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Eleanor Feingold, PhD 

ABSTRACT 

Genome-wide association studies (GWAS) are used to investigate associations between genetic 

variants and health and disease. GWAS often use a “chip” to genotype single nucleotide 

polymorphisms (SNPs) spanning the genome and test for association between genotype and 

phenotype at each SNP. The topic of this dissertation is methods for recovering some of the 

markers that are typically discarded or not analyzed in a GWAS. During data cleaning, prior to 

the statistical analysis, many genetic markers are discarded because they fail to meet standard 

quality control criteria. In addition, some analysis results are filtered out because they are 

considered unreliable. However, there are some discarded data that could be recovered and used 

in the analysis. For instance, markers that fail to meet a cutoff p-value for the Hardy-Weinberg 

equilibrium (HWE) test are typically discarded, as are markers with minor allele frequency 

below some arbitrary cutoff. In addition, markers on the X-chromosome are often not analyzed 

because sex chromosome analyses are not as straightforward as autosomal analyses, and the 

statistical methods for testing association on X-chromosome markers are not well established or 

well tested. In order to make use of more information from any given GWAS, the standard 
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Umut Özbek, Ph.D. 
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quality control criteria could be modified and more flexible and data specific analysis methods 

could be developed. This should have the potential to increase power. 

Genetic variation and environmental/behavioral factors interact to cause almost all human 

diseases with great public health significance. Refinements in data analysis will help improve the 

process of identifying the genetic factors and their interactions. These are important in order to 

provide better prevention and treatment for human diseases so to maintain public health. The 

methods in this dissertation are proposed and investigated to help with providing a better public 

health. 
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1.0  INTRODUCTION 

1.1 GENOME-WIDE ASSOCIATION STUDIES 

Genome-wide association studies are used to understand the interaction among genetic, 

environmental and behavioral effects on health and disease by searching the genome for small 

variations occurring more frequently in people having the trait of interest. Deoxyribonucleic acid 

(DNA) is the hereditary molecule in humans and most other living organisms. DNA is usually 

obtained from participants’ blood samples or cheek cells. Then genotypes of each participant are 

determined by using chips and laboratory machines. The machines assay the individuals' DNA 

for selected markers of genetic variation. These markers are called single nucleotide 

polymorphisms (SNPs). In order to test for association between a SNP and a trait phenotype, chi-

squared tests or regression models can be used. If the genetic variations at a SNP occur 

significantly more frequently in people having a trait than in people not having the trait, then 

those variations are said to be associated with the trait. The associated variants are not 

necessarily the cause of the trait. However, they may be in the same region as the actual causal 

variants. Therefore, after finding a significant association, researchers determine the sequence of 

nucleotides in that region of DNA to identify the relevant genetic changes. After discovering the 

variants and studying their functions, they can use the information to diagnose, treat, and prevent 

the disease. 
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1.1.1 Genotype calling 

Genotype calling is the process of deciding the genotype of an individual based on a DNA 

sample. In order to call genotypes, genotyping algorithms use intensity values X and Y for each 

SNP. To scale the data, intensities are normalized. After normalization, homozygous genotypes 

lie along the X and Y intensity axes [Staaf, et al. 2008]. Widely used genotype calling algorithms 

assume that there are two possible alleles for each SNP, which are called as biallelic. However, 

that may not be the case for all markers. There may be some SNPs that have more than two 

alleles. If this were the case for a SNP, then it would fail to meet the standard quality control 

criteria, which are applied to the genotype data at the beginning of a GWAS to identify and 

discard ‘bad’ SNPs. There may be some good but non-standard SNPs that fail the standard 

quality control criteria, such as SNPs having more than two possible alleles. In this dissertation, I 

focus on ‘null-allele SNPs’, SNPs having an extra N allele. Null alleles are non-amplified alleles 

and are usually caused by a mutation in the primer binding region [Callen, et al. 1993; 

Pemberton, et al. 1995]. Instead of discarding those null-allele SNPs, which might be quite 

common [Lehmann, et al. 1996], the information they carry should be analyzed to investigate 

possible associations and/or explore regions of copy number variation. 

There are some approaches to null-allele SNPs in the literature. Franke et al. [2008] 

proposed a method “TriTyper” that can detect genotypes in case-control datasets for deletion 

copy number variations (CNVs) or SNPs with an extra, uncalled (null) allele. There is another 

study by Kumasaka et al [Kumasaka, et al. 2011], which mainly focuses on genotyping copy 

number polymorphisms. 
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1.1.2 GWAS data cleaning 

After getting raw data based on genotype calling algorithms, the quality control steps are applied 

to clean the raw data [Zheng 2012]. First, contaminated DNA, low-quality SNPs, and low quality 

genotype calls are excluded. Then the quality measures are used for further cleaning. For SNP 

quality checking, the measures such as missing call rate over samples, supplicate sample 

discordance, Hardy-Weinberg equilibrium (HWE), minor allele frequency (MAF) can be used. 

For sample quality checking, the measures such as missing call rate over SNPs, B allele 

frequency (BAF), logRRatio (LRR), confidence score, and heterozygosity can be used [Laurie, et 

al. 2010]. 

Missing call rate is an important indicator of data quality. Missing call rate per SNP is 

the percentage of individuals uncalled for that SNP, and SNPs having 2% or higher missing rates 

are usually excluded from analyses. Call rate per individual is the percentage of SNPs uncalled 

for that individual. Usually an individual having call rate lower than 95% is discarded from 

analyses. Moreover, if there is a huge difference (magnitude would be specific to project) in call 

rates between genders, then those SNPs would fail. 

B allele frequency (BAF) is calculated to measure the allelic imbalance. It is used to 

check for sample mixtures and chromosomal aberrations. BAF is the estimator of B allele 

frequency from a single individual. For each chromosome and each individual, the variance of 

BAF is calculated over all heterozygote SNPs. Also, sub chromosomal abbreviations can be 

detected by dividing the chromosome into sections having same number of SNPs in each and 

calculating the BAF variances in a window of two adjacent sections. If an individual having a 

variance greater than four standard deviations from the mean of all samples, then the BAF of that 

individual and that chromosome is investigated further. BAF plots, which is BAF versus 
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chromosomal position, for sample-chromosome combinations where there is a high intensity 

relative to other chromosomes are investigated for aneuploidy [Laurie, et al. 2010]. In cases of 

allelic balance, the true frequency would be 0, ½ or 1. In cases of imbalance, the frequency may 

vary. 

LogRRatio (LRR) measures the relative intensity. LRR is used for detecting 

chromosomal aberrations with SNP array data [Conlin, et al. 2010; Peiffer, et al. 2006]. It is 

calculated as observed over expected value of R in logarithm base 2 where R is the sum of the 

normalized allelic probe intensities produced by SNP assays. 

Confidence score measures the distance between a data point and the centroid of the 

closest genotype cluster in a genotype plot. This score is in (0,1) range. And if 1 indicates best, 

the data points having less than a certain value are set as missing. 

Heterozygosity is the fraction of non-missing heterozygous genotype calls for an 

individual or a SNP. If there is a huge difference in heterozygosity between genders, those SNPs 

would fail. 

Genotype concordance or discordance rate is calculated per individual as well as per 

SNP by using independently genotyped duplicate samples. For an individual, the discordance is 

the fraction of genotype calls that differ in duplicate pairs over all non-missing SNPs. For a SNP, 

the discordance rate is the number of calls that differ divided by the total number of opportunities 

to detect a difference. 

Genomic inflation factor is calculated as the median observed over median expected 

statistic for a set of genome-wide tests under the null hypothesis [Devlin and Roeder 1999]. 
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Minor allele frequency (MAF) for a SNP can be calculated by using only controls or 

cases and controls together. In general if a SNP has MAF less than 1%, it is removed from 

analyses. 

Hardy-Weinberg equilibrium p-value (HWE) tests if the HWE assumption under biallelic 

SNP model is violated. The threshold for HWE p-value can differ depending on the dataset 

[Wakefield 2010]. 

Among the quality control measures, MAF and HWE can be considered further to 

prevent losing potential valuable information. There are powerful analysis tools for SNPs having 

low MAF, in other words rare variants [Li and Leal 2008; Morris and Zeggini 2010]. Moreover, 

rare variant analysis should be investigated for gonosomal SNPs, where male and female 

genotypes may have different properties. If a SNP fail to meet a standard biallelic HWE 

criterion, it does not necessarily mean that the SNP is bad or does not carry significant 

information for the trait. The failing SNP may fit a multi-allelic model and it can be analyzed by 

using appropriate techniques for multi-allelic models. 

1.1.3 GWAS analysis process 

GWAS analysis usually starts with single SNP testing. For binary traits, allele-based tests 

comparing the frequencies in cases and controls, trend tests for additive models, chi-squared 

tests, or robust tests can be used. For quantitative traits, regression models are preferred. The p-

value of each SNP is compared to a prespecified genome-wide significance level. The p-values 

are ranked and the top-ranked SNPs can be considered as candidates for association. However, 

SNPs with the lowest p-values may not correspond to the true associations. There are some other 

factors affecting the ranks of p-values such as MAF, genetic models, and sample size. 
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After finding candidate SNPs, it is important to use independent case-control data coming 

from the same population as the initial study to confirm the initial phenotype-genotype 

association [Chanock, et al. 2007]. Multi-stage sampling or meta analysis can be used for 

replication study. Ideally, in the replication stage, the same phenotype, same statistic and same 

genetic model should be used as in the initial study [Zheng 2012]. 

1.2 X CHROMOSOME ANALYSIS 

In a GWAS, data on the X chromosome should be analyzed carefully. If the data is from the 

pseudo-autosomal regions, where genes are inherited like autosomal genes, then it is treated as 

data from autosomal regions. Otherwise, because females carry two copies but males carry only 

one copy of the X chromosome, regular autosomal association methods may not be used. In 

order to analyze X chromosomal data, analysis methods taking into account its specific features 

are needed. A recent study showed that between January 2010 and March 2012, only 33% of the 

GWA papers reported X chromosome results [Wise, et al. 2011]. First of all, the scaling of 

female and male genotypes can be an issue. Under the additive model, female genotypes AA, 

AB, and BB are coded as 0, 1, and 2 respectively. However, the appropriate coding of the male 

genotypes A and B is not as obvious. Clayton [Clayton 2008] suggests that male genotypes 

should be scaled as homozygote females for additive models but there are other methods for X 

chromosome analysis using a different scaling. Some analysis programs code them as 0 and 1, 

whereas some other programs treat males as homozygous females, and so code them as 0 and 2. 

Another issue to be considered is sex-specific phenotype variances. If phenotype variances differ 

by sex, then regular analysis methods, which estimate an overall variance for everyone, may be 
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insufficient. In this case, the test statistics should estimate sex-specific variances, or a sex effect 

should be included in the analysis model. Moreover, allele distributions may not be same for 

males and females. Therefore, an overall allele frequency estimate may not be appropriate. 

Finally, the female/male and/or case/control ratio in the dataset may affect the analysis results. In 

the literature, because of all these issues for X chromosome data, either the X chromosome is not 

analyzed or reported, or even if it is analyzed, the analysis methods may not be appropriate.  

1.3 CONTRIBUTION OF THIS DISSERTATION 

In this dissertation, I aimed to recover GWAS data, which are usually discarded from analyses. 

