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Abstract

This paper describes Cache Equalizer (CE), a novel distethicache management scheme for large scale chip
multiprocessors (CMPs). Our work is motivated by large asyatny in cache sets usages. CE decouples the physical
locations of cache blocks from their addresses for the s&kedwucing misses caused by destructive interferences.
Temporal pressure at the on-chip last-level cache, is omatiisly collected at a group (comprised of cache sets)
granularity, and periodically recorded at the memory catigr to guide the placement process. An incoming block
is consequently placed at a cache group that exhibits thémmoim pressure. CE provides Quality of Service (QoS)
by robustly offering better performance than the basellread NUCA cache. Simulation results using a full-system
simulator demonstrate that CE outperforms shared NUCA eatly an average of 15.5% and by as much as 28.5%
for the benchmark programs we examined. Furthermore, etiains manifested the outperformance of CE versus

related CMP cache designs.

1 Introduction

As large uniprocessors are no longer scaling in performartip multiprocessors (CMPs) have become the trend
in computer architecture. CMPs can easily spread multipleaids of execution across various cores. Besides,
CMPs scale across generations of silicon process simplydmmsng down copies of the hard-to-design cores on
successive chip generations [19]. From amongst the manghadienges to obtaining high performance from CMPs
is the management of the limited on-chip cache resourcegcély the L2 cache) shared by the multiple executing
threads.

Tiled chip multiprocessor (CMP) architectures have rdgebeen advocated as a scalable processor design
approach. They replicate identical building blocks (lilesd connect them with a switched network on-chip
(NoC) [22]. Atile typically incorporates a private L1 cachad an L2 cache bank. L2 cache banks are accord-
ingly physically distributed over the processor chip. A wemional practice, referred to as the shared scheme,
logically shares these physically distributed cache ba®kschip access latencies differ depending on the distance

between requester cores and target banks creating a Noortnifache Architecture (NUCA) [16]. Alternatively,
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Figure 1. Distribution of L2 cache misses (compulsory, intra-procesor, and inter-processor).

a traditional organization denoted as the private schessigias each bank to a single core. Private design doesn't
provide capacity sharing between cores. Each core attacke blocks to its associated L2 bank.

The private scheme offers two main advantages. First, dalclo&s are read quickly. Second, performance isola-
tion is inherently provided as an imperfectly behaving agtlon cannot hurt the performance of other concurrently
executing applications [20]. However, private cachesdase aggregate cache footprint through undesired replica-
tion of shared cache lines. Nonetheless, even with low @sgrésharing, the pressure induced on a per-core private
L2 bank can signi cantly increase as a consequence of arastmg working set size. This might lead to expensive
off-chip accesses that can tremendously degrade the spstdonmance. Recent proposals explored the de ciencies
inherent to the private design and suggested providingoigeharing for ef cient operation [4, 20].

Shared caches, on the other hand, offer increased cache iilazation via storing only a single copy of each
cache line. Recent academic works on CMP cache managemantrdzognized the importance of the shared
scheme [9,10, 12,15, 25, 28]. Many of today's multi-coregessors, the Intel Cot& 2 Duo processor family [21],
Sun Niagara [17], and IBM Power5 [24], have also featuredesheaches. Nevertheless, shared caches lack perfor-
mance isolation. A defectively behaving application caittewseful L2 cache content belonging to other concur-
rently running programs. Thus, a program that exposes tehfoxality can experience high cache misses caused
by such destructive interferences between applications.

To establish a key hypothesis that there are signi cantrdesive interferences between concurrently running
threads, we present in Fig. 1 the distribution of the L2 caunisses for 10 benchmarks executed on a 16-tile CMP
platform employing shared NUCA desigrMisses in a CMP with a shared scheme can be classi ed intpotsory
(caused by the rst reference to a datum), intra-procesadng¢ck being replaced at an earlier time by the same
processor), and inter-processor (a block being replaceuh aarlier time by a different processor) misses [25].
For the simulated applications, on average, 6.8% of missesanpulsory, 23% are intra-processor, and 70% are
inter-processor. Compulsory misses can be reduced bydittgir latencies (i.e., data prefetching [26]). In this

work we focus rather on reducing inter-processor and iptegcessor misses in order to provide faster CMP NUCA

!Details about the experimental parameters and the benkkmar described in Section 4.
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architectures.

We primarily correlate the destructive interferences mimeanon to the root of the cache management problem,
the cache placement algorithm. A placement strategy awateeaurrent cache pressure can circumvent placing
an incoming cache block at a highpyessuredtache location, thus diminishing undesired contentioadifionally,
cache blocks are stored at cache locations solely baseaismpttysical addresses. As such, the mapping process is
unaware of the disparity in the hotness of shared cachednsat

We identify two main requirements for enabling cache presswvare block placement strategies. First, the
physical location of a cache block has to be decoupled frenaddress. A block can thereby be placed at any
location independent of its address. This allows exilyilitn the mapping process as it effectively transforms the
cache associativity of the L2 cache to equate the aggregateiativity of the L2 cache banks. For instance, 16 L2
banks with 8-way associativity would offer 128-way set &sstivity and a requested cache block can map to any of
these 128-way entries. Second, by having a pressure-alegenment strategy, a location strategy capable of rapidly
locating the cache blocks requested at later times woulddpgred.

