C-AMTE: A Location Mechanism for Flexible Cache
Management in Chip Multiprocessors

Mohammad Hammoud, Sangyeun Cho, and Rami Melhem

Department of Computer Science
University of Pittsburgh

Abstract

This paper describes Constrained Associative-Mapping-of-Tracking-Entries
(C-AMTE), a scalable mechanism to facilitate flexible and efficient distributed
cache management in large-scale chip multiprocessors (CMPs). C-AMTE
enables fast locating of cache blocks in CMP cache schemes that employ
one-to-one or one-to-many associative mappings. C-AMTE stores in per-
core data structures tracking entries to avoid on-chip interconnect traffic
outburst or long distance directory lookups. Simulation results using a full
system simulator demonstrate that C-AMTE achieves improvement in cache
access latency by up to 34.4%, close to that of a perfect location strategy.

Key words:
CMP, Shared Scheme, Private Scheme, Associative Mapping, Fixed
Mapping, Tracking Entries.

1. Introduction

Crossing the billion-transistor per chip barrier has had a profound influence
on the emergence of chip multiprocessors (CMPs) as a mainstream architec-
ture of choice. As CMPs’ realm is continuously expanding, they must provide
high and scalable performance. One of the key challenges to obtaining high
performance from CMPs is the management of the limited on-chip cache
resources (typically the L2 cache) shared by multiple executing threads.
Tiled CMP architectures have recently been advocated as a scalable
design. They replicate identical building blocks (tiles) connected over a
switched network on-chip (NoC). A tile typically incorporates a private L1

Preprint submitted to Journal of Parallel and Distributed Computing June 18, 2009

Tag Index Offset Tag Index HS Offset

B Address: | [10 T 1] B Address: | [o1 Jo[]
HS =0 I L'.l]
© ©
T0 T TO

| [[[
| [—> b+B
b B | |
[| [[

Tag Dir Tag Data Tag Data Dir

(a) (b)

Figure 1: Two traditional cache organizations. Each tile has a direct-mapped L2 cache
bank. Each bank incorporates 4 cache blocks. (a) Private scheme. (b) Shared scheme.

cache and an L2 cache bank. A traditional practice, referred to as the private
scheme, implies that each processor has its own private L2 cache bank. The
effective cache associativity of the private organization equates the aggregate
associativity of the L2 cache banks [3]. For instance, 16 private L2 banks
with 8-way associativity effectively offers 128-way set associativity. Each tile
attracts cache blocks to its local L2 bank. Thus, a cache block can map
to any of the 128-way entries, and if shared amongst cores, can reside in
multiple L2 banks.

Fig. 1(a) shows a simplified dual core tiled CMP version that demon-
strates how a private scheme works. Tile, T1, maps a cache block, B, to its
L2 bank. Three options can be employed to maintain coherence among the
private L1 and L2 caches: a broadcast-based, a centralized directory, and
a distributed directory protocols. The broadcast-based and the centralized
protocols are deemed non-scalable especially with the advent of medium-
to-large scale CMPs and the projected industrial plans. A high-bandwidth
distributed on-chip directory can be adopted to accomplish the task [12]. As
depicted in Fig. 1(a), specific bits from the physical address of B, denoted as
the home select (HS) bits, are utilized to map a tracking entry, b, to a tile,
referred to as the home tile of B. The tracking entry b consists of B’s tag bits
and its corresponding directory information. We identify a mapping process
that maps an entry (block or tracking entry) to a fixed tile as a fized mapping
strategy. On the other hand, we refer to a mapping process that exploits the
aggregate associativity of the L2 cache banks as an associative mapping strat-

egy. We particularly denote the private scheme process for mapping cache
blocks to L2 banks as a one-to-many associative mapping policy because a
single block might be mapped to multiple banks.

Another traditional practice of CMP caches is a one that logically shares
the physically distributed L2 banks. A shared cache design stores a single
copy of the shared data at the L2 level. However, shared caches suffer from a
growing on-chip delay problem. Access latencies to L2 banks differ essentially
depending on the distances between requester cores and target banks. This
design is referred to as a Non Uniform Cache Architecture (NUCA). Fig. 1(b)
illustrates how the shared scheme works. Block B and its corresponding
tracking entry b are mapped together to B’s home tile, TO, designated by
the HS bits of B’s physical address. As such, the shared scheme utilizes fixed
mapping for both, cache blocks and tracking entries.