First, I propose a procedure to classify SNPs genome-wide at the beginning of a study. By 

applying this procedure, a researcher will be able to identify non-standard, but informative ‘null-

allele’ SNPs, which is a SNP having an extra ‘null’ allele besides the regular two alleles, as well 

as standard SNPs. Not discarding those non-standard SNPs is important not only because they 

can be investigated for associations by analyzing under different models, but also we can explore 

the regions for copy number variations. Although there are other methods to find SNPs with an 

extra allele, the procedure in this dissertation focuses only on null-allele SNPs. I applied three 

widely-used statistical classifiers in this procedure. I provide a model, which can be easily 

applied to genotyped data. 

Secondly, I worked on X-chromosome data, which is not analyzed or reported often. 

Because of the special features of X chromosome, specific analysis methods are needed. There 

are some X-chromosome test statistics proposed. However, it is not obvious which method a 

researcher should use. I aimed to fill the gap in evaluating X chromosome association statistics. 

 7 



Although there are some studies comparing the test statistics in the literature, I comprehensively 

evaluated two of the best X chromosome test statistics and compared them with regression 

models. Moreover, I ran real chromosome-wide data for type I error analyses. The report I 

provide will be helpful for determining what are the best X chromosome data analysis methods 

under different conditions. 
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2.0  EFFICIENT IDENTIFICATION OF NULL-ALLELE SINGLE NUCLEOTIDE 

POLYMORPHISM MARKERS 

2.1 ABSTRACT 

At the beginning of a genome-wide association study (GWAS), many markers are discarded 

because they fail to meet standard quality control criteria. Some of these markers are out of 

Hardy-Weinberg Equilibrium (HWE) because they have ‘null alleles’ (which may be deletions or 

third alleles that do not hybridize to standard probes). It may be useful to identify null-allele 

markers so that they can be analyzed under different models or in order to explore regions of 

copy number variation. We present a model for the genotype data that are produced when a null-

allele SNP is genotyped under standard (2-allele) assumptions. We show that this model can be 

combined with the standard HWE model to develop classification procedures based on Support 

Vector Machines (SVM), Classification and Regression Trees (CART) and Random Forest for 

identifying null-allele SNPs. We report a list of null-allele SNPs we identified on the Illumina 

660W-Quad chip, and provide suggestions for applying our CART model to other SNP sets. 

Properly identified null-allele SNPs can be used to test for genotype-phenotype associations or to 

identify regions which may contain copy number variants. 
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2.2 INTRODUCTION 

Genome-wide association studies (GWAS) are used to investigate genetic effects on health and 

disease. GWAS search the genome for genetic variation that is correlated with phenotype. 

During data cleaning, prior to statistical analysis, many genetic markers are discarded because 

they fail to meet standard quality control criteria. As many as 35% of single nucleotide 

polymorphisms (SNPs) can be discarded if different genotype calling algorithms, such as 

BRLMM, Chiamo++, JAPL, are applied to the same dataset and only the SNPs passing all the 

quality control checks are used [Vens, et al. 2009]. Usually many SNPs are discarded because 

they are out of Hardy-Weinberg Equilibrium (HWE). A non-trivial number of these SNPs may 

have “null” alleles. If the null-allele SNPs can be identified, it may be possible to recover the 

data and analyze these SNPs using alternative models. 

Many null-allele SNPs can be readily identified by visual inspection of raw genotyping 

intensity plots. Figure 1 shows example plots, where Y and X are intensities of allele A and 

allele B respectively. Each circle in the plot represents one individual. For the genotype AA 

(BB), high Y (X) and low X (Y) values are expected. If the X and Y values are similar, then the 

individual’s genotype is assumed to be AB. Each color represents a cluster. If both of the X and 

Y intensities fall outside the genotype clusters, then the genotype is not assigned (uncalled), 

which is shown as an ‘x’. Figure 1A shows three distinct genotype clusters as expected for a 

well-behaved “standard” di-allelic marker. By contrast, figure 1B shows a typical null-allele 

SNP. The extra cluster near the origin consists of individuals who are homozygotes for the null 

allele (“NN” genotype). For a null-allele SNP we assume that the blue and red clusters in Figure 

1B are each composed of two underlying genotype clusters (AA and AN, or BB and BN), with 

the heterozygous cluster (AN or BN) closer to the origin. These underlying genotype clusters are 
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rarely visually detectable. Figure 1C is an example of a plot that is visually classifiable as neither 

“standard” nor “null allele.” 

Figure 1. Example of SNP categories 

Y and X are intensities of allele A and allele B respectively. Points in blue have the AA genotype, points in red 

correspond to the BB genotype, and points in green correspond to the heterozygous AB genotype. The black x’s 

correspond to the uncalled genotypes. We drew a quarter circle (dashed line in Fig. 1B) centered at the origin with 

radius equal to the minimum distance to the nearest called genotype, and discarded the uncalled points lying out of 

the circle, while uncalled points within the circle are considered to correspond to the NN genotype. 

Because it is not feasible to visually inspect tens of thousands of plots in order to detect 

null-allele SNPs, we developed methods for identifying null alleles based on the genotype data 

that are generated by standard genotype-calling algorithms (which assume a standard di-allelic 

model). To do this, we developed a likelihood model for the distribution of called genotypes that 

are obtained when a null-allele SNP is called by standard genotype-calling algorithms. We call 
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this our “null-allele model.” For each SNP, we considered three statistical tests: the goodness of 

fit test for this null-allele model and for the standard model (i.e., the standard HWE model), and 

the likelihood ratio test that compares those two models. Using these three test statistics and a 

hand-curated training dataset, we trained the classifiers Support Vector Machines (SVM), 

Classification and Regression Trees (CART), and Random Forest to identify null-allele markers.  

There are also some other approaches to null-allele SNPs in the literature. Franke et al. 

[Franke, et al. 2008] proposed a method “TriTyper” that can detect genotypes in case-control 

datasets for deletion copy number variations (CNVs) or SNPs with an extra, uncalled (null) 

allele. They accounted for linkage disequilibrium (LD) as well as intensity data when calling the 

genotypes. They used data genotyped with Illumina Infinium BeadChips. They found 1,880 

‘triallelic’ SNPs - in other words, null-allele SNPs. There is another study by Kumasaka et al 

[Kumasaka, et al. 2011], which mainly focuses on genotyping copy number polymorphisms. 

They propose a Bayesian mixture model that uses intensity data, and provide software, 

PlatinumCNV, to detect SNP types including null-allele SNPs. 

Figure 2 summarizes the main steps used to test our classifiers. We used a genome-wide 

association dataset from the Gene and Environment Association Studies (GENEVA) preterm 

birth study [Cornelis, et al. 2010]. From the set of SNPs that are out of HWE, we visually 

categorized 598 SNPs based on their intensity plots. We trained the SVM, CART and Random 

Forest models with this set of visually categorized SNPs. We then tested the trained classifiers as 

follows. We filtered the SNPs in our dataset based on commonly-used quality control filters in 

GWAS analyses: Hardy Weinberg equilibrium p-value and minor allele frequency (MAF). We 

included all autosomal SNPs meeting the MAF criteria but failing HWE (after first excluding the 

598 training SNPs). We classified these testing SNPs by each method. In addition, we compared 
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our results with results from the TriTyper study [Franke, et al. 2008]. Finally, we simulated 

standard and null-allele SNPs and classified them by each method as an additional comparison of 

the methods. 

 

 

Figure 2. Classification of SNPs flowchart 

2.3 LIKELIHOOD MODELS FOR GENOTYPE DATA 

We fitted two statistical models to the genotype data: the standard model and the null-allele 

model. The standard model assumes two alleles and three genotypes, and the genotype plot of 
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the corresponding SNP should look like Figure 1A. Our null-allele model assumes that there is 

an extra allele, N, and that there are six possible genotypes, as in Figure 1B. However, since all 

SNPs have the genotypes called using the standard model, our data for both models is the counts 

of called AA, AB, and BB genotypes, plus an implicit count of NN genotypes that we infer from 

the number of uncalled genotypes near the origin (see below for a precise definition). For 

example, under our null-allele model the called AA cluster is assumed to include both AA and 

AN genotypes (details below). The two models are described in detail below, and the Appendix 

contains a detailed derivation of the relationship among the test statistics and the allele 

frequencies under the null-allele and standard model assumptions. 

2.3.1 Standard model 

The standard model has two alleles: A and B, and three genotype clusters: AA, AB and BB 

(Figure 1A). Each allele, A and B, has frequency pS and qS respectively, with pS + qS = 1. We 

assume Hardy-Weinberg equilibrium (HWE) holds, so that the frequencies of the three genotype 

clusters are pS
2, 2pSqS, and qS

2. 

Our standard model fits a log-likelihood model for this two-allele system and uses one-

dimensional optimization to find the maximum likelihood estimate of the allele frequency pS 

[Brent 1972]. The log-likelihood model of standard model allele frequencies given the genotype 

counts is derived as follows: 

𝐿(𝑝𝑆|𝑥)~𝑃(𝐴𝐴)𝑥𝐴𝐴𝑃(𝐴𝐵)𝑥𝐴𝐵𝑃(𝐵𝐵)𝑥𝐵𝐵 (1) 

ln 𝐿(𝑝𝑆|𝑥) ~𝑥𝐴𝐴 ln(𝑝𝑆2) + 𝑥𝐴𝐵 ln(2𝑝𝑆𝑞𝑆) + 𝑥𝐵𝐵 ln(𝑞𝑆2) (2) 
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Let 𝑛𝑠 = 𝑥𝐴𝐴 + 𝑥𝐴𝐵 + 𝑥𝐵𝐵 be the total number of people. The expected frequencies of the 

three clusters assuming HWE are 𝑛𝐴𝐴 = 𝑝𝑆2𝑛𝑠 , 𝑛𝐴𝐵 = 2𝑝𝑆𝑞𝑆𝑛𝑠 , and 𝑛𝐵𝐵 = 𝑞𝑆2𝑛𝑠 . The 1 df 

standard model goodness of fit test statistic (χ2
std ) is: 

𝜒𝑠𝑡𝑑2 = (𝑥𝐴𝐴−𝑛𝐴𝐴)2

𝑛𝐴𝐴
+ (𝑥𝐴𝐵−𝑛𝐴𝐵)2

𝑛𝐴𝐵
+ (𝑥𝐵𝐵−𝑛𝐵𝐵)2

𝑛𝐵𝐵
(3) 

2.3.2 Null-allele model 

The null-allele model has three alleles: A, B, and N, and six genotype clusters: AA, AN, BB, 

BN, AB, and NN (Figure 1B). Because the AN and BN clusters are subsumed within the AA and 

BB clusters respectively, we refer to them as [AA, AN] and [BB, BN]. Each allele, A, B, and N, 

has frequency p, q and r respectively, with p + q + r = 1. 

For our null-allele model, we fitted a log-likelihood model and optimized it using the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm developed by Broyden [Broyden 1970], 

Fletcher [Fletcher 1970], Goldfarb [Goldfarb 1970] and Shanno [Shanno 1970], a quasi-Newton 

method, which uses function values and gradients to obtain the surface to optimize. The method 

is more robust than the Conjugate Gradients method, and not as sensitive to initial values. 

