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Abstract

Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in
efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection
and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with
knockouts of either or both protein isoforms, LMP2A and LMP2B (D2A, D2B, D2A/D2B) to study the effect of LMP2 in early B
cell infection. Infection of B cells with D2A and D2A/D2B viruses led to a marked decrease in activation and proliferation
relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. D2B virus infection showed
activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, D2A and D2B
viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in D2A virus
infection. Infection with D2A and D2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression
following BCR stimulation. However, BCR stimulation of D2A/D2B cells resulted in decreased LMP1 expression, which
suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for
efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed
when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation,
proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth
of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of
infected B cells was not affected by the absence of this protein.
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Introduction

Epstein-Barr virus (EBV) is a human gammaherpesvirus that is

estimated to infect 95% of the human adult population worldwide.

EBV targets human primary B cells, leading to primary B cell

proliferation and, ultimately, establishment of a lifelong, latent

infection. Symptoms of EBV infection are typically mild and often

indistinguishable from other mild common illnesses. However,

EBV infection during adolescence or young adulthood can lead to

infectious mononucleosis, for which symptoms include fever, sore

throat, fatigue and swollen lymph glands. Previous studies have

demonstrated correlations between EBV infection and the

development of various lymphomas and carcinomas in both

pediatric and adult settings, including Burkitt’s lymphoma (BL),

Hodgkin’s lymphoma (HL) and nasopharyngeal carcinoma (NPC)

[1,2,3]. In addition, EBV infection is thought to play a critical role

in the development of proliferative diseases in immunosuppressed

patients, such as post-transplant lymphoproliferative disorder

(PTLD), where EBV-transformed B cells proliferate continuously

in the absence of an effective T cell response [4,5].

Infection of primary human B cells in vitro leads to the

establishment of lymphoblastoid cell lines (LCL) [6,7], which is

an important model for studying the tumorigenic properties of

EBV. EBV-infected B cells can demonstrate several different

patterns (Latency 0, I, II, III) of EBV latent gene expression.

Latency 0, in which no genes are expressed, is thought to be the

state of the virus found in B cells in the blood of all healthy

carriers. This ability of EBV to restrict expression of its genes

allows the virus to persist in vivo within resting memory B cells for

the lifetime of the host [8,9]. Latency I and II, which characterize

many virus-associated tumors, show expression of Epstein-Barr

Nuclear Antigen 1 (EBNA1), LMP2A, EBV-encoded noncoding

RNAs (EBERs) and the BamHI A rightward transcripts (BARTs).

The Latency II program expresses these genes but also results in

expression of all three latent membrane gene products (LMP1,

LMP2A and LMP2B). In Latency III, all the above genes and 5

additional EBNAs are expressed [10]. Expression of most of the

Latency III genes is required for the growth program, which is

characterized by antigen encounter-like activation of resting B cells

and induction of proliferation [11,12,13,14,15,16,17].

The introduction of infectious virions early in EBV infection is

critical for the outgrowth of spontaneous LCLs [18,19] because it

allows the virus to spread within the B cell population to activate

uninfected cells. The production of infectious EBV requires a

switch from the viral Latency III program to the lytic cycle. This

lytic switch can be affected by both endogenous and exogenous

stimuli, and can be characterized by a sequential cascade of gene

expression of immediate early, early, and late genes [20]. The

EBV gene BZLF1 encodes the immediate early lytic transactivator

Zebra, which is necessary to trigger lytic switch by driving
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expression of lytic genes while downregulating latent genes

[21,22,23]. The expression of Zebra alone has been shown to

initiate lytic switch in various cell types [24,25,26]. A variety of

exogenous stimuli, such as protein kinase C agonists (phorbol

esters), histone deacetylase inhibitors (n-butyrate) and B cell

receptor (BCR) signal induction, have been shown to initiate the

lytic cycle [27].

The LMP2 gene produces two isoforms (LMP2A and LMP2B)

of a 12 transmembrane (TM)-containing membrane protein.

Circularization of the EBV genome is required for expression of

LMP2A and LMP2B because transcription crosses the fused

terminal repeats. These transcripts utilize unique promoters and

distinct initial exons to encode the different LMP2 isoforms

[28,29]. LMP2A exon 1 encodes an N-terminal cytoplasmic

region, which contains an immunoreceptor tyrosine-based activa-

tion motif (ITAM) responsible for initiating a B cell receptor

(BCR)-like signal [30,31]. This signal allows LMP2A to supply

EBV-infected B cells with a strong BCR-like survival signal [32],

which accounts for the ability of LMP2A to protect BCR-negative

B cells from apoptosis [33,34,35], as well as block signaling

through the BCR that would lead to lytic reactivation [31,36]. The

BCR-like signal provided by LMP2A may also mimic an

activation signal. LMP2A can stabilize b-catenin in epithelial cells

through protein kinase C-mediated inhibition of glycogen synthase

kinase-3 (GSK-3), a process also performed through activation of

the BCR in B cells [37,38]. Also, other studies have demonstrated

that LMP2A expression in B cells resulted in activation of protein

tyrosine kinases (PTKs) and calcium (Ca2+) fluxes that resembled

responses initiated by an activated BCR [39]. The role of LMP2A

in proliferation and transformation is less clear, with some studies

claiming the protein plays no role in proliferation and transfor-

mation of B cells in vitro [40,41,42], while other studies have

demonstrated an essential role in this process [43]. Interestingly,

LMP2A expression in HaCaT epithelial cells induces morpholog-

ical changes that coincide with increased proliferation and loss of

differentiation markers and cell anchorage, demonstrating that

LMP2A signaling induces epithelial cell transformation [44].

LMP2B exon 1 is noncoding, and, therefore, LMP2B lacks an

N-terminal signaling domain. Transcription of LMP2B initiates at

a bidirectional promoter that is shared with LMP1, a protein that

is critical for B cell transformation in vitro [12,13,14]. The LMP2A

and LMP2B transcripts are identical in exons 2–9, which encodes

the 12 TMs and a C-terminal tail that is required for protein

aggregation. Without a signaling domain, LMP2B by itself cannot

initiate a BCR-like signal, but it localizes to intracellular regions in

B cells that contain signaling proteins, such as LMP2A and CD19

[45]. Although no role has as yet been demonstrated for LMP2B

in either the activation or proliferation of B cells, many EBV-

related malignancies, such as HL, NPC and gastric carcinoma,

express both LMP2 isoforms [46]. Previous studies suggest that

LMP2A and LMP2B contribute to epithelial cell spreading and

motility, and may contribute to epithelial cell transformation [47].

LMP2B has been implicated as a critical player in the switch from

viral latency to lytic reactivation [48,49].