To mitigate the NUCA effects, many proposals have extended the nom-
inal basic shared design to allow associative mapping. For instance, block
migration [2, 6, 8, 9, 15] exploits associative mapping by moving frequently
accessed blocks closer to requesting cores. We expressly refer to the mapping
process employed by migration schemes as one-to-one associative mapping
strategy because they maintain the exclusiveness of cache blocks at the L2
level. Furthermore, block replication [5, 3, 16] utilizes one-to-many associa-
tive mapping to alleviate non-uniform access latencies.

A major shortcoming of using associative mapping for blocks in any CMP
cache management scheme is the location process. For example, a migration
scheme that promotes a cache block B to a tile different than its home tile,
denoted as the current host of B, can’t use anymore the HS bits of B’s phys-
ical address to locate B. Consequently, different strategies for the location
process need to be considered. A tracking entry can always be retained at a
centralized directory or at B’s home tile (if the underlying directory protocol
is distributed) to be able to track B subsequently. Hence, if a core requests
B, the repository of the tracking entries is reached first then the query is
forwarded to B’s host tile to satisfy the request. The disadvantage of this
option is the arousal of 3-way cache-to-cache transfers to satisfy requests.
This might degrade the average L2 access latency. An alternative location
strategy could be to broadcast queries to all the tiles assuming no tracking
entry for B is kept at a specific repository. Such a strategy can, however,
burden the NoC and potentially degrade the average L2 access latency.

This paper proposes Constrained Associative-Mapping-of-Tracking-Entries
(C-AMTE), a mechanism that flexibly accelerates cache management in

3

CMPs. In particular, C-AMTE presents constrained associative mapping
that combines the effectiveness of both, the associative and fixed mapping
strategies and applies that to tracking entries to resolve the challenge of
locating cache blocks without broadcasting and with minimal 3-way commu-
nications.

To summarize, the contributions of C-AMTE are as follows:

e [t enables fast locating of cache blocks without swamping the NoC.

e It can be applied whenever associative mapping is used for cache blocks,
either in case of one-to-one (i.e, migration) or one-to-many (i.e, repli-
cation).

e It can be generally applied to cache organizations that extend the tradi-
tional private or shared schemes. Furthermore, it opens opportunities
for architects to propose more creative cache management designs with
no necessity to stick to either private or shared designs.

The rest of the paper is organized as follows. Section 2 presents some
recent CMP cache management schemes. C-AMTE mechanism is detailed in
Section 3. In Section 4 we evaluate C-AMTE, and we conclude in Section 5.

2. Related Work

As CMP has become the mainstream architecture of choice, many pro-
posals in the literature advocated managing CMP last level caches (typically
L2 caches) to obtaining high system performance. Recent works have recog-
nized the need for shared L2 caches that follow NUCA [6, 8, 9]. NUCA design
suffers from a latency problem. A cache block may map to a bank far away
from the requester core thus causing the core significant latency to locate
the block. Data migration and replication have been suggested as techniques
to diminish the NUCA negative effects. Replication schemes complicate the
coherence protocol and increase L2 miss rate. Contrarily, migration schemes
maintain simple coherence protocol and effective L2 miss rate. However,
what hinders the migration schemes from being truly effective in tackling
the NUCA problem is the location process.

Beckmann and Wood [2] and Huh et al. [8] studied generational promo-
tion and suggested Dynamic NUCA (DNUCA) that migrates blocks towards
banks close to requesting processors. To locate migratory blocks, [8] adopts
sending concurrent queries to L2 banks. To reduce the number of queries

4

quore 3 made request to block B. The
quest is forwarded to B's home tile, T4.

Core 4 looks up its L2 bank and the
associated victim migration (VM) table.
A miss is incurred at the L2 bank but
a hit occurs at the VM table. The request
is then forwarded to B's current host, T7.

Tag Data Dir . The request gets satisfied by T7.

