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FIB PATTERNED TEMPLATES FOR GUIDED NANOSTRUCTURE FORMATION 

Hao Wang, PhD 

University of Pittsburgh, 2013 

 

There are many factors that limit significant advances in device technology, including the ability 

to arrange materials at shrinking dimensions and the ability to successfully integrate new 

materials having better properties with silicon. Methods for self-assembly of quantum dots are 

greatly desired for new devices which have smaller sizes, lower energy consumption, higher 

performance, and new functionality. To create such devices, a patterning method must be used 

that can arrange quantum dots at the appropriate length scales. A focused ion beam (FIB) is one 

method of laterally arranging nanosized islands of dissimilar materials on silicon by creating 

template patterns on the Si substrate with nanoscale resolution. The templates utilize surface 

topography features or chemical/compositional variations in the near surface region to promote 

self-assembly of nanostructurs. During FIB milling, surface topography is created as material 

removed, however, implanted Ga is added which can form clusters or nanocrystals upon 

heating.1,2 Both processes are of potential interest for lateral positioning of nanostructures.  

For example, if large enough amounts of Ga are implanted near the surface, Ga surface 

islands could result upon annealing with the potential to be converted to Ga-based compounds, 

such as GaN, on Si through chemical reactions. GaN is a direct band gap material and of interest 

LED and photodetectors.3–6 However, growth of GaN directly on silicon, the most 

technologically important substrate, is a challenge due to the thermal expansion coefficient 

mismatch between the GaN and Si substrate. 
 iv 



We have used two approaches in our studies. The first approach would be to understand 

the conditions that may induce Ga nucleation on the surface of FIB patterned Si substrates upon 

annealing. In the second case, the as-formed patterns could be used as topography templates. The 

templates could be potentially used to influence the growth of strain-induced nanoislands that 

form when strained SiGe is deposited on Si substrates. In our initial experiments, we have 

explored ex-situ FIB patterning and magnetron sputtering to deposit SiGe on FIB patterned Si 

substrates. The goal of these experiments is to understanding how the FIB patterning conditions 

and SiGe deposition conditions influence surface island formation in this system.7  
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1.0  INTRODUCTION 

1.1 MOTIVATION 

The ability to produce semiconductor nanostructures such as quantum dots (QDs) at specific 

locations on a substrate is important for nanoelectronic applications. For quantum dot device 

applications’ development, zero-dimension structures are meaningful because of their discrete 

energy spectrum; and what is more, because they show genuine few-carrier effects. In order to 

create such new devices, a patterning method must be used that can arrange quantum dots at the 

appropriate length scales.8–13 A focused ion beam (FIB) is one method of laterally arranging 

nanosized islands of dissimilar materials on silicon by creating template patterns directly on the 

Si substrate with nanoscale resolution. To promote self-assembly of nanostructures, techniques 

such as surface topography features or chemical/compositional variations are used in the near 

surface region of these templates. Two changes are taking place simultaneously during the 

milling process: surface topography is created as material being removed while implanted Ga is 

added. The implanted Ga can form clusters or nanocrystals when heating.11,14 Both processes are 

of potential interest for lateral positioning of nanostructures.   

One possible concern for device applications is the effect of the implanted Ga that is a 

result of the milling process. Implantation can result in damage to the lattice, unwanted doping of 

the substrate, and/or nucleation of Ga nanocrystals from the implanted material. On the other 
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hand, it may also be desirable in some scenarios to take advantage of the implanted material and 

nucleate nanostructures directly from it. For example, if large enough amounts of Ga are 

implanted near the surface, Ga surface islands could result upon annealing with the potential to 

be converted to Ga-based compounds, such as GaN, on Si through chemical reactions. GaN can 

be used as a direct band gap material; at the same time, it is also a useful component for 

electrically pumped ultraviolet–blue LEDs(light-emitting diodes), photo detectors, lasers, and 

possibly used for single photon sources.15–18 However, growth of GaN directly on silicon, the 

most technologically important substrate, is a challenge due to the thermal expansion coefficient 

mismatch between the GaN and Si substrate.19–21  

We have used two approaches in our studies. The first approach would be to understand 

the conditions that may induce Ga nucleation on the surface of FIB patterned Si substrates upon 

annealing. In the second case, under low dose FIB patterning conditions, it is presumed that Ga 

surface nucleation will not happen. Hence, the as-formed patterns could be used as topography 

templates. The templates could be potentially used to influence or guide the growth of strain-

induced nanoislands that form when strained SiGe is deposited on Si substrates.  We have 

explored ex-situ FIB patterning and magnetron sputtering to deposit SiGe on FIB patterned Si 

substrates in our initial experiments. Sputtering is commonly used in industry for depositing thin 

films. This method can bring about relatively high quality epitaxial deposition22 and compare to 

other techniques, it could get higher growth rates than e-beam deposition method at lower 

temperatures than could be achieved with CVD techniques.23  The goal of these experiments is to 

first set up conditions under which epitaxy can be achieved at relatively low growth temperatures 

using magnetron sputtering under typical high vacuum pressures, and second understands how 
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surface island formation can be influenced by the FIB patterning conditions and SiGe deposition 

conditions in this system. 

 

1.2 BACKGROUND 

1.2.1 Methods of producing quantum dots 

The recent focus of semiconductor quantum dots fabrication is spontaneous 3D (three 

dimensional) islanding approaches. the quantum dots formation can be achieved in multiple 

ways.24 

The first method need to be mentioned is MBE (Molecular beam epitaxy). It is the low 

deposition rate (usually lower than 5 Å per second) makes this method so distinguish. These 

deposition rates allow the films to grow epitaxially but require relatively higher vacuum than 

other deposition methods to access the same impurity grade.25 The ultra-high vacuum and the 

low presence of carrier gases could lead to the highest accessible purity of the films. However, 

the most obvious drawback of MBE is that it’s expensive and will need dedicated effort and 

significant amount of time to maintain such ultra-high vacuum.  Moreover, neither the kinetic 

energy of the atoms nor the growth rate of desired thin film materials can be adjusted.  

There are also reports indicated that metal organic vapor phase epitaxy (MOVPE) 

conditions was used for growing quantum dot arrays in the InGaAs/GaAs system.26 The 

nanoscale In droplets can form on a GaAs (100) substrate during the decomposition of 
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trimethylindium (TMI at temperatures as low as 160–360 °C. 26 This lower temperature can 

make it easier to use plastic or organic substrates for QDs growth. Besides, this is a more 

economic and energy-saving method if use in industry. 

Some recent researches showed that the discrete quantum dots can be formed using 2D 

(two-dimensional) electron present in quantum wells or semiconductor materials’ 

heterostructures.10 After coating the sample surface with a thin resist layer, the desired pattern 

can be created in the layer by electron beam lithography. This pattern will be conveyed by 

etching.10 The benefit of this technique is that it is easier to control the positions of self-

assembled quantum dots.10  

1.2.2 Ga and GaN quantum dots 

For many optical device applications’ developers, gallium nitride (GaN) is a kind of ideal direct 

band gap semiconductor materials. GaN, with a band gap of 3.4 eV at 300 °K48, is widely used in 

UV blue LED (light-emitting diodes), photo detectors, lasers.3–6 The synthesis of two 

dimensional structures (thin films) and one-dimensional structures (nanowires and nanorods) has 

consumed a lot of time and fund. However, Because of their discrete energy spectrum and the 

few-carrier effects they display, zero-dimension structures are more meaningful to quantum dot 

device applications. A significant amount of studies about synthesis quantum dots has been 

launched; but how to directly grow gallium nitride quantum dots on silicon still needs a lot of 

work.  

There are many factors that limit significant advances in device technology, including the 

ability to arrange materials at shrinking dimensions and the ability to successfully integrate new 
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materials of better properties with silicon. Methods for self-assembly of quantum dots are greatly 

desired for new devices which require smaller sizes, lower energy consumption, higher 

performance, and new functionality. In order to create such new devices, a patterning method 

must be used that can arrange quantum dots at the appropriate length scales. A focused ion beam 

(FIB) is one method of laterally arranging nanosized islands of dissimilar materials on silicon by 

creating template patterns directly on the Si substrate with nanoscale resolution. In order to 

encourage nanostructures’ self-assembly, chemical/compositional deviations or surface features 

was used in the near surface region of templetes.82 During FIB milling, surface topography is 

created as material is removed, however, implanted Ga is added which can form clusters or 

nanocrystals upon heating1,2. Both processes are of potential attention for lateral positioning of 

nanostructures.  

As a pre-patterned source of Ga,  these templates can be further transformed to other 

useful Ga based semiconductor compounds.83 For example, by implantation of Ga at 120 kV 

followed by implantation of N, we have created synthesis of GaN quantum dots.84 We could also 

systhesize Amorphous GaN by implanting Ga into amorphous SiN.85 Recently, some researchers 

has reported that the low energy implantation is now available to implant Ga near the surface of 

SiN then get GaN.86  

This technique mentioned above therefore offers the potential to combine the most 

prominent LED materials with Si, the cornerstone of the semiconductor industry. The emergence 

of Nitride-based semiconductors brought in new ideas to semiconductor optical device 

applications. In particular, Because its potential to be used in next generation light-emitting 

devices, self-assembled GaN quantum dots became attractive.87 By using metal-organic chemical 

vapor deposition (MOCVD) on AlxGa1−xN surfaces88 and by molecular beam epitaxy (MBE) on 
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a AlN surface, The formation of GaN quantum dots became achievable.89 However, growth of 

GaN directly on silicon, the most technologically important substrate, is a challenge due to the 

thermal expansion coefficient mismatch between the GaN and Si substrate.19–21  By using the 

FIB to directly create nanoislands, we allow relaxation at the surface, when forming the nanodots 

on highly mismatched substrates.90 

1.2.3 Nucleation of Ga clusters 

Ion implantation technology is mainly used to dope semiconductors in modern electronics 

industry. It has also been used in ion-beam synthesis (IBS) to generate growth source for 

nanostructures.27, 28 This includes self-assembled quantum dots formed in a bulk matrix and 

under-surface precipitates that form after annealing ion-implanted materials. For example, it has 

been demonstrated that high doses of Ga implanted into SiO2 followed by annealing can result in 

the formation of Ga nanodots at random locations.29 A Ga+ ion source is usually used in Focused 

ion beam systems (FIB) for engineering reasons. The movement of the ion beam can be 

controlled in these systems to form the desired pattern. Thus, FIB systems are most frequently 

used for maskless lithography and micromachining. One of the most important applications is to 

prepare samples for transmission electron microscopy (TEM), where the FIB is used as the 

material removal tool. It is suggested in an article from Kammler et al.1, implanted Ga atoms can 

be created when FIB micro patterning of Si(001) surfaces by using Ga+ ions. And then the Ga 

atoms will diffuse to the surface during annealing process, and eventually form a modified 

surface region which can act as a surfactant. However, in this case it is unclear whether the Ga 

atoms actually diffuse to the top of the surface, or if they may instead form sub-surface clusters, 

or precipitate underneath the surface. 
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Figure 1.1 Ga nanodots on SiO2 surface fabricated by FIB with different dosages. 29 

 

To effectively apply the FIB to the synthesis of surface nanostructures at specific spots, 

we need to stick to several pieces of guide.  First, the implanted material must be implanted at 

levels above the solubility limit of the host material.  It is advantageous to choose the implant 

and host pair with low solubility. Second, the chemical reactivity between the host material and 

implanted ions can’t be ignored. We are pursuing chemically stable implants in the host material, 

although certain chemical reactivity, such as the implanted material reducing the host, will be 

helpful. Finally, it will be helpful if the surface region of the substrate becomes amorphous, so it 

will be easier for the implanted material to move to the surface. There are some other factors that 

can affect the characteristics of surface precipitates. The size of pattern area, annealing condition, 

relative surface energies of segregated material and host surface will all contribute to the 

diffusion behavior.29 It has been reported by Buckmaster 29 that Ga nanodots can be formed on 

SiO2 surface with the help of FIB, as shown in figure 1.1. In this approach, they use trench 

patterns with different dosages to observe the formation of Ga nanodots after vacuum annealing. 

The morphology of the Ga nanodots is closely related to Ga dose, showing a critical dose needed 
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for nucleation that results in Ga nanodot formation just below the surface, while at higher doses 

Ga nanodots form on the surface as metallic Ga droplets.29 

1.2.4 Deposition of SiGe on Si substrates 

Usually, lattice mismatched heteroepitaxy, large strains and the significant amount of resulting 

elastic strain energy are interrelated. The reason is that morphological evolution of the growing 

film or the introduction of misfit dislocations could release the lattice mismatch.  Under proper 

growth condition, the conventional strain relaxation mode, which is forming misfit dislocation, 

will not be observed. Instead, new phenomena of three dimensional surface roughening will take 

place and become the new strain relaxation process. The unwanted excessive elastic energy will 

be released much more due to the 3D relaxation mode compared to the 2D mode. The surface 

roughness expresses the  form of isolated islands with high lattice mismatch.30 The shapes in the 

transition process depend on temperature; and the islands will change back to dome-shape form 

pyramid-shape when cooling down.31 The larger the mismatch strain is, the smaller size of the 

quantum dots.32,33 All of above suggests that the larger lattice mismatch strain (due to higher Ge 

content) is, the smaller quantum dots size will be. Increasing Ge concentration will increase the 

kinetics of the island formation, as a result, wetting layer will be thinner and evolution of the 

surface morphology will be faster. 

For a lattice mismatched system, such as SiGe/Si, the topography created by the FIB can 

lead to the formation of strain-relieving islands at preferential sites. This applies not only to 

SiGe/Si, but also in theory to any lattice mismatched film grown on a dissimilar substrate. There 

have been recent examples of this for InAs/GaAs and Cu2O/SrTiO3 material systems.34,35 For the 
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case of SiGe/Si, it has been demonstrated using conventional molecular beam epitaxy (MBE), 

i.e. electron-beam evaporation of Si and Ge under UHV conditions (less than 1x10-10 Torr), that 

deposition of epitaxial strained SiGe on top of a FIB patterned Si substrate can lead to 

preferential island formation at pit edges (which can be found in figure 1.2) under appropriate 

growth conditions  where the kinetics are limited by lower growth temperature and higher 

growth rates.13 In this case, the FIB patterning was done ex-situ to the MBE growth chamber, 

and it is believed that the topography of the substrate is guiding the formation of the quantum 

dots.  The size of the pit should be dependent on the strain in the film, but may also be modified 

by growth conditions and film thickness. In the preceding experiments7,32,36,37, the Ge 

concentration was set at 30%, we got a 20 nm wetting layer thickness underneath a pit 

approximately 70 nm wide. Much higher Ge concentrations supposed to be applied in the future 

experiments to reduce the pits size and wetting layer thickness. The Ge concentration needs to be 

raised above 70% to achieve sizes below 20nm. We need to control the Ge diffusion at high 

growth temperature to obtain the high Ge concentration while keeping the same morphology. 