In this work, we present an analysis of the role of the EBV

proteins LMP2A and LMP2B in early B cell infection in vitro. Our

analysis was performed using viruses deficient in LMP2A and/or

LMP2B for infection of human B cells obtained from healthy

donors in order to assess the roles of these proteins in the processes

of activation, proliferation, and survival during early infection. In

addition, we examined roles for LMP2A and LMP2B as regulators

of latent gene expression and viral latency that could further

explain differences in early infection kinetics. Infection of human B

cells with LMP2A KO viruses led to a marked decrease in

activation and proliferation, as well as higher levels of apoptosis,

which led to inefficient long-term growth of the infected B cells in

culture. LMP2B did not play a significant role in B cell activation,

proliferation, or survival in early infection, nor was it necessary for

long-term growth of infected B cells. The loss of LMP2A and

LMP2B expression did not significantly affect latent gene

expression, with the exception of LMP2B transcript in D2A-

infected cells, nor did these genes appear to regulate latency and

lytic induction in early infection. Our results suggest that LMP2A

augments activation, proliferation and survival of B cells following

EBV infection, which affects the ability of EBV to provide infected

cells with an environment conducive to long-term outgrowth. In

contrast, LMP2B does not significantly affect B cell activation, nor

does this protein play a major role in proliferation and survival

during early infection, as long-term outgrowth occurs similarly to

wt.

Table 1. Primers for Characterization of LMP2 knockout BACs.

Primer Name Forward Primer (59-39) Reverse Primer (59-39)

2A Exon 1 Deletion ATC CCT CTC GCC TTG TTT CTC GAT GGT GTG GAT AAC ATC TCC

2B Exon 1 Deletion GCG GTG TGT GTG TGC ATG TAA GCG T ACC TCA TTC TGA AAT TCC CAT ATC C

doi:10.1371/journal.pone.0054010.t001

Table 2. Characterization of recombinant wt and LMP2
knockout EBV virus stocks.

EBV
Genome
Copy #/ml *GIU/ml

Genome
Copy #/GIU

wt 4.36107 1.96106 23

wt 1.016108 4.16106 24.6

D2B 6.16107 4.86106 13

D2B 106106 5.456105 18.4

D2B 15.16106 5.66105 27

D2B 7.86107 26106 39

D2A 6.26106 16106 6.2

D2A 5.16107 9.56105 53.7

D2A 1.146108 26106 56.9

D2A/D2B 1.36106 8.86105 1.5

D2A/D2B 2.36108 26106 115

D2A/D2B 1.136106 7.96105 1.4

D2A/D2B 12.16106 66106 20.2

*GIU = Green Inducing Units, a measure of infectivity for the virus stocks.
doi:10.1371/journal.pone.0054010.t002

Effect of LMP2 on Early EBV Infection Kinetics
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Materials and Methods

Generation of Recombinant EBV viruses
Recombinant wild-type (wt) EBV (p2089) [50] and LMP2A

knockout (KO) BACs (p2525) [35] were a generous gift from

Wolfgang Hammschmidt and Markus Altmann (Department of

Gene Vectors, Helmholtz Center, Munich, Germany). EGFP and

hygromycin resistance genes were inserted into the recombinant

wt and LMP2 KO EBV BACs for tracking infectivity of virus

stocks and selection, respectively [50]. Flag tags were inserted into

p2089 (wt) and p2525 (D2A) for these studies using a technique

from W. Hammerschmidt [described in [51]]. Specifically, 10kb

fragment of EBV sequence that corresponded to the LMP2 region

was cloned into the shuttle vector p2768.5 (produced by M.

Altmann and W. Hammerschmidt). This vector was used for

insertion of a 3X flag tag into exon 7 and a zeocin resistance gene

between exons 8 and 9 of the LMP2 gene. Homologous

recombination between EBV sequence in p2768.5 and p2089 or

p2525 created flag-tagged constructs p2089.1 (wt) and p2525.1

(D2A). For removal of LMP2B, the 10kb EBV DNA fragment in

p2768.5 was constructed with LoxP sequences flanking exon 19 of

LMP2B. Exon 19 was removed via recombination between

flanking LoxP sequences after introduction of Cre recombinase;

the new constructs were named p2089.3 (D2B) and p2525.3 (D2A/

D2B).

LMP2A and LMP2B Mutation Validation using PCR
The integrity of the LMP2A and LMP2B deletion mutations

were assessed using qcPCR. First, the wt and LMP2 KO BACs

were dialyzed in dH2O to remove TE storage buffer. Primers

specific to the LMP2A and LMP2B exon 1 regions were used to

determine the presence or absence of the respective first exons

(Table 1). Standard PCR conditions and ABI GeneAmp PCR

System 9700 instrument were used.

Cell Lines, Cell Culture, and Reagents
HEK 293 cell line (generous gift from Robert White and Martin

Allday, Imperial College London, UK, described in [52]) used for

production of recombinant wt and LMP2 KO EBV BAC viruses

as described previously [12]. All HEK 293 cells were cultured in

D10 (DMEM, 10% FBS, 2 mM L-glutamine, 100 units/ml

penicillin, 100 ug/ml streptomycin). HEK 293 cells that contain

EBV BAC were cultured in D10+75 ug/ml hygromycin. PBMCs

were purified from buffy coats of healthy, random donors by

Ficoll-Hypaque density-gradient centrifugation. B cells were

purified from PBMC using negative selection (B cell Isolation

Kit II, Miltenyi Biotec), and cultured in R10 (RPMI-1640, 10%

FBS, 2 mM L-glutamine, 100 units/ml penicillin, 100 ug/ml

streptomycin). BCR ligation performed using 10 mg/ml anti-

human IgG/A/M antibodies (Jackson Immunoresearch Labora-

tories) (as described in [53,54].

EBV Production and Titering
Recombinant wt and LMP2 KO EBV BACs (6 ug of each)

were transfected into HEK 293 cells using Genejuice (Novagen).

After 48hrs, EGFP-expressing HEK 293 were selected using

hygromycin at 75 ug/ml. Lytic EBV production was induced by

introduction of BZLF1 (Zebra) [24] and BALF4 (gB) [55]

expression plasmids via transfection using Genejuice reagent

(Novagen). Following 5–6 day incubation, supernatants were

harvested, filtered through 0.45 mm filters, and titered by EGFP

expression using Raji B cells as described previously [12,55]. For

EBV genome copy number, virions were lysed with 10 mM tris

(pH 7.6) containing 50 mM KCl, 2.5 mM MgCl2, 1% Tween 20

and 0.1 mg/ml proteinase K. The lysed supernatants were used to

detect a sequence in the BLLF1 gene that encodes the major viral

glycoprotein gp350. The primers used for Real Time PCR were as

follows: forward primer 59-GTATCCACCGCGGATGTCA-39;

reverse primer 59-GGCCTTACTTTCTGTGCCGTT-39; and

Table 3. Primers and Probes for Real Time PCR analysis of EBV gene expression.

