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The risk of falling in older adults has been widely investigated among the able-bodied population 

but there is little evidence identifying fall risk among older adults who have a unilateral 

transfemoral amputation.  Older adult amputees have a loss of muscular control at the ankle and 

knee joints in the prosthetic limb and decreased muscle strength in the sound limb from aging.  

Previous research has investigated minimum foot clearance (MFC) to understand the risk of 

tripping while walking, and results show MFC decreases with age in able-bodied individuals.  

Changes in MFC have not been examined for older adults with unilateral transfemoral 

amputation, and in general, the methods for determining MFC must be modified for deviations in 

amputee gait.  The first objective of this thesis was to develop a methodology for identifying 

MFC in older adult unilateral transfemoral amputees while walking over a level surface and 

during stair ambulation.  Comparisons were made between the prosthetic limb and sound limb.  

Six older adult unilateral transfemoral amputees completed multiple walking and stair 

ambulation trials.  Results showed 4 of 6 subjects had smaller MFC with the prosthetic limb 

compared to the sound limb while walking over a level surface.  During stair ascent and descent, 

horizontal clearance of the prosthetic foot with respect to the step edge was typically greater than 

the sound limb.  The methodology developed in this thesis allowed for identification of MFC 

regardless of unilateral transfemoral amputee gait style.  The second objective was to investigate 

stumble recovery following obstruction of the prosthetic limb during swing.  Results showed an 
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elevating recovery strategy yielded a shorter recovery duration and smaller trunk deviation in the 

sagittal and frontal planes in comparison to a lowering strategy.  The final objective was to 

develop a geometric model of the prosthetic limb for determining the mass, center of mass, and 

mass moment of inertia of its segments.  Published anthropometric methods for determining 

inertial properties in able-bodied individuals cannot be applied due to the amputation.  The 

developed geometric model of the prosthetic limb successfully produced the inertial properties, 

and the model results were comparable to direct measurements taken for each segment. 
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1.0  INTRODUCTION 

1.1 THE SIGNIFICANCE OF FALLS 

1.1.1 Impact of Falls in the Older Adult Population 

Experiencing a fall at a later age in life can result in detrimental physical and psychological 

results for an individual.  Each year approximately one in three adults age 65 and older will 

suffer a fall [1].  In the United States, falls are the number one cause of death for unintentional 

injuries among adults over 65 years of age [2].  In 2009, a total of 20,422 deaths resulting from a 

fall occurred, which corresponds to 52.2% of all unintentional injury deaths in this older adult 

population.  Of the falls that caused these deaths, 48.7% were reported as an unspecified fall, 

while 6.8% occurred on stairs or steps and 3.5% occurred on a level surface due to a slip, trip or 

stumble. 

Furthermore, 2.2 million non-fatal fall injuries occurred among the older adult population 

in 2009 with more than 26.4% of these patients needing hospitalization [3].  Older adults are 

hospitalized for fall injuries five times more often than they are for other causes, undeniably 

leading to a large economic burden for treating unintentional fall-related injuries [4].  In 2005, 

medical costs for unintentional fall-related injuries in older adults totaled $6.3 billion dollars in 

the United States [5].  By 2020, this cost is estimated to increase to $32.4 billion dollars in the 
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United States [1].  The total amount of associated medical costs will only continue to grow as the 

proportion of the population age 65 and older in the United States is projected to increase from 

approximately 35 million people in 2000 to an estimated 71 million people in 2030 [6].  

Furthermore, as age increases, the probability of experiencing a fall increases.  In 2009, the 

United States rate of fall injuries for adults over the age of 85 was almost four times that for 

adults ages 65 to 74 [3]. 

1.1.2 Causes for Falling in Older Able-Bodied Adults 

An increase in age is associated with an increase in gait variability due to a loss of leg strength 

and passive range of motion in the lower limbs [7-8].  Previous research has found older adults 

who perform poorly in clinical gait evaluations are at an increased risk of falling [9].  

Specifically, increased stride time variability has been shown to predict fall risk in older adults 

[10].  Stride time variability has also been significantly correlated with lower limb strength, 

balance, and gait speed.   

 In general, as age increases changes in the temporal and spatial parameters of gait occur.  

Previous gait research has found young adults have a self-selected gait speed of 1.48 m/s ± 0.18 

m/s while older adults who do not have a history of falling have a gait speed of 1.13 m/s ± 0.39 

m/s [11].  This shows a significant increase in gait speed variability with age, but furthermore, a 

history of falling among older adults increases to the variability to 0.42 m/s.  Gait stride time also 

increases with age.  Young adults were found to have a stride time of 1048 ms ± 73 ms and older 

adults without a history of falling had a stride time of 1077 ms ± 85 ms.  In terms of the stance 

phase of the gait cycle, young adults had a stance time of 651 ms ± 55 ms while older adults who 

do not have a history of falling had a stance time of 690 ms ± 64 ms.  Based on these stance 
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phase results, the percentage of stance during the gait cycle is significantly different between 

young and old adults.  In terms of spatial gait parameters, an increase in age has been found to 

yield shorter step length with greater variability in comparison to younger adults [12].  Previous 

research has found step length variability (reported as a percentage of body height, %bh) for 

young adults to be 0.0078 %bh ± 0.006 %bh while variability for older adults was 0.01 %bh ± 

0.007 %bh.  Similar results were seen for stride width variability: older adults had significantly 

larger stride width variability during gait than younger adults (1.26 cm ± 0.35 cm and 0.92 cm ± 

0.32 cm, respectively). 

As gait becomes more variable with age, it can become more difficult to complete tasks 

such as walking over an uneven surface, negotiating obstacles, or ascending and descending 

stairs [13].  However, these tasks can become even more challenging for an older adult when a 

fear of falling is present.  For older adults who have a fear of falling or a history of falling, the 

spatial-temporal measures of gait show reduced gait speed, shorter stride length, increased stride 

width, and increased double-limb support time in comparison to non-fallers [14]. 

 In addition to the variability in gait that occurs with an increase in age, older adults are 

more likely than the younger population to experience a fall due to tripping while walking.  

Tripping has been reported to account for up to 53% of falls among older adults, most often 

occurring while walking over a level floor or over an uneven floor [15].  Tripping while 

attempting to ambulate over a vertical change in level can also result in falls among older adults.  

Previous research found over a 2-year period a 23% risk for older adults to fall when there was a 

change in surface level, such as ambulating over stairs or a curb [16].   

The risk of tripping while walking over a level surface can be understood by analyzing 

the minimum foot clearance of the foot as it passes over the flooring surface during swing.  
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Minimum foot clearance (MFC) has been defined for able-bodied individuals as the minimum 

vertical distance between the lowest point of the foot of the swing leg and the walking surface at 

the midswing location in the gait cycle [17].  The MFC value is found by identifying a local 

minimum point in the foot vertical displacement during the swing phase (Figure 1).  
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Figure 1. Trajectory of shoe toe tip for an able-bodied adult during the swing phase.  Minimum 
foot clearance occurs at a visible local minimum point around midswing. 
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Comparison of MFC between healthy young adults and older adults has shown older 

adults are a greater risk of tripping when walking on level surfaces.  The mean MFC reported for 

young adults is 1.29 cm ± 0.45 cm [18].  For older adults, the MFC has been shown to decrease 

to a mean of 1.11 cm ± 0.53 cm [19].  However, older adults who have a fear of falling or history 

of falling have been found to have MFC of 2.02 cm ± 0.51 cm [20].  Minimum foot clearance 

variability has also been shown to be greater for older adults compared to younger adults and 

greater for older adult fallers compared to older non-fallers [15]. 

1.1.3 Lower Limb Loss and Falls in Older Adult Amputees 

The number one cause for lower limb amputation in older adults is diabetes mellitus [21].  In 

2010, the Centers for Disease Control and Prevention reported that 10.9 million Americans age 

65 and older were affected by diabetes, which is 26.9% of this age group.  The prevalence of 

diabetes in the United States is projected to nearly double by the year 2030, and those with living 

with diabetes and lower limb loss is projected to nearly triple by 2050 [22].  In 2005, there were 

504,000 Americans who underwent a lower limb amputation either at a level above or below the 

knee, and 71% of these persons had a comorbidity of diabetes.  Age also is a factor in lower limb 

amputation as evidence has shown an age-related increase in lower limb amputation secondary to 

vascular disease [23].   

As of 1996 there was 1.2 million persons living with lower limb loss in the United States 

[24].  Of the amputations resulting from dysvascular causation (82% of all limb loss discharges), 

25.8% of these amputations occurred at a level above the knee.  Lower limb amputation has a 

large economic cost.  Investigation into direct health-care costs associated with unilateral 

transfemoral amputation found in 2002 that the total 2-year cost associated with undergoing this 
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amputation, the rehabilitation process, and obtaining prosthetic equipment was $110,039 [25].  

For the 31 unilateral transfemoral patients included in this cost estimate, a new prosthesis was 

purchased every 2.3 years at an average cost of $18,722 (2002 USD). 

Currently, research by Miller et al. has reported that among community-dwelling adults 

with either a below knee or above knee amputation, 52% fell within the previous one-year 

period, 49% were afraid of falling, and 65% had low balance confidence scores [26].  Another 

study by Miller reported that for young and old adults who have a transfemoral amputation, 

approximately 66% experienced a fall within a one-year period [27].  A study by Gauthier-

Gagnon found approximately 64% of community-dwelling transfemoral amputees reported 

falling over a one-month period [28].  In comparison to able-bodied older adults, where there is a 

33% chance of experiencing a fall over a one-year period [1], the risk of falling is greatly 

increased following lower limb amputation in older adults. 

1.1.4 Causes for Falling in Unilateral Transfemoral Amputees 

Transfemoral amputees are at a significantly greater risk of falling due to the loss of the knee and 

ankle joints in the amputated limb.  As a result of the amputation, gait will become more difficult 

regardless of age.  Younger adult unilateral transfemoral amputees have been found to have 

reduced gait speed, increased postural sway during static standing or dynamic ambulation, 

increased energy expenditure when utilizing a prosthesis, asymmetrical step lengths, and 

asymmetrical stance durations between the prosthetic and sound limb [26, 29-30].  Furthermore, 

research investigating the vertical position of the shoe sole during the prosthetic limb swing 

phase of gait found average clearance over the walking surface to be 1.82 cm ± 1.20 cm among 

younger subjects [31].  Based on knowledge regarding gait variability for spatial-temporal gait 
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parameters and MFC for able-bodied older adults, it can be inferred that these variations also 

hold true for the gait of older adult unilateral transfemoral amputees, and may even be increased 

due to the amputation.  However, current literature has yet to focus solely on the older adult 

unilateral transfemoral amputee population.  Furthermore, no biomechanics-based evidence has 

been published for understanding the fall risk for older adults with unilateral transfemoral 

amputation. 

1.2 PROSTHETIC KNEE JOINTS 

1.2.1 Prosthetic Knee Joint Technology 

Over the last 50 years, prosthetic knee joint technology has advanced to provide transfemoral 

amputees with a device able to control the swing phase motion of the shank during gait [32].  

These knees are known as mechanical, or nonmicroprocessor-controlled prosthetic knee joints 

(NMPK joints).  The swing control of these knees is driven by either the mechanics of motion or 

a fluid-based system.  The simplest NMPK joint uses constant friction and a single axis of 

rotation to provide a hinging motion at the knee, and is optimal for individuals walking at a 

single, fixed cadence [33].  A specific type of mechanical knee is the polycentric, or “four-bar” 

knee, which has four points of rotation each controlled by a linkage bar.  The polycentric knee 

can provide greater toe clearance during swing and increased stance stability when the knee is in 

extension.  This knee can be advantageous for a wide range of amputees who need added 

stability but are able to walk at a moderate or high pace [32].  The use of fluid flow control 

systems, such as hydraulic (fluid) or pneumatic (air) cylinders, use resistance to control the 
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flexion and extension speed of the knee during swing so that cadence can be varied.  Some 

NMPK joints are able to offer stance phase control based on weight bearing activation during 

gait to keep the knee in extension.  Manually locking knee joints can be given to feeble or 

unsteady amputees in order to provide more stability, but the result is a stiff-legged gait pattern 

where the knee is kept in extension.  Mechanical knee joints require manual adjustment by a 

prosthetist to set the fluid flow resistance settings for the individual’s optimal gait speed.  

Consequently, if the user wants to drastically alter their gait speed or make immediate changes to 

appropriately maneuver obstacles such as stairs or uneven terrain, they must alter their gait 

pattern and increase physical effort [34]. 

Advancements in technology during the late 1980’s and early 1990’s provided prosthetic 

manufacturers with the opportunity to introduce a new type of prosthetic knee joint to the market 

[35].  This new prosthesis included the addition of a microprocessor within the knee to allow for 

real-time control of the joint during both the swing and stance phases.  The microprocessor-

controlled prosthetic knee joint (MPK joint) uses a series of sensors to monitor and analyze the 

knee position and gait pattern, allowing for immediate changes in flexion and extension 

resistance to be made for maintaining optimal control during various ambulatory situations.  This 

improvement has been shown to increase prosthetic limb stability during normal gait and 

increase functionality while ambulating over stairs and ramps, walking with a variable cadence, 

or walking over an uneven terrain [35-38].   

The first set of sensors in the MPK joint monitor the knee flexion angle to determine the 

current flexion or extension [35].  The second set of sensors measure the amount of rotational 

stress applied below the knee joint during gait.  Data collection ranges from a rate of 50 to 1,000 

times per second, and the microprocessor analyzes the data using gait assessment algorithms to 
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determine if the knee angle and force are appropriate for the stance or swing phase of gait.  

Within 1/100th of a second, changes can be applied to the resistance level in order to provide 

optimal stability.  When stance resistance is activated, the microprocessor sets the resistance for 

knee flexion at a high level so the knee does not collapse during stance on the prosthetic limb 

side.  A MPK joint can also detect interruptions to normal gait, activating higher resistance to 

flexion in order to help prevent an uncontrollable fall should loss of balance occur. 

1.2.2 Research Comparing Prosthetic Knee Joints 

Over the past few years there has been an increase in the percentage of gait research focusing on 

persons with unilateral transfemoral amputation who are using different types of prosthetic knee 

joints.  Most often unilateral transfemoral amputee research has attempted to make gait 

performance comparisons between different types of prosthetic knee joints by using 

biomechanics-based outcome measures or self-reported clinical measures.  While these studies 

have used a wide range of subjects, no study has focused on how age affects the gait of 

transfemoral amputees who are using prosthetic knee joints.  This section presents a summary of 

results for a few of the aforementioned studies. 

A study by Segal and colleagues presented a kinematic and kinetic comparison using two 

opposing knee types with eight subjects ranging from 28 to 60 years of age [39].  Subjects were 

randomly assigned to use either a MPK joint or NMPK joint over a three-month acclimation 

period.  After data collection with this prosthesis the knee was switched to the opposing type, 

and another three-month acclimation period was given before the final data collection occurred.  

Results showed an increase in self-selected walking speed with the MPK joint.  To control for 

differences in kinematic and kinetic variables that may arise due to walking speed, subjects were 
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instructed to walk at a controlled speed of 1.11 m/s ± 0.11 m/s.  At this speed, the prosthetic limb 

step length decreased for the MPK joint compared to the NMPK joint, making the MPK joint 

step length closer to that of the sound limb step length.  Knee flexion angles in the sagittal plane 

were determined at multiple points in the gait cycle.  The peak knee flexion angle during stance 

phase and the angle at the instant of opposite foot heel-strike were not significantly different for 

the two knee joint types for either the prosthetic or sound limb.  During swing phase with the 

MPK joint, the prosthetic limb peak knee flexion angle was significantly decreased compared to 

the NMPK joint, but not significantly different compared to the sound limb.  These results imply 

knee type has more impact on the swing phase rather than the stance phase of gait with regards to 

peak knee flexion.  The prosthetic limb peak knee flexion moment in the sagittal plane during 

early stance was significantly increased for the MPK joint compared to the NMPK joint.  This 

increase in peak knee flexion moment for the MPK joint may allow for controlled stance phase 

knee flexion to occur.  However, both prosthetic knee flexion moments were significantly 

decreased compared to the sound limb. 

Research by Berry et al. utilized a before-and-after study through a self-reported 

assessment of 50 questions with 368 unilateral transfemoral amputees ranging from 15 to 85 

years of age [33].  The pre-survey was conducted when subjects entered the study while they 

were wearing their personal NMPK joint.  The post-survey was conducted after six to nine 

months of using a MPK joint.  The questions were grouped into six subsets: socket fit, 

confidence and security during ambulation, gait and maneuverability with the prosthesis, 

physical attributes of the prosthesis, physical effects of the prosthesis, and safety and negative 

attributes of the prosthesis.  For all six categories, the post-survey mean scores were statistically 

significantly higher than the pre-survey mean scores.  These results show unilateral transfemoral 
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amputees perceived the MPK joint to offer functional improvements over the NMPK joint.  

Particular attributes associated with this improvement were increased comfort, decreased pain or 

fatigue, stance phase stability, ability to alter gait speed, greater agility, confidence in walking 

down stairs and ramps with a step-over-step method, and ability to negotiate uneven surfaces. 

A study by Bellmann and colleagues made comparisons on the functionality of four 

different MPK joints while walking, descending stairs and a ramp, and undergoing a stumbling 

perturbation during swing phase of the prosthetic limb [38].  Nine subjects who normally wore a 

MPK joint participated in the study and subject age ranged from 24 to 46 years.  All knee joints 

were able to increase the peak knee flexion angle as gait speed increased.  At the slowest walking 

speed (approximately 1.1 m/s) the knee flexion angles ranged from approximately 56 – 65 

degrees.  At fast walking speeds (between 1.53 m/s and 1.66 m/s) the knee flexion angles 

increased to approximately 62 – 75 degrees.  During stair descent all but one MPK joint were 

found to be slightly flexed prior to stair contact.  While using some MPK joints during stair 

descent, there were significant differences in the maximum vertical ground reaction force 

between the prosthetic and sound limb, but the differences seen during ramp descent were not 

significant.  The stumbling condition found only one MPK joint was able to prevent a fall if the 

swing phase of the prosthetic limb was interrupted between 10 – 35 degrees of knee flexion. 

 Another crossover-designed study, conducted by Kaufman and colleagues, tested the gait 

of 15 unilateral transfemoral amputees ranging in age from 26 to 57, whose personal prosthesis 

was the NMPK joint [40].  After data collection with this knee joint, all subjects were switched 

to a MPK joint and given an acclimation period as needed (range 10 – 39 weeks).  The study 

found improvements in gait with the MPK joint.  When subjects walked with the NMPK joint, 

the ground reaction force was maintained anterior to the knee joint center, resulting in knee 
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hyperextension and locking of the knee in extension to maintain stability during stance.  From 

this ground reaction force pattern, an internal knee flexion moment was also found while 

subjects wore the NMPK joint.  With the MPK joint, there was a statistically significant change 

to a more normal knee flexion loading response and an internal knee extension moment.  This 

increase in internal knee extension moment shows that more demand was placed on the 

prosthesis by the subjects, as MPK joints are capable of providing knee flexion resistance to 

prevent knee collapse.  A second publication by Kaufman et al. for the same set of 15 subjects 

examined kinematic and kinetic symmetry during gait with two knee joint types [41].  Overall, 

no significant differences were found for the hip, knee, and ankle joint sagittal plane kinematic 

symmetry of the prosthetic limb when comparing between the two different types of prosthetic 

knee joints.  Comparing the prosthetic limb to the sound limb did reveal some discrepancies 

when focusing on the swing and stance phases of gait; however, the hip sagittal plane motion 

displayed good symmetry for both the stance and swing phases of gait with each knee joint.  

There was a significant difference in symmetry at the knee joint for the stance and swing phases.  

This kinematic asymmetry at the knee joint was due to differences in knee position during initial 

stance, as most subjects displayed symmetry between the prosthetic and sound knee joints during 

the swing phase.  The ankle joint was near symmetric during the stance phase but the swing 

phase had large kinematic asymmetry.  In terms of kinetic joint symmetry, for both types of 

prosthetic knee joints, all prosthetic limb joints except the knee during stance phase exhibited a 

symmetrical pattern.  The hip moment symmetry was better during stance phase while the knee 

and ankle moments were more symmetrical during the swing phase.  Overall, there was a 

significant improvement in kinetic symmetry when using the MPK joint. 
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The long term goal of the research study this thesis is a product of is to effectively 

identify functional differences and similarities between MPK joints and NMPK joint when used 

by older adult unilateral transfemoral amputees as they perform various ambulatory tasks.  These 

results will provide evidence to fill the current void in the literature regarding older adult 

unilateral transfemoral amputee gait.  Comparisons between the knee joint types will allow for a 

better understanding of their overall functionality and help ascertain the impact knee joint type 

may have on the fall risk within this age group. 

1.2.3 Classifying Older Adult Amputees Based on Functional Status 

For older adult amputees the additional real-time feedback provided by a microprocessor-

controlled prosthetic knee joint may be very beneficial, as an increase in age is associated with a 

decrease in gait stability and muscle strength, with an increased risk for falls [7, 10, 13].  The 

type of prosthetic knee joint an individual will be fitted with is determined by a clinical 

assessment conducted by a physician or prosthetist during the initial consultation for the 

prosthetic limb post-surgery.  Difficulties may arise when determining the appropriate prosthesis 

to fit an individual with because generally re-assessment does not occur after this initial 

evaluation.  A number of factors influence what type of prosthesis will be chosen: age, weight, 

cause of amputation, physical ability, overall health, medical history, functional goals, personal 

motivation, and medical coverage [30].   

The U.S. Department of Health and Human Services’ Centers for Medicare and Medicaid 

Services adopted a coding system in 1995 that is also used by the U.S. Health Care Financing 

Administration to describe individuals with lower limb amputation [30].  This classification 

system is known as the Medicare Functional Classification Level (MFCL) system.  This system 
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describes a patient’s functional status so appropriate prosthetic components are chosen that will 

be covered by Medicare and Medicaid services.  An overview of the MFCL system and the K-

levels used to describe patient functional status is provided in Table 1.  Based on Medicare and 

Medicaid coverage, prosthetic devices available to those at a higher K-level may not be available 

to those at a lower K-level.  This limitation is especially significant for older adults because they 

may not be able to receive a MPK joint at the time of their initial fitting due to a lower activity 

level and associated K-level.  After rehabilitation, older adults may be limited in the recovery 

they can achieve due to their prosthesis, and it may be difficult to convince third-party payers to 

cover a more expensive knee. 

 

Table 1. Coding system modifiers and Medicare Functional Classification Level descriptions 
used by the U.S. Health Care Financing Administration [30]. 

 

Modifier Description 

K0 
Does not have the ability or potential to ambulate or transfer safely with or 
without assistance, and a prosthesis does not enhance quality of life or 
mobility. 

K1 
Has the ability or potential to use a prosthesis for transfers or ambulation on 
level surfaces at fixed cadence.  Typical of the limited and unlimited 
household ambulator. 

K2 
Has the ability or potential for ambulation with the ability to transverse low-
level environmental barriers such as curbs, stairs, or uneven surfaces.  
Typical of the limited community ambulator. 

K3 

Has the ability or potential for ambulation with variable cadence.  Typical of 
the community ambulator who has the ability to transverse most 
environmental barriers and may have vocational, therapeutic, or exercise 
activity that demands prosthetic utilization beyond simple locomotion. 

K4 
Has the ability or potential for prosthetic ambulation that exceeds the basic 
ambulation skills, exhibiting high impact, stress, or energy levels, typical of 
the prosthetic demands of the child, active adult, or athlete. 
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An evaluation known as the Amputee Mobility Predictor (AMP) assessment has been 

shown to be a reliable and valid measure for differentiating among MFCL categories in lower 

limb amputees [42].  The AMP assessment is able to measure an amputee’s functional 

capabilities with or without a prosthesis, thus providing the ability to predict a patient’s ability to 

ambulate before receiving a prosthesis.  The AMP assessment also assists in assigning a MFCL 

K-level for Medicare and Medicaid patients.  To conduct the AMP assessment, patients are asked 

to complete a short series of tasks focusing on the following: sitting and standing balance, 

transfers, gait, and traversing low-level environmental barriers (see Appendix A for a full 

description of the AMP tasks).   

Based on a patient’s ability to complete each task, and taking into consideration the use 

of any assistive devices, a total score is assigned at the end of the AMP assessment [42].  The 

tasks are organized with an increasing level of difficultly, so if a patient is unable to complete 

independent sitting and sitting-reach tasks, then the possibility of prosthesis use is very limited 

and a MFCL level of K0 would be assigned.  A K1 level patient would be able to complete the 

aforementioned tasks as well as simple transfers and standing tasks.  A K2 level patient is able to 

complete more challenging tasks associated with balance, such as single-limb balance, eyes-

closed balance, and the ability to control postural movement when perturbed.  For a K3 level 

patient the ability to vary cadence, step over an obstacle, and negotiate stairs is present to some 

degree.  A K4 level patient requires no additional skills or prosthetic devices than a K3 level 

patient, however, in theory this is the maximum level an amputee can achieve and is marked by 

the ability to perform all tasks on the AMP assessment with greater ease. 

Reliability testing of the AMP assessment has found excellent reliability for assessments 

conducted with or without a prosthesis [42].  Intra-rater reliability was tested using a test-retest 
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method at an average of 2.86 weeks apart.  Correlation coefficients for the raters were 0.96 and 

0.98 when testing patients with a prosthesis, and 0.97 and 0.86 when testing patients prior to 

prosthesis use.  Inter-rater reliability had a correlation of 0.99 for both AMP assessments.  

Validity testing of the AMP assessment with and without a prosthesis showed a strong positive 

correlation between AMP scores and scores for the Amputee Activity Survey, which is a self-

reported measure of function.  A strong correlation was also seen between the AMP scores and 

the 6-Minute Walk test, which is a physical performance measure for identifying ambulation 

ability. 