Along with the high concentration, a higher Ge growth rate is also required, but the MBE system 

can’t meet the requirement. 
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Figure 1.2 AFM 2 µm x 2 µm images of 20 nm Si0.7Ge0.3 film grown at 550 °C and 0.9  Å/ s on a 7 nm 

Si buffer layer for patterned region within the FIB array. 13 

 

It has also been proven that the nucleation of discrete Ge islands on FIB patterned sites 

can be reached by using ultra high vacuum chemical vapor deposition (UHV-CVD).38 As the 

situation discussed here, the FIB patterning was an in-situ process. The Ga will behave as 

surfactant and play an important role in the geometry size and islands’ properties no matter it is 

beneath the surface or on top of the surface.1 However, the problem is, the growth rate is also 

reduced as the temperature is reduced during CVD growth.  Therefore, unlike the situation in 

MBE, neither growth temperature nor growth rate can be adjusted individually.  This makes it 

more difficult to achieve conditions of limited kinetics for higher Ge concentrations. 

Another possible technique is sputtering. There are many benefits using sputtering, 

including the reduced cost and versatility. In industry the use of high vacuum sputtering is wide 

spread, which makes the sputtering method more attractive for potential industrial applications. 

In addition, epitaxial growth can be achieved, potentially at lower substrate temperatures and 
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there are additional means of adjusting the kinetic energy of the sputtered atoms. Sputtering 

growth provides more options for modifying the nucleation and growth of surface structures, 

which are not available with MBE.  The composition of the layer and therefore strain can be 

varied by independently changing the power to each of the sputtering sources. The crystalline 

quality and electronic properties of UHV sputtered films have also been shown to be comparable 

to those grown by MBE.39–42 Apart from a roughening at very low misfit, both the defect 

structure and surface morphology of films sputter-grown at high average adatom excess energy 

are very similar to those observed in films synthesized by conventional growth techniques such 

as MBE and CVD.42 Island morphologies similar to those observed using MBE have also been 

demonstrated using UHV sputtering.43–45  A much higher growth rates can be achieved for Ge 

deposition, which will be important for studies of kinetic effects.  

1.3 APPLICATION OF GAN  

1.3.1 High-efficiency light-emitting diodes (LEDs) 

The active layer of semiconducting material is used in an LED device with a sandwiched 

structure. The active layer is located between n-type and p-type semiconductor cladding layers. 

Electrons from the n-type material will jump into the conduction band of the active layer when a 

voltage is applied to the junction. At the same time, holes from the p-type layer will move into 

the valence band.46 When the recombination between the electrons and holes happen, light 

emission will occur in the active layer.46 
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Some specific types of GaN nanodots and GaN nanostructure can be used in 

manufacturing the LED devices. These nanodots and nanostreuctures formation process are 

carefully control in order to get specific geometry. By fine tuning the parameter GaN’s size and 

nanostructures’s dimensions, this kind of LED devices can excite light with different 

wavelengths, which means different colors. In addition, the GaN nanodots structures with 

shrinking dimension will make the future laser diodes’ size much smaller than current ones. The 

shrinking size, as a result, will lead to an obvious energy-saving effect. Running for the same 

period of time, the new devices will consume much less energy than current ones. 

1.3.2 Short wavelength laser diodes (LDs) 

In laser diodes’ circumstances, it is necessary to use additional light-guiding layers to sandwich 

the active layer and then to restrict the light within the light-guiding layers if the active layer is 

too thin to restrict the light within the active layer. Because of the refractive index difference 

between light-guiding and the cladding layers, the light generated at the active layer is restricted 

within the light-guiding layers.47 This sandwich style structure is called a separate-confinement 

heterostructure (SCH) because the light and guided along parallel by different layers( active 

layers and light guiding layers). Mirrors are used at the ends of the light-guiding layer to reflect 

the light back and forth. The reflected light can trigger other electrons to recombine with holes; 

then cause the release of further light and magnify the light when there is population inversion.48 

At a certain current (the threshold current), strong stimulated emission can be detected at the 

edges of the light-guiding layers, and the device is called an LD. Achieving continuous wave 

GaN–InGaN laser diodes is very important for technology development.49. 
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 If the size of individual GaN nanodots and the geometry of the GaN nanostructure can be 

chosen precisely, the laser with specific wavelength can be excited. Thus desired laser can be 

produced by this kind of devices. Beyond the ability of accelerating different laser, with the 

shrink dimension of the GaN nanodots structures, the whole size of the laser diodes can be much 

smaller than what we currently have. 

1.3.3 UV Photo-detectors 

The AlGaN system with 3.4–6.2 eV band gaps is the best candidate material for the application 

of ultraviolet (UV) detectors. Usually, materials with smaller band gap are more sensitive to 

infrared and visible radiation. This character makes the AlGaN used in nitride devices such as 

laser detectors, ozone monitors, flame sensing, and pollution monitoring.46 The responsivity cut-

off wavelength can be adjusted within the range of 365 to 170 nm by adjusting the amount of 

Aluminum. 46 As a sequence of the direct gap of the Ga-rich alloys, the quantum efficiencies of 

the AlGaN system are high. With that being said, this system is very suitable to form 

heterojunctions and it can operate at relative high temperature. As a result, AlxGa12xN tends to 

be ideal material to fabricate UV detector. 46 

In our case, if the size of individual GaN nanodots and the geometry of the GaN 

nanostructure can be controlled precisely, the specific wavelength can be collected preferentially. 

By adjusting the parameter of the GaN nanodots and the structure, the device can be made to be 

sensitive to desired UV with given wavelength. 
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1.4 SIGE QUANTUM DOTS 

Silicon photonics have promising potential for the next generation of high-performance 

optoelectronic devices.50 Because modulators make waveguides optically connect to detectors on 

silicon photonic chips, they become indispensable parts of these devices. To make these devices 

commercial accessible, The main problem is fabricating higher speed silicon photonic devices 

with more reasonable cost.51  The key to fabrication of these kinds of devices is heteroepitaxial 

growth of semiconductor structures. Also, quantum computers can utilize SiGe quantum dots 

structures as the basic processing unit. 61 Due to the quantum effect, the electrons will be 

confined in a four-side-wall shape structure. The unit can represent “1” by charging the electrons 

in “/” direction and represent “0” by charging the electrons in “\”direction. 

However, if the epitaxial layer has a different lattice constant than the substrate, there will 

be a lattice mismatch, which can cause large strains to develop in the epitaxial layer. To lower 

this negative effect, we can try to form islands on the surface of the film.51 With the help of 

relieving the strain, quantum dots could self-assemble into two-dimensional arrays with specific 

order on the film surface.62  

Restricting SiGe island formation to occur at just the template sites formed during FIB 

milling sites will be the goal of this set of experiments. To form the desired quantum dot 

structures, we need to have the ability to control the position and size of the quantum dot to meet 

the application requirement. By changing the dosage at the milled sites, the thickness of the 

buffer layer and the growth rate of the alloy thin films, we will explore how this impacts island 

formation under epitaxial growth conditions. During this process, the strain due to lattice 

mismatch between the SiGe thin film and Si substrate is the dominant factor that will determine 
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the final morphology of the nanostructures. The kinetics in this self-assembly process can be 

manipulated by varying the growth rate or the growth temperature.  

The wide range of dosages (0.2 x 1015/cm2 to 20 x 1015/cm2) may need to be chosen to 

provide a large window for the formation of SiGe quantum dots. Based on the wider selection of 

dosages, we can expect higher possibility to observe the preferential formation of SiGe quantum 

dots on the FIB patterned sites. 

Higher Ge concentration will require careful consideration of the kinetics during growth. 

Higher Ge concentration results in smaller self-assembled structures, which would be better for 

quantum confinement purposes. The growth temperature will need to be kept relatively low to 

suppress islanding and interdiffusion which could lead to overall lower effective concentrations 

and larger characteristic sizes. To suppress islanding for pure Ge, it is expected that the kinetics 

must be slowed down even further compared to the growth of the 30% Ge structures32 since 

relaxation processes such as islanding happen much more quickly for higher strain levels, 

because higher Ge concentration will cause larger lattice mismatch.  These constraints make 

growth rate the primary variable.  To achieve conditions which island formation required, the Ge 

composition must be increased from 30% to 50%; at the same time, the growth rate must be 

increased three fold as well32. Although much higher growth rates are not possible with our Si 

target, we have an unlimited range of growth rate with the Ge source. The strained alloy growth 

will be stopped before island formation begins in order to study the initial pit formation process 

in more detail. The whole process is expected to be strongly dependent on composition, film 

thickness, and growth temperature and growth rate. The growth window for producing quantum 

dot structures is rather narrow, rendering it difficult to tailor the length scale of the structures. In 

addition, for high misfit systems, the energy barrier for island nucleation is relatively small, so 
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that islands already provide an efficient means of strain relaxation before a sufficient wetting 

layer for pit formation is reached. Very thin wetting layers that typically result for high Ge 

concentrations would limit the size of its making but clusters favored in order to relax strain. 

1.5 GERMANIUM QUANTUM DOTS 

Another potentially useful application is to use the pit arrays as templates to guide the formation 

of pure Ge nanodots. The combination of Ge self-assembled quantum dots and complementary 

metal oxide semiconductor (CMOS) technology is now achievable. This combination can be 

used for light emission in the range of  telecommunication wavelengths.63 These benefits make 

Ge quantum dots better material for templetes. Self-assembled Ge quantum dots can be created 

by growing the epitaxial Ge layer on Si. And this kind of nanostructure has the potential to be 

used in quantum devices and solar cells.63   

Ge quantum dots with high density 3D packed array structures buried in Si substrate 

show supreme reduction of the thermal transport phenomena. 63–66 Gillet showed by varying the 

Ge concentration, 3D Ge quantum dots supercrystals in Si  can lower the thermal conductivity  

more than 0.04 W/m/K at room temperature.63–66 

Some other techniques can provide us with similar results other than the FIB patterning 

method. In an alternative method, electron-beam-induced carbon deposits are used as masks 

during the growing process. Selectively deposition of InAs quantum dots inside InP holes8 can 

be achieved by applying this technique. In this process, the InP holes were formed when the 

masks were partially overgrown by InP and then the mask was removed. This method can be 
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mimicked to the Si/Ge system.  Masks induced by E-beam can be fabricated on Si (001) 

surfaces.8 The pits were formed after the overgrowth of carbon deposition. Then the consistent 

arrays of Ge dots can be nucleated within and around the surface pits. Randomly distributed, but 

with similar structures can be found over the surface under MBE growth conditions. 8 It is 

predictable that the formation of Ge dot arrays are controllable by applying the e-beam guided 

carbon nanomasks technology. 

Ge has a larger lattice mismatch than SiGe alloy; so we will need to use a lower growth 

temperature or higher growth rate (>3 Å/s) and thinner Ge film thickness (8 Å or 16 Å) in order 

to suppress the Ge nanodots formation outside the patterned pit.   
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2.0  EXPERIMENTAL TECHNIQUES 

Un-doped Si (001) wafers purchased from Virginia Semiconductor® were used as substrates for 

all of the experiments in our studies. The two different experimental procedures are shown in 

figure 2.1. The silicon wafers were cleaned ultrasonically in acetone for approximately 10 

minutes followed by iso-propyl alcohol (IPA) for another 10 minutes before loading them into 

the dual beam FIB (Seiko Instruments SMI3050SE FIB-SEM). Controllable growth of 

nanostructures includes two approaches: 

1. Ga nanodot formation and Nitridation 

2. SiGe quantum dot formation 
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Figure 2.1. General experimental procedure in the FIB assisted nanostructure formation. 

2.1 FOCUSED ION BEAM (FIB) 

In a Focused Ion Beams ystem, a strong electric field is used to extract the ions from a liquid-

metal ion source (LMIS), then to form the ion beam. The positively charged ions are emitted by 

electric field from a liquid gallium cone.  The cone is formed at the tip of a high melting point 

metal (tungsten) needle. The chosen accelerating voltage is used to accelerate the emitted ions, 

then the ions would toward the sample surface.67  As soon as the ions touch the sample surface, 

there is a one-way energy transfer occurs from the accelerated ions to the atoms on the sample’s 

surface. There are some important effects when the Ga ion beam impinges the substrates. First, 
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the ion beam will sputter ionized and neutral atoms from the substrate, and this will lead to the 

removal or substrate mill effect which can be observed after the FIB patterning process by AFM 

or SEM.  Secondly it will cause the emit phonons, which will bring the temperature of the 

substrate at a small level. Thirdly, the incident Ga ion beam will lead to the transposition of the 

host material, and result damage to the substrate. Finally, this process will release electrons, and 

these emitted electrons can be used for imaging. That’s why usually FIB system also has the 

SEM column and the whole system is called dual-beam system.68 Three primary parameters in 

the FIB patterning process are accelerating voltage, focused ion beam current and focal 

adjustment. Given higher accelerating voltage, which means the ions projected from the column 

with higher energy, ions can penetrate deeper in the substrate and it also provides better 

adjustment for the focus. With higher beam current, the beam diameter will be larger and it will 

become harder to adjust the focus. So in this research, we tend to choose smaller beam current to 

achieve fine control of beam size and position. Carefully adjusting the focus and eliminating the 

stigma can help to reach the round and symmetrical shape of beam which also increase the 

resolution of the patterning process.68 
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Figure 2.2 Focused Ion Beam System. 68 

2.2 FIB PATTERNING PROCESS 

Some of the substrates used in these experiments were patterned before growth using a Focused 

Ion Beam (FIB). The specific instrument used was a Seiko Instruments SMI3050SE FIB-SEM 

with Oxford Instruments Inca XEDS. The ion are focused and accelerated down onto the sample 

with energy of 30 (or 10) keV and different beam currents ranging from 1 pA to 10 pA for the 

work described here. The appropriate alignments focus and astigmation procedures are done 

before patterning is started. Final focusing and astigmation are done at 150 kX magnification and 

are critical for creating the smallest, roundest holes possible during subsequent patterning.  