EBV Gene Primer Sequence (59-39) *Probe Sequence (59-39)

EBNA1 GAT TCT GCA GCC CAG AGA GTA GTC TCG TCG CAT CAT AGA CCG CCA GTA GAC

TCG TCA GAC ATG ATT CAC ACT TAA AG

EBNA2 TAA CCA CCC AGC GCC AAT C CAC CAC GTC ACA CGC CAG TGC TGG GT

GTA GGC ATG ATG GCG GCA G

EBNA3A GAT TCT GCA GCC CAG AGA GTA GTC CCC GGC CTG TCC TTG TCC ATT TTG

CTT CTT CCA TGT TGT CAT CCA GG

EBNA3B GAT TCT GCA GCC CAG AGA GTA GTC TAG ACC GCC AGT AGA CCT GGG AGC AGA

CCA CGC TTT CTT CAT TAT TCA GGT

EBNA3C GAT TCT GCA GCC CAG AGA GTA GTC AAG ACC CAC CAT GGA ATC ATT TGA AGG A

CCA GGG TCC TGA TCA TGC TC

LMP1 TCA TCG CTC TCT GGA ATT TG AGC ACA ATT CCA AGG AAC AAT GCC TGT C

TCC AGA TAC CTA AGA CAA GTA AGC AC

LMP2A CTA CTC TCC ACG GGA TGA CTC AT TGT TGC GCC CTA CCT CTT TTG GCT GGC G

GGC GGT CAC AAC GGT ACT AAC T

LMP2B CGG GAG GCC GTG CTT TAG TGT TGC GCC CTA CCT CTT TTG GCT GGC G

GGC GGT CAC AAC GGT ACT AAC T

BZLF1 TTC CAC AGC CTG CAC CAG T CAA CAG CCA GAA TCG CTG GAG GAA TGC G

AGC AGC CAC CTC ACG GTA GT

*All probes were conjugated with 59 FAM and a 39 TAMRA quencher.
doi:10.1371/journal.pone.0054010.t003

Effect of LMP2 on Early EBV Infection Kinetics
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Figure 1. Recombinant BACs have deleted LMP2 regions and retain latent gene expression. (A) LMP2 knockout EBV BACs were created
by deletion of LMP2A and LMP2B transcription initiating exons (Exon 1 and Exon 19). LoxP sites were inserted, flanking each initial exon, and
recombined via introduction of Cre Recombinase expression plasmid (pKD46) into DH10B bacteria containing floxed BACs. (B) Recombinant wt and
D2B BACs contain LMP2A Exon 1, which is demonstrated by presence of 522 bp PCR band. D2A and D2A/D2B BACs have deleted Exon 1, which is
demonstrated by absence of PCR band due to removal of the forward primer-binding site. (C) Recombinant wt and D2A BACs contain Exon 19, which
is demonstrated by 374 bp PCR band. D2B and D2A/D2B BACs have deleted Exon 19, evidenced by the presence of 167 bp PCR deletion band. (D)
Recombinant wt and LMP2 knockout EBV BACs transfected into HEK 293 cells. After establishment of BAC-containing cell lines, each cell line was
assessed for latent gene expression using Real Time PCR. D2B cell lines were negative for LMP2B transcript, D2A cell lines were negative for LMP2A
transcript, and D2A/D2B cell lines were negative for both transcripts. Expression of latent genes was similar for wt and LMP2 knockout BACs.
doi:10.1371/journal.pone.0054010.g001

Figure 2. Proliferation of B cells infected with wt and LMP2 KO viruses. 56104 B cells infected with recombinant wt and LMP2 KO EBV at
MOI 1. EGFP expression and proliferation was examined at 4, 7 and 14 days post-infection using inverted fluorescent microscope.
doi:10.1371/journal.pone.0054010.g002

Effect of LMP2 on Early EBV Infection Kinetics
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probe 59-FAM-TGGACTTGGTGTCACCGGTGATGC-

TAMRA-39 [56]. Standards were used as mentioned previously

[56]. Real time PCR performed with ABI 7500 instrument. All

supernatants used in these studies were characterized and are

presented in Table 2.

Real Time RT-PCR for EBV Gene Expression
Latent gene expression in HEK 293-EBV cell lines was

confirmed using real time PCR. 16106 HEK 293-EBV cells were

harvested for RNA extraction (Qiagen RNeasy Mini Kit) and

cDNA conversion (High Capacity cDNA Kit, ABI). Real time

PCR targets included EBNA1, EBNA2, EBNA3A, EBNA3B,

EBNA3C, LMP1, LMP2A, and LMP2B. Each target transcript

was normalized to cell number by measuring b2-microglobulin

cDNA (primer set from Applied Biosystems) (described previously

in [56]). All primer and probe sequences are supplied in Table 3.

PCR for HEK 293 cell lines was performed using an ABI 7500

instrument. To assess kinetics of early EBV gene expression for

recombinant wt and LMP2 KO EBV in infected B cells, 16106 B

cells were infected at a multiplicity of infection (MOI) of 1.

100,000 infected B cells were harvested at 12, 24, 48, 72, 96, 120

and 168 hours post-infection, for RNA extraction (Qiagen RNeasy

Mini kit) and conversion to cDNA (High Capacity cDNA kit,

ABI). The EBV targets for infected B cells included EBNA1,

EBNA2, LMP1, LMP2A, LMP2B and Zebra. Primers and probes

are described in Table 3. PCR for EBV-infected B cells was

performed using PerfeCTaH qPCR FastMixH II, Low ROXTM

(Quanta Biosciences) per manufacturer instructions with an ABI

ViiA 7 instrument. b2-microglobulin was used as a housekeeping

gene for normalization of EBV gene mRNA in these experiments

(described previously in [56]). Infection efficiencies for wt and

LMP2 KO viruses were determined by EGFP expression, and

were used as a correction factor for calculation of mRNA copies

per infected cell.

Flow Cytometry for Early Infection Kinetics
For all kinetics experiments, purified B cells were infected with

wt and LMP2 KO EBV at MOI 1. To quantify proliferation

kinetics, B cells were labeled with a proliferation dye (Vybrant DiI,

Invitrogen) and harvested for analysis at 4, 8 and 16 days post-

infection, and fixed with 1% paraformaldehyde. For activation

kinetics studies, B cells were stained with anti-CD23-Alexa-

Fluor647 and anti-CD71-APC antibodies at 0, 4, 8 and 16 days

post-infection. For cell counts and apoptosis studies, B cells were

stained with Violet Tracer (Invitrogen) at concentration of

2.5 mM, harvested at 4, 7 and 14 days post-infection and stained

with Aqua Live/Dead cell indicator (Invitrogen) and AnnexinV-

APC (Invitrogen) for apoptosis, which was performed according to

the manufacturer’s protocol. B cell samples were then fixed with

1% paraformaldehyde and prior to acquisition, a fixed number of

cell counting beads (10 ml) were added (CountBright Absolute

Counting Beads, Invitrogen) to obtain absolute count of prolifer-

ating B cells in each sample with normalized volume. Accordingly,

acquisition was stopped at a collection of 5000 beads. All samples

were acquired by FACSAria or FACSLSRII (BD Biosciences), and

data were analyzed by FACSDiva and FlowJo 7.6.1 software.

