPE experiment, FVB 

and 129 control samples were used to depict the specificity and quantitative nature of the SNuPE 

analysis. The radioactive incorporation of the FVB specific SNP was quantitated using 

phosphoimager analysis and this was normalized to the level of 129 specific SNP. The 129 

chromosome 8 did not have the Tgkd transgene insertion, hence was used as normalization 

control between the different groups. 

I analyzed 3 different regions in the gene Smarca5 for SNP differences between the FVB 

and 129 alleles, but none of the reported SNPs were true SNPs. In each case, the FVB SNP was 

also present on the 129 allele. Since, I could detect only the FVB cytosine SNP as depicted in 
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Figure 16A, I could not perform allele specific expression analysis on this gene. Since Smarca5 

was located farthest away (1.36Mb) from the Tgkd transgene, I did not pursue further SNuPE 

experiments on this gene.  

Both Gab1 and Usp38 had SNP differences in the 5’UTR and coding exon 9 respectively 

(Figure 16B and C). On performing SNuPE analysis in adult spleens of F1 hybrids, I obtained a 

G/C ratio for Gab1 and T/C ratio for Usp38 when the FVB allele expression was normalized to 

the 129 allele. The G/C ratio for Gab1 was similar in wildtype (+/+) F1 hybrids and F1 hybrids 

with the Tgkd transgene irrespective of parental inheritance (Tgkd(m)/+ and Tgkd(p)/+) (Figure 

16B). The T/C ratio for Usp38 from SNuPE analysis was also similar among the various groups 

(Figure 16C). On performing SNuPE analysis on the Inpp4b gene in adult brain tissue, I 

observed a statistically significant 2 fold decrease in the levels of the FVB allele expression (C/T 

ratio) in maternal Tgkd(m)/+ F1 hybrids compared to wildtype F1 hybrids (Figure 16D). This 

decrease was a Tgkd parent of origin specific effect as it was not observed in paternal Tgkd(p)/+ 

hybrids. I observed a similar trend in adult spleen tissue but the effect of Tgkd on FVB Inpp4b 

expression was not as pronounced as that observed in the brain (Figure 16E). This parent specific 

decrease in Inpp4b is consistent with the importance of Tgkd methylation on the transgene-

induced decrease of Inpp4b levels. Further an increase in CpG methylation has been correlated 

with a decrease in transcription of nearby genes, therefore we can hypothesize that the array of 

CpG methylation on Tgkd may cause transcriptional suppression of Inpp4b. 
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Figure 16: SNuPE analysis of genes on chromosome 8 centromeric relative to Tgkd  

Allele specific expression studies were performed on the FVB allele, which contained the Tgkd 

transgene on genes in a 1Mb region centromeric of the transgene array. (A) SNPs differences 

between the FVB and 129 strain were not found in the cDNA of the Smarca5 gene. Hence 

SNuPE analysis could not be performed. (B) SNuPE analysis was performed using G/C SNPs in 

the 5’UTR of the Gab1 gene in spleen tissue. (C) SNuPE analysis was performed using T/C 

SNPs in coding exon 9 of the Usp38 gene in spleen tissue. (D&E) SNuPE analysis was 

performed using C/T SNPs in the 5’UTR of the Inpp4b gene in brain and spleen tissue. SNuPE 

primer sequence for the single round of extension is indicated in each case along with the SNPs 

used for allele specific quantitation. SNP alleles are indicated as [FVB/129] SNP pairs. +/+ - 

wildtype F1 hybrid, Tgkd(m)/+ - maternal inheritance of Tgkd in F1 hybrid and Tgkd(p)/+ - 

paternal inheritance of Tgkd in F1 hybrid. n=4/genotype 

 

 

 

For investigations on the telomeric side of the Tgkd insertion, I surveyed 4 genes, which 

are within 1Mb downstream of the Tgkd transgene. The 4 genes are interleukin 15 (Il15), zinc 

finger protein 330 (Zfp330), ring finger protein 150 (Rnf150) and TBC1 domain family, member 

9  (Tbc1d9) (Figure 13B). The gene Il15 was reported to be highly expressed in adult thymus, 

while the genes Zfp330, Rnf150 and Tbc1d9 were all reported to be highly expressed in the brain 

[109, 110].  

The genes Il15, Zfp330 and Rnf150 had SNP differences in the 3’UTR of the gene, while 

Tbc1d9 had SNP differences in the 5’UTR between the FVB and 129 strains (Figure 17A-D). On 
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performing SNuPE analysis in adult thymus of F1 hybrids, I obtained a T/C ratio for Il15 when 

the FVB allele expression was normalized to the 129 allele. Similarly, on performing allele 

specific expression studies on F1 hybrid brains, I was able to determine a T/C, C/T and T/C ratio 

for Zfp330, Rnf150 and Tbc1d9 respectively to quantitate FVB allele expression. The T/C ratio 

of Il15 in the thymus tissue of F1 hybrids was not significantly different in the presence or 

absence of the Tgkd transgene (Figure 17A). The FVB allele expression or T/C ratio of Zfp330 

showed a small but significant increase on both maternal (Tgkd(m)/+ - 1.7 fold of +/+) and 

paternal (Tgkd(p)/+ - 1.4 fold)  inheritance of Tgkd compared to the wildtype F1 hybrid in adult 

brain (Figure 17B). The gene Rnf150 also depicted a small (0.8 fold) but significant decrease in 

the C/T ratio in adult brain only on maternal inheritance of Tgkd (Figure 17C). The T/C ratios 

obtained from allele specific expression studies on Tbc1d9 were not significantly different in the 

presence or absence of the Tgkd transgene (Figure 17D). 

This survey of allele specific expression of genes in a 2Mb region surrounding Tgkd 

yielded 3 potential gene candidates to pursue, with significant transcription differences in the 

presence of Tgkd: Inpp4b, Zfp330 and Rnf150.  Since the transcription changes in Rnf150 were 

small even in allele specific expression studies, I decided to exclude the gene from further 

analysis. Between Inpp4b and Zfp330, I postulated that Inpp4b would be better potential 

candidate involved in OT formation for several reasons. The first reason is that Inpp4b is closest 

to the Tgkd integration site, therefore is more likely to be influenced by the insertion. Secondly 

Inpp4b has the highest fold change (2 fold decrease) in the presence of maternal Tgkd and a 

decrease in expression would be consistent with the role of Tgkd methylation in transcriptional 

suppression. I also observed a Tgkd parent of origin effect on Inpp4b in adult brain and this 

effect is consistent with the notion that the heavily methylated maternal Tgkd is more effective at 
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transcriptional suppression of nearby genes (Inpp4b) than the unmethylated paternal Tgkd 

transgene. In summary, the allele specific expression studies led us to focus on the effect of Tgkd 

on Inpp4b levels and the mechanism by which transcriptional suppression of Inpp4b could lead 

to OT formation. 
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Figure 17: SNuPE analysis of genes telomeric relative to the Tgkd insertion 

Allele specific expression studies were performed on the FVB allele with the Tgkd insertion on 

genes in a 1Mb region telomeric of the transgene array. (A) SNuPE analysis was performed 

using T/C SNPs in the 3’UTR of the Il15 gene in thymus tissue. (B) SNuPE analysis was 

performed using T/C SNPs in the 3’UTR of the Zfp330 gene in brain tissue. (C) SNuPE analysis 

was performed using C/T SNPs in 3’UTR of the Rnf150 gene in brain tissue. (D) SNuPE 

analysis was performed using T/C SNPs in the 5’UTR of the Tbc1d9 gene in brain tissue. SNuPE 

primer sequence for the single round of extension is indicated in each case along with the SNPs 

used for allele specific quantitation. SNP alleles are indicated as  (FVB/129) SNP pairs. +/+ - 

wildtype F1 hybrid, Tgkd(m)/+ - maternal inheritance of Tgkd in F1 hybrid and Tgkd(p)/+ - 

paternal inheritance of Tgkd in F1 hybrid. 

 

 

 

5.4 TRANSCRIPTIONAL PROFILE OF INPP4B IN EMBRYONIC BRAIN 

The Tgkd transgene on the FVB background leads to 2 phenotypes: adult hemizygous Tgkd 

females develop OTs and homozygous Tgkd mice die around birth. The perinatal death of 

homozygous Tgkd mice led us to hypothesize that both the maternal and paternal copy of Tgkd 

may have an effect on the surrounding genes and the additive effect of both copies of Tgkd in 

homozygous Tgkd mice causes the death of the mice. Therefore I decided to perform a 4-way 

comparison between wildtype (+/+), maternal Tgkd (Tgkd(m)/+),  paternal Tgkd (Tgkd(p)/+) and 
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homozygous Tgkd (Tgkd/Tgkd) embryos to assess the effect of Tgkd on Inpp4b levels. I decided 

to perform this analysis on embryos earlier in gestation to avoid biases due to developmental 

defects later in gestation that eventually lead to the perinatal lethality of Tgkd/Tgkd mice. 

I initially measured the levels of Inpp4b transcript in +/+, Tgkd(m)/+, Tgkd(p)/+ and 

Tgkd/Tgkd E9.5 FVB embryos using real-time PCR analysis. I found that the levels of Inpp4b in 

all four groups were similar to each other independent of the presence of the Tgkd transgene 

(Figure 18A). However on evaluating the levels of Inpp4b transcript across gestation by real-

time PCR, I found that Inpp4b was not highly expressed in E9.5 embryos (Figure 18B). Inpp4b 

has been reported to be expressed in the adult brain and I found that Inpp4b expression increases 

8 fold in E13.5 wildtype embryo brains and 14 fold in E16.5 wildtype embryo brains compared 

to the levels in E9.5 wildtype embryos (Figure 18B) [106]. Since E16.5 embryos were closer to 

the time point of perinatal lethality, I decided to evaluate the effect of Tgkd on Inpp4b levels in 

E13.5 embryonic brains. 
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Figure 18: Determining Inpp4b levels across gestation 

Inpp4b levels were determined in embryos across gestation by real-time PCR analysis. (A) 

Inpp4b levels were determined in hemizygous and homozygous Tgkd embryos at E9.5 during 

gestation by real-time PCR analysis (n=3 embryos/group). Relative mRNA expression or fold 

change was determined relative to wildtype (+/+) embryos. (B) Inpp4b transcript levels were 
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measured across gestation in wildtype FVB E9.5 embryos, E13.5 brain and E16.5 brain (n=1 at 

each stage). Fold change was determined relative to the expression measured in E9.5 embryos. 

Inpp4b levels were normalized to the housekeeping gene TBP. NS – non-significant 

 

 

 

5.5 EFFECT OF Tgkd ON INPP4B EXPRESSION IN E13.5 EMBRYONIC BRAIN 

Since Inpp4b transcripts are highly expressed in the adult and embryonic brain, I first explored 

the effect of the Tgkd insertion on Inpp4b transcript and protein levels in the heads of E13.5 

embryos (Figure 18B) [106].  This enabled us to perform a 4 way comparison of Inpp4b levels 

between wildtype (+/+), maternal Tgkd (Tgkd(m)/+), paternal Tgkd (Tgkd(p)/+) and homozygous 

Tgkd (Tgkd/Tgkd) embryos on the FVB strain. I was also able to perform an in-depth comparison 

on the role of methylation and homozygosity of Tgkd in altering Inpp4b transcript and protein 

levels. At the level of Inpp4b transcription, I also analyzed the effect of the Tgkd transgene on 

known splice isoforms of Inpp4b. 

The two well-characterized Inpp4b transcripts, Inpp4bα and Inpp4bβ are produced by 

alternative splicing of the 3’ end of Inpp4b and are translated into the INPP4Bα and INPP4Bβ 

proteins respectively [106].  A comparison of Inpp4b transcript levels was performed among 

wild-type, Tgkd(m)/+, Tgkd(p)/+ and Tgkd/Tgkd E13.5 embryos (Figure 19A).  The level of 

Inpp4bβ was found to be most affected by the Tgkd insertion; Tgkd/Tgkd and Tgkd(m)/+ 
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embryos expressed ~50% of wild-type Inpp4bβ, whereas Tgkd(p)/+ embryos showed an ~20% 

decease in Inpp4bβ expression (p<0.05).  

Inpp4bα (includes Inpp4bαs, a short α-like transcript) was less affected in Tgkd embryo 

heads.  Homozygous Tgkd/Tgkd embryos showed the most downregulation (20%) compared to 

wildtype controls, and Tgkd(m)/+ embryos had comparable Inpp4bα expression as Tgkd/Tgkd 

embryos (p<0.05).  Levels of Inpp4bα in Tgkd(p)/+ embryos were somewhat lower than 

wildtype embryos but this difference was not statistically significant.  Total Inpp4b followed a 

pattern of expression similar to the Inpp4bα transcript because the level of Inpp4bβ was 

approximately 10-fold lower than the total levels of Inpp4b in adult brain.   

INPP4B protein levels were correspondingly affected in E13.5 embryonic heads.  