Activity levels for lower limb amputees following prosthetic fitting have also been 

evaluated using a StepWatch Activity Monitor (SAM). The SAM is a light-weight device 

attached to the prosthetic limb around ankle height, and it is used to evaluate activity outside of a 

laboratory setting over a long period of time, such as a few weeks or a few months [43].  Motion 

is detected using an internal accelerometer that has an accuracy exceeding 99% for normal 

walking [44].  The SAM is also able to record the number of steps taken at different cadences.  

Previous research has found lower limb amputees are unable to accurately self-report their 

activity level in comparison to the SAM measured results [43].  Of 77 unilateral lower limb 

amputees who documented their activity level in 15-minute intervals over a one-week period, 

only 34% of subjects were able to accurately report their activity between the hours of 9 am and 

9 pm.  Overall, agreement between the SAM and the self-reported activity was greater during a 

24-hour period than it was during the 9 am to 9 pm period. 
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1.3 THE BIOMECHANICS OF GAIT AND STAIR AMBULATION 

This section begins with a comprehensive comparison between the gait cycle of able-bodied 

individuals and those with a transfemoral amputation.  The gait of transfemoral amputees differs 

from normal gait because of adaptive strategies employed to compensate for a loss of sensory 

motor function in the knee, ankle and foot [45].  The hip musculature is not directly connected to 

the prosthetic knee joint, so forces must be transferred to the prosthesis by the residual limb in 

order to create movement.  The geometry and volume of hip musculature within the residual 

limb is different for all individuals as a result of the amputation level and the amount of atrophy 

within the intact hip flexors and abductors on the prosthetic limb side.  All of these factors result 

in an absence of natural muscle control for stabilization of the prosthetic knee and ankle joints, 

leaving only the pelvic and hip musculature as a source of support. 

1.3.1 Normal Gait 

The gait cycle for an able-bodied individual consists of the stance and swing phases, constituting 

60% and 40% of the gait cycle, respectively [33].  Figure 2 provides a visual of the gait cycle for 

the right leg and details for associated events within the gait cycle.  Stance phase begins at the 

instant the heel contacts the ground, continues as body weight is rotated over a flat-foot, and ends 

when the body propels forward enough for the toe to come off the ground [46].  At heel-strike, 

forward momentum of the body and rotational forces acting on the knee and foot naturally force 

the knee into flexion [35].  Normal knee flexion is 5-7 degrees, but can reach up to 20 degrees of 

flexion in order to provide shock absorption and a smooth transition from the swing phase to the 

stance phase.  The flexion moment at the knee is countered by contraction of the quadriceps to 
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prevent the knee joint from collapsing.  Double-limb support occurs while both feet are in 

contact with the ground and the body’s center of mass moves to its lowest point during the gait 

cycle [46].   

 

 

 
Figure 2. Example gait cycle for the right limb, with phases and temporal variables labeled [47]. 

 

Continuing forward, the center of mass is elevated to its highest point during single-limb 

support as the hip and knee extend in midstance.  Knee extension continues to occur while the 

trunk moves over the supporting limb by contraction of the quadriceps.  The rate of progression 

of the center of mass is controlled through eccentric contraction of the ankle plantar flexors, 

shifting to concentric contraction during late single-limb support as the trunk is accelerated 

forward.  Once the swing limb has made contact with the ground a second period of double-limb 

support occurs, as the hip flexors of the prior stance limb contract to lift the limb off of the 

ground and accelerate it forward.  The ankle plantar flexors contribute to the forward 
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acceleration of the limb as well by providing push-off.  Immediately prior to the toe leaving the 

ground (referred to as toe-off), the hip and knee begin to flex as the knee extensors eccentrically 

contract to control the rate and extent of knee flexion. 

During the swing phase, the limb is initially accelerated forward by concentric 

contraction of the hip flexors and the effect of gravity [46].  Eccentric contraction of the 

quadriceps continues during the first half of the swing phase to control the rate and extent of 

knee flexion.  The degree of knee flexion at toe-off and the resulting heel rise are directly related 

to gait speed [35].  The normal maximum knee flexion reached during swing is approximately 60 

degrees.  During the later portion of the swing phase, the limb is decelerated and positioned to 

accept weight for transfer to stance phase.  Extension of the knee occurs through concentric 

contraction of the hip extensors, and eccentric contraction of the hamstring muscles decelerates 

the foot and shank until the knee is in its extended position [46].  The quadriceps maintain 

contraction to prevent rapid knee flexion upon heel-strike [35].  Continued forward movement of 

the trunk is facilitated by the transfer of energy from the swing limb to the trunk, providing an 

impulse for forward acceleration [46].  The gait cycle repeats once the swing limb has contacted 

the ground. 

1.3.2 Unilateral Transfemoral Amputee Gait 

The loss of sensory motor function at the knee, ankle, and foot results in overall decreased stance 

phase stability [46].  Some degree of knee stability can be achieved through prosthetic alignment 

and the type of prosthetic knee joint used, however alteration of the gait cycle biomechanics will 

still occur.  During stance phase on the prosthetic limb, transfemoral amputees typically do not 

allow knee flexion to occur during the first 30-40 percent of stance phase.  To prepare the knee 
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for weight acceptance at heel-strike, the individual secures the knee by contracting the hip 

extensors to pull back and extend the residual limb within the socket, thereby forcing the 

prosthetic knee into extension [35].  This helps to ensure the knee joint remains extended in 

order to reduce the opportunity for knee buckling to occur while the prosthetic limb is the 

supporting limb, and also eliminates the stance flexion motion that is present within the sound 

knee joint to provide shock absorption at initial contact.  However, some MPK joints are able to 

adjust the knee flexion resistance at the instant of heel-strike to provide 5-7 degrees of controlled 

knee stance flexion, before ramping up the resistance to prevent the knee from collapsing. 

As the prosthetic limb enters the swing phase, it must generate the same amount of power 

as the sound limb in order to accelerate the prosthetic limb forward at an equal pace [46].  The 

lack of ankle plantar flexors to assist with this motion at toe-off places greater demand on the hip 

flexors to create enough power to produce limb progression.  To assist with this, the sound limb 

increases energy generation from the hip extensors and ankle plantar flexors to compensate for 

the reduced push-off of the prosthetic limb as it transitions from stance to swing phase.  Once the 

prosthetic limb is in swing phase there are few muscular differences from that of normal gait.  

Fluid flow control of knee flexion during swing allows for similar reproduction of the quadriceps 

function during early swing phase and the hamstrings during late swing phase.  Common 

adaptations seen in transfemoral amputee gait are vaulting or hip hiking, in order to compensate 

for the inability to reduce the length of the advancing prosthetic limb and obtain appropriate foot 

clearance during swing.  At the end of swing phase, the lack of muscle input at the knee is 

replaced by the microprocessor for individuals using a MPK joint, while individuals using a 

NMPK joint must actively prepare for heel-strike by ensuring the knee reaches full extension. 
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Common spatial and temporal parameters used to assess gait have been investigated for 

unilateral transfemoral amputees.  Gait speed is used to identify how fast an individual walks, 

while cadence is used to describe how many steps per minute the individual achieves during gait.  

Stride duration is the time it takes to complete one gait cycle [48].  Stride length is the anterior-

posterior distance between two consecutive heel-strikes of the same foot, and stride width is the 

medial-lateral distance between two consecutive heel-strikes of opposing feet.  Research by 

Jaegers et al. has identified differences between the spatial-temporal gait parameters for normal 

gait and unilateral transfemoral amputee gait for male adults ranging in age from 20 to 56 years 

(Table 2) [45].  This research also provided comparisons between the prosthetic and sound limb 

regarding the percentage of the gait cycle devoted to stance phase, swing phase, and double-limb 

support (Table 3). 

 

Table 2. Comparison of mean spatial-temporal gait parameters for normal gait and unilateral 
transfemoral amputee gait in adults (age range 20-56 years) [45]. 

 
 

Gait Parameter Normal Gait Unilateral Transfemoral 
Amputee Gait 

Gait speed (m/s) 0.95 1.01 
Cadence (steps/min) 90.0 89.4 
Stride duration (s) 1.34 1.36 
Stride length (m) 1.28 1.33 
Stride width (cm) 18.0 24.7 

 
 

Table 3. Comparison of the mean (standard deviation) values between the sound and prosthetic 
limb for the phases of gait in unilateral transfemoral amputees (age range 20-56 years) [45]. 

 
 

Gait Parameter Sound Limb Prosthetic Limb 
Stance phase (%) 63.4 (3.14) 58.4 (2.38) 
Swing phase (%) 36.9 (3.15) 41.6 (2.38) 

Double-limb support (%) 11.5 (3.14) 10.3 (2.53) 
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 Knee kinematics has also been examined for normal gait in comparison to unilateral 

transfemoral amputee gait during the swing and stance phases, as well as between the sound and 

prosthetic limb.  Research by James and colleague examined the maximal knee flexion for 10 

unilateral transfemoral amputees ranging in age from 27-62 years, and made comparisons to 

previous results for 30 able-bodied adults of similar age reported by Murray et al. (Table 4) [49]. 

 

Table 4. Comparison of mean (standard deviation) maximal knee flexion values between 
middle-aged able-bodied and unilateral transfemoral amputee adults [49]. 

 
 

Maximal Knee Flexion (deg) 
Phase Able-Bodied Sound Limb Prosthetic Limb 

Stance phase 20 22 (6) N/A 
Swing phase 71 64 (6) 56 (13) 

 

1.3.3 Stair Ascent and Descent in Able-Bodied Individuals 

Stair ascent is divided into two phases just like gait: stance and swing.  For able-bodied adults, 

the average stance phase lasts for 65% of the stair ascent cycle, with 31% of this time in single-

limb support and 34% in double-limb support [50].  The stance phase begins when the foot 

contacts the step.  The first portion of the stance phase is known as weight acceptance, generally 

consuming the first 17% of the stance phase.  During this time, load on the stance limb increases 

until the contralateral limb is no longer in contact with the floor.  Some vertical thrust motion is 

present during the weight acceptance period in order to “pull-up” the body center of mass, but 

the majority of the vertical thrust period occurs once single-limb support has been achieved.  

During vertical thrust, lasting from 17-37% of the stance phase, the body’s center of mass is 

displaced vertically, with maximum displacement occurring at midstance.  Next, a period of 
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forward continuance occurs within the single-limb stance phase.  During this time no further 

vertical displacement of the center of mass occurs.  Instead, the weight begins to transfer back to 

the contralateral limb as foot contact is made on the step and the double-limb support is re-

established.   

Following toe-off near 65% of the stair ascent cycle, the swing phase begins.  This phase 

consists of foot clearance as the swing limb foot clears the edge of the next step, followed by 

foot placement onto the next step.  Throughout stair ascent the body’s center of mass is displaced 

anteriorly. 

During stair descent, the stance phase on average consumes 68% of the total cycle 

duration, with 39% devoted to single-limb support and 29% double-limb support [50].  During 

the stance phase, weight acceptance occurs as the contralateral limb moves out of double-limb 

support and into swing.  The single-limb support period begins with forward continuance, during 

which time the center of mass is progressed forward but does undergo any vertical displacement.  

Next, during a period of controlled lowering, the body center of mass is lowered until transition 

to the swing phase occurs at approximately 68% of the stair descent cycle.  The first half of the 

swing phase is focused on pulling the leg through and over the edge of the step.  The remainder 

of the swing phase is associated with foot placement on the next step. 

Kinetic analysis of stair ascent and descent has found the maximum external knee flexion 

moment during stair ascent to be 3 times greater than that for level surface walking, and the 

maximum hip flexion moment during stair descent is 1.5 times greater [51].  Further analysis 

found an average knee flexion of 93.9 degrees during stair ascent and 90.5 degrees of knee 

flexion during stair descent.  Stair ascent has been shown to last longer than stair descent, with 

mean velocities of 0.49 m/s and 0.56 m/s, respectively, in healthy adults. 
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Comparison of the stair ascent and stair descent cycles reveals that stair ascent requires 

greater stability based on longer double-limb support durations and shorter single-limb stance 

durations [50].  However, previous research has found that falls during stair descent occur three 

times more often than during stair ascent [52].  Additionally, 55% of falls during stair descent 

were due to misjudging foot placement on the lower step.  For healthy young adults, the resultant 

distance between the inferior position of the heel and the step edge was on average 45.88 mm.  

Research by Hamel et al. with 10 older adults undergoing stair descent found that 7% of all 

clearance values over the step edge were below 5 mm [53].  Furthermore, a trend during stair 

descent occurred: as subjects progressed over a set of five steps, the minimum clearance between 

the foot and the step edge decreased.  The mean overall difference in clearance between the first 

step and last step was a decrease of 5 mm. 

As age increases, the risk of falling during stair descent also increases.  Age-related 

changes such as loss of muscle strength, decreased visual performance and osteoarthritis may 

contribute to the increased fall risk, as well as environmental factors such as lighting and step 

rise and tread dimensions [53].  In terms of spatial-temporal gait parameters during stair descent, 

research by Mian et al. compared young and old adults during descent (Table 5) [54]. 

 

Table 5. Comparison of mean (standard deviation) spatial-temporal gait parameters during stair 
descent for young and old adults [54]. 

 
 

Parameter Young Adults Older Adults 
Stride Time (s) 0.96 (0.12) 1.10 (0.16) 
Single-Limb Support Time (s) 0.72 (0.08) 0.84 (0.12) 
Step Width (cm) 20.7 (3.1) 19.9 (3.0) 
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1.3.4 Stair Ascent and Descent in Unilateral Transfemoral Amputees 

Unilateral transfemoral amputees prefer to use a step-to-step method during stair ascent [55].  

With this method, the prosthetic limb is “pulled-up” the step after the sound limb has become the 

supporting limb on the higher step.  From the instant of sound limb contact with the step, the 

prosthetic limb remains in full extension until prosthetic limb toe-off and progression to the next 

step.  During the swing phase of the prosthetic limb, the sound limb ankle and knee joints have 

been found to rapidly flex and extend in order to provide power for movement of the prosthetic 

limb.  Strong plantar flexion in the sound limb ankle joint is commonly seen at the end of stance 

phase for assisting in weight transfer onto the prosthetic limb. 

During stair descent a transfemoral amputee must initiate a controlled fall.  To complete 

this, while the sound limb is being advanced, the prosthetic knee quickly flexes such that the 

sound limb must stop downward momentum when contact with the lower step is made [35].  

With a MPK joint, the individual initiates descent by placing the prosthetic toe over the edge of 

the step.  The microprocessor sensors identify the lack of resistance at the toe and determines the 

maximum knee resistance needed to enable descent in a safe, controlled manner.  With a NMPK 

joint it is difficult achieve knee flexion during stair descent.  The knee must remain in extension 

to provide stance support, which requires more muscle strength and control of momentum from 

the individual.  Consequently, negotiating stairs can be difficult task and is a likely situation for 

falls to occur. 

Previous research studies have used clinical assessments and self-reported measures to 

determine the occurrence of falls during stair ambulation in unilateral transfemoral amputees 

[36-37, 56].  However, these studies rate the quality of stair ambulation to provide a numerical 

score for assessing stair performance or use a questionnaire-based approach for assessing the risk 
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of falling.  Therefore, a current void in the literature exists in evaluating stair ascent and descent 

using biomechanics-based analysis to understand the risk of tripping among older adult unilateral 

transfemoral amputees. 

1.3.5 Responses to Stumbling in Older Adults 

In order to recover from a trip, an individual must be able to quickly apply an appropriate 

recovery response, control forward momentum of the trunk, and execute a recovery step that will 

be sufficient for obtaining a new base of support [57].  The unperturbed limb is the initial support 

limb, and it provides support in slowing the body’s momentum down which is crucial for 

successful recovery from a trip.  Three common strategies employed during recovery from a 

stumble are: lowering, elevating, and reaching.  The lowering strategy involves immediately 

lowering the obstructed foot to the ground so it will become the support limb while the 

contralateral limb clears the obstacle.  The elevating strategy consists of the obstructed foot 

continuing over the obstacle to complete the original step.  Support from the stance limb is 

important for successful execution of the elevating strategy.  Since the obstructed limb flexes at 

the ankle, knee and hip joints, the contralateral ankle must assist in providing appropriate body 

height for vertical clearance over the obstacle.  The reaching strategy is similar to the elevating 

strategy expect flexion of obstructed limb is limited primarily to the hip joint.  Overall, the 

lowering strategy has been found to be best suited for recovering from trips that occur during late 

swing, and it is the strategy preferred by older adults [58]. 

Faster response time has also been shown to be more important than slower gait speed for 

successful recovery from a stumble in older adults [58].  Research by Grabiner and colleagues 

examined the trunk flexion responses to tripping in both young and old adults [59].  Following 
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an unannounced tripping perturbation, young adults had on average a 27 ± 9 degree post-trip 

trunk flexion angle in the sagittal plane at recovery foot contact.  The peak trunk flexion velocity 

was approximately 140 deg/s and occurred less than 300 ms after the trip was induced.  The 

results for older adults showed increased trunk flexion.  Older adults who fell following the 

induced trip had a trunk flexion angle averaging 42% larger than the older adults who were able 

to recover, which corresponded to a flexion angle approximately twice as large as the young 

adult flexion angle.  Relating these trunk flexion responses to gait speed prior to the trip, young 

adults had a gait speed of 1.46 m/s ± 0.24 m/s while the gait speed of older adults who fell was 

1.39 m/s ± 0.31 m/s.  Older adults who were able to recover following the induced trip had a 

reduced gait speed in comparison to the other two groups, averaging 1.13 m/s ± 0.19 m/s.  Thus, 

while reduced gait speed can aid in successful recovery from a stumble in older adults, 

appropriately responding to time to sudden changes in trunk angle is very important. 

1.3.6 Responses to Stumbling in Unilateral Transfemoral Amputees 

Reduced gait speed promotes decreased knee flexion among transfemoral amputees and can be 

used as an adaptive strategy to minimize adverse effects should a stumble occur while traversing 

an obstacle [60].  Crossing an obstacle with the sound limb first is another adaptive strategy seen 

among transfemoral amputees because the sound limb is able to provide more knee flexion and 

can provide more support for balance recovery should a stumble occur while the center of mass 

is moving away from the stance foot.  Since the sound limb has improved proprioception and 

ability to maneuver obstacles compared to the prosthetic limb, this strategy provides a better 

opportunity for recovery from a stumble. 

27 



Research by Crenshaw et al. found that when obstruction of the prosthetic limb occurs 

during swing, transfemoral amputees tend to use a lowering strategy for recovery of balance 

[61].  For transfemoral amputees there is still a risk of falling when using the lowering strategy to 

recover if knee flexion in the prosthesis occurs after it becomes the supporting limb.  Especially 

for NMPK joints, the knee must be kept in full extension or have stance resistance activated if 

sufficient support to recover from the stumble is to occur [62].  Microprocessor-controlled 

prosthetic knee joints have been shown to provide some improved recovery during a stumble, 

depending on the specific knee joint’s stance resistance activation process.  For example, if 

stance resistance is reactivated when the knee stops flexing at the end of initial swing, then 

contact with the obstacle during midswing or terminal swing may result in recovered balance. 

Research investigating the recovery response following a stumbling perturbation in 

unilateral transfemoral amputees is currently very limited.  Previous studies have focused on 

whether or not a prosthetic knee joint can help reduce the chance of falling following a stumble 

or trip.  However, there is no biomechanics-based research evaluating trunk kinematics in this 

subject population so comparisons cannot be made to able-bodied adults in order to understand 

how transfemoral amputation impacts the recovery response following a stumble or trip. 

1.4 INERTIAL PROPERTIES OF THE PROSTHETIC LIMB 

Knee collapse, also known as knee buckling, refers to the prosthetic knee flexing when the 

individual is not anticipating or attempting to flex the knee joint.  This event is a serious concern 

for many unilateral transfemoral amputees as it can lead to an uncontrollable fall.  In order to 

determine from a biomechanics viewpoint when a prosthetic knee may buckle, the lower limb 

28 



joint moments need to be analyzed to determine when a flexion moment about the knee joint is 

likely to occur during an individual’s gait cycle.  To determine the lower limb joint moments the 

inertial properties of mass, center of mass location, and mass moment of inertial for each 

segment of the lower limb (thigh, shank, and foot) need to be known.  For able-bodied 

individuals, previous research using regression equations has shown the inertial properties of all 

human body segments can be predicted based on an individual’s total body mass and the specific 

segment length, for both males and females [63-65].  The segment mass is based on a percentage 

of the total body mass, and the center of mass location and the moment of inertial are based on 

segment length.  Geometric modeling has also been used for determining body segment inertial 

properties in able-bodied individuals [66-68]. 

For the lower limb unilateral amputee population, the inertial property information for 

males and females is not readily available as it is for able-bodied individuals.  Transfemoral 

amputees have an altered total body mass due to the amputation; therefore, the published 

percentages for determining the mass, center of mass, and moment of inertia for able-bodied 

individuals cannot be utilized.  As research involving lower limb amputees has increased over 

the past decade, some studies have addressed how to determine inertial properties for both the 

prosthetic and sound limb segments [69-75].  The prosthetic limb is disassembled into three 

segments: socket, prosthetic knee and pylon, and prosthetic foot.  All of these studies have found 

the mass for each segment by weighing it on a scale.  The center of mass location has been found 

by using a straight edge or reaction board.  Moments of inertia have been calculated from 

measured periods of oscillation determined using a pendulum technique.  The following moment 

of inertia (MOI) equation is used, where T is the period of oscillation, m is the segment mass, g 

is gravitational acceleration, and d is the distance from the axis of rotation to center of mass [75]. 
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Residual limb inertial properties have been found using various techniques.  Work by 

Gitter and colleagues modeled the residual limb as a cylinder with uniform mass, from which the 

moment of inertia was determined [70].  A study by Mattes et al. modeled the residual limb as a 

frustum of a right circular cone and calculated the volume using a uniform tissue density of   

1.10 g/cm3 [73].  The COM location of the residual limb was assumed to be coincident with the 

center of the frustum.  Research by Selles et al. [74] used a geometric modeling approach with a 

series of stadium solids (Figure 3), based on the prior work of Kingma and Yeadon [66-67].   

 

 
 
 

Figure 3. Stadium solid geometry used by Kingma and Yeadon [67]. 
 
 
 
Work by Fowler and Goldberg modeled the residual limb using a cylinder at the proximal 

end, followed by a series of frustum and a distal paraboloid (Figure 4) [71, 75].  Circumference 

measurements were taken along the length, every 5 cm by Fowler and every 3 cm by Goldberg.  

Residual limb volume was calculated using an assumed density of 1.0 g/mL.  Using the residual 

limb segment mass and volume, the COM location and moment of inertia were calculated. 

30 



 
 
 

Figure 4. Geometric model of the residual limb used by Fowler and Goldberg.  Design consists 
of a proximal cylinder followed by a series of frustum and a distal paraboloid [75]. 
 
 
 
Research by Goldberg also determined prosthetic limb inertial properties using the 

regression equations of Dempster [76], assuming the prosthetic limb anthropometries were the 

same as the sound limb [75].  Kinematic and kinetic results of this study showed the symmetric 

anthropometry method was reliable for stance phase analysis but did not accurately assess the 

prosthetic limb during swing phase. 

   The sound limb inertial properties were also determined using various techniques.  The 

method used by Gitter and colleagues followed the prior technique reported by Winter that 

utilized regression equations [77].  The research by Mattes et al. estimated the sound limb 

segment inertial properties using the anthropometric measures published by de Leva [64].  The 

total body mass was also adjusted to reflect a symmetrical lower extremity structure since the 

prosthetic limb mass was less than the sound limb mass, but specific details regarding the 

technique are not provided in the publication [73].  The study by Selles et al. used the subject 
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height, mass, and lengths of the thigh, shank and foot segments for calculation of the masses, 

COM locations, and moments of inertia based on previous work published by Winter [17].  

Research by van der Linden and colleagues found the mass and COM location of the sound limb 

segments by using the data of Drillis and Contini [78].  The moments of inertia for the sound 

limb segments were calculated using equations from McConville [79].  Work by Fowler et al. 

determined the sound limb segment inertial properties using the regression equations developed 

by Dempster [76] based on measured body mass and segment lengths [71].  Research by 

Goldberg and colleagues also calculated the sound limb segment masses and center of masses 

from the regression equations derived by Dempster [75].  The moments of inertia were 

calculated using a reference mass and height (73.44 kg and 1.76 m) multiplied by a ratio of the 

segment mass times segment height squared to the reference mass times reference height 

squared.  This method was used to make adjustments because the subjects were children and the 

technique developed by Dempster used young adult subjects. 

Only the work of Goldberg has published inertial property results for the segments of the 

prosthetic limb, in order to compare the direct measurement and symmetric anthropometry 

techniques that were used.  The four subjects analyzed in this work were children with an 

average age of 13.5 ± 1.5 years [75].  As a result, there is a current gap in the literature regarding 

inertial properties of the prosthetic limb segments in older adult unilateral transfemoral 

amputees. 
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1.5 IMPORTANCE OF UNILATERAL TRANSFEMORAL AMPUTEE GAIT 

RESEARCH IN OLDER ADULTS 

As the provided background information has shown, there is a variety of current literature 

addressing the gait mechanics of unilateral transfemoral amputees.  However, there are still 

major voids in this literature regarding the gait of older adults and the risk of falls among this 

population, as no study has focused solely on the relationship between prosthetic knee joint type, 

gait and aging.  The research presented in this thesis intends to provide a foundation for future 

unilateral transfemoral amputee gait research, with a particular focus placed on older adults.   