(VM table)

Figure 2: Locating a migratory block using 3-Way cache-to-cache transfer.

sent over the NoC, |[2] staggers the location process by searching each L2
bank sequentially in an increasing order of their distances from the requester
core.

Guz et al. [6] presented a new architecture that utilizes migration to
divert only shared data to cache banks at the center of the chip close to all
the cores. To locate migratory blocks, sequential, hybrid (between sequential
and broadcast), and sequential with predictor policies have been scrutinized.
Kandemir et al. [9] proposed a mechanism that determines a suitable location
for a data block, B, within the shared L2 space at any given point during
execution. B is then migrated to that suitable place. To locate B, a multistep
checking scheme was employed.

Zhang and Asanovi¢ [15] examined straightforward promotion and pro-
posed Victim Migration that migrates a cache block, B, from its home tile
to the initial requester tile. A victim migration (VM) table per tile was
suggested to keep track of the locations of migratory blocks. Specifically, a
migration tag for B is kept in the VM table at B’s home tile to point to the
current host of B. Later if a core S reaches the home tile of B and fails to
find a matching tag in the regular L2 tag array but hits in the associated
VM table, the current host of B, pointed out by the matched migration tag,
satisfies the request using 3-way cache-to-cache transfer. Fig. 2 illustrates
how a requester core, T3, can locate a cache block, B, that has already been
promoted from T4 to T7 manifesting 3-way communication between T3, T4,
and T7. A tag, b, has been stored at the home tile of B, T4, to point to
the current host of B, T7. Clearly, such a location strategy fails to exploit
distance locality. That is, the request incurs significant latency to locate B,
though B resides in close proximity.

Marty and Hill [10] proposed imposing a two-level virtual coherence hier-

archy on a physically flat CMP that harmonizes with virtual machines (VMs)
assignments. A key challenge for an intra-VM protocol is finding the home
tile of a requested block. For an intra-VM, the home tile is a function of
two properties: which tiles belong to a VM and how many tiles belong to a
VM. Moreover, dynamic VM reassignment can change both. They suggest
co-locating caches with tables within tiles. A table must be looked up be-
fore a miss leaves a tile. Each table includes 64 six-bit entries indexed by
the six least-significant bits of the block number. Tables would be set by a
hypervisor (or OS) at VM (or process) reassignment.

Hammoud et al. [7] proposed an adaptive controlled migration (ACM)
scheme that relies on prediction to collect accessibility information regarding
cores that accessed a block B in the past, and then assuming that each of
these cores will access B again in the future, dynamically migrates B to
a bank that minimizes the overall network hops needed. To locate cache
blocks, they suggested cache-the-cache-tag (CTCT) location policy. CTCT
is a specific version of the C-AMTE mechanism and had been presented in [7]
particularly to perform blocks’ locations for ACM. This paper presents C-
AMTE;, a general version of CTCT and can be utilized by any CMP cache
management scheme that adopts one-to-one (i.e., migration) or one-to-many
(i.e., replication) associative mapping.

Lastly, many researchers explored data replication instead of migration
to mitigate the NUCA latency problem. Zhang and Asanovié¢ [16] proposed
victim replication (VR) scheme based on the nominal shared design. VR
keeps replicas of local primary cache victims within only the local L2 cache
banks. As such, the location process renders straightforward and can be per-
formed simply by looking up local L2 banks seeking for replica hits to avoid
approaching the requested blocks’ home tiles. However, many cache schemes
don’t limit themselves to replicating blocks only at two locations, home tiles
and local L2 banks. Much work allows one-to-many associative mapping.
To mention some, Chang and Sohi [3] proposed cooperative caching based on
the private scheme, and created a globally managed shared aggregate on-chip
cache. Chisti et al. [5] proposed CMP-NuRAPID that controls replication
based on usage patterns. [3] and [5] utilize 3-way cache-to-cache transfers
to satisfy L2 requests upon misses at local L2 banks.