 Before creating the sputtered patterns, a marker bar is firstly fabricated by milling out 

large trenches that are easily seen under an optical microscope. These are used to aid in finding 

the patterned regions later in AFM analysis. After creating the marker bar in the center of the 
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sample, the sample is moved to the position for each of the patterns. The beam is blanked in 

between patterns and no more imaging is done on the sample at this point in order to prevent any 

damage to the rest of the substrate. The FIB patterns are shown in figure 2.3. 

 

Figure 2.3 FIB pattern diagrammatic sketch (no to scale).  
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For Ga and GaN samples, squares or trenches with different physical dimension and 

dosages were created. 

For SixGe1-x samples, arrays of holes were created as fabricated diameters of 30 nm, 

depth ranging from 3 to 30 nm, and spacing of 200 to400 nm. An AFM scan for one array can be 

seen in figure 2.5. In order to create these arrays, the Ga beam is rastered across the sample 

according to a predetermined bitmap file, which is the case produce an array of holes. The file 

used here is created by Dr. Gray. 

 

Figure 2.4 FIB pattern used for SiGe quantum dots growth. 
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Figure 2.5 AFM image of FIB dot array pattern Si substrate. Dosage is 3.0 x 1015/cm2, the voltage is 

30 kV and the beam current is 1 pA. 

 

2.3 SUBSTRATE CLEANING PROCEDURES 

Before being loaded into the magnetron sputtering system ultra-high vacuum (UHV) chamber, 

all the SixGe1-x samples need to be cleaned. The samples need to be soaked in in acetone and 

isopropyl alcohol (IPA) to remove backside tape first, then applied solvent clean. Finally, a 

4 .8 5  n m

-4 .9 2  n m
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modified Shiraki cleaning procedure needs to be performed to complete the cleaning process. 

The followings are the solutions used in the Shiraki procedure: 

1. IMEC = 4 H2SO4 : 1 H2O2, room temperature 

2. RCA-2 = 4 H2SO4 : 1 HCl : 1 H2O2 (heated to 85°C in water bath) 

3. Oxidation = 1 H2O : 3-4 HCl : 2 H2O2  (heated to 85°C in water bath) 

4. BOE = Buffer Oxide Etch = 7 Ammonium Fluoride : 1 HF 

All chemicals should be cleanroom grade. There are some requirements for the cleaning 

process: for the RCA and Oxidation solutions, the peroxide should be added just before the 

sample is ready for that step. A single beaker should only be used for one solution in one 

cleaning step. All acid beakers (include beakers used in solvent clean) should be pre-rinsed in DI 

water for 5 minutes before each use. The protection glasses and acid-proof gown need to be worn 

all the time for protection. Gloves need to be worn at all times and silver shield gloves are used 

for handling acid. The tweezers and sample dippers can only be touched with new and clean 

gloves. The entire procedure is performed under a hood operated at full flow. The following 

content is the step by step cleaning procedure, which includes the chemicals used at each step, 

time and temperature for each step. 

Solvent Clean: 

1. IPA -1 for 1.5 minutes in ultrasonic bath at room temperature 

2. Acetone-1 for 1.5 minutes in ultrasonic bath at room temperature 

3. Trichloroethylene for 10 minutes in 85°C water bath 

4. Acetone-2 for 1.5 minutes in ultrasonic bath at room temperature 

5. IPA-2 for 1.5 minutes in ultrasonic bath at room temperature 
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6. DI rinse in DI-1 for 5 minutes 

 

IMEC 

1. Mix enough solution to just cover sample in IMEC beaker 

2. Immediately add sample 

3. Etch for 5-7n minutes 

4. DI rinse in DI-1 for 2 minutes 

5. BOE dip in HF-1 for 15 seconds 

6. DI rinse in DI-1 for 5 minutes 

 

RCA-2 

1. Add peroxide to hot HCL solution 

2. Add sample 

3. Etch for 2-3 minutes 

4. Dip rinse in DI-2 

5. 15 seconds dip in BOE (HF-2) 

6. Dip rinse in DI-2 

7. Repeat steps 3-6 two more times with final BOE dip in HF-3 beaker 

8. DI rinse in DI-2 for 5 minutes 
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Oxidation 

1. Add sample to oxidation beaker so that it is lying facing up on the bottom of the 

beaker 

2. Add half of the peroxide and wait for 5 minutes before adding the other half 

3. After 10 minutes, reaction should be complete (no significant bubbling) 

4. Rinse in DI-2 for 10 minutes or longer 

 

After cleaning process, an N2 gun is used to blow the sample until completely dry. The 

samples also need to be examined under a light to see if there are any particles or contamination 

before being loaded into the load lock of the sputtering system.  

2.4 PHYSICAL VAPOR DEPOSITION (MAGNETRON SPUTTERING) 

Sputtering, known as a physical vapor deposition process, is usually used for depositing thin 

films of metals, alloys, semiconductors and dielectric materials in a vacuum environment. An 

evacuated chamber with a pair of metallic electrodes comprises the basic sputtering system. A 

cathode, which should be connected to the negative terminal of a DC power supply, is usually 

used as the target (source). There is also a substrate to be used as the anode. The substrate can be 

process in multiple ways: grounded, biased negative/positive, heated or a combination of all 

these. The process also needs vacuum pumps to evacuate the chamber; as well as, a noble gas 

(argon, neon) is used as working gas to originate self-sustaining plasma under the condition of an 
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electrical discharge. The gas pressure need to be controlled in the range from a few to a few 

hundred millitorr in order to “strike” the plasma69,70.  

 

When positively charged inert gas atoms from the plasma sputter physically remove 

atoms from the target through momentum transfer, the sputtering happens. Therefore, in this 

stage sputtering can be considered as physical vapor deposition. The removed atoms then enter 

the plasma discharge region and finally deposit onto the substrate. Other particles (secondary 

electrons, negative ions) and radiation (x-rays) are also taken away from the target during 

sputtering. The emitted secondary electrons can promote the ionization of neutral argon atoms 

(in the plasma) during the sputtering process. Out of the purpose to increase the possibility of 

ionization, ring magnets are placed right underneath the targets to confine the electrons. Because 

of the configuration, the process tends to be magnetron sputtering. The Lorentzian force 

generated by the magnetic field then can trap the electrons within the magnetic field so that the 

electrons won’t lose to the sidewalls of the chamber. So magnetron sputtering helps to keep 

electrons in the plasma longer by trapping them. Then the ionization rate will be increased. 

Compared to conventional sputtering, the higher ionization rate could get plasma with lower 

strike pressure. The lower chamber pressure will increase the mean free path for the atoms while 

they move toward the substrate. In conclusion, magnetron sputtering brings about two kind of 

benefit: increased deposition rate and increased mean free path of sputtered atoms.  

The sputtering system set up used for deposition of thin films in all our studies is shown 

as a schematic in figure 2.1. It consists of a separate load-lock sample introduction chamber, a 

cryo-pumped main chamber, one RF and one DC power supplies, four UHV magnetron sources, 
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and all true UHV valves and seals. The system is primarily pumped by the cryo-pump, and is 

capable of achieving pressures in the low 10-10 torr regime with the recent addition of a getter 

pump. The chamber can hold substrate with diameters up to 4”. There is also a gas introduction 

ring on the substrate supply nitrogen for nitridation process. The gas sources should be purified 

to the parts-per-billion level before introducing into the chamber. In addition to that, the heating 

lamps can bring the substrate holder as high as 850ºC. The sputtering system also has the ability 

to uniform the thin film growth by rotating the substrate holder with the help of the motor. Bias 

voltage can also be applied to the substrate while heating it up. There is a reflection high energy 

electron diffraction (RHEED) system has been installed on the sputtering system. The primary 

usage of RHEED is monitoring the epitaxial quality and roughness of the surface in-situ during 

growth. 

The sputter rates for Si and Ge were calibrated using the KLA Tencor ‘Alpha-Step IQ’ 

Surface Profiler® at the University of Pittsburgh’s Nanoscale Fabrication and Characterization 

(NFCF) Facility. The substrate-target distance was maintained at 6 and 5 inches for the samples. 

The Si and Ge targets used were 2 inches in diameter, 0.125 inch thick, 99.999% pure and were 

purchased from Kurt J. Lesker Company®. The argon gas used was 99.999% pure, purchased 

from Valley National Gas®. All the sputtering processes were carried out at room temperature. 

The Si/SiO2 wafers were purchased from Virginia Semiconductor. The 2 inch wafers had 300 nm 

thermally grown SiO2 layer on the surface.   
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Figure 2.6 Magnetron Sputtering System used to grow all samples. 

2.5 REFLECTION HIGH-ENERGY ELECTRON DIFFRACTION (RHEED) 

The SixGe1-x films in this experiment were grown using a magnetron sputtering system. The 

growth surface is monitored in-situ using reflection high-energy electron diffraction (RHEED). 

This technique provides information on the surface structure and crystalline quality of the film 

during growth. The electron beam is operated at a voltage of 30 kV and current of 1.45 A. The 

beam covers an area approximately 2 mm in diameter on the sample surface and hits the surface 

at an angle of only a few degrees. Most of the incident electrons will only interact with the 

surface atoms due to the glancing angle. As we know, the two-dimensional surface in real space 

will yield rods lattice in reciprocal space and these rods are normal to the substrate surface. The 
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RHEED pattern is the result of the intersection between Ewald sphere and the reciprocal rods 

lattice. With all that being said, the RHEED patterns generated by the flat surface will have the 

shape of discrete streaks with different intensity. If the surface is disordered, the RHEED pattern 

will only consist long streaks. On the other hand, the RHEED pattern will be spotty pattern if the 

surface is rough. 71 That is because the electron is interacting three-dimensional structures rather 

than ideal flat surface. 72 The schematic of RHEED can be found in figure 2.7.  

 

Figure 2.7 Schematic diagram of RHEED used in the research. .  
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2.6 ATOMIC FORCE MICROSCOPY 

In AFM, a sharp probe scans across the surface. During the scan the monitor will record the tip-

sample interaction. In this research effort, all AFM analysis was carried out in tapping mode. 

Figure 2.8 represents a cantilever at the sample surface. The cantilever will move up and down 

when there is vertical excitation by a piezo stack. As the cantilever moves vertically, the position 

of reflected laser beam, so called “return signal,” will change direction and be recorded by a 

quad photodiode. It is this process generates the electrical signal. The tip deflection will change 

as soon as the tip encounters the surface. As a result, laser position will change on the quad 

photodiode. All these alterations will finally change the electronic signal that the instrument 

received. The whole procedure will disclose some characteristics of the material such as 

elasticity, magnetism and presence of electrical forces, as well as the vertical height of the 

sample surface. 
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Figure 2.8 AFM working status. 

 

The scan size is 512×512 pixels and the scan speed ranged from 1 Hz for 50×50 µm2 scan 

to 2 Hz for 1×1 µm2 or smaller scan size. The offline version of the software package Nanoscope 

III TM was used for processing the images. Dimension 3100 Digital instruments AFM is the 

equipment to be used, which belongs to MSE department of the University of Pittsburgh (as 

shown in figure 2.9). 
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Figure 2.9 AFM used to characterize all samples. 

 

2.7 TRANSMISSION ELECTRON MICROSCOPY 

Transmission electron microscopy (TEM) analysis was done using a JEOL JEM-2100F 

(Schottky field-emission electron gun (FEG) at 120kV up to 200kV). The TEM (figure 2.10) is 

part of the nano fabrication and characterization facility (NFCF) at the University of Pittsburgh. 

In TEM, a high-energy electron beam is scattered, as it is “transmitted” through the sample. The 

exiting beam has two major components: a transmitted beam and diffracted beams due to 

scattering from interacting with the sample. A bright field image is formed when only the 
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transmitted beam is used. A dark field image is formed when one of the diffracted beams is 

selected by using a selected area diffraction aperture. TEM images used for all our research 

studies were obtained from the bright field-imaging mode, dark field mode and selected area 

diffraction mode.  

 

 

Figure 2.10 The JEOL JEM-2100F TEM located in the nano fabrication and characterization facility 

(NFCF), University of Pittsburgh. 
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The JEOL JEM 2100 F is also equipped with high angle annular dark field (HAADF) 

detector. The HAADF collector only collects the incoherent electrons, which are not Bragg 

diffraction electrons. These electrons carry the elemental information.  

2.8 TEM SAMPLE PREPARATION 

2.8.1 TEM Plan View Samples Created by Mechanical Thinning and Chemical Etching  

The TEM sample for the HR-TEM experiment is specially made at the MEMS lab at the 

University of Pittsburgh. Figure 2.11 shows the schematic drawing of the Si sample. The Si piece 

holder is 320 nm thick and 2 by 4 mm in size to fit in the TEM sample holder.  The fabrication 

procedure for the Si piece holder is also shown in figure 2.11. SOI (silicon on insulator) wafers 

(320 nm thickness of device layer, (100) orientation) on 1000nm oxide layer with about 700um 

handling layer were commercially purchased.  

First, the wafer is cut into rectangular pieces that fit the TEM sample holder (in our case, 

2x4 mm). Then the pieces are thinned to about 100 um by mechanical (hand) polishing. Then 

each 2x4mm chip is placed on a glass slide, covered by melting wax layer with a hole in the 

center that exposes about 1mm circle on the back and covers the rest, and the circle is wet-etched 

with silicon etchants. In this etching process, we apply two etchants contain the same chemicals 

but with different concentration. The etchants contains hydrofluoric acid (HF), acetic acid 

(CH3COOH) and nitric acid (HNO3). The fast etchant is used in the initial step of the etching. Its 
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ratio is HF: CH3COOH: HNO3 = 3:3:5. When we find relatively large area of exposed silicon 

glares red under optical microscope, we stop the fast etching and change to the slow etchant. The 

ratio of the slow etchant is HF: CH3COOH: HNO3 = 3: 6: 5. The etching will be stopped when 

multiple small holes are found in the etched area. The Si specimen is placed under a low 

magnification optical microscope, the source of light comes from the back, and monitored while 

it’s being etched – the trained eyes are supposed to be able to identify when to stop the etching 

the optically transparent areas begin to show. This usually takes from 10 to 30 min. The etch 

stops when the etchant reaches the oxide layer. These specimens are then thoroughly cleaned in 

sulfuric acid (soaked in it overnight). Clean chips are stored in DI water until it’s time to load 

them in the TEM. Each chip is etched in 1:5 HF: H2O immediately before loading to remove the 

oxide layer and expose the SOI membrane. Our oxide was 1 um thick, and the last step took 

about 45min to remove all traces of oxide. The electron transparent areas are about 10-100um in 

lateral size (this depends on when the silicon etch has been stopped – less than 10um is not that 

useful, more than 100um is too fragile). 
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Figure 2.11 Fabrication Process of TEM samples. 