 Among current unilateral transfemoral amputee research, for subjects of any age, there is 

a lack of evidence for minimum foot clearance while walking over a level surface or while 

ascending and descending stairs.  Minimum foot clearance while walking over a level surface 

has been reported for unilateral transfemoral amputees but the methodology for analyzing this 

measure varies between studies.  Further, biomechanics-based methods have not been used to 

identify MFC during stair ambulation.  Only clinical assessments have been used to provide 

qualitative data about stair ascent and descent abilities in unilateral transfemoral amputees. 

 A lack of evidence also exists for the response to stumbling among unilateral 

transfemoral amputees.  Studies that have investigated stumbling or tripping have looked only at 

the ability of prosthetic knee joints to provide successful recovery from a fall, and the subjects 

used in these studies were young adults.  The results from these studies cannot be transferred 

directly to the older adult unilateral transfemoral amputee population due to age differences that 

are already seen between young and old able-bodied adults.  Further, no study has yet to examine 

the trunk kinematics of unilateral transfemoral amputees during recovery from a stumble or trip. 
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 Despite the number of studies that have reported findings comparing moments in the 

prosthetic and sound limb joints, there is no standard method for determining the inertial 

properties of the prosthetic limb or the sound limb.  Additionally, these studies have provided 

limited details about the methodology used and none have reported the resulting inertial 

properties values for the subjects. 

Following a thorough understanding of unilateral transfemoral amputee gait in older 

adults, and undeniably the large amount of variation occurring within this population, 

recommendations regarding safe ambulation should be provided to physical therapists and 

amputee rehabilitation programs.  Given this information, individual patient programs should be 

altered to account for the patient’s age, physical ability, prosthetic knee type, use of assistive 

device, etc. in order to provide an opportunity for reducing the fall risk in older adults who have 

undergone a unilateral transfemoral amputation. 
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2.0  SPECIFIC AIMS 

The purpose of this thesis is to describe gait analysis methods used to quantitatively and 

qualitatively assess fall risk in older adults with unilateral transfemoral amputation.  Only a few 

prior studies have reported the fall risk for older adult unilateral transfemoral amputees based on 

self-reported measures.  The first focus of this thesis is the development of gait analysis methods 

to identify the risk of tripping while walking on a level surface and while ascending and 

descending stairs.  Minimum foot clearance is a common gait measure used to understand the 

risk of tripping for able-bodied adults, but the methodology used for determining this measure is 

not suitable for analyzing unilateral transfemoral amputee gait based on preliminary analysis for 

this thesis and the range of gait styles seen among unilateral transfemoral amputees.  In this 

thesis, specific outcome measures to assess the risk of tripping while walking over a level surface 

will include minimum foot clearance and gait speed, with supporting evidence regarding gait 

stability and symmetry from knee angles and spatial-temporal measures.  Specific outcome 

measures to assess the risk of tripping during stair ambulation will include minimum foot 

clearance, with supporting evidence from foot placement measures.  The first specific aim of this 

thesis is: 

Specific Aim 1: To compare the kinematics of the prosthetic foot and sound foot in 

older adult unilateral transfemoral amputees while walking on a level surface and 

during stair ambulation. 
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The second focus of this thesis is the recovery response after experiencing a stumbling 

perturbation on the prosthetic limb side during the midswing phase of gait.  Interruption of the 

prosthetic foot during swing can lead to collapse of the prosthetic knee joint upon heel-strike of 

the recovery step if the individual is not able to recover appropriate knee extension by this time.  

Specific outcome measures to describe the response to stumbling will include maximum trunk 

flexion angle in the sagittal and frontal planes, maximum trunk angular velocity, the recovery 

response duration, and the recovery method utilized.  The second specific aim of this thesis is: 

Specific Aim 2: To describe the response to stumbling while walking on a level 

surface in older adult unilateral transfemoral amputees. 

 The third focus of this thesis is to develop a method for determining the inertial 

properties of the prosthetic limb segments, in order to correctly quantify the joint moments about 

the ankle, knee, and hip during gait in future analysis.  Lower limb moments are important for 

understanding from a biomechanics viewpoint when a prosthetic knee may collapse, as knee 

collapse is likely to result in a fall.  Previous research to determine inertial properties for able-

bodied individuals does not hold true for amputees as their anthropometry has been altered by 

the amputation.  The inertial properties of interest include mass, the center of mass location, and 

the mass moment of inertia for the thigh, shank, and foot segments of the prosthetic limb.  The 

third specific aim of this thesis is: 

Specific Aim 3: To develop a geometric modeling approach for calculation of the 

inertial properties of the prosthetic limb segments. 
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3.0  METHODS FOR ASSESSING MINIMUM FOOT CLEARANCE AND STUMBLE 

RECOVERY IN OLDER ADULTS WITH UNILATERAL TRANSFEMORAL 

AMPUTATION 

3.1 STUDY PARTICIPANTS 

3.1.1 Subject Recruitment 

The results presented in this thesis are the initial findings of a larger, on-going research study.  

Four of the six subjects included in this thesis were part of a pilot study to prepare for the full 

research study.  The pilot study recruited subjects between the ages of 50 and 80 years.  The full 

study will recruit 50 unilateral transfemoral amputees between the ages of 65 and 90 years.  A 

sample size of 50 subjects is based on previous laboratory experience with the biomechanical 

outcome measures that will be derived in this study [80-83]. 

 Subjects are recruited from local clinical practitioners and amputee support groups.  

Recruitment is carried out to match the demographics of Allegheny County in Pennsylvania, 

USA.  Eligibility for participation in the study is initially assessed via a phone screening 

questionnaire after a waiver of signed written informed consent is obtained, to determine whether 

the potential subject is healthy enough to carry out all tasks involved in the study.  Inclusion and 

exclusion criteria for the study are displayed in Table 6.     
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Table 6. Inclusion and exclusion criteria for participation in the research study. 
 
 

Inclusion Criteria Exclusion Criteria 
50-90 years old Chronic skin issues 
Unilateral transfemoral amputee using  Inconsistent limb volume 
   either a MPK or NMPK Secondary health issues precluding 
At least 2 years post-amputation    completion of the study protocol (i.e.     
MFCL K2 or K3    heart, peripheral, or pulmonary issues) 
 MFCL K1 

 
 
 
A Medicare Functional Classification Level of K2 or K3 is necessary in order to be 

considered a subject in the study.  Distinguishing characteristics of a MFCL K2 amputee include 

the ability to transverse low-level environmental barriers, such as curbs, stairs, and uneven 

terrain, while a MFCL K3 amputee is also able to vary cadence during gait [30]. 

3.1.2 Subject Overviews 

This thesis presents results for the first six subjects who completed a gait biomechanics visit at 

the laboratory.  The mean age of the subjects was 64 years (range 55-73 years) and amputation 

had been performed an average of 11.2 years prior to the visit (range 3-30 years).  Two NMPK 

joints and four MPK joints were tested in total.  Details for each subject are presented in Table 7.  

Subjects 1 and 4 are the same individual; the first visit was completed while using the NMPK 

joint and the second visit occurred approximately 1 month later while using the MPK joint.  The 

remainder of this section provides an overview for each subject in order to describe the way they 

walked over a level surface, ascended and descended stairs, and responded to a stumbling 

perturbation based on video and motion capture recordings.  Specific quantitative results will be 

presented in the results section. 
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Table 7. Overview of the subjects presented in the results of this thesis.  Subjects 1 and 4 are the 
same individual but a different prosthetic knee joint was used at each visit.  Full study 

participation refers to those who were involved in the on-going research study. 
 
 

Subject Age Gender Prosthetic 
Knee Type 

Years Since 
Amputation 

     Side of 
Amputation Etiology MFCL        Study      

Participation 
1 55 Male NMPK 5 Right Vascular    K3    Pilot 
2 56 Male MPK 3 Right Vascular    K2    Pilot 
3 73 Female MPK 13 Right Trauma    K3    Pilot 
4 55 Male MPK 5 Right Vascular    K2    Pilot 
5 71 Male NMPK 30 Right Vascular    K2    Full 
6 65 Female MPK 5 Left Vascular    K2    Full 

 
 
 
Subject 1 was a 55-year-old male with a right side amputation who used a 

nonmicroprocessor-controlled prosthetic knee joint.  No assistive device was needed to walk 

over the level surface.  This subject’s typical walking pattern on the level flooring surface 

appeared to produce slight trunk lean toward the prosthetic side during stance on the prosthetic 

limb.  Visually, the prosthetic and sound limb step lengths were approximately equal.  The 

prosthetic limb mechanics during the swing phase showed weight shift over the prosthetic toe 

during toe-off that led to knee flexion during swing.  The prosthetic knee appeared to remain 

extended during the prosthetic limb stance phase.  During stair ascent, this subject used the 

staircase handrail on the prosthetic limb side and progressed by stepping up with the sound limb 

first.  The prosthetic knee was near full extension during ascent and circumduction was used to 

move the prosthetic limb up to the same step the sound limb was on.  During stair descent the 

subject did not use the handrail.  The prosthetic knee was kept approximately fully extended and 

was advanced down the step first before the sound limb was moved to the same step.  For the 

stumbling perturbation, this subject’s prosthetic foot clearance was higher than the height of the 

perturbation obstacle that was elevated from concealment under the flooring surface, so a 

stumbling perturbation was not induced. 
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Subject 2 was a 56-year-old male with a right side amputation who used a 

microprocessor-controlled prosthetic knee joint while walking with a cane in each hand.  This 

subject also wore a foot-ankle orthosis on the sound limb side.  While walking over a level 

surface, the stance phase appeared to receive stability from the cane in contact with the floor, 

which was held in the swing limb side hand.  Visually, prosthetic limb step length and foot 

clearance were greater than the sound limb.  The prosthetic limb mechanics were such that 

prosthetic knee flexion occurred during the prosthetic limb swing phase while the prosthetic knee 

remained in extension during the stance phase.  For stair ascent, the subject used the handrails on 

both sides of the staircase.  The sound limb was advanced up each step first, followed by 

movement of the prosthetic limb to the same step while keeping the prosthetic knee near full 

extension.  During stair descent, the sound limb was moved to the lower step first with 

concentration and deliberate movement such that the sound foot was held out past the step edge 

for a short period of time before weight was shifted over the sound limb and descent occurred.  

Both handrails were used during stair descent.  When the prosthetic limb was advanced down to 

the same step, flexion of the prosthetic knee was visible.  The stumbling perturbation was 

induced during midswing on the prosthetic limb side.  Due to the use of two canes supporting 

body weight and the subject’s slower gait speed, the stumble did not appear to significantly alter 

the gait cycle.  When the prosthetic foot hit the obstacle an elevating strategy was used by the 

subject to continue walking forward without much deviation of the trunk or loss of balance. 

Subject 3 was a 73-year-old female with a right side amputation who used a 

microprocessor-controlled prosthetic knee joint and walked holding a cane in the sound limb side 

hand to gain support during prosthetic limb stance.  Step length was visually equal between the 

prosthetic and sound limb sides.  Step width appeared asymmetric due to prosthetic limb 

40 



placement slightly outside of the base of support.  This led to an apparent correction during gait 

in order to remain walking in a straight line.  Prosthetic limb gait mechanics yielded prosthetic 

knee flexion during swing.  The prosthetic limb stance phase showed very slight knee flexion.  

During stair ascent, the subject continued to use the cane in the sound limb side hand and used 

the staircase handrail on the prosthetic limb side.  The sound limb was advanced up the step first, 

followed by circumduction of the prosthetic limb to advance the limb up to the same step the 

sound limb; the prosthetic knee visually remained in extension at all times.  During stair descent, 

the prosthetic limb was advanced downward first by sliding the back of the foot down the step 

riser while keeping the knee in extension.  The sound limb was then moved down to the step the 

prosthetic limb was on.  For the stumbling perturbation, contact with the obstacle occurred 

during late swing and the force upon contact caused the obstacle to be dislodged from the slot 

within the walkway.  The subject did not notice the obstacle until the dislodged piece slid out in 

front of the subject such that the following step with the sound foot landed on part of the piece.  

The subject quickly tried to alter the gait cycle to avoid fully stepping on the piece, which 

resulted in reduced gait speed and trunk deviation to maintain balance. 

Subject 4 was a 55-year-old male with a right side amputation who used a 

microprocessor-controlled prosthetic knee joint and did not use an assistive device to walk over 

the level flooring surface.  Again, this subject was the same individual as subject 1 but a different 

prosthetic knee joint was used after an approximate 1 month acclimation period (the subject had 

used the MPK joint in the past).  The level surface walking pattern continued to have a slight 

increase in trunk lean toward the prosthetic limb side during prosthetic limb stance.  Step length 

appeared approximately equal and prosthetic limb mechanics promoted clear knee flexion during 

the swing phase.  The prosthetic knee appeared to be in extension during prosthetic limb stance.  
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During stair ascent, the handrail on prosthetic limb side was used and the sound limb was 

advanced up step first, followed by circumduction of the prosthetic limb up to the same step the 

sound limb was on.  During stair descent, the subject attempted to use a step-over-step method 

while holding both handrails.  The prosthetic limb was advanced down the first step, followed by 

advancement of the sound limb toward the second step but the foot caught the edge of the step 

above.  A slight pause was seen in the subject’s progression as balance was regained following 

the unexpected interruption in foot movement.  Then, the sound limb continued down to the third 

step and the prosthetic limb was flexed in order to advance over this step to the floor.  Last, the 

sound limb was progressed down to the floor.  The stumbling perturbation was induced during 

early swing phase of the prosthetic limb.  When the foot contacted the obstacle, the obstacle 

moved slightly forward within its slot in the walkway.  However, contact with the obstacle still 

interrupted the gait cycle such that an elevating strategy was used in response to the perturbation.  

Clearance of the obstructed foot over the obstacle occurred with assistance from the sound limb 

plantar flexors to elevate body center of mass height, and overall very little trunk deviation 

resulted. 

Subject 5 was a 71-year-old male with a right side amputation who used a 

nonmicroprocessor-controlled prosthetic knee joint and walked with a cane held in the sound 

side hand.  This subject appeared to have a very stiff prosthetic knee joint, resulting in no visual 

knee flexion during prosthetic limb swing phase.  It is unclear whether the subject preferred to 

walk straight-legged on the prosthetic side or if the flexion resistance increase was set by the 

subject’s personal prosthetist.  The prosthetic limb mechanics led to visible trunk lean toward the 

sound limb side during prosthetic limb swing phase and the cane was advanced as the prosthetic 

limb stepped forward.  The prosthetic limb step length was visibly larger than the sound limb 
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side.  Toe-off for the prosthetic foot was not very clear as the subject appeared to pick the foot 

off of the floor and progress it forward instead of a more natural swing motion of the foot.  

During prosthetic limb stance phase the knee was also kept in full extension.  For stair ascent, the 

subject used the cane in the prosthetic limb side hand and used the staircase handrail on the 

sound limb side.  The sound limb was advanced up the step first, followed by movement of the 

prosthetic limb up to the same step with circumduction while keeping the prosthetic knee joint in 

full extension.  During stair descent, the prosthetic limb was advanced down the step first and 

placed such that the heel hit the back edge of the step before weight-shifting onto the prosthetic 

limb occurred.  The prosthetic knee joint was kept in full extension during descent.  The sound 

limb was then advanced to the same step as the prosthetic limb and the motion repeated for the 

remaining two steps.  The stumbling perturbation was induced during midswing of the prosthetic 

limb.  The subject implemented a lowering strategy with the obstructed foot and then stepped 

over the obstacle with the sound limb.  Due to the subject’s inability to flex the prosthetic knee, 

excessive clearance with this limb over the obstacle resulted in a forward-falling motion toward 

the prosthetic limb side.  The subject planted the prosthetic limb and was caught by the harness 

as trunk deviation reached a maximum position approximately parallel to the floor.  After 

returning to the upright position the subject was able to recover balance and continue walking. 

Subject 6 was a 65-year-old female with a left side amputation who used a 

microprocessor-controlled prosthetic knee joint and walked with a wheeled-walker.  This 

subject’s gait pattern over the level surface was very deliberate, with the subject appearing to be 

focused on gait progression with the prosthetic limb.  The prosthetic limb clearly flexed during 

the swing phase.  Visually, there was a small degree of prosthetic knee flexion during the stance 

phase, but this may have been influenced by the prosthesis alignment.  Step length for both limbs 
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appeared approximately equal, with a clear increase in foot clearance over the flooring surface 

on the prosthetic side.  For stair ascent, the subject used the both staircase handrails.  The sound 

limb was advanced up each step first, followed by the prosthetic limb which appeared to be kept 

in extension during the entire duration of stair ascent.  Additionally, the subject appeared to use a 

large amount of upper body strength to pull the body upwards during prosthetic limb 

advancement.  The toe tip of the prosthetic foot appeared slide along part of the step riser during 

ascent as well.  For stair decent, the subject advanced the prosthetic limb down to the next step 

first by internally rotating the limb during decent such that the entire pelvis was at an angle to the 

progression line toward the sound limb side.  Also, the back of the prosthetic foot heel was 

placed up against the step riser before weight was slowly shifted onto the prosthetic side and 

sliding the foot down to the next step tread occurred.  Slight flexion of the prosthetic knee may 

have occurred during the transition to the next step but the subject did appear to try to keep the 

knee in extension.  The sound limb was then moved to the same step as the prosthetic limb and 

this pattern was repeated for the remainder of the steps.  During the stumbling perturbation, the 

subject experienced contact with the obstacle during midswing of the sound limb due to 

misalignment of the subject within the walkway.  Given the subject’s use of a wheeled walker 

for support and a slow gait speed with deliberate stepping, the subject was able to utilize an 

elevating strategy to clear the obstacle.  The walker appeared to help reduce forward and lateral 

trunk deviation during stumble recovery. 
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3.2 METHODS 

3.2.1 Experimental Protocol 

The following protocol is used for the full, on-going research study.  A total of four laboratory 

visits are used to assess a subject’s performance using both their personal prosthesis and an 

opposing knee joint type that will be provided to them by the laboratory staff.  Four of the six 

subjects used for the analysis in this thesis were part of a pilot study which involved a modified 

laboratory visit 2 protocol. 

3.2.1.1 Laboratory Visit 1 

Subjects who qualified for inclusion in the study based on a phone screening questionnaire were 

instructed to visit the laboratory for evaluation of their activity level with their personal 

prosthesis.  When subjects arrived, they provided signed consent to be involved in the study.  

During this first visit subjects completed the Amputee Mobility Predictor (AMP) assessment, 

which was designed to measure ambulatory potential of lower limb amputees while using their 

prosthesis [42].  As part of the evaluation, subjects were asked to complete a short series of tasks 

involving sitting balance, standing balance, gait, negotiating an obstacle, and ascending and 

descending stairs (see Appendix A for a full description and scoring of the AMP assessment).  A 

score was given for each task based on ability and/or quality of completing of the task.  

Following completion of the AMP assessment subjects were assigned a K-level; the 

classification levels were determined based on the descriptions in Table 8.  Only subjects who 

were assigned a K2 or K3 level could be included in the research study. 
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Table 8. Criteria for determining K-level after performing the AMP evaluation [42]. 
 
 

K-Level Classification Key AMP Tasks 

K1 
Able to maintain balance during simple tasks (i.e. chair to 
chair transfer) and stand unchallenged. Focus placed on 
Items 3-7. 

K2 

Able to perform balance tasks, maintain step continuity, 
complete 3-step turn without intervention, transverse low-
level barriers (curbs, stairs, uneven surfaces). Focus placed 
on Items 8-13. 

K3 

Able to ambulate with variable cadence, evaluate quality of 
gait (i.e. initiation without hesitation, able to organize 
simple planned movement), able to negotiate specific 
obstacles and stairs. Focus placed on Items 14-20. 

 
 
 
Also during this visit subjects completed a demographics survey and the Prosthesis 

Evaluation Questionnaire (PEQ).  The purpose of the PEQ was to help evaluate prosthesis use 

and functional ability [84].  At the end of visit 1, subjects were given a falls log to maintain until 

their next visit.  The falls log consisted of a standard month-format calendar on which subjects 

recorded a description of any loss of balance events (stumbles, falls, slips, etc.) [85].  

Additionally, a StepWatch Activity Monitor (Orthocare Innovations, Oklahoma City, OK) was 

placed on the subject’s prosthesis at ankle height in order to collect functional activity data (e.g. 

number of steps taken throughout the day, cadence, etc.) before the next laboratory visit.  The 

StepWatch Activity Monitor was setup for the subjects in the laboratory, thus no action needed 

to be taken while wearing it.  Upon leaving the lab subjects were asked to continue their normal 

daily lifestyle for a period of 4 weeks before returning to the laboratory for a second visit.  

During this 4-week span, a staff member from the laboratory contacted the subject via phone to 

ensure the activity monitor and falls log were being maintained, and to discuss any loss of 

balance events that may have occurred as well as address any additional concerns. 
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3.2.1.2 Laboratory Visit 2 

The second visit to the laboratory consisted of a biomechanical analysis as the subject performed 

various ambulatory tasks and experienced a stumbling perturbation.  When subjects arrived to 

the laboratory, activity data from the StepWatch Activity Monitor was uploaded from the device 

and the falls log entries were copied.  A total of 69 passive reflective spherical markers were 

placed on the subject based on a custom marker set used in the Human Movement and Balance 

Laboratory (Figure 5).  Each shoe had 6 markers placed on the forefoot for the static trial only; 

these markers were recreated virtually during post-processing to model the bottom of the shoe 

sole [86].  The marker set used during the pilot study had a modified foot that only included the 

superior heel, toe, and toe tip markers for both the static and dynamic trials.  The following 

anthropometric measurements were taken to create subject-specific motion capture models: leg 

length, knee width, ankle width, shoulder offset, elbow width, wrist width, hand thickness, and 

inter-anterior superior iliac spine distance. 
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Figure 5. Diagrams of marker placement for the full research study marker set.  The pilot study 

marker set did not include markers on the forefoot of the shoe (the static trial only markers), 
medial and lateral break markers, medial and lateral heel markers, or inferior heel markers. 
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During the second laboratory visit subjects were asked to walk at a comfortable pace for 

six experimental conditions; three trials were collected for each condition except the stumbling 

perturbation, which was only induced once.  The six experimental conditions are summarized in 

Table 9.  Recall, the results of this thesis will only focus on experimental conditions for level 

surface walking, stair ascent and descent, and the stumbling perturbation.  The level surface 

walking trials provide a baseline measure of the subjects’ gait pattern; baseline walking is 

abbreviated as BW. 

 

Table 9. Experimental conditions for biomechanical analysis during laboratory visits 2 and 4.  
Pilot study experimental conditions are noted with an asterisk. 

 
 

Experimental Condition Flooring Surface / Contaminant Number of Trials 
Level Surface Walking (BW)* Level surface / Dry floor 3 
Up & Down Ramp* 5° incline / Dry floor 3 per direction 
Up & Down Uneven Ramp 5° incline with uneven surface / Carpet 3 per direction 
Uneven Walking Uneven surface with Carpet 3 
Up & Down Stairs* Stairs / Dry steps 3 per direction 
Stumble* Level surface / Dry floor 1 perturbation 

 
 
 
The first condition was walking over a level, dry floor in order to collect a measure of 

baseline walking for the subjects while using their personal prostheses.  A 14-camera Vicon 

T40S motion analysis system (Vicon, Oxford, UK) with a sampling rate of 120 Hz was used to 

record the individual marker movement as the subjects walked across a 5.5 m long walkway in 

the middle of the laboratory (Figures 6-7).  Two Bertec force plates (Bertec, Columbus, OH) 

were embedded within the walkway to record ground reaction forces at a sampling rate of 1080 

Hz.  The force plates were positioned one right after the other in the walkway such that the first 

force plate was contacted with the right foot and the second force plate was contacted with left 
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foot.  At all times subjects were secured in a harness connected to a ceiling mounted track and 

trolley system (Solo-Step, Sioux Falls, SD) in order to prevent contact with the floor in the event 

that an irrecoverable loss of balance occurred.  Motion capture and force plate data were 

collected for three level surface walking trials.  Subjects were positioned to start walking 

approximately 1.5 m before the beginning of the walkway in order to obtain normal gait speed 

before reaching the walkway.  Subjects were not specifically instructed to contact the force 

plates while walking; the laboratory staff attempted to adjust the subject starting position so 

contact would occur naturally, and a clean force plate hit was recorded if only one foot came in 

contact with an individual force plate during the trial. 

 

 

 
 

Figure 6. Schematic of the laboratory area, instrumented with 14-Vicon motion capture cameras, 
2-Bertec force plates embedded in a level surface walkway, and a Solo-Step ceiling mounted 

harness system. 
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Figure 7. View of the level surface walkway and the two embedded force plates.  The black line 
spans the length of the walkway; the two force plates are outlined. 

 
 
 
The ramp used in this study was set at a 5-degree incline, based on previous findings and 

safety recommendations [87-90].  The inclined portion of the ramp was 306.07 cm long with a 

width of 91.5 cm (Figure 8).  A handrail was provided on one side of the ramp at a height of 92.7 

cm above the ramp surface.  One Bertec force plate (Bertec, Columbus, OH) was embedded in 

the ramp, centered at 106.5 cm from the toe of the ramp and 55.5 cm from the handrail side of 

the ramp.  The landing at the top of the ramp was 130 cm long.  The ramp’s inclined walking 

area and embedded force plate were covered in the same floor tile as the lab floor in order to 

keep flooring properties constant between experimental conditions (3.2 mm Imperial Texture 

Standard Excelon Vinyl Compression Tile; Armstrong,  Lancaster, PA). 
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Figure 8. Ramp with a 5-degree incline and embedded Bertec force plate. 
 
 
 
To ascend the ramp, subjects stood approximately 1.5 m in front of the ramp on the level 

floor and then walked up the ramp to the top platform.  A clean force plate hit was recorded 

when one foot contacted the force plate while walking up the ramp.  The use of any personal 

assistive device or the ramp handrail was permitted and the laboratory staff recorded usage.  