Long-term Outgrowth Assay
To determine the effect of LMP2 on the long-term outgrowth of

infected B cells, 56104 negatively enriched B cells were infected

with wt and LMP2 KO viruses at MOI of 1. Infected B cells were

observed regularly over the course of 12–14 weeks to determine if

efficient proliferation and LCL formation occurred. Standard

proliferation assays are followed for approximately 6–8 weeks, but

slow proliferation rates of LMP2A KO infected B cells required

longer observation. At the end of 12–14 weeks, the number of

wells with proliferating cells were determined, counted and

transferred to 25 cm2 flasks.

Results

Construction and characterization of recombinant LMP2
KO EBV

In order to investigate the contribution of both LMP2 isoforms

to early events in EBV infection of primary B cells in vitro, LMP2A

and LMP2B knockout viruses were generated. D2A (p2525) EBV

BAC was constructed by the Hammerschmidt group [35]

(Figure 1A). D2B BACs were constructed using either the wt or

D2A BACs as backbones for insertion of LoxP sequences directly

upstream and downstream of exon 19 of the LMP2B gene. The

Figure 3. Quantitation of B cell proliferation following wt and LMP2 KO virus infection. To quantify B cell proliferation, 16106 B cells
labeled with proliferation dye (Vybrant DiI, Invitrogen) were infected with recombinant wt and LMP2 KO EBV at MOI 1. (A) Infected B cells were
harvested and analyzed at 4, 8 and 16 days post-infection using flow cytometry. (B) Each data point is an average of 3 independent experiments 6
SEM. Statistical significance was determined using Two-way ANOVA and Bonferroni Post-test. P-value (**) ,0.01 for both D2A and D2A/D2B viruses
compared to wt at 8 and 16 days post-infection. No significant differences between proliferation of wt and D2B-infected B cells.
doi:10.1371/journal.pone.0054010.g003

Effect of LMP2 on Early EBV Infection Kinetics
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introduction of Cre recombinase resulted in recombination of the

flanking LoxP sites and subsequent removal of the exon creating

D2B and D2A/D2B (Figure 1A). The deletions of exon 1 (LMP2A)

and exon 19 (LMP2B) were confirmed by PCR (Figure 1B and

1C). Specifically, the LMP2A deletion was confirmed using a

forward primer within the 59 floxxed region that contains the

LMP2A promoter and a reverse primer outside the 39 floxxed

region. In BACs that are wild type for the LMP2A gene, both

forward and reverse primers yield a 522 bp PCR product.

However, in D2A BACs, the internal floxxed region, which

includes the binding site for the forward primer, has been removed

and does not yield a PCR product. The LMP2B deletion was

confirmed using forward and reverse primers outside the floxxed

region that yielded 374 bp product in wt LMP2B BACs and a

smaller 167 bp product in D2B BACs. Since transcription of

LMP2A and LMP2B initiates in the deleted exon 1 and exon 19

respectively, removal of those exons lead to a complete loss of

LMP2A and LMP2B transcripts (Figure 1D).

The recombinant BACs were transfected into HEK 293 cells for

virus production. After 1–2 months under hygromycin selection,

the producer cell lines were screened for latent gene expression to

assess the integrity of the LMP2 KO BACs. The mRNA

expression levels of 5 EBNAs (EBNA1, EBNA2, EBNA3A,

EBNA3B and EBNA3C) and 3 LMP genes (LMP1, LMP2A and

LMP2B) were verified using quantitative real time PCR

(Figure 1D). Target EBV genes were normalized to a cellular

housekeeping gene, b2-microglobulin, and expressed as mRNA

copies/cell, as noted previously [56]. The D2A and D2A/D2B

producer cell lines were negative for LMP2A transcripts, while the

D2B and D2A/D2B cell lines were negative for LMP2B transcripts

(Figure 1D). These results demonstrate that the mutations in the

BACs have the knockout phenotypes expected. The expression

levels for the other latent genes were similar between all wt and

LMP2 KO BAC-containing producer cell lines with only minor

variations in EBNA3A and LMP1 gene expression (Figure 1D).

Figure 4. LMP2A is critical for sufficient activation of B cells. 16106 purified B cells infected with recombinant wt and LMP2 KO EBV at MOI 1.
B cells harvested at 4, 8 and 16 days post-infection for analysis of activation marker expression. (A) Expression of CD23 (marker of B cell activation)
and CD71 (marker of lymphocyte activation and proliferation) assessed by flow cytometry and analyzed using FlowJo 7.6.1 software. (B) Expression of
CD23 and (C) CD71 quantified and expressed as percent positive for surface markers. Each data point is an average of 2 independent experiments 6

SEM. Statistical significance was determined using Two-way ANOVA and Bonferroni Post-test (each data point for LMP2 KO viruses was compared to
wild-type infection to determine statistical significance). P-value (**) ,0.01 for D2A CD23 expression at 4 days post-infection. P-value (***) ,0.001 for
D2A/D2B CD23 expression at 4 days post-infection and D2A CD71 expression at 4 days post-infection. P-value (****) ,0.0001 for D2A CD71
expression at 4 days post-infection, and D2A and D2A/D2B viruses for both CD23 and CD71 expression at 8 and 16 days post-infection.
doi:10.1371/journal.pone.0054010.g004

Effect of LMP2 on Early EBV Infection Kinetics
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Production of recombinant EBV and characterization of
virus stocks

The producer cell lines were seeded for transfection of two

expression plasmids to induce lytic reactivation. One expression

plasmid produced the EBV lytic transactivator gene BZLF1, or

Zebra, while the other produced one of the EBV glycoproteins

called gB. Introduction of these two plasmids into the HEK 293-

EBV producer cell lines induces lytic reactivation and production

of mature, infectious virions [24,55]. The supernatants containing

the viruses were harvested after 5–6 days incubation, and

infectious titer was determined by incubating Raji B cells with

the virus supernatants [12,55]. Characterization of the virus stocks

included determining the genome copy number using Real Time

PCR primers specific for the major virus glycoprotein gp350. This

allowed us to selectively use recombinant virus stocks with similar

Figure 5. Efficient Proliferation and Survival of EBV-infected B cells require LMP2. 16106 purified B cells were labeled with Violet Tracer
(Invitrogen) and infected with recombinant wt and LMP2 KO EBV at MOI 1. B cells were harvested at 4, 7 and 14 days post-infection and stained for
Annexin V. During fixation step, 10 ml counting beads (CountBright Absolute Counting Beads, Invitrogen) were added to each sample. During
acquisition, the event gate was set to 5000 beads, which normalized the acquisition volume between samples and allowed for accurate, absolute
counts of proliferating B cells. (A) Gating strategy for proliferation and apoptosis analysis. Doublets and dead cells were excluded. Next, lymphocytes
and EGFP+ cells were selected for proliferation and apoptosis analysis. (B) Representative donor for proliferation and apoptosis data. (C) Proliferation
and (D) Apoptosis data points are an average of 3 independent experiments 6 SEM. Statistical significance was determined using a Two-Way ANOVA
test and Bonferroni Post-test (each data point for LMP2 KO viruses was compared to wild-type infection to determine statistical significance). P-value
(*) ,0.05, p-value (**) ,0.01 and p-value (****) ,0.0001.
doi:10.1371/journal.pone.0054010.g005
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genome copy number to infectious unit (copy#/GIU) ratios for

subsequent experiments that reduced the potential for differences

in the kinetics to be attributable to variation in particle doses

(Table 2).