 Let 𝑥[𝐴𝐴,𝐴𝑁], 𝑥𝐵𝐵, 𝑥[𝐵𝐵,𝐵𝑁] 𝑎𝑛𝑑 𝑥𝑁𝑁  be the number of people with called AA [AA or 

AN], AB, called BB [BB or BN] and NN genotypes respectively. For NN counts, we drew a 

quarter circle centered at the origin in each plot (Figure 1B). The radius of the circle is the 

minimum distance from the origin to the nearest called genotype. To obtain the count of NN 
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genotypes, we counted only genotypes that lie inside the quarter circle. The likelihood and the 

log-likelihood of allele frequencies given the genotype counts are as follows: 

𝐿(𝑝|𝑥)~𝑃(𝐴𝐴,𝐴𝑁)𝑥[𝐴𝐴,𝐴𝑁]𝑃(𝐴𝐵)𝑥𝐴𝐵𝑃(𝐵𝐵,𝐵𝑁)𝑥[𝐵𝐵,𝐵𝑁]𝑃(𝑁𝑁)𝑥𝑁𝑁 (4) 

ln 𝐿(𝑝|𝑥) ~𝑥[𝐴𝐴,𝐴𝑁] ln(𝑝2 + 2𝑝𝑟) + 𝑥𝐴𝐵 ln(2𝑝𝑞) + 𝑥[𝐵𝐵,𝐵𝑁] ln(𝑞2 + 2𝑞𝑟) + 𝑥𝑁𝑁 ln(𝑟2)

(5) 

Then we estimated the allele frequencies p, q and r. The total number of genotypes is 

𝑛 = 𝑥[𝐴𝐴,𝐴𝑁] + 𝑥𝐴𝐵 + 𝑥[𝐵𝐵,𝐵𝑁] + 𝑥𝑁𝑁. The expected counts in each cluster assuming HWE are:

 𝑛[𝐴𝐴,𝐴𝑁] = (𝑝2 + 2𝑝𝑟)𝑛  ,

 

𝑛𝐴𝐵 = 2𝑝𝑞𝑛  ,

  

𝑛[𝐵𝐵,𝐵𝑁] = (𝑞2 + 2𝑞𝑟)𝑛 , and 𝑛𝑁𝑁 = 𝑟2𝑛 . The 1 df 

null-allele model goodness of fit test statistic (χ2
null ) is: 

𝜒𝑛𝑢𝑙𝑙2 = (𝑥[𝐴𝐴,𝐴𝑁]−𝑛[𝐴𝐴,𝐴𝑁])2

𝑛[𝐴𝐴,𝐴𝑁]
+ (𝑥𝐴𝐵−𝑛𝐴𝐵)2

𝑛𝐴𝐵
+ (𝑥[𝐵𝐵,𝐵𝑁]−𝑛[𝐵𝐵,𝐵𝑁])2

𝑛[𝐵𝐵,𝐵𝑁]
+ (𝑥𝑁𝑁−𝑛𝑁𝑁)2

𝑛𝑁𝑁
(6)  

2.3.3 Likelihood ratio 

In addition to the two goodness-of-fit test statistics described above, we also considered the 

likelihood ratio statistic comparing the standard and null-allele models. We computed the 

likelihood ratio (LR) of the two models as 

𝐿𝑅 = −2�ln 𝐿�𝑝𝑆|𝑥� − ln 𝐿(𝑝|𝑥)� (7) 
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2.4 CLASSIFICATION OF SNPS 

2.4.1 Classifiers 

We applied three widely used classifiers: Support Vector Machines (SVM), Classification and 

Regression Trees (CART), and Random Forest. We used the null-allele and standard model 

goodness of fit statistics (χ2
null and χ2

std) and the likelihood ratio statistic as the predictors for all 

three methods. For SVM, we used class weights inversely proportional to the class sizes in the 

training set, and we tuned the model to determine cost and gamma parameters. For CART, we 

used ‘information’ parameters for the splitting function and pruned the tree to predict new SNPs. 

All three models input and output the three classes neither, null-allele and standard. 

We used the R e1071 package for SVM by Dimitriadou et al. [Dimitriadou, et al. 2011], the rpart 

package for CART by Therneou et al. [Therneau and Atkinson 2012] and the randomForest 

package by Liaw and Wiener [Liaw and Wiener 2002] for Random Forest analysis. 

2.4.2 Datasets 

Our primary training and test datasets were drawn from the preterm birth data from Gene 

Environment Association Studies (GENEVA) [Cornelis, et al. 2010]. In this dataset, there are 

657K SNPs and 3,947 individuals. Genotyping of the SNPs was performed using the Illumina 

Platform (www.illumina.com). Illumina's Genome Analyzer system software program converts 

raw image data into intensity scores and assigns genotypes based on clustering. In standard 

GWAS analysis, SNPs are filtered out if their MAF and HWE p-values fail to meet certain 

criteria. Many null-allele SNPs are filtered out because their HWE p-values are less than the 
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specified threshold. It is from among these discarded markers that we want to be able to detect 

null-allele SNPs. Thus for our training and test datasets we used only SNPs for which MAF ≥ 

0.05 and HWE p-value < 0.001. 

We also applied the classifiers to SNPs that were previously identified as ‘triallelic’ by 

the TriTyper study [Franke, et al. 2008]. Of the 1,880 TriTyper triallelic SNPs they identified, 

1,757 of them were typed in our preterm birth dataset; we classified those SNPs using all 

methods in this paper. 

Finally, we evaluated the classifiers by applying them to five simulated datasets.  We 

simulated four null-allele model sets with the allele frequencies p, q and r, and one dataset using 

the standard model with the allele frequencies p, q and r = 0. One of the null-allele model 

datasets and the standard model dataset had 30K SNPs and 6K individuals. We generated the 

allele frequency, p, from the uniform distribution with the range [0.05, 0.4] for the standard 

model SNPs, where p + q = 1. For the first null-allele model set, p is uniformly distributed in the 

range [0.05, 0.70] and r varies in the range [0.01, 0.20] based on the preterm birth dataset null 

allele frequencies we observed, and q = 1 – p – r. Each of the remaining three null-allele model 

datasets had 10K SNPs and 4K individuals. These were generated with fixed parameters. For all 

three datasets, p was fixed at 0.6. In each dataset, r was fixed at 0.01, 0.02 and 0.03, and so q was 

0.39, 0.38 and 0.37, respectively. All SNPs meet the MAF filtering criteria based on allele 

frequencies estimated assuming the standard model. We filtered out the simulated SNPs if the 

HWE p-value ≥ 0.001. We performed the analysis twice with and without filtering the simulated 

datasets. 

PLINK was used to obtain the MAFs and the HWE p-values [Purcell, et al. 2007]. R was 

used for all other statistical analyses [RCoreTeam 2012]. 
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2.4.3 Methods 

We created initial training and test sets by selecting 598 SNPs among 2,350 remaining SNPs 

after MAF and HWE filtering on chromosomes 1-22, and visually categorized them as ‘null 

allele’, ‘standard’, ‘neither’, or ‘unknown’ based on their intensity plots. We visually categorized 

a SNP as a ‘null-allele’ SNP if there are four distinct clusters with two of the clusters (the [BB, 

BN] and [AA, AN] clusters) lying along Y and X axes, one cluster of unknown genotypes (the 

NN cluster) bunched right around the origin, and the last cluster (the AB cluster) around the 

diagonal X = Y line distinctly from other clusters. Figure 1B is a canonical example of a null-

allele SNP. We categorized a SNP as ‘standard’ if there are three distinct clusters, AA, BB and 

AB, but no null genotypes around the origin (e.g., Figure 1A). A SNP was categorized as 

‘neither’ if there are not at least three distinct clusters or there are deviations in cluster shapes, 

such as sub-clusters lying one over another. Figure 1C illustrates a ‘neither’ SNP, which we 

classified as ‘neither’ because we do not see three or more distinct clusters. We categorized a 

SNP as ‘unknown’ if there is a cluster around origin composed of only called genotypes or both 

called and uncalled genotypes. The distinction between neither and unknown SNPs is that 

unknown SNPs have distinct clusters as expected in standard or null-allele SNPs, but neither 

SNPs do not. Of the 598 visually categorized SNPs with MAF ≥ 0.05 and HWE p-value < 0.001, 

there were 274 ‘null allele’, 88 ‘standard’, 139 ‘neither’, and 97 ‘unknown’ SNPs. 

To evaluate our classifiers, we created 50 replicates of test and training datasets.  For 

each replicate, we randomly sampled 200 SNPs from the 598 visually categorized SNPs as the 

test dataset. From the remaining 398 visually categorized SNPs, we discarded unknowns, so that 

null, standard and neither SNPs constituted the training dataset. Because the class ‘unknown’ 

could be either of the ‘neither’, ‘null’ and ‘standard’ classes, we eliminated the ‘unknown’ SNPs 
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from the training sets. We did not remove unknown SNPs from the test set because when 

classifying SNPs in practice, we will not be able to remove them. There were three classes, 

neither, null, and standard, as input in the training set, and therefore three classes as output in the 

prediction.  

For each of the 50 replicates, we trained SVM, CART and Random Forest models with 

the training set using the LR, χ2
null, and χ2

std  statistics as predictors. Then we classified 200 test 

SNPs using the trained models. We calculated precision, true positive rate (TPR) and false 

positive rate (FPR) as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑢𝑎𝑙𝑙𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝑛𝑢𝑙𝑙 𝑆𝑁𝑃𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 "𝑛𝑢𝑙𝑙"
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑢𝑎𝑙𝑙𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝑛𝑒𝑖𝑡ℎ𝑒𝑟,𝑛𝑢𝑙𝑙 𝑎𝑛𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑆𝑁𝑃𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 "𝑛𝑢𝑙𝑙"

  (8) 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑢𝑎𝑙𝑙𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝑛𝑢𝑙𝑙 𝑆𝑁𝑃𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 "𝑛𝑢𝑙𝑙"
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑢𝑎𝑙𝑙𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝑛𝑢𝑙𝑙 𝑆𝑁𝑃𝑠

  (9) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑢𝑎𝑙𝑙𝑦 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 "neither" 𝑜𝑟 "𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑" 𝑆𝑁𝑃𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 "𝑛𝑢𝑙𝑙"
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑢𝑎𝑙𝑙𝑦 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 "neither" 𝑜𝑟 "𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑"𝑆𝑁𝑃𝑠

 (10) 

 

Because ‘unknown’ SNPs in the test set have an ambiguous class, we did not consider 

them while calculating the rates. 

In each of the 50 replicates, each classifier was allowed to choose which predictors to 

use. We also considered all different combinations of LR, χ2
null, and χ2

std statistics to put into 

analyses manually as predictors. 

As an additional method for comparing performance on the test set, we investigated the 

pairwise agreement between all pairs of methods in 50 replicates. We also assessed the 

agreement between the methods using a robust statistic, the Kappa Coefficient [Cohen 1960]. 

After comparing the performance of the methods on the real-data test set, we retrained the 

classifiers with 501 ‘neither’, ‘standard’ and ‘null’ visually categorized SNPs, and, excluding 
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those training SNPs, we classified the remaining genome-wide autosomal SNPs left after HWE 

and MAF filtering in the preterm birth dataset. Then, by using the same retrained classifiers, we 

classified the TriTyper triallelic SNPs and simulated sets of SNPs and evaluated the performance 

of all classifiers on them. 

2.4.4 Results 

Table 1 displays the precisions of the SVM, CART and Random Forest approaches. The means 

and the standard deviations are based on 50 replicates. Even though the differences are very 

small, the precision of CART (mean precision = 0.918) was slightly higher compared to other 

methods (Table 1). 

 

Table 1. Precision for the three classifiers 

 Precision 

Method Mean SD 

SVM 0.910 0.021 

CART 0.918 0.022 

Random Forest 0.914 0.025 

Means and standard deviations (SD) are based on 50 replicates. 