C-AMTE can be essentially used by any of the above cache schemes to
resolve the challenge of locating cache blocks. As [7] presents ACM aug-
mented with the cache-the-cache-tag (CTCT) location policy, we in this pa-
per present a generalized and detailed version of CTCT (C-AMTE), select

6

| | BLock MAPPING | TRACKING ENTRIES MAPPING

Private Scheme (P) Associative Fixed
Shared Scheme (S) Fixed Fixed
Scheme With C-AMTE Associative Constrained=Fixed + Associative

Table 1: Varieties mapping strategies for alternative CMP caches.

an alternative scheme to apply C-AMTE to (the DNUCA |2, 8] scheme- mul-
tiple others can be selected), and compare additionally with various location
options.

3. The Proposed Mechanism

Constrained Associative-Mapping-of-Tracking-Entries (C-AMTE) mech-
anism offers a robust and versatile location strategy for CMP cache schemes.
Assuming a distributed directory protocol is adopted, C-AMTE supports
storing at least one tracking entry corresponding to a block B at the home
tile of B. We refer to this tracking entry as the principal tracking entry. The
principal tracking entry points to B and can always be checked by any re-
quester core to locate B at its current host. The principal tracking entry is
stored using a fixed mapping strategy because the home tile of B is desig-
nated by the HS bits of B’s physical address. C-AMTE also supports storing
another type of tracking entries for B at requester tiles. We refer to this
type of tracking entries as replicated tracking entries. A replicated tracking
entry at a requester tile also points to the current host of B but can be
rapidly checked by a requester core to directly locate B (vis-a‘vis checking
with B’s home tile to locate B at its current host). The idea of replicating
tracking entries at requester tiles capitalizes on the one-to-many associative
mapping strategy traditionally applied for cache blocks. C-AMTE combines
associative and fixed mapping strategies and apply that to tracking entries in
order to efficiently solve the location problem. Table 1 illustrates the hybrid
approach of the C-AMTE mechanism. We refer to such a hybrid mapping
process as a constrained associative mapping strategy.

Based on the above discussion, per each tile, T, a principal tracking entry
is kept for each cache block B whose home tile is T but had been mapped
to another tile. Besides, replicated tracking entries are retained at T to
track the locations of other corresponding cache blocks that have been re-
cently accessed by T but whose home tile is not T. Though both, principal
and tracking entries essentially act as pointers to the current hosts of cache
blocks, we differentiate between them for consistency and replacement pur-

poses (more on this shortly). Per-core data structures can be added to store
the two types of the tracking entries. A data structure, referred to as the
principal tracking entries (PTR) table, can hold principal tracking entries,
and a data structure, referred to as the replicated tracking entries (RTR) ta-
ble, can hold replicated ones. Alternatively, a single table, could be referred
to as the tracking entries (TR) table, can be added to hold both classes of
tracking entries pertaining that a hardware extension (i.e. an indicative bit)
is engaged to distinguish between the two entries. Pros and cons for splitting
the TR table into RTR and PTR are discussed afterward.

Assume a CMP organization with PTR and RTR tables. Whenever a core
issues a request to a block B, its RTR table is checked first for a matching
replicated tracking entry. On a miss, the home tile of B is reached and its
PTR table is looked up. If a miss occurs at the PTR table, B is fetched
from the main memory and placed at a tile specified by the underlying cache
scheme protocol. If B is mapped to a tile different than its home tile, a
principal tracking entry is stored at the PTR table and a replicated tracking
one is retained at the requester’s RTR table. If, in contrary, B is mapped
to its home tile, no tracking entries are kept at either PTR or RTR tables
on the home and the requester tiles, respectively. This is because after an
incurred miss at the requester’s RTR table, B’s home tile can be reached
with no need to a replicated tracking entry (by using B’s HS bits). Besides,
B can be located at its home tile without requiring a principal tracking entry
(by concurrently looking up the PTR table and the regular L2 bank). This
results in space reduction. On the other hand, if a hit occurs at the PTR
table, B is located at its current host tile and a replicated tracking entry
is furthermore stored at the requester’s RTR table. Lastly, on a hit at the
requester’s RTR table, B is located directly at its current host designated
by the matched replicated tracking entry. This consequently avoids a 3-way
cache-to-cache transfer that would have been incurred if we had to approach
B’s home tile to locate B. Same logic applies if a CMP organization assumes
a single TR table instead of split PTR and RTR ones.