Individual Tgkd/Tgkd heads had a significant reduction of ~50% of the wildtype protein 

concentration (Figure 19B).  Individual Tgkd(m)/+ and Tgkd(p)/+ heads had somewhat lower 

concentrations of INPP4B, although collectively, levels of INPP4B in hemizygous mice were not 

statistically different than wild-type mice (Figure 19B).  The combination of small effects on the 

normally highly expressed Inpp4bα transcripts, and large effects on the normally poorly 

expressed Inpp4bβ transcript from both parental Tgkd alleles accounts for the significant 

differences in INPP4B expression between Tgkd/Tgkd and control wildtype embryos.  I was 

surprised to observe that the transcriptional differences observed between Tgkd(m)/+ and 

Tgkd(p)/+ embryo heads did not manifest in the levels of total INPP4B protein. We cannot 

distinguish between INPP4B α and β protein isoforms with the currently available antibodies, 

which are targeted to the N-terminus of the INPP4B protein. The absence of significant 

differences between Tgkd(m)/+ and Tgkd(p)/+ embryo heads is most likely due to the low levels 

of the INPP4Bβ protein compared to the INPP4Bα protein. In summary, in E13.5 embryonic 
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brains, the Tgkd transgene has parent-specific effects on Inpp4b transcription, however the effect 

on INPP4B protein levels is similar in hemizygous Tgkd brains to wildtype levels and an additive 

decrease is seen in homozygous Tgkd brains. 
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Figure 19: Effect of Tgkd on Inpp4b levels in E13.5 embryos 

 Expression of Inpp4b in E13.5 Tgkd embryonic brain.  (A) Inpp4b total transcript and levels of 

α and β isoforms were measured in Tgkd E13.5 embryo heads (+/+ - wildtype, Tgkd(m)/+ - 

maternally inherited Tgkd, Tgkd(p)/+ - paternally inherited Tgkd, and Tgkd/Tgkd - homozygous 

Tgkd) (n>3 mice/genotype). Inpp4b levels were normalized to the housekeeping gene TBP and 
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fold changes were expressed relative to +/+ embryos. (B) INPP4B protein levels in homozygous 

and hemizygous Tgkd E13.5 embryo heads (n=3). * - p value <0.05 

 

 

 

5.6 IMPACT OF THE Tgkd INSERTION ON SPLICE ISOFORMS OF Inpp4b 

In the analysis of the effect of Tgkd on Inpp4b transcription, I found that the Tgkd transgene had 

a more pronounced effect on Inpp4bβ compared to the Inpp4bα splice isoform. Inpp4bα and 

Inpp4bβ are previously characterized splice isoforms generated due to alternative splicing of the 

terminal exon of Inpp4b exon 25, resulting in different terminal exons and 3’ UTRs [106]. 

INPP4Bα has a hydrophilic carboxy terminus while INPP4Bβ has a hydrophobic carboxy 

terminus. Inpp4b also has an alternative Inpp4bα isoform that lacks exon 5, however this 

isoform is not expressed in the brain [106].  

Given these results, I also wanted to determine whether the Tgkd insertion caused the 

generation of any novel splice isoforms of the gene Inpp4b in addition to its effect on Inpp4bα 

and Inpp4bβ. Transcripts from E13.5 embryonic brain from wildtype and homozygous 

(Tgkd/Tgkd) were ideal for this analysis as Tgkd/Tgkd brains should show an enrichment for any 

potential Tgkd induced splice isoforms. To investigate the existence of novel splice isoforms, 

RNA from a Tgkd/Tgkd and wildtype E13.5 brain was converted to cDNA. A series of PCRs 

after reverse transcription (RT-PCRs) were performed spanning the entire cDNA sequence of the 
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gene. The PCR primers were designed to generate 1kb amplicons and successive PCR products 

had overlap regions of atleast 200bp. The PCR amplified amplicons were sequenced and the 

sequence from wildtype and Tgkd/Tgkd embryos were compared. Overlap regions were designed 

in PCR products to ensure sequencing of the entire Inpp4b cDNA sequence. Further if the loss of 

sequence in potential novel isoforms were in the region of the forward or reverse primer, then 

PCR amplification of that amplicon would not take place. 

I designed 7 sets of primers to span the entire 3.23kb and 4.39kb Inpp4b α and β cDNA 

sequence respectively. The primer sequence for each amplicon is provided in Appendix B. I 

obtained successful PCR amplification of similar size for all sets of primers in both wildtype and 

Tgkd/Tgkd E13.5 brains indicating no major loss or gain of sequence in Tgkd/Tgkd E13.5 brains. 

DNA sequencing of the cloned RT-PCR products revealed no sequence differences or novel 

splice isoforms between wildtype and Tgkd/Tgkd embryonic brains (Data not shown). In 

summary, the insertion of Tgkd did not alter the sequence or generate novel isoforms of Inpp4b. 

5.7 CONCLUSIONS 

In this chapter, I have determined that the Tgkd transgene is inserted on chromosome 8 between 

the Inpp4b and Il15 genes [101]. The Tgkd insertion is closest to the 3’ end of Inpp4b. Allele 

specific expression studies revealed that the hemizygous Tgkd transgene had effects on the 

transcript levels of Inpp4b, Zfp330 and Rnf150 genes. However the highest decrease induced by 

the Tgkd insertion was on the Inpp4b gene and this suppression was caused by the methylated 

maternal Tgkd transgene. Inpp4b transcript levels were examined in wildtype embryos prior to 

the perinatal lethality observed in Tgkd/Tgkd mice. Inpp4b was not expressed in E9.5 embryos, 
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however the levels of Inpp4b were high in both E13.5 and E16.5 brains. On further examination 

of E13.5 brains, homozygous Tgkd/Tgkd embryos showed the largest decrease in Inpp4b levels 

specifically in the Inpp4bβ isoform compared to wildtype embryos. Embryos with maternal 

inheritance of Tgkd (Tgkd(m)/+) mimic Inpp4b expression patterns in Tgkd/Tgkd embryos while 

Tgkd(p)/+ embryos have wildtype Inpp4b levels. On examination of INPP4B protein in E13.5 

brains, a significant decrease in INPP4B protein was observed only in homozygous Tgkd/Tgkd 

embryos compared to wildtype levels. The Tgkd insertion did not alter the sequence or cause 

generations of novel splice isoforms of Inpp4b in Tgkd/Tgkd E13.5 brains. Therefore Tgkd 

mainly caused transcriptional suppression of Inpp4b levels in hemizygous and homozygous Tgkd 

E13.5 brains, which manifested as a significant decrease in INPP4B protein in Tgkd/Tgkd 

embryonic brains. 

 



 94 

6.0  ES CELL MODEL TO STUDY EFFECT OF Tgkd ON INPP4B AND 

DOWNSTREAM SIGNAL TRANSDUCTION PATHWAYS 

6.1  AIMS OF THESE STUDIES 

The effect of the Tgkd transgene in decreasing the levels of INPP4B was demonstrated in the 

previous chapter by allele specific expression in adult brain and real time PCR studies in 

embryonic brain. Recent studies have shown that the tumor suppressor Inpp4b is a negative 

regulator of PI3-Kinase/AKT (PI3K/AKT) signaling pathway through degradation of PI(3,4)P2  

to PI(3)P [111, 112]. An increase in PI(3,4)P2 levels promotes increased phosphorylation of 

AKT; therefore by degrading PI(3,4)P2, Inpp4b acts as a suppressor of the PI3K/AKT pathway. 

To study the role of Tgkd in OT formation, I decided to examine its role on the PI3K/AKT 

pathway. 

I did not perform PI3K/AKT activation studies in the adult or embryonic brain as the 

levels of phospho-AKT (P-AKT) were very low (Data not shown) and the stimulation 

experiments to study AKT activation kinetics on embryonic brain seemed difficult and 

unconnected to the process of OT formation from oocytes. Inpp4b expression and PI3K/AKT 

studies in oocytes were also challenging due to the limited amount of oocyte material. Therefore 

to develop an in vitro model closer to the oocyte developmental time point, we decided to use ES 

cells as a model to study Tgkd induced effects on Inpp4b levels and the activation of the 
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PI3K/AKT pathway. The ES cell model offered a number of advantages as a tool to study the 

effect of Tgkd on the PI3K/AKT pathway. INPP4B is expressed in ES cells and ES cells are 

derived from an early embryonic time point (E3.5 blastocysts), which is a closer developmental 

time point to oocytes. They provide an unlimited amount of material to study AKT activation 

kinetics and AKT phosphorylation can be modulated easily in ES cells through serum starvation 

and subsequent stimulation with the hormone IGF1.  Further, since ES cells are derived from 

E3.5 blastocysts, we should be able to derive wildtype (+/+), hemizygous (Tgkd(m)/+ and 

Tgkd(p)/+) and homozygous Tgkd/Tgkd ES cell lines to perform a 4-way comparison on the 

effect of the Tgkd transgene on Inpp4b expression and subsequent PI3K/AKT activation in this 

model. 

These factors rendered the Tgkd ES cell model as an attractive model to study signaling 

alterations in the PI3K/AKT pathway caused by the transgene, which can be subsequently 

confirmed in Tgkd oocytes that lead to OT formation. 

6.2 DEVELOPMENT OF THE Tgkd ES CELL MODEL AND METHYLATION 

STATUS OF Tgkd IN ES CELLS 

To develop the Tgkd ES cell model, I derived ES cell lines from E3.5 blastocysts by previously 

established methods [89]. I decided to derive ES cell lines from blastocysts of the 129 strain as 

these blastocysts depict a higher potential to give rise to ES cell lines than blastocysts from other 

mouse strains [113]. The FVB strain is permissive to OT development and the 129 strain is not 

OT permissive in the presence of the Tgkd transgene. However, the gene/genes linked to the 

FVB strain specific OT phenotype was linked to a region on chromosome 6 independent of the 
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Tgkd transgene insertion on chromosome 8.  This observation led us to assume that the cis-acting 

effects of Tgkd on the surrounding genes on chromosome 8 in the 129 strain would be identical 

to that observed in the FVB-Tgkd strain. However additional strain specific alleles on 

chromosome 6 also are required for OT development. Hence, the effect of Tgkd on Inpp4b levels 

and its effects on the PI3K/AKT pathway were examined in 129 ES cells with the Tgkd 

transgene (129-Tgkd ES cells) and these effects were considered similar to that observed in FVB-

Tgkd ES cells. 

To develop 129 wildtype, hemizygous and homozygous Tgkd ES cell lines, I set up the 

following crosses to obtain blastocysts for ES cell derivation (Table 6).  About 40% of the 

blastocysts collected from matings gave rise to ES cell lines. Homozygous Tgkd (Tgkd/Tgkd) ES 

cell lines could be derived from a cross between a hemizygous 129-Tgkd female and 129-Tgkd 

male (Table 6).  The homozygous Tgkd lines were obtained at a lower frequency as 

approximately 1 out of 4 ES cell lines derived from the above cross were Tgkd/Tgkd lines 

according to Mendelian ratios. Further I could derive hemizygous Tgkd lines that inherit the 

transgene maternally (Tgkd(m)/+) or paternally (Tgkd(p)/+), thereby altering the methylation 

state of Tgkd in the ES cell lines (Table 6). 129 wildtype lines were derived from 129 blastocysts 

obtained from all the above crosses.  
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Table 6: Derivation of Tgkd ES cell lines and expected methylation state 

The following crosses were set up in order to collect E3.5 blastocysts for derivation of Tgkd ES 

cell lines. Crosses between 129-Tgkd and 129 mice were set up such that the blastocyst inherited 

the transgene either from the mother (Tgkd(m)/+) or the father (Tgkd(p)/+). The maternally 

inherited Tgkd was expected to be more highly methylated than paternally inherited Tgkd in 

these ES cell lines.  Homozygous Tgkd/Tgkd ES cell lines were derived from crosses between 

hemizygous 129-Tgkd mice and were expected to have an intermediate methylation due to Tgkd 

methylation from both the maternal and paternal allele. Number of lines indicates the number of 

ES cell lines derived from these crosses, which were used for further analysis. 

 

 

Cross 

(Female X Male) 

Tgkd 

inheritance 

Expected Tgkd 

methylation state 

Number of 

lines  

129-Tgkd X 129 Maternal Highly methylated 3 

129 X 129-Tgkd Paternal Relatively 

Unmethylated 

3 

129-Tgkd X 129-Tgkd Homozygous Intermediate 

methylation 

2 

All the above crosses give rise to 129 (+/+) lines 2 
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The crosses detailed in Table 6 allowed us to derive ES cell lines to perform a 4-way 

comparison analysis between +/+, Tgkd(m)/+, Tgkd(p)/+ and Tgkd/Tgkd ES cell lines. This 

allowed me to study the effect of Tgkd methylation on Inpp4b levels and on the PI3K/AKT 

pathway. Furthermore the derivation of the homozygous Tgkd/Tgkd ES cell lines helped me 

analyze whether 2 copies of Tgkd had a larger effect on Inpp4b suppression and on the 

PI3K/AKT pathway, as observed in Tgkd/Tgkd E13.5 brains (Figure 19). I derived 3 Tgkd(m)/+, 

3 Tgkd (p)/+ and 2 Tgkd/Tgkd ES cell lines from the above crosses (Table 6). Several wildtype 

lines were obtained from all 3 crosses out of which 2 lines were used for further analysis.  

The ES cell lines were genotyped by the PCR assay described in Figure 7B and a 

representative genotyping assay from the ES cell lines is depicted in Figure 20A. The wildtype 

band is absent in homozygous Tgkd/Tgkd ES cell lines (Lane 1,2 - Figure 20A) while 

hemizygous Tgkd lines have a wildtype and a Tgkd PCR band (Lane 3-16 - Figure 20A). 

Maternal and paternal inheritance of Tgkd cannot be distinguished in the PCR genotyping of 

hemizygous Tgkd ES cell lines (Lane 3-16 - Figure 20A). The Tgkd PCR product was absent in 

wildtype ES cell lines (Data not shown). 

