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Abstract
We theoretically characterized the diffraction properties of both closed-packed and non-closed-
packed crystalline colloidal array (CCA) photonic crystals. A general theory based on single-
scattering kinematic approach was developed and used to calculate the diffraction efficiency of
CCA of different sphere diameters at different incident light angles. Our theory explicitly relates
the scattering properties of individual spheres (calculated by using Mie theory) comprising a CCA
to the CCA diffraction efficiency. For a CCA with a lattice constant of 380 nm, we calculated the
relative diffraction intensities of the fcc (111), (200), and (220) planes and determined which
sphere diameter gives rise to the most efficiently diffracting CCA for each set of crystal planes.
The effective penetration depth of the light was calculated for several crystal planes of several
CCAs of different sphere diameters at different angles of incidence. The typical penetration depth
for a CCA comprised of polystyrene spheres was calculated to be in the range of 10-40 CCA
layers. A one-dimensional (1D) model of diffraction from the stack of (111) fcc crystal layers was
developed and used to assess the role of multiple scattering and to test our single-scattering
approach. The role of disorder was studied by using this 1D scattering model. Our methodology
will be useful for the optimization of photonic crystal coating materials.

I. INTRODUCTION
Recently, there has been considerable interest in the fabrication and the experimental and
theoretical analysis of photon propagation in the periodic dielectric systems known as
photonic crystals.1 These materials show promising applications in optical devices, which
may prove useful in the creation of photonic logic chips, novel optical switches and optical
filters, chemical sensors, as well as in numerous other optical technologies.2

A major class of photonic crystals is fabricated through the self-organization of individual
particles, typically spherical colloidal particles, organized in crystalline colloidal arrays
(CCAs). A CCA is comprised of a self-assembled periodic array of colloidal particles
immersed in a dielectric medium. Various methods have been developed to fabricate
photonic crystals such as, for example, by utilizing closepacking of spherical colloidal
particles to create artificial opals.3

An alternative approach to the closed-packed system are CCAs where the colloidal particles
self-assemble into non-close-packed crystal structure in a low ionic strength aqueous
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solution.4,28 This procedure involves self-organization of negatively charged particles,
which electrostatically repel each other and adopt a minimum energy configuration,
typically an fcc lattice structure. By altering the concentration of colloidal particles in the
solution, it is possible to manufacture CCAs with any desired lattice constant. CCAs
obtained by this self-assembly method generally form an fcc lattice when the (111) planes
orient along the surfaces of the container.

There are numerous theoretical approaches to calculating the interaction of light with
photonic crystals. Band structure theory, originally developed for electrons moving in an
infinite periodic potential, has been used to solve the vector Maxwell equations in periodic
dielectric media.1 Band structure calculations are most often implemented via the plane
wave expansion method, which allows the calculation of the photonic band structure based
on the expansion of the internal electromagnetic field as a sum of many (typically hundreds)
of plane waves. The total (complex) band structure of photonic crystals can be used to
derive the boundary conditions for the electromagnetic field at the interface of a finite
crystal in order to determine the transmission and diffraction properties.5

A more efficient (and also more widely used) method for calculating diffraction and
transmission properties is based on relating the electromagnetic field components at the
opposite sides of a thin slab of dielectric material through a so-called transfer matrix.6,7 This
is done by dividing the space in each slab into parallelepiped cells with a coupling between
these cells. Then, the whole system is represented as a stack of slabs by using the multiple
scattering formula familiar in the theory of low-energy diffraction.7 The transfer matrix
method is essentially a real-space finite-element method of computational electrodynamics
adopted for a system with a periodic dielectric function.

In the special case of dielectric spheres periodically arranged within infinite slabs, the layer-
multiple-scattering method was developed.8 In this method, spherical vector basis functions
were used to expand the electromagnetic field around each particle, and these fields were
summed for periodically spaced spherical scatterers in an infinite slab. Transfer matrices
were then utilized to couple fields between the different slabs. Recent extension of the
method enabled application to nonspherical particles, with scattering properties of individual
particles calculated through the evaluation of the T matrix.9 All of these approaches treat
multiple scattering processes inside the crystal but require either a defined periodicity or
infinite extent in some dimension. An approximate perturbative behavior of electromagnetic
wave packets was utilized in the envelope-function approximation method.10,11

A number of computational techniques were developed to calculate the light scattering
properties of arbitrary shaped nonperiodic systems.12-14 These include the multiple
multipole method,15 the finite difference time domain method,16 and the generalized field
propagator17 method utilized to calculate transmission and reflection for photonic crystals
containing various defects. Unfortunately, these methods are numerically expensive and are
currently able only to treat systems with relatively small numbers of scattering particles.

There are methods developed specifically for systems consisting of arbitrary located
spheres, such as the T-matrix superposition method18 and the generalized multisphere-Mie
theory.19 The total field scattered by a collection of spheres is represented as a superposition
of individual sphere contributions, where each contribution is expanded in vector spherical
harmonics. The multiple scattering between spheres is taken into account by representing the
total field incident at each sphere as a sum of the initial incident wave and scattering
contributions from every other sphere of the system. To perform the required summation,
the method utilizes the translation addition theorem, where a vector spherical wave centered
at one sphere is expressed through the spherical waves centered at other spheres. Currently,
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these methods only allow the analysis of hundreds of spheres,20 and hence cannot simulate
realistic CCAs.

The interaction of light with a photonic crystal can be understood as a scattering process,
where the total amplitude of the scattered light is the result of interference of all scattering
contributions from particles of the system. The total scattering of incident light by a CCA
can be represented as a combination of single and multiple scattering. The single-scattering
approximation assumes that incident light interacts only once with each scatterer. Multiple
scattering, consisting of scattering events resulting from secondary waves rescattered by
particles of the system, are disregarded.

The average distance that light travels between the consecutive scattering events is called the
mean free path. Multiple scattering contributions are small when the mean free path is much
larger than the size of the whole system. The mean free path depends on how efficiently the
individual particles scatter, and the smaller this efficiency, the larger the mean free path.
There are many factors responsible for a magnitude of individual particle scattering
efficiency, including the value of the dielectric contrast between the particle and the
medium, the particle size and shape, and the direction of scattering. Single scattering is the
dominant scattering mechanism for a low contrast dielectric modulation.