 

Table 2 shows the true and false positive rates. Among all methods, Random Forest gave 

the highest mean TPR (0.947) with the lowest standard deviation, but CART had the lowest 

mean FPR (0.103) (Table 2). 
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Table 2. Mean and standard deviation (SD) of true and false positive rates based on 50 replicates 

Method Mean True Positive Rate (SD)  Mean False Positive Rate (SD) 

SVM 0.932 (0.036) 0.112 (0.028) 

CART 0.944 (0.031) 0.103 (0.029) 

Random Forest 0.947 (0.021) 0.108 (0.032) 

 

 

We also evaluated how often the methods agreed with each other. Table 3 shows the 

mean frequencies of visually categorized null-allele SNPs, which were classified correctly by the 

two corresponding methods. Table 4 summarizes the agreement between the methods using the 

Kappa Coefficient. Both Tables 3 and 4 represent the results of 50 replicates as in Tables 1 and 

2. The highest agreement on null-allele SNPs (93%) (Table 3) and the highest overall agreement 

in Table 4 was between CART and Random Forest (Kappa = 0.912). 

 

Table 3. Agreement on null-allele model SNPs of all methods 

Method SVM CART 

CART 91%  

Random Forest 92% 93% 

Each cell represents the average of the percentages of visually categorized null-allele model SNPs, which were 

correctly classified by the two corresponding methods, in 50 replicates. 
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Table 4. Agreement between the methods by Kappa Coefficient 

Method SVM CART 

CART 0.871 (0.044)  

Random Forest 0.881 (0.037) 0.912 (0.038) 

Each cell is the average coefficient of 50 repeated samples and standard deviations in parenthesis. 

 

In addition to the agreement analyses, we plotted a color map showing the agreement of 

methods in one of the test data sets (Figure 3). We also present a graphical version of true and 

false positive rates summarized in Table 2, by method (Figure 4). 

 

 

Figure 3. Color map of the agreement among methods by 200 SNPs 
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Neither, null, standard and unknown SNPs are represented by lavender, pink, cyan and light brown 

respectively. 

 

 

Figure 4. True positive versus false positive rate plots of all methods based on 50 replicates 

 

 

All classifiers used in this study are able to select the predictors to be used in the 

classification process for the most effective classification. Each classifier ended up using all 

three statistics as predictors. In other words, all three test statistics, χ2
std χ2

null and LR, are needed 

to efficiently classify the SNPs. Figure 5 displays the CART model obtained by training with all 

of the 501 visually categorized null, standard and neither SNPs. The CART model classifies the 

SNP as ‘null’, ‘standard’ or ‘neither’. A SNP is classified as ‘standard’ if LR ≥ -3.97 and χ2
std < 
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19.67. If LR ≥ -3.97 and χ2
std ≥ 19.67, or LR < -3.97 and χ2

null ≥ 11.86, then the SNP is classified 

as ‘neither’. We classify the SNP as ‘null allele’ if LR < -4 and χ2
null < 11.86. 

 

 

Figure 5. The CART model based on all 501 visually categorized null, standard and neither SNPs 

χ2
std: Standard model goodness of fit test statistic. χ2

null: Null-allele model goodness of fit test statistic. LR: 

Likelihood ratio of null-allele and standard models. 

 

Our next analysis was to classify all autosomal ‘testing’ SNPs genome-wide by using 

each classifier trained on 501 visually categorized null, standard and neither SNPs. There are 

2,350 autosomal SNPs genome-wide meeting HWE and MAF criteria in the preterm birth 

dataset. We removed the 501 training SNPs and classified the remaining 1,849 testing SNPs. 

CART classified 998 (54%) of the 1,849 SNPs as ‘null allele’, Random Forest classified 938 

(51%) and SVM classified 925 (50%) of the 1,849 SNPs as ‘null allele’. 

Marker 

LR < -3.97 

χ2
null 

<11.86 

"Null-allele 
marker" 

χ2
null 

≥11.86 

"Neither" 

LR ≥ -3.97 

χ2
std < 

19.67 

"Standard 
marker" 

χ2
std ≥ 19.67 

"Neither" 
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Our third test of the three methods was to compare their performance on the 1,880 

TriTyper triallelic SNPs that Franke et al. [Franke, et al. 2008] reported. Among the 1,880 

TriTyper triallelic SNPs, 1,757 SNPs are autosomal and in our preterm birth dataset. We 

removed SNPs from our training set and classified the remaining 1,492 TriTyper triallelic SNPs. 

Table 5 shows the classification results for the TriTyper triallelic SNPs, subdivided by our HWE 

and MAF criteria. As our classifiers were trained on all 501 visually categorized null, standard 

and neither SNPs satisfying our HWE and MAF criteria, they are most directly applicable to the 

833 SNPs meeting those criteria (line 1 of Table 5).  On these, our classifiers identified about 

77% of them as null-allele SNPs. 

 

Table 5. Classification of TriTyper triallelic SNPs 

Criteria Number 

of SNPs 

SVM n(%) CART n(%) Random Forest n(%) 

  Null 

allele 

Standard Neither Null 

allele 

Standard Neither Null 

allele 

Standard Neither 

HWE<0.001 

& MAF≥0.05 

833 640 

(76.8) 

3  

(0.4) 

190 

(22.8) 

637 

(76.5) 

2   

(0.2) 

194 

(23.3) 

646 

(77.6) 

4  

(0.5) 

183 

(22.0) 

HWE<0.001 

& MAF<0.05 

56 42 

(75.0) 

0 

(0) 

14 

(25.0) 

49 

(87.5) 

0 

(0) 

7  

(12.5) 

49 

(87.5) 

0 

(0) 

7  

(12.5) 

HWE≥0.001 

& MAF≥0.05 

573 187 

(32.6) 

278 

(48.5) 

108 

(18.8) 

332 

(57.9) 

201 

(35.1) 

40  

(7.0) 

188 

(32.8) 

293 

(51.1) 

92 

(16.1) 

HWE≥0.001 

& MAF<0.05 

30 9   

(30.0) 

12  

(40.0) 

9  

(30.0) 

18 

(60.0) 

10 

(33.3) 

2    

(6.7) 

16 

(53.3) 

11 

(36.7) 

3 

(0.1%) 

Overall 1,492 878 

(58.8) 

293 

(19.6) 

321 

(21.5) 

1036 

(69.4) 

213 

(14.3) 

243 

(16.3) 

899 

(60.2) 

308 

(20.6) 

285 

(19.1) 
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Finally, we compared the performance of our classifiers on simulated data. By using 

simulated datasets, we are able to evaluate the performance of the methods with the simulated 

perfect standard and null-allele model SNPs. The results are summarized in Table 6. Almost all 

of the filtered or non-filtered standard SNPs, where the null allele frequency r = 0, were 

correctly classified by all methods. CART was able to correctly classify 98% of the simulated 

null-allele SNPs. 93% of the non-filtered null-allele SNPs were classified as null allele by SVM, 

and 95% by Random Forest methods (Table 6). All methods did much better when the null allele 

frequency  r ≥ 0.03. 
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Table 6. Classification of simulated dataset results 

SVM CART Random Forest 

Frequencies Classified as Classified as Classified as 

p q r True class 
HWE  p-value 

filtering 

Null 

(%) 

Standard 

(%) 

Null 

(%) 

Standard 

(%) 

Null 

(%) 

Standard 

(%) 

0.6 0.39 0.01 Null Filtered 196 0.2 85.2 35.7 62.2 1.0 77.0 

Not filtered 10K 0.2 96.6 33.2 66.7 1.2 85.0 

0.6 0.38 0.02 Null Filtered 1,964 21.8 41.5 70.2 23.1 20.0 35.2 

Not filtered 10K 13.3 57.2 77.5 21.1 26.8 35.4 

0.6 0.37 0.03 Null Filtered 6,447 70.6 5.8 92.2 3.5 65.3 4.8 

Not filtered 10K 66.3 9.2 93.8 3.4 68.5 4.4 

[0.05,0.7] 1-p-r [0.01,0.2] Null Filtered 27,984 92.5 3.4 98.0 1.6 94.6 2.3 

Not filtered 30K 92.1 3.5 98.0 1.6 94.1 2.5 

[0.05,0.4] 1-p 0 Standard Filtered 32 0 100 0 100 0 96.9 

Not filtered 30K 0 100 0 99.9 0 99.9 

HWE p-value filtering shows if the SNPs having HWE p-value≥0.001 are filtered out or not. All MAF≥0.05.
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Figure 6. Genotype plot of the SNP classified as triallelic by TriTyper but ‘neither’ by our methods 

2.5 DISCUSSION 

In this study, our aim was to efficiently identify null-allele markers using only genotype data that 

are provided by standard calling algorithms. We applied three different classifiers, Support 

Vector Machines, Classification and Regression Trees and Random Forest, to the GENEVA 

preterm birth dataset. All of the classification methods used three predictors: the null-allele and 

the standard multinomial likelihoods for the genotype data, and the likelihood test comparing 

those two models. We also applied our methods to the TriTyper triallelic SNPs, and we 

compared the results with TriTyper study. Finally we classified simulated standard and null-

allele model sets. 

While the performances of the classifiers SVM, CART and Random Forest were similar 

in terms of precision and true and false positive rates (Tables 1 and 2), in certain situations 

CART was able to detect more simulated null-allele SNPs correctly (Table 6). In general, we 

were able to identify most of the standard and null-allele SNPs correctly by using the classifiers. 

We provide our final CART model for researchers to use for classification of markers (Figure 5). 
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According to the study, dataset etc., the thresholds of the CART model in Figure 5 can be 

adapted. 

Our methods also performed similar to each other on the TriTyper triallelic SNPs. 77% of 

the triallelic SNPs identified by TriTyper were classified as null-allele SNPs by all of our 

methods. However, CART was able to classify more TriTyper triallelic SNPs as null-allele than 

other two methods (line 5 of Table 5). Because TriTyper is a method of genotype calling by 

using linkage disequilibrium as well as raw intensities, and our methods rely on genotyped data 

based on biallelic assumption and no-called genotypes are needed around origin for null-allele 

SNPs, our study and TriTyper study agree only on 77% of the TriTyper triallelic SNPs. Figure 6 

shows a genotype plot of the SNP which is classified as triallelic by TriTyper but as ‘neither’ by 

our methods because of the called genotypes in the cluster around origin which is supposed to be 

NN cluster.  

From the simulation experiments, we observed that when the null allele frequency, r, is 

less than 0.02, all classifiers may misclassify more than half of the actual null-allele SNPs as 

standard SNPs (Table 6). When r ≤ 0.02, SVM and Random Forest could not classify most of 

the simulated null-allele model SNPs correctly, but CART is able to detect more null-allele SNPs 

correctly. In order to compare the effect of filtering, we included the analysis results of simulated 

datasets with and without filtering. In general, SVM did better with filtered data. CART did 

better with filtered data when r = 0.01. 

The methods used in this paper are appropriate for Illumina 660W-Quad chip output. 

They may be compatible with other Illumina platforms. We also examined one Affymetrix 

dataset in order to see how our methods might work for a different platform. Based on one 

dataset, clustering of intensity data instead of using genotype data may be needed to apply to 
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data generated by Affymetrix technology, because our method needs no-called genotypes at the 

origin. 

Our methods provide a practical approach to identifying null-allele SNPs in a GWAS 

study. This can be done in one of three ways. (1) The list of null-allele SNP names that we 

discovered can be used directly. There are also other studies such as TriTyper, where list of null-

allele SNPs can be found. (2) One could apply our CART model, which gives the best results 

according to the simulated SNP experiments and is the most convenient. Or (3) all of our steps 

can be followed to create a model and classify the SNPs.  

Once null-allele SNPs are identified, the information can be used in a number of ways. 