Subjects were secured in the harness at all times during the ramp trials and the lanyard 

connecting the harness to the ceiling mounted track was adjusted to account for the vertical 

change surface height prior to ascent.  After reaching the top platform, subjects waited to 

descend until instruction was given to return to the starting position on the level floor.  Subjects 

repeated this ascent and descent procedure while motion capture data and force plate data were 

collected for three ascent and three descent trials. 

106.5 cm 

306.07 cm 

92.7 cm 

55.5 cm 

91.5 cm 
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The next experimental condition was walking up and down the ramp while it had an 

uneven surface placed on it.  The uneven surface was constructed from triangular wooden prisms 

with a height of 1.5 cm, width of 3.5 cm, and length ranging from 6-16 cm in 1 cm increments 

[91-92].  Twenty wooden prisms were distributed randomly over an area of 0.74 meter squared 

and secured to 1.4 cm thick plywood to match the distribution used in previous research.  The 

entire ramp was covered with one layer of 1.27 cm high 100% nylon pile carpet (Figure 9). 

 

 
 
 

Figure 9. Ramp with a 5-degree incline and an uneven surface. 
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The next experimental condition involved placing an uneven surface walkway over the 

level floor.  The uneven surface walkway was 304.8 cm long with an irregular surface 

constructed in the same way as the ramp uneven walkway [91-92].  The entire walkway was 

covered with one layer of 2.54 cm high 100% nylon pile carpet, 365 cm in length.  Figure 10 

shows the uneven surface walkway with the triangular wooden prisms underneath the carpet 

displayed.  To pass over the uneven surface walkway, subjects were instructed to stand 

approximately 1 m in front of the carpet.  Motion capture data was collected as they progressed 

over the uneven surface walkway.  Subjects were secured in the harness during all uneven 

surface walking trials.  After passing over the uneven surface walkway, subjects were instructed 

to return back to the starting position, again starting approximately 1 m in front of the carpet.  

Subjects completed a total of three trials across the uneven walkway. 

 

 
 
 

Figure 10. Walkway with an uneven surface. 
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A three-step staircase was used to collect motion capture data while the subjects ascended 

and descended the steps (Figure 11).  The stairs were constructed to comply with the Americans 

with Disabilities Act Accessibility Guidelines [87].  Each step had a rise of 19 cm, tread of 28 

cm, and the staircase had a width of 91.5 cm.  Handrails were provided on both sides of the 

staircase at a height of 92 cm above each step.  The top landing area was 130 cm long. 

 

 
 
 

Figure 11. Staircase used for stair ascent and descent trials. 
 
 
 
To ascend the stairs, subjects were allowed to position themselves as desired near the 

black line on the floor in front of the first step.  This position allowed for possible force plate 

data to be collected during the push-off phase of the first step.  Subjects were instructed to use 

the handrails or their personal assistive device if necessary to complete the task as they normally 

92 cm 

91.5 cm 

130 cm 

28 cm 19 cm 
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would outside of the lab.  Additionally, subjects were secured in the harness during all trials on 

the stairs and the harness was adjusted to account for increased slack in the lanyard during 

ascent.  Subjects ascend the steps to the landing at the top of the staircase using either a step-

over-step or step-to-step progression method depending on their preference.  After reaching the 

top platform subjects waited until instructed to descend the staircase.  Prior to descent, subjects 

were allowed to align themselves as desired behind the landing edge.   Subjects completed three 

ascent trials and three descent trials. 

For the stumbling condition, subjects were unaware that they would experience the 

perturbation.  At the time of the trial they were instructed to complete additional trials in the 

same manner as the level surface walking condition.  Subjects were secured in the harness at all 

times during this experimental condition.  Two level surface walking trials were collected before 

the laboratory staff prepared to induce the stumble.  To deploy a stumble to the prosthetic limb at 

approximately midswing, a laboratory staff member chose when to deploy a rapidly elevating 

obstacle that was concealed underneath the flooring surface [61, 93].  The staff member was able 

to choose one of three obstacles to elevate, depending on the location at which the obstacle 

needed to be placed to obstruct the foot at midswing. 

The three obstacles were spaced approximately 16 cm apart over a length of 40 cm before 

the first force plate.  The obstacles were concealed within the raised flooring structure in the 

laboratory, and they were held in place flush with the surface of the walkway via electromagnets 

(Figure 12).  When the obstacles were hidden below the floor, springs were depressed; thus, 

when power to an individual electromagnet was turned off the springs were free to decompress 

and raise the obstacle out of the floor and into the walkway (Figure 13).   
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Figure 12. (A) The stumbling condition obstacles in the lowered position.  (B) One obstacle in 
the raised position with the remaining two obstacle slots outlined. 

 
 
 

 
 
 

Figure 13. (A) One of three stumbling device mechanisms housed underneath the laboratory 
flooring structure.  When the springs are decompressed, the electromagnet holds the steel 
platform down so the top of the obstacle is flush with the walkway floor.  Bolts in the four 

corners of the mechanism allow for fine-tuning the height of the obstacle within its slot in the 
walkway. (B) Set up of the stumbling device underneath the flooring structure. 

 
 
 
The obstacles were fabricated from wood, with a top piece made from the same floor tile 

as the walkway to aid in concealing the pieces within the floor.  The width of the wooden portion 

of all of the obstacles was 12 cm, and the floor tile piece had a length of 20.3 cm and a width of 

2.8 cm.  Each obstacle was fastened to a steel platform using a nut/bolt attachment so the 

B A 
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obstacle piece could not be dislodged from its slot within the walkway upon contact with the 

prosthetic foot.  The raised heights of the obstacles were 7.8 cm for the first position (furthest 

from the force plate) and 8.2 cm for the remaining two positions; this was due to space 

constraints within the raised flooring structure.  Adjustments were made to the stumbling device 

construction as necessary during the duration of the pilot study, based upon results seen from 

each stumbling perturbation trial.  First, the height of the obstacles was increased from 5 cm in 

height above the flooring surface, as subject 1’s prosthetic foot clearance was larger than this.  

Next, the attachment for the obstacle pieces to the platforms was changed from a Velcro system 

to a nut/bolt system, in order to provide a more permanent attachment to the device. Lastly, the 

construction of the obstacles was changed to a solid wood design.  During the pilot study, the 

obstacles were constructed of a polycarbonate center piece surrounded by foam (the obstacles 

and tile top piece had same the same dimensions as described above).  These foam pieces were 

unable provide a consistent stumble perturbation across all subjects, as the foam obstacle 

sometimes bent forward within the walkway slot upon foot contact.  No changes have been made 

to the stumbling device since the full research study began. 

Also during visit 2 subjects completed the following assessments: Activities-Specific 

Balance Confidence Scale [94], European Quality of Life Instrument [95-98], and Locomotor 

Capabilities Index [99-100].  These functional assessments were collected to help provide further 

details regarding ambulation ability and comfort using a prosthesis.  Upon completion of visit 2, 

the activity monitor was replaced on the prosthesis and the falls log was provided to the subject.  
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3.2.1.3 Laboratory Visit 3 

Within a one-week period of visit 2, subjects returned to the laboratory to have their knee 

exchanged to an opposing knee type by the study’s certified prosthetist.  The knee joints used in 

this study are listed in Table 10.  The same socket, suspension, and prosthetic foot were used 

throughout the study. 

 

Table 10. Prosthetic knee joint models used in the study. 
 
 

     Microprocessor-controlled      Nonmicroprocessor-controlled 
         Oriona Mercury Hi Activity with CatTech SNSa 

           Plieb Total Knee Hydraulicc 

         Rheoc Mauch SNSc 

        C-Legd 3R80 Hydraulicd 

a) Endolite, Miamisburg, OH; b) Freedom Innovations, Irvine, CA; c) Ossur, Reykjavik, Iceland; 
d) Otto Bock, Duderstadt, Germany 
 
 
 
The prosthetist ensured proper alignment of the prosthetic limb and settings in the 

prosthetic knee joint, as well as provided subjects with training on how to use the knee 

effectively.  A physical therapist worked with the subjects to make sure they were able to safely 

ambulate over various flooring conditions with the new prosthesis before leaving the laboratory.  

Also before leaving the laboratory, subjects were provided with the StepWatch Activity Monitor 

and falls log.  One week following the knee exchange the subjects were contacted via phone to 

make sure the knee was still fitting properly and no medical or functional issues had arisen.  

Following visit 3 an 8-week acclimation period was given, during which time the subjects were 

asked to continue their daily routine.  Over this period a weekly phone call was made to subjects 

by a laboratory staff member to ensure the activity monitor was still being worn, and to discuss 

any events recorded in the falls log or address any concerns that may have developed. 
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3.2.1.4 Laboratory Visit 4 

Following the 8-week acclimation period subjects returned to the laboratory for the final visit.  

Upon arrival, activity monitor data was uploaded from the device and the falls log entries were 

obtained.  Subjects were prepared for motion capture data collection by attaching the 69 markers 

used during visit 2.  Data collection started with re-evaluation of the subjects’ activity level while 

wearing the opposing knee type by using the AMP assessment.  Next, all of the six experimental 

conditions performed during visit 2 were repeated.  Also during this visit subjects completed the 

functional assessments again, in order to evaluate their functional abilities and comfort with the 

opposing knee type (assessments included: Prosthesis Evaluations Questionnaire, Activities-

Specific Balance Confidence Scale, European Quality of Life Instrument, and Locomotor 

Capabilities Index). 

After all trials and assessments were completed, subjects were re-fitted with their 

personal knee by the prosthetist.  Proper alignment and fit were verified by the prosthetist and a 

safety checklist was conducted by the physical therapist.  A one-week follow-up phone call was 

made by the laboratory staff to ensure no medical or functional issues had arisen following the 

knee fitting.  In the event that there was an issue, the prosthetist met with the subject. 

3.2.2 Method for Minimum Foot Clearance during Level Surface Walking 

The motion capture trajectories for all markers placed on the shoes during the static trial    

(Figure 14), and all markers remaining on the shoes during the dynamic trials were exported to 

MATLAB for post-processing.  Motion capture data was collected at 120 Hz.  The forefoot 

markers which were on the shoes only during the static trial were recreated virtually in 

MATLAB by transforming the local coordinates of these markers with respect to each shoe, to 
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the corresponding global coordinates within the motion capture volume.  These virtual markers 

were used to determine the position along the bottom of the shoe sole, since markers cannot be 

physically placed under the shoe [86, 101].  The position of these virtual markers was adjusted in 

the vertical direction based on marker radius, and the center point of a line connecting each 

medial marker to its respective lateral marker was used to identify the bottom of the shoe sole.  

The toe tip marker was included as one of the forefoot markers in order to complete the sole 

geometry, but this marker remained in place during the dynamic trials and its position was not 

adjusted during post-processing.  For the pilot study subjects, only the toe tip marker was 

available for use in the minimum foot clearance analysis due to a different marker set being used 

at that time.  

 

 
 
 

Figure 14. (A) Forefoot markers along the shoe sole, from left to right: toe tip, front forefoot, 
middle forefoot, and break forefoot; the break and toe markers are labeled.  (B) Anterior view of 
the shoe; forefoot markers on the lateral side of the shoe sole are shadowed on the medial side. 

 
 
 
For both the pilot study and full study level surface walking trials, key events during the 

gait cycle were identified to determine individual swing phases within each trial.  Swing phase is 

commonly referred to as the time elapsing from shoe toe-off to shoe heel-strike for the same foot 

[48].  Due to the variations in amputee gait style and the impact a rigid prosthetic foot has on the 

A B Toe Marker 

Break Marker 
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motion of the commonly identified toe-off event, the definition for toe-off was redefined in this 

thesis.  Since the heel of the prosthetic foot cannot rotate over the forefoot as the foot is leaving 

the ground, such as the sound limb does, initial motion of the forefoot into swing phase occurs 

before the shoe physically leaves the ground.  Consequently, the starting point of the swing 

phase for the analysis presented in this thesis was identified by initial forefoot motion.  To 

determine this point within the gait cycle, the vertical trajectory component of the toe marker 

was used; initial forefoot motion was the point when the toe marker began to move upward 

(Figure 15).  The use of trajectory data was verified against force plate data to understand the 

physical relation between initial forefoot motion and when the shoe actually left the ground 

(Figure 16).  Across all subjects, initial forefoot motion found using the trajectory data occurred 

before the force plate data identified the shoe leaving the ground.  Generally there was an 

approximate 167 ms difference between initial forefoot motion and when the shoe departed from 

the force plate.  To identify the end of swing phase the heel-strike of the foot was used; this point 

was identified using the vertical trajectory component of the superior heel marker (Figure 17) 

[102-103].  Each swing phase was normalized to 100% so comparisons could be made between 

multiple swing phases. 
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Figure 15. Typical toe marker vertical trajectory for the prosthetic limb.  Initial forefoot motion 
points are circled. 
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Figure 16. Typical prosthetic limb force plate contact.  Initial forefoot motion and heel-strike 
events found using vertical trajectories of the toe and superior heel markers, respectively, are 

identified.  Heel-strike events were accurately identified using trajectory data and an 
approximate 167 ms difference was seen between initial forefoot motion and physical toe-off of 

the shoe leaving the floor. 
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Figure 17. Typical superior heel marker vertical trajectory for the prosthetic limb.  Heel-strike 
points are circled. 

 
 
 

 Minimum foot clearance (MFC) is defined as the minimum vertical distance between the 

walking surface and the lowest point of the sole of the forefoot during the swing phase [101, 

104].  In able-bodied individuals the MFC value is identified by a clear local minimum point 

occurring at approximately 51% of the swing phase [104].  The MFC location during the swing 

phase has been reported as the instant within the gait cycle when the risk for stumbling is the 

highest.  Anatomically, for able-bodied individuals this local minimum point occurs just before 

the ankle returns to its neutral position during the swing phase [31].  Toe clearance for able-

bodied subjects has also been shown to be very sensitive to small angular changes in the swing 
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ankle and knee joints [18].  Therefore, unilateral transfemoral amputees are likely to display a 

different vertical displacement pattern of the forefoot during swing due to gait adaptations for 

obtaining adequate foot clearance during gait (Figure 18).  As a result, the minimum foot 

clearance method presented in this thesis was developed specifically for unilateral transfemoral 

amputee gait analysis. 
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Figure 18. Example of different sound limb and prosthetic limb toe tip patterns during gait.  The 
sound limb toe tip trajectory has a local minimum point as the foot moves through the swing 

phase while the prosthetic limb does not have a minimum foot clearance point. 
 
 
 

 As the example in Figure 18 shows, the trajectory of the forefoot may not result in a clear 

local minimum point during the swing phase in unilateral transfemoral amputee gait.  It is also 
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possible that the sound limb forefoot trajectory does not produce a local minimum point during 

swing as there is a wide variation in amputee gait styles.  To address this issue, the methodology 

for identifying MFC was altered for this subject population.  If a clear local minimum point 

signifying MFC was not identified during the swing phase for either the prosthetic limb or the 

sound limb, the minimum clearance at two distinct points during the swing phase was reported.  

If MFC could be identified during swing, this minimum clearance value was reported along with 

the clearance value at each distinct point, in order to provide comparison to swing phases where 

MFC was not found.  The distinct points were determined by dividing the swing phase up into 

three sub-phases: initial swing, midswing, and terminal swing (Figure 19).  Initial swing begins 

at initial forefoot motion and lasts until 32.5% of the swing phase has been reached.  Continuing 

from this point, midswing lasts until 67.5% of the swing phase has been reached, and terminal 

swing is the final period until heel-strike occurs [105].  Therefore, if a forefoot marker trajectory 

did not yield a clear local minimum point during swing, the clearance values at 32.5% and 67.5% 

were reported. 
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Figure 19. Example of the forefoot marker trajectories of the sound limb during swing phase 
(shoe figures included for visual identification of foot position during swing; not drawn to scale).  
The toe tip MFC occurs at approximately 50% of the swing phase while the break forefoot MFC 

occurs at approximately 60%. 
 
 
 

 If the any of the forefoot marker trajectories revealed a plateau during the swing phase, 

only the clearances at 32.5% and 67.5% were reported (Figure 20).  A plateau region was not 

used to identify MFC because it did not fully satisfy the definition of “occurring at a local 

minimum point” during swing, and temporally, a specific time point was not identifiable. 
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Figure 20. Typical swing phase displaying a plateau instead of a clear local minimum point.  
When this occurred, MFC was evaluated based on the clearance values found at 32.5% and 

67.5% of swing. 
 
 
 
Three level surface walking trials were analyzed for each subject.  Within each trial, three 

swing phases for each limb were evaluated to determine the minimum foot clearance values 

during swing.  For each swing phase where the MFC was identified for all forefoot markers, the 

overall smallest value was reported with its associated marker position, along with the overall 

smallest 32.5% and 67.5% clearance values.  For each swing phase where the MFC was not 

identified for all forefoot markers, only the overall smallest 32.5% and 67.5% values were 

reported with the associated marker position. 
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3.2.3 Method for Foot Clearance during Stair Ascent 

The shoe marker trajectories collected during the static trial and during the stair ascent trials 

were exported to MATLAB for post-processing.  For the subjects enrolled in the full study, the 

forefoot markers used during the static trial were recreated virtually using the local coordinates 

and a transformation matrix to obtain the global marker trajectories in the motion capture volume 

during the dynamic trials.  These virtual markers were used to determine the bottom edge of the 

shoe sole for the forefoot of the foot [86, 101].  Initial forefoot motion and heel-strike events 

were determined using the toe and superior heel markers, respectively, in order to determine the 

swing phase for each step [102-103].  For the pilot study subjects, only the superior heel, toe, and 

toe tip markers were used on the foot.  Again, the toe and heel markers were used to identify the 

initial forefoot motion (Figure 21) and heel-strike events.  The position of the stairs during the 

full study was recorded prior to the stair ascent trials by using markers to pin-point the step 

edges.  This step placement information was not collected during the pilot study sessions, but the 

stairs were set up in the same spot within the capture volume. 
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Figure 21. Typical sound limb toe motion during stair ascent.  Red circles highlight initial 
forefoot motion points for each step. 

 
 
 

 Five variables were examined for each foot as it passed over each step, in order to gain an 

understanding of the foot clearance and placement strategies used by unilateral transfemoral 

amputees during stair ascent [52, 106].  Figure 22 shows the position of the foot for each variable 

measured.  The resultant distance (A) for all forefoot markers was calculated for all time points 

between consecutive initial forefoot motion and heel-strike points, then the overall minimum 

resultant distance was found to identify which forefoot marker position had the minimum 

clearance.  The forefoot horizontal distances (B) were found when each marker was at the same 

vertical height as the step edge during swing.  The forefoot vertical distances (C) were found 

when each marker was passing over the step edge.  The inferior heel vertical distance (D) was 
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found when this marker passed over the step edge.  If a subject’s shoe size resulted in the heel 

hanging off the back of the step during stance, then this variable was only able to be calculated 

during swing over the top step.  The inferior heel horizontal distance (E) was found while the 

foot was flat on the step during stance immediately following heel-strike. 

 

 

Figure 22. Resultant (A), horizontal (B & E), and vertical (C & D) clearance distances for the 
foot during ascent (toe tip marker shown as an example for the forefoot).  Prior to passing over 

the step edge yields negative horizontal values.  The inferior heel may have a negative horizontal 
value if the foot is larger than the step tread or positioned such that the heel hangs off the step. 

 
 
 
Of these variables, those specifically examined to assess the risk of tripping during stair 

ascent include the overall minimum horizontal distance in front of the step for the forefoot 

markers, the overall minimum vertical distance over the step for the forefoot markers, and the 

overall minimum resultant distance between the forefoot and the step edge.  For subjects in the 

full study, three stair ascent trials were collected.  The pilot study subjects completed only one 

stair ascent trial.  For each subject the mean and standard deviation of each variable was 

calculated using all steps for each foot. 
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3.2.4 Method for Foot Clearance during Stair Descent 

All shoe marker trajectories for the static and stair descent trials were exported to MATLAB for 

post-processing.  The static trial only forefoot markers were recreated virtually by transforming 

the local coordinates to the appropriate global coordinates within the motion capture volume.  

These virtual markers allowed for the forefoot position of the bottom of the shoe sole to be used 

when assessing clearance during descent [86, 101].  The initial forefoot motion and heel-strike 

events during stair descent were determined using the toe and superior heel marker vertical 

trajectories [102-103].  During the full study, the position of the stairs was recorded during data 

collection by using markers to pin-point the step edges; despite this data not being collected 

during the pilot study sessions, the stairs were set up in the same location in the capture volume. 

Five variables were identified for each foot as it passed over a step in order to show the 

foot clearance and placement strategies during stair descent [52, 106].  Figure 23 shows the 

position of the foot when each variable was measured.  The resultant distance (A) for the inferior 

heel marker was calculated for all time points between consecutive initial forefoot motion and 

heel-strike points.  The forefoot horizontal distances (B) were found while the foot was flat on 

the step during stance immediately prior to initial forefoot motion.  Due to differences in starting 

position at the top of the stairs, these horizontal distances for the first step were not included in 

the analysis.  The forefoot vertical distances (C) were found when each marker was passing over 

the step edge.  The inferior heel vertical distance (D) was found when this marker passed over 

the step edge.  The inferior heel horizontal distance (E) was found when the inferior heel marker 

was at the same vertical height as the step during swing. 
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Figure 23. Resultant (A), horizontal (B & E), and vertical (C & D) clearance distances for the 
foot during descent (toe tip marker shown as an example for the forefoot).  Marker positions 

prior to passing over the step edge have negative values.  If any forefoot marker is positioned off 
of the step tread during stance the vertical distance will be negative and correspond to the instant 

of initial forefoot motion. 
 
 
 
The variables used to specifically assess the risk of tripping during stair descent include 

the minimum vertical distance of the inferior heel over the step edge, the minimum horizontal 

distance of the inferior heel in front of the step edge, and the minimum resultant distance 

between the inferior heel and the step edge.  An example of inferior heel motion during descent 

is provided in Figure 24.  Subjects in the full study completed a series of three stair descent trials 

while the pilot study subjects only completed one stair descent trial.  For each subject the mean 

and standard deviation were found for each variable using all of the steps taken with each foot. 
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Figure 24. Typical sound limb inferior heel motion during stair descent.  Red circles highlight 
heel-strike events. 

 

3.2.5 Method for Stumbling Perturbation Outcome Measures 

Motion capture trajectories for the shoe markers, shoulder markers, and pelvis markers from the 

static and stumbling perturbation trials were exported to MATLAB for post-processing.  A 

fourth-order Butterworth filter with a cutoff frequency of 6 Hz was used to filter the stumbling 

trial trajectory data.  The initial forefoot motion and heel-strike points for each foot during the 

trial were identified using the toe and superior heel markers, respectively [102-103].  The 

outcome measures to be examined for the stumbling perturbation trial include the recovery 

strategy utilized, the stumble recovery duration, trunk flexion deviation in the sagittal and frontal 

planes, and trunk angular velocity during the recovery period.  There is a current void in the 
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literature identifying these measures specifically for unilateral transfemoral amputees; therefore, 

the methods in this thesis adapted those used for evaluating falls in able-bodied adults and the 

transtibial amputee population [57, 107-110]. 

The recovery strategy utilized by the subjects will be based upon the response of the 

prosthetic limb immediately following contact with the obstacle.  Previous research has 

identified three distinct strategies for recovering from a stumbling perturbation [57].  A lowering 

strategy occurs when the obstructed limb is immediately lowered to the ground on the near side 

of the obstacle to become the stance limb while the contralateral limb initiates clearance over the 

obstacle.  An elevating strategy occurs when the obstructed limb is flexed at multiple joints to 

clear the obstacle while the contralateral limb remains as the stance limb.  Generally the stance 

limb displays some degree of plantar flexion to aide in elevating the body over the obstacle.  A 

reaching strategy is similar to the elevating strategy, except the increase in prosthetic limb 

flexion to clear the obstacle occurs primarily at the hip joint of the obstructed swing limb. 

The stumble recovery duration was defined as the period of time from foot-obstacle 

contact until heel-strike of the prosthetic limb recovery step [57, 93, 109-110].  For the lowering 

recovery strategy, the prosthetic limb recovery step was the first step taken with the obstructed 

prosthetic foot after it had acted as the supporting limb.  For the elevating strategy, the prosthetic 

limb recovery step heel-strike occurred when the obstructed foot made contact with the ground 

following clearance of the obstacle. 

The trunk angle in the sagittal and frontal planes was assessed during the stumble 

perturbation recovery.  The trunk was defined as a segment from the shoulder medial-lateral 

midpoint to the posterior superior iliac spine medial-lateral midpoint [107].  The trunk angle was 

found with respect to vertical for both the sagittal and frontal planes [57, 111].  The maximum 
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and minimum angles during the stumble recovery duration were used to evaluate the magnitude 

of the stumble response with respect to the angles at the instant of contact with the obstacle.  

Average trunk maximum and minimum angles were also found for one level surface walking 

trial to determine a baseline range for comparison with the stumbling response.  Angular velocity 

in the sagittal and frontal planes was calculated using the first derivative of the trunk angle data 

with respect to time.  The resultant of the angular velocities yielded the trunk angular velocity 

[112].  The trunk angular velocity at the instant of contact with the obstacle was determined 

along with the maximum and minimum values during the recovery duration and the average 

trunk angular velocity during one level surface walking trial. 