The opposite limit is a strongly scattering medium, where multiple scattering is important.
For randomly and strongly scattering media, setting aside the wave nature of light and
interference effects, the multiple scattering can be described as a random walk; the light is
said to be diffusely scattered and is described by a diffusion equation.21 Interference in
multiple scattering of light in the random strongly scattering media leads to such interesting
effects as the localization of light, speckles, enhanced backscattering, and Anderson
localization. In a realistic photonic crystal with disorder, where multiple scattering is
important, scattering of light results in an interplay between diffuse and Bragg-type
scattering.22

Many of the theoretical methods briefly described above, such as the photonic band
structure theory or transfer matrix derived methods, focus on numerically computing the
total scattered intensity by solving a master wave equation. This conceptual framework does
not distinguish between single and multiple scattering or between Bragg interference effects
for collections of particles and the scattering phenomena from individual particles. Thus, the
physical picture of the interplay between these different processes is largely lost, and
although the quantitative description is accurate, the physical picture is unclear.
Interpretation and prediction of light interaction with photonic crystals is better described by
using a richer conceptual basis which describes the physical processes involved. This
description would benefit from the extensive use of such concepts as single and multiple
scattering, Bragg interference, and individual particle scattering form factors.

In this work, we developed a numerical method to analyze the scattering of light and to
numerically simulate the full three-dimensional (3D) map of light intensities scattered by a
realistically sized macroscopic CCA. Our method does not require the incident light to be a
plane wave nor the distribution of particles inside the CCA to be periodic. We start with a
realistic size macroscopic system and utilize a simple single-scattering method, which treats
a large system of arbitrary located spherical particles in a dielectric medium. Our method
produces accurate results for the case of photonic crystals with relatively low dielectric
contrast modulation where multiple scattering effects are small. It can be readily employed
to investigate the roles of irregularities in size and disorder in these systems.

Our method treats the diffraction of light from a system of periodically spaced scatterers in
terms of the interplay between the scattering properties of the individual particles and the
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Bragg interference. The advantage of this approach is that it explicitly relates the individual
particle scattering properties to the CCA diffraction efficiency.

Our approach is inspired by the methods of x-ray diffraction of atomic and molecular
crystals,23,24 where light is scattered by the electrons of periodically spaced atoms in low
contrast dielectric media. The main emphasis of x-ray diffraction theories is on the
collective effects of constructive and destructive interference from collection of scatterers.
There are two main methods to model diffraction, the kinematic theory, and dynamical
diffraction theory (DDT).

The DDT theory23-26 approximates the total electromagnetic field inside the crystal as the
sum of a relatively small number of plane waves. Multiple scattering effects are considered
through the interaction between these plane waves, each one propagating at the Bragg
diffraction direction relative to other waves. This set of internal plane waves forms a
solution to Maxwell’s equations, and each plane wave couples to other waves causing an
energy exchange between all internal waves. In the situation when only two strong waves
dominate in the crystal, one incident and one diffracted, the DDT theory leads to just two
equations describing the diffraction by a particular set of lattice planes. The dielectric
function variation along this specific set of lattice planes is described by only one Fourier
component of the dielectric function. Thus, this model is essentially one dimensional. When
we consider diffraction from the (111) planes, the two-wave DDT model is very similar to a
system of periodic one-dimensional (1D) parallel slabs, with the main difference that in the
case of DDT the refractive index profile is sinusoidal in the direction normal to these lattice
planes. We choose to utilize a 1D slab model instead of DDT because it allows us to analyze
arbitrary sets of parallel slabs, while DDT requires a periodic crystal structure.

Kinematic theory does not assume that the total scattered light consists of just a single plane
wave. Thus, it provides a more realistic description of the scattered light distribution. Also,
kinematic theory can be used to model an arbitrary distribution of scattering particles, not
just the ideal crystals to which DDT theory is restricted. Kinematic theory can clearly relate
the diffraction properties of a CCA to the properties (such as diameter and refractive index)
of individual scattering spheres.

The kinematic theory is based on two approximations.

1. Single-scattering approximation, where the total diffracted light consists of
interference between incident plane wave scattered by all individual particles. This
approach disregards multiple scattering.

2. Neglecting extinction of the incident wave—all particles in the system are
illuminated by an incident wave field of constant amplitude.

An obvious flaw in the standard kinematic theory (“KNM” theory) is the assumption of a
constant electric field amplitude of incident light propagating through the CCA crystal. This
results in an unrealistically large value of the diffracted intensity for geometrically large
CCAs. We modified the kinematic theory to take into account extinction by including
attenuation of the incident wave. We call this as the “extended kinematic” (“EXKNM”)
theory. The incident plane wave, after entering the crystal, gradually decays while
transferring energy into the scattered light.

A similar method based on the KNM theory was previously used27 to analyze light
diffraction by a system of stacked infinite slabs. The main difference between that method
and ours is that we treat arbitrary shaped finite 3D systems and take into account attenuation
of the incident light.
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In a recent paper,28 we briefly applied our method to examine the differences in the
integrated intensities of light diffracted by different crystal planes of a CCA. We also
applied the method to investigate the influence of stacking faults on the scattering. In this
work, we provide details of the method and calculate diffraction from realistic CCAs.

Here, we examine the importance of multiple scattering by constructing an effective 1D
system consisting of many dielectric slabs. We analyze diffraction from a stack of (111)
layers of an ideal fcc CCA. In Sec. II, we briefly describe how to apply the kinematic
method to calculate and interpret the scattering intensities from a finite perfectly ordered
CCA. Extended kinematic theory is also presented. In Sec. III, an effective 1D slab system is
constructed and used to examine the importance of multiple scattering. Section IV explores
how the integrated intensity of specific Bragg peaks depend on factors, such as sphere size
and the incident angle. We also study the effective penetration depth for the incident light.

II. METHODS
When light illuminates a collection of scattering particles, the overall amplitude of scattered
light at any point in space is simply the sum of contributions from individual particles. In a
single-scattering approximation, we ignore multiple scattering between the particles by
assuming that each particle is excited by only the external incident field, but not by the
secondary fields scattered by other particles. Assuming the external incident light wave to be

a plane monochromatic wave, the total scattered amplitude  at some distant point  in
the far-field approximation is23

(1)

where  is the amplitude of light at  scattered from individual particle j with coordinates

 and the summation is performed over all particles of the system. We can express every
individual contribution as a product of the absolute value of the electric field amplitude of

the incident propagating wave Aj, a single sphere scattering form factor  and a phase

factor  where  is the difference between the wave vectors of the incident and
scattered light. We assume our colloidal particles to be spheres of uniform dielectric
constant embedded in a medium of another dielectric constant. We can calculate the form

factor  exactly from Mie theory for scattering of a plane wave by a spherical particle.
29

In standard KNM theory, the amplitude of the incident propagating wave is constant along
the propagation direction in a media, Aj=const, and does not decay while propagating
through the crystal. This approximation assumes that the amplitude of the scattered light is
much smaller than that of the incident light.