One is to call genotypes at these SNPs using other software (or by hand) and analyze genotype-

phenotype association rather than discarding the SNPs. Another is to look more closely at these 

regions for potentially functional copy number variants. Either of these approaches offers the 

possibility of deriving useful new information from SNPs that are now discarded in GWAS 

studies. 
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3.0  STATISTICS FOR X-CHROMOSOME ASSOCIATIONS 

3.1 ABSTRACT 

Association between genotype and phenotype at autosomal loci is generally tested by chi-

squared tests (most often Armitage’s trend test), or by regression models if there are covariates. 

X chromosome data are often excluded from published analyses. Failure to analyze X data at all 

is obviously less than ideal, and can lead to missed discoveries. Even when the X chromosome is 

analyzed, it is usually done with suboptimal statistics. Several mathematically sensible statistics 

for X-chromosome association have recently been proposed. The optimality of these statistics, 

however, is based on very specific simple genetic models. In addition, while the simulation 

studies have been very informative, they have focused on single-marker tests and have not 

considered the types of error that occur when an entire chromosome is scanned. In this study, we 

comprehensively test the most promising X-chromosome association statistics using simulation 

studies that include the entire chromosome. We also consider a wider range of models for sex 

differences and phenotypic effects of X inactivation. We found that many of the best statistics 

perform well even when there are variance differences between the sexes or small sex 

differences in allele frequency. Moreover, we find that for additive models, males should be 

treated as homozygous females for X chromosome loci. 
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3.2 INTRODUCTION 

In genome wide association studies (GWAS), the first step after data cleaning is testing single 

nucleotide polymorphisms (SNPs) for association with a trait by chi-squared tests or regression 

models. Analyzing markers on autosomal chromosomes is more straightforward than sex 

chromosomes. Testing for association on the X chromosome, which makes up 5% of the female 

genome, requires specialized analysis methods – methods developed for analyzing autosomal 

data are not directly applicable to X data because males have only one copy of the X 

chromosome. Very often X chromosome data is discarded from published analyses. From 

January 2010 through March 2012, only 33% of the GWA papers reported X chromosome 

results [Wise, et al. 2011]. Moreover, even when the X chromosome is analyzed, usually 

suboptimal statistics are used. 

Several promising statistical methods for X chromosome association testing have recently 

been developed. However, there is a need for complete testing of the X chromosome methods. 

The best of the recently proposed statistics has been shown to be most powerful only when there 

is no sex difference in allele frequencies. Therefore, it is still not known how the statistic will 

behave when we scan an entire chromosome in which there is a small amount of random 

variation in allele frequencies between the sexes - whether it will still find the correct loci or will 

just pick out the ones that have the largest sex-specific allele frequency differences by chance. 

We aim to fill these gaps by fully testing several commonly-used and newly-proposed X 

chromosome statistics. We considered potential differences in phenotypes and genotypes 

between genders. We also studied the behavior of statistics under X inactivation. X inactivation 

is randomly silencing of one allele in heterozygote females, and may cause a higher trait variance 

 33 



for heterozygote females. We performed simulation studies using real chromosome-wide data in 

order to fully understand the practical performance of the statistics. 

3.3 X CHROMOSOME TEST STATISTICS 

Genotype-phenotype association is generally tested by chi-square tests, most often Armitage’s 

trend test, or regression models. The phenotype variable can be binary or continuous, and the 

genotype variable can be coded as in different ways. Linear coding for genotypes is typical. At 

autosomal loci, if the genetic model is additive, the genotype is coded as (0, 1, 2). In order to test 

the association at X chromosome loci, female genotypes are coded as (0, 1, 2) and, because 

males have only one copy of the X chromosome, male genotypes are coded as (0, 1) or (0, 2). A 

good X chromosome association test statistic might need to take care of features such as male 

genotype coding, male/female differences in phenotype/genotype variance, and Hardy-Weinberg 

equilibrium (HWE) assumption. 

In this study, we evaluated several regression models as well as several X chromosome 

statistics that will be described below. We fitted six regression models to test the effect of male 

genotype coding schemes, we ran each model indicated in equations 11-13 twice. First we ran 

with datasets where male genotypes are coded as (0,1) and we recoded the datasets so that male 

genotypes are (0,2) and ran again. The first two regression models have only genotype as 

independent variable as in equation 11. We introduced sex as a covariate into the third and forth 

models (equation 12). Then we added the variable genotype and sex interaction in the fifth and 

sixth models (equation 13). We compared the last two models with the regression models where 
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there is only sex as an independent variable. The results regarding the models in equation 13 in 

this study are the results of that comparison. 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ~ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 (11) 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ~ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝑆𝑒𝑥 (12) 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ~ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝑆𝑒𝑥 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ∗ 𝑆𝑒𝑥 (13) 

Even though we can control for sex in regression analysis, the analysis does not handle 

male/female difference in phenotype/genotype variance. 

A number of different statistics have been proposed for X-chromosome association 

[Clayton 2008; Zheng, et al. 2007]. The statistics proposed by Clayton [Clayton 2008] are 

generalized linear model score tests based on genotype-phenotype covariance. They do not 

assume HWE and take into account X inactivation. They treat males as homozygote females. In 

other words, male genotypes are coded as homozygote females. They do not lose power whereas 

stratification does, even if the phenotype varies between sexes and if allele frequency does not 

[Clayton 2008]. They do assume that equal male and female allele frequencies.  To compute the 

Clayton statistics, let subjects 1,…, F be female and F+1,…, N be male. Yi is the phenotype and 

Ai is the genotype for subject i. Di is the heterozygosity indicator. It is 0 for homozygotes and 1 

for heterozygotes. P, which is assumed to be same in males and females, is the allele frequency 

in the population estimated from the data. The 2 degree-of-freedom test statistic for X 

chromosome data is: 

𝑇2 = 𝑈𝑇𝑉�−1𝑈~𝜒22 (14) 

where 

𝑈 = �𝑈𝐴𝑈𝐷
� = �

∑ (𝑌𝑖 − 𝑌�)𝐴𝑖𝑁
𝑖=1

∑ (𝑌𝑖 − 𝑌�𝐹)𝐷𝑖𝐹
𝑖=1

� (15) 
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𝑉� = 𝑉�𝐹 ∑ (𝑌𝑖 − 𝑌�)2𝐹
𝑖=1 + 𝑉�𝑀 ∑ (𝑌𝑖 − 𝑌�)2𝑁

𝑖=𝐹+1  (16) 

The female and male components of the variance are: 

𝑉�𝐹 = 1
𝐹−1

∑ �
(𝐴𝑖 − �̅�)2 (𝐴𝑖 − �̅�)(𝐷𝑖 − 𝐷�𝐹)

(𝐴𝑖 − �̅�)(𝐷𝑖 − 𝐷�𝐹) (𝐷𝑖 − 𝐷�𝐹)2
�𝐹

𝑖=1  (17) 

𝑉�𝑀 = �4𝑃(1 − 𝑃) 0
0 0

� (18) 

The 1 degree-of-freedom test statistic is: 

𝑇1 = 𝑈12 𝑉�11⁄ ~𝜒12 (19) 

For autosomal loci, the variance does not include the male component, 𝑉�𝑀, and 𝑉�𝐹 is calculated 

over all subjects. 

Despite the regression analysis, Clayton’s statistic takes into account different male and 

female variances. However, it assumes that the allele frequency does not differ in males and 

females. 

Zheng et al. [Zheng, et al. 2007] proposed a test statistic, which is a combination of 

allele-based test statistic and genotype-based trend test. 

𝑍𝑚𝑓𝐺2 = ��
𝑛𝑓

𝑛𝑚+𝑛𝑓
𝑍𝑓𝐺 + �

𝑛𝑚
𝑛𝑚+𝑛𝑓

𝑍𝑚�
2

~𝜒12 (20) 

where 

𝑍𝑓𝐺 =
𝑛𝑓

1
2�𝑠𝑓�

1
2𝑟𝑓1+𝑟𝑓2�−𝑟𝑓�

1
2𝑠𝑓1+𝑠𝑓2��

�𝑟𝑓𝑠𝑓�𝑛𝑓�
1
4𝑛𝑓1+𝑛𝑓2�−�

1
2𝑛𝑓1+𝑛𝑓2�

2
��

1
2

(21) 
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𝑍𝑚 = 𝑛𝑚
1
2 (𝑟𝑚𝑠𝑚0−𝑠𝑚𝑟𝑚0)

(𝑛𝑚0𝑛𝑚1𝑟𝑚𝑠𝑚)
1
2

(22) 

rmi (rfj) and smi (sfj) are number of male (female) cases and controls having i allele (j genotype). 

nm (nf) is number of males (females) and nmi= rmi+ smi (nfj= rfi+ sfi). 

Zheng et al.’s statistic is based on sex-specific allele frequencies. However, it assumes 

HWE in females and it does not take into account X inactivation. Hickey and Bahlo [Hickey and 

Bahlo 2011] have shown that Clayton’s test statistics are generally more powerful than Zheng et 

al.’s [Zheng, et al. 2007]. 

3.4 METHODS 

We comprehensively evaluated six regression models and two specialized X chromosome 

association test statistics mentioned above with simulation studies under a variety of statistical 

models for sex differences that account for errors introduced by chromosome-wide testing. 

Conventional statistical theory measures the optimality of statistics in terms having correct type I 

error and maximal power for a single test. But in genomic applications, we apply a test thousands 

or hundreds of thousands of times and pick out the most significant loci for further study. In that 

situation, it is not the expected value of the behavior of the statistic that matters, but rather the 

behavior of the extreme values (order statistics). For example, the best of the proposed statistics, 

Clayton’s test statistic, has been shown to be most powerful, but only when there is no sex 

difference in allele frequencies. How will that statistic behave when we scan an entire 

chromosome in which there is a small amount of random variation in allele frequencies between 
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the sexes? Will it still find the correct loci, or will it just pick out the ones that have the largest 

sex difference by random chance? We performed our simulation studies using real chromosome-

wide data in order to answer this type of question and fully understand the practical performance 

of the statistics. 

We compared the statistics by type I error rates and statistical power. R was used for 

statistical analyses [RCoreTeam 2012]. There are many other tests in the literature, including 

Bayesian approaches, tests that attempt to gain power by assuming HWE, etc., but in practice the 

majority of GWAS studies use the straightforward additive test. Kuo and Feingold [Kuo and 

Feingold 2010] showed that this strategy has robust power both in terms of single-SNP testing 

and genome scanning. 

3.4.1 Datasets 

In this study, the datasets consist of simulated binary and continuous phenotypes, simulated 

SNPs and real X-chromosome SNPs. We used the X-chromosome SNPs of the preterm birth data 

from Gene Environment Association Studies (GENEVA) [Cornelis, et al. 2010]. In this GWAS 

dataset, there are 3,947 individuals genotyped using the Illumina Platform (www.illumina.com). 

We dropped mothers’ data and used only 1,795 babies in our study. There are 863 female babies 

and 932 male babies in the dataset. Among all SNPs on the X chromosome in the preterm birth 

dataset, we filtered out the SNPs if minor allele frequency (MAF) < 0.02 or HWE p-value < 

0.0001. Then 12,242 SNPs were left for the analyses. PLINK was used to obtain the MAFs and 

the HWE p-values [Purcell, et al. 2007]. 

We simulated binary phenotypes to answer the question of how type I error rate and/or 

power of the tests compare under various genetic models and sampling scenarios including both 
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unbalanced (i.e. different female/male * case/control ratios in dataset) and balanced datasets. 

There are 393 female cases, 470 female controls, 451 male cases, and 481 male controls in all 

datasets in this study. Unbalanced datasets were created from balanced datasets by randomly 

dropping a subset of individuals. 