This paper explains the importance of incorporating pnesaware placement strategies to improve CMP system
performance. We propose cache equalizer (CE), a novel mithahat combines pressure-aware placement and
smart location strategies. A low-hardware overhead framnnkevis involved to monitor the L2 cache atgaoup
granularity (comprised of cache sets) and record pressfwemation at an array embedded within the memory
controller. The collected pressure information is utiize guide the mapping process. Upon fetching a block from
the main memory, CE looks up the pressure array at the menworyatler, identi es the group with minimum
pressure, and places the block at that group.

In this work we make the following contributions:

We propose a practical, low-overhead pressure-awaremktanechanism that provides robust performance
isolation for distributed shared NUCA caches.

We evaluate our work using a full system simulator and ndtt6& successfully reduces cache misses of
shared NUCA by an average of 21.9% and by as much as 50.1%.

In addition to shared NUCA, we compare CE to various relatb@sies. We nd that CE outperforms private
scheme, victim replication (VR) [34], and cooperative ¢aghCC) [4] by averages of 15.5%, 15.3%, and
14.7%, respectively.

Contrary to VR and CC, we nd that CE provides Quality of Seev{QoS) by robustly offering better perfor-

mance than the baseline shared scheme.

The rest of the paper is organized as follows. Section 2 ptegbe baseline processor architecture. The CE
mechanism is detailed in Section 3. We evaluate CE and camgpaternative mechanisms in Section 4. Section 5

summarizes prior work and we conclude in Section 6.
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2 Baseline Processor Architecture

Exponential increase in cache sizes, growing wire regigtivower consumption, thermal cooling, and reliability
considerations have necessitated a departure from traditcache architectures. As such, large monolithic cache
designs, referred to as uniform cache architectures (U@#¢ been replaced by decomposed cache architectures,
referred to as non-uniform cache architectures (NUCA). éheais split into multiple banks and distributed on a
single die. Access latencies to the cache banks are fulsctibproximity between distributed requesting cores
and target banks. Economic, manufacturing, and physicfdeconsiderations suggest tiled architectures (e.g.,
Tilera's Tile64 and Intel's Tera ops Research Chip) thatlogate distributed cores with distributed cache banks in
tiles communicating via a network on-chip (NoC) [11]. A ttigically includes a core, a private L1 cache, and an
L2 cache bank. Fig. 2 displays a typical 16-tile CMP architee with a magni ed single tile to demonstrate the
incorporated components. In this work we assume a tiled ChRitacture with 16 tiles and a 2D mesh NoC.

The distributed L2 cache banks can be either assigned otkagdnane core (private scheme), or one bank to many
cores (shared scheme). Private scheme requires an engimarttain coherence (typically by using a distributed
directory protocol) at the L1 and L2 caches because shaomkdhre replicated at both levels (see Fig. 2(a). Dir
stands for directory). On a local L2 miss, the coherencectbirg is inspected before reporting an L2 miss. If a
hit occurs at the directory, the requested block is transfie(copied) from a hosting bank to the L2 bank of the
requesting core. Conversely, the shared scheme mainterextlusiveness of cache blocks at the L2 level. Thus a
coherence engine is required to maintain coherence onhedt level. A core maps and locates a cache block, B,
to and from a target tile referred to as gtatic home tilSHT) of B. The SHT of B stores B itself and its coherence
state. The SHT of B is determined by a subset of bits (denctéubime selecbits or HS bits) from B's physical
address. As such, the shared scheme follows an addregs{ilasement strategy. On an L1 miss, B's SHT is
directly approached. If a miss occurs, the main memory isss®xd (as no other tile can contain the requested data).

This work is based on the shared scheme and employs a disttilirectory protocol for coherence maintenance.

3 Cache Equalizer (CE)

Cache Equalizer (CE) seeks performance isolation amongucamtly running applications by attempting to

alleviate destructive interferences. For that sake, weentlaé placement process of cache blocks aware of the un-
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derlying cache pressure, a technique that we refer to assaymeeaware placement strategy. However, as described
earlier, placing cache blocks independent of their adéseamuld require a mechanism capable of rapidly locating
the blocks when reused. We achieve fast location of cactek®lbirough the recently proposed cache-the-cache-tag
(CTCT) [10] location policy. We brie y describe CTCT next.

3.1 Cache Equalizer: The Cache-The-Cache-Tag (CTCT) Locain Strategy

The shared scheme adopts an address-based placemergystidte placement and location functions are the
same (both use the HS bits from an address). When the mappalglock B is decoupled from its address, B can
be hosted by any of the distributed L2 banks. For any cachenselthat does such a relaxation in the mapping
process, the cache-the-cache-tag (CTCT) strategy carebdasubsequently locate cache blocks. Assume a block
B can map to anywhere on the L2 cache space, CTCT maintdiasking entrycorresponding to B at B's static
home tile (SHT). This tracking entry is referred to asphiecipal tracking entry. The principal tracking entry points
to B and can always be checked by any requester core to locaté®Bcurrent host. CTCT also supports caching
tracking entries for B at requester tiles. These entriegeferred to ageplicatedtracking entries. A replicated
tracking entry at a requester tile also points to the curneist of B and can be rapidly checked by a requester core
to straightforwardly locate B (instead of checking with BEIT).

Based on the above discussion, per each tile T, a principekittg entry is kept for each cache block B whose
static home tile is T but had been mapped to another tile.dg@esreplicated tracking entries are retained at T to track
the locations of other cache blocks that have been recerttBsaed by T but whose static home tile is not T. Though
both, principal and tracking entries essentially act as\jgos to the current hosts of cache blocks, a distinction
is made between them for consistency and replacement mggo®re on this shortly). A per-tile data structure,
referred to as the tracking entries (TR) table, can be aduéddt both classes of tracking entries pertaining that a
hardware extension (i.e. an indicative bit) is used to digtish between them.