In our EXKNM approach, we assume that the CCA medium can be represented as a stack of
layers with each layer experiencing a defined amplitude of the electric field of the incident
light, which gradually attenuates while propagating. We determine the internal propagating
wave amplitude by subtracting from the initial incident light the amount of light scattered.
Specifically, we calculate the amplitude of the light which propagates forward from the
condition that the intensity of light after n layers equals the intensity of incident light minus
the intensity of light scattered by all previous n layers. We determine amplitude An+1 after
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layer n from the condition |An+1|2 =|A0|2-|Rn|2, where A0 is the amplitude of the incident
wave before entering the crystal and Rn is the total amplitude of light diffracted by the first n
layers. We calculate Rn by calculating the integrated intensity of all light scattered by the
first n layers, then determine Rn as the square root of this integrated intensity. We assume
that the incident wave is completely attenuated with all energy transferred to the diffracted
light when Rn exceeds A0 after layer n=Neff. The effective number of layers which diffract
essentially all light, Neff, determines the penetration depth for the incident light. When this
number is larger than the actual number of layers in CCA sample, then some of the light
transmits through the CCA; otherwise, all incident light decays inside the crystal over the
effective number of layers Neff.

The calculation procedure assumes that the CCA is a finite crystal consisting of P layers.
Unless specified otherwise, each layer has the shape of a parallelepiped and contains MN
spheres, where M and N are the number of spheres along each parallelepiped side. These
spheres are periodically arranged in ···ABCABC··· layers as the (111) planes of an fcc crystal,
although the method can be easily generalized for any possible arrangement of spherical
particles.

For a finite CCA consisting of a stack of ideal crystal layers having the same shape and size,
we can write the coordinates of the CCA spheres as

where  and  are the layer lattice vectors and  is the vector specifying the location of
layer p. This vector specifies that the crystal is fcc with the ···ABCABC··· stacking of (111)
layers. Integers m and n define the locations of individual spheres inside the layer, and in the
case of layers shaped as an identical parallelepipeds MN, these indices run through the set of
integers m=0, ···, M, n=0, ···,N.

We calculate the total scattering amplitude by summing contributions from all P layers
stacked together to form the CCA,

(2)

Assuming that all spheres are identical and the amplitude of the incident wave Ap is the
same for all particles in each layer, the scattering contribution from the individual layer p is

(3)

In this formula, both sums can be easily performed analytically, making calculations very
fast for the case of layers shaped as parallelograms.

This computational procedure simulates diffraction from any stacking pattern of ideal (111)
layers. In particular, it allows the study of how stacking faults in finite CCAs affect
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diffraction efficiencies, and it can be easily generalized to investigate other disorder in the
CCA.

In Fig. 1, we show the scattering intensities for an incident plane light wave diffracted by a
perfect colloidal crystal consisting of P=45 (111) layers with each layer containing 60×50
spherical particles organized in a parallelogram plane layer. Here, the stacking sequence of
(111) planes is of type ···ABCABC··· corresponding to an fcc crystal.

We simulated the diffraction of an incident plane wave [with direction shown by large
magenta arrow in Fig. 1(a)] with wavelength of 367 nm by the crystal rotated such that it
fulfills the Bragg condition for diffraction from the (200) planes, shown by the red spot in
the middle along the equator of the scattering sphere. We define the Bragg angle as an
incident glancing angle satisfying the Bragg condition. There are an infinite number of ways
to orient the crystal such that the Bragg diffraction condition is satisfied for a particular
crystal plane; all directions of incident light satisfying the Bragg condition occupy the
surface of a cone whose axis is normal to the crystal planes. The diffracted intensity depends
on the specific direction chosen along this Bragg cone surface, so one has to specify the
exact orientation of the CCA relative to the direction of incident light.

We choose a CCA orientation relative to the incident light for this calculation via the
following procedure. The direction of incident light occurs along the z coordinate lab axis.
Initially, we orient the CCA such that the z axis is parallel to the [111] direction and the x
lab axis is parallel to one of the sides of the (111) layer parallelogram. Then, we perform
two rotations of the CCA. First, we rotate around the z lab axis such that the normal to a
particular diffracting plane occurs in the (xz) plane. A second rotation is done along the y lab
axis until the glancing angle between the directions of incident light and the normal to the
crystal plane fulfills the Bragg condition. The two rotation angles for the Fig. 1 (220)
calculation are π/2 and 0.2546 rad, respectively.

Some incident light directions along the (220) Bragg cone can also be diffracted by other
crystal planes. For the specific CCA orientation in Fig. 1, 367 nm incident light is
simultaneously Bragg diffracted by the (220), (020), and (200) planes. The corresponding
diffraction maxima are shown by the bright red spots and indicated by red arrows. This
simultaneous diffraction by these crystal planes occurs only for this specific wavelength and
direction of incident light.30

The Bragg scattering directions are typically found by using the Ewald sphere construction
in reciprocal space [Fig.1(b)]. The yellow parallelepiped denotes the shape and orientation
of the CCA crystal, while the blue dots are calculated points of reciprocal space labeled by
their Miller indices. The gray cube indicates the cubic unit cell of the bcc reciprocal lattice.
The length of the red arrow along the radius of the Ewald reflection sphere is equal to the
wave vector of the incident light. The magenta reciprocal lattice points on the reflection
sphere surface satisfy the Bragg diffraction condition.

The red dots on the scattering sphere in Fig. 1(a) show the values of the scattered intensities.
Each point of the surface denotes a specific 3D direction whose color represents the
logarithm of light intensity scattered into this direction by the crystal. The intensity at each
point of the scattering sphere was calculated for a sphere of radius r=1.

We analyze the calculated CCA light scattering results and identify Bragg bright spots on
the scattering sphere by plotting the scattering sphere together with the reflection Ewald
sphere in reciprocal space.
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For a perfect or nearly perfect crystal, the diffraction pattern consists of discrete “diffraction
spots” that arise from the Bragg diffraction conditions. Each Bragg diffraction spot
corresponds to constructive interference of light scattered by all individual particles. A
Bragg maximum corresponds to the simultaneous fulfillment of the three Laue equations for
three lattice vectors , ,  and any integer number q, m, n,

(4)

However, when only one or two of these equations are satisfied, only some of the colloidal
particles in the crystal scatter light in phase, resulting in partial constructive interference.
For a finite crystal, this “partial constructive interference” is responsible for the appearance
of bright lines and circles on the scattering sphere in Fig. 1(a).