For binary phenotype power analyses, we simulated 200 replicates of a dataset of 393 

female cases, 470 female controls, 451 male cases, and 481 male controls at a single SNP having 

female and male allele frequencies 0.5 and 0.46 for controls and cases under alternative 

hypothesis. Also, we simulated 200 replicates of the dataset at a single SNP having female allele 

frequencies 0.53 and 0.49 for controls and cases, and male allele frequencies 0.5 and 0.46 for 

controls and cases. 

For both binary phenotype type I error and power analyses, in addition to our real X-

chromosome loci, we spiked in 120 SNPs with extra-large male-female allele frequency 

differences that range in (0.07, 0.15). This allowed us to test the behavior of the statistics both 

for normal variation between male and female allele frequencies and for extreme situations. 

Figure 7 shows the density plots of real and simulated SNPs’ allele frequency differences used 

for type I error rate analyses. 
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Figure 7. Allele frequency differences between males and females 

Solid line refers to 12,242 real GWAS X chromosome SNPs. Dashed line refers to 120 simulated SNPs with large 

allele frequency differences between males and females. 

For continuous phenotypes, the question of interest was whether different distributions 

for male and female phenotype and/or genotypes would affect the expected type I error or power 

of the tests. To investigate type I error rate of the tests for continuous phenotypes, we used the 

preterm birth dataset SNPs and the simulated 120 SNPs having extremely large allele frequency 

differences between males and females. We simulated two phenotype variables: first we 

simulated a phenotype from Normal distribution with mean 15 and variance 9, N(15, 9), for both 
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genders. The second phenotype variable consists of female phenotypes from N(18, 9) and male 

phenotypes from N(15, 9). 

Table 7 shows the genetic models and sampling designs we considered for continuous 

phenotype power analysis. We simulated 200 replicates of a dataset of 932 males and 863 

females at a single SNP and a phenotype for each setting in Table 7. 

Table 7. Continuous phenotype power analysis sampling design 

Phenotype distributions N(Mean, 169) Number of 

males 

Number of 

females 

Male allele 

frequency 

Female allele 

frequency 
Mean value for males Mean value for females 
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A
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B
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A
A
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A
B
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B
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15 16 
15 16 17 932 863 0.30 0.30 

15 17 

15 16 
15 16 17 932 863 0.33 0.30 

15 17 

15 16 
15 16 17 932 863 0.37 0.30 

15 17 

15 16 
15 16 17 932 863 0.30 0.40 

15 17 

15 16 
15 16 17 932 863 0.45 0.30 

15 17 
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3.4.2 Design of Experiments 

In our experiments, we ran 6 regression models, Clayton’s statistic (equation 19) for binary and 

continuous phenotypes, and Zheng et al.’s statistic (equation 20) for binary phenotypes. We 

conducted experiments to find the effects of those phenotypic and genotypic differences 

mentioned above on the association tests under null and alternative hypotheses. We compared 

type I error rates and power of the analysis methods. We used all balanced and unbalanced 

datasets described above. 

For type I error rate analyses of binary and continuous phenotypes, first, we calculated 

the type I error rate with only real chromosome-wide SNPs, then we only included simulated 120 

SNPs, and we combined real and simulated SNPs and check the type I error rates of the tests.  

For power analyses of continuous phenotypes, we ran the analyses with the datasets 

where male phenotypes come from the same distributions as homozygote female phenotypes. 

We also ran with the datasets having one male phenotype coming from the same distribution as 

heterozygote female phenotype. Furthermore we considered allele frequency differences between 

males and females. 

For power analyses of binary phenotypes, we ran the analyses with the datasets where the 

number of female and male cases and controls are fixed and case and control allele frequencies 

are the same between genders. Then we used the datasets where case and control allele 

frequencies are different between genders. 
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3.5 RESULTS 

First, we examined type I error rates of all models for binary phenotypes (see table 2). In a 

balanced design, for 12,242 real chromosome-wide SNPs or for the combination of real and 120 

simulated SNPs (where the allele frequency differences between males and females are 

extremely high), we observed that all type I error rates fall in the Bradley’s liberal criterion range 

of 0.025 and 0.075 [Bradley 1978]. When we only analyzed the simulated SNPs in the balanced 

dataset, the only test having type I error rate (0.008) (Table B.1) out of Bradley’s criterion range 

was the logistic regression analysis where only genotype is in the model and male genotypes are 

coded as (0, 1). In an unbalanced design, when male genotypes were coded as (0,1), we observed 

that regression type I error rates may be inflated (Table B.1). If female case/control ratio is close 

to male case/control ratio (±0.05 in our experiments), then all tests have type I error rates in the 

range (0.025, 0.075) for real SNPs or combined set of real and simulated SNPs. However, if the 

ratios are not similar, the type I error may get as high as 1 if a sex covariate is not included. 

Table 8 shows the type I error rates of tests where data consists of both real and simulated SNPs. 

We provide a detailed summary of the binary phenotype type I error analysis results in Table 

B.1. When we ran the analyses only with simulated SNPs, the type I error rates can get higher 

than 0.05 and than the analyses where only real SNPs or combination of real and simulated SNPs 

are used. 
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Table 8. Type I error rates with both real and simulated SNPs 

 
~ Geno 

(0/1) 

~ Geno 

(0/2) 

+ Sex 

(0/1) 

+ Sex 

(0/2) 

Clayton Zheng et 

al. 

Balanced 0.038 0.045 0.052 0.044 0.055 0.046 

Unbalanced 0.867 0.054 0.048 0.047 0.047 0.049 

Unbalanced dataset include 393 female cases, 150 female controls, 150 male cases and 481 male controls whereas 

balanced dataset includes 393 female cases, 470 female controls, 451 male cases, and 481 male controls. Clayton 

results refer to Clayton’s statistic in equation 19. 

 

In the binary phenotype power analysis, we observed that when the dataset is balanced, 

the regression analysis having only genotype as an independent variable and male genotypes 

coded as (0,1) has the lowest power among all methods (Table B.2). For some of the unbalanced 

datasets analysis, that regression model has very high power but this is not reliable because we 

observed very high type I error rates in the same sampling settings (Table B.2). Under all of the 

sampling settings, the regression model where male genotypes are coded as (0,2) and Clayton’s 

statistic (equation 19) have similar powers. 

Secondly, we evaluated the tests with continuous phenotypes. For type I error analysis we 

observed type I error rate around 0.05 for two regression models (equations 12 and 13), 

Clayton’s statistics when there is only the set of real SNPs or the combined set of real and 

simulated SNPs. However, when we considered only simulated 120 SNPs, then the type I error 

rates may be out of Bradley’s liberal criterion range. A detailed summary of results can be seen 

in Table B.3. 

 

  44 



In continuous phenotype power analysis (Table 9), we observed that when the male 

genotypes come from the same distribution as corresponding homozygote females, all other 

methods have higher power than the regression model having only genotype as independent 

variable with males coded as (0,1). However, when one of the male genotype has the same 

distribution as heterozygote females, then the highest power belongs to the regression model 

having only genotype as independent variable with males coded as (0,1). When the allele 

frequencies are extremely different in males and females, Clayton’s statistic has slightly higher 

power than the other methods (Table B.4). 

 

Table 9. Continuous phenotype power analysis results 

Homozygote 

females and 

males from: 

~Geno 

(0/1) 

~Geno(0/2) +Sex 

(0/1) 

+Sex 

(0/2) 

+Sex+Sex*Geno 

(0/1) 

+Sex+Sex*Geno 

(0/2) 

Clayton 

Same 

distribution 
0.52 0.725 0.655 0.73 0.66 0.66 0.73 

Different 

distributions 
0.58 0.35 0.39 0.34 0.33 0.33 0.36 

 

As stated in Clayton’s paper [Clayton 2008], we also conclude that Clayton’s test has 

almost 0.05 (0.046) expected type I error rate when we combine real and the simulated SNPs 

with extreme allele frequency differences. Moreover, as can be seen from the Q-Q plot of the p-

values from the preterm birth dataset with chromosome-wide SNPs and a real phenotype in 

Figure 8, there is not an extreme deviation in the distribution of observed p-values from the 

expected p-values. However, when we examined the results SNP by SNP, we observed that 

Clayton’s statistic is affected if the data are unbalanced and the allele frequency differences in 
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males and females are extremely high (Figure 9). The smallest p values correspond to the SNPs 

having extreme allele frequency differences. 

 

Figure 8. Q-Q plot of Clayton’s statistic (equation 19) p values applied to the original preterm birth data 

chromosome-wide 
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Figure 9. Clayton statistic (equation 19) p values with combined set of real and simulated SNPs vs female-male 

allele frequency differences under null hypothesis 
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3.6 X INACTIVATION 

None of the models implied by the models above are quite correct because of X inactivation. X 

inactivation is transcriptionally silencing one of the X chromosomes in a complex manner in 

females [Lyon 1961]. X chromosome statistics have been modeled by assuming that one X 

chromosome gets dropped at random [Clayton 2009] so that AB females have a 50% chance of 

being A and 50% chance of being B. In this case, the variance and the mean would be estimated 

from the values of genotype ‘A’ and genotype ‘B’. We propose a more realistic model where the 

allele silenced is not uniform throughout the organism- it may or may not even be uniform at a 

particular tissue. We suggest that a heterozygote female could randomly be anything between 

pure A and pure B. If this is the case, the variance and the mean would not be obvious as in the 

case above. Variance would be much higher than the one we could estimate from the sample. We 

studied the behavior of the statistics under different X-inactivation models. In quantitative traits, 

most X-inactivation models result in higher trait variance for heterozygote females than for 

homozygote males or females. In theory, the variance difference could increase the type I error 

of traditional regression-based tests. To test the potential effects of different variances in males 

and females, we simulated continuous phenotype variables with same and genotype-specific 

variances. We compared the Clayton’s statistic [Clayton 2008], which is indicated as an optimal 

statistic for X chromosomal data, and regression methods in terms of type I error and power 

under X-inactivation models, where randomly one of the X chromosomes in females is 

transcriptionally inactivated, by using simulated datasets. From these experiments, we observed 

that type I error rates and powers of the robust regression analyses and Clayton’s analysis are 

close (Table 10). 
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Table 10. Clayton and regression results based on simulated 1000 200-sample datasets 

Phenotype distribution Test 

Heterozygote 
females 

Homozygote 
females and 
males 

Probability Clayton Robust regression Linear regression 

N(11, 30) N(10+G, 8) Power 0.969 0.987 0.957 
N(10, 30) N(10, 8) Type I error 0.021 0.022 0.012 

G takes values (0,1,2) for female genotypes (AA,AB,BB) and (0,2) for male genotypes (A,B). 

3.7 DISCUSSION 

There is an extreme lack of genome-wide analysis results on the X chromosome in the literature. 

Failure to analyze X chromosome data at all is obviously less than ideal, and can lead to missed 

discoveries – for example, the first step in the SNP quality control process in a GWA for diabetic 

nephropathy was to remove the X chromosome [Pezzolesi, et al. 2009], but when the data set 

was submitted to the database of genotypes and phenotypes (dbGAP), the standard pre-compute 

analysis by dbGAP discovered that the X-linked SNP rs16997315 was strongly associated with a 

p-value of 4.7 x 10-11 (according to the Phenotype-Genotype Integrator website from NCBI). 

Even if the X chromosome data are analyzed, there may be some suboptimal statistics used. To 

analyze X chromosomal data, specialized analysis methods are needed. Although there are some 

statistics developed for X chromosome analysis, they assume relatively simple genetic models. 