Whenever a core issues a request to a block B, its TR tableeiskeld rst for a matching tracking entry. On a
miss, the SHT of B is reached and its TR table is looked up. Ifssmccurs (on B's principal tracking entry) at the
TR table of B's SHT, B is fetched from the main memory and pthaea tile speci ed by the underlying placement
method (using the pressure-aware placement strategy icesa). Additionally, a principal tracking entry is cached
at the TR table of B's SHT. If B, however, exists on chip, a ldtors at the TR table of B's SHT and B is located
at its current host. A replicated tracking entry is furthacleed at the requester's TR table. Finally, if the requester
core hits at its TR table, B is straightforwardly retrievedrh the current host that the replicated tracking entry
designates. This makes the location process fast due tdiagd-way cache-to-cache communication scenarios,
speci cally between the requester, the SHT, and the haess.tiAn illustrative example combining CTCT and the
proposed placement strategy is given in Section 3.3.

The principal and replicated tracking entries need to be &apsistent. This is accomplished by embedding a bit

vector with each principal tracking entry at the TR tablestticate which tiles cached related replicated tracking
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Figure 3. Address-based versus pressure-aware placements. (a) Sedrscheme strategy. (b) Pressure-aware strategy.
(f(.) denotes the placement function, HS is the home select bitsloliock B, and P is the pressure array)

entries. Finally, as each per-tile TR table can hold priacgmd replicated tracking entries, it is wise to never evict
a principal tracking entry in favor of a replicated one. Ariction of a principal tracking entry requires an eviction
of the corresponding cache block and all the correspondiplicated tracking entries. As such, the TR replacement
policy should replace the following three classes of eatiedescending order: (1) an invalid entry, (2) an LRU
replicated tracking entry, (3) and an LRU principal tragkantry. Besides, upon caching a replicated tracking entry,
only the rst two classes are considered. If no entry belaggio one of these two classes is found, a replicated

tracking entry is not cached.
3.2 Cache Equalizer: A Pressure-Aware Placement Strategy

We propose a pressure-aware placement strategy that mayess ldacks to the L2 cache space depending on the
observed pressures at the L2 cache banks (re ned later tograf cache sets). The pressure (more on this shortly)
at each L2 bank can be collected at run time, stored, andedilio guide the placement process. Speci cally, a
pressure array is maintained at the memory controller ok system. Each slot on the array corresponds to an
L2 bank and represents the pressure on that bank. For irstand 6 banks (assuming a 16-tile CMP) the pressure
array would consist of 16 slots. On a miss to L2, the main mgrsoaccessed and the pressure array is probed. The
bank that corresponds to the slot that exhibits the minimataes(pressure) is selected to host the fetched cache
block. Fig. 3 demonstrates a descriptive comparison betwreeplacement strategies of the nominal shared NUCA
and our proposed scheme. As described earlier, by usinghdred scheme's placement strategy, a subset of bits
(the HS bits) from the physical address of a requested bB¢ls utilized to map B to its static home tile (SHT).
Assuming the HS bits of B are 0100, B is accordingly placedafl4 (see Fig. 3(a)). Alternatively, by using our
pressure-aware placement strategy, the pressure arfag atemory controller is inspected before B is mapped to
L2. The pressure array indicates that slot T5 (correspaiithe cache bank at tile T5) has the minimum pressure,
thus selected (see Fig. 3(b)).

Typically, the pressure at an L2 bank can be measured in tefrozche misses or hits. However, it is not possible

to measure cache misses in a meaningful way at L2 banks whesssupe-aware placement strategy is employed.



Unlike an address-based placement strategy, on an L1 misbltick B, there is no address that dictates the bank
responsible for caching B. Besides, B might map to any baeks(is mapping only to the SHT on the nominal
shared). CE mechanism employs the CTCT strategy to locatedaocks. Thus, the TR tables, either at requesting
tiles or the SHT of B, can keep tracking entries for B. HoweveB's corresponding principal tracking entry is
missed at the TR table on B's SHT, an L2 miss is reported. TBigiss can't in fact be correlated to any speci c
L2 bank but rather to the whole L2 cache space. Hence, we dsa'tnisses to represent pressures at L2 banks but
rather hits.

Hits can be used to indicate two types of pressusestial andtemporal We de ne spatial pressure as the
number ofuniquelines yielding cache hits during a time interval, and tenapas the number of lines yielding cache
hits during a time interval. Spatial pressure pertains ¢outilized cache space while temporal pressure effectively
re ects the frequency of the successful cache accessasgdatime interval. In this work we use temporal pressure.
Spatial, and possibly other pressure functions (i.e., abioation between spatial and temporal), can be explored in
a future work.

Our pressure-aware placement policy doesn't rely on a griowledge of the program but on hardware counters.
A saturating counter(s) can be installed at each tile to tthenumber of successful accesses during a time interval
referred to as arpoch At the end of every epoch (20M instructions in this papee)thlues of counters are copied
from the local tiles to the pressure array at the memory ofletr The IDs of the tiles are used to index the array.
Besides, in order to allow our mechanism to adapt to undeggphase changes of applications, at the copy time
we keep only 0.25 of the last epoch's pressure values (byirstnach value 2 bits to the right) and add to them the
newly collected ones.