The CCA consists of stacked (111) crystal parallelogram layers, and each layer is

represented by two two-dimensional (2D) lattice vectors  and  within the
parallelogram layer (these two vectors are not 3D fcc primitive translational lattice vectors
since not every lattice translation can be formed using these vectors). When either condition

 or  is met, we observe a bright circle on the surface of the
scattering sphere as a result of partial constructive interference. When both of these
conditions are simultaneously true, constructive interference occurs for every sphere from
the same layer and results in 2D diffraction spots formed at the intersection of both lines.
The identical (111) layers stacked together results in the appearance of the “standard” 3D
Bragg diffraction maximum.

The maximum intensity at the center of each Bragg peak results from the condition that
scattering from every particle constructively interferes. Thus, the total amplitude in this
direction depends on the single-scattering form factor (calculated from Mie theory) and the
total number of scattering particles in the diffracting volume of the crystal. The total
integrated intensity over the diffraction spot depends not only on the peak value in the center
of the spot but also on the Bragg peak angular width.

For ideal periodic large crystals, the diffraction spots are very sharp peaks in specific Bragg
directions, with very little light outside of these regions. We define the “integrated intensity
of the diffraction from (nml) crystal planes” as the integrated intensity calculated over a
solid angle large enough to contain the diffraction spot. The “intensity,” which refers to the
square of the amplitude of the electric field at a point on the scattering sphere, is
proportional to the power of electromagnetic wave radiated into a specific direction.

We also define the “incident integrated intensity” as the intensity of the incident
electromagnetic wave integrated over the area of the illuminated part of the CCA [single
(111) layer]. The ratio between the integrated intensity of the diffraction from (nml) crystal
planes and the incident integrated intensity gives the “reflectance” by the (nml) planes.

III. VALIDITY OF THE METHOD: COMPARISON WITH EXACT SOLUTION
FOR A ONE-DIMENSIONAL SLAB SYSTEM, ROLE OF MULTIPLE
SCATTERING

We tested the validity of our EXKNM approach and the importance of multiple scattering
by utilizing a 1D slab model. We compared the diffracted intensities calculated using
EXKNM theory with the exact results. First, we modeled our 3D CCA set of (111) layers as
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a 1D array of slabs. It is generally accepted that the scattering efficiencies of light Bragg
diffracted by (111) CCA planes can be modeled by scattering of light by 1D slabs.31 To
exactly determine the light transmission and diffraction (the diffracted wave is simply a
reflected wave in case of 1D slabs) in the 1D system, we used the transfer matrix method
(Appendix B).

When the Bragg diffraction condition is approximately satisfied for the (111) layers of a
weak dielectric contrast fcc CCA crystal, we can model the diffraction by replacing each
(111) CCA layer with two slabs of different dielectric constant. The first slab with width L1
and an effective refractive index n1 marked as 1 in Fig. 2(b) represents the CCA particles
layer depicted as a layer of spheres in Fig. 2(a), while the second “water” slab 2 has width
L2 and represents a water layer of refractive index n2. The total width, the sum of both slabs,
equals the distance between (111) layers.

We define the parameters of the effective 1D slab system by comparing a single 1D slab
scattering efficiency with the scattering efficiency of a single CCA (111) layer. The angular
distribution of the light scattered intensities by a single (111) layer results from its 2D
diffraction pattern, from its hexagonally ordered spheres. Most of the light is concentrated in
the narrow range of angles near the 2D Bragg maxima. Since we are modeling the Bragg
diffraction from CCA (111) planes, we consider only the light specularly reflected from the
(111) planes at the zero order 2D maximum. It has previously been shown32 that the
scattering efficiencies in the specular direction by a single plane layer of spherical particles
can be approximated by the reflection from a single 1D slab.

We adjust the 1D slab system parameters, such as the widths and refractive indices of the
slabs, until the intensities of light diffracted by a single (111) crystal layer were equal to
those of a single slab of the 1D system. Specifically, the scattering by a CCA layer was
calculated by using kinematic theory and compared to the exact result calculated for a 1D
slab. The refractive indexes n1 and n2 were constrained by the condition that the average
refractive index of the 1D slab system must be the same as the average refractive index of
the CCA, and the slab widths L1 and L2 were constrained by the condition that the L1+L2
was the same as the distance between CCA (111) planes.

Figure 3 shows the dependence of the reflectance on the wavelength of the incident light for
a single (111) layer of a CCA (blue line) obtained in the kinematic approximation and by a
corresponding slab of the effective 1D system (red curve) obtained by exact calculation.
Incident light normally impinges on the (111) plane in Fig. 3(a) and at a 30° glancing angle
in Figs. 3(b) and 3(c). The electric vector is polarized perpendicular to the scattering plane in
Fig. 3(b) and parallel to it in Fig. 3(c). The reflectance was obtained by integrating over the
diffraction spot and ratioed to the integrated incident light intensity. The incident light
energy flux is the intensity of the incident light multiplied by the cross-sectional area of the
crystal which is illuminated.

The CCA crystal parameters used in calculations include 120 nm diameter colloidal particles
with a 10% volume fraction, giving an fcc lattice constant of 330.8 nm. The refractive index
of the colloidal particles and the surrounding medium (water) are nc=1.6 and nw=1.33,
respectively.

We vary two parameters of the 1D slab system, the water slab refractive index n2 and width
L1, until we obtain a good fit between the curves corresponding to the 3D and 1D systems in
the spectral region of the first order Bragg diffraction from the (111) layers. The best match
for a case of normal incidence was obtained for the L1=86 nm and n2=1.3312 nm, which
fixes two other parameters as L2=105 nm and n1=1.3885 nm. For light incident at the
glancing angle of 30°, the best fit values for the perpendicular polarization were L1=89 nm
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and n2=1.3305 (and, correspondingly, L2=103 nm and n1=1.3880). For parallel polarization,
the best fit parameters were L1=115 nm and n2=1.3275 (L2=76 nm and n1=1.3765).

At the Bragg incident angle for diffraction from the (111) planes, all particles in the plane
scatter coherently in phase. As a result, the single sphere scattering efficiency dependence
on the wavelength of light is the main factor contributing to the specific shape of the
intensity curve in Fig. 3. Thus, the maximum of the reflectance occurs at the maximum of
the single particle scattering efficiency.

Figure 4 compares the reflectance by a CCA of 40 (111) layers, each consisting of 500×500
colloidal particles, calculated by using the EXKNM theory. Light is incident normal to the
crystal surface in Fig. 4(a), while Figs. 4(b) and 4(c) show the results for a 30° glancing
angle of incidence for perpendicular and parallel polarizations. The results obtained for the
calculated 3D CCA are compared to the results for the related 1D slab system. We examined
the range of wavelengths around the first order Bragg diffraction maximum.