Moreover, these statistics are seldom used for real data analysis, at least partly because their 

statistical properties (strengths and weaknesses) are not well understood. 
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In this study we aimed to extensively evaluate two X chromosome association test 

statistics and compared them with regression models by using real and simulated datasets under 

various genetic models. In our comprehensive simulation study, we can conclude that male 

genotypes on X chromosome should be treated as homozygote females as Clayton suggested 

[Clayton 2008; Clayton 2009]. In our case, that is coding male phenotypes as (0,2) for regression 

analysis when additive model is assumed. Adding sex as a covariate can also solve issues related 

to the X chromosome. For unbalanced sets, controlling for sex may result better. However, if 

male phenotypes follow the same distributions as homozygote females, then having sex as a 

covariate may reduce power. 

For binary phenotypes, if the dataset is balanced, then both of the X chromosome test 

statistics and regression models where male genotypes are coded as (0,2), can handle even if 

there are extreme differences in allele frequencies. If the dataset is unbalanced, then allele 

frequency differences between genders may affect the results and may lead to false positives. 

For continuous phenotypes, if female and male phenotypes come from different 

distributions, allele frequency differences between genders in SNPs again may cause false 

positive results. In that situation, sex variable can be added as a covariate into analyses. 

Moreover, we observed that tests are more powerful when male genotypes follow the distribution 

of corresponding homozygote female phenotypes. 

For X inactivation models, although Clayton’s test performs similarly as robust 

regression methods, both seem to be too conservative. Further investigation of the tests under X 

inactivation models may be needed. 

As future research, further development of test statistics appropriate for X chromosome 

imputed genotype data and sequence data is necessary. Imputed SNPs on X chromosome are 
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almost never included in the analysis. Most imputation software produces genotype results in 

two different forms: posterior genotype likelihoods (PGL) and best-guessed genotypes [Marchini 

and Howie 2010]. Most analysis methods use PGL to calculate a dosage, defined as a weighted 

sum of the PGL. Statistics have also been developed to use the PGL directly. For X-chromosome 

data best-guessed genotypes can be used in any association methods, and dosages can be used in 

any of the regression-based methods by substituting the continuous dosage variable for the 

(0,1,2) genotype variable. Direct PGL methods have not been developed. I plan to extend PGL 

methods to the X chromosome and test the statistics using simulated data sets.  

Another gap involves methods for sequenced X-chromosome data. If an allele of an X-

chromosome SNP is very rare, in females we would expect to see mostly AA individuals with a 

few ABs and maybe one or two BBs. The (0,1,2) model is not appropriate for this type of data 

because BB individuals will be influential points in the regression and can bias the analysis. 

Therefore, females should be coded as (0,1), where AB and BB females are 1. However, for 

males, it is not obvious whether (0,1) or (0,2) coding is appropriate. 
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4.0  DISCUSSION 

At the beginning of a GWAS, during data cleaning, many SNPs are left out of the study. Some of 

these data are discarded because of being low-quality or contaminated. However, there is a 

considerable amount of discarded data which may carry information regarding association. These 

data are discarded because of not being standard, or the analysis methods are not directly 

applicable to them. In this dissertation, my aim is to find these potentially informative GWAS 

data and to investigate the analysis methods for these data. 

4.1 IDENTIFICATION OF NULL-ALLELE SNPS 

Widely used genotype calling algorithms assume biallelic SNPs and the genotypes used in 

GWAS are called under this assumption. However, there may be some SNPs which fail to be 

included in the analyses under biallelic assumptions because they may have a possible third 

allele. These SNPs may carry important scientific information regarding the trait of interest. In 

this dissertation, I developed a procedure to detect ‘null-allele’ SNPs genome-wide. Null-allele 

can be a deletion or a third allele not hybridizing to standard probes. I showed every step of my 

procedure and also provided a model developed using classification and regression trees (CART) 

approach. A researcher who wants to find null-alleles in his/her GWAS can follow the methods 

described in Chapter 2 or he/she can calculate the statistics and apply the CART model provided 
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to identify null-allele SNPs. Identifying null-allele SNPs is important to increase number of 

SNPs in the study and to investigate regions for potentially functional copy number variants. My 

procedure strictly looks for null-allele SNPs and is based on genotype data generated by the 

Illumina platform. A researcher should be careful about the platform used for his/her data when 

applying my procedure. The data from other platforms may need some processing before it can 

be analyzed by my procedure. For example, applying a different clustering algorithm to the 

intensities may be necessary. 

4.2 X CHROMOSOME ASSOCIATION TESTS 

Due to the special features of X-chromosome, it is usually not analyzed or even if it is analyzed, 

suboptimal statistics may be used. X chromosome represents approximately 5% of the DNA. Not 

analyzing X chromosome data is not appropriate; it may cause failure to discover truly associated 

variants. In this dissertation, I comprehensively evaluated two X chromosome test statistics and 

compared them with regression models by using simulated and real chromosome-wide data sets. 

First of all, I conclude that under an additive model assumption, male genotypes should 

be treated as homozygote females. In other words, the coding for male genotypes should be 

(0,2). This is also stated by Clayton [Clayton 2008]. I also observed that having sex as a 

covariate in the model could also solve the problem with scaling. Especially if there are SNPs 

having extremely large allele frequency differences between males and females in the dataset to 

be analyzed, sex should be included as a covariate instead of only just coding males as (0, 2) 

(Tables B.1 and B.2). Zheng et al.’s statistic can handle allele frequency differences as expected 

because the statistic estimates allele frequencies for males and females separately. However, in 
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this case, Clayton’s statistic with sex covariate may be preferred according to the simulation 

results. 

The phenotype distribution of males and females may also affect the analysis results of 

the statistics. A researcher should be careful about the assumptions before deciding the test 

statistic to apply. For instance if we can not assume that a male genotype comes from the same 

distribution as homozygote females, then either Clayton’s or Zheng et al.’s test statistic may not 

be the most powerful alternative to use for the association analysis. 

Male/female and case/control ratios in the dataset may also be considered before analysis. 

Although, the main aim was not comparing data designs in this dissertation, I observed that the 

type I error rate may be different from statistic to statistic especially when there are huge allele 

frequency differences in all SNPs in the dataset (Table B.1). Moreover, the magnitude of 

male/female and case/control ratios may affect the results. 

4.3 OVERALL CONCLUSION 

Recovering potentially informative data in terms of statistical point of view should increase the 

power. Discarding these data is not ideal for biological reasons either. Null-allele SNPs are not 

contaminated or low-quality, they are only different than what we are used to seeing. Moreover, 

since they are ‘different’ than usual SNPs, we may expect to see associations with the trait, or we 

may want to investigate the region for copy number variations. Likewise, not analyzing any X-

chromosomal data, which may contain up to 1,400 genes, is not appropriate. Dropping the whole 

chromosome from the analysis may cause one to miss important associations. 
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In this dissertation, not only I wanted to point out that recovering GWAS data is 

important, but also I propose a practical method applied during data cleaning to save null-allele 

SNPs and show analyzing X-chromosome data is not impossible. As can be seen in chapter 2, 

my method for null-allele SNPs works well. I also leave the options to researchers: they can use 

the steps that I explained in detail to find null-allele SNPs, or they can apply the model I 

reported. Moreover, they can make use of the list of null-allele SNPs genome-wide that I can 

provide. Therefore, even though finding null-allele SNPs without any guidance may require a lot 

of effort, applying the proposed methods, which are shown to work well in chapter 2, would 

make the process much easier. However, analyzing null-allele SNPs would require different 

analysis methods, which is not the main aim of this dissertation. On the other hand, analyzing X-

chromosome data is not that difficult and such analyses should be included in every GWAS 

report. As shown in chapter 3, the proposed X-chromosome specific test statistics would work 

well under certain assumptions, also regular regression methods can be used to analyze them. 

Implementing the test statistics into widely-used GWAS analysis programs would help 

researchers to analyze and report the X-chromosome association results. 

4.4 FUTURE WORK 

The projects in this dissertation can be taken further for additional improvements in GWAS 

analysis. I plan to apply the null-allele identification procedure to other real datasets and 

pedigree datasets. Moreover, association tests specific to null-allele SNPs could be investigated. 

The analysis methods available for multi-allelic SNPs might be applicable to null-allele SNPs.  

 55 



For the X chromosome association statistics, the simulations can be extended under 

different genetic models besides the additive model. Also, each statistic can be evaluated for 

different sampling designs. Further development of test statistics for imputed and/or sequence 

data could be studied. 
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APPENDIX A. DERIVATION OF GENOTYPE FREQUENCIES AND THE EXPECTED 

VALUE OF CHI-SQUARED TEST 

We first derive the expected numbers of the called genotypes AA, AB, and BB that are seen 

when a null-allele SNP is called under the standard di-allelic model.  

Assume a perfect null-allele system with three alleles, A, B and N, six genotypes, AA, 

AN, AB, BB, BN, NN, and four clusters: [AA, AN], AB, [BB, BN], NN. Let the total number of 

genotypes observed be 𝑛 = 𝑛[𝐴𝐴,𝐴𝑁] + 𝑛𝐴𝐵 + 𝑛[𝐵𝐵,𝐵𝑁] + 𝑛𝑁𝑁 . The total number of called 

genotypes is then 𝑛′ = 𝑛[𝐴𝐴,𝐴𝑁] + 𝑛𝐴𝐵 + 𝑛[𝐵𝐵,𝐵𝑁] = 𝑛 − 𝑛𝑁𝑁. When a null-allele SNP is called 

under the standard model, NN genotypes are discarded, and genotypes AN and BN are counted 

as AA and BB respectively, so the difference between n and n’ is only . If we let p, q and r 

be the allele frequencies of A, B and N respectively in the perfect null-allele system, then the 

expected numbers of called genotypes are (𝑝2 + 2𝑝𝑟)𝑛, 2𝑝𝑞𝑛, (𝑞2 + 2𝑞𝑟)𝑛, and 𝑟2𝑛  for the 

clusters [AA, AN], AB, [BB, BN] and NN respectively. 

These genotype frequencies also allow us to derive the expected value of the chi-squared 

test statistic for the standard (HWE) model. Assume that our counts have been generated from a 

perfect, null-allele system. Then A allele frequency estimate we would obtain if a standard two-

allele model is applied to those data is 

𝑝𝑆 = 2𝑛[𝐴𝐴,𝐴𝑁]+𝑛𝐴𝐵
2𝑛′

= 2𝑛�𝑝2+2𝑝𝑟�+𝑛(2𝑝𝑞)
2(𝑛−𝑛𝑟2) = 𝑝

(1−𝑟) (A1) 
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Under the standard model assumption, pS+qS=1. Then, 

 

𝑞𝑠 = 1 − 𝑝𝑠 = 𝑞/(1 − 𝑟) (A2) 

 

Chakraborty et al. [Chakraborty, et al. 1992] previously derived equation A1 for the more 

general multi-allelic case. 