Collecting pressures at a bank granularity might be rethtiimprecise. We can gather more detailed, and thus
more accurate, pressures from individual setgmoupsof sets. A cache bank can be divided into a number of
groups. We term group size as the number of sets that a groupdade. As such, the upper bound on the number
of groups per bank is equal to the number of sets per bank (emug@ gan have minimally one set). The dimension
of the pressure array (rows vs. columns) at the memory clbatichanges depending on the number of groups per
bank (n-group per bank) and the number of banksttiles (pbafvith n-group and p-bank a pressure array would
consist ofn rows andp columns. Therefore, a 1-group (bank) granularity indisatéinear pressure array and can
be probed straightforwardly. With ner granularities, hever, we need to select the row rst (denoting the group
number of an incoming cache block K) and then the column (tlegdhe bank that exhibits the minimum pressure
for the selected group). The group number (GN) of K can be lyimigtermined by dividing the index of K by the
group size.

Fig. 4 demonstrates our pressure-aware placement stiadegydifferent granularities. For intuitive presentatio
we assume a simpli ed 2-tile (TO and T1) CMP version with tvagiically shared, physically distributed L2 cache
banks and show only the L2 banks referred to by the names dfltise Each bank is 2-way associative and has

space for 8 cache blocks thus encompassing 4 cache setd(a&jiglustrates our pressure-aware placement strategy
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Figure 4. Placing block K (with index = 1) using the proposed pressureware placement strategy with various

granularities. (a) 1-group. (b) 2-group. (c) 4-group. (GN & the group number)

operating at 1-group granularity. We assume that each difltieks on the banks has been successfully accessed for
only one time during the last epoch and that the pressurg had zero values before (this describes the numbers
displayed in the arrays). By inspecting the pressure vadte®d at the array, bank T1 (the least pressured) is
selected to host an incoming block K. Assuming that the irafdk is 01, K maps accordingly to setl of bank T1.
As a conseguence, a con ict miss occurs. Had bank TO (thoxgbsing higher pressure) been selected, no con ict
miss would have been incurred (because setl of bank TO hae agace for an incoming block).

Fig 4(b) demonstrates our proposed pressure-aware platatnategy operating at 2-group granularity. Given
that the index of the incoming block K is 01, GN of K is accomglinO (index=group size = 82). Hence, row 0 is
investigated. Group TOO at bank TO exhibits the minimum gues thus selected to host K. Compared to a 1-group
operating pressure-aware placement strategy (illustiat&ig. 4(a)), no con ict miss is incurred. In Fig. 4(c) we
re ne the granularity more, speci cally to 4-group. GN of K how 1, and row 1 is therefore explored. Group T0OO
at bank TO reveals the minimum pressure thus selected. Naté¢hie placement strategy with 4-group and 2-group
granularities demonstrate similar behavior for K. Thistbiio the fact that re ning the granularity might not always

provide better performance. This usually occurs when teequres become uniform across groups.

3.3 Cache Equalizer: lllustrative Example and Optimizations

We demonstrate through an example how the CE mechanism neathie cache-the-cache-tag location and the

pressure-aware placement strategies to offer an ef ciaohe management scheme for distributed NUCA caches.
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Figure 5. The CE mechanism in operation. (a) A miss occurs at L2. (b) A hioccurs at L2.

Fig. 5 shows the CE mechanism in operation. Fig. 5(a) dematesta request made by core 3 to a cache block H.
Core 3 looks up its local tracking entries (TR) table. We assa miss is incurred and the request is subsequently
forwarded to H's static home tile (SHT), T12 (assuming the bitS of H = 1100). The TR table at T12 is then
looked up. We assume no principal tracking entry correspgnm H is found and an L2 miss is reported. Block H

is then fetched from the main memory and placed at tile T1ti¢idel by our employed pressure-aware placement
strategy). Fig. 5(b) displays the residences of H and cpomding tracking entries h. As illustrated in Fig. 5(b),
when core 3 requests H again, it looks up its TR table and arhit occurs. Thus the request is straightforwardly
directed to T11. Lastly, note that if any other core requEst§12 can be always approached to locate H.

On an L2 request to a tile, probing always the local L2 bankthedI'R table in parallel has a number of effects:
(1) reducing latency as the requested block might be hostlly, (2) reducing space because as a consequence
we need not keep tracking entries (principal and repligdiada block that maps to its SHT. Speci cally, if H (see
Fig. 5(b)) is mapped to its SHT, T12, we don't keep any coroesling tracking entry, h, at any tile. To explain this,
assume contradictorily that we do really cache H, a cornedimg principal tracking entry h, and another replicated
one hattiles T12, T12 (at the TR table), and T3, respectiebnsequently, a hit on h at the requester tile T3 would
trigger an access to T12, the host of H. Besides, a miss on B atolild trigger an access to T12, the SHT of H.
Thus, having h at T3 becomes redundant as T12 is always a&cteatso having the principal tracking entry h at
T12 becomes redundant because H resides at the associdiadk.2Jpon accessing T12, if we look up its L2 bank
and TR table concurrently we would hit at the L2 bank strdigitardly without any need for the principal s
such, an optimization for CE would be not to cache any trackimg entry for a cache block that maps to its SHT
and to always lookup the L2 bank and the TR table at the SHT in paallel.