The reflectance for the 1D system was calculated by the 1D exact and the 1D EXKNM
methods (Appendix A). The red dashed curves show the EXKNM theory result for the 1D
slab system, where attenuation of the incident light in the crystal is taken into account. The
3D and 1D EXKNM calculations give almost identical results; the blue solid and the red
dashed curves completely overlap. Since the EXKNM results for 3D and 1D case are so
close, we can examine the importance of multiple scattering and compare the exact and
EXKNM results only for the 1D slab system.

The exact solution for diffraction from the 1D slab system calculated by using the transfer
matrix method (Appendix B) is shown in Fig. 4 (green dotted curves). Comparing the exact
and EXKNM approximations allows us to examine the validity of kinematic theory and the
relative importance of multiple scattering. The diffraction efficiency in Fig. 4(b) is much
larger than that in Fig. 4(c) because the spheres scatter perpendicular polarized incident light
more efficiently, resulting in a more efficient Bragg diffraction. The increase in the single-
scattering efficiency results in stronger multiple scattering. The result is a decreased
calculated diffraction bandwidth, as compared to the exact calculations.

EXKNM works well when single spheres scatter relatively weakly such that the total
diffracted integrated intensity is significantly less than the incident intensity. Thus, good
agreement between the exact and EXKNM results was obtained in Fig. 4(c), especially in
the wings of the main Bragg diffraction peak, where the diffracted intensity is small. The
agreement shown in Fig. 4(a) is better than that in Fig. 4(b) because EXKNM theory works
best when single spheres scatter relatively weakly.

EXKNM results in a value of the Bragg peak width two-fold less than the exact result in the
case of strong sphere scattering [Fig. 4(b)]. In Figs. 4(a) and 4(c), the Bragg peak widths are
similar for both the exact and EXKNM calculations.

Disorder in the 1D slab system broadens the Bragg peaks and increases the intensity of
diffuse scattering (Fig. 5). The Bragg diffraction peak becomes more diffuse and the
incident wave is less attenuated. We compare the exact and EXKNM calculations for a
disordered 1D slab system in Fig.5 for normally incident light. Disorder is modeled by
varying the thickness of the slabs comprising the system. However, the refractive index of
the slabs was maintained at the value employed for the perfectly periodic system shown in
Figs.5(c) and 5(d). The thickness of the slabs comprising the disordered CCA was
distributed according to the uniform random variations of 10% magnitude in (a) and (c) and
20% magnitude in (b) and (d).
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Figures 5(a) and 5(b) show the reflectance of a single configuration of a disordered 1D slab
system. We see that the Bragg peak subdivides into a series of narrow peaks which are
spread over a wider spectral region and narrow features appear in the wings.

To simply model disorder, we calculated a random ensemble of configurations of 1D slab
systems with random width slabs and averaged the diffracted intensities over this ensemble.
In Figs. 5(c) and 5(d), we averaged the reflectance over 80 random disordered
configurations plotting the exact result in blue and the EXKNM result in red. As a reference,
the exact result for the perfectly periodic system is plotted in blue. Averaging the disorder
broadens the Bragg peak and decreases its maximum value, and reflectance peaks in the
wings “smooth out.” The exact and EXKNM results are very similar. The major effects are
that the diffracted bandwidthincreases and the diffracted intensity decreases. For 10%
disorder, this system of 180 slabs continues to diffract all light at the center of the band
while the width increases by 50%. For 20% disorder, only 80% of light is diffracted in the
center and the bandwidth triples.

IV. DEPENDENCE OF CRYSTALLINE COLLOIDAL ARRAY SCATTERING
EFFICIENCY ON DIAMETER OF COLLOIDAL SPHERES

The primary experimental quantity extracted is the integrated intensity we obtained by
integrating over the solid angle containing the diffraction spot on the scattering sphere. The
factors that could affect the integrated intensity over a diffraction spot include the magnitude
of the single-scattering form factor, the shape and the size of the diffraction spot, the
effective number of crystal layers, and cross-sectional intensity profile of the incident light

Generally, the size of CCA in experiments is larger than the diameter of the incident beam.
Upon changing the angle of incidence, we change the area of the CCA illuminated by the
incident beam and consequently change the number of colloidal particles participating in the
scattering. However, the ratio between the integrated diffracted intensity and this area is
constant for a large enough ideal crystal and will not depend on the size of the illuminated
CCA area.

In what follows, we assume that the diameter of the incident beam is larger than the CCA
size, but since we calculate the reflectance (the ratio between the diffracted and incident
integrated intensities over the relevant area), our calculations are also valid for the case
when the CCA is larger than the incident beam. In our numerical simulations, we treat the
case of a macroscopic crystal; therefore, we choose the dimension of the calculated CCA by
increasing the lateral size of the CCA until the reflectance converges to a constant value.

In this section, we examine how the scattering properties of the CCA depend on the
scattering properties of the individual spheres. We examine how the CCA scattering
efficiency and Neff depends on the diameter D of the colloidal sphere. The EXKNM method
is well suited to analyze how the diffraction properties of a CCA depend on x, the size
parameter x=2πDn/λ (where n is the refractive index of the surrounding media). In this
section, we show how the intensity of light Bragg diffracted by (111), (200), and (220)
crystal planes depend on the size parameter of the spheres.

Our model examines a perfect periodic fcc crystal consisting of stacked (111) layers of a
parallelogram shape and dimensions of 500×500. This CCA is illuminated by a plane wave
monochromatic beam. We set the CCA fcc lattice constant at 380 nm and calculate the
diffraction for different diameters of colloidal particles ranging from 150 nm to the
maximum diameter of 270 nm corresponding to a closed packed system. We assume a
colloidal particle refractive index of 1.6 and a water refractive index of 1.33.
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The single sphere Mie scattering efficiency can be very angular dependent, as shown in Fig.
6, which considers a 270 nm diameter sphere scattering 337 nm light. In this calculation, we
also indicate the Bragg diffraction angles for an IR diffracting CCA with a lattice constant of
805 nm. For this 337 nm wavelength, the CCA was oriented to meet the Bragg diffraction
condition for the (111), (222), (200), (220), and (311) planes (Fig. 6).

The single-scattering contribution of the colloidal particles (the form factor in kinematic
theory) depends on the scattering angle and the polarization of the incident light and, thus,
will differ for diffraction from different crystal planes with different Bragg diffraction
angles at this single excitation wavelength.