After derivation of the 4 groups of ES cell lines, I wanted to first examine whether the 

methylation status of the transgene Tgkd is maintained in the independently derived lines. Tgkd 

is a maternally imprinted transgene and maternal imprints are established in the oocyte, 

maintained in the early embryo and undergo erasure only in the PGCs [100]. Therefore, I 

expected the maternal Tgkd(m)/+ lines to possess higher Tgkd methylation than paternal 

Tgkd(p)/+ lines and Tgkd/Tgkd lines to depict intermediate levels of Tgkd methylation (Table 6). 

However, on examining the levels of Tgkd methylation using Southern blot analysis, I found that 

independently derived Tgkd lines of the same category depicted a wide range of Tgkd 
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methylation (Figure 20B). The upper band in the Southern blot in Figure 20B indicates 

methylated Tgkd band (M), while the lower band constitutes the unmethylated Tgkd band (UM). 

The extent of Tgkd methylation was determined in each of the ES cell lines by calculating a 

methylation (M/UM) ratio by dividing the signal from the methylated band by the unmethylated 

band. I expected a highly methylated Tgkd transgene to have ratio of greater than 1 and 

unmethylated Tgkd to have a ratio much lower than 1. Homozygous Tgkd/Tgkd lines were 

expected to show a ratio close to 1 due to the contribution of the maternal and paternal copies of 

Tgkd. 

In the methylation analysis of the Tgkd ES cell lines, both of the homozygous Tgkd/Tgkd 

lines showed vey high Tgkd methylation (Methylation Ratio=1.9 &1.4), which were very 

different from the expected methylation ratio of 1 (Figure 20B). The 3 independently derived 

maternal Tgkd(m)/+ lines depicted the highest range of variability in Tgkd methylation (Ratio 

range = 0.4-3.2) with Tgkd(m)/+ lines depicting high Tgkd transgene methylation (Ratio=3.2), 

intermediate Tgkd methylation (Ratio=1) and low levels of Tgkd methylation (Ratio=0.4) (Figure 

20B). The paternal Tgkd(p)/+ lines showed variability in the levels of Tgkd methylation between 

the 3 independently derived lines but all the lines showed low levels of Tgkd methylation (Ratio 

range = 0.3-0.7) (Figure 20B). 

In summary, independently derived Tgkd ES cell lines depicted a wide variation in Tgkd 

transgene methylation, which did not depend on the parental inheritance of the transgene. The 

process of in vitro ES cell derivation from the inner cell mass may have led to an instability in 

the maintenance of Tgkd methylation. ES cells are able to survive in the undifferentiated state 

with very low levels of genomic DNA methylation [114]. This ability to survive in the absence 

of proper genomic imprints may have removed the selection pressure for appropriate Tgkd 
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methylation. Further factors in the ES cell media, which maintain the undifferentiated state could 

affect the levels of Tgkd transgene methylation. 
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Figure 20: PCR genotyping of ES cell lines and maintenance of Tgkd methylation 

ES cell lines were established from matings described in Table 6 to derive homozygous 

(Tgkd/Tgkd), hemizygous (Tgkd/+) and wildtype (+/+) ES cell lines. Panel (A) describes the PCR 

genotyping procedure used to assay for Tgkd/Tgkd and Tgkd/+ ES cell lines. w - PCR band 

obtained for the wiltype  allele in the absence of the Tgkd insertion and t –Tgkd transgene PCR 

product. The wildtype (w) band is absent in homozygous (Tgkd/Tgkd) ES cell lines and the both 

the wildtype (w) and Tgkd (t) band are present in hemizygous Tgkd/+ ES cell lines. (B) Southern 

analysis on ES cell DNA digested with the methylation sensitive enzyme BstUI with the Ca 
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probe located in the Tgkd transgene (Described in methods section). M - Methylated Tgkd band 

and UM - Unmethylated Tgkd band. M/UM ratio calculates extent of methylation by dividing the 

signal from the methylated band to the unmethylated band. M/UM ratio for each ES cell lines is 

indicated below the respective lane. 

 

 

 

6.3 EFFECT OF Tgkd ON INPP4B IN ES CELLS 

The methylation of the Tgkd transgene in the ES cell lines did not match the predicted pattern of 

Tgkd methylation observed in somatic tissues.  However I also wanted to determine the effect of 

the Tgkd transgene on INPP4B levels in undifferentiated ES cells and whether the inheritance or 

methylation of Tgkd affects INPP4B levels. 

To study Tgkd induced effects on INPP4B levels, I compared INPP4B (I) protein levels, 

normalized to the housekeeping gene Actin (A) between different groups of ES cell lines. I used 

2 wildtype ES cell lines obtained during ES cell derivation and 1 previously available wildtype 

ES line W9.5 as controls. I compared the levels of INPP4B (normalized to Actin) in the +/+ lines 

to 3 Tgkd(m)/+, 3 Tgkd(p)/+ and 2 Tgkd/Tgkd ES cell lines (Figure 21A). The levels of INPP4B 

were expressed as the fold change of expression relative to INPP4B levels in a single wildtype 

ES cell lines generated in the experiment (Figure 21A, Lane 5, I/A=1) and statistical significance 

of differences in the ES cell lines was assessed by comparison to the same wildtype ES line. 
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The wildtype line W9.5 expressed very high levels of INPP4B compared to the other 2 

wildtype lines derived in the experiment (I/A=3.7 fold compared to 1 & 1.3). The 3 independent 

Tgkd(m)/+ lines showed decreased levels of INPP4B compared to all the wildtype lines, however 

this difference was not statistically significant. The Tgkd(p)/+ lines however depicted widely 

variable INPP4B levels (I/A=2.7 - 0.7) with 1 ES line upregulating INPP4B and the 2 other 

Tgkd(p)/+ lines having decreased levels of INPP4B. The levels of INPP4B in the 2 homozygous 

Tgkd/Tgkd ES cell lines derived in the experiment were different from each other (I/A=0.7 & 

1.1) with only one of the Tgkd/Tgkd ES cell lines showing a significant decrease in levels of 

INPP4B compared to the wildtype line (Figure 21A). These results led us to conclude that 

INPP4B levels were variable even in independently derived wildtype ES cell lines, which did not 

contain the Tgkd transgene. There was variation in INPP4B levels between Tgkd ES cell lines of 

the same group in paternal Tgkd(p)/+ and homozygous (Tgkd/Tgkd) ES cell lines. INPP4B levels 

seemed to be more similar between the maternal Tgkd(m)/+ lines; however, these lines represent 

a small sample size (n=3) and variation in INPP4B levels might be present in additional lines. 

Inpp4b transcript levels were also measured in the 4 groups of ES cell lines and the fold 

changes in transcript levels are similar to INPP4B protein expression levels. Inpp4bα is the only 

isoform of Inpp4b expressed in ES cells. The β isoform of Inpp4b could not be detected in ES 

cells (Figure 21B). 

In conclusion, the ES cell model cannot accurately map the effect of the Tgkd transgene 

on INPP4B expression due to the wide variation in INPP4B levels independent of the transgene. 

These differences did not correlate with the extent of ES cell Tgkd methylation (Figure 20B). 

The reason for this wide variation in INPP4B levels in ES cells is not known. ES cell lines 

mainly consist of undifferentiated cells but a small subset of ES cell undergo differentiation in 
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culture. This proportion of differentiated cells may differ from cell line to cell line and may 

cause the variation in INPP4B levels. These results led us to conclude that ES cell lines were not 

suitable as a model system to study the effect of the Tgkd transgene on the Inpp4b gene. 
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Figure 21: Tgkd induced effects on Inpp4b levels in ES cells 

The effect of the Tgkd insertion on the gene Inpp4b was measured in ES cells by measuring (A) 

Protein levels of INPP4B in +/+, Tgkd(m)/+, Tgkd(p)/+ and Tgkd/Tgkd ES cell lines. INPP4B (I) 

levels are normalized to the levels of the housekeeping gene Actin (A). The levels of INPP4B are 
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represented relative to the INPP4B/Actin (I/A) ratio observed in the +/+ ES line in lane 5. 

Immunoblot data is quantified in the graph below. * - p<0.05 (B) The levels of Inpp4b transcript 

were also measured in the 4 groups of ES cell lines. The α isoform was the only Inpp4b isoform 

present in ES cells. Inpp4b levels were normalized to the housekeeping gene TBP and fold 

changes were expressed relative to the RI wildtype ES line. 

 

 

 

6.4 EFFECT OF Tgkd ON PI3-KINASE/AKT ACTIVATION IN ES CELLS 

The primary purpose for developing the Tgkd ES cell model was to evaluate Tgkd induced 

effects on INPP4B levels and the regulation of PI3K/AKT signaling. On checking the levels of 

INPP4B in wildtype, hemizygous and homozygous Tgkd ES cells lines, I found that the levels of 

INPP4B were highly variable between lines of the same group and there was no consistent effect 

of the Tgkd transgene on INPP4B in any group. However I still wanted to evaluate whether 

changes in the levels of INPP4B observed are sufficient to alter the kinetics of PI3K/AKT 

pathway in these ES cell lines. 

The activation kinetics of the pathway was measured using a well-established protocol of 

serum starvation for 34 hours followed by stimulation with IGF1 for indicated time points [115]. 

Activation of the pathway was quantified through phosphorylation of the AKT1 protein 

measured by ELISA and normalized to the total levels of AKT1 in each ES cell lines. AKT1 is 

the main isoform expressed in ES cell lines with minimal expression of AKT2 and AKT3. 
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Therefore, we assumed AKT1 phosphorylation represented all, or the majority, of AKT 

phosphorylation in ES cells [116]. 

The first 4 ES cell lines in Figure 21A represent lines with the expected INPP4B levels 

based on the E13.5 embryo data. The maternal Tgkd(m)/+ (I/A=0.8) and homozygous Tgkd/Tgkd 

(I/A=0.7)  ES line have lower levels of INPP4B compared to the wildtype W9.5 (I/A=3.7)  and 

paternal Tgkd(p)/+ ES line (I/A=2.7). I used these lines in the preliminary experiment to assess 

whether the alterations in INPP4B levels affect AKT phosphorylation in ES cell lines.  

On stimulating the ES cell lines with IGF1 after 34 hours of serum starvation, an increase 

in the level of AKT1 phosphorylation (PAKT1/AKT1) was observed in all 4 ES cell lines, which 

peaked at about 30 minutes after IGF1 stimulation (Figure 22). The levels of AKT1 

phosphorylation remained steady and began to decline after 90 minutes of IGF1 stimulation. 

However, I observed no differences in the kinetics of AKT phosphorylation at any time points 

between the +/+, Tgkd(m)/+, Tgkd(p)/+ and Tgkd/Tgkd ES cell lines (Figure 22). The differences 

in INPP4B levels between the various ES cell lines had no effect on the AKT activation kinetics 

on IGF1 stimulation following serum starvation. The presence of the Tgkd transgene had no 

significant effect on the regulation of the PI3K/AKT pathway in Tgkd ES cells. 
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Figure 22: Kinetics of the PI3-Kinase/AKT pathway in Tgkd ES cell lines 

Kinetics of AKT phosphorylation in +/+ (W9.5), Tgkd(m)/+, Tgkd(p)/+ and Tgkd/Tgkd ES cell 

lines were during IGF1 stimulation following serum starvation of the ES cells. AKT 

phosphorylation was represented as a PAKT1/AKT1 ratio. PAKT1 was the level of 

phosphorylated AKT1 and AKT1 was the total level of AKT1 measured by ELISA. 
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6.5 ASSESSING THE RELEVANCE OF INPP4B IN ES CELLS 

In the previous section, I found that the presence of the Tgkd transgene did not alter INPP4B 

levels sufficiently enough to alter the activation kinetics of the PI3K/AKT pathway during IGF1 

stimulation. These results could also indicate that the tumor suppressor Inpp4b is not a major 

entity in controlling AKT1 phosphorylation in mouse ES cells. Other suppressors of the 

PI3K/AKT pathway such as PTEN, SHIP1/2 or protein phosphastase PP2A could play a more 

prominent role in ES cells [117, 118].  I decided to address this by examining PI3/AKT pathway 

activation in ES cells during IGF1 stimulation after shRNA-mediated downregulation of Inpp4b. 

To assess the effect of INPP4B on IGF1-induced signaling in ES cells, I electroporated 2 

independent shRNA constructs to the Inpp4b gene and one control shRNA contruct into wildtype 

RI ES cells. Electroporation led to stable integration of the constructs into ES cell genome and 

stable clones were selected using puromycin selection. Both shRNA constructs to Inpp4b led to a 

stable downregulation of the INPP4B protein to 50% of the levels measured in RI ES cells with 

the shRNA control (Figure 23A). When the 3 ES cell lines were stimulated with IGF1 after 34 

hours of serum starvation, the 2 ES cell lines with shRNA constructs to Inpp4b depicted a 

significantly increased and prolonged phosphorylation of AKT1 (P-AKT1/AKT1) compared to 

the control shRNA ES line (Figure 23B).  

This result led me to conclude that Inpp4b was an important negative regulator of the 

PI3K/AKT pathway in mouse ES cells as the shRNA mediated decrease of Inpp4b levels led to 

an increase in AKT1 phosphorylation during IGF1 stimulation. The absence of AKT1 

phosphorylation differences between Tgkd and wildtype ES cell lines could be due to the 

adaption of the ES cell lines to changes in INPP4B levels during the process of ES cell 

derivation, while the shRNA experiment involved a more sudden decrease in INPP4B levels 
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possibly not allowing for adaptation by other negative regulators of the PI3K/AKT pathway. 