Now assume that H is cached at the requester tile T3 insteatizyfH's SHT (see Fig. 5(b)). Assume moreover
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| COMPONENT | PARAMETER

Cache Line Size 64 B
L1 I/D-Cache Size/Associativity 16KB/2way
L1 Read Penalty (on hit per tile 1 cycle
L1 Replacement Policy LRU
L2 Cache Size/Associativity | 512KB per L2 bank or 8MB aggregate/16way
L2 Bank Access Penalty 12 cycles
L2 Replacement Policy LRU
Latency Per NoC Hop 3 cycles
Memory Latency 300 cycles

Table 1. System parameters

that a corresponding replicated tracking entry h is stotdaUpon requesting H, if we look up T3's local L2 bank
concurrently with its TR table we will satisfy the requesagihtforwardly from the L2 bank without any need for
the replicated h. However, if H is requested by a tile différnan T3, H's SHT (T12) needs to be approached in
order to locate H. Hence, in this case we still need to mairgadrincipal tracking entry for H at its SHTherefore,
a second optimization for CE would be not to cache a replicattracking entry for a block that maps to the
requester tile and to always lookup the L2 bank and the TR tabé of the requester tile in parallel

Lastly, and as a third optimization, a cache block that maps ¢ a tile different than its SHT can be always
promoted upon eviction to its SHT if it has space (an invalid ine) for an incoming block (to avoid another
eviction and a ripple effect) Speci cally, if we evict H from T11 (see Fig. 5(b)), we inua@gate rst H's SHT,
T12, for an invalid block. If we successfully nd an invaliddzk at T12, we place H at T12 and invalidate all its
corresponding tracking entries. The latter step is a dimpglication of the rst optimization because T12 is H's
SHT.

4 Quantitative Evaluation
4.1 Methodology

We present our results based on detailed full-system stioalasing Virtutech's Simics 3.0.29 [31]. We fully
developed our own NUCA cache module including a 2D mesh No@ahdNe implemented the XY-routing algo-
rithm and accurately modeled congestion for both coherandedata. A tiled CMP architecture comprised of 16
UltraSPARC-III Cu processors is simulated running Solafi©S. Each processor uses an in-order core model. The
tiles are organized as 4 grid connected by the 2D mesh NoC. Each tile encompassegchsa 16KB I/D L1
cache, a 512KB L2 cache bank, and a tracking table with 16KemntThe latency to lookup a tracking table is hid-
den under the delay to enqueue the request in the port sereduhe local switch [5]. We implemented, and fully
veri ed and tested, a distributed MESI-based directorytpeol. Finally, an epoch length of 20 million instructions
is employed for measuring pressures at groups. Table 1 stiwon guration's experimental parameters.

We compare CE to the nominal shared (S) baseline archieedhe private scheme (P), and two related propos-
als; cooperative caching (CC) [4], and victim replicati®R(] [34]. All schemes are studied using a mixture of

multithreaded and multiprogramming workloads. For matgtaded workloads we use the commercial benchmark
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| NAME | INPUT

SPECjbb Java HotSpot (TM) server VM v 1.5, 4 warehouses
Ocean 1026 1026 grid (16 threads)
Barnes 64K particles (16 threads)
Lu 2048 2048 matrix (16 threads)
Radix 3M integers (16 threads)
FFT 4M complex numbers (16 threads)
MIX1 Hmmer (reference) (16 copies)
MiX2 Sphinx (reference) (16 copies)
MIX3 Barnes, Ocean, Radix, Lu, Milc, Mcf, Bzip2, and Hmmer (2 #us/copies eachp
MIX4 Barnes, FFT, Lu, and Radix (4 threads each) |

Table 2. Benchmark programs
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Figure 6. L2 miss rates of Cache Equalizer (CE) and Shared (S) schemasofmalized to S).

SPECJBB in addition to ve shared memory ones from the SPLASHite [32] (OCEAN, BARNES, LU, RADIX,
and FFT). Four multiprogramming workloads have been alsopased from the ve SPLASH2 benchmarks and
other ve applications from SPEC2006 [27] (HMMER, SPHINXIMC, MCF, and BZIP2). Table 2 shows the data
set and other important features of each of the 10 simulatedlleads. Lastly, the programs are fast forwarded to
get past of their initialization phases. After various wasmperiods, each SPLASH2 benchmark is run until the
completion of its main loop, each of MIX1 and MIX2 is run for Bllion user instructions, and each of MIX3 and

MIX4 is run for 8 billion user instructions.
4.2 Comparing with the Shared NUCA Design

Let us rst compare CE against the baseline shared (S) schémeffers a systematic solution to reduce misses
in shared caches. Fig. 6 shows the L2 miss rates (normalizedrinal shared) for all the simulated benchmarks
with both S and CE. We show results for CE operating at 1-giapk) granularity (we will study shortly CE
results with various different granularities). CE offers a2 miss rate reduction over S by an average of 17.6%
across all benchmarks and to an extent of 50.1% for MIX3. Temeats characterize MIX3. First, MIX3 is a mix
application with a non-uniform access pattern. This effety creates non-uniform pressured cache physical loca-
tions. CE ef ciently exploits such an opportunity and mapstee blocks to highly biased locations with minimum
pressures. Second, MIX3 reveals 37.9% intra-processdB@uddo inter-processor misses while only exposing 2.5%
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Figure 7. Misses Per 1K Instructions (MPKI) of Cache Equalizer (CE) ard Shared (S) schemes.

compulsory misses. As explained earlier, CE doesn't ineenompulsory misses. CE reduces intra-processor and
inter-processor misses. As such, MIX3 becomes very fddil€E to perk up. CE reduces intra-processor and inter-
processor misses for MIX3 by 37.3% and 23.3%, respectivetya-processor misses are signi cantly reduced due
to reduced number of references to cache banks (1-grouplgrég) that are eligible to evict data. Fig. 7 displays
the number of references per 1K instructions that lead tgoedsory, intra-processor, and inter-processor misses for
all the simulated benchmarks. CE offers reductions in iptiecessor and inter-processor misses over S by averages
of 9.2% and 14.2%, respectively. Overall, CE offers an ayenr@duction of 14.2% in misses per 1K instructions
(MPKI) over S.