The 3D Mie scattering diagram (Fig. 6) for light scattered by a single sphere indicates the
scattering directions for Bragg diffraction from specific crystal planes, for light polarized
perpendicular to the incident plane. The crystal was rotated about the z axis to achieve
diffraction from the different crystal planes. Different colors on the scattering sphere surface
represent different scattered intensities, as labeled by the linear color map. Much more light
is scattered in the forward direction than in the backward direction. The ratios of intensities
scattered by a single sphere at the Bragg angles for the (111), (200), (220), (311), and (222)
CCA planes have the relative intensities of 1, 0.75, 0.18, 0.04, and 0.02, respectively.

The ratio between the forward and backscattered intensities increases as the size parameter
of the particle increases. For convenience, we give the well known exact formulas for Mie
single sphere scattering in the far-field approximation in Appendix C.

The diffraction efficiency of the CCA depends on the form factor of the spheres, which is
determined by the sphere diameter, the wavelength of incident light within the CCA, and the
diffraction scattering angle. The form factor dependence is shown in Fig. 7 where we
specifically examine the scattering of 599, 626, and 673 nm light from spheres with
diameters of 150, 210, and 270 nm and from a (111) CCA single layer. These wavelengths
(in vacuum) were chosen because they meet the Bragg condition for 180° backscattering
from the (111) planes of the considered three CCAs of identical lattice constant, which
utilized different sphere diameters. The resulting diffraction condition occurs for different
wavelengths (in vacuum) of light because the CCA average refractive index increases with
the sphere diameter, which decreases the actual wavelength of light propagating within the
CCA.

The scattering cross sections monotonically increase as the size parameter increases as the
wavelength decreases. The cross section monitors how much light is removed from the
incident beam as a result of scattering in all directions. The total amount of light scattering
monotonically increases with sphere diameter in the size parameter regime considered here.
The relative intensity of forward versus back diffraction shows a more complex relationship
[Figs. 7(b) and 7(c)].

In Fig. 7(b), we plot the wavelength dependence of the scattered intensity, where we plot the
differential dependence on solid angle dI/dΩ in the exact backscattering direction for sphere
diameters of 150, 210, and 270 nm.

Although the Fig. 7(a) cross sections monotonically increase with the sphere size, resulting
in an increasing total scattering over all directions as the sphere diameter increases, the
scattered intensity in specific directions does not monotonically increase but oscillates as a
function of wavelength. For example, for 626 nm light, the most efficient scattering with the
largest form factor for back diffraction occurs for the 210 nm sphere CCA. This
backscattering efficiency is approximately 20% larger than for a larger 270 nm sphere.
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We conclude that using smaller spheres in non-closed-packed systems can increase the CCA
diffraction efficiency in the Bragg direction. This has the desired advantage of considerably
decreasing the single sphere extinction cross section and thus decreasing the amount of
diffuse scattering, induced by disorder, for example. Diffuse scattering also occurs for
perfect crystals when there is significant multiple scattering.22 In general, multiple scattering
decreases as the sphere diameter decreases.

Figure 7(c) shows the wavelength dependence of reflectance by the single (111) CCA layer.
Since the integrated intensity is calculated by integrating the scattered intensities over the
diffraction spot, it depends on both the single sphere form factor and the solid angle
subtended by the diffraction spot. The diffraction efficiency of the single (111) CCA layer
follows a similar dependence on the wavelength as we observe for the single sphere
diffraction efficiency [Fig. 7(b)]. The backscattering diffraction efficiency of a single (111)
layer is largest for the CCA comprised of 210 nm diameter spheres.

The effective depth of penetration of the incident light [Neff is defined as the number of
(111) layers] into the CCA is related to the diffraction efficiency of a single (111) layer. The
higher the efficiency, the more the attenuation of the incident light within the CCA, and the
smaller Neff. We calculate Neff to be 30, 19, and 20 layers for CCA with sphere diameters of
150, 210, and 270 nm, respectively.

Figure 8 shows the light differential intensity backscattered by a single sphere as a function
of the wavelength of incident light divided by the average refractive index of the CCA
prepared with different diameter spheres. The CCA lattice constant is 380 nm for all cases.
The wavelength meeting the Bragg condition for normal incidence from the (111), (200),
and (220) planes in the CCA are indicated. Higher Miller index crystal planes have smaller
spacings and, thus, smaller Bragg wavelengths. The sphere diameter providing the largest
CCA diffraction efficiency will differ for different Miller index crystal planes. Obviously,
the CCA diffraction properties can be controlled by controlling the sphere diameter.

Since the single sphere scattering efficiency into a specific direction is an oscillating
function of wavelength and sphere diameter, the Bragg diffraction efficiency can sometimes
be much larger for a CCA with smaller sphere sizes. For example, the largest sphere
diameter of 270 nm shows the smallest back diffraction for the (200) planes [Fig. 9(b)],
while spheres of 180 nm diameter diffract five times more intensity into the Bragg direction.

The diffraction of light by photonic crystals is typically described in two related ways, each
of which stresses different aspects of the physics involved. One is the photon band
dispersion relations which rely on considering appropriate Bloch waves. This approach is
well suited to describe the multiple scattering of electromagnetic waves in infinite sized
periodically modulated dielectric structures.

Another approach considers the scattering of light by photonic crystals as the interplay
between the single-particle scattering from individual colloidal particles comprising the
CCA coupled with the macroscopic Bragg interference between the scattering from all
particles of the system. In an ideal crystal, the particles are periodically arranged, and the
scattering of plane waves by the crystal results in Bragg-type diffraction maxima. This
approach, upon which we based our EXKNM method, has the advantage of explicitly
relating the scattering properties of single spheres to the CCA diffraction properties. The
stronger the single sphere scattering efficiency in the Bragg direction, the stronger the
scattering efficiency of each CCA (111) layer [Fig. 7(c)], and, hence, the smaller the
effective depth of penetration of incident light, Neff. In the thick crystal limit, this translates
into a larger width of the diffraction peak and larger band gap for the corresponding
direction.
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In Fig. 9, we examine the integrated intensity of light normally incident diffracted by a CCA
consisting of 25 (111) layers. In Fig. 9(a), the light is incident normal to the (111) planes, in
Fig. 9(b), the light is incident normal to the (200) planes, while in Fig. 9(c), the light is
incident normal to the (220) planes. The effective number of layers Neff involved in
diffracting essentially 100% of the incident light and the backscattering intensity F from the
single sphere are presented in Table I. Comparing Fig. 8 to Table I, we see that Neff is
related to the single sphere scattering efficiency at the diffracted direction. Strong scattering
translates to the larger total diffraction efficiency and stronger attenuation of incident light
and a smaller Neff.