Fig. 3 demonstrates an example of the C-AMTE mechanism on a tiled
CMP with an assumed shared scheme and a certain migration policy being
incorporated to alleviate the NUCA latency problem. Fig. 3(a) shows a
request made by core 3 to cache block B. Core 3 looks up it local RTR table.
We assume a miss occurs and the request is subsequently forwarded to B’s
home tile, T12. The PTR table and the regular L2 bank at T12 are looked
up concurrently. We assume misses occur. As such, B is fetched from the

8

Core 3 Made a Request
@ to Block B @ Core 3 Made a Request

to Block B
@Hequesl is forwarded » E

=]

to B's home tile, T12 sy 7 R~
’ > ¥ (K]
*Jo[T1[2]3 ; [Lis] @ = [K]
45|67 Request is 45| 6 ‘7’ \ b
ore 3 looks up || forwarded to —

-
=
N

©

184 9 (1011 @?tsmmable.;\) 18 10| 11 i @g:r;Tsﬂl:::Iseu:
/] 5 miss occurs. Y - - .. . g
i[12[13[14(15 {({M2]13[14 |15 . T TEe o

IiN;

@ Core 12 looks up its L2 bank and PTR @ Request gets satisfied
table concurrently. A miss occurs. L2 miss is y T12. B is further migrated
reported and B is fetched from the main memory to T11. A principal tracking

entry b is kept at T12. Also B | | |

and placed at its home tile, T12. No tracking
entries are kept. areplicated one is kept at T3 .

m,‘,"

).

=

(a) (b)

Figure 3: A first example on locating a migratory block B using the C-AMTE mechanism.

main memory and assumedly placed at B’s home tile, T12. As discussed
previously, we don’t store tracking entries for B when B maps to its home
tile. B can be directly located at T12 upon any subsequent request (similar
to the nominal shared). Fig. 3(b) shows a subsequent request made by core 3
to B. B is located at its home tile, T12. Assume after that hit, B is migrated
to T11. Thus, corresponding principal and replicated tracking entries are
stored at T12 and T3, respectively. If at any subsequent time core 3 requests
B again, a hit will occur at its RTR table (in case the entry has not been
replaced yet) and B can be located straightforwardly at T11 avoiding thereby
a 3-way cache-to-cache transfer. Lastly, note that if any other core requests
B, T12 can be always reached to locate B.

Fig. 4 demonstrates C-AMTE in operation for an assumed scheme that
doesn’t stick to the traditional placement strategy of the shared design (pos-
sibly to mitigate cache conflicts). This is to show the flexibility that C-AMTE
can grant to architects when managing CMP caches. Fig. 4(a) shows a re-
quest made by core 3 to a cache block B. We assume misses occur at RTR
on T3, and PTR and L2 bank on T12, the home tile of B. B is fetched from
the main memory and assumedly mapped to T15. Principal and replicated
tracking entries are thus kept at T12 and T3, respectively. Fig. 4(b) shows
a request made again by core 3 to B. A hit occurs at T3’s RTR table. Con-
sequently, B is directly located at T15. Clearly, this exhibits how C-AMTE
can allow creativity in blocks placements, avoid cache-to-cache transfers, and
exploit distance locality.

@core Stzﬁgt::& F;equest @ Core 3 Made a Request
to Block B

@Request is forwarded ‘_A_\ HJ » E-!

to B's home tile, T12
.

®

XE=s P
i T (6w
128] @‘~_~ ol 1] 2] 34 @
S bl || » < TP——— s
4|1 5|67 & Requestgets | 4 | 5 -7 b
ore 3 looks up isfied by
- 1181 91101 @C Ti5. Core 3 looks up
IR| ‘ - -]‘\ “;E:Fx:zl; A -8 91011 its RTR table. A
it ; 1 i g / 3 7 i hit occurs and
N ‘2 13[14]15 e \ 12|13 (1415 i request forward
| | [/ -— =N Tl - — — directly to T15.
R| (| T R R
Core 12 looks up its L2 bank and PTR . . o
@ table concurrently. A miss occurs. L2 miss is @ @ @
reported and B is fetched from the main memory
and placed at tile, T15. A principal tracking B | | | b B | | |

entry is kept at T12 and a replicated one at T3.