Besides accessibility patterns and percentages of inb&epsor and intra-processor misses, working set sizes of
programs affect their eligibility for miss reductions pided by CE. Though OCEAN exposes 41.8% compulsory
misses and FFT only 0.12%, OCEAN surpasses FFT and show# Iiiigs rate reduction compared to only 0.8%
reduction shown by FFT. Both programs have homogenous sipegterns but expose different working set sizes.
FFT and OCEAN exhibit 71.9% and 2% L2 miss rates running ovee§pectively. Alongside, MIX1 and MIX2
have absolute homogenous access patterns (very littlsghard uniform cache demands because the very same
program is replicated on each core) and high L2 miss rated¥7@&nd 94.1%, respectively). CE provides 3.6%
and 2.5% miss rate reductions for both over S, respectihally, as shown in Fig. 7, MIX2 manifests additional
intra-processor misses over S but demonstrates contfewilgr inter-processor misses. Intra-processor misses can
increase if the number of references from a certain core &taio bank increases signi cantly.

The L2 miss rate improvement accomplished by CE comes atdgbense of higher interconnect traf c. Fig. 8
depicts a comparison of the number of message-hops per 1kigtisns between CE and S. S offers preeminent
on-chip network traf c as compared to CE. The increase inititerconnect traf c generated by CE correlates to
the use of the cache-the-cache-tag (CTCT) location poliggon a request initially made by a certain core, CTCT
experiences a 3-way communication scenario (between ¢uester, the home, and the host tiles). On a block reuse,
CE starts mimicing S by directly locating the block at its tidle after a hit at the requester's tracking table. Besjdes

CTCT introduces more coherence traf c on the NoC for the s#kmaintaining consistency between principal and
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Figure 8. On-chip network traf c.

Figure 9. Execution time (normalized to S).

replicated tracking entries. Overall, CE increases the NafZ (including both data and coherence) by an average
of 41.8% over S. This traf ¢ increase, however, doesn't éffieely hinder CE from outperforming S. Fig. 9 presents
the execution time (normalized to S) of CE and S. Across alchearks, CE achieves superiority over S by an
average of 9% and by as much as 22% for SPECJBB.

Lastly, Fig. 10 demonstrates the CE behavior running witfedint granularities (varying from 1-group to 512-
group). Given our adopted con guration, 512 is the numberamhe sets per bank denoting the upper bound for the
number of groups. For each benchmark we show two metricsnibses per 1K instructions (MPKI) and the cycles
per instruction (CPI). For some benchmarks, CE performs(beterms of CPI) with 1-group (OCEAN, BARNES,
MIX3, and MIX4), with 2-group (SPECJBB and LU), with 8-groBFT), with 16-group (MIX1), and with 512-
group (RADIX and MIX2). As explained earlier, in this work wese cache hits to indicate temporal pressures on
groups. This sort of pressure is effectively an approxioratf real cache demands. Real pressures (successful
accesses) on groups at the current epoch might deviate asaqeence of a phase change and accordingly render
the pressure array currently utilized in the mapping preeeBttle skewed. As such, increasing granularity might

manifest little MPKI irregularities but that typically dee't translate to high CPI irregularities (e.g., OCEAN)rfu
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Figure 10. The CE behavior with different granularities (varying from 1-group to 512-group) for all benchmarks.

thermore, uniform pressures might be experienced acrosgpgithus signifying the utmost out of what we can gain
from granularity re nements (e.g., MIX4- See also Fig. 4 éodescriptive example). Hence, an increased granularity
might not always correlate to better performance; yet eaanetimes it might show little MPKI degradation (e.g.,
SPECJBB). However, under any granularity CE always ropudtérs Quality of Service (QoS), which means that
the performance of an application remains at least singitdvetter than, the baseline scheme [20].

To that end, Fig. 11 shows tif&Curvé of the CPI improvement provided by CE over the baseline senSm
for a total of 100 simulations (running the 10 workloads eatth 10 different granularities). We denoBE(best)
as the CE that gives the best performance under a certainlgriawy for a given workload. For example, CE(best)

of OCEAN is the 1-group CE. Across all benchmarks, CE(bedt)eves better performance than S by an average

2An S-Curve is plotted by sorting the data from lowest to higgh&ach point on the graph then represents one data-paintthis sorted
list [20].
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Figure 11. S-Curve for CPIl improvement of CE over S.