Further the shRNA-mediated downregulation of Inpp4b was performed in a single parent ES line 

while the independently derived ES cell lines were more heterogeneous in nature. Mouse ES cell 

lines requires an active PI3K/AKT pathway in order to maintain pluripotency, therefore 

independent ES cell lines may have adapted during the process of derivation to be resist changes 

in AKT1 phosphorylation [118]. In summary, the ES cell model may not be suitable to study the 

effect of Tgkd on the PI3K/AKT pathway, even though INPP4B regulates AKT1 

phosphorylation in mouse ES cells.  

 

 

 

 

 

 

 

 



 111 

sh
R

N
A-
In
pp
4b

2
sh

R
N

A-
co

nt
ro

l

sh
R

N
A-
In
pp
4b

1
INPP4B

Actin

0 

5 

10 

15 

20 

0 10 20 30 40 60 90 120 

P
-A

K
T1

/A
K

T1
 

IGF1 stimulation (Min) 

  

shRNA-control
shRNA-Inpp4b1 
shRNA-Inpp4b2 

* * * * * *

BA

 

 

 

Figure 23: shRNA-mediated downregulation of Inpp4b in mouse ES cells 

Inpp4b levels were specifically depleted in wildtype RI mouse ES cells using 2 independent 

shRNA constructs. Panel (A) depicts the decrease in INPP4B levels in the 2 ES cell lines 

electroplated with shRNA constructs to the Inpp4b gene (shRNA-Inpp4b1 and shRNA-Inpp4b2) 

compared to the ES line with the shRNA control construct. (B) Phosphorylation of AKT1 on 

IGF1 stimulation was measured by ELISA in all 3 ES cell lines and normalized to the total levels 

of AKT1. PAKT1/AKT1 levels were significantly higher in the ES cell lines depicting shRNA-

mediated INPP4B downregulation. *- p<0.05 
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6.6 EFFECT OF Tgkd ON METHYLATION OF SURROUNDING GENES 

The Tgkd transgene is inserted as multiple copies in head-head, tail-tail or head-tail orientation in 

chromosome 8 (Figure 13). Therefore, the insertion of the methylated Tgkd transgene creates a 

large area of CpG methylation on chromosome 8. This CpG methylation could cause large scale 

epigenetic silencing through alterations of chromatin modifications in the region or cause CpG 

methylation spreading on chromosome 8. As a preliminary study on the effect of Tgkd CpG 

methylation, I decided to examine whether the methylated Tgkd transgene alters methylation of 

CpG islands in a 2Mb region surrounding the insertion (Figure 24A).  

I used the ES cell model for this methylation study and chose the heavily methylated 

Tgkd(m)/+ (Figure 20B-Lane 3) ES line, the unmethylated Tgkd(p)/+ (Figure 20B-Lane 6) and 

the wildtype RI ES line for this study. I analyzed the methylation of 10 CpG islands on 

chromosome 8, which were identified by the program CpG island searcher in a 2Mb region 

surrounding the Tgkd insertion (http://www.uscnorris.com/cpgislands2/cpg.aspx) (Figure 24A). I 

analyzed the methylation status of these CpG islands using the HpaII-McrBC methylation-

sensitive PCR method [119] with minor modifications to the protocol. The genomic DNA from 

these 3 ES cell lines was first digested with the restriction enzyme AseI, which was not present 

in any of the CpG islands, to digest the genomic DNA into smaller fragments. One portion of the 

AseI digested DNA was subsequently digested with the HpaII enzyme and the other with McrBC 

enzyme followed by PCR amplification across the CpG island. HpaII is methylation sensitive 

and cuts only unmethylated CpG islands at CCGG sites while McrBC digests methylated alleles 

at RmCN40∼80RmC sites. Therefore, a completely methylated region would be digested only by 

the McrBC enzyme and HpaII would fail to digest this region, hence amplification would be 

successful only from the HpaII digested template (Figure 24B). Conversely a completely 
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unmethylated CpG island would be digested only with HpaII not McrBC resulting in PCR 

amplification from the McrBC digested template. In principle the technique can distinguish 

between 4 different kinds of CpG island methylation (Figure 24B). PCR amplification was 

performed on just the AseI digested genomic DNA as a positive control and on AseI+MspI 

digested DNA as a negative control. The enzyme MspI digests CpG rich regions at the site 

CCGG irrespective of their methylation status. The Tgkd(m)/+, Tgkd(p)/+ and RI (+/+) ES cell 

lines were analyzed for successful PCR amplifications after these enzymatic digests. 
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Figure 24: CpG islands examined by HpaII-McrBC PCR 

The methylation state of each CpG island was analyzed by the HpaII-McrBC PCR. Panel (A) 

indicates the position of each of the 10 CpG islands in a 1Mb region centromeric and a 1Mb 

region telomeric of the Tgkd insertion. Schematic (B) illustrates the 4 possible methylation states 

that can be distinguished by the HpaII-McrBC method and the amplification result in each case. 
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On examining the 10 CpG islands by the above method, I found that most CpG islands 

(CpGi) were unmethylated in +/+, Tgkd(m)/+ and Tgkd(p)/+ ES cell lines (Figure 25). The CpG 

island CpG9i had an unmethylated and a methylated allele according to the schematic in Figure 

24B with an identical methylation pattern in all 3 ES cell lines. The CpG islands CpG5i and 

CpG6i, which were closest to the Tgkd insertion also depicted a methylated and unmethylated 

allele in the Tgkd(m)/+ and Tgkd(p)/+ ES cell lines (Figure 25). However these PCR reactions 

did not work in the RI (+/+) ES cell line even in the control samples possibly due to SNP 

differences in the region. However, since I did not see a difference in CpG island methylation 

between the highly methylated Tgkd(m)/+ line and the relatively unmethylated Tgkd(p)/+ line in 

the CpG islands closest to the insertion site, I concluded that the Tgkd transgene does not cause 

aberrant methylation of unmethylated CpG islands surrounding the insertion site in ES cell lines. 

The effect of Tgkd on surrounding genomic methylation may be different in different tissues. 

Alternatively the Tgkd transgene may mediate transcriptional repression of the gene Inpp4b 

through altered chromatin configuration or disruption of a distal enhancer. 
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Figure 25: CpG island methylation in Tgkd ES cell lines 

The methylation state of 10 CpG islands surrounding the Tgkd insertion was analyzed by PCR 

amplification after digestion with the methylation sensitive enzymes HpaII and McrBC in the 

methylated Tgkd(m)/+, unmethylated Tgkd(p)/+ and +/+ ES cell lines. The location of each CpG 

island (CpGi) on chromosome 8 is indicated and the restriction enzyme (RE) digest before PCR 

amplification is indicated above. 
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6.7 CONCLUSIONS 

In the ES cell model to study Tgkd induced effects on Inpp4b, I managed to derive maternal, 

paternal and homozygous Tgkd ES cell lines on the 129 strain background. The methylation of 

the Tgkd transgene in these lines were not consistent between lines of the same genotype and did 

not match the expected pattern of Tgkd methylation observed in somatic tissues. Further there 

was a variation in INPP4B expression between independently derived ES cell lines, which did 

not correlate with the presence or absence of the transgene. On analyzing PI3K/AKT activation 

in wildtype and Tgkd ES cell lines, I found no significant changes in the kinetics of AKT 

phosphorylation between wildtype, hemizygous and homozygous ES cell lines. shRNA mediated 

downregulation of Inpp4b resulted in increased AKT phosphorylation in the +/+ RI ES line 

indicating that a sudden and severe decrease in Inpp4b may be required to alter AKT activation 

kinetics in ES cells. The insertion of the Tgkd transgene did not alter the methylation state of 

CpG islands surrounding the transgene in Tgkd(m)/+ and Tgkd(p)/+ ES cell lines compared to 

the wildtype line. In summary, Tgkd ES cells do not show a decrease in the level of INPP4B and 

augmented effects on PI3K/AKT signaling following IGF1 stimulation.  
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7.0  EFFECT OF Tgkd TRANSGENE ON INPP4B AND DOWNSTREAM PI3-

KINASE/AKT PATHWAY IN TGKD OVARIES 

7.1 AIMS OF THESE STUDIES 

The results of the previous sections (Chapter 5) indicate that the Tgkd transgene causes 

transcriptional suppression of the nearby gene Inpp4b leading to a decrease in the levels of 

Inpp4b transcript and protein in embryonic FVB E13.5 Tgkd brains. I was unable to show a 

consistent association between the Tgkd insertion and decreased INPP4B levels in mouse ES 

cells and the alterations in INPP4B levels due to Tgkd did not affect PI3K/AKT signaling in ES 

cells (Chapter 6).  

Since OTs arise from mature oocytes in the ovary, which have completed meiosis I, we 

decided to investigate the effect of the Tgkd transgene on the nearby inositol phosphatase Inpp4b 

in FVB and FVB-Tgkd (Tgkd) ovaries. As described in chapter 4, Tgkd ovaries show defects in 

follicular maturation (trapped oocytes) and a high rate of oocyte parthenogenesis. Therefore, 

Tgkd induced effects on Inpp4b could be in Tgkd oocytes or in the surrounding somatic GCs of 

the ovarian follicle or both. This led me to first examine Inpp4b expression in wildtype and Tgkd 

oocytes and GCs. Further Inpp4b levels have been previously shown to be responsive to the 

levels of androgens in prostate cancer cells, hence I examined whether Inpp4b levels in the ovary 

were affected during gonadotrophin (FSH and LH) stimulation [112]. 



 119 

The PI3K/AKT pathway is an essential pathway in the ovary involved both in resumption 

of oocyte meiosis and various steps of follicular maturation [41, 43, 44, 120]. As stated before, 

INPP4B is a negative regulator of the PI3K/AKT pathway; therefore I examined the effect of the 

Tgkd transgene on AKT phosphorylation and subsequent downstream steps of the pathway in 

both GCs and oocytes. The functional consequences of the signaling alterations caused by the 

Tgkd transgene were also studied, which could explain the follicular defects observed in Tgkd 

ovaries. In summary, I worked to dissect out the molecular and signaling alterations in Tgkd 

ovaries that could explain the route to OT formation. 

7.2 INPP4B EXPRESSION IN THE OVARY 

Since OTs were shown to arise from mature oocytes that have completed meiosis I, I first 

examined the expression of INPP4B protein in MII oocytes that have completed meiosis I.  

INPP4B protein expression could not be detected in wildtype (+/+, n=68) or Tgkd (Tgkd/+, 

n=75) mature MII oocytes, whereas high levels of INPP4B were expressed in the adult mouse 

brain (Figure 26A) (Experiment performed by Dr. M.C. Cirio).  However, INPP4B expression 

was detected in the ovary at numerous developmental stages in embryonic (E13.5, E16.5 and 

E17.5) and adult ovary lysate (Figure 26B). These results suggested that Inpp4b may be 

expressed and dysregulated at an earlier stage of oocyte development than the metaphase II stage 

but oocytes need to complete meiosis I before OT formation. In the adult mouse ovary, oocytes 

in different follicles (primordial versus antral) are at different stages of oocyte development. 

Therefore, it difficult to isolate a pool of oocytes from the ovary from a single stage before 

advanced stages of oogenesis. Alternatively Inpp4b may not be expressed in oocytes at any stage 
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and may be expressed in other ovarian cells, which promote OT formation through paracrine 

mechanisms. 

 

 

 

INPP4B

Oocytes

Brain

+/+

Tgk
d/+

N 75 68

+/+

INPP4B

+/+ Ovaries

Adult

d13.5

d16.5

d17.5

A B

 

 

 

Figure 26: INPP4B expression in the ovary 

INPP4B expression was examined in (A) Wildtype (+/+) and Tgkd MII oocytes. Adult brain 

lysate was used as a positive control for INPP4B expression. N= number of oocytes. (B) Total 

ovary lysates from embryonic (E13.5, E16.5 and E17.5) and adult ovaries in wildtype females. 

INPP4B expression was seen in total ovary lysates but not in MII oocytes. 
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To sample Inpp4b expression in oocytes at several follicular stages, RNA in situ 

hybridization (ISH) was used to determine the location of Inpp4b transcripts in the adult ovary.  

This adult mammalian ovary contains follicles of all stages within the ovary; therefore RNA ISH 

of ovarian sections would enable identification of the specific developmental stage and ovarian 

cells with Inpp4b expression. 

RNA ISH experiments on adult ovaries from 7-week old females showed that Inpp4bα, 

but not the Inpp4bβ isoform was expressed in the ovary and this expression was confined to the 

GCs of the ovary (Figure 27). No expression was observed in oocytes at any stage of ovarian 

follicle development.  These findings were confirmed in measurements of individual Inpp4b 

transcripts by real-time PCR in GCs and oocytes from PD30 wildtype and Tgkd mice (Figure 

28).  The surprising finding that ovarian Inpp4b expression is confined to GCs raises the 

possibility that the Tgkd insertion facilitates OT formation primarily by altering INPP4B 

expression in GCs, which in turn alters follicular development and possibly normal GC-oocyte 

interactions. 
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Figure 27: Inpp4b expression in the adult wildtype ovary 

Inpp4b α and β isoform expression in the ovarian follicle was measured by in situ hybridization 

in 7-week old wildtype ovaries. Top right panel: Oocyte specific probe: Slc39a10 to depict 

oocyte specific staining. Lower right panel: Small Intestine as positive control for Inpp4bβ 

probe. Other panels: Inpp4bα and Inpp4bβ isoform expression in ovarian follicles. 
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Figure 28: Inpp4b expression in oocyte and GCs of PD30 ovaries 

Real-time PCR quantitation of Inpp4b in GCs and oocytes isolated from PD30 wildtype and 

Tgkd ovaries.  Inpp4b levels were normalized to the housekeeping gene TBP. Fold changes was 

expressed relative to wildtype Inpp4b levels in GCs. UD – Undetected. 
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7.3 REGULATION OF INPP4B IN Tgkd OVARIES DURING GONADOTROPHIN 

STIMULATION 

Inpp4b is expressed primarily in the GCs of the ovarian follicle. With this result in hand, we 

hypothesized that Tgkd induced effects on Inpp4b levels in GCs during follicular maturation may 

lead to the maturation defects such as trapped oocytes. Inpp4b expression is known to be induced 

by the androgen receptor in prostate cancer cells [112]. Therefore, I wanted to evaluate whether 

Inpp4b levels vary during female gonadotrophin stimulation with FSH (PMSG) and LH (HCG). 