 

2.8.2 Nonporous Amorphous Silicon Membrane 

UltraSM TEM Window substrates (from SiMPore Inc.) were also utilized as the substrate for 

gallium templates. The key difference between this method and the one we discussed in the 

previous section is that these substrates are amorphous Si.  These TEM substrates consist of 9 

square windows. Each window has identical dimensions, 100 µm by 100 µm. The nonporous 

amorphous silicon membrane in each of the square windows has a thickness of 15nm, which is 

suitable for transmission electron microscopy (TEM) analysis. 
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2.8.3 TEM Plan View Samples Created by FIB 

A new method of making plan view TEM sample in the FIB will also be tried to characterize the 

Ga nanocrystals. The first step of making a plan view TEM sample is the same with the one in 

ordinary FIB cross-section sample preparation procedures. After the sample has been mounted 

on the TEM grid (as shown in figure 2.12), we will use Ga ion beam to thin the sample from the 

back side to reach the thickness which is electron transparent in TEM.73 

 

 

Figure 2.12 Plan view TEM samples preparation procedure. 
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3.0  GALLIUM NANOISLAND FORMATION 

The primary objective of this study is to form gallium nanodot templates. The templates on 

silicon substrate using a focused ion beam direct patterning method will be used as a source of 

gallium for the eventual conversion to GaN. Such a method can be applied to controllably form 

gallium nanodots of specific sizes at a particular position on the substrate to create new device 

structures.  Since an un-doped silicon substrate itself contains no trace of gallium, the technique 

discussed here employs different dosages to fabricate the gallium template on standard Si 

substrates and on thin amorphous Si membranes for analysis using transmission electron 

microscopy.  

3.1 OVERALL EXPERIMETAL DETAILS 

Si (001) substrates were used for most of the Ga templates in the study.  The silicon wafers were 

cleaned ultrasonically in acetone for about 10 minutes followed by iso-propyl alcohol (IPA) for 

another 10 minutes before loading them into the dual beam FIB (Seiko Instruments SMI3050SE 

FIB-SEM). The gallium templates were patterned in the dual beam FIB using a beam current of 

10 pA and an accelerating voltage of 30 kV.  These patterns consisted of a series of rectangular 

trenches which were milled using dosages that varied from 29 x 1015/cm2 to 42 x 1015/cm2 

(number of ions/ cm2).  The width of the trench patterns was also varied, including trench widths 
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of 50nm, 100nm, 200nm and 300nm. All the trench patterns created had a uniform length of 5 

µm. We choose wider dosage window for patterning to explore the effect of dosage applied in 

FIB process on the formation of Ga nanodots. Multiple geometry dimensions have also been 

used in this experiment to evaluate the relationship between the size of Ga nanodots and the 

dimension of the pattern area. 

To confirm the formation of gallium nanodots, UltraSM TEM Window substrates (from 

SiMPore Inc.) were also utilized as the substrate for gallium templates. The key difference is that 

these substrates are amorphous Si.  These TEM substrates consist of 9 square windows. Each 

window has identical dimensions, 100 µm by 100 µm. The nonporous amorphous silicon 

membrane in each of the square windows has a thickness of 15nm, which is suitable for 

transmission electron microscopy (TEM) analysis. 

After removal from the FIB system, the samples were ultrasonically cleaned in acetone 

and IPA before being loading into an ultrahigh vacuum (UHV) chamber with a base pressure of 

1 x 10-9 Torr and annealed at 600 °C for 1 h.  This annealing time and temperature was chosen 

based on previous reports found in the literature of Ga droplet formation in SiO2. After removal 

from the vacuum chamber, the samples were analyzed using an atomic force microscope (AFM) 

(Digital Instruments DimensionTM 3100) in tapping mode to obtain the topography information 

of the templates both before and after annealing. High resolution-transmission electron 

microscopy (HR-TEM) analysis of the gallium nanodots formed was conducted using a JEOL 

JEM-2100F.   

An overall AFM topography image of the trench patterns created in the FIB is shown in 

Figure 3.1. The trench width varies from 0.05 µm to 0.3 µm, and the dosage has a range between 
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29 x 1015/cm2 and 42 x 1015/cm2.  It is observed that in the template before heating, there is no 

topography features inside the trenches which appear to be flat in AFM profile measurements.  

However, it can be seen in AFM images after annealing that features form in the trenches.  This 

can be explained by the diffusion kinetics.  Before vacuum annealing, the gallium atoms locally 

implanted in the silicon substrate do not have sufficient energy to diffuse in the substrate to form 

gallium dots. During vacuum annealing, the large number of gallium atoms implanted in the 

silicon substrate have enough thermal energy to allow the formation of nanodots to occur.   

 

Figure 3.1 (a) overview AFM image of trench patterns before annealing. (b) Higher magnification of 

image of a single trench illustrating lack of topography in bottom of trenches before annealing.  Image is of 

trench in lower left corner of Fig 3.1(a). 

   

3.2 GALLIUM TEMPLATES USING DIFFERNET DOASGE 

Three different dosages of 35 x 1015/cm2, 39 x 1015/cm2 and 42 x 1015/cm2 were used to compare 

gallium nanodot formation as is shown below in figure 3.2. All the trenches compared here are 
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with the same trench width of 200nm. It is observed that gallium nanodots were pervasively 

present in  different trenches with different dosages as seen in figure 3.2. Based on the images 

obtained from AFM and the measurements made on the nanodot structures, it is found that there 

is a relationship between the dosage and the average diameter and height of the gallium 

nanodots, which is showed in fig 3.2 (d). The nanodots in the higher dosage trench have on 

average greater diameter and height.  
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Figure 3.2 AFM image of trenches with different dosage after annealing: (a) 35 x 1015/cm2, (b) 39 x 

1015/cm2 and (c) 42 x 1015/cm2 nm, (d) Ga nanodot diameter and height vs. dosage. 
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3.3 GALLIUIM TEMPLATES USING DIFFERENT TRENCH WIDTH 

The effect of trench width on Ga nanodot formation was also analyzed.  This also confirmed 

from another aspect that with more gallium implanted, the nanodots tend to grow larger. With 

larger width, even when the dosages are the same, the total amount of gallium atoms will be 

greater, which means the total source of gallium atoms that can diffuse and form nanodots is 

larger (shown in figure 3.3). Given that there is enough energy at 600 °C in vacuum during the 

annealing process, the gallium atoms implanted in the substrate can form the nanodots during the 

one hour anneal, with an average size that depends on the total amount of Ga available in the 

irradiated area. 
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Figure 3.3 AFM image of trenches with different width after annealing: (a) 50 nm, (b) 100 nm, (c) 

200 nm, (d) 300 nm, (e) Ga nanodot diameter and height vs. trench width. 
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3.4 GALLIUM TEMPLATES PATTERNED ON AMORPHOUS SI TEM WINDOWS 

Gallium nanodots formed on the non-porous amorphous silicon TEM membrane are shown in 

figure 3.5. The dosage used here is 35 x 1015/cm2. To confirm that these nanodots are most likely 

Ga nanocrystals rather than small regions of crystallized Si, HAADF-STEM was used since it is 

the most suitable method for Z-contrast imaging and therefore ideal for characterizing these 

nanocrystals. By using a STEM detector with a large inner radius (a HAADF detector) electrons 

are collected which are not Bragg scattered. HAADF images show little or no diffraction effects, 

and their intensity is approximately proportional to Z2 .74  A high density of bright dots was 

detected in the silicon membrane for the patterned area. It can be determined from the HAADF 

images that the smallest size of gallium nanodots is approximately 5 nm. HR-TEM images also 

confirm this measurement. The background contrast in figure 3.5 (c) and (d) is due to the 

amorphous silicon membrane. It can be seen from the HRTEM image that the gallium nanodots 

are crystalline because of the presence of the atomic lattice fringes. A conclusion can be made 

that in the vacuum annealing process the crystallization of the gallium nanodots occurs. 

The smallest visible gallium nanodot size seen in the TEM images is approximately 5nm. 

Given the density 5.91 g/cm3 and molecular weight of 69.72 g/mol for gallium, we can obtain the 

result after calculation [from equation (1) to (4)] that the smallest nanodots contain 1670 Ga 

atoms (making an assumption that the gallium nanodots have a half sphere shape). The dosage 

used in the FIB was 35 x 1015/cm2, which equals 350/nm2, so the number of atoms needed to 

form the nanodots could come from a 5nm2 area. The nanodot sizes measurement from AFM 

images is different from what we observed from TEM images. This difference could come from 

three different sources: first, there could be possible differences in diffusion of Ga nanodots on 

 46 



the substrate and surface energies for a crystalline silicon substrate versus an amorphous silicon 

membrane. Another likely scenario could be that some of the gallium ions are able to penetrate 

through the very thin (15 nm) silicon membrane which means some of the Ga is not contained 

within the membrane, resulting in lower concentrations of Ga than what is expected. The third 

possibility may be within the TEM we are also seeing sub-surface cluster formation as discussed 

by Kammler el al.1, which may be smaller than the surface nanodots.   

 

                      …………………………….. (1) 

  

         ...…………………….. (2) 

 

                  …………………………… (3) 

        

    …………………………….. (4) 

Results based on equations 1-4 have been checked by using the SRIM (Stopping and 

Range of Ions in Matter) Monte Carlo simulation.75 This simulation uses the standard elemental 

data in the SRIM library, and 1400 ions per calculation which is based on the diameter of the 

focused ion beam multiplied by the dosage. The parameter set used in the SRIM simulations 

were as follows: Angle of incidence was 0° (normal incidence), the beam species Ga+, beam 

energy was 30 keV, the material was Si and the thickness of sample was 150 Å. We found that a 

significant number of ions penetrate through the entire thickness of the membrane in figure 3.4. 
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Figure 3.4 SRIM Monte Carlo simulation result of ions trajectories in Si with an accelerating voltage 

of 30 kV. Total number of ions is 1400. (a) Transverse view. (b) Ion trajectories. 
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Figure 3.5 HAADF and HR-TEM images of Ga nanodots on amorphous silicon membrane: (a) 

HAADF of template, (b) HAADF at higher magnification, (c) HR-TEM of Ga nanodots and (d) HR-TEM of 

Ga nanodots at higher magnification. 

 

 

 

(a) (b) 

(c) (d) 
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3.5 GALLIUM TEMPLATES WITH SQUARE SHAPE 

Si (001) substrates were used for all of the experiments in the study. The silicon wafers were 

cleaned ultrasonically in acetone for approximately 10 minutes followed by iso-propyl alcohol 

(IPA) for another 10 minutes before loading them into the dual beam FIB (Seiko Instruments 

SMI3050SE FIB-SEM). The substrate was patterned in the dual beam FIB using an accelerating 

voltage of either 30 kV or 10 kV and a beam current of 5 pA. The total number of Ga ions/cm2 

impinging on the surface during FIB pattering, commonly referred to as dose or fluence, was 

varied to investigate the effect on the Ga islands’ size. This value depends on the ion beam 

current used and milling time.  The patterned samples were ultrasonically cleaned in acetone and 

IPA before being loading into a vacuum chamber with a base pressure of 9 x 10-10 Torr and 

annealed at 600 °C for 1 hour. This annealing time and temperature was chosen based on 

previous reports found in the literature of Ga droplet formation on SiO2 and our previous 

experiments on thin amorphous Si membranes 76. 

In order to determine if the nanoislands formed on the surface were metallic, an HCl 

(37%, clean room grade) etch was used to preferentially remove any Ga from the surface of the 

Si. The samples were soaked in HCl at room temperature and ultrasonically agitated for 5 

minutes then rinsed under DI water for 5 minutes. An atomic force microscope (AFM) (Digital 

Instruments Dimension TM 3100 operated in tapping mode) was used to characterize the surface 

topography of all the samples before annealing, after annealing and post wet etching. 

The plan view TEM samples were made from SOI (silicon on insulator) wafers 

consisting of a 320 nm thick (100) Si layer on top of a 1000 nm oxide layer with an approximate 

700 µm handle base thickness. The samples were first thinned to about 100 µm by mechanical 
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polishing. Then final thinning was done by etching a small exposed area from the back-side of 

the samples. The etchant is a mixture of hydrofluoric acid (HF), acetic acid (CH3COOH) and 

nitric acid (HNO3). The samples were then thoroughly soaked in sulfuric acid overnight to 

remove any contamination. Each plan view sample was etched in 1:5 HF: H2O immediately 

before loading in the FIB to remove the oxide layer and expose the silicon membrane. For the 1 

µm thick oxide layer, it took about 45 minutes to remove all traces of oxide. The electron 

transparent areas are about 10-100 µm in lateral size. 

The effect of heating  substrate for various FIB patterns and conditions is first examined 

to determine under what conditions Ga surface islands will form. Clear evidence of island 

formation is seen for larger total ion exposures used in conjunction with relatively large square 

milled areas. An AFM topography image of the square milled patterns before and after annealing 

created with a total ion patterning dose of 2.9 x 1016 ions/cm2, a 5 pA beam current and 30 kV 

accelerating voltage in the FIB is shown in figure 3.6. Based on AFM analysis, the FIB beam 

shape is round and the diameter of a single point mill site is approximately 16 nm after careful 

alignment and focusing for this combination of beam current, accelerating voltage, and milling 

time. Since this diameter is less than the distance between dwell points of the beam 

(approximately 45 nm) within the raster scan, there is little overlap of the dwell points.  These 

individual beam dwell sites are slightly raised with respect to the rest of the surface due to 

swelling caused by amorphization of the substrate at each FIB dwell point 77. Therefore, these 

beam dwell positions can be seen in the AFM image of figure 3.6 (a) as regular faint periodic 

features within the square box mill and also cause the edges of the box to appear scalloped 

instead of perfectly straight. A small amount of re-deposition is also likely happening around the 

edge of the patterned area, which can lead to nucleation of islands at the pattern edge after 
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annealing since it will contain some Ga as well. Other than features above, no other significant 

topography features were observed inside the milled square (figure 3.6(a)).  However, from the 

AFM image it can be seen that overall, material is being removed from the patterned area under 

these patterning conditions since the milled area is about 4 nm lower in depth than the 

surrounding substrate surface.  