D2A viruses do not induce efficient B cell proliferation in
early EBV infection

It has previously been shown that wt EBV efficiently induces

proliferation of human B cells in vitro [1,57]. In addition to the

overall immortalizing capabilities of EBV, the early events

associated with B cell infection by wt EBV have been elucidated

[57]. Although the LMP2 gene is always expressed, it has not been

clearly demonstrated what role LMP2A and LMP2B play in early

B cell infection. In order to investigate the roles of LMP2A and

LMP2B in this process, B cells were infected with recombinant wt

and LMP2 KO viruses at an MOI of 1, and monitored for

approximately 2 weeks for EGFP expression, cell activation,

clumping and proliferation (Figure 2). By approximately 4 days

post-infection, EGFP expression was observed in B cells at similar

levels and green cells coalesced into small, scattered clumps (,10

cells) that were present in all virus treated wells. Over time, clumps

increased in size in wells infected with wt and D2B viruses, but

were larger and more numerous in wt-infected wells. There was a

lack of significant increase in the size of clumps in D2A or D2A/

Figure 6. EBV Gene Expression in early EBV infection with LMP2 KO viruses. 16106 purified B cells were infected with recombinant wt and
LMP2 KO EBV at MOI 1. (A) RNA was harvested for analysis at 12, 24, 48, 72, 96, 120 and 168 hours post-infection and analyzed by Real Time PCR to
determine the effect of LMP2 on latent gene expression. Specifically, we examined the latent genes LMP2A, LMP2B (B), EBNA1 (C), EBNA2 (D), LMP1
(E) for changes in early gene expression. (F) In addition to latent genes, the lytic gene BZLF1 or Zebra, an immediate early lytic transactivation gene,
was examined. b2Microglobulin mRNA was amplified for EBV gene normalization. Each data point is an average of three independent experiments 6
SEM. Statistical significance determined using Two-way ANOVA and Bonferroni Post-test (each data point for LMP2 knockout viruses was compared
to wild-type infection to determine statistical significance). P-value (****) ,0.0001.
doi:10.1371/journal.pone.0054010.g006
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D2B virus-treated wells during the observation period (Figure 2).

DiI proliferation tracker experiments revealed that wt and D2B

infected cells began to proliferate between 4 and 8 days post-

infection (Figure 3A). By 8 and 16 days post-infection high levels

of proliferation were observed in wt and D2B virus-infected B cells

(Figure 3A). Repeat experiments conducted at different times using

different B cell donors gave similar results (Figure 3B). The

amount of proliferation detected in the cytometry experiments

correlated with the appearance and size of clumps formed in

undisturbed wells. However, D2B-infected wells seemed to lag

slightly behind wt in both clump size (Figure 2) and mean

fluorescence intensity (Figure 3A), but the effect was too small to

be demonstrated with a statistical significance. Efficient prolifer-

ation was not observed in wells containing B cells infected with

either of the LMP2A KO viruses (D2A p-value ,0.01, D2A/D2B

p-value ,0.01) (Figure 3B). Therefore, our results suggest that the

inclusion of LMP2A in our recombinant viruses is advantageous

for efficient proliferation of infected B cells in early infection.

D2A viruses do not induce efficient B cell activation
Since there were clear differences in the proliferation kinetics

associated with D2A and D2A/D2B viruses in early EBV infection,

and to a lesser extent the D2B virus, the effect of LMP2A and

LMP2B on B cell activation was examined. Previous studies have

shown that LMP2A can produce a signal that mimics an activated

BCR signal, which is demonstrated by its ability to activate PTKs

Figure 7. Effect of BCR stimulation on B cell infection with LMP2 KOs. 16106 purified B cells were labeled with Violet Tracer (Invitrogen) and
infected with recombinant wt and LMP2 KO EBV at MOI 1. 10 ug/ml sIg (Jackson Immunoresearch) was added to each sample for BCR stimulation. B
cells were harvested at 4, 7 and 14 days post-infection and stained for Annexin V. During fixation step, 10 ml counting beads (CountBright Absolute
Counting Beads, Invitrogen) were added to each sample. During acquisition, the event gate was set to 5000 beads, which normalized the acquisition
volume between samples and allowed for accurate, absolute counts of proliferating B cells. (A) Proliferation and (B) apoptosis data points are an
average of three independent experiments 6 SEM. (C) (D) RNA harvested at specific time points (12, 24, 48,72, 96, 120 and 168 hours post-infection/
BCR stimulation) for analysis using Real Time PCR. (C) One latent gene (LMP1) and (D) one lytic gene (Zebra) analyzed for each time point to
determine lytic induction. Statistical significance determined using Two-way ANOVA and Bonferroni Post-test (Figure 7C & 7D – each data point for
LMP2 knockout viruses was compared to wild-type infection to determine statistical significance). P-value (*) ,0.05, p-value (***) ,0.001 and p-value
(****) ,0.0001.
doi:10.1371/journal.pone.0054010.g007

Table 4. Outgrowth Assay of Wt and LMP2 knockout EBV-
infected B cells.

Wt EBV D2B EBV D2A EBV D2A/D2B EBV

Donor 1 + + +* +*

Donor 2 + + +* 2

Donor 3 + + 2 2

Donor 4 + + 2 2

Donor 5 + + + 2

Donor 6 + + 2 2

(+) Indicates establishment of LCLs within 5–6 weeks post-infection.
(2) Indicates LCLs were not established during the entire length of the
experiment, which was equivalent to 12–14 weeks.
(+*) Indicates LCLs were established, but the length of time required was the
total length of the experiment, equivalent to 12–14 weeks.
doi:10.1371/journal.pone.0054010.t004
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and Ca2+ initiation complexes that result in Ca2+ fluxes resembling

those observed after BCR stimulation [39]. Activation of

uninfected B cells can be triggered by BCR stimulation following

antigen recognition and a second signal, such as CD40-CD40L

signaling [58]. Therefore, it is reasonable to hypothesize that

LMP2A may play a role in B cell activation, and may act in

concert with LMP1 to induce activation following in vitro infection.