For these reasons, the effect of Tgkd on Inpp4b levels was examined in ovarian cells 

exposed to hormonal stimuli. Inpp4bα is the only isoform expressed in the ovary (Figure 27 

&28). No difference in expression of Inpp4b was observed between immature PD23 wildtype 

and Tgkd ovaries (Figure 29A).  Synchronized in vivo maturation of wildtype and Tgkd ovarian 

follicles was initiated with gonadotrophins (one-time IP injection of PMSG), followed by 

induction of ovulation with a one-time injection of HCG.  Levels of Inpp4b transcript in wildtype 

mice fluctuated over the 48-hour time course of PMSG stimulation and 2 hours of HCG 

stimulation.  The Tgkd ovaries show a 20% decrease in the level of Inpp4b transcript compared 

to the wildtype mice at 24 and 38 hours after PMSG stimulation (Figure 29A).  A slightly larger 

difference was seen between wildtype and Tgkd ovaries 48 hours after PMSG stimulation, where 

Tgkd ovaries expressed 70% of wildtype levels of Inpp4b. 

 The Tgkd transgene also affected levels of ovarian INPP4B protein.  INPP4B levels in 

lysates of whole ovaries fluctuated slightly during the time course of PMSG stimulation.  Tgkd 

ovaries expressed approximately 70% of wildtype levels at 14 (p<0.05) and 24 hours after 

PMSG stimulation (Figure 29B). The largest difference, a 50% decrease of INPP4B in Tgkd 

ovaries (p<0.05), was recorded 38 hours after PMSG stimulation (Figure 29B).  At other time 
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points during PMSG stimulation, the levels of INPP4B were comparable in wildtype and Tgkd 

mice. I did not examine INPP4B levels in wildtype and Tgkd ovaries after HCG stimulation, as 

no differences were observed in Inpp4b transcript levels (Figure 29A). 
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Figure 29: Inpp4b transcript and protein levels in wildtype and Tgkd ovaries 

(A) Real-time PCR quantitation of Inpp4b (Inpp4bα) in wildtype and Tgkd ovaries during the 

time course of PMSG and HCG stimulation (n>3 mice/time point). Inpp4b levels were 

normalized to the housekeeping gene GUSB and fold changes were expressed relative to 
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wildtype PD23 ovaries. (B) INPP4B protein levels in wildtype and Tgkd ovaries during PMSG 

stimulation (n=3). *-p<0.05. 

 

 

 

A more pronounced effect of the transgene on INPP4B expression was observed in 

purified and in-vitro cultured GCs. INPP4B was significantly downregulated to a higher extent 

even in cultured unstimulated PD23 Tgkd GCs (70% of wildtype GCs) and following 10 minutes 

of FSH administration (Figure 30A).  This method of enriching for GCs excluded the ovarian 

capsule and stroma, which expressed low levels of Inpp4b (Figure 30B and C). The levels of 

INPP4B in the ovary after removal of GCs are similar in wildtype and Tgkd ovaries. These 

results indicate that the Tgkd GCs have lower levels of INPP4B than wildtype GCs even in 

immature PD23 ovaries. However during PMSG stimulation, there is extensive GC proliferation 

causing the number of GCs to exponentially increase [14]. This proliferation dramatically 

increases the contribution of GCs in the ovary lysate resulting in larger INPP4B differences 

between wildtype and Tgkd ovaries under PMSG stimulation than in the immature PD23 state. In 

summary, the Tgkd transgene causes decrease in INPP4B levels specifically in Tgkd GCs. 
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Figure 30: INPP4B expression in wildtype and Tgkd GCs  

 INPP4B levels were specifically measured in GCs to exclude the low levels expressed in the 

tunica and stroma of the ovary (A) Measurement of INPP4B protein on enriching the GCs in 

culture (n=3). * - p value <0.05. (B) Residual INPP4B expression in the tunica after removal of 
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the somatic follicle cells and oocytes.  (C) Minimal expression of Inpp4b outside the ovarian 

follicle. 

 

 

 

7.4 REGULATION OF PI3-KINASE/AKT PATHWAY IN Tgkd OVARIES ON 

GONADOTROPHIN STIMULATION 

Inpp4b is a recently identified suppressor of the PI3K/AKT signal transduction pathway that has 

not been studied previously in the ovary [111, 112, 121]. Inpp4b is an inositol-polyphosphate-4-

phosphatase, whose main substrate is phosphatidylinositol 3,4 bisphosphate (PI(3,4)P2), which 

Inpp4b dephosphorylates to phosphatidylinositol-3-phosphate PI(3)P (Figure 31). Because 

PI(3,4)P2 stimulates AKT phosphorylation, a decrease in Inpp4b levels has been linked to 

increased AKT activation and the progression of breast, ovarian and prostate cancer [111, 112, 

121]. Since Inpp4b is a suppressor of AKT phosphorylation, I decided to investigate whether the 

Tgkd transgene alters the kinetics of AKT phosphorylation during gonadotrophin stimulation. I 

also examined whether downstream components of the PI3K/AKT pathway were affected by the 

decrease in INPP4B levels. The downstream signaling molecules of the PI3K/AKT pathway 

were chosen based on their relevance to GC proliferation and follicular maturation described 

previously in literature (Figure 31) [48, 122].  
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Figure 31: Role of INPP4B in regulation of the PI3K/AKT pathway 

The function of INPP4B in regulating AKT phosphorylation is depicted in the pathway. The 

downstream signaling molecules affected by AKT phosphorylation, which were examined in the 

ovary during gonadotrophin stimulaton are shown in the pathway diagram. 
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Whole ovaries were collected at different time points following in-vivo hormonal 

stimulation, and the time course of phosphorylated AKT (P-AKT), an indication of PI3K/AKT 

pathway activation, and its downstream effects were measured.  P-AKT levels were roughly 

similar in immature PD23 wildtype and Tgkd ovaries prior to administration of exogenous 

hormones, but significant differences were evident following 14 and 24 hours of PMSG 

stimulation (p<0.05) (Figure 32A; Quantified in Figure 32B).  Corresponding differences in 

levels of phosphorylated FOXO1 (P-FOXO1), a downstream target of P-AKT (Figure 31) 

specifically in GCs, was also evident (Figure 32A&B) [122].  Time courses of changes in total 

FOXO1, E2F1, CyclinD2 and P27 were similar between wildtype and Tgkd ovaries (Figure 32).   

Following administration of a single dose of HCG 48 hours after PMSG stimulation, P-

AKT and P-FOXO1 concentrations declined at a much faster rate in Tgkd compared to wildtype 

ovaries (Figure 33A; Quantified in Figure 33B).  An accentuated rate of decline in the level of 

FOXO1 and an accentuated rate of increase in CyclinD2 levels in Tgkd ovaries at specific time 

points following HCG stimulation were also evident (Figure 33A).  Time courses of changes in 

E2F1, CyclinD2 and P27 were similar between wildtype and Tgkd ovaries (Figure 33A&B).  

From these results, 2 types of Tgkd induced effects on the PI3K/AKT pathway were observed. 

One is a proximal premature and increased phosphorylation of AKT and FOXO1 during PMSG 

stimulation and a distal effect, where the AKT and FOXO1 phosphorylation are attenuated early 

after HCG stimulation. 

I conclude from these experiment that the presence of the Tgkd transgene 3’ of the 

Inpp4b gene augments the response of mature ovarian follicles to stimuli known to mimic 

endogenous ovulatory stimuli, leading to premature phosphorylation of the AKT protein and 

activation of downstream effectors of the PI3K/AKT signaling pathway. 
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Figure 32: Activation of PI3K/AKT pathway in Tgkd ovaries on PMSG stimulation 

(A) Dynamics of the PI3K/AKT pathway was measured in wildtype and Tgkd ovaries in 

immature mice and on PMSG stimulation by investigating the levels of P-AKT, P-FOXO1, 

FOXO1, E2F1, Cyclin D2 and P27 (ovaries from single female per lane).  (B) Quantification of 
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P-AKT, P-FOXO1, FOXO1 E2F1, Cyclin D2 and P27 levels in wildtype and Tgkd ovaries on 

PMSG stimulation (n=3 mice/time point). *- p<0.05 
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Figure 33: Activation of PI3K/AKT pathway in Tgkd ovaries on HCG stimulation 

(A) After 48 hours of PMSG stimulation; the mice were injected with HCG and the activation of 

the PI3K/AKT pathway was measured in wildtype and Tgkd ovaries by investigating the levels 

of P-AKT, P-FOXO1, FOXO1, E2F1, Cyclin D2 and P27 (ovaries from single female per lane). 

(B) Quantification of P-AKT, P-FOXO1, FOXO1 E2F1, Cyclin D2 and P27 levels in wildtype 

and Tgkd ovaries on HCG stimulation (n=3 mice/time point). *- p<0.05 

 

 

 

The pattern of P-AKT activation following gonadotropin administration was then 

investigated in wildtype and Tgkd oocytes.  There was no difference in the P-AKT activation and 

phosphorylation of its downstream target FOXO3A between wildtype and Tgkd oocytes during 

the time course of gonadotrophin stimulation (Figure 34A).  These findings are consistent with 

the observed absence of Inpp4b expression in fully-grown oocytes (Figure 27&28). Collectively, 

the observed effects of the Tgkd transgene on ovarian and oocyte AKT signaling are consistent 

with effects of Tgkd on PI3K/AKT signaling in GCs.   

To directly test this postulate, I obtained purified GC pools and stimulated them with 

FSH.  Tgkd GCs from PD23 ovaries had a lower level of INPP4B than wildtype GCs (Figure 

30A).  Tgkd GCs also had a slightly higher level of P-AKT and P-FOXO1 after overnight culture 

in medium containing 10% FBS (Figure 34B, Quantified in Figure 34C).  Tgkd GCs did not 

show the decline in P-AKT levels seen in wildtype GCs after 40 minutes of FSH stimulation 

(Figure 34B, Quantified in Figure 34C). These results indicate that the Tgkd transgene induced 
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decrease in INPP4B specifically in GCs is associated with hyperactivated PI3K/AKT activation 

in GCs not oocytes. 
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Figure 34: Kinetics of PI3K/AKT activation in Tgkd oocytes and GCs 

(A) The dynamics of AKT and FOXO3A phosphorylation was examined in wildtype and Tgkd 

oocytes (20 oocytes/lane).  (B) P-AKT and P-FOXO1 activation were measured after FSH 

stimulation in cultured GCs from wildtype and Tgkd mice. (C) Quantification of the levels of P-

AKT and P-FOXO1 in wildtype and Tgkd GCs upon FSH stimulation (n=3). 

 

 

 



 138 

I independently investigated this inverse relationship between INPP4B levels and AKT 

pathway activation in GCs infected with lentiviruses expressing shRNAs to the mouse Inpp4b 

gene. Two independent shRNA constructs were used, and expression of both constructs resulted 

in 50% reduction in the levels of INPP4B compared to control uninfected wildtype GCs (Figure 

35).  Corresponding increases in the levels of P-AKT and P-FOXO1 were seen prior to and 40 

minutes after FSH administration (Figure 35).  These results confirm the inverse relationship 

between INPP4B and PI3K/AKT signaling observed in Tgkd GCs. A decrease in INPP4B due to 

the Tgkd insertion is associated with augmented effects on PI3K/AKT signaling in GCs 

following gonadotrophin stimulation. 
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Figure 35: shRNA-mediated downregulation of INPP4B in wildtype GCs 

Lentiviral mediated shRNA downregulation of Inpp4b in wildtype GCs led to increased levels of 

AKT and FOXO1 phosphorylation before and after 40 minutes of FSH stimulation similar to that 

observed in Tgkd GCs (n=3). 
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7.5 FUNCTIONAL CONSEQUENCES OF HYPERACTIVATION OF PI3-

KINASE/AKT SIGNALING IN Tgkd OVARIES 

The results of the previous section show that Tgkd GCs are associated with a decrease in INPP4B 

levels and hyper-activated PI3K/AKT signaling. I wanted to investigate the functional 

consequences of the signaling pathway alterations observed in GCs. Downstream effectors of 

AKT activation have been shown to induce cell proliferation and block apoptosis [123]. There 

was also a previous report, where the knockout of the mouse Pten gene specifically in GCs 

caused an increase in the rate of GC proliferation and decrease in GC apoptosis [48]. 

Furthermore, the females with Pten-/- GCs showed defective clearance of corpora lutea causing 

persistence of many non-functional corpora lutea after ovulation. Since Inpp4b is a negative 

regulator of the PI3K/AKT pathway similar to Pten and the levels of P-AKT and downstream 

targets FOXO1 and Cyclin D2 in the ovary were observed to be influenced by Tgkd (Figure 

32&33), The rates of GC proliferation and apoptosis in preantral and antral follicles were 

compared in Tgkd and wildtype female mice [48, 124].  I measured GC proliferation and 

apoptosis in large preantral and antral follicles as these stages had defects in folliculogenesis in 

Tgkd ovaries (Figure 8A) and these follicle stages were FSH dependent [8, 125]. 