For 150 nm diameter particles, Neff=30 from the (111) planes. Since in Fig. 9(a) the CCA
consists only of 25 layers, some of the incident light is transmitted while ∼90% of the light
is diffracted. For the 210 nm diameter spheres, Neff=19, and for the 270 nm spheres, Neff=20.
Since Neff<25, all incident light is diffracted. Increasing the number of layers above Neff
results in diffracting a broader range of wavelengths; the Bragg peak broadens. Figure 9(a)
shows similar intensity diffracting peaks for the 210 and 270 nm CCA, which results from
their similar single sphere scattering efficiencies (Fig. 8).

Figure 10 shows the incident glancing angular dependence of Neff for three CCA containing
150, 210, and 270 nm diameter particles diffracted by (111) crystal planes at the different
Bragg wavelengths. The dotted curve shows the intensity of single sphere scattering dI/dΩ at
the angle of the Bragg diffracted light. In general, an increasingly efficient single sphere
scattering translates into a smaller Neff. For perpendicular polarization, the single sphere
scattering efficiency monotonically increases with the incident angle, and Neff
correspondingly decreases. For parallel polarization, the single sphere scattering efficiency
dips at an intermediate scattering angle, where almost no light is scattered by the spheres in
the Bragg direction and the CCA becomes transparent.

Figure 11 shows the dependence of Neff for Bragg diffraction from the (200) planes. The
glancing angle here is defined relative to the (111) CCA surface. The integrated intensity
and Neff are calculated only for specular diffracted light from the (200) planes, and we do
not take into account any Bragg diffraction from other crystal planes, which might also
fortuitously occur. The angular dependence of the single sphere scattering efficiency from
the (200) planes is shown by a dotted line. These calculations show that in addition to the
single-scattering efficiency, there are other factors affecting Neff. For perpendicular
polarization, the single-scattering efficiency decreases with the glancing angle. However,
Neff first decreases (and correspondingly CCA diffraction efficiency increases) reaching a
minimum at 73°. At this specific angle, light is most efficiently diffracted and propagates
within the (111) plane. We will discuss this phenomenon in a subsequent paper.

Figure 12 shows the dependence of Neff on angle for diffraction by the (220) planes. We see
that Neff has a complicated dependence on the angle of incidence and essentially follows the
shape of single sphere scattering efficiency.

V. CONCLUSION
We used the single-scattering approach to investigate light diffraction by a CCA photonic
crystal with a small dielectric constant mismatch between the spheres and the medium. We
extended standard kinematic theory by including attenuation of the incident light intensity
during propagation through the crystal. Our method (EXKNM) can be used to predict light
diffraction from large but finite CCAs consisting of many particles. As the first step toward
this aim, we model light scattering by perfect fcc crystal CCAs. We examined the
dependence of the diffraction efficiency on the sphere diameter and angle of incidence. The
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effective penetration depth of the incident light was calculated for several fcc planes for
CCAs of different sphere diameters.

We studied both close-packed and non-close-packed systems and compared their diffraction
efficiencies as a function of sphere diameter. We show that the diffraction efficiency does
not always increase monotonically with the sphere diameter. Thus, a closed-packed photonic
crystal system is not always the most efficient Bragg diffracting crystal.33 For the CCA
consisting of polystyrene spheres in water, the most efficient Bragg diffraction by (111)
planes at normal incidence is achieved at sphere diameters approximately 20% smaller than
the close-packed case. At normal incidence to the (200) planes, the single sphere scattering
efficiency at the Bragg condition is five times larger for spheres of a diameter approximately
30% smaller than the close-packed case.

One of the simplest ways to model the diffraction from stack of (111) layers is to replace
each layer with a 1D dielectric slab. We show how to specify the dielectric modulation of
such a 1D slab system by matching the diffraction intensity of a single 1D slab to a single
(111) crystal layer. We tested the impact of multiple scattering by comparing results
obtained by EXKNM method to exact solutions for a 1D slab system. For a low contrast
modulation CCA, the diffracted intensities calculated by EXKNM are close to the exact
result obtained for an effective 1D slab system. Although the EXKNM method does not take
into account multiple scattering effects, it gives good results in calculating diffracting
intensities. For the perfect 1D slab system, the EXKNM bandwidth of the diffracted peak is
smaller than the exact result by less than twofold.

Our calculation method can be used to predict the optimal properties of photonic crystal
films that have been used as photonic crystal coatings and sensors.34 Our method can also be
used to examine the impact of CCA disorder, such as variations in particle position,
diameter, and changes in dielectric constant.

Acknowledgments
This work was supported by the PPG Grant No. 218363 and NIH Grant No. 2R01 EB004132. Work in R.D.C.’s
group has been partially supported by NSF-ECS-0403865.

APPENDIX A: EXTENDED KINEMATIC ONEDIMENSIONAL THEORY
We developed 1D analogs of EXKNM theory and used these formulas to investigate the role
of multiple scattering in the 1D case by comparing the result to the exact expressions for
scattering intensities of a 1D slab system. Here, we assume that each unit cell consist of two
layers, of high and of low refractive index. These two layers form the repeating unit cell of
the 1D periodic structure.

We assume that our 1D slab system consists of N repeating units each of thickness d. In
EXKNM theory, we further assume that the incident propagating wave attenuates while
propagating through the system. The total amplitude rn of the wave scattered by N units is
the sum of contributions from all N units,

where r1 is the single unit scattering factor, and the phase factor Φ=2knav sin(α) corresponds
to the phase difference between the scattering contributions of two adjacent units. The
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incident wave with wave vector k propagates at a glancing angle α within the 1D slab system
with an average refractive index nav.

The amplitude of the incident wave after propagating through n units is . We
calculate the single cell scattering factor r1 by using the exact transfer matrix 1D theory35

applied to a single dielectric layer.

APPENDIX B: EXACT SOLUTION BY THE TRANSFER MATRIX METHOD
FOR THE PROBLEM OF LIGHT SCATTERING BY ONE-DIMENSIONAL
PERIODIC LAYER SYSTEM

We solved Maxwell equations for 1D layered (along z) system by the standard transfer
matrix method.35 Reflection and transmission coefficients can be obtained by solving
Maxwell equations for either the H or E field. Here, we examine it for the H field. In the
case of TM modes (magnetic field H vector is parallel to the interface between layers), we
solve the wave equation for the H(z) field,

The solution for the magnetic field inside each layer can be represented as a combination of
two plane waves, one is in the forward and another is in the backward direction,

For a layered 1D system consisting of a finite number of identical unit cells (each unit cell
contains two layers), we can connect coefficients An and Bn for two arbitrary cells. For
example, we can connect cell n=0 and cell n=N separated by N cells with the matrix
equation

whrere  and  are 2×2 matrices (the exact expression for these matrices is complex and can
be found in Ref. 35), where d is the unit cell length and

The exact result for the transmission r and reflection t amplitudes can then be obtained from

The reflection intensity |r|2 can be calculated by
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where λ1 and λ2 are the eigenvalues of matrix . The reflection coefficient r1 (used in 1D
kinematic theory) for just one cell is obtained by

In the case of TE modes, we can solve a similar wave equation but for the E electric field
vector, resulting in slightly different matrix elements for matrix  but otherwise the same
formulas for the reflection and transmission coefficients.