For this experiment, infected B cells were probed for expression of

two surface markers specific for B cell activation and proliferation,

CD23 and CD71, at 0, 4, 8 and 16 days post-infection. By 4 days

post-infection, higher percentages of B cells infected with wt and

D2B viruses had upregulated levels of CD23 and CD71, indicating

efficient B cell activation (Figure 4A). The proportion of cells

expressing CD23 and CD71 increased throughout the entire 16-

day experiment, with levels reaching as high as 80–85% B cells

positive for the two surface markers (Figure 4B and 4C). Initially, a

smaller percentage of D2A and D2A/D2B virus-infected B cells

showed CD23 and CD71 expression, which also displayed delayed

expression kinetics that did not increase similarly to wt-infected B

cells over time (Figure 4A). At 16 days post-infection only 30–40%

of B cells were positive for the activation markers (CD23 D2A 4-

day p-value ,0.001, D2A 8-day and 16-day p-value ,0.0001)

(CD23 D2A/D2B 4-day p-value ,0.01, D2A/D2B 8-day and 16-

day p-value ,0.0001) (CD71 D2A 4, 8, 16-day p-value ,0.0001)

(CD71 D2A/D2B 4-day p-value ,0.001, D2A/D2B 8-day and 16-

day p-value ,0.0001) (Figure 4B and 4C). Therefore, we conclude

that LMP2A is involved in the process of B cell activation

following EBV infection.

LMP2A KO virus infections exhibit higher percentages of
apoptotic B cells

These observations suggested that there was a critical role for

LMP2A in early activation and proliferation of primary, human B

cells following EBV infection. Several studies have established a

role for LMP2A in B cell survival [33,34,35]. The BCR-like signal

that LMP2A provides infected B cells may mimic the effects of the

tonic BCR signaling that is essential for B cell survival [34,59].

Therefore, we hypothesized that the deficiencies in activation and

proliferation of B cells by D2A and D2A/D2B viruses could be due

to increased apoptosis as a consequence of defective B cell survival

signals. To examine this, purified B cells were labeled with Violet

Tracer proliferation dye (Invitrogen) and infected with recombi-

nant wt and LMP2 KO viruses. A violet proliferation dye, in place

of Vybrant DiI (Invitrogen), was used for these experiments due to

its enhanced ability to trace multiple generations of proliferating

cells and, therefore, produce more accurate measures of the

numbers of proliferating cells over time. Analysis using median

MFI for Vybrant DiI experiments showed slight differences in B

cell proliferation kinetics between wt and D2B viruses, but did not

reach statistical significance (Figure 3A and 3B). However, the

differences in proliferating B cell numbers in D2B and wt virus

wells were more evident in the size and number of clumps in live

microscopy images (Figure 2). Cells were collected at 4, 7 and

14 days post-infection for analysis, and stained with Aqua live/

dead cell indicator and Annexin V for apoptosis. The cells were

incubated with a specific number of Absolute Cell Counting Beads

(Invitrogen) to standardize the acquisition volume of the sample on

the cytometer (FACSLSRII), which allowed for absolute cell

counts of proliferating B cells.

In order to better quantify these differences using flow

cytometry, we collected proliferation and apoptosis levels simul-

taneously for wt and LMP2 KO virus-infected cells from the same

donor. For analysis, we used a series of gates to eliminate specific B

cell populations (Figure 5A), such as doublet, necrotic and

uninfected cells. With this gating strategy, the Violet Tracer and

Annexin V gates were specific for the proliferating and apoptotic

EBV-infected cells within the B cell population. Using these

selection gates, results from three experiments (and three different

donors) were pooled. B cells infected with wt virus exhibited the

highest levels of proliferation. The absolute number of proliferat-

ing wt-infected B cells was $2x the number of proliferating B cells

in D2B wells (p-value ,0.0001), and $56and $106 the number

of proliferating B cells in D2A (p-value ,0.0001) and D2A/D2B

(p-value ,0.0001) wells, respectively (Figure 5B and 5C).

Figure 8. Schematic representation of role for LMP2 in early EBV infection leading to B cell proliferation.
doi:10.1371/journal.pone.0054010.g008
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Measuring absolute numbers of proliferating B cells demonstrated

a significant difference in LMP2 KO virus-infected proliferating B

cells compared to wt-infected cells. We next compared these

proliferation results to the rates of apoptosis detected in the three

separate trials. Wt-infected B cells exhibited the lowest percentage

of apoptotic B cells (Figure 5B and 5D), D2B virus-infected B cells

had slightly higher levels of apoptosis compared to wt-infected B

cells (Figure 5B and 5D) and D2A virus-infected B cells consistently

had much higher levels of apoptosis compared to both wt and D2B

viruses (Figure 5B and 5D). Deletion of both LMP2 isoforms

resulted in the highest levels of apoptosis (Day 4 p-value ,0.05,

Day 7 p-value ,0.01) and lowest levels of proliferation (Figure 5C

and 5D). Together, the data indicate that there is an inverse

relationship between the amount of apoptosis and proliferation

occurring in the virus-infected populations, and suggest that

LMP2A promotes the survival of EBV-infected B cells, particularly

within the first week of infection. LMP2B alone did not

significantly affect B cell survival, but removal of both protein

isoforms appears to increase the percentage of apoptotic B cells, an

effect that was also most readily observed within the first week of

infection.

LMP2 KO viruses do not alter EBV gene expression
profiles

To further explore the effect of LMP2 KO viruses on early EBV

infection, we hypothesized that the effects observed in activation,

proliferation, and survival experiments could be due to altered

expression of other EBV latent and lytic genes involved in

proliferation and/or survival following deletion of LMP2. For

instance, previous studies suggested a possible regulatory role for

LMP2A in EBV latent gene expression as a way of evading T cell

recognition of latent gene epitopes [60], and LMP2B has been

shown to have regulatory effects on lytic induction [48,49].

Previous studies have shown that LMP2A expression coincides

with stability in viral latency, therefore, we also hypothesized that

loss of LMP2 could lead to instability of viral latency and

subsequent loss of proliferation. Therefore, B cells were infected

with recombinant wt and LMP2 KO EBV at MOI of 1 and were

harvested at 12, 24, 48, 72, 96, 120 and 168 hours post-infection

to assess differences in gene expression for the latent genes

EBNA1, EBNA2, LMP1, LMP2A, LMP2B and the lytic

transactivator, Zebra. As expected, D2A and D2A/D2B virus-

infected B cells were negative for LMP2A expression (Figure 6A),

and D2B and D2A/D2B virus-infected B cells were negative for

LMP2B expression (Figure 6B). Wt and D2B viruses displayed

similar levels of LMP2A expression over the course of the

experiment (Figure 6A). D2A-infected B cells also had similar

levels of LMP2B expression at early time points compared to wt,

but demonstrated significantly higher expression at the latest time

point (168 hour p-value ,0.0001) (Figure 6B).