(a) (b)

Figure 4: A second example on locating a block B using the C-AMTE mechanism.

The principal and replicated tracking entries need to be kept consistent.
We accomplish this by embedding a bit vector with each principal tracking
entry at the PTR tables to indicate which tiles stored related replicated
tracking entries. For instance, given the example depicted in Fig. 3, each
time B is migrated to a different tile, the principal and the replicated tracking
entries that correspond to B are updated to point to the new host of B. To
that end, each principal tracking entry would include: (1) The tag of the
related block (typically 22 bits), (2) a bit vector that acts as a directory to
maintain consistency of the principal and the replicated tracking entries (16
bits for a 16-tile CMP model), and (3) an ID that points to the tile that
is currently hosting the cache block (4 bits for a 16-tile CMP model). On
the other hand, a replicated tracking entry would include only the tag of
the related block and the ID of the current host tile. Contrarily, in case
of a single TR table, both, the principal and the replicated tracking entries
would each comprise of a tag, a bit vector, and an ID fields beside a bit
to distinguishe between the two types of entries (required for replacement
purposes as discussed afterward). In this case, the bit vector agumented to
each replicated entry renders redundant and causes increase in space. As
such, splitting TR table to RTR and PTR might be preferable.

Finally, PTR and RTR tables can employ the LRU replacement policy.
However, in case of a single TR table, it is wise to never evict a principal
tracking entry in favor of a replicated one. An eviction of a principal tracking
entry calls for eviction to the corresponding cache block and all the related

10

| COMPONENT | PARAMETER

Cache Line Size 64 B
L1 I/D-Cache Size/Associativity 16KB each/2way
L1 Read Penalty (on hit per tile) 1 cycle
L1 Replacement Policy LRU
L2 Cache Size/Associativity 512KB per L2 bank or 8MB aggregate/16way
L2 Bank Access Penalty 12 cycles
L2 Replacement Policy LRU
Latency Per NoC Hop 3 cycles
Memory Latency 300 cycles

Table 2: System parameters

| NamE | INPUT

SPECjbb Java HotSpot (TM) server VM v 1.5, 4 warehouses
Ocean 514x514 grid (16 threads)
Barnes 32K particles (16 threads)

Lu 2048x2048 matrix (16 threads)

Radix 3M integers (16 threads)
MIX1 reference (16 copies of the Spec CPU2006 Hmmer)
MIX?2 reference (16 copies of the Spec CPU2006 Sphinx)
MIX3 reference (Barnes, 2 Mcf, 2 Bzip2, 2 Milc, and 2 Hmmer)

Table 3: Benchmark programs

replicated tracking entries. Therefore, the TR replacement policy should re-
place the following three classes of entries in ascending order: (1) an invalid
entry, (2) an LRU replicated tracking entry, (3) and an LRU principal track-
ing entry. Besides, upon storing a replicated tracking entry, only the first
two classes are considered. If no entry belonging to one of these two classes
is found, a replicated tracking entry is not retained.

4. Quantitative Evaluation

To demonstrate the potential performance gain of the C-AMTE mecha-
nism, we evaluate the DNUCA [2, 8] scheme with 4 different location strate-
gies and compare against the baseline shared cache design (S). Ideal is a
scheme that assumes that cores have oracle knowledge about the cache blocks
residences. Broadcast (B) supports sending queries to all the tiles upon upon
every L2 request. Three-way (3W) advocates a DNUCA implementation with
a distributed directory protocol that employs 3-way cache-to-cache transfers.

11

Finally, C-AMTE is an implementation of the DNUCA scheme with the C-
AMTE mechanism being fully engaged.

4.1. Methodology

We present our results based on a detailed full system simulation using
Simics 3.0.29 [1] running under Solaris 10 OS. We fully developed our own
CMP cache module including a 2D mesh NoC model. We simulate a tiled
CMP architecture comprised of 16 UltraSPARC-III Cu processors. Each
processor uses an in-order core model. The tiles are organized as 4x4 grid
connected by the 2D mesh NoC. Each tile encompasses a switch, an aggre-
gate 32KB I/D L1 cache, a 512KB L2 cache bank, and a TR table with
16K entries. The latency to lookup a TR table is hidden under the delay
to enqueue the request in the port scheduler of the local switch [4]. The
dimension-ordered (XY) routing algorithm is employed where messages are
first routed in the X and then the Y directions. All types of messages are
modeled to consume NoC bandwidth. For coherence enforcement at the L1
cache level, we model a distributed MESI-based directory protocol. Table 2
shows our configuration’s experimental parameters.