If we ignore the null genotypes (NN), the expected values are 𝑝𝑆2𝑛′, 2𝑝𝑆𝑞𝑆𝑛′𝑎𝑛𝑑 𝑞𝑆2𝑛′of 

the genotypes [AA, AN], AB and [BB, BN] respectively. Then the  goodness of fit test 

statistic for standard model SNP, where NN genotypes are ignored, is: 

 

𝜒2 = ∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠  (A3) 

𝜒2 = (4𝑟2)(1−𝑟)𝑛
1+𝑟

 (A4) 

 

Equation A4 is equivalent to 𝜒𝑠𝑡𝑑2 . In the TriTyper study, Franke et al. also did the calculations 

above assuming HWE for three alleles. However, we ended up with a different 𝜒2 equation than 

theirs using the same n and r. 
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APPENDIX B. SUPPLEMENTARY TABLES 
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Table B.1. Type I error rates of the methods with binary phenotypes 

Sample size Regression models 

Females 

(Case/Cont) 

Males 

(Case/Cont) 

Data* I: P~G(0,1) II: 

P~G(0,2) 

III: 

P~G(0,1)+S 

IV: 

P~G(0,2)+S 

V#: 

P~G(0,1)+S+I 

VI#: 

P~G(0,2)+S+I 

Zheng Clayton    

(1-df) 

Clayton + 

Sex 

393/470 451/481 R 0.048 0.043 0.054 0.043 0.044 0.044 0.046 0.055 0.055 

S 0.008 0.058 0.067 0.058 0.05 0.05 0.067 0.067 0.067 

R+S 0.038 0.045 0.052 0.044 0.044 0.044 0.046 0.055 0.055 

150/470 451/481 R 0.707 0.047 0.043 0.044 0.043 0.043 0.044 0.053 0.053 

S 0.925 0.342 0.067 0.05 0.05 0.05 0.05 0.092 0.058 

R+S 0.710 0.050 0.043 0.044 0.043 0.043 0.044 0.053 0.053 

393/470 150/481 R 0.645 0.043 0.046 0.048 0.048 0.048 0.047 0.056 0.057 

S 0.883 0.358 0.075 0.025 0.067 0.067 0.058 0.075 0.033 

R+S 0.647 0.047 0.046 0.047 0.048 0.048 0.047 0.057 0.056 

393/150 451/481 R 0.677 0.048 0.047 0.045 0.045 0.045 0.046 0.055 0.054 

S 0.908 0.333 0.008 0.017 0.017 0.017 0.008 0.05 0.058 

R+S 0.680 0.051 0.047 0.045 0.045 0.044 0.046 0.055 0.054 

393/470 451/150 R 0.740 0.038 0.048 0.045 0.048 0.048 0.046 0.053 0.053 

S 0.975 0.45 0.083 0.033 0.058 0.058 0.075 0.05 0.042 

R+S 0.742 0.042 0.049 0.045 0.048 0.048 0.046 0.053 0.053 

393/150 451/150 R 0.051 0.048 0.048 0.049 0.045 0.045 0.051 0.052 0.051 

S 0.042 0.017 0.05 0.033 0.075 0.075 0.033 0.067 0.033 
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R+S 0.051 0.047 0.048 0.049 0.045 0.046 0.050 0.052 0.051 

150/470 150/481 R 0.034 0.048 0.050 0.049 0.052 0.052 0.051 0.052 0.051 

S 0.033 0.05 0.050 0.05 0.067 0.067 0.058 0.033 0.033 

R+S 0.034 0.048 0.050 0.049 0.052 0.052 0.051 0.051 0.051 

393/150 150/481 R 0.866 0.047 0.048 0.048 0.045 0.045 0.049 0.047 0.047 

S 1 0.733 0.033 0.042 0.05 0.05 0.025 0.058 0.033 

R+S 0.867 0.054 0.048 0.047 0.045 0.045 0.049 0.047 0.048 

150/470 451/150 R 0.890 0.042 0.046 0.041 0.044 0.044 0.043 0.056 0.056 

S 1 0.7 0.058 0.05 0.042 0.042 0.092 0.1 0.075 

R+S 0.891 0.048 0.046 0.041 0.044 0.044 0.043 0.057 0.056 

Datasets include 12,242 real SNPs and/or 120 simulated SNPs with the allele frequency differences 0.07, 0.10 and 0.15. 

*R: Real SNPs, *S: Simulated SNPs
I: Phenotype ~ Genotype (males coded as (0,1)) 
II: Phenotype ~ Genotype (males coded as (0,2)) 
III: Phenotype ~ Genotype + Sex (males coded as (0,1)) 
IV: Phenotype ~ Genotype + Sex (males coded as (0,2)) 
V: Phenotype ~ Genotype + Sex + Genotype*Sex (males coded as (0,1)) 
VI: Phenotype ~ Genotype + Sex + Genotype*Sex (males coded as (0,2)) 
#: Results of 2 df test statistic which compares the models with the model Phenotype ~ Sex 
Bold rates are unacceptably high. 
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Table B.2. Power of the methods with continuous phenotypes based on 200 simulated phenotype and genotype pairs 

Phenotype distributions  

N(Mean, Variance=169) 

Sample size Allele 

frequency 

Regression models 

Mean for 

males 

Mean for females Males Females Male Female I: P~ 

G(0,1) 

II: P~ 

G(0,2) 

III: P~ 

G(0,1)+S 

IV: P~ 

G(0,2)+S 

V#: P~ 

G(0,1)+S+I 

VI#: P~ 

G(0,2)+S+I 

Clayton    

(1-df) 

Clayton 

+ Sex 

G
en

ot
yp

e 
A

 

G
en

ot
yp

e 
B 

G
en

ot
yp

e 
A

A
 

G
en

ot
yp

e 
A

B
 

G
en

ot
yp

e 
B

B 

15 16 15 16 17 932 863 0.3 0.3 0.580 0.350 0.390 0.340 0.330 0.330 0.360 0.340 
15 17 15 16 17 0.520 0.725 0.655 0.730 0.660 0.660 0.730 0.730 
15 16 15 16 17 932 863 0.33 0.3 0.585 0.430 0.495 0.425 0.360 0.360 0.460 0.425 
15 17 15 16 17 0.565 0.755 0.705 0.745 0.645 0.645 0.755 0.745 
15 16 15 16 17 932 863 0.37 0.3 0.640 0.485 0.450 0.435 0.395 0.395 0.490 0.435 
15 17 15 16 17 0.615 0.780 0.720 0.780 0.685 0.685 0.795 0.780 
15 16 15 16 17 932 863 0.3 0.4 0.575 0.400 0.505 0.435 0.380 0.380 0.385 0.435 
15 17 15 16 17 0.620 0.790 0.740 0.795 0.700 0.700 0.785 0.795 
15 16 15 16 17 932 863 0.45 0.3 0.625 0.490 0.470 0.430 0.375 0.375 0.520 0.430 
15 17 15 16 17 0.620 0.755 0.660 0.725 0.600 0.600 0.780 0.725 

I: Phenotype ~ Genotype (males coded as (0,1)) 
II: Phenotype ~ Genotype (males coded as (0,2)) 
III: Phenotype ~ Genotype + Sex (males coded as (0,1)) 
IV: Phenotype ~ Genotype + Sex (males coded as (0,2)) 
V: Phenotype ~ Genotype + Sex + Genotype*Sex (males coded as (0,1)) 
VI: Phenotype ~ Genotype + Sex + Genotype*Sex (males coded as (0,2)) 
#: Results of 2 df test statistic which compares the models with the model Phenotype ~ Sex 
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Table B.3. Type I error rates of the methods with continuous phenotypes 

Sample size Regression models 

Females Males Data* F-M 

pheno 

means 

(sd) 

I: P~ 

G(0,1) 

II: P~ 

G(0,2) 

III: P~ 

G(0,1)

+S 

IV: P~ 

G(0,2)+

S 

V#: P~ 

G(0,1)+S+I 

VI#: P~ 

G(0,2)+S+I 

Clayton    

(1-df) 

Clayton + 

Sex 

863 932 R 15-15 (3) 0.250 0.050 0.049 0.050 0.052 0.052 0.051 0.05 

S 0.50 0.083 0.033 0.033 0.033 0.033 0.117 0.033 

R+S 0.253 0.050 0.049 0.050 0.052 0.052 0.052 0.05 

863 932 R 18-15 (3) 0.884 0.053 0.054 0.053 0.053 0.053 0.055 0.053 

S 1 0.742 0.025 0.025 0.025 0.025 0.767 0.025 

R+S 0.885 0.059 0.053 0.053 0.053 0.053 0.061 0.052 

Datasets include 12,242 real SNPs and/or 120 simulated SNPs with the allele frequency differences 0.07, 0.10 and 0.15. 

*R: Real SNPs, *S: Simulated SNPs
I: Phenotype ~ Genotype (males coded as (0,1)) 
II: Phenotype ~ Genotype (males coded as (0,2)) 
III: Phenotype ~ Genotype + Sex (males coded as (0,1)) 
IV: Phenotype ~ Genotype + Sex (males coded as (0,2)) 
V: Phenotype ~ Genotype + Sex + Genotype*Sex (males coded as (0,1)) 
VI: Phenotype ~ Genotype + Sex + Genotype*Sex (males coded as (0,2)) 
#: Results of 2 df test statistic which compares the models with the model Phenotype ~ Sex 
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Table B.4. Power rates of the methods with binary phenotypes based on 200 simulated phenotype and genotype pairs 

Sample size Allele frequency Regression models 

Females 

(Case/Cont) 

Males 

(Case/Cont) 

M/F 

controls 

M/F 

cases 

I: 

P~G(0,1) 

II: 

P~G(0,2) 

III: 

P~G(0,1)+S 

IV: 

P~G(0,2)+S 

V#: 

P~G(0,1)+S+I 

VI#: 

P~G(0,2)+S+I 

Zheng Clayton    

(1-df) 

Clayton 

+ Sex 

393/470 451/481 0.245 0.455 0.5 0.475 0.445 0.445 0.455 0.475 0.505 

393/470 150/481 1 0.37 0.405 0.35 0.315 0.315 0.38 0.35 0.36 

150/470 451/481 0.615 0.355 0.38 0.335 0.325 0.325 0.35 0.335 0.35 

393/470 451/150 0.715 0.425 0.435 0.385 0.32 0.32 0.435 0.385 0.405 

393/150 451/481 1 0.365 0.375 0.315 0.27 0.27 0.36 0.315 0.36 

393/150 451/150 0.5/0.5 0.46/0.46 0.11 0.305 0.325 0.31 0.245 0.245 0.305 0.31 0.325 

393/150 150/481 1 0.315 0.24 0.245 0.195 0.195 0.325 0.245 0.26 

150/470 150/481 0.23 0.22 0.255 0.225 0.23 0.23 0.225 0.23 0.245 

150/470 451/150 1 0.355 0.26 0.25 0.21 0.21 0.355 0.25 0.275 

393/470 451/481 0.375 0.53 0.505 0.515 0.435 0.435 0.53 0.515 0.52 

393/470 150/481 1 0.335 0.45 0.43 0.37 0.37 0.345 0.43 0.42 

150/470 451/481 0.4 0.53 0.395 0.385 0.34 0.34 0.52 0.385 0.405 

393/470 451/150 0.515 0.585 0.46 0.425 0.355 0.355 0.595 0.43 0.445 

393/150 451/481 0.5/0.53 0.46/0.49 1 0.325 0.425 0.385 0.34 0.34 0.325 0.39 0.41 

393/150 451/150 0.16 0.3 0.285 0.29 0.25 0.25 0.305 0.29 0.3 

393/150 150/481 1 0.185 0.325 0.31 0.235 0.235 0.19 0.31 0.33 

150/470 150/481 0.33 0.34 0.35 0.345 0.25 0.25 0.345 0.345 0.35 
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150/470 451/150 0.995 0.66 0.3 0.285 0.235 0.235 0.66 0.285 0.295 

 I: Penotype ~ Genotype (males coded as (0,1)) 
II: Phenotype ~ Genotype (males coded as (0,2)) 
III: Phenotype ~ Genotype + Sex (males coded as (0,1)) 
IV: Phenotype ~ Genotype + Sex (males coded as (0,2)) 
V: Phenotype ~ Genotype + Sex + Genotype*Sex (males coded as (0,1)) 
VI: Phenotype ~ Genotype + Sex + Genotype*Sex (males coded as (0,2)) 
#: Results of 2 df test statistic which compares the models with the model Phenotype ~ Sex 
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