The rate of GG proliferation was measured by using bromodeoxyuridine (BrdU) IHC as 

proliferating cells in the S phase incorporate BrdU into the newly synthesized DNA. The number 

of proliferating (BrdU+) GCs was divided by the total number of GCs in each ovarian follicle to 

measure the percentage of proliferating cells in each follicle. There was a significant 1.8-fold 

increase in the rate of GC proliferation in PD30 Tgkd ovaries compared to wildtype ovaries 

(Figure 36).   
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I also measured apoptosis in Tgkd GCs as apoptosis plays a major role in follicular 

selection and atresia, and FOXO1 is a pro-apoptotic protein that is affected in Tgkd GCs [126]. 

Apoptosis was measured by activated or cleaved caspase-3 (CC3 staining), which is activated in 

cells during early stages of apoptosis and the number of apoptotic (CC3+) GCs was divided by 

the total number of GCs per follicle to measure the percentage of apoptotic cells in each follicle. 

The rate of apoptosis in Tgkd GCs was also significantly reduced to approximately 50% of the 

rate seen in wildtype ovaries at 2 hours after HCG stimulation  (Figure 37). 
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Figure 36: Comparison of GC proliferation in wildtype and Tgkd ovaries 

Representation and quantification of rate of GC proliferation in PD30 wildtype and Tgkd 

follicles measured by bromodeoxyuridine (BrdU) staining (n=25 follicles). * - p value <0.05. 
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Figure 37: Comparison of apoptosis in wildtype and Tgkd ovaries  

Quantification of rate of GC apoptosis in wildtype and Tgkd follicles measured by Cleaved 

Caspase 3 (CC3) staining (n=25 follicles). Apoptosis was measured after hormonal stimulation 

of PD23 wildtype and Tgkd mice with PMSG for 48 hours followed by HCG for 2 hours. * - p 

value <0.05. 

 

 

 

In mice with Pten-/- GCs, the ovaries showed an abundance of corpora lutea due to 

defective clearance and persistence of non-functional corpora lutea, which did not express the 

LH receptor [48].  To examine the lifespan of the corpora lutea in the Pten-/- GC model, the 

authors injected immature PD23 mice with a superovulatory regime of PMSG for 48 hours 

followed by a one-time injection of HCG to induce synchronized follicle maturation, ovulation 

and corpora lutea formation. The study showed that while corpora lutea was present in both sets 

of ovaries after 4 days of HCG stimulation, the corpora lutea persisted in the ovaries with Pten-/- 

GCs after 7 days of HCG stimulation when corpora lutea had disappeared in wildtype ovaries 
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[48]. Since Inpp4b is a negative regulator of PI3K/AKT signaling similar to the Pten gene, I 

hypothesized that the decrease in INPP4B levels in Tgkd GCs could affect the rate of corpus 

luteum clearance.  

To determine Tgkd effects on clearance of corpora lutea, the same superovulatory 

regimen was followed by injecting PD23 immature mice with PMSG for 48 hours followed by a 

single dose of HCG. On examining the ovaries of wildtype and Tgkd mice 7 days after HCG 

injection, I found that both groups had regressing corpora lutea (*) of a similar small size (Figure 

38). The rate of corpora lutea regression was similar in wildtype and Tgkd ovaries. The presence 

of corpora lutea in wildtype FVB ovaries 7 days after HCG stimulation could be due to strain 

specific differences as the mice with the Pten-/-GCs were on the B6 strain background. I 

concluded from this experiment that there is no difference in the rate of corpora lutea clearance 

between wildtype and Tgkd ovaries (Figure 38). 
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Figure 38: Persistence of corpora lutea in wildtype and Tgkd ovaries 

Corpora lutea persistence in wildtype and Tgkd mice was examined using a superovulatory 

regime of PMSG and HCG. Corpora lutea clearance was measured 7 days after HCG injection 

(Scale bar: 200µm). * - Corpus luteum   
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One of the main changes observed between wildtype and Tgkd GCs in the PI3K/AKT 

pathway was an increase in AKT and FOXO1 phosphorylation. FOXO1 is a pro-apoptotic 

protein known to play a major role in GC apoptosis and follicle survival in the ovary [46, 48]. 

FOXO1 is primarily expressed in GCs of preantral and antral follicles but is undetectable in 

luteal cells of fully developed corpus luteum [48, 83].  I wanted to examine whether the 

alterations in FOXO1 phosphorylation and degradation in Tgkd GCs led to a mislocalization of 

FOXO1 to different follicular stages than those observed in wildtype ovaries. On examining 

wildtype and Tgkd postpubertal PD30 ovaries for FOXO1 expression, I found that FOXO1 

localization was similar in wildtype and Tgkd PD30 ovaries. FOXO1 was localized in GCs of 

preantral and antral follicles and completely absent in the luteal cells of the corpora lutea (Figure 

39). 

These results indicate that the hyperactivation of the PI3K/AKT pathway in Tgkd GCs 

due to the decrease in INPP4B levels is associated with an increase in GC proliferation and a 

decrease in GC apoptosis. The signaling changes in Tgkd GCs did not alter the rate of corpora 

lutea clearance or cause mislocalization of the pro-apoptotic protein FOXO1. 
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Figure 39: FOXO1 localization in wildtype and Tgkd PD30 ovaries 

FOXO1 localization in wildtype and Tgkd PD30 ovaries. FOXO1 is highly expressed in GCs of 

preantral and antral follicles and absent in luteal cells. * - Corpus luteum with trapped oocyte. 
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7.6 CONCLUSIONS 

In this chapter, I have demonstrated that Inpp4b is expressed in the GCs of the ovarian follicle 

and not in the oocyte. The Tgkd transgene insertion is associated with reduced expression of 

INPP4B in GCs. Tgkd ovaries depict enhanced activation of the PI3K/AKT pathway in terms of 

increased phosphorylation of AKT and FOXO1, which is specific to Tgkd GCs not oocytes. 

Increased activation of the PI3K/AKT pathway in Tgkd GCs is associated with an increase in 

proliferation and decrease in apoptosis of GCs. Corpora lutea clearance and FOXO1 localization 

was not affected in Tgkd GCs. The imbalance in the proliferation/apoptosis ration in GCs may 

cause the follicular defects such as oocytes trapped within corpus lutea, which ultimately 

promote ovarian teratoma formation [101]. 
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8.0  DISCUSSION AND FUTURE DIRECTIONS 

8.1 EFFECT OF THE Tgkd TRANSGENE ON OT DEVELOPMENT 

In this study, I have established a link between PI3K/AKT signaling and OT development in 

Tgkd mice by showing that lower levels of the inositol phosphatase Inpp4b in follicular GCs 

leads to the development of OTs [101].  Specifically the results demonstrated that the insertion of 

the Tgkd transgene 3’ of the Inpp4b gene results in a decrease in Inpp4b levels in GCs. This 

decrease in INPP4B levels is associated with hyperactivation of the PI3K/AKT pathway during 

gonadotrophin stimulation, which is reflected by an increase in AKT phosphorylation and 

subsequent FOXO1 phosphorylation in Tgkd GCs.  The hyperactivation of the PI3K/AKT 

pathway is accompanied by an increase in proliferation and decrease in apoptosis in Tgkd GCs.  

These changes lead to multiple defects in folliculogenesis in the ovary including an increase in 

preantral follicles and premature appearance of corpora lutea in Tgkd mice.  Moreover, a subset 

of lutenized follicles in Tgkd ovaries contains mature oocytes trapped within them. The oocytes 

of the FVB strain were found to have a high parthenogenetic activation rate, which is 

independent of the Tgkd transgene.  The OTs in Tgkd mice were independently verified to arise 

from mature oocytes, which had completed meiosis I. These results led us to postulate that the 

combination of luteinized unruptured follicles observed in the Tgkd strain resulting from Inpp4b 



 148 

reduction in GCs and the high innate parthenogenetic activation rate of FVB oocytes predispose 

Tgkd mice to OT formation. 

8.2 INPP4B AND REGULATION OF PI3K/AKT PATHWAY 

Inpp4b is a recently identified suppressor of the PI3K/AKT signal transduction pathway that has 

not been studied previously in the ovary. Inpp4b is an inositol polyphosphate-4-phosphatase, 

which was shown to catalyze the hydrolysis of the D4-position phosphate on 

phosphatidylinositol PI(3,4)P2, inositol I(1,3,4)P3 and I(3,4)P2 [127, 128]. The enzyme INPP4B 

was shown to have a much higher activity towards PI(3,4)P2 , which it degrades to PI(3)P [111, 

129]. The lipids PI(3,4)P2  and PI(3,4,5)P3 promote activation of the PI3K/AKT pathway by 

causing phosphorylation of the downstream protein AKT at the Serine-473 (Ser-473) and 

Threonine-309 (Thr-309) positions respectively [130]. Therefore by decreasing the levels of 

cellular PI(3,4)P2, Inpp4b acts as a negative regulator of AKT phosphorylation. A decrease in 

Inpp4b has been previously shown to increase AKT phosphorylation in human mammary 

epithelial cells (HMEC) and LNCaP prostate adenocarcinoma cells and Inpp4b loss has been 

positively correlated with the progression of breast and prostate cancer [111, 112].  

In this study I observed a decrease in Inpp4b levels in E13.5 brain and ovarian GCs from 

Tgkd mice. The decrease in Tgkd E13.5 brains was higher in homozygous Tgkd/Tgkd brains and 

a greater decrease of Inpp4b transcript levels was also detected in hemizygous Tgkd/+ brain by 

allele specific expression studies on the chromosome 8 copy with the Tgkd transgene (Figure 

16D, Figure 19). These data indicate that the effect of Tgkd on Inpp4b is a cis-acting effect. In 

the ovary, Inpp4b was surprisingly not expressed in the oocytes that give rise to OTs, but was 
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expressed in follicular GCs. Inpp4b levels in wildtype GCs fluctuate during induced follicular 

maturation by gonadotrophin stimulation similar to the protein PTEN, which is another well-

known suppressor of the PI3K/AKT pathway (Figure 31) [131]. The PI3K/AKT pathway plays 

an extremely important role in follicular maturation. Hence, the levels of these regulators during 

gonadotrophin stimulation may help orchestrate the kinetics of activation of AKT and other 

downstream molecules during the different phases of follicular maturation. A decrease in Inpp4b 

levels was observed in immature Tgkd GCs and this difference was more apparent in Tgkd 

ovaries after PMSG stimulation. The Tgkd-induced Inpp4b decrease in ovaries may become 

more evident after PMSG (FSH) gonadotrophin stimulation, as FSH induces exponential 

proliferation in GCs increasing their cellular contribution to the ovary [15]. INPP4B levels in 

Tgkd GCs were reduced to approximately 70% of wildtype levels (Figure 30A). This decrease 

was associated with increased activation of AKT and its downstream target FOXO1 (Figure 

34B). The consequence of Inpp4b downregulation was tested independently in wildtype GCs 

using shRNA constructs to Inpp4b and found that a decrease in Inpp4b levels resulted in 

increased AKT phosphorylation on FSH stimulation (Figure 35). These data collectively suggest 

that Inpp4b is a gonadotrophin responsive gene and a decrease in Inpp4b levels alters the kinetics 

of PI3K/AKT activation in Tgkd GCs. 

8.3 ALTERED KINETICS OF THE PI3K/AKT PATHWAY LEADS TO OT 

DEVELOPMENT 

The decrease in Inpp4b is associated with enhanced activation of the PI3K/AKT pathway, 

measured by increased phosphorylation of AKT and FOXO1 in Tgkd GCs. The PI3K/AKT 
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pathway is an essential signal transduction pathway in the ovary, involved in primordial follicle 

recruitment and induction of many important FSH-mediated follicular maturation events 

including GC proliferation, differentiation, cumulus cell expansion, and meiotic resumption of 

oogenesis [15, 41-44, 120].  Studies of mouse PTEN, a better characterized suppressor of the 

PI3K/AKT pathway than INPP4B, nicely illustrate the diverse cellular roles of this important 

intracellular signaling pathway in the ovary.  Ablation of the Pten gene in oocytes leads to 

premature follicle recruitment and ovarian failure leading to infertility in early adulthood, while 

loss of Pten in fully-grown oocytes has no effect on oocyte development or fertility [40, 132]. 

Deletion of both Pten alleles in GCs results in enhanced GC proliferation, decreased GC 

apoptosis, persistence of multiple corpora lutea and unexpected increases in litter size [48]. 

These studies illustrate the cell and stage specific role of the PI3K/AKT pathway in the ovary. 

Pten and Inpp4b suppress the PI3K/AKT pathway by degrading PI(3,4,5)P3 and PI(3,4)P2 

respectively, the chief activators of AKT (Figure 31) [111, 128, 133].  Tgkd GCs with decreased 

Inpp4b levels show a similar increase in proliferation and decrease in apoptosis to that observed 

in GCs depleted of PTEN, but the rate of corpora lutea clearance in Tgkd ovaries was unaffected 

by the decrease in Inpp4b levels (Figure 38).  