To conduct the study we utilize a mixture of multithreaded and multipro-
gramming workloads. For multithreaded workloads we use the commercial
benchmark SPECJBB in addition to four shared memory programs from the
SPLASH?2 suite [14] (Ocean, Barnes, Lu, and Radix). We also composed
three multiprogramming workloads using applications from SPLASH2 and
SPEC2006 [13] (Hmmer, Sphinx, Milc, Mcf, and Bzip2). Table 3 shows the
data set and other important features of each of the 8 simulated workloads.
Lastly, we ran Ocean, Barnes, Lu, and Radix in full and stopped the remain-
ing benchmarks after a detailed simulation of 20 billion instructions.

4.2. Results

Fig. 5 presents the relative reduction /increase in average L2 access latency
(AAL) for B, 3W, C-AMTE, and Ideal over S. Latency for an L2 access
can be defined in terms of three types of scenarios. First, it can be simply
a function of only L2 access time and that would occur upon a hit to a
local L2 bank. Second, it can be a function of NoC congestion, Manhattan
distance between the requester and the target tiles, and L2 access time. That
would occur upon a hit to a remote L2 bank. Third, it can incur a memory
access and that would occur upon a miss to L2. C-AMTE achieves AAL
improvement over S by an average of 18.6%, and to an extent of 34.4% for

12

@B O3W EC-AMTE H Ideal

40
S 30
3' 20
c
£ 10 -
8 nE W Um
v 0 =]
3

_ A
3 -10

-20

OCEAN BARNES RADIX LU SPECJBB MIX1 MIX2 MIX3

Figure 5: Average L2 Access Latency (Relative reduction over S).
| | S | B |3W][C-AMTE | IDEAL |

Ocean 2.5 35.8 3 3.1 2.4
Barnes 3.6 | 55.1 | 4.4 4 2.9
Radix 6.9 | 136.4 | 9.8 13.5 9.4
Lu 70 | 905.4 | 78.3 76 70.5
SPECjbb | 5.3 | 87.5 | 5.7 4.8 2.4
MIX1 35.5 | 573.8 | 37.3 37.6 27.4
MIX2 22.1 | 370.2 | 32.6 47 19
MIX3 16.5 | 314.6 | 20.7 19.5 16.9

Table 4: Message-Hops per 1K insructions

Radix. This makes C-AMTE significantly close to Ideal that accomplishes,
on the other hand, an average of 21.7% AAL improvement over S. Contrary
to that, B reduces AAL by an average of only 7.7% over S, and by as much
as -10.8% and 25.3% for Ocean and SPECjbb, respectively. Although B
locates cache blocks straightforwardly, it profoundly outbursts the NoC with
superfluous queries. It has been found that B increases the on-chip network
traffic by ~ 15z over S. Table 4 shows the message-hops per 1K instructions
for the simulated applications. An increase in the link congestion between
two adjacent switches on the CMP platform escalates the connectivity delay
of an L2 request. This deteriorates the consequent AAL. If the connectivity
deterioration is not offset by the gain from direct locations to cache blocks,
AAL might degrade. This explains the B behavior with the two scientific
applications, Ocean and Lu. C-AMTE also increases the on-chip network

13

7B O3W B C-AMTE EIdeal

NNNNNNNN

Vs -

OCEAN BARNES RADIX LU SPECJBB MIX1 MIX2 MIX3

Execution Time Improvement (%)
=
o

Figure 6: Relative execution time improvement over S.

traffic. The two reasons of that increase are misses to RTR tables by requester
cores, and consistency maintenance of the principal and replicated tracking
entries upon migrations.