APPENDIX C: SCATTERING OF LIGHT BY A SINGLE SPHERE
It is well known that when a plane electromagnetic wave is scattered by a dielectric sphere,
it is possible to obtain the exact analytical solution for the scattered intensity by solving
Maxwell equations.29

When an incident plane wave of amplitude E0 is polarized along the x axis, we can calculate

the single sphere 3D scattering amplitude  [form factor  for sphere j in
formula (1)] asa function of spherical coordinates r, θ, and ϕ with the coordinate origin at
the sphere center as

Asymptotic far-field expressions for parallel and perpendicular polarization scattered
effective intensities |S1|2 and |S2|2 are given by

where  are associated Legendre polynomials and the expressions for the scattering
coefficients an and bn can be found, for example, in Ref. 29.
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FIG. 1.
(Color online) (a) Scattered light intensity from a CCA. The large red arrow indicates the
direction of the incident light. Surface logarithmic scale color map (yellow-green to orange
indicates an intensity ratio of ∼105). The crystal was rotated about the z axis to achieve
diffraction by the (220) planes. The corresponding diffraction spot is shown at the center.
Two other diffraction spots are shown, which result from Bragg diffraction from the (020)
and (200) crystal planes. Diameter of the colloidal spheres is 270 nm, the lattice constant
L=805 nm, and the wavelength of incident light is 367 nm. (b) Reflection (Ewald) sphere in
reciprocal space. Reciprocal lattice points are shown by the blue dots, and the reciprocal
points marked by the magenta circles are located near the surface of the reflection sphere
where the Bragg diffraction spots occur in (a).
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FIG. 2.
(a) CCA colloidal particles in a single (111) fcc CCA layer and the corresponding two slabs
of the modeled 1D slab system. Colloidal particles have a refractive index nc and are located
in a water environment with a refractive index nw. The 1D slab system consists of a bilayer
of slab 1 with refractive index n1 and the slab 2 with the refractive index n2. The total
thickness of the two 1D slabs is the same as the distance between CCA (111) planes.
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FIG. 3.
(Color online) (a) Reflectance for back-diffracted light by a single (111) crystal plane of
500×500 particles (blue solid curve) and by the single slab of 1D system (red dotted curve)
shown as a function of the wavelength of normally incident light. For the light incident from
vacuum at glancing angle of 30° for (b) perpendicular and (c) parallel polarizations.
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FIG. 4.
(Color online) Reflectance from 500×500×40 particle CCA (blue curve) calculated by using
3D EXKNM theory and from a 1D system (red which completely overlaps the blue curve
and green curves) as a function of the wavelength of incident light. The red dashed curve
was calculated by using the 1D EXKNM theory, while the green dotted curve is the 1D
exact solution. (a) Normal incidence, (b) 30° glancing angle of incidence with perpendicular
polarization, and (c) 30° glancing angle of incidence with parallel polarization.
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FIG. 5.
(Color online) Wavelength dependence of reflectance for 1D slab system consisting of 180
slabs. [(a) and (b)] Single disordered system configuration. The blue solid curve is the exact
result. The red dashed curve is the EXKNM result. [(c) and (d)] Reflectance for perfectly
ordered system and disordered system averaged over 40 random configurations. In (c) and
(d), the exact result for a periodic system (blue solid curve) is compared to the exact and
EXKNM results averaged over the disordered system (red dashed and green dotted lines).
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FIG. 6.
(Color online) Mie scattering efficiency from a single spherical particle shown as a color
map (linear in intensity).We show the Bragg diffraction directions for several crystal planes
labeled by their Miller indices. The incident wavelength is 337 nm and the sphere diameter
is 270 nm.
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FIG. 7.
(Color online) (a) The single sphere scattering cross section is plotted vs incident light
wavelength (in vacuum) for three sphere diameters of 150, 210, and 270 nm in a CCA. The
sphere refractive index is 1.6 and the water refractive index is 1.33. (b) The backscattered
light intensity from a single sphere is plotted for these same three spheres. (c) The
reflectance from a single (111) CCA layer is plotted for these three spheres.
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FIG. 8.
(Color online) Differential backscattered intensity of light from single spheres in a CCA for
five sphere diameters. The arrows show the wavelengths corresponding to Bragg diffraction
at normal incidence to the (111), (200), and (220) planes. The abscissa indicates the
wavelength within the CCA (λ/nav
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FIG. 9.
(Color online) Wavelength (in vacuum) dependence of the integrated intensity of light
specularly diffracted by 25 (111) CCA layers each containing 500×500 particles. The
incident light is normal to the (a) (111), (b) (200), and (c) (220) planes. The CCA consist of
spheres with diameters of 150 nm (blue), 210 nm (red), and 270 nm (green).
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FIG. 10.
Neff (solid line) and the scattering efficiency of single sphere (dotted) for Bragg diffraction
by (111) planes as a function of glancing angle of incident light. [(a)-(c)] Incident light has
perpendicular polarization and [(d)-(f)] parallel polarization. [(a) and (d)] The CCA consists
of 150 nm diameter colloidal particles, [(b) and (e)] 210 nm diameter colloidal particles, and
[(c) and (f)] 270 nm diameter colloidal particles.
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FIG. 11.
Neff (solid line) and intensity of single scattering (dotted) as a function of glancing angle of
incident light. Light is diffracted from (200) crystal planes. [(a)-(c)] Perpendicular
polarization and [(d)-(f)] parallel polarization. [(a) and (d)] The CCA consists of 150 nm
diameter colloidal particles, [(b) and (e)] 210 nm colloidal particles, and [(c) and (f)] 270 nm
colloidal particles.
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FIG. 12.
Neff (solid line) and intensity of single sphere scattering (dotted line) are plotted as a
function of glancing angle. Light is diffracted from (220) planes. [(a)-(c)] Perpendicular
polarization of the incident light and [(d)-(f)] parallel polarization. [(a) and (d)] The CCA
consists of 150 nm diameter colloidal particles, [(b) and (e)] 210 nm colloidal particles, and
[(c) and (f)] 270 nm colloidal particles. The glancing angle is defined relative to the (111)
CCA surface.
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