Molecular events both upstream and downstream of follicular AKT activation have been 

previously implicated in OT development.  Forced expression of a constitutively active form of 

the FSH receptor from a transgene (mFshrD580H) in GCs causes OTs in 20% of transgene carriers 

and FSH receptor signaling is associated with activation of the PI3K/AKT pathway in a protein 

kinase A (PKA) dependent manner [84, 134, 135]. Furthermore, a reduction in FOXO3A 

activity, a downstream effect of increased AKT activation is associated with OT development 

[81]. FOXO3A is primarily expressed in oocytes, not GCs and is phosphorylated by activated 
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AKT, causing its nuclear exclusion, degradation and loss of its transcriptional activation [83, 

126].  Interestingly, a missense mutation in the mouse Foxo3a gene in the MommeR1 mouse 

strain directly decreases its transcriptional activation, mimicking the effect of increased oocyte 

PI3K/AKT pathway activity on FOXO3A, which causes one out of every six homozygous 

mutant MommeR1 female mice to develop OTs [81].  In summary, the mFshrD580H and Tgkd 

transgenes illustrate the relationship between hyperactivation of the GC PI3K/AKT pathway and 

OT formation, while the MommeR1 strain illustrates the same relationship, but in oocytes.  

8.4 EFFECT OF INPP4B LEVELS ON OT PHENOTYPE 

Ovarian phenotypes appear to be exquisitely sensitive to the cell type and/or extent of 

gene disruption.  For example, whereas a decrease in Foxo3a activity in MommeR1 mice causes 

OTs, complete loss of oocyte FOXO3A activity is associated with premature ovarian failure, 

without the occurrence of OTs [81, 136]. Similarly, the level of ovarian transgene expression of 

mFshrD580H correlates with the severity of the ovarian phenotype [84].  The studies in this thesis 

indicate that a small decrease in GC INPP4B in Tgkd mice is sufficient to alter AKT activation 

kinetics in GCs during hormonal stimulation, leading to a variety of abnormal ovarian 

phenotypes including OTs.  I have specifically observed that a 30% decrease in the levels of 

tumor suppressor INPP4B can cause a 2-fold increase in P-AKT levels during certain time points 

after PMSG stimulation. This data is in agreement with previous studies, where a 20% reduction 

in the levels of tumor suppressor PTEN in mammary epithelial cells is sufficient to increase P-

AKT levels by 2-4 fold compared to Pten wildtype cells [137].  This data supports a continuum 

model of tumor suppression, where small alterations in the level of tumor suppressors cause 
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larger downstream effects possibly by disturbing the homeostasis of the signaling pathway, 

which causes associated secondary effects [138]. One can speculate that lesser or greater degrees 

of INPP4B defects would produce a different and unique collection of abnormal ovarian 

phenotypes, including ones that might preclude OT formation.  

Recently an Inpp4b knockout mouse has been generated through the Cre mediated 

deletion of exon 11 [139]. Adult Inpp4b-/- mice are reported to be viable and do not develop OTs 

or spontaneous cancers, even though Inpp4b reduction has been previously linked to the etiology 

of breast and prostate cancer [111, 112, 121]. Sustained loss of INPP4B in Inpp4b-/- mice may 

have led to adaptation by other suppressors of the PI3K/AKT pathway. Further, the mechanism 

by which the Tgkd transgene causes a decrease in Inpp4b levels is currently unknown. The 

insertion could have disrupted an enhancer or changed local chromatin configuration, which 

leads to sudden or cell-specific changes, preventing adaptation by other components of the 

pathway. The insertion could have affected other genes on chromosome 8, but a preliminary 

screen by allele specific expression analysis did not detect a decrease in transcript levels in genes 

in a 2Mb region surrounding the Tgkd transgene. I also have not identified any sequence changes 

in the body of the Tgkd-linked Inpp4b gene nor novel splice isoforms of Inpp4b mRNAs in 

homozygous Tgkd E13.5 brains. I was able to correlate the decrease in Inpp4b levels with an 

increase in phosphorylation of AKT, which reinforced the hypothesis that the Tgkd insertion 

caused OT formation primarily by decreasing Inpp4b levels in GCs. 
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8.5 EFFECT OF Tgkd ON INPP4B IN THE ES CELL MODEL 

To assess the effect of Tgkd on Inpp4b levels and on PI3K/AKT signaling, I initially developed 

an ES cell model as in vitro cell culture system prior to focusing on studies in the ovary. In this 

model, wide variability and no clear differences were observed in Tgkd methylation and INPP4B 

levels between wildtype (+/+), hemizyogus and homozygous Tgkd ES cell lines derived on the 

129 strain background (Figure 20B, Figure 21A). The kinetics of phosphorylation of AKT1 was 

also not significantly different between wildtype and Tgkd ES cell lines on IGF1 stimulation 

(Figure 22). This experiment led me to examine whether Inpp4b functioned as a suppressor in ES 

cell lines by using shRNA-mediated downregulation of Inpp4b. Electroporation of shRNA 

constructs to Inpp4b led to an increase in AKT1 phosphorylation on IGF1 stimulation, indicating 

that Inpp4b acted as a PI3K/AKT pathway suppressor in ES cells (Figure 23). The absence of a 

consistent effect of Tgkd on INPP4B levels and AKT phosphorylation in ES cells could be due to 

a few reasons. Tgkd may not alter INPP4B levels in ES cells sufficiently to alter AKT 

phosphorylation. ES cells require an activated PI3K/AKT pathway to maintain pluripotency; 

hence they may compensate during the process of ES cell derivation and prevent alterations in 

AKT phosphorylation [140]. The shRNA-mediated decrease in Inpp4b levels is induced in a 

wildtype ES cell line after the derivation stage and is a more rapid change, which may prevent 

compensatory alterations by other suppressors in the pathway. Further the shRNA experiment is 

performed in a homogenous wildtype ES cell line, while innate differences among independently 

derived wildtype and Tgkd ES cell lines are likely to be found. This led me to conclude that 

independently derived wildtype and Tgkd ES cell lines do not serve as a good model to study the 

effects of the transgene on Inpp4b and the PI3K/AKT pathway. 
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8.6 CELL AUTONOMOUS AND NON-AUTONOMOUS ORIGINS OF OTS 

OT mouse models have provided a good insight into the pathways that contribute to OT 

development. The genetic defects leading to OT formation could be cell autonomous confined to 

the oocyte, or the OT could have a non-cell autonomous origin where the surrounding GCs in the 

ovarian follicle provide an environment conducive to OT formation. The c-mos-/- and the 

MommeR1 mice are considered cell autonomous models of OT, as both proteins are solely 

expressed in the oocyte [82, 83]. OTs in the LT/Sv mice have been shown to have a cell 

autonomous origin as oocytes in the LT/Sv related LTXBO strain show a high rate of 

parthenogenetic activation in chimeric reaggregated ovaries, when LTXBO oocytes are 

reaggregated with GCs from an OT non-permissive strain [141]. 

There are also other OT models that are considered non cell-autonomous OT models. 

Constitutive signaling through FSH receptor (mFshrD580H) in GCs specifically, predispose the 

oocytes towards OT formation [84]. A decrease in GC GATA4 leads to 10% of the mice 

developing OTs [86]. Overexpression of anti-apoptotic protein Bcl-2 in GCs also leads to the 

development of OTs [85]. These models indicate that in non-cell autonomous OT models, the 

genetic modifications alter signaling pathways in the GCs, which disturb follicle maturation 

driving the oocyte towards parthenogenesis and OT development. 

The above results indicate that the primary defect in Tgkd ovaries is non-cell 

autonomous, where a decrease in Inpp4b levels in Tgkd GCs is associated with signaling 

alterations in the PI3K/AKT pathway and follicular defects such as oocytes trapped in corpora 

lutea. Inpp4b is expressed only in GCs and not in oocytes, and the signaling alterations in the 

PI3K/AKT pathway are confined to Tgkd GCs not oocytes. However OTs are not observed in all 

mouse models with luteinized unruptured follicles [3]. A high rate of parthenogenetic activation 
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was observed in oocytes of the FVB strain, which is independent of the Tgkd insertion. Oocyte 

parthenogenetic activation has been postulated to be necessary but not sufficient for OT 

formation and the oocyte parthenogenesis rate of OT permissive strains such as the LT/SV strain 

(18%) are reported to be higher than the OT non-permissive B6 strain (3%) [78]. The high 

frequency of metaphase I arrested oocytes seen in the LT/Sv strain (90%) was not observed in 

FVB (44%) or FVB-Tgkd (51%) oocytes [78].  These results indicate that the Tgkd OT model 

has a non-cell autonomous component leading to trapped oocytes and a cell-autonomous 

component of high oocyte parthenogenesis, both of which contribute to OT formation. 

8.7 STRAIN SPECIFICITY OF THE OT PHENOTYPE 

A common feature of many mouse strains developing OTs is the FVB strain background; 

therefore, one must consider the possibility that these influences on OT development are 

determined by FVB alleles of other genes.  The Tgkd, mFshrD580H, Inhα-bcl2 and MommeR1 

strains have been reported to develop OTs on the FVB background [81, 84, 85, 88]. OTs are not 

observed in Tgkd females on the 129 background or in F1 (FVB-Tgkd X B6) females with the 

Tgkd transgene (Table 3). Similarly, OTs have been reported to absent in MommeR1 compound 

heterozygotes (FVB/129/B6) or MommeR1 mice backcrossed to the B6 strain for 10 generations 

[81]. 

In this study, FVB oocytes were found to possess a high parthenogenetic activation rate, 

which is required for OT formation (Figure 10) [78]. In this regard, an FVB-specific OT 

modifier locus (Ots2) has been mapped to chromosome 6, within a region that overlaps a 

previously mapped LT/Sv strain-specific OT modifier allele (Ots1) (Eicher et al., manuscript in 
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preparation, [79]. On crossing FVB-Tgkd mice to LT/Sv mice, F1 Tgkd females develop OTs at a 

much higher frequency (90%) than either of the parent strains indicating that the Ots1 region and 

Ots2 region may involve the same gene/genes which enhance oocyte parthenogenesis (Table 3) 

[63, 88]. The effect of LT/Sv derived Ots1 appears to be much stronger than FVB Ots2 and the 

frequency of the OT phenotype is further increased by Tgkd induced effects on Inpp4b on 

chromosome 8. Identification of candidate genes within this region that contribute to the OT 

phenotype would help better understand the multifactorial processes involved in the generation 

of teratomas. The effect of the FVB strain background may also explain the lack of the OT 

phenotype in the Inpp4b-/- mice, which were studied in the B6 strain background [139]. 

8.8 OT DEVELOPMENT IS A MULTIFACTORIAL PROCESS  

OT formation has been linked to signaling defects in either oocytes or in the surrounding 

follicular GCs.  Other OT mouse models, particularly those with defects in GCs, share aspects of 

Tgkd ovarian pathology.  The intentional genetic defects in the mFshrD580H, Inhα-bcl2 and 

siGata4 mouse lines are all confined to GCs [84-86].  Interestingly the mFshrD580H model shows 

an increase in GC proliferation, while Inhα-bcl2 ovaries display a decrease in GC apoptosis.  

Luteinized follicles containing trapped oocytes are seen in mFshrD580H mice [84].  All of these 

processes are affected in female Tgkd mice, which have a high incidence of OTs, suggesting that 

the collective influence of many altered follicular processes greatly enhances the likelihood of 

OT formation.   

Further FVB strain modifier alleles play a major role in promoting OT formation in Tgkd 

mice and many other OT models [81, 84, 85, 88]. The FVB modifier locus has been mapped to a 



 157 

region on chromosome 6 that overlaps with the previously characterized OT susceptibility locus 

Ots1. This locus on chromosome 6 may promote oocyte parthenogenesis in OT susceptible 

strains such as LT/Sv and FVB mice. High rates of metaphase I arrest and parthenogenetic 

activation have been reported to be necessary but not sufficient for development of OTs [78]. 

The OT phenotype in both LT/Sv mice and Tgkd mice is clearly a polygenic trait with several 

different developmental abnormalities contributing to OT development both in GCs and oocytes. 

The Tgkd OT model serves as a valuable model to understand the etiology of OT development as 

the insertion of the Tgkd transgene at a single site on chromosome 8 converts the OT-free FVB 

females to OT-susceptible FVB-Tgkd females. Further, our studies are able to link the transgene 

insertion with an effect on the nearby gene Inpp4b and the downstream PI3K/AKT pathway. I 

was also able to establish a connection between altered GC proliferation and apoptosis and the 

presence of luteinized unruptured follicles with OT development. In this model, hemizygous 

Tgkd mice develop malignant OTs at a frequency of 15-20% by 12-22 weeks of age [88]. This 

frequency may appear to be low compared to other OT mouse models such as the LT/Sv strain, 

which are reported to develop OTs at a frequency of 50% by 3 months of age. However, the 

LT/Sv strain is an inbred strain, which spontaneously develops OTs [63]. Several cell cycle 

abnormalities have been reported in LT/Sv oocytes but the primary genetic lesions responsible 

for OT formation are not known [53, 142, 143]. On the other hand, most OT models with a 

defined single gene defect such as mFshrD580H, Inhα-bcl2, siGata4, MommeR1 and Tgkd mice 

develop OTs a frequency between 10-20% [81, 84-86, 88].  

On speculating on the mechanism of OT formation in the Tgkd strain, we can evaluate the 

contribution of the cell (oocyte) and non-cell (GC) autonomous component of OT formation. The 

effect of the decrease in GC INPP4B and associated increase in P-AKT levels may cause a 
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dramatic increase in the number of follicular GCs during the FSH/PMSG mediated follicular 

growth phase. This increase in GC number may cause a delay or failure of antrum formation and 

uncoupling of oocyte growth from ovarian follicle growth in a subset of recruited follicles. 

