Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Urinary Proteomic Biomarkers for Diagnosis and Risk Stratification of Autosomal Dominant Polycystic Kidney Disease: A Multicentric Study

Kistler, AD and Serra, AL and Siwy, J and Poster, D and Krauer, F and Torres, VE and Mrug, M and Grantham, JJ and Bae, KT and Bost, JE and Mullen, W and Wüthrich, RP and Mischak, H and Chapman, AB (2013) Urinary Proteomic Biomarkers for Diagnosis and Risk Stratification of Autosomal Dominant Polycystic Kidney Disease: A Multicentric Study. PLoS ONE, 8 (1).

[img]
Preview
PDF
Published Version
Available under License : See the attached license file.

Download (1MB) | Preview
[img] Plain Text (licence)
Available under License : See the attached license file.

Download (1kB)

Abstract

Treatment options for autosomal dominant polycystic kidney disease (ADPKD) will likely become available in the near future, hence reliable diagnostic and prognostic biomarkers for the disease are strongly needed. Here, we aimed to define urinary proteomic patterns in ADPKD patients, which aid diagnosis and risk stratification. By capillary electrophoresis online coupled to mass spectrometry (CE-MS), we compared the urinary peptidome of 41 ADPKD patients to 189 healthy controls and identified 657 peptides with significantly altered excretion, of which 209 could be sequenced using tandem mass spectrometry. A support-vector-machine based diagnostic biomarker model based on the 142 most consistent peptide markers achieved a diagnostic sensitivity of 84.5% and specificity of 94.2% in an independent validation cohort, consisting of 251 ADPKD patients from five different centers and 86 healthy controls. The proteomic alterations in ADPKD included, but were not limited to markers previously associated with acute kidney injury (AKI). The diagnostic biomarker model was highly specific for ADPKD when tested in a cohort consisting of 481 patients with a variety of renal and extrarenal diseases, including AKI. Similar to ultrasound, sensitivity and specificity of the diagnostic score depended on patient age and genotype. We were furthermore able to identify biomarkers for disease severity and progression. A proteomic severity score was developed to predict height adjusted total kidney volume (htTKV) based on proteomic analysis of 134 ADPKD patients and showed a correlation of r = 0.415 (p<0.0001) with htTKV in an independent validation cohort consisting of 158 ADPKD patients. In conclusion, the performance of peptidomic biomarker scores is superior to any other biochemical markers of ADPKD and the proteomic biomarker patterns are a promising tool for prognostic evaluation of ADPKD. © 2013 Kistler et al.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: Article
Status: Published
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Kistler, AD
Serra, AL
Siwy, J
Poster, D
Krauer, F
Torres, VE
Mrug, M
Grantham, JJ
Bae, KTktb4@pitt.eduKTB4
Bost, JE
Mullen, W
Wüthrich, RP
Mischak, H
Chapman, AB
Date: 17 January 2013
Date Type: Publication
Journal or Publication Title: PLoS ONE
Volume: 8
Number: 1
DOI or Unique Handle: 10.1371/journal.pone.0053016
Schools and Programs: School of Medicine > Medicine
School of Medicine > Radiology
Refereed: Yes
Other ID: NLM PMC3542378
PubMed Central ID: PMC3542378
PubMed ID: 23326375
Date Deposited: 14 Mar 2013 14:14
Last Modified: 02 Feb 2019 16:58
URI: http://d-scholarship.pitt.edu/id/eprint/17719

Metrics

Monthly Views for the past 3 years

Plum Analytics

Altmetric.com


Actions (login required)

View Item View Item