After annealing, it can be seen in the AFM images that islands formed in the square area 

(figure 3.6 (b)). These islands can form as a result of large number of gallium atoms implanted in 

the silicon substrate having enough thermal energy to segregate to the surface and nucleate 

nanocrystals during the vacuum annealing. In this case the maximum total amount of Ga 

implanted should be approximately equal to the implanted number of ions/cm2 times the 

patterned area size, although some Ga may be lost from the surface during milling due to 

sputtering. Based on Monte Carlo simulations for an accelerating voltage of 30 kV, it is 

estimated that most of the Ga atoms are expected to be between 15 nm to 40 nm under the 

surface. 78 From Fahey et al. 79 and Makris et al. 80 we can assume an activation energy of 

diffusion of implanted Ga in Si of 3.75 eV with a prefactor of 60. Given this value, the annealing 

temperature and time used in these experiments, we can calculate an approximate diffusion 

length of 15 nm for the Ga ions. In addition, the material close to the surface in the patterned 

area will have been heavily damaged leading to amorphization and some will have been removed 

due to the sputtering of Si by the Ga beam. Ga is known to segregate to the surface of Si 81–83 

when used as a surfactant, and for the case of implanted Ga we also expect to have defect-

enhanced diffusion toward the surface 84. Therefore it is likely that a large amount of Ga is able 

to diffuse to the surface upon annealing. From Elliman et al. 85 it has also been observed that a 

small fraction of implanted Ga will redistribute towards the surface and a Ga concentration peak 
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at or near the Si surface will occur for samples that have been annealed when the damaged Si 

recrystallizes.  This is also commonly observed when the concentration of impurities exceeds 

equilibrium solubility limit. 85 In this case the impurity atoms increased the total energy of the 

whole system due to lattice strain which is the driving force for the recrystallization process. As 

a result of this process, the implanted Ga atoms will be driven towards the surface of the 

substrate by the advancing growth front of the recrystallized region.   The second question is if 

there will be enough Ga at the surface to exceed the solubility limit.  The solid solubility limit of 

Ga in Si is about 4.5 x 1019/cm3 and it has been shown that this limit will be exceeded at the 

surface for an ion implantation dose as small as 6.17 x 1015 ions/cm2  at 100 kV. 86  Therefore, 

under our patterning conditions which we have a much higher number of ions/cm2 impinging on 

the sample and narrower implantation depth range expected at our lower accelerating voltage, the 

solubility limit should also be exceeded at the surface of our samples.  
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Figure 3.6 (a) AFM 2 x 2 µm image with edges roughly aligned along the <110> directions for Ga FIB 

pattern. Accelerating voltage was 30kv and the beam current was 5pA. The total ion dose was 2.9 x 1016 

ions/cm2 for the 1 x 1 µm patterned square area. (b) 1 x 1 µm milled area after annealing for 1 hour at 600 °C. 

(c) AFM image of the same patterned area after HCl etching. (d) HAADF image of the Ga nanocrystals 

formed in the patterned area with insert showing selected area diffraction pattern of the same area. (e) HR-

TEM image of Ga nanocrystals showing the Ga lattice fringes inset (d). 
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As the pattern size is reduced, for the same total number of ions/cm2, the number of 

islands within the pattern area decreases. For a FIB milled region that is 100 nm x 100 nm, a 

single island is formed inside the pattern area for accelerating voltage as 30 kV. In figure 3.7 (a), 

similar to figure 3.6 (a), no features are observed in the patterned square before annealing. After 

annealing, a single Ga island forms in the relatively small pattern area with a diameter of 

approximately 30 nm. It also appears that small islands may be starting to nucleate just outside 

the recessed milled area, at the top surface edges of the patterned area. This is likely because of 

re-deposited material that contains implanted Ga as well. With smaller patterned areas, no Ga 

islands are observed to form after vacuum annealing. We therefore assume that the total amount 

of Ga (maximum of 1.63125 x 106 atoms) implanted within this volume is not enough to cause 

surface nucleation of islands (figure 3.7(c)). The relationship between the average diameter of 

Ga nanoislands and patterning dose (ions/cm2) fits into a third degree polynomial function 

(figure 3.7 (d)). Any value that is smaller than 1.0 x 1016 ions/cm2 will not lead to surface Ga 

nanoisland formation after vacuum annealing. To estimate the retained Ga within the 

nanoislands, we assume a hemispherical shaped Ga islands to calculate the volume of the Ga 

nanoislands. Here we use the pattern area of 100 x 100 nm and patterning dose of 2.9 x 1016 

ions/cm2 to calculate the total amount of Ga that impinged upon the patterned area. The result is 

2.9 x 106 atoms. The average diameter of the islands is 42.8 nm and there is one Ga nanoisland in 

this patterned area. The molar mass of Ga is 69.723 g/mol and the density of Ga around room 

temperature is 5.91 g/cm3. Therefore the total amount of Ga in this naonisland is 1.06 x 106 

atoms. From this calculation, we can estimate that about 37% of the total amount of Ga 

segregated towards the surface and about 63% of implanted Ga was still within the Si substrate 

although some may also have been removed due to surface sputtering effects. Since Ga does not 
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de-sorb for temperatures below 700 °C, there should be no additional loss of Ga due to 

desorption from the surface during annealing. 87 

 

 

Figure 3.7 (a) AFM 1 x 1 µm image with edges roughly aligned along the <110> directions for Ga FIB 

pattern. Accelerating voltage was 30kv and the beam current was 5pA. Total dose was 2.9 x 1016 ions/cm2 for 

the 100 x 100 nm patterned square area. (b) 100 x 100 nm milled area after annealing for 1 hour at 600 °C. (c) 

75 x 75 nm milled area after annealing for 1 hour at 600 °C. (d) Diameters of Ga nanoislands as a function of 

total ion dose. 
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The experimental results we have obtained so far do not give us any information about 

the location of the Ga nanodots. Kammler et al.11 have shown the formation of the Ga nanodots 

underneath the Si surface (figure 3.8 (a)). There are two other possibilities for the formation of 

nanodots over the patterned area: Ga nanodots are on top of the Si surface capped with a thin 

layer of Si (figure 3.8 (b)) and Ga nanodots are on the Si surface (figure 3.8 (c)). 

 

 

Figure 3.8  Schematic of the positions of Ga nanodots. (a) Ga precipitation underneath the surface. (b) Ga 

nanodots on the Si surface capped with a thin layer of Si. (c) Ga nanodots on the Si surface. 

To confirm that the nanosized islands formed in the patterned area are a result of 

nucleation of Ga nanocrystals, etching was done using an HCl solution 88 which etches only Ga 

but not the Si substrate at room temperature. An AFM topography image of the annealed sample 

after etching for the same patterned square can be seen in figure 3.6 (c). In figure 3.6 (c), no 

significant surface islands were seen in the square pattern which now looks more like the pre-

annealed image in figure 3.6 (b).  

TEM analysis was also done to confirm the formation of Ga nanocrystals in FIB 

patterned areas. Similar patterns were milled on a single crystal silicon substrate that had 

previously been mechanically thinned and etched to a thickness that was thin enough to be 

electron beam transparent in TEM. Both HAADF-STEM and diffraction pattern analysis were 
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used to prove that the islands seen in the AFM images were Ga nanocrystals and these 

nanocrystals were formed in the patterned area. The HAADF technique allows Z-contrast 

imaging and is therefore ideal for imaging elemental information in Ga regions on the Si 

substrate. In the HAADF mode, electrons are collected by a detector with a large inner radius, 

which are not Bragg scattered.  The intensity of HAADF images is approximately proportional to 

Z2 89, and the use of STEM-HAADF images can determine high-Z atoms at low concentration. 90  

A high density of bright dots was detected in the image for the patterned area (figure 3.6 (d)), 

indicating that these regions are made up of elements heavier than Si, which therefore can only 

be Ga. The smallest size of gallium crystals seen in the image is approximately 5 to 10 nm. The 

selected area diffraction (SAD) pattern from the FIB patterned area can be used as another proof 

of Ga nanocrystalline formation which is also shown in figure 3.6 (d). The crystal structure of 

single crystal Ga is orthorhombic. 91 The spacing of the rings in the diffraction pattern are 

indexed as the (021), (131) and (134) planes for the Ga crystal structure and the lattice fringes 

associated with the nanocrystals can be seen in in the high resolution TEM image of figure 3.6 

(e). The lattice spacing in figure 3.6 (e) was calculated to be approximately 2.0 Å, which 

corresponds to the (021) plane. We therefore can conclude that these nanocrystals are in fact Ga. 

However, the regions next to the Ga nanocrystals do not appear to be crystalline based on the 

lack of Si lattice fringes in those regions combined with the absence of a Si diffraction pattern.  

Therefore, the redistribution of Ga towards the surface may not be caused by recrystallization in 

this case.  However, the additional thermal energy provided during annealing may still lead to 

diffusion and surface segregation. 81–83 
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3.6 EFFECT OF ACCELERATING DOSAGE IN FIB PATTERNING 

Next we will examine the effect of accelerating voltage. In the FIB patterning process, the 

accelerating voltage determines the speed (and the total energy) of the ions passing  through the 

column.5-8 

 By applying a different accelerating voltage, the speed of the ions will change and as a 

result the energy of the ions when they arrive at the surface of the sample will be different. With 

a lower accelerating voltage we expect the implanted Ga to be found nearer to the surface since 

the energy of the ions will be less and therefore the island sizes and distribution could change. 

However, the resolution of the 10 kV ion beam will be worse than the 30 kV beam due to the 

lower accelerating voltage. Therefore we can expect the beam size to be wider, but the total 

amount of Ga implanted in the whole patterned area should be similar. To investigate the effects 

of the accelerating voltage, we used a 10 kV accelerating voltage and 5 pA beam current and 

then compared the results to those shown in figure 3.6. We duplicated the same pattern as before 

using 2.9 x 1016 ions/cm2 and a 1 x 1 µm pattern size. Before annealing, similar features at the 

bottom of the patterned area were seen in the AFM (figure 3.8 (a)). Like before, only small 

features at each of the beam dwell positions could be seen as the Ga beam was rastered across 

the milled area. After annealing, a similar density of Ga islands with a slightly smaller diameter 

of 39.8 nm and standard deviation of 2.1 nm (compared to 43.4 nm with a standard deviation of 

2.5 nm for 30 kV) formed in the patterned square. 
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Figure 3.9 AFM 2 x 2 µm image with edges roughly aligned along the <110> directions for Ga FIB pattern. 

Accelerating voltage was 10kv and the beam current was 5pA. Fluence was 2.9 x 1016/cm2 for the 1 x 1 µm 

patterned square area.  (b) 1 x 1 µm milled area after a after annealing for 1 hour at 600 °C. 

 

The stopping and range of ions in matter (SRIM 2008 version software) Monte Carlo 

simulation78 was used to simulate the Ga ions behavior under the two different accelerating 

voltages, using the standard elemental data in the SRIM library, and using 1700 ions per 

calculation which is based on the diameter of the focused ion beam multiplied by the number of 

ions/cm2 for different accelerating voltages. The parameter set used in the SRIM simulations 

were as follows: Angle of incidence was 0° (normal incidence), the beam species Ga+, beam 

energy was either 10 or 30 keV, the material was Si and the thickness of sample was 700 Å. 

From figure 3.11, we observed that the penetration depth for Ga ions at 30 kV is about three 

times of that at 10 kV. In addition, most of the Ga ions in the 10 kV simulations were 

concentrated between 10 to 20 nm from the sample surface while in the 30 kV simulation, most 

of the Ga ions were found in the 15 to 45 nm range.  
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Figure 3.10 Depth profile (obtained from AFM scan) of 1 x 1 µm patterned square area before 

annealing with different accelerating voltage. Total ion dose was 2.9 x 1016 ions/cm2 for the 1 x 1 µm patterned 

square area. 

 

The SRIM simulation shows the sputtering yield is about 2.0 for 10 kV and about 2.5 for 

30 kV accelerating voltage.  This small difference in sputtering yield could perhaps explain the 

slight differences in depth profiles, which can be seen in the AFM scans for the 30 kV (3.8 nm 

depth) and 10 kV (3.5 nm depth) samples before annealing (figure 3.10). Therefore, only a 

slightly greater volume of material has been removed by the 30 kV ion beam compared to 10 kV 

ion beam. From the Monte Carlo simulation in figure 3.11, we observed that the number of Ga 

atoms trapped within the Si substrate during the patterning process in the 0 to 3.8 nm depth range 

(with respect to the substrate surface) is much smaller compared to the rest of the Ga implanted 

by ion beam. We also observed from figure 3.11 that the shape of the 30 kV curve is less 

Gaussian (more flat). The flatter shape of the curve may due to a relatively greater damage zone 

that would result from the higher energy (30 kV) of the ions. Hence we can hypothesize that the 
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similar Ga nanocrystalline islands for the 10 kV and 30 kV samples after the vacuum annealing 

procedure are caused by the total almost same amount of Ga atoms left in the substrate for the 

two milling conditions. 

 

 

Figure 3.11 SRIM Monte Carlo simulation result of ions trajectories in Si with an accelerating 

voltage of 30 kV and 10 kV. Total number of ions is 1700. 
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3.7  DOT ARRAYS GALLIUM TEMPLATES ON SI SUBSTRATE 

The Si substrate was also patterned with an array of single point FIB mills as opposed to 

rectangular area mills. These samples were also analyzed to see if any islands would form upon 

annealing and if there were any other changes to the surface topography in general after the heat 

treatment. Another objective of this experiment is to precisely control the formation of Ga 

nanodots, and attempt to create discrete Ga nanodots with the help of dot array patterns. Based 

on the discussion in previous sections, relatively higher dosages were applied in this experiment 

after carefully considering that the patterned area for each dot was very small. The dosages used 

ranged from 30 x 1015 to 120 x 1015/cm2 and included two different beam currents, 1pA and 

10pA.  