Hence, the oocyte is unable to undergo successful ovulation from these follicles either due to the 

structure of the overgrown follicle or due disruption of oocyte-GC communication. The follicle 

is however competent for luteinization of GCs after the LH surge, hence forms a corpus luteum 

after an unsuccessful ovulation. A subset of trapped oocytes in the FVB strain may initiate 

parthenogenetic activation but may need to grow rapidly to form an OT before clearance of the 

surrounding corpora lutea. Oocytes that initiate malignant OT development in the Tgkd strain 

may possess this selective growth advantage and the increased activation of the PI3K/AKT 

pathway may further accelerate this process. 

 In summary, altered regulation of the PI3K/AKT pathway caused by a decrease in 

Inpp4b in Tgkd GCs during follicle maturation leads to a dramatic increase in the number of 

GCs. This is associated with several follicular defects including oocytes trapped within 

luteinized follicles. The trapped oocytes caused by the Tgkd transgene combined with the 

parthenogenetic oocytes of the FVB strain predispose Tgkd mice to OT development (Figure 40). 
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Figure 40: Model of Tgkd induced OT formation 

OT formation is a multifactorial process in the Tgkd OT model with GCs and oocytes playing a 

role in the development of OTs. The Tgkd transgene causes a decrease in INPP4B levels in Tgkd 

GCs resulting in hyperactivation of the PI3K/AKT pathway. This signaling alteration is 

associated increased proliferation and decreased apoptosis of Tgkd GCs and follicular defects 

such as trapped oocytes in corpora lutea. The combination of trapped oocytes and high FVB 

oocyte parthenogenesis may predispose the Tgkd females to OT formation. 

 

 

 

8.9 FUTURE DIRECTIONS 

In the Tgkd OT model, I have demonstrated a decrease in the levels of Inpp4b in combination 

with FVB strain specific modifier alleles leads to OT formation. In future studies, we plan to 

independently verify this observation using Inpp4bloxP/loxP mice, which were used to generate 

Inpp4b-/- mice [139]. We have obtained Inpp4bloxP/loxP mice from Dr. Vacher, where the loxP 

sites are designed to flank exon 11 of the Inpp4b gene. We plan to cross the Inpp4bloxP/loxP mice 

with transgenic mice carrying Sox2 promoter-mediated Cre recombinase (Sox2-Cre mice). This 

would generate Inpp4bloxP/loxP; Sox2-Cre mice similar to the Inpp4b-/- mice with loss of INPP4B 

protein in the epiblast and subsequently all tissues of the embryo [144]. We would also cross the 

Inpp4bloxP/loxP mice with transgenic mice carrying a granulosa cell promoter-mediated Cre 

recombinase (GC-Cre) in order to generate Inpp4bloxP/loxP; GC-Cre mice with a tissue specific 
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knockout of Inpp4b in GCs to reduce the timespan for adaptation. We plan to use the cytochrome 

P450, family 19 promoter (Cyp19-Cre) and anti-Müllerian hormone promoter (AMH-Cre) strains 

of mice to generate GC specific knockouts of Inpp4b [48, 145]. We plan to backcross the 

Inpp4bloxP/loxP; Sox2-Cre and Inpp4bloxP/loxP; GC-Cre mice into the FVB background for atleast 10 

generations and then evaluate whether the females develop OTs. Since ovarian phenotypes are 

sensitive to the extent of gene downregulation, we plan to also cross Inpp4bloxP/+ with transgenic 

mice expressing Cre recombinase and then backcross the resulting Inpp4bloxP/+; Sox2-Cre and 

Inpp4bloxP/+; GC-Cre mice into the FVB background for several generations. We would verify 

the loss of INPP4B in each of these strains of mice and examine whether there are alterations in 

the PI3K/AKT pathway. These experiments would help us directly address the role of Inpp4b 

and the extent of downregulation required for OT formation. 

We are also planning to further pursue studies on the role of the FVB background on OT 

formation. Linkage analysis has already identified the FVB strain specific modifier locus in Tgkd 

females, designated Ots2 to be located between 20-50cM on chromosome 6 (Eicher et al., 

manuscript in preparation). Congenic mouse strains have been generated on the B6 background, 

which possess small genomic regions from the FVB strain on chromosome 6 overlapping Ots2. 

One of congenic lines Line B is on the B6 strain background but contains the 20-50cM region of 

chromosome 6 from the FVB strain. Line B mice with the Tgkd transgene develop OTs at a high 

very frequency, when crossed to OT susceptible LT/Sv mice (Eicher et al., manuscript in 

preparation). Creating a number of congenic lines with small specific subintervals of Ots2 from 

the FVB background may help us specify the location of the FVB modifier gene involved in the 

OT phenotype to a 1-2 cM resolution for effective positional cloning and evaluation of candidate 

genes. 
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One interesting candidate in the Ots2 region is the gene inositol 1,4,5-trisphosphate 

receptor 1 Itpr1 (49.74 cM), which plays a role in calcium release post fertilization. The binding 

of inositol (1,4,5) triphosphate (IP3) to Itpr1 post fertilization initiates a series of calcium 

oscillations, which promote egg activation involving completion of meiosis II and subsequent 

mitotic cleavage [146]. Recent studies have shown an increase in ITPR1 sensitivity and levels 

with oocyte maturation, which peaks after completion of meiosis I and is subsequently 

downregulated after fertilization [147-149]. Calcium ionophores that increase intracellular 

calcium levels in mature oocytes promote oocyte parthenogenesis [150]. Therefore, alterations in 

the cDNA sequence or protein levels of ITPR1 may lower the threshold for calcium release and 

alter the rate of oocyte parthenogenetic activation between OT susceptible and OT non-

permissive strains.  Further, we also plan to analyze whether Tgkd alters PI3K/AKT activation 

kinetics in GCs and is associated with luteinized unruptured follicles in OT non-permissive 

strains. These studies would help us determine whether the strain permissiveness of the FVB 

strain is limited to the modifier locus on chromosome 6 or involves many other FVB strain 

specific effects on ovarian follicular maturation. 
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APPENDIX A 

PERICENTRIC AND DISTAL SNPS ANALYZED IN SPLEEN AND OTS TO 

DETERMINE LAST STAGE OF MEIOSIS OF OTS 

  SNP genotyping for spleen and teratoma, used to determine the last stage of meiosis completed 

by oocyte before initiating OT formation. Single nucleotide polymorphisms (SNPs) that are 

documented to be different between B6 and FVB were chosen for this analysis. One pericentric 

and distal SNP were chosen per chromosome and analyzed in spleen (Spl) and OT pairs from OT 

positive Tgkd females from the backcross between (FVB-Tgkd X B6) and FVB mice. The 

chromosomal location of each SNP and their nucleotide status in the spleen and OT are stated in 

the below figure. 
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APPENDIX B 

PRIMER SEQUENCES USED IN EXPERIMENTS 

Primer name Primer sequence 

Genotyping of wildtype and Tgkd 

mice 

  

WT-F TGCAGTGAAGACAATGGGTATTGTG 

WT-R CACAACAAAGACAGCTTGTGGAC 

Tgkd-F CTATTCCAGCCTAGTCTGCT 

Tgkd-R AGTCAGAAGCTACGGAGCCT 

Primer sequences for Tgkd 

genotyping 

  

BS-Tgkd-F GTATTGAAATTGAGTTTGAAGTGG 

BS-Tgkd-R ATACTCTAAATAACCTAAAAAATCC 

BS-Tgkd-nested-F GTATTGAAATTGAGTTTGAAGTGG 

BS-Tgkd-nested-R TATCTTCACCTAAAAACCCTCCAC 

HpaII-McrBC methylation sensitive 

PCR 
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CpGi-1F AGGTGGTTCAACAGCGAATC 

CpGi-1R ACCTTTTCCCCTCGGTGTAG 

CpGi-2F CTTCTTGCGTCCACAGTTCA 

CpGi-2R CCGATCGAGTTCCTCTTCAG 

CpGi-3F GAGTGGTAGCCCTGCTGAAG 

CpGi-3R ACCCAGGGCGACTTTTAACT 

CpGi-4F GAGCTACCTTCTCACATCCT 

CpGi-4R ATTCACCCATCCTCACCCTC  

CpGi-5F CCAGAAGCTGTGTTGTTTTG 

CpGi-5R CACCCTATTGTACTGCTGTC 

CpGi-6F GATGAGGAAGGCAGAAATGG  

CpGi-6R CCTGTGCAGACTAAAATCCT 

CpGi-7F TGGAGTTTGTTTCCCACACA 

CpGi-7R TGTGGGCTCGTCTTTCTTTT 

CpGi-8F GCTGCTTTCCTTTTGTTTCG 

CpGi-8R GGACTTCTCAGCCAGAGGTG 

CpGi-9F TCTGGTGTTTGGACCTCCTC 

CpGi-9R CAGCTTTGAAGTGTGCATCC 

CpGi-10F CAGTACCTCCTCCGGATTCA 

CpGi-10R TGACAAGTTTAGCGCGTGAC 

Inpp4b cDNA overlapping PCR 

products 

  

Inpp4b-cDNA-1F CTGAGCTCGCCGCTATAAAT 
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Inpp4b-cDNA-1R CCCTGCACATCTGTTGTGAT 

Inpp4b-cDNA-2F ATTCGAACCAGTGTCCTTCC 

Inpp4b-cDNA-2R GCAGCAGGTCTGCATGAGT 

Inpp4b-cDNA-3F AGCAGCAGCAAAGGAGAGAA 

Inpp4b-cDNA-3R AGCGCCTGACTGAAGACAAT 

Inpp4b-cDNA-4F TCACAACGAAGAAGGTGCTG 

Inpp4b-cDNA-4R TGTTCCAGTGTCACCGACAT 

Inpp4b-cDNA-5F (α only) GAAATTGGAATGCTGGAGGA 

Inpp4b-cDNA-5R (α only) CAAAGCTCAGTGTATTTGTGTTCC 

Inpp4b-cDNA-6F (β only) TTGGACAATCTCCACCAAAA 

Inpp4b-cDNA-6R (β only) AACAGAAATAGCCATTCTTTCCA 

Inpp4b-cDNA-7F (β only) ACCTCCTCTTCCCAGGTCAT 

Inpp4b-cDNA-7R (β only) TTGTTCAATGCAGAGTTGCAG 

SNuPE RT-PCR and extension 

primer 

  

Smarca5-RTPCR-F CGGGTCTTCATAAGATGTGC 

Smarca5-RTPCR-R TGCTTCAGGGTCTCCAGTTT 

Smarca5-SNuPE ATAATTTTCTATGCATATTT 

Gab1-RTPCR-F TCCGGAGGAGTTTCAGAGAA 

Gab1-RTPCR-R CAGACGGTGACCTGACCTG 

Gab1-SNuPE CAGTTCTGGGCTCCCTGTCC 

Usp38-RTPCR-F TCCAGACCTCCGTGGTTTAC 

Usp38-RTPCR-R AGCCCATCATCTTGAGCACT 



 168 

Usp38-SNuPE ACATCTGCTGCCTAAACTG 

Inpp4b-RTPCR-F GGTGTCACCTGGCAAGAGAT 

Inpp4b-RTPCR-R TCACTGACAGGAGCCACAAG 

Inpp4b-SNuPE GGTACCATTTGAAAAAGACA 

Il15-RTPCR-F CGTGCTCTACCTTGCAAACA 

Il15-RTPCR-R GAAGCTTAGTTTGCCCAGCA 

Il15-SNuPE ATCAACACGTCCTGACTGCA 

Zfp330-RTPCR-F AAATGTGTTTCCTGCAATCG 

Zfp330-RTPCR-R AAAACGGTGAACATGGCAAC 

Zfp330-SNuPE TGTAATGGGTAAAATTACCA 

Rnf150-RTPCR-F AAGACTGCGAGGAGGTGAAA 

Rnf150-RTPCR-R CTCGTACCCGTGGAATTCAT 

Rnf150-SNuPE CACTTGACTTCAGCCTCTCC 

Tbc1d9-RTPCR-F TACCTAAAACTCTGGACTGC 

Tbc1d9-RTPCR-R GTGCCTTACTTTGGGTTATC 

Tbc1d9-SNuPE AATTAACTATTTATTAGTACC 

Real time PCR   

TBP-F CTGACCCACCAGCAGTTCAGT  

TBP-R TCTGGGTTTGATCATTCTGTAGATTAA 

GusB-F CGTGGTCGGAGAGCTCATCT 

GusB-R TCAGCGGTGACTGGTTCGT 

Inpp4b-F GCTGGCAGCAACGATTTGT 

Inpp4b-R TCTTTGGCACTTTTACAGCAGGTA 
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Inpp4bα-F AGAGCTTTAGATTGCATGAGAAGAGA 

Inpp4bα-R CCTCCTGCATTTGATATTCTTCAGT 

Inpp4bβ-F GAGCTTTAGATTGCATGAGAAGCA  

Inpp4bβ-R CAGGATCATCGGATTCATTCAA 

Primers for In Situ probes   

Slc39a10-IS-F GCGCCTCGAGCTGCCTGCTCTTACACCACTG 

Slc39a10-IS-R   GCGCGAATTCCACACCAGCACCTTTTAGCA 

Inpp4bα-IS-F GCGCCTCGAGAGAAGGATGCCGCATAGAGA 

Inpp4bα-IS-R GCGCGAATTCCAAAG`CTCAGTGTATTTGTGTT

CC 

Inpp4bβ-IS-F GCGCCTCGAGTATCCTGTCGCCTTGCTTCT 

Inpp4bβ-IS-R GCGCGAATTCACCATTATTGCCTTCGGAAA 
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APPENDIX C 

EFFICIENCY CURVES FOR REAL TIME PCR EXPERIMENTS 
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