The 3W strategy also offers an average AAL reduction of 7.7% over S.
In fact, 3W is not supposed to surpass S because it triggers 3-way cache-
to-cache transfers for migratory blocks. Nonetheless, for some benchmarks
like Radix, 3W improves the AAL by 19.6% over S though it degrades the
on-chip network traffic by 42%. We found that this outshine came from a
32% L2 miss rate decline as compared to S. We observed that Radix has
a great deal of L2 misses caused by heavy cores interferences on cache sets
(inter-processor misses). In some cases, 3W inadvertently redistributes the
cache blocks on L2 and diminishes accordingly the pressure on some of the
cache sets.

Finally, Fig. 6 presents the relative speedup/slowdown in total execution
time over S. Across all benchmarks, C-AMTE achieves superiority over S by
an average of 7.5% (25.2% for the SPECjbb benchmark) making it notably
close to Ideal that improves the execution time by an average of 8.7% over
S. The speedup of B over S is on average 0.7%. Though B accomplishes 9%
and 9.2% AAL reductions over S for Barnes and Radix respectively, this is
not effectively realized on the resulted performance. Lastly, the 7.7% average
AAL improvement of 3W over S translates to an average speed up of 3.9%.

14

5. Concluding Remarks

Cache management in CMP is crucial to fuel its performance growth.
This paper proposes a mechanism to effectively simplify the process of locat-
ing cache blocks of schemes that employ either one-to-one or one-to-many
associative mapping. Particularly, C-AMTE stores tracking entries that cor-
respond to cache blocks at per-core data structures for straightforward lo-
cations at subsequent accesses. We demonstrated the potential of C-AMTE
with an implementation of the DNUCA |2, 8] migration scheme. A perfor-
mance speedup of up to 25.2% has been achieved, significantly close to a
perfect location strategy. Lastly, having established the generality and the
effectiveness of C-AMTE, optimizations to reduce hardware complexity is
one of the obvious next steps to explore in future.

References
[1] Virtutech AB. Simics Full System Simulator “http://www.simics.com/”

[2] B. M. Beckmann and D. A. Wood. “Managing Wire Delay in Large
Chip-Multiprocessor Caches,” MICRO, Dec. 2004.

[3] J. Chang and G. S. Sohi. “Cooperative Caching for Chip Multiproces-
sors,” ISCA, June 2006.

[4] M. Chaudhuri. “PageNUCA: Selected Policies for Page-grain Locality
Management in Large Shared Chip-multiprocessor Caches,” HPCA, pp.
227-238, Feb. 20009.

[5] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. “Optimizing Replica-
tion, Communication, and Capacity Allocation in CMPs,” ISCA, June
2005.

6] Z. Guz, 1. Keidar, A. Kolodny, U. C. Weiser. “Utilizing Shared Data
in Chip Multiprocessors. with the Nahalal Architecture,” SPAA, June
2008.

[7] M. Hammoud, S. Cho, and R. Melhem. “ACM: An Efficient Approach
for Managing Shared Caches in Chip Multiprocessors ,” HiPEAC, pp.
319-330, Jan. 20009.

15

[8] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. “A
NUCA Substrate for Flexible CMP Cache Sharing,” ICS, June 2005.

9] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son. “A Novel Migration-
Based NUCA Design for Chip Multiprocessors,” SC, Nov. 2008.

[10] M. R. Marty and M. D. Hill. “Virtual Hierarchies to Support Server
Consolidation,” ISCA, June 2007.

[11] N. Rafique, W. Lim, M. Thottethodi. “Architectural Support for Oper-
ating System-Driven CMP Cache Management ,” PACT, Sep. 2006.

[12] A. Ros, M. E. Acacio, and J. M. Garcia “Scalable Directory Organiza-
tion for Tiled CMP Architectures,” CDES, July 2008.

[13] Standard Performance Evaluation Corporation.
http://www.specbench.org.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. “The
SPLASH-2 Programs: Characterization and Methodological Considera-
tions,” ISCA, pp. 24-36, July 1995.

[15] M. Zhang and K. Asanovi¢. “Victim Migration: Dynamically Adapting
Between Private and Shared CMP Caches,” TR-2005-064, MIT, Oct.
2005.

[16] M. Zhang and K. Asanovi¢. “Victim Replication: Maximizing Capacity
while Hiding Wire Delay in Tiled Chip Multiprocessors,” ISCA, June
2005.

16