Representative AFM images of before and after annealing for two of the patterning 

conditions can be seen in figure 3.12. In all cases, there were no new islands or changes to the 

patterns observed in the AFM images after annealing. For low dosages and 1pA beam current 

(figure 3.12 (a)), only surface swelling was seen at the milled point due to amorphization of the 

crystalline silicon. This result is new compared to the pre-annealing data from the trench 

patterns. For this low beam current, the dosage needs to be approximately twice the value (60 x 

1015/cm2) before a crater starts to be seen in the substrate surface. For larger beam currents, such 

as was shown in figure 3.12 (c), crater formation at the milled site happened more quickly and a 

slightly raised amorphous ring formed around the crater. In either case, no changes were seen in 

the surface topography after heating the point mill samples for any of the conditions. The reason 

could be too few Ga atoms have been implanted into the substrate even though the dosage was 

high. However, this does not preclude the formation of subsurface Ga clusters.11 
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Figure 3.12 AFM images of (a) 1 pA beam current, 30 x 1015/cm2 dosage point mills before and (b) 

after anneal. The z-scale for both images is 8.5 nm. (c) 10 pA beam current, 60 x 1015/cm2 dosage point mills 

before and (d) after anneal. The z-scale for both images is 10.2 nm. 

3.8 CONCLUSIONS FOR THE GALLIUM NANODOTS FORMATION 

Formation of crystallized gallium nanodots on silicon substrates has been achieved with the aid 

of a focused ion beam system using the gallium ion beam as the source of gallium. Different 

ranges of dosages and templates were used to investigate the size of the Ga nanodots within the 

trenches. In contrast, Ga nanodots were not detected when the same procedure was repeated 

using a bit map dot array technique. The reason could be the insufficient area available within 
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the individual dots in the array, which means the total amount of Ga is not enough at each 

patterned site. Our conclusions at this point are that the Ga nanodots can be observed after one 

hour vacuum annealing at 600 °C. The concept of a linear relationship between the diameter of 

Ga nanodots and the dosages or trench width of the patterned area is also demonstrated in our 

study.  

The contrast in HAADF images observed from the trenches indicates that crystallized Ga 

nanodots have been formed. The lattice fringes in the HRTEM images also provided evidence 

for crystallized Ga nanodot formation. We also observed a difference in the size of the Ga 

nanodots when comparing AFM and TEM data. This change in size could possibly arise from 

differences in the surface diffusion mechanism of the Ga atoms on the Si substrates that are 

either crystalline or amorphous. Our experimental observations also agreed with the Monte Carlo 

simulations that were performed using the appropriate parameters.  

We have demonstrated that nucleation of gallium nanoislands directly on commercial 

silicon (001) substrates can be achieved with the aid of a FIB system using the Ga ion beam as 

the source of gallium. For proper FIB milling conditions, Ga nanoislands can be observed to 

form after one hour vacuum annealing at 600 °C. A single discrete Ga surface island can be 

achieved by carefully reducing the pattern size. Preferential chemical wet etching and TEM 

analysis have provided substantial proof of the nanocrystalline Ga formation at the surface of the 

silicon. We have also shown that the substantial decrease in accelerating voltage of the Ga ions 

has little effect on the island nucleation process. These results confirmed the feasibility of using 

the FIB as means of directly forming nanocrystalline islands at specific surface locations on a 

commercial silicon substrate. 
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4.0  NITRIDATION PROCESS OF GALLIUM NANOISLANDS 

We have previously demonstrated  conditions under which gallium quantum dot templates will 

form on the surface of an undoped silicon substrate using a focused ion beam direct patterning 

method.92  The number and size of the Ga surface islands that form upon annealing the implanted 

Si substrates can be tailored by adjusting the ion dose and pattern sizes. In these experiments, we 

will investigate nitridation of the Ga surface islands using nitrogen plasma.  

Si (001) substrates were used for all of the experiments in the study. The silicon wafers 

were cleaned ultrasonically in acetone for approximately 10 minutes followed by isopropyl 

alcohol (IPA) for another 10 minutes before loading them into the dual beam FIB (Seiko 

Instruments SMI3050SE FIB-SEM). The substrates were patterned in the dual beam FIB using 

an accelerating voltage of 30 kV and a beam current of 5 pA. The dosage was kept at 2.9 x 1016 

for all these experiments. The patterned samples were then loaded into a vacuum chamber with a 

base pressure of 9 x 10-10 Torr and annealed at 600 °C for 1 h. This annealing time and 

temperature was chosen based on previous reports found in the literature of Ga droplet formation 

on SiO2 and our previous experiments on Si.76,92  In addition, Ga desorbs above 700 °C93 , which 

causes Ga loss, so the annealing temperature must be kept lower than this temperature. 
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4.1 NITRIDATION PAPRAMETERS 

The patterned samples were characterized using atomic force microscopy (AFM) and then 

cleaned again ultrasonically in acetone and IPA for another 10 minutes before being loaded into 

the vacuum chamber for the following nitridation process. Nitridation of the Ga islands was 

achieved by creating a nitrogen plasma by RF biasing the substrate at 5 W.  Different N2/Ar gas 

ratios were tried including 1:2, 1:1 and 2:1. The total mixed gas pressure during the nitridation 

process was 3 x 10-2 Torr. The substrate temperature was kept at 500 °C and a total plasma 

nitridation time was 5 minutes. During the N2 plasma nitridation process, the sample was also 

heated to provide the Ga atoms and N ions enough energy to overcome the thermodynamic 

energy barrier of forming GaN. However, we keep the temperature lower than that in the 

previous annealing step to prevent any additional evolution of the nanoisland surface 

morphology.94 Growth temperatures that are too low (like room temperature) would potentially 

result in amorphous structures due to the lack of energy needed to overcome the barrier to form 

the crystalline structure.95  

An atomic force microscope (AFM) (Digital Instruments Dimension TM 3100 operated 

in tapping mode) was used to characterize the surface topography of all the samples before 

annealing, after annealing and post nitridation. 

The samples were first coated with carbon coater for 15 seconds. The plan view TEM 

samples were made using a dual-beam focused ion beam/scanning electron microscope. The first 

step of making a plan view TEM sample is  similar to that in the the standard FIB cross-section 

sample preparation procedures in which the sample is removed from the substrate using the lift-

out technique. We then rotated the sample for 90 degrees before mounting it onto the TEM grid. 
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After the sample had been mounted on the TEM grid (after the rotation, the back side of the 

sample was exposed to the ion beam), we used Ga ion beam to thin the sample from the back 

side to reach the thickness which is electron transparent in TEM.73 At the end, carefully cleaning 

the front side of the sample can remove the protective coatings without milling away the GaN 

islands. 

4.2 RESULTS WITH DIFFERENT NITROGEN/ARGON RATIO 

Clear evidence for island formation after annealing the FIB patterned samples can be seen by 

comparing the AFM topography image of the square milled patterns before and after annealing. 

The pattern was created with a total ion patterning dose of 2.9 x 1016 ions/cm2, a 5 pA beam 

current, and 30 kV accelerating voltage in the FIB. In figure 4.1(a), there were not any 

significant features in the square patterned area before annealing. Also, from the AFM image it 

can be seen that overall, material was being removed from the patterned area under these milling 

conditions since the milled area is at a lower overall depth from the color contrast in the image. 

After annealing, it can be seen in the AFM images that islands formed in the square area (figure 

4.1(b)). The mechanisms of the formation of surface Ga nanoislands and the characterization of 

the Ga islands have been investigated in previous studies92.  

4.2.1 N2/Ar gas ratios as 1:1 

After carrying out the nitridation process with N2/Ar gas ratios as 1:1 at 5 W substrate bias, no 

significant topography change can be observed in the patterned area (figure 4.1(c)). The size of 
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the surface nanoislands formed under these specific patterning conditions ranges from 20 nm to 

70 nm.  
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Figure 4.1 (a) AFM 15 x 15 µm image with edges roughly aligned along the <110> directions for Ga 

FIB pattern. Accelerating voltage was 30kv and the beam current was 5pA. The total ion dose was 2.9 x 1016 

ions/cm2 for the 10 x 10 µm patterned square area. (b) 10 x 10 µm milled area after annealing for 1 hour at 

600 °C. (c) AFM image of the same patterned area after exposure to nitrogen plasma with N2/Ar ratio as 1:1 

for 5 minutes at 500°C. (d) 1 x 1 µm zoomed in scan in the same area after nitridation process. (e) HR-TEM 

image of GaN nanocrystals showing the GaN lattice fringes. (f) Selected area diffraction pattern of the same 

area. 
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TEM analysis was also done to confirm the formation of GaN nanocrystals in FIB 

patterned areas after nitridation process. The selected area diffraction pattern was indexed to 

prove that the islands seen in the AFM images were GaN nanocrystals that were formed in the 

patterned area. The lattice fringes associated with the nanocrystals can be seen in in the high 

resolution TEM image of figure 4.1(e). Multiple crystals were selected to be included in the 

selected area diffraction (SAD) analysis. The crystal structure of GaN nanoislands determined 

from the SAD pattern is the rock-salt cubic structure, which has previously been found to form 

under high pressure conditions.96 It has been reported that the phase transformation from the 

wurtzite to the rocksalt cubic phase begins at 37 GPa.96 The Ga-Ga distances of the GaN sample 

in wurtzite and rocksalt phases during the phase transformation are 3.03±0.02 Å and 2. 84±0.02 

Å at 40 GPa.96 Such a decrease in the Ga-Ga distance during the wurtzite-to-rocksalt phase 

transformation is initiated by the pressure-induced charge transfer (connected with changing the 

ionicity and electronegativity inside the GaN)96. In our experiment, there was no external 

pressure applied during the process and the Ga nanoislands possess the orthorhombic structure 

before the nitridation process.92 Every Ga atom has one very close neighbour at 2.44 Å and six 

other atoms only a little further away at 2.71-2.79 Å.92 The whole system only needs to 

overcome a smaller lattice distortion energy barrier to form the rock-salt cubic phase GaN 

compared to a relatively larger lattice deformation to fit the wurtzite phase GaN.  

Growth of GaN thin films97 and nanorods98 using a gallium target and N2 plasma have 

been reported. The wurtzite GaN nanorods98 can be obtained through radio frequency magnetron 

sputtering system with pure metal Ga target and N2/Ar as reactive gas on Si (111) substrates. In 

this case discussed above, both the Ga and N atoms have the ability to move freely on the 

substrate’s surface. In our experiments, since the Ga nanoislands already presented on the Si 
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substrate, in other words, the Ga nanoislands were confined on the surface, and therefore Ga 

atoms don’t have the ability to diffuse freely on the surface. This can also explain why we didn’t 

observe a topography change before and after the nitridation process. 

The impact of the reactive mixed gas N2/Ar ratio was also investigated to see if the ratio 

has any influence over the shape or crystal structure of the islands. For example, for the slightly 

different case reactive sputtering of Ga and ammonia, it has been reported that the Ga/N ratio 

may dominate the surface morphology of the film98 and allow the optical properties to be altered 

without changing the GaN crystal structure.99 This is explained that how the Ga/N ratio changes 

can influence the growth front and thus lead to different morphology.100  Under Ga rich 

conditions, the lateral growth rate is high due to the high mobility of Ga atoms and  thus 

resulting in the formation of a continuous film. On the other hand, nanorods form under nitrogen 

rich conditions. 

4.2.2 N2/Ar gas ratios as 2:1 and 1:2 

In our experiments, for N2 rich condition (N2/Ar = 2:1) and Ar rich condition (N2/Ar = 2:1), there 

were no topography changes seen in the AFM images between before and after nitridation for 

both gases (figure 4.2 (a, b) and figure 4.3 (a, b)).   In our study, the situation is different from 

that of reactive sputtering, we have a fixed amount of Ga atoms reacting with a varying supply of 

nitrogen.  However, the change in ratio of fixed Ga to nitrogen arriving at the surface of the Ga 

nanoislands is insignificant.  Thus, as we expected, the small difference in N atomic 

concentration did not play a dominant role in the morphology of the GaN nanoislands.  
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Figure 4.2 (a) AFM 15 x 15 µm image for  the 10 x 10 µm FIB patterned square area after annealing 

for 1 hour at 600 °C with edges roughly aligned along the <110> directions. Accelerating voltage was 30kv 

and the beam current was 5pA. The total ion dose was 2.9 x 1016 ions/cm2. (b) AFM image of the same 

patterned area after exposure to nitrogen plasma with N2/Ar ratio as 2:1 for 5 minutes at 500°C. (c) HR-TEM 

image of GaN nanocrystals showing the GaN lattice fringes. (d) Selected area diffraction pattern of the same 

area. 

 

Also, in our experiments, as opposed to the reactive co-sputtering case, the diffusion of 

Ga atoms was limited by their incorporation into the previously formed Ga nanoislands, whereas, 

the N atoms can be considered to have unlimited mobility. This can also explain why we did not 
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see the islands evolve into a continuous film as reported by Liu et. al for the case of reactive co-

sputtering.98 

 

Figure 4.3 (a) AFM 15 x 15 µm image for  the 10 x 10 µm FIB patterned square area after annealing 

for 1 hour at 600 °C with edges roughly aligned along the <110> directions. Accelerating voltage was 30kv 

and the beam current was 5pA. The total ion dose was 2.9 x 1016 ions/cm2. (b) AFM image of the same 

patterned area after exposure to nitrogen plasma with N2/Ar ratio as 1:2 for 5 minutes at 500°C. (c) HR-TEM 

image of GaN nanocrystals showing the GaN lattice fringes. (d) Selected area diffraction pattern of the same 

area. 

The lattice fringes associated with the nanocrystals were observed in the high resolution 

TEM images from both N rich and Ar rich conditions (figure 4.2 (c) and figure 4.3 (c)). The 

SAD pattern from the FIB patterned area also proved the crystalline structure didn’t change by 
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tuning the N2/Ar ratio. Both conditions showed the formation of rock-salt cubic phase GaN 

(figure 4.2 (d) and figure 4.3 (d)). 

4.3 CONCLUSION FOR GALLIUM NITRIDE FORMATION 

We have demonstrated that nucleation of gallium nanoislands directly on commercial silicon 

(001) substrates can be achieved with the aid of a FIB system using the Ga ion beam as the 

source of gallium. Ga nanoislands can be observed to form after one hour vacuum annealing at 

600 °C. We are able to convert the Ga to a rock-salt cubic GaN structure, which has previously 

be found to form under high pressure conditions This can be proved by TEM diffraction pattern 

analysis of plan view samples. These results confirmed the feasibility of using the FIB as a 

means of directly forming nanocrystalline islands of Ga-based compounds at specific surface 

locations on a commercial silicon substrate. 
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5.0  SIGE QUANTUM DOTS FORMATION 

Zero-dimension quantum dot structures are critical for new device structures that can utilize their 

discrete energy spectrum and few-carrier effects. There has been a lot of research carried out in 

synthesizing quantum dots in general 101; however, precise lateral control the position of 

quantum dots directly on silicon, the most technologically important substrate, is still a 

challenge.  