Wt and D2B virus-infected B cells exhibited similar expression

levels of EBNA1 (Figure 6C), EBNA2 (Figure 6D) and LMP1

(Figure 6E) over the 1-week experimental period. The observed

trends in early gene expression correlated with previous published

data for these genes in wt EBV infection [57]. Expression of

EBNA1 gradually increased over the course of the week while

LMP1 was low at early time points and increased over the 1-week

period. EBNA2 expression was slightly higher at early time points

and gradually stabilized over time. The LMP1 expression data

demonstrate that the deletion of LMP2B exon 19 did not

negatively affect regulation of the bidirectional promoter that is

shared with LMP1. EBNA1 and EBNA2 expression in D2A and

D2A/D2B-infected B cells were consistently lower, albeit not

statistically significant, compared to wt at early times but became

comparable to wt near the end of the observation period

(Figure 6C, 6D). The levels of LMP1 expression were initially

lower for D2A and D2A/D2B viruses, though not statistically

significant, compared to wt, but increased throughout the

experiment with kinetics similar to wt and D2B (Figure 6E).

Therefore, these data suggest that the removal of LMP2A and

LMP2B does not affect expression of other EBV latent genes,

except for an increase in LMP2B transcription in the absence of

LMP2A.

In addition to latent gene expression, we investigated the effect

of LMP2 KO viruses on the maintenance of viral latency by

measuring Zebra expression. Overall, Zebra levels were less than

one copy per cell for all virus-infected B cell populations (,0.1

copies/cell in wt, D2B and D2A infections, ,0.1–0.8 copies/cell

for D2A/D2B infections) (Figure 6F), indicating that removal of

LMP2A and/or LMP2B did not alter the ability of EBV to

establish viral latency within the infected B cell population during

natural progression of infection in vitro.

BCR stimulation affects DLMP2A and DLMP2B virus-
infected B cells

The low spontaneous Zebra expression levels suggested that

very few virus-infected cells in any of the infected populations were

undergoing lytic cycle induction, which is consistent with previous

studies that showed transient Zebra expression in early EBV

infection did not induce the lytic cycle [61,62]. However, it

remained possible that the sensitivity to a lytic inducing signal was

altered in LMP2 KO viruses. Previous studies have determined

that stimulation of the BCR induces signaling and subsequent

Ca2+ fluxes that trigger the EBV lytic cycle [63]. Therefore, we

investigated the effect of BCR stimulation on proliferation,

apoptosis and EBV lytic induction in B cells infected with wt

and LMP2 KO viruses. In order to stimulate signaling through the

BCR, infected cells were treated with 10 mg/ml soluble immuno-

globulin (sIg). The infected/stimulated B cells were harvested at 4,

7 and 14 days post-stimulation for analysis using FACSLSRII as

described above (Figure 5). Addition of sIg to wt-infected B cells

had a small but significant effect reducing the number of

proliferating B cells (p-value ,0.05) (Figure 7A), while the number

of apoptotic B cells was not significantly affected (Figure 7B). BCR

stimulation induced significantly higher numbers of proliferating B

cells in D2B virus-infected B cells (p-value ,0.0001) (Figure 7A),

but did not induce significant changes in apoptosis (Figure 7B).

D2B virus-infected B cells demonstrated stable latent gene

expression (Figure 7C) and low levels of lytic gene expression

(Figure 7D), all of which were comparable to wt. BCR stimulation

of LMP2A KO virus-infected B cells (D2A and D2A/D2B) did not

significantly decrease the number of proliferating B cells

(Figure 7A) or apoptotic B cells (Figure 7B). In contrast to wt

and D2B viruses, BCR stimulation of D2A and D2A/D2B virus-

infected B cells resulted in significantly reduced LMP1 expression

when compared to wt-infected B cells (D2A 168 hours p-value

,0.05, D2A/D2B 120 hours p-value ,0.0001, D2A/D2B 168

hours p-value ,0.001) (Figure 7C), though the observed effect was

most significant for D2A/D2B infection. However, BCR stimula-

tion of these cells did not significantly increase Zebra expression

(Figure 7D). Therefore, removal of either LMP2A or LMP2B

alone does not appear to significantly affect the ability of EBV to

maintain latency following stimulation of BCR signaling. Howev-

er, removal of both proteins significantly reduced expression of

LMP1, possibly indicating instability in proliferative capacity.

Effect of LMP2 on Early EBV Infection Kinetics
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Removal of LMP2A affects long-term outgrowth of EBV-
infected B cells

We reasoned that the effects observed for activation, prolifer-

ation and survival during the first two weeks following EBV

infection could affect the long-term growth of infected B cells, a

hallmark of wt EBV infection. Therefore, we infected purified B

cells from six healthy donors with recombinant wt and LMP2 KO

EBV at an MOI of 1, and observed proliferation for 12–14 weeks

to account for slow proliferation kinetics for LMP2A KO viruses

(Table 4). Wt-infected B cells established LCLs in approximately

5 weeks for all six donors. Within the context of our experimental

system, we determined an LCL was ‘established’ when accumu-

lation of proliferating B cells reached a point that required transfer

into 25 cm2 flasks. Similar to wt EBV, D2B virus-infected B cells

produced LCLs for all six donors within a 5–6 week period. In

contrast to wt and D2B virus-infected B cells, B cells infected with

D2A virus only established LCLs for three of the six donors.

Additionally, establishing LCLs from two of the donors required

approximately 12–14 weeks following infection due to slow rates

of accumulation of proliferating infected B cells. Only B cells from

one of the six donors infected with D2A/D2B viruses developed

into LCLs, which also demonstrated slow accumulation rates that

required 12–14 weeks before establishment. Therefore, our

observations suggest that LMP2A is critical for efficient establish-

ment of LCLs in vitro. Although LMP2B does not appear critical

for establishment of LCLs, the loss of both proteins creates a

phenotype that is the least conducive to formation of LCLs in vitro.

Discussion

In this study, we have demonstrated that expression of LMP2A

augments early activation and proliferation of EBV-infected B

cells. This appears to be critical for subsequent establishment of

LCLs, since loss of LMP2A expression correlates with reduced

LCL formation (Table 4). Previous studies demonstrated the

dispensability of LMP2A for establishment of LCLs [40,41,42],

but did not include analyses of activation or proliferation in

infected B cells during the early stages of infection. It is important

to note that many of these studies employed heterogeneous

populations of wild-type and LMP2 mutant EBV, which precluded

clear assessments of the effects of LMP2 on B cell activation and

proliferation from the time of initial infection. Other studies have

used mini-EBV plasmids, which are incomplete EBV genomes

that express all latent genes necessary for immortalization, and

have shown that LMP2 was necessary for efficient immortalization

of B cells [43]. Therefore our approach, which utilizes the

complete EBV genome with deletions in the initiating exons of

both LMP2A and LMP2B, provides a more comprehensive system

in which to investigate the roles of the LMP2 isoforms in the

activation and proliferation events that occur shortly after B cell

infection that, ultimately, lead to establishment of continuously

proliferating lymphoblastoid cell lines.