3.3 RESULTS 

3.3.1 Minimum Foot Clearance during Level Surface Walking 

A typical gait cycle for each subject is shown in Figures 25 and 26 in order to compare all 

prosthetic limb toe tip marker trajectories and all sound limb toe tip marker trajectories, 

respectively.  These figures show a wide range of swing phase patterns and maximum toe tip 

height during terminal swing.  Minimum foot clearance results found 4 of 6 subjects had smaller 

MFC with the prosthetic limb in comparison to the sound limb.  Across all subjects, the largest 

MFC value for prosthetic limb was 7.95 cm (subject 1) when the MFC point was able to be 

identified by a clear local minimum point in the swing phase, and the largest MFC value for the 

sound limb was 4.84 cm (subject 2).  Additional spatial-temporal gait parameters during the gait 

cycle and knee joint angles during the swing phase are reported for each subject in Appendix B. 
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Figure 25. Typical prosthetic foot toe tip marker trajectory during one gait cycle for all subjects.  
Zero and 100% of the gait cycle are identified by initial forefoot motion. 
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Figure 26. Typical sound foot toe tip marker trajectory during one gait cycle for all subjects.  
Zero and 100% of the gait cycle are identified by initial forefoot motion. 

 
 
 

 Minimum foot clearance of the toe tip for subject 1 on the sound limb side was found 

within 43-47% of the swing phase, with the MFC value ranging between 2.00 cm and 3.26 cm 

for the four swing phases where a clear local minimum point was identified (Figure 27 and  

Table 11).  The prosthetic limb MFC values were higher than the sound limb.  For the prosthetic 

limb toe tip, MFC occurred at approximately 46-50% of the swing phase and resulted in 

clearance values ranging from 6.98 cm to 7.95 cm.  The swing phases without a clear MFC point 

were analyzed at 32.5% and 67.5% of the swing phase (the transition points between initial 

swing and midswing, and midswing and terminal swing, respectively).  Results for the prosthetic 

limb toe tip show an average height of 7.44 cm ± 0.71 cm at 32.5% of the swing phase, across all 
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nine swing phases.  At 67.5% of the swing phase the prosthetic limb toe tip reached a height of 

15.27 cm ± 2.65 cm.  At 32.5% and 67.5% of the swing phase the sound limb toe tip reached an 

average clearance of 4.09 cm ± 0.47 cm and 8.13 cm ± 1.21 cm, respectively. 
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Figure 27. Comparison of mean toe tip trajectory across 3 steps for the sound foot and prosthetic 
foot of subject 1; dashed lines indicate standard deviation.  Zero percent of the swing phase is 

identified by initial forefoot motion, 100% of the swing phase is identified by heel-strike. 
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Table 11. Subject 1 MFC values during the swing phase.  Highlighted values are the MFC 
events identified by a clear local minimum point during the swing phase. 

 
 

Prosthetic Limb and Sound Limb Minimum Foot Clearance Values (cm) 

Swing 
Phase 

Prosthetic Limb 
Toe Tip 

Location in 
Swing Phase 

Sound Limb 
Toe Tip 

Location in 
Swing Phase 

1 
6.86 32.5% 3.63 32.5% 
7.91 47% N/A MFC 
13.10 67.5% 7.23 67.5% 

2 
7.59 32.5% 4.11 32.5% 
N/A MFC 2.75 43% 

18.29 67.5% 8.35 67.5% 

3 
7.43 32.5% 4.69 32.5% 
6.98 46% 2.99 46% 
15.13 67.5% 8.27 67.5% 

4 
6.49 32.5% 3.31 32.5% 
7.33 49% N/A MFC 
12.38 67.5% 7.43 67.5% 

5 
7.15 32.5% 3.99 32.5% 
N/A MFC N/A MFC 

14.08 67.5% 8.20 67.5% 

6 
7.92 32.5% 3.97 32.5% 
N/A MFC 2.00 47% 

18.58 67.5% 7.73 67.5% 

7 
7.29 32.5% 3.98 32.5% 
7.95 50% 3.26 46% 
11.73 67.5% 6.14 67.5% 

8 
8.98 32.5% 4.71 32.5% 
N/A MFC N/A MFC 

15.95 67.5% 10.06 67.5% 

9 
7.25 32.5% 4.45 32.5% 
N/A MFC N/A MFC 

18.22 67.5% 9.73 67.5% 
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Minimum foot clearance for the toe tip of subject 2 on the sound limb side occurred 

between 42-53% of the swing phase, with the clearance value ranging from 3.50 cm to 4.84 cm 

(Figure 28 and Table 12).  The prosthetic limb MFC values were smaller than the sound limb, 

ranging from 1.79 cm to 3.12 cm.  For these MFC values, the corresponding location was during 

initial swing, ranging from 29-31% of the swing phase.  Only two swing phases for the prosthetic 

limb and two swing phases for the sound limb did not have identifiable MFC values.  Across all 

nine swing phases, the prosthetic limb had a smaller clearance at 32.5% of the swing phase 

compared to the sound limb: 2.87 cm ± 0.51 cm and 4.98 ± 0.61 cm, respectively.  An opposing 

pattern was seen at 67.5% of the swing phase, as the prosthetic limb toe tip height was 21.76 cm 

± 1.65 cm and the sound limb toe tip height was 7.81 cm ± 1.03 cm. 
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Figure 28. Comparison of mean toe tip trajectory across 3 steps for the sound foot and prosthetic 
foot of subject 2; dashed lines indicate standard deviation.  Zero percent of the swing phase is 

identified by initial forefoot motion, 100% of the swing phase is identified by heel-strike. 
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Table 12. Subject 2 MFC values during the swing phase.  Highlighted values are the MFC 
events identified by a clear local minimum point during the swing phase. 

 
 

Prosthetic Limb and Sound Limb Minimum Foot Clearance Values (cm) 

Swing 
Phase 

Prosthetic Limb 
Toe Tip 

Location in 
Swing Phase 

Sound Limb 
Toe Tip 

Location in 
Swing Phase 

1 
3.84 32.5% 5.11 32.5% 
N/A MFC N/A MFC 

23.74 67.5% 7.85 67.5% 

2 
3.18 32.5% 4.94 32.5% 
3.12 29% N/A MFC 
22.71 67.5% 9.69 67.5% 

3 
3.01 32.5% 4.76 32.5% 
2.52 30% 4.06 46% 
22.63 67.5% 8.46 67.5% 

4 
2.66 32.5% 4.61 32.5% 
2.65 31% 4.16 42% 
20.24 67.5% 8.40 67.5% 

5 
1.95 32.5% 4.88 32.5% 
1.79 31% 4.50 51% 
20.20 67.5% 8.26 67.5% 

6 
2.98 32.5% 4.77 32.5% 
2.77 31% 4.35 52% 
20.56 67.5% 6.45 67.5% 

7 
2.65 32.5% 5.20 32.5% 
2.57 31% 4.84 53% 
19.52 67.5% 6.62 67.5% 

8 
2.62 32.5% 6.39 32.5% 
N/A MFC 4.01 47% 

22.34 67.5% 7.51 67.5% 

9 
2.90 32.5% 4.13 32.5% 
2.76 29% 3.50 45% 
23.89 67.5% 7.04 67.5% 
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Subject 3 had a clearly defined local minimum point within all swing phases for 

identifying the toe tip MFC.  For the sound limb, the MFC value ranged from 2.60 cm to        

3.45 cm, occurring between 43-57% of the swing phase (Figure 29 and Table 13).  The 

prosthetic limb MFC values were smaller than those for the sound limb.  The range of MFC 

values for the prosthetic limb was 0.73 cm to 2.39 cm, and the location within the swing phase 

for these values was 45-49%.  For the transition points within the swing phase, the prosthetic 

limb toe tip average clearance at 32.5% was 2.56 cm ± 0.36 cm, and 16.01 cm ± 1.88 cm at 

67.5%.  For the sound limb, the toe tip height at 32.5% of the swing phase was 3.69 cm ± 0.48 

cm, and 5.55 cm ± 1.23 cm at 67.5%. 
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Figure 29. Comparison of mean toe tip trajectory across 3 steps for the sound foot and prosthetic 
foot of subject 3; dashed lines indicate standard deviation.  Zero percent of the swing phase is 

identified by initial forefoot motion, 100% of the swing phase is identified by heel-strike. 
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Table 13. Subject 3 MFC values during the swing phase.  Highlighted values are the MFC 
events identified by a clear local minimum point during the swing phase. 

 
 

Prosthetic Limb and Sound Limb Minimum Foot Clearance Values (cm) 

Swing 
Phase 

Prosthetic Limb 
Toe Tip 

Location in 
Swing Phase 

Sound Limb 
Toe Tip 

Location in 
Swing Phase 

1 
1.94 32.5% 3.33 32.5% 
1.03 47% 2.60 57% 
16.10 67.5% 4.09 67.5% 

2 
2.47 32.5% 4.04 32.5% 
1.68 49% 3.22 43% 
13.88 67.5% 7.68 67.5% 

3 
3.05 32.5% 3.32 32.5% 
2.39 47% 2.84 50% 
15.09 67.5% 5.60 67.5% 

4 
2.60 32.5% 3.11 32.5% 
1.68 49% 2.67 55% 
14.32 67.5% 4.56 67.5% 

5 
2.94 32.5% 3.56 32.5% 
2.23 46% 2.97 48% 
18.49 67.5% 6.50 67.5% 

6 
2.72 32.5% 3.51 32.5% 
1.54 47% 2.87 56% 
16.33 67.5% 3.87 67.5% 

7 
2.69 32.5% 4.69 32.5% 
1.22 49% 3.45 54% 
14.95 67.5% 5.35 67.5% 

8 
2.47 32.5% 3.77 32.5% 
1.12 48% 3.16 49% 
15.41 67.5% 6.22 67.5% 

9 
2.12 32.5% 3.90 32.5% 
0.73 45% 2.96 53% 
19.51 67.5% 6.12 67.5% 
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The minimum foot clearance of the toe tip for subject 4 on the sound limb side ranged 

from 2.12 cm to 3.11 cm, located between 43-52% of the swing phase (Figure 30 and Table 14).  

No MFC points were able to be identified in the prosthetic limb toe tip trajectory due to a plateau 

pattern consistently present during swing.  While clearly identifiable MFC points cannot be 

compared between the prosthetic and sound limb, the toe tip clearances at 32.5% and 67.5% of 

the swing phase can be compared in order to understand differences between limbs during swing.  

At 32.5% of the swing phase, the height of the toe tip was very similar between limbs, with an 

average of 3.23 cm ± 0.46 cm for the prosthetic limb and an average of 3.25 cm ± 0.57 cm for 

the sound limb.  The prosthetic limb toe tip height at 67.5% of the swing phase was 17.42 cm ± 

1.90 cm while the sound limb toe tip height was only 6.68 cm ± 0.92 cm. 
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Figure 30. Comparison of mean toe tip trajectory across 3 steps for the sound foot and prosthetic 
foot of subject 4; dashed lines indicate standard deviation.  Zero percent of the swing phase is 

identified by initial forefoot motion, 100% of the swing phase is identified by heel-strike. 
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Table 14. Subject 4 MFC values during the swing phase.  Highlighted values are the MFC 
events identified by a clear local minimum point during the swing phase. 

 
 

Prosthetic Limb and Sound Limb Minimum Foot Clearance Values (cm) 

Swing 
Phase 

Prosthetic Limb 
Toe Tip 

Location in 
Swing Phase 

Sound Limb 
Toe Tip 

Location in 
Swing Phase 

1 
3.80 32.5% 2.38 32.5% 
N/A MFC N/A MFC 

18.37 67.5% 7.09 67.5% 

2 
3.51 32.5% 2.93 32.5% 
N/A MFC 2.12 43% 

17.48 67.5% 7.73 67.5% 

3 
2.67 32.5% 3.69 32.5% 
N/A MFC 2.32 52% 

18.41 67.5% 5.27 67.5% 

4 
2.77 32.5% 3.86 32.5% 
N/A MFC N/A MFC 

18.26 67.5% 7.86 67.5% 

5 
3.29 32.5% 2.97 32.5% 
N/A MFC 2.33 47% 

19.81 67.5% 5.90 67.5% 

6 
2.60 32.5% 3.03 32.5% 
N/A MFC 2.62 49% 

13.80 67.5% 5.73 67.5% 

7 
3.14 32.5% 2.72 32.5% 
N/A MFC N/A MFC 

15.04 67.5% 7.19 67.5% 

8 
3.72 32.5% 3.88 32.5% 
N/A MFC 3.11 52% 

18.71 67.5% 7.10 67.5% 

9 
3.61 32.5% 3.83 32.5% 
N/A MFC 2.86 51% 

16.94 67.5% 6.29 67.5% 
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The MFC analysis for subject 5 was able to utilize the marker set developed in this thesis 

for identifying the bottom of the shoe sole.  As a result, variations were seen in which forefoot 

marker had the overall smallest MFC value.  Figure 31 provides a comparison between the sound 

foot and prosthetic foot motion during gait, with focus set on one swing phase.  Since this subject 

kept the prosthetic knee extended during the swing phase the prosthetic limb foot motion was 

very flat.  There was minimal heel rise in the prosthetic foot which led to an increase in toe tip 

height until the foot began to move down toward the floor immediately prior to heel-strike. 
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Figure 31. Comparison of the sound foot and prosthetic foot motion for subject 5.  Note the 
sound foot heel rise in comparison to the vertical and forward motion of the prosthetic foot.  This 

figure display is set to approximately one swing phase for each foot. 
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 Subject 5 had a definitive MFC point within the swing motion of the sound foot for all of 

the forefoot markers (Figure 32 and Table 15).  The front forefoot marker had the smallest MFC 

value out of all of the forefoot markers the most often among the nine swing phases analyzed, 

with values ranging from 1.80 cm to 3.21 cm within 62-65% of the swing phase.  In terms of the 

32.5% and 67.5% transition points between initial swing, midswing, and terminal swing, across 

all swing phases the sound limb clearance at 32.5% was 0.35 cm ± 0.17 cm, and 2.45 cm ± 0.41 

cm at 67.5%.  As seen in Table 15, the toe tip position always had the smallest clearance at 

32.5% of the swing phase, while either the break forefoot for middle forefoot positions had the 

smallest clearance at 67.5% of the swing phase. 
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Figure 32. Sound limb forefoot marker trajectories for subject 5 during one swing phase. 
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Table 15. All forefoot clearance values for the sound limb of subject 5 during swing.  
Highlighted values correspond to the overall smallest clearance value for each location in the 

swing phase (32.5%, 67.5%, and the identified MFC point). 
 
 

Sound Limb Minimum Foot Clearance Values (cm) 
Swing 
Phase 

Location in 
Swing Phase Toe Tip Front Forefoot Middle Forefoot Break Forefoot 

1 
32.5% 0.14 0.64 1.88 3.65 
MFC 2.43 (59%) 2.34 (62%) 2.58 (65%) 2.69 (70%) 
67.5% 3.46 2.95 2.72 2.71 

2 
32.5% 0.27 0.62 1.40 2.62 
MFC 2.75 (63%) 2.60 (65%) 2.62 (70%) 2.40 (74%) 
67.5% 3.07 2.70 2.63 2.80 

3 
32.5% 0.41 0.80 1.83 3.35 
MFC 3.29 (64%) 3.21 (65%) 3.28 (68%) 3.25 (71%) 
67.5% 3.93 3.48 3.30 3.36 

4 
32.5% 0.73 1.73 3.85 6.67 
MFC 2.52 (58%) 2.43 (62%) 2.50 (65%) 2.42 (67%) 
67.5% 4.03 3.43 2.89 2.49 

5 
32.5% 0.21 0.90 2.51 4.71 
MFC 2.28 (62%) 2.79 (63%) 2.24 (65%) 2.27 (68%) 
67.5% 3.37 2.79 2.43 2.27 

6 
32.5% 0.33 1.05 2.78 5.15 
MFC 1.99 (62%) 1.96 (64%) 2.09 (68%) 2.00 (73%) 
67.5% 2.66 2.27 2.11 2.17 

7 
32.5% 0.42 1.20 2.97 5.38 
MFC 1.99 (61%) 1.86 (63%) 1.93 (65%) 1.97 (67%) 
67.5% 3.52 2.83 2.35 2.02 

8 
32.5% 0.28 0.94 2.28 4.16 
MFC 1.88 (62%) 1.80 (63%) 1.93 (65%) 2.05 (68%) 
67.5% 3.15 2.63 2.25 2.05 

9 
32.5% 0.39 1.23 3.13 5.69 
MFC 2.43 (64%) 2.30 (65%) 2.41 (67%) 2.45 (71%) 
67.5% 2.98 2.57 2.43 2.53 
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The prosthetic foot motion of subject 5 did not yield any identifiable MFC points during 

swing (Figure 33).  However, at 32.5% of the swing phase the average clearance was 3.73 cm ± 

0.53 cm.  The front forefoot position had the smallest overall clearance of the forefoot markers at 

this transition point most often (Table 16).  At 67.5% of swing, the break forefoot position 

always had the smallest clearance resulting in an average of 10.44 cm ± 1.94 cm across all swing 

phases.  The clearance values for the prosthetic limb at the transition points were higher than 

those of the sound limb.  Table 17 provides an overall comparison of the prosthetic and sound 

limb MFC results. 
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Figure 33. Prosthetic limb forefoot marker trajectories for subject 5 during one swing phase. 
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Table 16. All resulting clearance values for the prosthetic limb of subject 5 during swing.  
Highlighted values correspond to the overall smallest clearance value for each location in the 

swing phase (32.5% and 67.5%).  MFC could not be determined for the prosthetic limb during 
swing due to no local minimum point in the trajectory data. 

 
 

Prosthetic Limb Minimum Foot Clearance Values (cm) 
Swing 
Phase 

Location in 
Swing Phase Toe Tip Front Forefoot Middle Forefoot Break Forefoot 

1 
32.5% 4.61 3.92 3.94 4.27 
MFC N/A N/A N/A N/A 
67.5% 20.77 18.84 16.94 14.85 

2 
32.5% 5.80 4.92 4.64 4.60 
MFC N/A N/A N/A N/A 
67.5% 17.13 15.30 13.65 11.88 

3 
32.5% 5.70 4.77 4.50 4.46 
MFC N/A N/A N/A N/A 
67.5% 16.04 14.29 12.69 10.98 

4 
32.5% 3.62 3.02 3.10 3.49 
MFC N/A N/A N/A N/A 
67.5% 15.29 13.57 11.98 10.30 

5 
32.5% 4.48 3.74 3.72 4.00 
MFC N/A N/A N/A N/A 
67.5% 13.86 12.14 10.67 9.14 

6 
32.5% 4.20 3.54 3.64 4.05 
MFC N/A N/A N/A N/A 
67.5% 13.77 12.11 10.59 8.98 

7 
32.5% 4.30 3.63 3.63 3.92 
MFC N/A N/A N/A N/A 
67.5% 13.64 11.90 10.41 8.84 

8 
32.5% 4.17 3.47 3.51 3.86 
MFC N/A N/A N/A N/A 
67.5% 14.73 12.91 11.34 9.66 

9 
32.5% 3.98 3.22 3.34 3.78 
MFC N/A N/A N/A N/A 
67.5% 14.09 12.41 10.90 9.31 
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Table 17. Subject 5 clearance values during the swing phase.  For each swing phase the smallest 
value among all forefoot markers is reported at MFC, 32.5% and 67.5% of the swing phase, 

along with the associated marker position.  Highlighted values are the MFC events identified by 
a clear local minimum point during the swing phase. 

 
 

Prosthetic Limb and Sound Limb Minimum Foot Clearance Values (cm) 

Swing 
Phase 

Prosthetic 
Limb MFC 

Location in 
Swing Phase 

Forefoot 
Position 

Sound 
Limb MFC 

Location in 
Swing Phase 

Forefoot 
Position 

1 
3.92 32.5% Front 0.14 32.5% Toe Tip 
N/A MFC N/A 2.34 62% Front 

14.85 67.5% Break 2.71 67.5% Break 

2 
4.60 32.5% Break 0.27 32.5% Toe Tip 
N/A MFC N/A 2.40 74% Break 

11.88 67.5% Break 2.63 67.5% Middle 

3 
4.46 32.5% Break 0.41 32.5% Toe Tip 
N/A MFC N/A 3.21 65% Front 

10.98 67.5% Break 3.30 67.5% Middle 

4 
3.02 32.5% Front 0.73 32.5% Toe Tip 
N/A MFC N/A 2.42 67% Break 

10.30 67.5% Break 2.49 67.5% Break 

5 
3.72 32.5% Middle 0.21 32.5% Toe Tip 
N/A MFC N/A 2.24 65% Middle 
9.14 67.5% Break 2.27 67.5% Break 

6 
3.54 32.5% Front 0.33 32.5% Toe Tip 
N/A MFC N/A 1.96 64% Front 
8.98 67.5% Break 2.11 67.5% Middle 

7 
3.63 32.5% Front & 

Middle 0.42 32.5% Toe Tip 

N/A MFC N/A 1.86 63% Front 
8.84 67.5% Break 2.02 67.5% Break 

8 
3.47 32.5% Front 0.28 32.5% Toe Tip 
N/A MFC N/A 1.80 63% Front 
9.66 67.5% Break 2.05 67.5% Break 

9 
3.22 32.5% Front 0.39 32.5% Toe Tip 
N/A MFC N/A 2.30 65% Front 
9.31 67.5% Break 2.43 67.5% Middle 
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 Subject 6 prosthetic and sound limb foot motion during the swing phase is shown in 

Figure 34.  Heel rise of the prosthetic foot was slightly higher than the sound foot. 
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Figure 34. Comparison of the sound foot and prosthetic foot motion for subject 6 during one 
swing phase.  This figure display is set to approximately one swing phase for each foot. 
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Subject 6 had a distinguished MFC point for all forefoot markers on the sound foot 

except the toe tip (Figure 35 and Table 18).  These MFC values ranged from 0.46 cm to 1.87 cm 

and occurred between 51-88% of the swing phase.  Since a clear MFC value could not be 

identified for the toe tip during swing, values reported at the transition points between the three 

sub-phases of swing provide an understanding of the foot clearance.  At 32.5% of the swing 

phase the sound limb average clearance was 1.05 cm ± 0.28 cm, determined from the overall 

smallest clearance value in each swing phase.  Most often the forefoot position had the overall 

smallest clearance at this transition point.  At 67.5% of the swing phase, the average overall 

smallest clearance among the forefoot markers was 1.13 cm ± 0.38 cm, usually occurring at the 

break forefoot position. 
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Figure 35. Sound limb forefoot marker trajectories for subject 6 during one swing phase. 
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Table 18. All forefoot clearance values for the sound limb of subject 6 during swing.  
Highlighted values correspond to the overall smallest clearance value for each location in the 

swing phase (32.5% and 67.5%).  MFC results are not available for the toe tip position because 
no identifiable local minimum point for this trajectory was present during swing. 

 
 

Sound Limb Minimum Foot Clearance Values (cm) 
Swing 
Phase 

Location in 
Swing Phase Toe Tip Front Forefoot Middle Forefoot Break Forefoot 

1 
32.5% 1.81 1.50 3.24 5.67 
MFC N/A 1.44 (56%) 1.41 (63%) 1.46 (66%) 
67.5% 4.52 2.63 1.84 1.54 

2 
32.5% 1.50 1.20 2.91 5.32 
MFC N/A 0.82 (55%) 0.89 (62%) 1.03 (69%) 
67.5% 3.50 1.71 1.11 1.03 

3 
32.5% 1.55 1.27 3.12 5.64 
MFC N/A 1.28 (54%) 1.33 (65%) 1.39 (72%) 
67.5% 3.50 1.82 1.38 1.48 

4 
32.5% 1.57 1.18 2.80 5.09 
MFC N/A 0.81 (58%) 0.76 (67%) 0.82 (71%) 
67.5% 2.96 1.28 0.80 0.86 

5 
32.5% 1.41 1.09 2.82 5.24 
MFC N/A 0.85 (57%) 0.83 (66%) 0.91 (69%) 
67.5% 3.31 1.50 0.94 0.91 

6 
32.5% 1.19 0.83 2.51 4.87 
MFC N/A 0.46 (51%) 0.65 (62%) 0.85 (69%) 
67.5% 3.46 1.65 1.02 0.89 

7 
32.5% 1.33 0.98 2.73 5.16 
MFC N/A 0.90 (54%) 0.84 (61%) 0.86 (67%) 
67.5% 3.75 1.86 1.13 0.89 

8 
32.5% 0.98 0.88 2.77 5.35 
MFC N/A 1.11 (59%) 0.86 (67%) 0.84 (69%) 
67.5% 3.21 1.46 0.88 0.84 

9 
32.5% 0.53 0.60 2.76 5.60 
MFC N/A 1.87 (74%) 1.42 (81%) 1.17 (88%) 
67.5% 3.45 1.90 1.88 2.45 
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Subject 6 had fewer MFC points identified during swing of the prosthetic limb in 

comparison to the sound limb.  Only the toe tip, middle forefoot and break forefoot positions 

yielded trajectories having a clear local minimum (Figure 36).  Of these MFC values, the 

smallest clearance was 0.78 cm at the middle forefoot position, and the largest clearance was 

2.24 cm at the break forefoot position (Table 19).  A pattern among these MFC values showed 

the toe tip MFC occurred between 10-13% of the swing phase, the middle forefoot MFC 

occurred between 28-36% of swing, and the break forefoot MFC occurred between 34-43% of 

swing.  Figure 36 supports this pattern, as the forefoot markers undergo changes in vertical 

displacement earlier within the swing phase compared to other subjects.  At 32.5% of the swing 

phase the prosthetic limb clearance was similar to the sound limb, with a value of 1.06 cm ± 0.33 

cm.  At 67.5% of the swing phase the average smallest clearance was 8.36 cm ± 1.35 cm for the 

prosthetic limb.  Table 20 provides a comparison of the minimum foot clearance values between 

the prosthetic and sound limb. 
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Figure 36. Prosthetic limb forefoot marker trajectories for subject 6 during one swing phase. 
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Table 19. All resulting clearance values for the prosthetic limb of subject 6 during swing.  
Highlighted values correspond to the overall smallest clearance value for each location in the 
swing phase (32.5% and 67.5%).  MFC results that were not able to be identified are indicated 

with N/A. 
 