Figure 12.  Execution time of CE and CE(best) as compared to Shared (S)rivate (P), Cooperative Caching 100%
(CC100%), Cooperative Caching 70% (CC70%), and Victim Repication (VR) schemes.

of 15.5% and by as much as 28.5%. We can in fact conclude fremmetbults that 1-group granularity might be
fair enough for CE (using temporal pressure) to produce gasfbrmance and above 16-group might not be really
required. Most of the workloads don't perform superlatjwelth CE running above 16-group granularity. Moreover,
MIX2, for instance, that shows superior performance witBgtoup granularity (5% improvement over S) exhibits

alternatively 3.7% improvement with 1-group granularity.
4.3 Comparing with Related Designs

In addition to comparing with the baseline nominal shardueste, in this section we compare CE (with 1-
group granularity) against the private (P) design, and wlated works, cooperative caching (CC) [4], and victim
replication (VR) [34]. The performance of CC is highly dedent on the cooperation throttling probability [20]. As
such, we evaluate two con gurations of CC, one with prokibdf 100% (CC100%) and another with probability
of 70% (CC70%). For a clearer picture, we further show resfait CE(best). Similar to CE, VR is based on the
nominal shared scheme but approaches the cache managentdahpreversely via seeking to mitigate the NUCA

latency problem inherent in the shared design. CC, on ther dthnd, is based on the nominal private cache and
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attempts to reduce intra-processor misses. Fig. 12 ddhietsxecution time (normalized to S) of all the compared
schemes. A main observation is that neither CC nor VR prevideS (contrary to CE). The basic problem with
CC is that it performs spilling without knowing if spillinggtps or hurts cache performance [20]. Thus sometimes
CC performance surpasses the baseline P (e.g., MIX4 with®Gt100% and CC70%) while on some other times it
doesn't (e.g., OCEAN with both CC100% and CC70%). CC100%athes P by an average of 0.2% while CC70%
outperforms P by an average of 1.9%. CE and CE(best), on kiee band, outperform P by averages of 9.1% and
15.5%, respectively. CE and CE(best) improve upon CC100%veyages of 9.4% (by as much as 23.6%) and
15.7% (by as much as 26%), respectively. Furthermore, CECE{thest) improve upon CC70% by averages of
7.2% (by as much as 24.9%) and 13.8% (by as much as 27.2%gctagby. Lastly, the basic problem with VR

is that it uncontrollably replicates evicted L1 lines atdbt2 banks. Accordingly, if VR fails to offset the lost
latency caused by the elevated miss rate (due to repligdtimm the saved latency (due to replica hits), it can lead to
performance degradation. This explains VR's behaviork Witl, MIX1, MIX2, MIX3, and MIX3 benchmarks. For
the simulated benchmarks, VR degrades S by an average otilG#proves the performance of some benchmarks
by as much as 26.9% (i.e., OCEAN). CE and CE(best) outperftiRrby averages of 8.8% and 15.3%, respectively.

5 Related Work

Much work has been done to effectively manage CMP cachesy darposals advocate CMP cache management
at either ne (block) or coarse (page) granularities andedatheir work on either the nominal shared or private
schemes. Besides, previous work looked at reducing eitligs rate or latency in NUCA, or simply miss rate in
UCA architectures. We brie y discuss below the proposat #ire directly related to ours and describe how our
work differs from them.

Srikantaiah et al. [25] is one of the rst to present a systienelassi cation of cache misses in shared CMP
caches. Speci cally, they classify misses into compulsorya-processor, and inter-processor. They then propose
adaptive set pinning (ASP), a technique to reduce the latteclasses. Processors are associated to cache sets and
solely granted permission to evict blocks from the sets @heanisses. As such, references that could potentially
cause inter-processor misses can't interfere betweenaheheven if they index to the same set. Blocks that would
lead to inter-processor misses are redirected to smalkpsoc owned private (POP) caches. While ASP reduces
misses effectively, it is not directly applicable to largeale CMPs with multiple caches. ASP work is based on a
UCA architecture. Our work focuses contrarily on largedi@&IP NUCA architectures. A further subtle difference
is that ASP modi es the replacement policy such that the eddbcks that would evict other processor's elements
are themselves cached on POP caches while we, in contradifyrtite placement policy to avoid misses prior to
their occurrences. Finally, another key characteristi€Bfis that it actually offers a global equalization method
with dependent information being ef ciently collected atrious coarser (bank) and ner (set) granularities.

Reducing con ict misses in uniprocessor caches has beentapio of research [8,14,18,29,30,33]. Summarily,

two main directions have been proven to reduce con ict nigftectively: (1) higher set associativity and (2) victim
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caching (VC) [14,18]. [25] presents a valuable study on caammisses in shared CMPs through increasing asso-
ciativity and cache size, and compares with VC. The bottom ¢if their study is that with increasing associativity
and the size of the L2 cache, the contribution of inter-pssoe misses to the non-compulsory misses (as percentage
of non-compulsory misses) increases and that of intragasar misses decreases. As such, inter-processor misses
become the bottleneck (as far as reducing non-compuls@sasis concerned). The motivation for reducing misses
in shared CMP caches thus remains. Finally, a key differbet@een CE and VC is that VC caches the victims after
they are evicted by the replacement policy while we agaigetathe problem from its root (the placement process)
and offer a global strategy applicable to distributed CMPhes. We compared in Section 4.3 our scheme with
victim replication (VR) [34] that offers essentially a dyni VVC.

Chang and Sohi [4] proposedoperative cachin¢CC) based on the private scheme to create a globally managed
shared aggregate on-chip cache. CC employs spilling édsiEevicting) singlet blocks (blocks that have no replicas
at the L2 cache space) to other random L2 banks seeking toeeadira-processor misses. CC is directly applicable
to CMPs with multi-banking architectures. CE shares theesahjective with CC but in addition to intra-processor
misses, CE targets inter-processor ones. We compared @QisaG& in Section 4.3. With CC, each private cache
can spill as well as receive cache blocks. Hence, the caghi@reenent of each core is not considered. A recent work
by Qureshi [20] proposediynamic spill-receiv€DSR) to improve upon CC by allowing private caches to eiteit
or receive cache blocks, but not both at the same time.