Previous studies have shown LMP2A delivers a signal that is

suggested to mimic tonic BCR signaling [30,34,59,64,65] through

the Ras/PI3-K/Akt pathway [65], which results in inhibition of

apoptosis in infected B cells via induction of anti-apoptotic genes

Bcl-2 and Bcl-xL [66,67,68]. Our data support a role for LMP2A

in B cell survival that appeared to be important at the earliest

times (4 to 7 days) after EBV infection when proliferation was

initiating in the majority of infected cells. A role in survival seemed

less critical by 14 days post-infection, which was suggested by the

overall decrease in apoptosis percentages (Figure 5D). LMP2A

may also mimic an activated BCR signal, inducing B cell

activation and proliferation via Ca+2 fluxes and protein tyrosine

kinase activation [39]. Both EBV-infected and BCR-activated cells

express the surface activation markers CD23, CD40, CD44 and

CD69 [69,70,71,72,73]. Therefore, it is possible that the signal

provided by LMP2A cooperates with LMP1 and EBNA2 for the

most efficient activation of B cells [69].

Efficient activation of primary B cells should lead to optimal

early proliferation (within 4–5 days), which would be consistent

with our data (D2A vs wt infection) and represent a critical factor

for long-term LCL growth establishment in vitro. However, an

exceedingly higher level of early cell proliferation (hyperprolifera-

tion) has been shown to suppress growth of wild-type EBV-infected

primary B cells by activation of ATM kinase through induction of

the DNA Damage Response (DDR), and it appears that the

attenuation of DDR in a small percentage of EBV-infected cells

allows for subsequent outgrowth and establishment of LCLs [62].

Interestingly, the D2A-infected B cells underwent early moderate

proliferation, not hyperproliferation, compared to wt and D2B

virues, and did not produce long-term LCLs as consistently. This

suggests that high levels of early proliferation favor efficient LCL

outgrowth. Overall, it raises the possibility that LMP2A is able to

both trigger early attenuation of DDR while supporting a signaling

environment that enhances robust early proliferation of infected B

cells. Although the major factor in DDR attenuation is EBNA3C

[62], a further investigation of a precise role of LMP2A in

attenuation of DDR as well as enhancement of proliferation in

early EBV-infected B cells is warranted.

The LMP2B isoform did not appear to be critical for B cell

activation and proliferation since D2B-infected B cells exhibited a

near wt level of activation and proliferation. This implies that most

of the LMP2 gene effects on these processes are due to the

signaling domain in LMP2A. There are possible mechanisms by

which LMP2B may have effects on BCR or BCR-like signaling

during infection. For instance, there are several lines of evidence

showing that LMP2B can interact with signaling proteins such as

CD19 [45], a member of the BCR co-receptor complex. In our

experiments, LMP2B did not appear to play a direct role in events

leading to activation, proliferation or protection from apoptosis of

infected B cells. Although loss of both isoforms resulted in the

highest levels of apoptosis, suggesting a possible role for LMP2B in

survival of infected B cells, the exact role, if any, of this protein in

early B cell infection remains unclear.

Previous research has demonstrated a role for LMP2A in the

maintenance of viral latency [36,64,74]. Therefore, we reasoned

that stimulation of BCR signaling in LMP2A KO virus-infected B

cells would result in enhanced induction of the lytic cycle, which

could partially explain the loss of efficient activation and

proliferation of infected B cells. However, in the context of our

experimental system, stimulation of BCR signaling in D2A-

infected B cells did not result in an enhanced lytic switch,

suggesting that LMP2A did not play an important role in

maintenance of viral latency in the early stages of outgrowth in

vitro. Based on previous research demonstrating that LMP2B

regulated the lytic switch [48,49], we had expected BCR

stimulation of D2B-infected B cells to be more resistant to lytic

reactivation. However, the observed levels of LMP1 and Zebra

expression were comparable to wt, which suggests that D2B-

infected B cells were not more resistant to lytic reactivation than

wt. The loss of both isoforms, on the other hand, consistently

triggered elevated Zebra expression with concomitant significant

decreases in LMP1 expression, a protein that is essential for

immortalization in vitro [12,13]. Since this was not observed in B

cells infected with either D2A or D2B viruses, it is possible that

either LMP2A or LMP2B may be able to provide the maintenance

function for viral latency in vitro. It is possible that strong lytic
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induction was not observed due to weak stimulation of BCR

signaling. The use of chemical lytic inducers, such as histone

deacetylase inhibitors or protein kinase C activators, could induce

a stronger lytic signal that may allow for a better understanding of

the role of LMP2A and LMP2B in the maintenance of viral

latency in early B cell infections with recombinant virus.

The lack of significant differences in the expression of other

EBV latent genes between wt and LMP2 KO virus-infected cells

indicates that the recombinant viruses were subject to the same

regulatory controls governing the expression of these genes as wt

virus, and was another illustration of the stability of viral latency in

these cells. Only LMP2B transcript levels significantly differed in

D2A-infected B cells compared to wild-type. The increased

LMP2B expression observed may imply the existence of an as

yet unknown indirect regulatory mechanism requiring LMP2A. It

is as likely that the effect is an artifact of the release of the LMP2B

promoter from transcriptional repression caused by the drop in

through-transcription from the upstream-mutated LMP2A pro-

moter that allows improved RNA polymerase initiation. Hetero-

geneity within the B cell population and among donors could

contribute to slight differences in gene expression, as well as

differences in proliferation rates in primary B cells infected by

different recombinant viruses. While variability in the virus stocks

could also account for variations in gene expression, all virus stocks

were tested for titers and genome copy number/GIU ratios [56],

and only stocks with comparable genome copy#/GIU ratios were

used. Therefore, differences in the titers of our virus stocks should

not be great enough to account for the effects noted in our

experiments.

In conclusion, EBV infection leads to activation and prolifer-

ation of B cells that result in efficient production of LCLs (Figure 8,

Wt panel). Our kinetic analyses show that LMP2A plays critical

roles in activation, proliferation, and survival of B cells during the

early stages of infection (D2A vs wt infection). These effects were

not due to loss of stable latency or altered latent gene expression,

but appeared to effectively decrease the probability that an LCL

would be established (Figure 8, DLMP2A panel). LMP2B did not

seem to play significant roles in B cell activation, survival, or

regulation of gene expression. Although LMP2B-deficient EBV

induced lower numbers of proliferating B cells, this virus was as

capable of inducing primary B cell activation and establishment of

LCLs as wt EBV (Figure 8, DLMP2B panel). The loss of both

protein isoforms caused the lowest levels of B cell activation,

proliferation and survival, which resulted in the lowest probability

of establishing LCLs (Figure 8, DLMP2A/DLMP2B panel). Our

studies have confirmed the advantage of LMP2A expression in

early B cell infection and LCL formation in vitro. The exact

mechanisms by which LMP2 elicits these effects on infected B cells

require further investigation.
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