 

Prosthetic Limb Minimum Foot Clearance Values (cm) 
Swing 
Phase 

Location in 
Swing Phase Toe Tip Front Forefoot Middle Forefoot Break Forefoot 

1 
32.5% 2.60 1.14 1.10 1.90 
MFC 1.60 (10%) N/A N/A 1.81 (37%) 
67.5% 14.85 12.35 10.36 8.82 

2 
32.5% 2.06 0.70 0.84 1.83 
MFC 1.38 (13%) N/A N/A 1.59 (39%) 
67.5% 14.80 12.34 10.31 8.73 

3 
32.5% 2.79 1.26 1.09 1.73 
MFC N/A N/A 0.99 (28%) 1.73 (34%) 
67.5% 14.94 12.45 10.43 8.85 

4 
32.5% 3.35 1.74 1.58 2.24 
MFC 1.49 (10%) N/A N/A 2.24 (34%) 
67.5% 15.65 13.05 10.96 9.33 

5 
32.5% 3.13 1.65 1.47 2.13 
MFC 1.44 (10%) N/A N/A 2.13 (34%) 
67.5% 15.26 12.77 10.77 9.23 

6 
32.5% 2.32 0.92 0.94 1.80 
MFC 1.26 (11%) N/A 0.91 (31%) 1.73 (38%) 
67.5% 16.32 13.85 11.75 10.07 

7 
32.5% 2.03 0.70 0.81 1.78 
MFC 1.51 (12%) N/A 0.78 (35%) 1.35 (43%) 
67.5% 12.01 9.59 7.65 6.19 

8 
32.5% 2.54 1.22 1.31 2.25 
MFC 1.50 (13%) N/A 1.29 (36%) 1.94 (43%) 
67.5% 12.06 9.65 7.75 6.34 

9 
32.5% 2.11 0.73 0.85 1.82 
MFC 1.26 (10%) N/A 0.85 (34%) 1.61 (39%) 
67.5% 13.55 11.07 9.13 7.66 
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Table 20. Subject 6 MFC values during the swing phase.  For each swing phase the smallest 
value among all forefoot markers is reported at 32.5% and 67.5% of the swing phase, along with 
the associated marker position.  A MFC event could not be identified by a clear local minimum 

point during the swing phase for all forefoot markers, thus MFC is reported as N/A. 
 
 

Prosthetic Limb and Sound Limb Minimum Foot Clearance Values (cm) 

Swing 
Phase 

Prosthetic 
Limb MFC 

Location in 
Swing Phase 

Forefoot 
Position 

Sound 
Limb MFC 

Location in 
Swing Phase 

Forefoot 
Position 

1 
1.10 32.5% Middle 1.50 32.5% Front 
N/A MFC N/A N/A MFC N/A 
8.82 67.5% Break 1.54 67.5% Break 

2 
0.70 32.5% Front 1.20 32.5% Front 
N/A MFC N/A N/A MFC N/A 
8.73 67.5% Break 1.03 67.5% Break 

3 
1.09 32.5% Middle 1.27 32.5% Front 
N/A MFC N/A N/A MFC N/A 
8.85 67.5% Break 1.38 67.5% Middle 

4 
1.58 32.5% Middle 1.18 32.5% Front 
N/A MFC N/A N/A MFC N/A 
9.33 67.5% Break 0.80 67.5% Middle 

5 
1.47 32.5% Middle 1.09 32.5% Front 
N/A MFC N/A N/A MFC N/A 
9.23 67.5% Break 0.91 67.5% Break 

6 
0.92 32.5% Front 0.83 32.5% Front 
N/A MFC N/A N/A MFC N/A 

10.07 67.5% Break 0.89 67.5% Break 

7 
0.70 32.5% Front 0.98 32.5% Front 
N/A MFC N/A N/A MFC N/A 
6.19 67.5% Break 0.89 67.5% Break 

8 
1.22 32.5% Front 0.88 32.5% Front 
N/A MFC N/A N/A MFC N/A 
6.34 67.5% Break 0.84 67.5% Break 

9 
0.73 32.5% Front 0.53 32.5% Toe Tip 
N/A MFC N/A N/A MFC N/A 
7.66 67.5% Break 1.88 67.5% Middle 
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3.3.2 Stair Ascent 

The horizontal, vertical, and resultant minimum clearance values for the forefoot during stair 

ascent reveal multiple marker positions along the sole of the shoe can have the smallest 

clearance.  The resulting minimum foot clearance for each subject and each variable is provided 

in Table 21.  Results for subjects 1 through 4 only have the toe tip marker available for 

comparison due to the limited marker set used during the pilot study (Subject 2 toe tip marker 

had visibility issues during data collection).  Appendix C shows all forefoot position results and 

inferior heel results for stair ascent in order to understand foot placement for each subject. 

 

Table 21. Average minimum resultant, horizontal, and vertical clearances (standard deviation) 
for the forefoot positions of the sound and prosthetic feet during stair ascent.  The forefoot 
position with the smallest average clearance is presented.  Horizontal clearance values are 

negative because the foot has not passed over the step edge. 
 
 

Stair Ascent Minimum Foot Clearance Measures and Associated Forefoot Position 

Subject 
Resultant Clearance (cm) Horizontal Clearance (cm) Vertical Clearance (cm) 

Sound Limb Prosthetic 
Limb Sound Limb Prosthetic 

Limb Sound Limb Prosthetic 
Limb 

1 6.46 (2.14) 
Toe Tip 

5.92 (1.31) 
Toe Tip 

-9.34 (7.08) 
Toe Tip 

-9.32 (5.30) 
Toe Tip 

8.51 (0.68) 
Toe Tip 

7.07 (0.38) 
Toe Tip 

2 N/A 3.99 (1.43) 
Toe Tip N/A -5.52 (2.66) 

Toe Tip N/A 5.12 (0.65) 
Toe Tip 

3 5.06 (2.15) 
Toe Tip 

4.77 (0.27) 
Toe Tip 

-8.90 (8.57) 
Toe Tip 

-9.68 (1.96) 
Toe Tip 

6.60 (1.93) 
Toe Tip 

4.83 (0.30) 
Toe Tip 

4 4.31 (0.96) 
Toe Tip 

6.28 (0.59) 
Toe Tip 

-6.47 (4.02) 
Toe Tip 

-12.70 (5.64) 
Toe Tip 

5.38 (0.87) 
Toe Tip 

6.34 (0.54) 
Toe Tip 

5 2.55 (0.89) 
Toe Tip 

4.35 (1.42) 
Break 

Forefoot 

-3.94 (1.87) 
Toe Tip 

-11.30 (3.76) 
Toe Tip 

4.39 (1.43) 
Toe Tip 

4.41 (1.30) 
Break 

Forefoot 

6 
3.00 (0.62) 

Front 
Forefoot 

0.71 (0.29) 
Toe Tip 

-4.71 (1.30) 
Toe Tip 

-0.75 (0.31) 
Toe Tip 

3.63 (0.70) 
Front 

Forefoot 

3.54 (2.03) 
Front 

Forefoot 
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For the pilot study subjects, subjects 3 and 4 clearly had a larger horizontal clearance 

with the prosthetic limb while subject 1 had a horizontal clearance nearly identical between 

sides.  The resultant clearance difference between the sound and prosthetic feet for subjects 1 and 

3 was within 1 cm, with the sound limb having a larger clearance.  Similarly, the vertical 

clearance was slightly larger with the sound foot for these two subjects.  Subject 4 had larger 

resultant and vertical minimum clearances with the prosthetic foot. 

A more thorough comparison was made for subjects 5 and 6 due to the custom forefoot 

marker set.  Subject 5 had a larger and more variable horizontal clearance with the prosthetic 

foot compared to the sound foot.  Since this subject approached each step with a relatively flat 

foot angle, the break forefoot marker on the prosthetic foot had the smallest clearance with 

respect to step edge for both the resultant and vertical clearances.  For the sound limb, the toe tip 

had the smallest resultant and vertical clearances.  Despite the differences in location along the 

forefoot for each foot, the resulting values show the resultant and vertical clearances were larger 

with the prosthetic limb compared to the sound limb.  The forefoot trajectories during ascent for 

subject 5 are shown in Figures 37-38.  As these figures show, the prosthetic foot approached the 

step at a flatter angle than the sound foot, resulting in the break forefoot position and the toe tip 

position, respectively, posing the biggest risk of tripping on the step edge. 
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Figure 37. Subject 5 forefoot marker trajectories for the prosthetic limb during stair ascent. 
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Figure 38. Subject 5 forefoot marker trajectories for the sound limb during stair ascent. 
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Subject 6 utilized a “sliding” technique with the prosthetic foot, where the toe tip was slid 

up the step riser (Figures 39-40).  This resulted in the prosthetic foot toe tip having the smallest 

resultant clearance of any forefoot marker, with a value of 0.71 cm.  In comparison, the sound 

foot resultant clearance occurred at the front forefoot position at an average of 3.00 cm from the 

step edge.  The minimum vertical clearance was similar between feet, with the sound limb side 

having a value 0.09 cm larger than the prosthetic limb side.  Both feet had the front forefoot 

position yield the minimum vertical clearance.  For both feet, subject 6’s biggest risk of tripping 

on the step edge was with respect to the toe tip or front forefoot positions on the sole. 
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Figure 39. Subject 6 forefoot marker trajectories for the prosthetic limb during stair ascent.  A 
sliding technique was used to progress the foot up the step, where the toe tip slid up the riser. 
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Figure 40. Subject 6 forefoot marker trajectories for the sound limb during stair ascent. 
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3.3.3 Stair Descent 

The inferior heel position was used to determine the minimum clearance distances during stair 

descent; therefore, the minimum clearance results presented in Table 22 only include subjects 5 

and 6.  Numerical results for subjects 1 through 4 cannot be provided due to the modified marker 

set used during the pilot study that did not include an inferior heel marker.  The superior heel 

marker was not used as a substitute because this position on the heel is not likely to cause a trip 

during stair descent.  Results for the forefoot markers during stair descent for each subject are 

provided in Appendix C to aid in understanding foot movement and placement on a step during 

descent. 

 

Table 22. Average inferior heel clearance (standard deviation) for the sound and prosthetic feet 
during stair descent. 

 
 

Stair Descent Minimum Foot Clearance Measures for the Inferior Heel Position 

Subject 
Resultant Clearance (cm) Horizontal Clearance (cm) Vertical Clearance (cm) 

Sound 
Limb 

Prosthetic 
Limb Sound Limb Prosthetic 

Limb Sound Limb Prosthetic 
Limb 

5 3.73 (0.78) 3.85 (0.67) 5.94 (1.37) 11.35 (2.32) 5.31 (2.08) 4.09 (0.83) 

6 5.12 (0.61) 4.12 (0.96) 7.52 (1.02) 12.03 (3.38) 5.93 (0.77) 4.19 (0.97) 

 

3.3.4 Responses to Stumbling 

A description of the outcome for each stumble perturbation trial is provided in Table 23.  A 

stumble perturbation for the prosthetic limb was successfully induced near midswing for three of 

the six subjects.  Of these, subjects 2 and 4 demonstrated an elevating strategy while subject 5 
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used a lowering strategy.  Subjects 2 and 4 had similar recovery durations, 0.58 seconds and 0.56 

seconds, respectively.  Subject 5 had a recovery time of 1.47 seconds, and after the subject 

stepped over the obstacle with the prosthetic limb a fall occurred that required harness and cane 

support for regaining balance.  The recovery strategy and recovery duration for subjects 3 and 6 

are also reported in Table 17; further information regarding the stumbling response for these two 

subjects is presented in Appendix D.  Since the obstacle piece became dislodged from the 

stumbling device upon foot-obstacle contact for subject 3, the recovery strategy is reported as 

“N/A” but the recovery duration is still evaluated. 

 

Table 23. Outcome for all stumble perturbation trials and the associated recovery strategy and 
recovery duration. 

 
 

Subject Knee 
Type Trial Outcome Recovery 

Strategy 
Recovery 

Duration (sec) 
1 NMPK Missed obstacle N/A N/A 

2 MPK Prosthetic limb 
obstructed Elevating 0.58 

3 MPK 
Dislodged obstacle, 

stepped on with 
sound limb 

N/A 0.23 

4 MPK Prosthetic limb 
obstructed Elevating 0.56 

5 NMPK Prosthetic limb 
obstructed Lowering 1.47 

6 MPK Sound limb 
obstructed Elevating 0.63 

 
 
 
The stumble recovery measures and corresponding level surface walking results for 

subjects 2, 4, and 5 are presented in Tables 24-26 and Figures 41-49.  Similar results for subjects 

3 and 6 are presented in Appendix D.  Unperturbed level surface walking trials for all subjects, 
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except subject 1, yielded a range of trunk deviation in the sagittal plane between 11.86 degrees 

and 39.14 degrees with respect to vertical.  In the frontal plane, the trunk angle ranged from 9.68 

degrees to the left of vertical to 11.48 degrees to the right of vertical.  The angular velocity 

during unperturbed level surface walking ranged from 12.44 deg/s to 21.47 deg/s. 

 

Table 24. Average maximum and minimum trunk angles and average angular velocity while 
walking unperturbed over a level surface.  Negative frontal plane trunk angles signify trunk tilt to 

the left of vertical. 
 
 
  Sagittal Plane (deg) Frontal Plane (deg) Angular Velocity (deg/s) 

Subject Average 
Max 

Average 
Min 

Average 
Max 

Average 
Min Average 

2 28.33 20.46 2.75 -1.86 12.44 
4 29.11 23.46 11.48 4.48 15.06 
5 31.13 18.30 3.14 -9.68 21.21 
 
 
 

Table 25. Trunk angles in the sagittal and frontal planes at foot-obstacle contact, and the 
maximum and minimum trunk angles occurring during the stumble recovery duration.  Negative 

frontal plane trunk angles signify trunk tilt to the left of vertical. 
 
 

  Sagittal Plane (deg) Frontal Plane (deg) 

Subject At 
Contact 

Recovery 
Max 

Recovery 
Min 

At 
Contact 

Recovery 
Max 

Recovery 
Min 

2 30.68 35.51 28.79 -1.31 1.09 -1.67 
4 28.40 32.18 24.84 -0.11 4.27 -0.11 
5 23.51 58.17 21.82 -5.30 11.31 -5.60 
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Table 26. Trunk angular velocity at foot-obstacle contact and the maximum and minimum trunk 
angular velocity occurring during the stumble recovery duration. 

 
 

  Angular Velocity (deg/s) 

Subject At 
Contact 

Recovery 
Max 

Recovery 
Min 

2 11.50 38.50 3.88 
4 7.38 40.52 0.70 
5 18.10 175.10 4.63 

 
 
 
Subject 2 used a cane in each hand while walking to help support body weight and 

increase stability during stance.  Obstruction of the prosthetic foot during swing produced 

relatively small deviations in the trunk angle in the sagittal and frontal planes when comparing 

the maximum and minimum angles during the recovery duration to the angles at initial foot-

obstacle contact.  During recovery, trunk flexion in the sagittal plane increased approximately 5 

degrees following contact with the obstacle.  Both the maximum and minimum trunk flexion 

angles in the sagittal plane were greater than the average baseline walking maximum trunk 

flexion by 7.18 degrees and 0.46 degrees, respectively (Figure 41).  The frontal plane trunk angle 

had a slight tilt to the left as the prosthetic limb (right limb) was elevated over the obstacle, with 

a shift back toward the right side occurring so gait could continue (Figure 42).  Angular velocity 

at the instant of contact with the obstacle was within 1 deg/s of the average level surface walking 

angular velocity (Figure 43).  During recovery, the angular velocity decreased immediately 

following contact with the obstacle to 3.88 deg/s before rapidly increasing to 38.50 deg/s.  The 

angular velocity decreased again just prior to heel-strike of the first recovered step. 
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Figure 41. Sagittal plane trunk angle during the stumble perturbation trial and during a baseline 
walking trial for subject 2.  Initial contact with the obstacle and heel-strike of the prosthetic limb 
recovery step are identified by vertical lines.  The sagittal plane trunk angle at initial contact is 

represented throughout the recovery phase by a dashed line. 
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Figure 42. Frontal plane trunk angle during the stumble perturbation trial and during a baseline 
walking trial for subject 2.  Initial foot-obstacle contact and heel-strike of the prosthetic limb 
recovery step are identified by vertical lines.  The trunk angle at initial contact is represented 

throughout the recovery duration by a dashed line. 
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Figure 43. Trunk angular velocity during the stumble perturbation trial and during a baseline 
walking trial for subject 2.  Initial foot-obstacle contact and heel-strike of the prosthetic limb 

recovery step are identified by vertical lines.  The angular velocity at initial contact is 
represented throughout the recovery duration by a dashed line. 
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The recovery response for subject 4 was minimal, as the sound limb provided 

stabilization and the plantar flexors assisted in elevating the body and flexed prosthetic limb over 

the obstacle.  Immediately following contact with the obstacle an increase of approximately        

4 degrees in trunk angle was seen in both the sagittal and frontal planes (Figures 44-45).  There 

was a 3.07 degree increase in sagittal plane maximum flexion during the stumble recovery 

duration compared to the level surface walking maximum average.  The frontal plane angle 

during the recovery was trunk tilt to the right side.  These angular changes resulted in a        

33.14 deg/s trunk angular velocity increase during the recovery (Figure 46).  A minimum angular 

velocity of 0.70 deg/s was reached approximately halfway through the recovery period, 

corresponding to the point at which the body center of mass was at its highest point over the 

obstacle. 

 

113 



0 1 2 3 4 5

24

28

32

36

Time (s)

A
ng

le
 (d

eg
), 

Fl
ex

io
n 

(+
)

Subject 4 Sagittal Plane Trunk Angle

 

 

BW
Stumble

 
 
 

Figure 44. Sagittal plane trunk angle during the stumble perturbation trial and during a baseline 
walking trial for subject 4.  Initial contact with the obstacle and heel-strike of the first recovered 

step are identified by vertical lines.  The sagittal plane trunk angle at initial contact is represented 
throughout the recovery phase by a dashed line. 
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Figure 45. Frontal plane trunk angle during the stumble perturbation trial for subject 4.  Initial 
foot-obstacle contact and heel-strike of the prosthetic limb recovery step are identified by 

vertical lines.  The trunk angle at initial contact is represented throughout the recovery duration 
by a dashed line. 
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Figure 46. Trunk angular velocity during the stumble perturbation trial for subject 4.  Initial 
foot-obstacle contact and heel-strike of the prosthetic limb recovery step are identified by 

vertical lines.  The angular velocity at initial contact is represented throughout the recovery 
duration by a dashed line. 

 
 
 
The stumble recovery response for subject 5 reached a maximum trunk flexion angle of 

58.17 degrees in the sagittal plane as the obstructed prosthetic limb was lowered and the sound 

limb took a small supporting step forward (Figure 47).  The step with the sound limb helped to 

reduce the trunk’s forward momentum.  Initially, contact with the obstacle led to a brief and 

small decrease in trunk flexion in response to obstacle contact.  The frontal plane trunk angle 

response showed two periods of increased trunk tilt to the right: one upon lowering of the 

obstructed foot and one prior to the prosthetic limb recovery step heel-strike (Figure 48).  At 

both of these times, the frontal plane trunk angle increased to approximately 11 degrees right of 

vertical.  The trunk angular velocity reached a maximum 175.10 deg/s during the stumble 
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recovery, coinciding with the small step forward with the sound limb (Figure 49).  Upon heel-

strike of the sound limb the trunk angle in the sagittal plane had reached its maximum.  

Following the recovery duration, subject 5 experienced another sharp increase in trunk deviation 

and trunk angular velocity.  A loss of balance occurred after the subject stepped over the obstacle 

with the prosthetic limb in full extension and made heel contact.  The loss of balance did result in 

an unknown amount of harness support to keep the subject from falling forward uncontrollably.  
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Figure 47. Sagittal plane trunk angle during the stumble perturbation trial and during a baseline 
walking trial for subject 5.  Initial contact with the obstacle and heel-strike of the prosthetic limb 
recovery step are identified by vertical lines.  The sagittal plane trunk angle at initial contact is 

represented throughout the recovery duration by a dashed line. 
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Figure 48. Frontal plane trunk angle during the stumble perturbation trial and during a baseline 
walking trial for subject 5.  Initial contact with the obstacle and heel-strike of the prosthetic limb 

recovery step are identified by vertical lines.  The frontal plane trunk angle at initial contact is 
represented throughout the recovery duration by a dashed line. 

118 



0 1 2 3 4 5 6 7 8 90

50

100

150

200

250

Time (s)

An
gu

la
r V

el
oc

ity
 (d

eg
/s

)
Subject 5 Trunk Angular Velocity

 

 

BW
Stumble

 
 
 

Figure 49. Trunk angular velocity during the stumble perturbation trial and during a baseline 
walking trial for subject 5.  Initial contact with the obstacle and heel-strike of the prosthetic limb 

recovery step are identified by vertical lines.  The angular velocity at initial contact is 
represented throughout the recovery duration by a dashed line. 

3.4 DISCUSSION 

3.4.1 Minimum Foot Clearance during Level Surface Walking 

Four of six subjects had smaller minimum foot clearance during swing with the prosthetic limb 

in comparison to the sound limb (subjects 2, 3, 4, and 5).  Among all subjects and the swing 

phases where MFC was clearly identified, the largest MFC value for the prosthetic limb was 7.95 

cm at the toe tip position and the largest MFC value for the sound limb was 4.84 cm at the toe tip 
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position.  The prosthetic limb MFC was generally more variable than the sound limb MFC.  Five 

of the subjects had the sound limb MFC occur during midswing and four subjects had the 

prosthetic limb MFC occur during initial swing.  

Comparing just the prosthetic limb and sound limb swing phases for all subjects revealed 

variability within the foot progression angle such that different points along the sole of the shoe 

could lead to a trip incident.  Therefore, the toe tip marker should not be the only forefoot 

position considered when assessing MFC while walking over a level surface.  The methodology 

developed in this thesis allows for clear identification of four points along the sole of the shoe 

such that differences in shoe geometry between subjects will not skew the results.  For example, 

a tennis shoe with a raised toe tip height will theoretically shift the position for the smallest MFC 

value more posterior on the shoe sole, whereas a shoe with a flat sole will have a greater chance 

for MFC to occur at the toe tip position.  Furthermore, this method allowed for various prosthetic 

foot kinematic patterns to be analyzed, as a lack of ankle dorsiflexion and knee flexion will 

impact the motion of the foot. 

Additionally, this methodology provided a means to assess foot clearance during the 

swing phase when a clear local minimum point identifying the MFC position was not present in a 

forefoot marker trajectory.  The risk of tripping by catching a point along the sole of the forefoot 

on the ground is highest during the initial swing and midswing sub-phases, while the potential 

for catching the heel is highest during terminal swing.  Looking at the transition points between 

the three sub-phases of swing allowed a degree of comparison to be made between the prosthetic 

and sound limb when MFC could not be identified.  Based on the findings presented in this 

thesis, the prosthetic limb clearance at 67.5% of the swing phase was typically higher than the 

sound limb by a few centimeters.  This infers that the lack of proprioception in the prosthetic 
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limb ankle and knee joints impacts the gait biomechanics of the prosthetic limb.  The prosthetic 

limb achieves knee extension earlier during the swing phase than the sound limb does (see 

Appendix B).  Since amputees want to make sure their prosthetic knee is set in extension before 

they place weight on it, this adaptation allows them to ensure the knee is properly set prior to 

heel-strike.  For example, subject 1 presented in this thesis visually had a more pronounced 

swing-through of the prosthetic shank during terminal swing than other subjects did.  To produce 

knee extension for heel-strike, the prosthetic shank appeared to move through the swing phase 

with a higher velocity than those subjects using a MPK joint.  Since subject 1 had a NMPK joint 

and needed to physically keep the knee in extension during stance, there was a greater need to 

ensure the knee reached extension prior to heel-strike.  However, additional results are need for 

subjects using a NMPK joint to clarify the relationship between the lack of proprioception and its 

impact on terminal swing foot clearance and knee extension. 

The spatial-temporal results during level surface walking for the subjects presented in this 

thesis (see Appendix B) also support the MFC results.  Subjects 2, 5, and 6 had the most 

temporal variability in when MFC occurred during the swing phase.  These three subjects had the 

slowest gait speeds of all subjects (under 0.57 m/s) and the most asymmetric step length between 

the sound and prosthetic limb in comparison to all subjects.  Despite these subjects having a 

longer step length with the prosthetic limb, their MFC values occurred during initial swing.  

These results may indicate a desire to quickly move the prosthetic limb though swing, resulting 

in MFC during initial swing, and also the need to take a longer step in order to unsure full knee 

extension is achieved before heel-strike.  Subject 2 had the most asymmetric stride duration 

between the limbs despite the use of a cane in each hand; stride duration variability has been 

associated with an increase in age and correlated with poor balance in older adults. 

121 



The degree of knee flexion during the swing phase also indicated an impact on MFC 

during level surface walking (see Appendix B).  The prosthetic knee angle for subjects 2 and 3 

was less than the angle seen in the sound limb, and these two subjects had lower MFC values 

with the prosthetic limb in comparison to the sound limb.  For subject 1 the prosthetic knee angle 

was greater than the sound knee angle and the resulting MFC values were higher for the 

prosthetic limb.  The remaining subjects either had conflicting results for MFC with respect to 

knee angle or comparisons could not be made due to the inability to identify MFC.  Further 

analysis is needed to determine the overall degree to which knee angle during swing impacts 

MFC in unilateral transfemoral amputees.  Since these individuals adopt various gait patterns, 

results may show multiple trends between knee angle and MFC as was seen for the subjects 

presented in this thesis. 