All of the above schemes attempt to reduce cache missescit ¢gmanularity. Many other researchers examined
reducing cache misses at coarser (page) granularity [B,23l. Sherwood et al. [23] proposed reducing cache
misses using hardware and software page placement. Tliguase page placement algorithm performs a coloring
of virtual pages using pro les at compile time. The genedatelored pages can be used by the OS to guide their
allocation of physical pages. Their hardware approach sibykadding a page remap eld to the TLB. This eld is
used as part of the index to the L2 cache (instead of the plilyshgie number) thus allowing a page to be remapped
to a different color in the cache while keeping the same playsiage in memory. Cho and Jin [7] proposed an
OS-based page allocation algorithm applicable to NUCA itgctures. Cache blocks are mapped to the L2 cache
space using a simple interleaving on page frame numbersa@thdin color pages only upon rst touch. As such,
the optimal behaviors of workloads running over many phasight not be effectively re ected. Awasthi et al. [1]
addressed this shortcoming and attempted to re-color Eagesitime (via an elegant use of shadow addresses to
rename pages) moving them to the center of gravity of itsestpufrom various cores. Their proposed mechanism
relies on the OS to spread the working set of a single progi@wsa many colors when exposing high capacity
demands. In comparison to these schemes, CE performs gtagkplacement without involving OS and provides
a transparent solution.

Lastly, many researchers have explored CMP cache manage®signs to reduce cache hit latency in CMP
NUCA caches. Zhang and Asanovi€ [34] proposeédim replication(VR) based on the nominal shared NUCA

scheme. VR seeks to mitigate the average on-chip accessyat@a keeping replicas of local primary cache vic-
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tims (instead of evicting or writing them back to their SHTg}hin the local L2 cache banks. Chishti et al. [6]
proposedCMP-NuRAPIDthat controls replication based on usage patterns. Beakmtal. [2] proposedSRthat
dynamically monitors workloads behaviors to control reation on the private cache organization. Beckmann and
Wood [3] examined block migration to alleviate access leyén CMPs and suggest&MP-DNUCA Hammoud et

al. [10] proposed®CM relying on prediction to perform data migration. Guz et ].gresented a new shared cache
architecture and diverted only shared data to centerededaahks close to all cores. Chaudhuri [5] also evaluates
data migration but at a coarser page granularity. Accedsrpatof cores are dynamically monitored and pages are
migrated to banks that minimize the access time for the shardres. Hardavellas et al. [11] proposedNUCA
that relies on OS to classify cache accesses onto eithat@rishared, or instructions. R-NUCA then places pri-
vate pages into the local L2 cache banks of the requestirgsctite shared into xed address-interleaved on-chip
locations, and instructions into non-overlapping clustdrL2 cache banks. Huh et al. [12] proposed a spectrum of
degrees of sharing to manage NUCA caches.

In summary, while we clearly stand on the shoulders of mamge main things differentiate our work from
the above listed proposals. First, we reveal the importafpeessure-awarblock placement strategies in CMPs.
Second, we offer a fully address-relaxed data placemertepsofor NUCA caches. Third, we present a simple
novel framework to monitor CMP caches at various ner gramiiles. Such a framework can be generally applied
to a variety of CMP cache schemes. For instance, it can beadiby migration mechanisms (e.g., [10]) to guide
promotions of blocks. Also, it can be used by schemes that ofipacity sharing for private caching (e.g., [4]) to

guide spilling of blocks.
6 Conclusions and Future Directions

Cache management in CMP is crucial to fuel its performanosvtr. This paper investigates the shared NUCA
misses problem (caused by destructive interferences)mmpepes cache equalizer (CE), a mechanism that provides
isolation capabilities to reduce misses. We indicate theigiance of applying pressure-aware placement stragegie
to CMP NUCA caches in order to achieve performance isolafih embarks upon such a key factor and suggests
mapping cache blocks to the on-chip last level cache base#roporal pressures. Pressure information (how
many lines yield cache hits during a time interval) is cdlecat a group (composing of cache sets) granularity
and recorded in an array at the memory controller. On an iimgpache block, CE looks up the pressure array,
selects the minimum pressure, and places the block at tlespanding group. Simulation results using a full
system simulator demonstrate that CE reduces the sharkd n@sses by an average of 21.9% (translates to 15.5%
execution time average improvement) and by as much as 50FL#thermore, results show that CE outperforms
victim replication [34] and cooperative caching [4] by aages of 15.3% and 14.7%, respectively.

As a future direction, CE can be studied with further kindgpmdssures. For instance, we can employ spatial
pressure (how many unique lines yield cache hits during a titterval) and based on that explore CE's behavior.

We can also have a combination of various pressure kinds@ntiréze the consequent performance. Lastly, we
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can incorporate more parameters to the mapping process Gfaelecides upon a group to host an incoming cache

block, we can check up the Manhattan distance between thestgy tile and the L2 bank of the selected group. We

can then choose to map the block to a different group (witttla higher pressure) at a bank closer to the requester

tile thus saving latency on reuse. Clearly, this would regjmieasuring the gain (better latency on block reuse) and

the loss (potentially higher misses) and deciding on plasgsmaccordingly.
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