Si (001) substrates were used for all of the experiments in the study. The silicon wafers 

were cleaned ultrasonically in acetone for approximately 10 minutes followed by iso-propyl 

alcohol (IPA) for another 10 minutes before loading them into the dual beam FIB. The substrates 

were patterned in the dual beam FIB using an accelerating voltage of either 30 kV or 10 kV and 

a beam current of 5 pA. The total number of Ga ions/cm2 impinging on the surface during FIB 

pattering, commonly referred to as dose or fluence, was varied to investigate the effect on the Ga 

islands’ size. The total number of Ga ions/cm2 depends on the ion beam current used and milling 

time.   
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5.1 HIGHLIGHTS IN SILICON-GEMANIUM QUANTUM DOTS FORMATION 

PROCEUDES 

 

A set of unannealed patterned samples was used for further SiGe deposition experiments. The 

dosage applied in this experiment ranged from 0.2 x 1015/cm2 to 20 x 1015/cm2 (number of 

ions/cm2). The substrates were first ultrasonically cleaned in acetone and IPA. Then a modified 

Shiraki cleaning procedure was applied. The wafers were first immersed in the acid solution 

(H2SO4/H2O2 at ~85 °C, mixing ratio 4:1) for 5 to 7 minutes, and then rinsed in ultrapure (18 

MΩ cm of resistivity) de-ionized water (DI water) for 2 minutes. This was followed by a dip in a 

buffer oxide etch (BOE, NH4F/HF at room temperature, mixing ratio 6:1) for 15 seconds and 

another rinse in DI water for 5 minutes. The second stage of the cleaning was performed using 

the RCA method102 in which an oxide layer is repeatedly formed and stripped off. This was done 

by first boiling the wafers in a H2O/HCl/H2O2 solution (mixing ration 4:1:2) at ~85 °C, rinsing in 

DI water, and then dipping into BOE for 15 seconds to remove the oxide. This procedure was 

repeated twice and ended with the BOE step. Finally, the samples were rinsed in DI water for 10 

minutes before being loaded into the sputtering system. This process should produce a hydrogen-

terminated surface, free of oxides. The samples were then heated overnight at 200 °C for out 

gassing. 

Si0.7Ge0.3 films were then deposited using magnetron sputtering on the chemically 

cleaned Si (001) substrates. The base pressure of the chamber was 9 x 10-10 Torr, and the process 

pressure was 3x10-3 Torr. High purity Ar gas (99.999% pure, purchased from Valley National 

Gas company) was used then purified to part-per-billion levels with an in-line purifier. The Si 
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and Ge targets were 2” in diameter with purity of 99.999% (purchased from Kurt J. Lesker 

Company). A 65 Å Si buffer layer was first deposited at 450 to 550°C with a deposition rate of 

approximately 0.1 Å/s using RF power. Then Si0.7Ge0.3 film was deposited at 450 to 550°C with 

the total growth rate of 0.5 and 1 Å/s, using DC and RF power for Ge and Si respectively. The 

temperature and growth rate were chosen to try to prevent islanding from occurring at non-

patterned sites, which would otherwise occur due to strain relaxation at more near-equilibrium 

conditions.103 

To achieve the ultra-high vacuum and epitaxial growth, we need both low base pressure 

and no hydrocarbon peaks in the residual gas analyzer (RGA).  While increasing the substrate 

temperature, we recorded the RGA data to monitor the gas content in the UHV chamber. From 

table 5.1, we can observe that until 500 degree, there are still not significant peaks for 

hydrocarbons compared with the background at 1 x 10-10 Torr (at mass number 40 and 43). After 

ramping up the temperature over 600 degrees, the peak for hydrocarbons became non-

neglectable. That may due to the plastic wires in our chamber starting to release hydrocarbons at 

these higher temperatures. 

Therefore, to maintain the UHV and the purity in the chamber, it is also important that we 

not go beyond 600 degrees for the thin film growth in order to good crystallinity. 
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Table 5.1 Hydrocarbons peak height from RGA data at different temperatures. 

                      

Temperature 

 

  Mass Number 

25°C  (Torr) 500°C (Torr) 600°C (Torr) 700°C (Torr) 

40 1 x 10-10 2 x 10-10 1 x 10-9 2.5 x 10-9 

43 1.5 x 10-10 3 x 10-10 9 x 10-10 2 x 10-9 

 

5.2 SILICON BUFFER GROWTH 

The deposition of a Si buffer layer is done to minimize any impact from Ga or contamination 

still present after cleaning. It also could provide a fresh surface for in-situ SiGe alloy growth. 

Thus it is very important to achieve a flat and epitaxial Si buffer layer before the deposition of 

the SiGe thin film.  All the samples in this chapter need to go through the thoroughly chemical 

cleaning procedure discussed in section 2.3 to remove all the possible contaminations before 

loading into the main chamber. 
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A 65 Å Si buffer layer was first deposited at 500 °C with a deposition rate of 

approximately 0.1 Å/s using RF power. This carefully chosen low growth rate is another method 

to achieve the epitaxial buffer layer.  

(Multiple growth condition trials for Si buffer layer can be found in Appendix A1.) 

 

Figure 5.1 65 nm Si buffer layer grown at 500 oC. 

2.98 nm

-1.83 nm
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5.3  SIGE QUANTUM DOTS GROWTH ON SI WAFERS 

Since no change in surface features were visible in the figure 3.12 upon heating these single 

point milled arrays, this type of low dose patterning is has the potential application for 

subsequent deposition of a lattice mismatched material such as SiGe onto the patterned 

templates. In this experiment, the changes in topography at these milled sites may act as 

preferential nucleation sites for islands to form.  

There is a three stage procedure that is performed to ensure that there is no island 

formation from implanted Ga post FIB patterning. First, the dosages were varied from 0.2 x 

1015/cm2 to 20 x 1015/cm2. The dosages used in these experiments were even lower than those 

used to form Ga nanodots. Second, the substrate underwent a chemical cleaning process that 

consisted of multiple surface oxidization and oxide removal steps after FIB patterning. This 

ensures access to pristine Si surface. Third, deposition of a very thin (~7 nm) Si buffer layer 

minimizes any impact from possible leftover Ga atoms trapped within the patterned area. The 

buffer layer also eliminates remnant contaminants post the chemical cleaning process. The 

growth temperature for both the buffer layer and the SiGe depositions should never above 550 

oC. This temperature range is well below the Ga nanodot formation temperature of 600 oC.   

5.3.1 10 nm Si0.7Ge0.3 growth on 6.5 nm Si buffer layer at 500 oC and 0.5 Å/s  

From figure 5.2, it is observed that there is no pit formation at the low dosage of 1 x 1015/cm2. 

For the low dosages that were used, only discrete islands were formed at the damage site. These 
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islands are typically much larger than those were expected to form from substrate amorphization 

due to FIB patterning. 

 

 

Figure 5.2 (a)AFM images of 1 x 1015/cm2 dosage point arrays mills after SiGe alloy growth. (b) 

Profile data of the quantum dot. The sample’s edge is roughly aligned along the <110> direction. 

 

When intermediate dosages (6 x 1015/cm2) were tried, a series of continuous rings were 

observed around the damage sites as seen in figure 5.3. The height of the observed rings was 

1.82±0.6 nm with an outside wall angle of 6.52°. The angle of pit sidewall was measured to be 

31.0°. TEM diffraction will be done in order to determine the crystalline state.  
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Figure 5.3 (a) AFM images of 6 x 1015/cm2 dosage point arrays mills after SiGe alloy growth. (b) 

Profile data of the quantum dot. The sample’s edge is roughly aligned along the <110> direction. 

 

With higher dosages (20 x 1015/cm2), the island formation was confined to the interior 

floor of the pits. In figure 5.4, the pit depth which is likely to act as “trap”, confineed the 

diffusion of Ge, so that they were forced to form islands at the bottom of the pits. 
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Figure 5.4 (a) AFM images of 20 x 1015/cm2 dosage point arrays mills after SiGe alloy growth. (b) 

Profile data of the quantum dot. The sample’s edge is roughly aligned along the <110> direction. 

5.3.1.1  10nm Si0.7Ge0.3 growth on 6.5nm Si buffer layer at different conditions 

 

In order to figure out the influence of growth temperature and growth rate on the formation of 

SiGe quantum dots, more experiments were carried out. For ease of comparison, we chose the 

same dosage (6 x 1015/cm2) but under different growth conditions. From figure 5.5(a), at the 

higher growth temperature of 550 °C, we observed a relatively rougher surface compared to 

figure 5.3(a) and non-continuous rings. This higher surface roughness could be attributed to 

increased surface diffusion of the atoms on the substrate. In order to minimize the surface 

roughness effect, a higher growth rate of 1 Å/ s was used for this temperature of 550 °C. 

For a given thickness, a higher growth rate will decrease the growth time. The shorter 

growth time could help suppress the excessive diffusion of the SiGe atoms. A higher growth rate 

of 1 Å/s in combination with the higher growth temperature could not overcome the undesirable 

surface diffusion effect, as seen in figure 5.5 (a). At a lower growth temperature of 450 °C and 
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0.5 Å/s, no ring formation was seen (figure 5.5 (b)).  The protuberance features in figure 5.5 (b) 

was from the amorphization during the patterning process. The phenomena observed here could 

perhaps be due to the lack of enough thermal energy to overcome the activation energy barrier of 

the surface diffusion process. 

 

 

Figure 5.5 AFM images of 6 x 1015/cm2 dosage point arrays mills after SiGe alloy growth. (a) SiGe 

alloy grown at 550 °C with total growth rate of 1 Å/s. (b) SiGe alloy grown at 450 °C with total growth rate of 

0.5 Å/s. The sample’s edge is roughly aligned along the <110> direction. 

 

5.3.2 RHEED results for 10nm Si0.7Ge0.3 growth on 6.5 nm Si buffer layer at 500 oC and 

0.5 Å/s 

Based on the AFM results and how they differ from previously reported MBE, we suspected that 

the deposited films may not be single-crystal.  Recently, a RHEED system has been added to the 

sputtering system. The RHEED (Reflective high-energy electron diffraction) technology is 

utilized in-situ to determine the surface crystallinity, especially for epitaxial growth of thin 
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films.61 A RHEED system requires an electron source (gun), a photoluminescent detector screen 

and a sample with a clean surface. The electron gun generates a beam of electrons which strike 

the sample at a very small angle relative to the sample surface. Incident electrons diffract from 

atoms at the surface of the sample, and a small fraction of the diffracted electrons interfere 

constructively at specific angles and form regular patterns on the detector. The electrons interfere 

according to the position of atoms on the sample surface, so the diffraction pattern at the detector 

is a function of the sample surface. In the RHEED setup, only atoms at the sample surface 

contribute to the RHEED pattern.104 Streaks appear in the place of perfect points when 

broadened rods (incident beams) intersect the Ewald sphere. Diffraction conditions are fulfilled 

over the entire intersection of the rods with the sphere, yielding elongated points or ‘streaks’ 

along the vertical axis of the RHEED pattern. In real cases, streaky RHEED patterns indicate a 

flat sample surface while the broadening of the streaks indicates small area of coherence on the 

surface.105 

The dotted pattern in figure 5.6 is the RHEED pattern for the Si0.7Ge0.3 layer grown at 

500 °C and 0.5 Å/s, which means the film is not epitaxial. Polycrystalline films can be expected 

under this growth condition. 
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Figure 5.6 RHEED results for 10nm Si0.7Ge0.3 growth on 6.5 nm Si buffer layer at 500 °C and 0.5 

Å/s. 

 

 

Figure 5.7 RHEED results for 10nm Si0.7Ge0.3 growth on 1.8 nm Si buffer layer at 550 °C and 1 Å/s. 
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Epitaxial growth can be achieved with thinner buffer layer and higher growth 

temperature. The streaks patterns (shown in figure 5.7) shows good surface reconstruction which 

means good epitaxy. 

5.4 GROWTH CONDITIONS LEAD TO PREFERED QUANTUM DOTS GROWTH 

AFM images of surfaces after 10nm Si0.7Ge0.3 growth on a 6.5nm Si buffer layer at 500°C and 

1Å/s with different FIB dosages are shown in figure 5.8. No pits were observed for low dosages 

(figure 5.8 (a) and (b)) and discrete islands only presented at the damage site. These islands are 

much larger than would be expected from substrate amorphization due to FIB patterning for such 

a low dosage. The sidewall angles were between 10-16°. As the dosage was increased, double 

islands started to form at each milled site (figure 5.8 (b)). This may be due to the larger size of 

the damage zone which supports double nucleation sites.106  Higher FIB dosage is expected to 

not only yield deeper damage into the substrate, but also latterly increase the size of the damage 

zone. As the dosage increased further, the double islands were more distinguishable (figure 5.8 

(c)). With the highest dosage tried (figure 5.8 (d)), discrete islands now formed around central 

pits. The average height of the islands was 5.5 (±1) nm and the outside angle of the islands was 

29°. The central pit observed at this dosage is most likely not due to the original FIB topography 

for this dosage. Instead the pit may form during the chemical etch or by ejection of deposited 

material from the damage site.  

Pit edges then acted as preferential nucleation sites107 for the islands when the damage 

was large enough to cause pit formation (<100> direction with respect to pit center). The growth 
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conditions are also of particular importance, since for these conditions, islanding is limited and 

only occurs at the damage site. Growth conditions that allowed for increased kinetics would not 

suppress island growth on the non-patterned regions. Similarly, if the growth kinetics were too 

low we would expect island formation to be suppressed entirely. 

 

Figure 5.8 AFM 1x1 µm image with edges roughly aligned along the <110> directions for films 

deposited on substrates patterned at single points using a 1 pA beam current. The 10nm Si0.7Ge0.3 were grown 

on a 6.5nm Si buffer layer at 500°C and 1Å/s. Pattern dosages were (a) 0.5 x 1015/cm2.  (b) 1 x 1015/cm2.  (c) 3 x 

1015/cm2.  (d) 6 x 1015/cm2. 
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5.5 GEMANIUM QUANTOM DOTS ON SI SBUSTRATE 

The growth of Ge quantum dots on Si substrate is another approach in this experiment. It is 

carried out using a similar process to the SiGe quantum dots growth. The difference is during the 

magnetron sputtering step, in which only the Ge target is used. To suppress the Ge quantum dots 

to grow only in or on the template region, we use a high growth rate for Ge (4 Å/s). 