Based on the Americans with Disabilities Act, a trip hazard is identified by any vertical 

change in level over 0.635 cm (equivalent to 0.25 inch) [87].  For vertical height changes 

between 0.635 cm and 1.27 cm (0.50 inch), a beveled slope is required at the transition; however, 

door thresholds are allowed a 1.27 cm maximum height.  Based on these guidelines for public 

facilities, the risk of tripping is high if an individual’s minimum foot clearance is unable to safely 

clear 1.27 cm. 

Among the subjects analyzed in this thesis, subjects 3, 5, and 6 are at the greatest risk of 

tripping during the swing phase of the prosthetic limb.  The remaining subjects have prosthetic 

limb MFC values above 1.27 cm, and most subjects had a sound limb clearance greater than the 

prosthetic limb.  However, all subjects are at risk of tripping during initial swing while the foot is 

still low to the ground.  In addition, able-bodied older adults have a MFC likely to result in a trip 

based on the maximum vertical height change of 1.27 cm (previous research has found MFC for 
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older adults to be 1.11 cm ± 0.53 cm [19]).  Older adults who have a fear of falling or history of 

falling have an increased MFC (2.02 cm ± 0.51 cm [20]), but while their risk of tripping over a 

door threshold is decreased, a larger vertical change in surface level could result a trip. 

3.4.2 Stair Ambulation Minimum Foot Clearance 

During stair ascent, the prosthetic limb horizontal foot clearance was larger than the resultant 

foot clearance for all subjects.  The methods employed for stair ascent varied by individual, but 

all subjects did ascend the steps with a single-step progression and moved their sound limb up to 

the next step first.  This method allowed the subjects to use their sound limb for support as the 

prosthetic limb was progressed up the step.  All subjects kept their prosthetic knee joint in 

extension during ascent, but subjects 1, 3, 4, and 5 clearly displayed circumduction to progress 

the prosthetic limb over the step edge.  These subjects also displayed a larger prosthetic foot 

horizontal clearance for the toe tip than the other subjects, likely a result from circumduction of 

the prosthetic limb. 

Subjects 1, 3, and 6 had smaller vertical clearance and resultant clearance values for the 

prosthetic foot than the sound foot.  These results indicate that a lack proprioception in the 

prosthetic limb can lead to decreased foot clearance during stair ascent.  Subject 6 utilized a 

sliding technique with the prosthetic foot to ascend the steps, which could be seen as a method to 

help obtain some proprioceptive feedback during ascent.  However, if the vertical clearance after 

the step edge is reached is not large enough for the break forefoot position to clear the edge then 

there is still an increased risk of tripping on the prosthetic limb side during ascent. 

 Since the inferior heel marker was not available for analysis of the pilot study subjects 

during stair descent, comparisons were only made for subjects 5 and 6.  The results for stair 
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descent show trends of a larger inferior heel horizontal clearance with the prosthetic foot and a 

smaller inferior heel vertical clearance with the prosthetic foot.  These results indicate the lack of 

ankle plantar flexion in the prosthetic limb affects the descent motion.  Since the prosthetic ankle 

cannot plantar flex to push off the step, the vertical clearance is low to the step tread.  A larger 

horizontal clearance is necessary to ensure clearance over the step edge is obtained before 

vertical descent begins. 

All subjects, except subject 2, descended the stairs by moving the prosthetic limb down to 

the next step first.  Subject 4 was the only subject to attempt a step-over-step descent method; 

however, a brief disruption in balance resulted in single-step progression during descent.  

Progression of the prosthetic limb down the step first allows the prosthetic knee to be kept in 

extension, since the sound limb is capable of flexing at the ankle and knee joints to obtain 

clearance over the step.  Sound limb proprioception also aids in ensuring successful clearance of 

the sound foot over the step edge.  Subjects 3, 5, and 6 utilized a sliding technique with the 

prosthetic limb during vertical descent of the foot (Figure 50) in order gain some sense of 

proprioception. 
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Figure 50. Example of the sliding technique used by subjects 3, 5, and 6 during stair descent 
with the prosthetic limb.  The heel of the shoe was slid down the step riser to reach the step tread. 

 

3.4.3 Responses to Stumbling 

Results from the stumbling perturbation trials indicate the ability to control trunk motion during 

the recovery period is affected by the resulting motion of the prosthetic knee joint.  The subjects 

who utilized an elevating strategy had smaller trunk deviation in the sagittal and frontal planes, 

reduced angular velocity, and smaller recovery duration because the knee joint flexed such that 

additional hip flexion and body elevation were sufficient to allow clearance of the prosthetic foot 

over the obstacle.  The subject who utilized a lowering strategy in response to the stumbling 

perturbation maintained the prosthetic knee in full extension when progressing the prosthetic foot 

over the obstacle, which led to substantial trunk motion during recovery and an uncontrollable 

fall following the prosthetic limb recovery step. 
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Due to the lack of subjects having undergone the stumble perturbation at this time, it is 

unclear whether the elevating strategy is preferred by older adult unilateral transfemoral 

amputees.  Able-bodied older adults tend to use the lowering strategy to recover following a 

stumble, as was seen in subject 5, but the lack of proprioception in the ankle and knee joints and 

the type of prosthetic knee joint used may lead to an elevating strategy, as was seen in subjects 2 

and 4.  However, since subjects 2 and 4 were younger than subject 5, physical ability to maintain 

control of the body’s momentum may have led to the successful utilization this recovery method.  

Subject 5 also kept the NMPK joint in extension during swing, and the flexion resistance set 

within the knee was high enough that passive flexion of the knee joint would likely have not 

occurred upon foot-obstacle contact. 

The stumbling recovery measures presented in this thesis allow for initial comparisons to 

be made to previous research regarding induced trips among able-bodied older adults.  Previous 

research has found that a faster response time following the foot-obstacle contact will promote a 

better recovery response and reduce the risk of falling.  In this thesis, this was seen in the two 

subjects who utilized an elevating strategy, as they had a sufficient response time following 

obstacle contact for successful recovery to occur.  Further, previous research has found average 

trunk flexion in the sagittal plane at recovery step heel-strike to be approximately 35 degrees for 

older adults who did not have a history of falling and who were able to successfully recover 

following the perturbation.  Across the three subjects who experienced a stumbling perturbation 

in this thesis, the average trunk flexion was 25.33 deg ± 3.10 deg in the sagittal plane at recovery 

step heel-strike.  This smaller degree of trunk flexion in comparison to able-bodied older adults 

may be due to amputee gait adaptations and the need to obtain some degree of knee extension 

prior to heel-strike in order to prevent knee collapse. 
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4.0  GEOMETRIC MODELING OF THE PROSTHETIC LIMB 

4.1 METHODS 

4.1.1 Experimental Measurements 

A geometric model of the prosthetic limb foot, shank, and thigh segments was developed using 

measurements of the prosthetic limb for subject 5.  The measurements needed to create the 

geometric model were obtained using a standard tape measure and a small anthropometer.  

Measurements were taken during laboratory visit 3 when the study prosthetist disassembled the 

prosthetic limb into the three respective segments.  The foot segment contained the prosthetic 

foot inside of the subject’s shoe, the shank segment consisted of the prosthetic knee with the 

pylon and pylon adapter attached, and the thigh segment consisted of the residual limb and 

socket with any distal socket adapters attached.  Table 27 lists the measurements taken for each 

segment with a short description of each measurement.  These measurements were used to create 

the geometric model of the prosthetic limb, described in detail in Section 4.1.2.  In addition to 

taking these measurements, the foot, shank, and socket were weighed on a force plate to 

determine their mass and placed on a reaction board to determine their center of mass (COM) 

location.  These direct measurements for mass and COM were used to verify the accuracy of the 

geometric model in calculating the inertial properties of the prosthetic limb. 
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Table 27. Measurements of the foot, shank, and thigh segments needed for the geometric model 
of the prosthetic limb. 

 
 

Foot Segment 
Mass Mass of the entire foot segment. 

Medial-Lateral 
Distance 

Distance between the medial and lateral edges of the shoe, 
measured every 3 cm along the length of the shoe, starting at the 
heel (0 cm) with last measurement at the toe tip. 

Superior-Inferior 
Distance 

Distance between the inferior edge of the shoe sole and the 
superior edge of the shoe, measured every 3 cm along the length 
of the shoe, starting at the heel (0 cm) with last measurement at 
the toe tip. 

Shank Segment 
Mass Mass of the entire shank segment. 

Knee Length Length of the knee joint measured from the proximal to distal 
edges of the housing. 

Knee Medial-Lateral 
Distance 

Distance between the medial and lateral edges of the housing, 
measured at the proximal edge and at the distal edge of the knee 
joint. 

Knee Anterior-
Posterior 
Distance 

Distance between the anterior and posterior edges of the housing, 
measured at the proximal edge and distal edge of the knee joint. 

Pylon Length Length of the pylon measured from the proximal to distal points 
of the pylon. 

Pylon Material The type of material the pylon is made of (e.g. aluminum, 
titanium, carbon fiber). 

Pylon Adapter Length The length of the adapter attached to the distal end of the pylon. 
Pylon Adapter Outer 

Diameter 
If applicable, measure the outer diameter of the adapter attached 
to the distal end of the pylon. 

Adapter Material 
The type of material the adapter is made of (e.g. aluminum, 
titanium, stainless steel), or record the brand/model number if 
engraved on the adapter. 

Thigh Segment 

Socket Material The type of material the socket is made of (e.g. Vivak/CoPoly, 
carbon fiber). 

Socket Thickness Thickness of the socket measured on the lateral side near the 
proximal end of the socket. 

Socket Thigh Flap 
Length 

Length of the thigh flap section measured on the lateral side of 
the socket. 

Socket Medial-Lateral 
Distance 

Distance between the medial and lateral edges of the socket, 
measured every 3 cm along the length of the socket starting at the 
distal point of the thigh flap and ending at the point where the 
socket begins to curve to its distal point. 
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Table 27 (continued). 
 
 

Socket Anterior-Posterior 
Distance 

Distance between the anterior and posterior edges of the 
socket, measured every 3 cm along the length of the socket 
starting at the distal point of the thigh flap and ending at the 
point where the socket begins to curve to its distal point. 

Socket Distal Section 
Length 

Length of the distal section of the socket, taken as a straight 
measurement; starting at the point of the last anterior-posterior 
distance measurement and ending at the distal point of the 
socket. 

Adapter(s) Length Length of the adapter(s) attached to the distal end of the 
socket. 

Adapter(s) Outer 
Diameter 

Measurement of the outer diameter of the adapter(s) attached 
to the distal end of the socket.  If adapter is square in shape, 
measure the medial-lateral and the anterior-posterior distances. 

Adapter(s) Material 
Record the type of material the adapter(s) is made of (e.g. 
aluminum, titanium, stainless steel) or record the brand/model 
if engraved on the adapter(s). 

 
 

4.1.2 Geometric Modeling of the Prosthetic Limb 

The foot segment was modeled using a series of stadium solids along the length of the shoe as 

shown in Figure 51.  Based on the distance between each measurement along the length of the 

foot, the height of each stadium solid was 3 cm except for the most distal stadium solid, which 

depended on the distance between the two distal measurements.  At each measurement position 

along the length of the foot the medial-lateral and anterior-posterior distances were used to 

calculate the volume, center of mass location, and moment of inertia of each stadium solid.  

Calculation of these inertial properties is performed following the mathematical model presented 

by Yeadon [66]; specific equations are presented in Appendix E.  The foot segment was assumed 

to be homogeneous with uniform density throughout the segment.  However, since the density of 
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the segment could not be determined using known material specifications, density was calculated 

using the measured mass of the foot segment and the calculated volume of the foot segment. 

 

 
 
 

Figure 51. (A) Three-dimensional model of the foot segment using a series of stadium solids.  
(B) Cross-section of a stadium solid, defined as a rectangle with length 2t and width 2r, adjoined 
by a semi-circle at each edge of the rectangle.  The 2r distance is the measured superior-inferior 

distance.  The measured medial-lateral distance is adjusted to yield the 2t distance. 
 
 
 
For the shank segment, the knee joint was modeled as a rectangular prism and the pylon 

and pylon adapter were modeled as hollow circular cylinders as shown in Figure 52.  A 

simplification for the knee joint geometry was made due to the complexity of the actual 

prosthesis. Additionally, the knee joint was assumed to homogeneous with uniform density 

throughout the rectangular prism.  The pylon and pylon adapter geometry is near identical to the 

actual shape.  Calculation of the inertial properties for these individual pieces of the shank 

segment were performed following the equations given in the Handbook of Equations for Mass 

and Area Properties of Various Geometrical Shapes [113]; the specific equations are given in 

Appendix E.  The density of the pylon adapter was 4510 kg/m3 for commercially pure ASTM 

Grade 1 titanium and the density of the pylon was 2700 kg/m3 for aluminum used in orthopaedic 

A B 
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applications.  The density of the knee joint was found using the calculated knee joint volume and 

measured mass of the shank segment, adjusted for the mass of the pylon and pylon adapter. 

 

 
 
 

Figure 52. Geometric model of the shank segment, modeled as a rectangular prism and two 
hollow cylinders. 

 
 
 
The thigh segment consisted of the residual limb and the socket, including any adapters at 

the distal end of the socket.  The residual limb and socket were modeled as the same series of 

geometric shapes (Figure 53).  The residual limb was assumed to fill the entire inner volume of 

the socket.  The residual limb geometry was determined by adjusting for socket thickness, which 

was assumed to be constant throughout the socket.  The thigh segment geometry contained a 

right-angled wedge shape at the proximal portion of the socket to model the thigh flap section of 

the segment.  This was followed by a series of elliptical cylinders, with the number of cylinders 

dependent upon the number of medial-lateral and anterior-posterior measurements taken along 

the length of the socket.  The distal portion of the socket was modeled as an elliptical paraboloid.  

Adapters at the distal end of the socket were modeled as rectangular prisms and/or hollow 

circular cylinders as necessary.  The inertial properties for these individual sections of the thigh 

segment were found using the equations given in the Handbook of Equations for Mass and Area 
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Properties of Various Geometrical Shapes [113]; the specific equations are provided in 

Appendix E.  The socket material was plastic and assumed to be Co-Polyester (trade name 

VIVAK®) having a density of 2700 kg/m3.  A residual limb density of 1100 kg/m3 was used 

based on previous literature for body segment density [73].  The residual limb density was 

assumed to be uniform throughout the segment. 

 

           

 
 

Figure 53. (A) Geometric model of the thigh segment.  Both the socket and residual limb are 
modeled as a series of geometric shapes: proximal right-angled wedge (green), intermediate 
elliptical cylinders (white), distal elliptical paraboloid (blue), and socket adapter (red).  (B) 

Cross-section of an elliptical cylinder. 

4.2 RESULTS 

The geometric model results for mass, center of mass location from the proximal point, and mass 

moment of inertia about the proximal point for the foot, shank, and thigh segments of the 

prosthetic limb are reported in Table 28.  For comparison, the direct measurements recorded 

during laboratory visit 3 for the foot and shank segment mass and COM location are included in 

Table 28.  Comparison between the socket inertial properties found using the geometric model 

A B 
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and the direct measurements collected during visit 3 are provided in Table 29.  The mass of the 

foot and shank segments found using the geometric model are the same as the direct 

measurements because the measured mass values were used to calculate density for these 

segments.  The mass difference between the geometric model estimate for the socket and the 

direct measurement of the socket was 0.235 kg. 

 

Table 28. The prosthetic limb segment inertial properties found using the geometric modeling 
approach along with the direct measurements taken during laboratory visit 3. 

 
 

Inertial Property 
Foot 

Segment 
(Model) 

Foot 
Segment 

(Measured) 

Shank 
Segment 
(Model) 

Shank 
Segment 

(Measured) 

Thigh 
Segment 
(Model) 

Mass (kg) 1.556 1.556 1.183 1.183 4.860 
COM location from 

proximal (m) 0.130 0.130 0.116 0.145 0.201 

Moment of Inertia 
from proximal (kg/m2) 0.0283 N/A 0.0200 N/A 0.1716 

 
 
 

Table 29. Socket inertial properties for the geometric modeling approach and the direct 
measurements taken during laboratory visit 3. 

 
 

Socket Only Inertial Properties 

Inertial Property Socket Geometric 
Model 

Socket Direct 
Measurement 

Percent 
Difference 

Mass (kg) 1.542 1.307 16.50 
COM location from 

proximal (m) 0.201 0.265 27.47 

Moment of Inertia 
from proximal (kg/m2) 0.0785 N/A N/A 
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The geometric model for the foot segment identified a COM location the same as the 

direct measurement.  The shank COM location found using the geometric model underestimated 

the direct measurement by 0.029 m from the proximal point, yielding a 22.22 percent difference 

between the results.  The socket COM location was also underestimated using the geometric 

model in comparison to the direct measurement, resulting in a 27.47 percent difference.  The 

moment of inertia results using the geometric model found the shank segment has the smallest 

moment of inertia while the thigh segment has the largest, which was the expected result based 

on each segment’s mass value. 

4.3 DISCUSSION 

A geometric modeling approach for the prosthetic limb was able to successfully produce inertial 

properties for each limb segment given simplifying assumptions and the direct measurement of 

the foot and shank segment masses.  The shank segment had the smallest mass of the three 

segments because the prosthetic knee joint used in this analysis was a polycentric NMPK joint 

that does not contain a hydraulic or pneumatic cylinder.  The foot segment mass was heavier 

than the shank segment because the shoe modeled in this analysis was a work boot. 

For all segments, the density for each individual geometric shape was assumed to be 

uniform throughout.  In order for this to hold, the simplifying assumption of segment 

homogeneity was applied for the foot segment and prosthetic knee joint due to the assortment of 

materials within these geometries.  For example, the prosthetic foot contains the inner 

mechanical mechanism surrounded by a dense foam cover for aesthetic purpose, and then the 

prosthetic foot is placed inside of the shoe.  All of these materials have different densities, 
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therefore, the measured foot segment mass must be used along with its calculated volume in 

order to determine a uniform density value for the foot segment.  The same reasoning was 

applied for the prosthetic knee joint.  As a result, both the foot segment and shank segment mass 

calculated by the geometric model was identical to the measured mass. 

The mass of the thigh segment can only be verified based on comparison between the 

geometric model estimate for mass of the socket and its direct measurement.  The geometric 

model overestimates the mass of the socket by 16.50 percent, which could be attributed to the 

use of a right-angled wedge shape to model the proximal portion of the segment.  This geometric 

shape has a rectangular base and straight sides, thus an elliptical or circular shaped geometry 

would more closely resemble the true thigh flap appearance. 

The geometric model chosen for the shank segment resulted in the center of mass 

location being more proximal than the direct measurement.  This result is expected due to the 

geometric model calculation for center of mass relying solely on the length measurements for the 

segment’s individual pieces, whereas the direct measurement for center of mass took into 

consideration the physical mass distribution within the shank.  The prosthetic knee joint was 

modeled as a solid object even though it was not, thus leading to a heavier proximal portion in 

the shank segment.  Further analysis using the geometric modeling approach is needed in order 

to determine if a more appropriate geometric shape for the prosthetic knee joint can be found.  

For example, a rectangular prism is not identical to the geometry of the prosthetic knee joint; 

however, due to the complexity of the prosthetic knee joint design, this simplifying geometry 

assumption was made.  It may possible to model the prosthetic knee joint more in-depth by using 

the method of stadium solids, similar to that of foot segment, in order to capture the slight 

tapering nature of the prosthesis along its length. 
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The thigh segment inertial properties are directly affected by the assumption that the 

residual limb volume is the same as the inner volume of the socket.  Residual limb shrinkage is 

possible over time, which would result in the geometric model of the residual limb 

overestimating its true mass.  Due to the need for the socket to provide a secure fit for an 

individual, it is assumed this difference would not be large enough to significantly alter the 

inertial property results for the thigh segment. 

 Comparison of the geometric model results to previous research where the inertial 

properties of the prosthetic limb were determined cannot be made due to the lack of these studies 

reporting the measured values.  Only the work of Goldberg reported the measured results for the 

prosthetic limb segments in children [75].  However, comparing the geometric model outcomes 

for the foot, shank, and thigh segments to the measurements for these children, as well as to 

published work for able-bodied individuals, the calculated outcomes for mass and mass moment 

of inertia are within the correct order of magnitude [114].   

Overall, the developed geometric model of the prosthetic limb is a convenient method for 

determining the inertial properties of the limb segments when equipment for direct measurement 

of the mass, COM location and moment of inertia are not available.  This geometric model 

should be used with future subjects participating in the full research study in order to obtain 

sufficient results for addressing the current void in the literature regarding inertial properties of 

the prosthetic limb segments for adult unilateral transfemoral amputees. 

136 



5.0  CONCLUSIONS 

The methodology developed in this thesis for the investigation of minimum foot clearance during 

level surface walking and during stair ascent and descent is important for future biomechanical 

analysis of unilateral transfemoral amputee gait.  During level surface walking, the ability to 

analyze multiple points along the bottom of the shoe sole allowed MFC to be identified 

regardless of shoe geometry differences or variations in amputee gait, such as the foot-floor 

angle during the swing phase.  The use of multiple points along the shoe sole also allowed for a 

better spatial understanding of where on the foot the risk of floor contact during gait was the 

greatest.  Additionally, the developed marker set and associated analysis technique allowed for 

MFC to be identified temporally within the swing phase, or if no MFC point was identified based 

on variations in gait style, then the swing phase clearance of the prosthetic and sound feet were 

compared using distinct transition points in the gait cycle between initial swing and midswing, 

and midswing and terminal swing.  During stair ambulation, the developed methodology for 

MFC using a custom shoe marker set allowed for a comprehensive analysis of foot clearance and 

foot placement strategies among unilateral transfemoral amputees, regardless of shoe geometry 

or gait style.  Spatial analysis of the foot with respect to the step edge was possible using five 

clearance measures.  Together these measures provided insight into where along the shoe sole 

the risk catching the foot on the step edge may be the greatest. 
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Assessing the recovery period following an induced trip is important for understanding 

unilateral transfemoral amputee fall risk and how falls can be prevented.  The severity of the 

stumble perturbation outcome in terms of trunk kinematics and recovery duration may be related 

to the type of recovery strategy utilized.  Through further stumbling analysis in older adults with 

unilateral transfemoral amputation, information regarding successful recovery responses can be 

provided to physical rehabilitation programs for translation into practice methods.  For example, 

individual physical rehabilitation programs for older adult amputees should take into 

consideration not only a patient’s physical ability and use of any assistive device, but also the 

type of prosthetic knee joint that is being used.  Review of the elevating and lowering strategies 

should also be conducted in order to determine which method would be appropriate for the 

patient should a stumble occur while walking.  Educating patients during the physical 

rehabilitation period about recovery from stumbles or trips is a preventative measure that may 

help reduce the number of fall events in older adult unilateral transfemoral amputees. 

  The minimum foot clearance and stumble perturbation outcome measures developed in 

this thesis address a current void in unilateral transfemoral amputee research.  Among previous 

unilateral transfemoral amputee gait research, neither of these areas has been specifically 

examined for the older adult population.  While MFC and the recovery method used following a 

stumble with respect to prosthetic knee joint type have been briefly examined for young and 

middle-aged adult subjects, the outcomes from these studies cannot be directly translated to the 

older adult amputee population due to age differences, as has been shown in the able-bodied 

population.  Furthermore, prior work has yet to assess trunk kinematics during stumble recovery 

for older adult unilateral transfemoral amputees, despite this outcome measure being widely 

examined in the able-bodied older adult population.  Moving forward, research with unilateral 
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transfemoral amputees should focus on the older adult population, so knowledge regarding 

amputee gait will be enhanced and comparisons to able-bodied older adults can be made.  With 

proper understanding of unilateral transfemoral amputee gait in older adults, efforts can then be 

focused on reducing the fall risk in this population. 

 The geometric model of the prosthetic limb developed in this thesis was able to 

successful determine the inertial properties of the foot, shank, and thigh segments.  Despite the 

simplifying geometry and assumptions used in this modeling approach, the resulting 

measurements were comparable to direct measurements taken for the foot, shank, and socket 

segments.  Additional geometric modeling of the prosthetic limb will likely yield trends in the 

density of the foot segment and prosthetic knee joint, which will eliminate the need for measured 

mass in the geometric model calculations.  Specifically, for subjects who utilize a prosthetic knee 

joint that has already been analyzed, the density will already be known so direct measurement of 

the mass of the shank segment will be unnecessary.  This eliminates the need for the prosthetic 

limb to be taken apart, and the inertial properties can be determined based only on dimensional 

measurements.  Furthermore, a geometric modeling approach reduces the equipment, personnel, 

and time needed to determine the inertial properties of the prosthetic limb in a gait laboratory 

setting. 

While previous studies have used a direct measurement approach for determining the 

inertial properties of the prosthetic limb segments, the inertial property values found for these 

adult subjects has not been reported.  Standard anthropometric literature for able-bodied adults 

provides an easy method for determining segment inertial properties, but this resource is absent 

for adult unilateral transfemoral amputees.  Proper identification of the lower limb segment 

inertial properties is important for accurate lower limb joint moment analysis.  Using the 
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geometric modeling approach to determine prosthetic limb inertial properties will provide a 

simple and accurate way to obtain these values for joint moment calculations.  Through joint 

moment analysis, a better understanding of when knee collapse is likely to occur during the gait 

cycle is possible.  As a result, physical rehabilitation programs may be able to help older adult 

unilateral transfemoral amputees understand their risk for knee collapse more fully, thus leading 

to fewer falls over time. 

The major limitation in this thesis was the subject population analyzed.  Due to timing 

constraints only six subjects had completed the biomechanics laboratory session.  Four of the 

subjects were part of a pilot study that had a modified protocol and marker set, so results for 

these subjects were limited in terms of stair descent and stumbling perturbation trials.  Age was 

also a limiting factor in this research.  Unfortunately this analysis cannot be considered one 

focusing solely on older adults since three of the subjects were below the age of 65.  