Figure 5.9 shows the Ge quantum dots grown at 500 °C with 65 Å Si buffer layer. The 

thickness of the Ge thin film is 8 Å and the growth rate is 4 Å/s. From figure 5.9, the size of the 

Ge quantum dots is about 20 nm to 35 nm and the height is around 5 nm. 
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Figure 5.9 AFM of Ge quantum dots in un-patterned region. 

  

The experiment of growing Ge quantum dots on patterned substrate was also investigated. 

The patterning parameter for the template was 30 kv with 1 pA beam current and the dosage was 

20 x 1015/cm2. The growth condition of Ge quantum dots was still at 500 °C with 65 Å Si buffer 

layer. The thickness of the Ge thin film was 8 Å and the growth rate was 4 Å/s. 

 

400 nm 
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Figure 5.10 Growth of Ge quantum dots in patterned region. 

 

The size of the Ge quantum dots that form on the template was the same as outside the 

template. The prospective attraction phenomena of larger Ge quantum dots forming at the 

energetically preferred FIB pattern sites was not observed as expected. The original design of 

 

200 nm 
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this experiment was trying to use the FIB to create surface defects on the Si surface. During the 

sputtering process, the Ge atoms reach the substrate with energy and mobility. To minimize the 

energy of the whole system (consider “new arrived” Ge atoms and Si substrate), the Ge quantum 

dots tended to form on or at the edge of the “damaged” sites as we have observed in section 5.3 

and 5.4. However, from the results we observed here, that hypothesis can’t explain what 

happened. In figure 5.10, there was no preference of the location for Ge quantum dots to form. 

That can be explained in this way: the energy difference between the “damaged” sites and the 

un-patterned region is very small comparing to the energy of the “new arrived” Ge atoms. 

Therefore, islanding from occurring everywhere on the surface of the wafer, as opposed to just at 

the patterned sites is what we obtained at this given conditions. 

Lower growth temperature (450 °C) will yield rough surface rather than continuous flat 

thin film.   

(More Ge growth conditions can be found in Appendix A3.) 

5.6 CONCLUSIONS FOR SIGE NANOISLANDS 

Focused ion beam patterning can be used to influence the growth of SiGe islands deposited by 

magnetron sputtering, but only under certain growth conditions.  However, these growth 

conditions may not result in single crystal films. By increasing the growth temperature, it appears 

that single crystal growth based on RHEED pattern analysis is achievable.  However, it is still 

not clear that these conditions will allow for the limited kinetics necessary to suppress islanding 

from occurring everywhere on the surface of the wafer, as opposed to just at the patterned sites.  
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Therefore, more experiments are necessary to explore the effect of other growth conditions other 

than temperature on resulting surface morphology.  
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6.0  SUMMARY AND FUTURE WORK 

As evident from previous sections of the dissertation, successful growth of nanostructure on Si 

substrates has been demonstrated. However, additional work needs to be done to investigate the 

different temperature regimes for Ga nanodots growth for better size control. The GaN growth is 

another topic that also needs to be investigated. It has also been shown through our experiments 

that the rock-salt structure can be achieved. The effect of the gas ratio, reaction temperature and 

N source on GaN formation also merits further study. The ultimate goal in growing size and 

position controllable nanostructure is to tailor them to suit potential applications such as LED 

devices or nano laser diodes. 

6.1 SUMMARY OF RESULTS AND CONCLUSIONS 

The ultimate goal for this doctoral dissertation is to understand the underlying mechanisms that 

yield the best possible conditions for locating controllable nanostructures on Si substrates using a 

focused ion beam.  In the first approach, we were using the implanted Ga directly for nanoisland 

formation.  These experiments allowed us to obtain a fundamental understanding of how the FIB 

patterning parameters affect the Ga island nucleation and requirements for achieving site specific 

growth.  
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Formation of crystallized gallium nanodots on silicon substrates has been achieved with 

the aid of a focused ion beam system using the gallium ion beam as the source of gallium. There 

were different ranges of dosages and templates that were used to investigate the size of the Ga 

nanodots within the trenches. In contrast, Ga nanodots were not detected when the same 

procedure was repeated using a bit map dot array technique, which could be due to the 

insufficient area available within the individual dots in the array. The insufficient area means at 

each patterned site, the total amount of Ga is not enough. Our conclusions at this point are that 

the Ga nanodots can be observed after one hour vacuum annealing at 600 °C. The concept of a 

linear relationship between the diameter of Ga nanodots and the dosages or trench width of the 

patterned area is also demonstrated in our study.  

The contrast in HAADF images observed from the trenches indicates that crystallized Ga 

nanodots have been formed. The lattice fringes in the HRTEM images also provide evidence of 

crystallized Ga nanodot formation. We also observe a difference in the size of the Ga nanodots 

when comparing AFM and TEM data. This change could possibly arise from differences in the 

surface diffusion mechanism of the Ga atoms on the Si substrates that are either crystalline or 

amorphous. Our experimental observations also agree with the Monte Carlo simulations that 

were performed using the appropriate parameters.  

We have demonstrated that nucleation of gallium nanoislands directly on commercial 

silicon (001) substrates can be achieved with the aid of a FIB system using the Ga ion beam as 

the source of gallium. For proper FIB milling conditions, Ga nanoislands can be observed to 

form after one hour vacuum annealing at 600 °C. A single discrete Ga surface island can be 

achieved by carefully reducing the pattern size. Preferential chemical wet etching and TEM 

analysis provide substantial proof of the nanocrystalline Ga formation at the surface of the 
 96 



silicon. We have also shown that the substantial decrease in accelerating voltage of the Ga ions 

has little effect on the island nucleation process. These results confirm the feasibility of using the 

FIB as means of directly forming nanocrystalline islands at specific surface locations on a 

commercial silicon substrate. 

We have also developed a procedure converting these islands to GaN nanodots by 

recognizing the effect of other growth variables such as the dosage and Ar/N2 ratio. Detailed 

TEM analysis is necessary to understand how the resulting structure is influenced by these 

parameters. We are able to convert the Ga to a rock-salt cubic GaN structure, which has 

previously be found to form under high pressure conditions, based on TEM diffraction pattern 

analysis of plan view samples. These results confirm the feasibility of using the FIB as a means 

of directly forming nanocrystalline islands of Ga-based compounds at specific surface locations 

on a commercial silicon substrate. 

In the third approach, we use the topography of the FIB patterned substrate to attempt to 

influence island formation during heteroepitaxial growth of SiGe films. We have demonstrated 

that we believe we can achieve epitaxial growth using sputtering.  In further experiments we will 

seek to understand how growth rate and composition can be used to limit island growth’s 

occurence at FIB patterned sites. 

6.2 FUTURE WORK 

The experiments described in this body of work have opened up many exciting avenues for 

further exploration. As has been shown, there is wide range of potentially useful nanostructures 
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in the Ga/Si and GaN/Si sytem to be used in applications like photo detectors or LED devices. 

However, it is important to know which growth condition will result in the formation of a 

specific structure and why. The growth window for GaN could be rather wider than what we 

have discussed in the previous sections. The optical properties of GaN on Si substrates should be 

measured for potential applications as LEDs in the electronics industry. In addition, the growth 

of SiGe quantum dots still has open questions need answers. The thickness of Si buffer layer, the 

effect of higher and lower SiGe alloy growth rate and the combination with different growth 

temperature deserve further investigation. All of these issues need to be addressed in order to use 

nanostructures formed by these methods in useful applications. 

6.2.1 Formation of Gallium Nitride with different structure and different reaction gas 

The results shown in Chapter 4 have demonstrated the formation of GaN with rock-salt structure. 

As reported in the literature, 6,46–49,108 most of the devices employ the wurtzite structure of GaN. 

To achieve that structure, some growth conditions or even FIB patterning parameters need to be 

changed to explore the possibility to synthesize wurtzite GaN. 

First of all, since we have mastered the method to precisely control the location of Ga 

nanoislands, we can also use rough or Ultra-rough beam conditions (larger beam diameter and 

larger beam current) in the FIB to scan the substrate surface.  In this way, we can control the 

formation of many islands at one time over a larger area. 

Secondly, in all the previous experiment, we only investigated one annealing temperature 

to enable the Ga atoms to diffuse to the surface to form the Ga nanoislands. We can use different 

annealing temperatures to observe the diffusion behavior of the Ga atoms to investigate the 
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possible morphology change in Ga nanoislands. Furthermore, the annealing time is also worth 

varying. New results may be possible to be observed with longer diffusion time combining with 

different annealing temperatures. 

In the nitridation process, we have only used one fixed reaction temperature and three 

different gas ratios. To synthesize the wurtzite structure GaN, a higher reaction temperature may 

be helpful for Ga atoms to overcome the constraints from the preformed Ga nanocrystals.  

Another bold hypothesis can also to be carried out. We can skip the annealing step and directly 

load the sample into the vacuum chamber to start the nitridation process after directly taking 

them out from the FIB. This may also make differences in the final results. 

To investigate the formation of GaN, we can try to nitrogenize the Ga in the TEM with 

the reaction gas as ammonia (NH3). With the help of in-situ TEM, the change of the crystal 

structure from doped-Ga to Ga nanoislands and fianlly to GaN can be recorded. For this step, we 

can use the same method we used while preparing the plan-view TEM samples with the help of 

FIB as discussed in section 2.8.3. The sample prepared in this way can be thin enough to be 

electron transparent and ready for TEM characterization.  

Ex-situ characterization of the samples post nitridation can be done using AFM to 

determine any changes in the surface topography. TEM-EDS (Energy-dispersive X-ray 

spectroscopy) and SAD measurements can be done to characterize the elemental and structural 

information of GaN.  
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6.2.2 GaN optical characterization 

As we discussed in chapter 1, there are extensive applications of GaN in various devices. One 

major area is to use GaN in LEDs or laser diodes. It is therefore very natural to investigate the 

optical properties of GaN nanostructures. Photoluminescence (PL) studies would be a very 

helpful tool to obtain the optical properties of GaN. 109–113 

The radiation effects can be evaluated by micro-PL and Raman spectroscopic techniques. 

The refractive-index region can be observed both along the tracks and at the projected range of 

ions. The PL mapping measurements can reveal the bands at different wavelengths with different 

lateral and depth distributions. 109 

UV-Visible-NIR Micro-spectrophotometer can be used to perform this characterization in 

our NFCF lab. It has the ability to measure UV-visible-NIR range transmission, absorbance, 

reflectance, emission and fluorescence spectra of samples ranging from the sub-micron to well 

over 100 microns across.  And while microspectra are being acquired, the sample may be 

simultaneously viewed with a high-resolution digital imaging system or through eyepieces. 

6.2.3 SiGe and Ge quantum dots growth  

Ultra high growth rates like 2.0 Å/ s with Si can also be tried via the magnetron sputtering 

system in our collaborator-Dr. Jerry Floro’s lab, who is an associate Professor in the Department 

of Materials Science and Engineering in University of Virginia. 

To guide the formation of pure Ge quantum dots in the FIB patterned templates, we can 

change some parameters in the process. Thinner buffer layer which have shown epitaxial growth 
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for SiGe can be mimicked in this approach.  Since Ge has a larger lattice mismatch than SiGe 

alloy; we will need to use a lower growth temperature or higher growth rate (>4 Å/s) and thinner 

Ge film thickness (16 Å) in order to suppress the Ge nanodots formation outside the patterned 

pit.   

AFM topography analysis can be performed on the samples to investigate the formation 

of SiGe and Ge quantum dots under different dosages and different growth parameters. RHEED 

(Reflection high energy electron diffraction), TEM and SAD techniques can be employed to 

characterize the epitaxial growth. 
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APPENDIX A 

SI BUFFER LAYER, SIGE, GE GROWTH CONDITIONS 
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A.1 SI BUFFER GROWTH CONDITIONS 

 

 

Table Appendix  1 
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A.2 SIGE GRWOTH CONDITIONS 

 

 

T bl  A di   2 SiG  th diti  
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HeightBase P
Buffer Watts/time/T

Buffer est Process SiGe T
Ge watts/Si watts

Time
Film thickness FIB parameters

5"
1.8E-09

50W/11min/750
65 A

500
10/215

1min42s
100

patterned
5"

1.2E-09
50W/11min/750

65 A
500

10/215
3min42sec

200
patterned

5"
1.8E-09

50W/16min40sec/750100 A
500

10/250
1min40sec

100
patterned

5''
2.2E-09

50W/16min40sec/750 100 A
500

5/215
1min16sec

50A
patterned

5''
2.3E-09

50W/11min/750
65 A

500
10/215

1hr32min35sec
5000A

bare wafer(cleaned)
5''

1.0E-09
50W/7min44sec/500

65A
500

10/215
1min51sec

100A
patterned

5''
9.5E-10

50W/7min44sec/550
65A

0.0038
550

10/215
1min51sec

100A
patterned

5''
9.5E-10

50W/7min44sec/500
65A

0.0038
500

5/108
3min42sec

100A
bare wafer(cleaned)

5''
1.1E-09

50W/7min44sec/500
65A

0.0036
500

5/108
3min42sec

100A
patterned

5''
1.0E-09

50W/7min44sec/450
65A

0.0033
450

5/108
3min42sec

100A
patterned

5''
1.2E-09

50W/2min8sec/550
18A

0.003
550

5/108
3min42sec

100A
bare wafer(cleaned)

5"
1.3E-09

50W/2min8sec/550
18A

0.003
550

10/215
36.8sec

32.9A
bare wafer(cleaned)

5"
1.5E-09

50W/2min8sec/550
18A

0.003
550

10/215
111.2sec

100A
bare wafer(cleaned)

5"
1.3E-09

50W/2min8sec/550
18A

0.0013
550

10/215
111.2sec

100A
bare wafer(cleaned)

5"
1.4E-09

50W/2min8sec/550
18A

0.003
550

5/108
112.sec

50A
patterned(cleaned)

5''
1.7E-09

50W/2min8sec/550
18A

0.003
550

10/215
55.6sec

50A
patterned(cleaned)



A.3 GE QUANTUM DOTS GRWOTH CONDITIONS 

 

 

 

Table Appendix  3 Ge quantum dots growth conditions 
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