Furthermore, there were not enough subjects to make comparisons regarding the effect prosthetic 

knee joint type had on unilateral transfemoral amputee gait, but four of the six subjects were 

using the MPK joint.  In terms of the protocol, the consistency of the stumbling perturbation 

device was another limitation.  A stumbling perturbation was only successfully induced for three 

subjects, two of which occurred while foam obstacles were being used to apply the stumble.  

Therefore, the stumbling outcomes for these subjects may be different than what would have 

been seen if wood obstacles were used.  

Future work in the area of unilateral transfemoral amputee gait analysis should address 

current voids in the literature: minimum foot clearance during normal walking and during stair 

ambulation, trunk kinematics following a stumbling perturbation and the recovery strategy used 

by older adult amputees, and reporting of inertial properties for the prosthetic limb segments.  In 
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general, attention needs to be placed on the older adult population as the fall risk for these 

individuals is not fully understood like it is for their able-bodied counterparts.  Further, 

consistency in methodology for unilateral transfemoral amputee gait analysis across studies 

would be beneficial, as various techniques have been used for assessing functional ambulatory 

ability.  For example, stair and ramp ambulation have been evaluated for unilateral transfemoral 

amputees using various clinical assessments, which can make it challenging to compare 

outcomes across studies or with biomechanics-based results. 

Lastly, the methodology developed in this thesis will be used for analysis of subjects 

participating in the full research study.  The long term goal of this research study is to effectively 

identify functional differences and similarities between MPK joints and NMPK joint when used 

by older adult unilateral transfemoral amputees as they perform various ambulatory tasks.  While 

comparisons between the two different knee joint types was beyond the scope of this thesis, 

results from the full research study will allow for a better understanding of their overall 

functionality and help ascertain the impact knee joint type may have on the fall risk within the 

older adult unilateral transfemoral amputee population. 
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APPENDIX A 

AMPUTEE MOBILITY PREDICTOR ASSESSMENT 

The amputee mobility predictor (AMP) assessment is a short physical performance test that is 

used to determine functional ability and associated classification level.  Subjects were evaluated 

with the AMP assessment during visit 1 to verify their K-level allowed inclusion in the study.  

The AMP assessment was done a second time during visit 4 to determine if the subject’s K-level 

changed while using the opposing knee type.  The following table shows each item of the AMP 

assessment with a short description and the item’s scoring options [42].  Safety precautions were 

taken during the evaluation and no item was performed if either the evaluator or subject was 

uncertain of a safe outcome. 

 

Table 30. Amputee Mobility Predictor evaluation form used during visits 1 and 4 [42]. 
 
 

Item Number and Task Scoring Procedure Score 
1. Sitting balance: sit forward in a 
chair with arms folded across chest for 
60 seconds. 

Cannot sit upright independently for 60 
sec. or requires support from observer  
(0) 
Can sit upright independently for 60s  (1) 

 

2. Sitting reach: reach forward and 
grasp the ruler. (Tester holds ruler 12in 
beyond extended arm(s) of subject, 
positioned midline to the subject’s 
sternum.) 

Does not attempt the task (0) 
Cannot grasp or requires arm support of 
chair or device (1) 
Reaches forward and successfully grasps 
the ruler (2) 
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Table 30 (continued). 
 
 

3. Chair to chair transfer: 2 chairs at 
90°. Start in armless chair.  Subject may 
choose side for 2nd chair to be on. Use of 
hands is permitted. 

Cannot transfer independently or 
requires physical assistance to complete 
(0) 
Performs independently, but appears 
unsteady (1) 
Performs independently, appears to be 
steady and safe (2) 

 

4. Arises from a chair: ask subject to 
fold arms across chest and stand up from 
a sitting upright, forward position. If 
unable, use arms or assistive device. 

Unable, without help (physical 
assistance) (0) 
Able, uses arms/assist device to help (1) 
Able, without using arms (2) 

 

5. Attempts to arise from a chair: if 
attempt in No. 4 was not successfully 
completed without arms then ignore No. 
4 and complete No. 5: Allow another 
attempt without penalty. If subject has 
difficulty and requires additional 
attempts or physical assistance, grade 
according to No. 5. 

Unable, without help (physical 
assistance) (0) 
Able to complete, requires > 1 attempt 
(1) 
Able to rise in a single attempt (2) 
 

 

6. Immediate standing balance: (first 5 
seconds of standing) First attempt is 
without assistive device. If support is 
required, allow after first attempt. Begin 
timing immediately after the amputee 
reaches upright standing posture. Steady 
posture with normal foot movement to 
adjust is permitted without penalty. 

Unsteady posture (stagger, quick move 
of foot to maintain balance or excessive 
sway) (0) 
Steady, using walking aid or other 
support (1) 
Steady, without walker or other support 
(2) 

 

7. Standing balance: Time for 30 
seconds.   

Unsteady (0) 
Steady but uses walking aid or other 
support (1) 
Standing without support (2) 

 

8. Single-limb standing balance: 
(stopwatch ready) Time the duration of 
single-limb standing on both the sound 
and prosthetic limb up to 30 seconds. 
Grade the quality, not the time. 
 
Sound side: _____ seconds 
 
Prosthetic side: _____ seconds 

Sound limb side 
Unsteady (0) 
Steady but uses walking aid or other 
support for 30s (1) 
Single-limb standing without support for 
30s (2) 

 

Prosthetic limb side 
Unsteady (0) 
Steady but uses walking aid or other 
support for 30s (1) 
Single-limb standing without support for 
30s (2) 
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Table 30 (continued). 
 
 

9. Standing reach: Stand with feet 2-
4in apart. Reaches forward and grasp the 
ruler. (Tester holds ruler 12in beyond 
extended arm(s) of subject, positioned 
on midline to the subject’s sternum.) 

Does not attempt (0) 
Cannot grasp or requires arm support on 
assistive device (1) 
Reaches forward and successfully 
grasps item with no support (2) 

 

10. Nudge test: (same setup as No. 7) 
Feet as close together as possible, 
examiner pushes firmly on subject’s 
sternum with palm of hand 3 times (toes 
should rise). 

Begins to fall (0) 
Staggers, grabs, catches self, or uses 
assistive device (1) 
Steady, free of assistive device (2) 
 

 

11. Eyes closed: (same setup as No. 7; 
stopwatch ready) Stand with feet 2-4in 
apart, time for 30 seconds.  If support is 
required, grade as unsteady. 

Unsteady or uses assistive device (0) 
Steady without any use of assistive 
device (1) 
 

 

12. Picking up objects off the floor: 
Pick up a pencil off the floor; placed 
midline, 12in in front of foot.  Do not 
move feet. 

Unable to pick up object and return to 
standing (0) 
Performs with some help (table, chair, 
walking aid, etc.) (1) 
Performs independently (without help 
from object or person) (2) 

 

13. Sitting down: Ask subject to fold 
arms across chest and sit down. If 
unable, use arms or assistive device. 
 

Unsafe (misjudged distance, falls into 
chair) (0) 
Uses arms, assistive device, or not a 
smooth motion (1) 
Safe, smooth motion (2) 

 

14. Initiation of gait: Immediately after 
told to “go”. 

Any hesitancy or multiple attempts to 
start (0) 
No hesitancy (1) 

 

15. Step length and height: Walk a 
measured distance of 12ft twice (up and 
back). Four scores are required: 2 scores   
(a & b) for each leg.  
 
“Marked deviation” is defined as 
extreme substitute movements to permit 
clearing the floor.  

a. Swing foot 
Does not advance a minimum of 12in 
(0) 
Advances a minimum of 12in (1) 

Prosthesis  
____ 
 
Sound 
____ 

b. Foot clearance 
Foot does not completely clear floor 
without deviation (foot shuffling, 
sliding, circumduction) (0) 
Foot completely clears floor without 
marked deviation (1) 

Prosthesis 
____  
 
Sound 
____ 

16. Step continuity: Score while 
subject is performing No. 15. 

Stopping or discontinuity between steps 
(stop & go gait) (0) 
Steps appear continuous (1) 
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Table 30 (continued). 
 
 

17. Turning: 180° turn when subject is 
returning to chair during No. 15. 

Unable to turn, requires intervention to 
prevent falling (0) 
More than 3 steps but completes task 
without intervention (1) 
No more than 3 continuous steps with or 
without assistive aid (2) 

 

18. Variable cadence: Walk a distance 
of 12ft fast, as safely as possible 4 
times. (Speeds may vary from slow to 
fast and fast to slow, varying cadence.) 
 

Unable to vary cadence in a controlled 
manner (0) 
Asymmetrical increase in cadence 
controlled manner (1) 
Symmetrical increase in speed in a 
controlled manner (2) 

 

19. Stepping over obstacle: Place a 
movable box of 4in in height in the 
walking path. 

Cannot step over the box (0) 
Catches foot, interrupts stride (1) 
Steps over without interrupting stride (2) 

 

20. Stairs: (must have at least 2 steps) 
Try to go up and down these stairs 
without holding on to the railing. Don’t 
hesitate to permit subject to hold on to 
the railing. Safety first, if examiner feels 
that any risk in involved omit and score 
as 0. 

Ascending 
Unsteady, cannot do (0) 
One step at a time, or must hold on to 
railing or device (1) 
Steps over step, does not hold onto the 
railing or device (2) 

 

Descending 
Unsteady, cannot do (0) 
One step at a time, or must hold on to 
railing or device (1) 
Steps over step, does not hold onto the 
railing or device (2) 

 

21. Assistive device selection: Add 
points for the use of an assistive device 
if used for 2 or more items in No. 14 to 
20. If testing without prosthesis use of 
appropriate assistive device is 
mandatory. 

Bed bound (0) 
Wheelchair (1) 
Walker (2) 
Crutches (axillary or forearm) (3) 
Cane (straight or quad) (4) 
None (5) 

 

 TOTAL SCORE _____/ 47 
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APPENDIX B 

SUPPORTING OUTCOME MEASURES FOR LEVEL SURFACE WALKING 

B.1 ANALYSIS METHODS  

Motion capture data was collected at 120 Hz and all marker trajectories for the level surface 

walking trials were exported to MATLAB (The MathWorks, Inc.) for post-processing.  For the 

spatial-temporal outcome measures the marker data was filtered with a fourth order Butterworth 

filter, with a sampling frequency of 120 Hz and a cutoff frequency of 6 Hz.  All heel-strike and 

initial forefoot motion events were identified and verified visually using the superior heel and toe 

marker trajectories, respectively [102]. 

Gait speed was defined as the average pelvic center of mass velocity along the direction 

of progression [115].  The pelvic center of mass was determined from the anterior and posterior 

superior iliac spine markers.  The first derivative of this center of mass position during gait was 

used to calculate the average gait speed over the length of the trial. 

Cadence was calculated as the number of steps taken per minute during the trial [48].  

Stride duration, which is the time to complete one gait cycle, was defined using two consecutive 

heel-strikes for the each foot.  Single-limb stance duration was defined as the time between heel-

strike and initial forefoot motion events for each foot during the stance phase of gait.  Double-
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limb support duration was defined as the period of time when both feet were in contact with the 

floor during gait.  Step length was defined as the anterior-posterior distance between two 

consecutive heel-strike events.  Step width was defined as the medial-lateral distance between 

two consecutive heel-strikes events.  For all spatial-temporal results, the average and standard 

deviation for each subject was obtained from three level surface walking trials. 

The results for stride duration, single-limb support duration, double-limb support 

duration, step length, and step width were analyzed using a symmetry index to determine the 

degree of symmetry between the prosthetic and sound limbs [73, 116-117].  The symmetry index 

(SI) equation is given below, where PL is the prosthetic limb gait parameter value and SL is the 

sound limb gait parameter value: 

 
A symmetry index value of zero corresponds to perfect symmetry between the prosthetic and 

sound limb.  A positive symmetry index means the prosthetic limb gait parameter is greater than 

the sound limb side, and a negative symmetry index represents the sound limb value being 

greater than the prosthetic limb. 

Knee joint angle was defined as the relative angle between the longitudinal axis of the 

thigh and shank segments.  The thigh segment was the vector between the hip joint center and 

the lateral knee.  The hip joint center was found as the center point between the anterior-superior 

iliac spine marker and the posterior-superior iliac spine marker on each limb side.  The shank 

segment was the vector between the lateral knee and lateral ankle.  A knee angle of zero degrees 

corresponds to full extension of the knee joint; a positive knee angle corresponds to knee flexion 

and a negative knee angle corresponds to knee hyper-extension. 
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B.2 SPATIAL-TEMPORAL RESULTS 

Gait speed ranged from 0.28 m/s to 1.09 m/s for the six subjects analyzed in this thesis, yielding 

an overall average gait speed of 0.67 m/s. 

 

Table 31. Average gait speed (standard deviation) across three level surface walking trials. 
 
 

Subject Gait Speed (m/s) 

1 1.02 (0.03) 

2 0.57 (0.05) 

3 1.09 (0.02) 

4 0.85 (0.04) 

5 0.47 (0.03) 

6 0.28 (0.02) 
 
 
 
 Cadence ranged from 60.92 steps/min to 114.45 steps/min for the six subjects included in 

this thesis.  The overall average cadence for this subject population was 87.80 steps/min. 

 

Table 32. Average cadence (standard deviation) across three level surface walking trials. 
 
 

Subject Cadence (steps/min) 
1 105.31 (0.84) 
2 77.72 (7.65) 
3 114.45 (4.02) 
4 97.02 (2.71) 
5 71.36 (1.20) 
6 60.92 (2.21) 
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All subjects had relatively symmetric stride duration between the prosthetic and sound 

limb (Table 33).  Subject 6 had near perfect symmetry between the limbs, while subject 2 had the 

largest asymmetry with the sound limb having a greater stride time.  Four of the six subjects had 

longer stride duration with the prosthetic limb. 

 

Table 33. Average stride duration (standard deviation) for 9 strides taken with each limb while 
walking on a level surface, and the resulting symmetry indices (positive index denotes prosthetic 

limb value is larger than sound limb). 
 
 

Stride Duration 
Subject Sound Limb (s) Prosthetic Limb (s) Symmetry Index (%) 

1 1.33 (0.04) 1.33 (0.03) 0.22 (2.01) 
2 1.84 (0.13) 1.82 (0.12) -1.63 (5.93) 
3 1.20 (0.03) 1.20 (0.03) -0.27 (3.34) 
4 1.42 (0.03) 1.43 (0.04) 0.31 (3.25) 
5 1.95 (0.07) 1.95 (0.06) 0.21 (3.90) 
6 2.27 (0.08) 2.27 (0.12) 0.01 (2.84) 
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All subjects had a longer single-limb stance duration when they were standing on their 

sound limb (Table 34).  The symmetry index results show subject 6 had the most symmetric 

single-limb stance time between the sound and prosthetic limb. 

 

Table 34. Average single-limb stance duration (standard deviation) for 12 stance phases with 
each limb while walking on a level surface, and the symmetry index results (negative index value 

denotes sound limb duration is greater than prosthetic limb duration). 
 
 

Single-Limb Stance Duration 
Subject Sound Limb (s) Prosthetic Limb (s) Symmetry Index (%) 

1 0.85 (0.04) 0.66 (0.02) -25.97 (4.46) 
2 1.27 (0.12) 1.10 (0.11) -14.21 (6.01) 
3 0.71 (0.03) 0.52 (0.03) -31.83 (5.70) 
4 0.89 (0.04) 0.72 (0.01) -21.75 (3.67) 
5 1.19 (0.07) 1.04 (0.06) -13.92 (5.33) 
6 1.83 (0.09) 1.70 (0.10) -6.55 (4.97) 

 
 
 
Double-limb support duration results show half of the subjects (subjects 1, 2, and 5) had a 

shorter double-limb support duration when the prosthetic limb was leading, while the other half 

of subjects had a shorter double-limb support duration when the sound limb was leading (Table 

35).  Subject 5 had the largest asymmetry between the double-limb support duration times for the 

prosthetic and sound limbs.  Subjects 4 and 6 had relatively symmetric double-limb support 

durations when either the prosthetic or sound limb was the leading foot at heel-strike, with the 

prosthetic limb duration slightly longer. 
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Table 35. Average double-limb support duration (standard deviation) for 12 steps taken with 
each limb while walking on a level surface.  Sound limb double-limb support periods occur when 

the sound limb is the leading foot, and prosthetic limb double-limb support occurs when the 
prosthetic limb is the leading foot.  A negative symmetry index represents the sound limb value 

is greater than the prosthetic limb. 
 
 

Double-Limb Support Duration 
Subject Sound Limb (ms) Prosthetic Limb (ms) Symmetry Index (%) 

1 94.44 (10.86) 87.96 (15.09) -9.69 (17.02) 
2 349.07 (78.67) 190.74 (40.06) -58.20 (13.46) 
3 34.26 (12.11) 52.78 (12.26) 45.58 (47.97) 
4 91.67 (11.18) 94.17 (11.82) 1.69 (14.84) 
5 256.82 (43.91) 55.00 (16.29) -125.03 (16.05) 
6 619.44 (63.00) 624.07 (60.59) 1.62 (17.46) 

 
 
 
Five of the six subjects displayed a longer step length with the prosthetic limb (Table 36).  

Subjects 1 and 4 had the most symmetric step length between the prosthetic and sound limb 

(these subjects were the same person, using a NMPK joint and MPK joint, respectively). 

 

Table 36. Average step length (standard deviation) for 12 steps taken with each limb while 
walking on a level surface, and the resulting symmetry indices (positive index denotes prosthetic 

limb value is larger than sound limb). 
 
 

Step Length 
Subject Sound Limb (cm) Prosthetic Limb (cm) Symmetry Index (%) 

1 62.41 (1.56) 63.81 (2.48) 2.17 (5.30) 
2 45.41 (1.95) 56.99 (2.87) 22.14 (6.97) 
3 58.92 (1.81) 62.25 (3.75) 5.45 (5.18) 
4 58.57 (1.77) 56.58 (4.12) -3.67 (7.86) 
5 36.66 (2.04) 51.23 (2.65) 33.12 (7.00) 
6 28.69 (3.71) 33.56 (1.29) 17.31 (14.82) 
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All subjects, expect subject 4, had a larger step width when taking a step forward with the 

prosthetic limb (Table 37).  Subject 3 had the highest asymmetric step width between the 

prosthetic and sound limb. 

 

Table 37. Average step length (standard deviation) for 12 steps taken with each limb while 
walking on a level surface, and the resulting symmetry index (positive index denotes prosthetic 

limb value is larger than sound limb). 
 
 

Step Width 
Subject Sound Limb (cm) Prosthetic Limb (cm) Symmetry Index (%) 

1 21.99 (2.13) 22.78 (1.98) 3.59 (10.51) 
2 10.53 (1.13) 10.99 (1.68) 6.44 (24.02) 
3 20.92 (1.78) 24.17 (2.69) 14.92 (16.40) 
4 20.71 (2.33) 20.16 (1.41) -2.34 (17.28) 
5 21.42 (1.03) 21.89 (2.96) 1.40 (14.86) 
6 24.37 (1.39) 24.17 (1.58) 5.01 (3.00) 

B.3 KNEE JOINT ANGLE RESULTS 

Subject 1 knee joint angle plots show the prosthetic limb transitions to the swing phase at 

approximately 50% of the gait cycle and the sound limb at approximately 60% of the gait cycle 

(Figure 54).  The prosthetic limb also has smaller deviation in knee joint angle during swing 

phase.  Both knee joints retain slight flexion during the stance phase, with the sound limb 

showing an increase to 20.07 degrees of flexion during the shock absorption period at the 

beginning of the gait cycle.  The prosthetic limb mean maximum knee angle during swing was 

70.48 degrees while the sound limb mean maximum angle was 62.89 degrees. 
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Figure 54. Subject 1 knee joint angles for the sound and prosthetic limb during level surface 
walking.  Solid lines represent the mean knee angle across gait cycles; dashed lines show the 

standard deviation.  Heel-strike occurs at zero and 100% of the gait cycle. 
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Subject 2 maintained the prosthetic knee in hyper-extension during the stance phase of 

the gait cycle (Figure 55).  The prosthetic limb entered the swing phase at approximately 55% of 

the gait cycle and reached a mean maximum knee angle of 48.53 degrees.  The sound limb knee 

joint flexed to 11.84 degrees on average during shock absorption at the beginning of the gait 

cycle.  This was followed by a slow increase in flexion until the swing phase began at 

approximately 65% of the gait cycle, reaching an average maximum knee angle of 69.39 

degrees.  This gradual increase in flexion was likely impacted by the subject walking with a cane 

in each hand which provided stability during gait. 
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Figure 55. Subject 2 knee joint angles for the sound and prosthetic limbs during level surface 
walking.  Solid lines represent the mean knee angle across gait cycles; dashed lines show the 

standard deviation.  Heel-strike occurs at zero and 100% of the gait cycle. 
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Subject 3 had very little deviation in the prosthetic knee angle across gait cycles.  The 

prosthetic knee joint maintained less than five degrees of hyper-extension throughout the stance 

phase (Figure 56).  The swing phase for the prosthetic limb was initiated at approximately 50% 

of the gait cycle and the mean maximum knee flexion during swing was 52.40 degrees.  The 

sound limb knee joint had an average of 13.38 degrees of knee flexion during shock absorption, 

and then the knee was shifted into extension during the remainder of the stance phase.  There 

was larger deviation in the sound limb swing phase, which began around 45% of the gait cycle.  

A mean maximum knee flexion angle of 60.26 degrees was seen for the sound limb during 

swing.  This subject did walk with a cane in the sound limb side hand. 
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Figure 56. Subject 3 knee joint angles for the sound and prosthetic limbs during level surface 
walking.  Solid lines represent the mean knee angle across gait cycles; dashed lines show the 

standard deviation.  Heel-strike occurs at zero and 100% of the gait cycle. 
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Subject 4 knee joint angle plots show the prosthetic knee was slightly hyper-extended 

during the stance phase until approximately 50% of the gait cycle when the swing phase began 

(Figure 57).  The mean maximum prosthetic knee flexion during the swing phase was 49.28 

degrees.  The sound limb knee joint had an average of 19.28 degrees of flexion during the shock 

absorption period of the stance phase, and the knee joint remained slightly flexed during the 

stance phase until the swing phase began around 60% of the gait cycle.  The sound limb mean 

maximum knee flexion was 62.57 degrees. 
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Figure 57. Subject 4 knee joint angles for the sound and prosthetic limbs during level surface 
walking.  Solid lines represent the mean knee angle across gait cycles; dashed lines show the 

standard deviation.  Heel-strike occurs at zero and 100% of the gait cycle. 
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Subject 5 kept the prosthetic knee in less than five degrees of hyper-extension throughout 

the stance phase of the gait cycle (Figure 58).  During the swing phase the mean maximum 

average knee flexion was 1.24 degrees, occurring at 88% of the gait cycle.  The sound limb had 

more deviation during the stance phase than the swing phase.  The sound knee was flexed at 

heel-strike continued flexing for shock absorption, yielding a mean of 19.49 degrees.  Then, the 

sound knee joint angle showed movement toward full extension near 50% of the gait cycle 

before entering into the swing phase around 60% of the gait cycle.  The sound knee flexed to a 

mean maximum angle of 67.33 degrees during the swing phase.  The subject used a cane held in 

the sound limb side hand while walking. 
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Figure 58. Subject 5 knee joint angles for the sound and prosthetic limbs during level surface 
walking.  Solid lines represent the mean knee angle across gait cycles; dashed lines show the 

standard deviation.  Heel-strike occurs at zero and 100% of the gait cycle. 
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Subject 6 had more knee flexion in the prosthetic limb than the sound limb during the 

entire gait cycle (Figure 59).  The prosthetic limb knee angle plot shows an average knee flexion 

of 15.44 degrees during shock absorption at the beginning of the stance phase, and then a gradual 

increase in knee flexion until the mean maximum knee flexion angle of 51.91 degrees occurred 

at 86% of the gait cycle.  The sound limb entered the stance phase with a small amount of hyper-

extension and then gradually increased knee flexion until the swing phase begun around 70% of 

the gait cycle.  The sound limb mean maximum knee angle during swing was 42.63 degrees, and 

more deviation was seen during the sound limb swing phase than during the prosthetic knee 

swing phase. 
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Figure 59. Subject 6 knee joint angles for the sound and prosthetic limbs during level surface 
walking.  Solid lines represent the mean knee angle across gait cycles; dashed lines show the 

standard deviation.  Heel-strike occurs at zero and 100% of the gait cycle. 
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APPENDIX C 

FOOT CLEARANCE RESULTS FOR STAIR AMBULATION 

C.1 STAIR ASCENT 

The average distances for all foot clearance measures, for the both the prosthetic and sound limb 

during stair ascent, are given in Table 38.  The values highlighted in gray are the overall 

minimum clearance values for the forefoot for each measure.  Only the toe tip marker was 

available to analyze clearance for subjects 1 through 4.  Subject 2 had marker visibility issues for 

the sound limb.  The resultant clearance for the inferior heel marker was not calculated because 

the inferior heel does not pose a very high risk for inducing a trip during stair ascent. 
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Table 38. Mean (standard deviation) minimum foot clearance distances during stair ascent for all 
subjects.  The gray highlighted values signify the overall minimum clearance for the forefoot.  
The resultant clearance was not analyzed for the inferior heel marker; a dash indicates N/A. 

 
 

Subject Position Sound Limb Prosthetic Limb Sound Limb Prosthetic Limb Sound Limb Prosthetic Limb
1 Toe tip 6.46 (2.14) 5.92 (1.31) -9.34 (7.08) -9.32 (5.30) 8.51 (0.68) 7.07 (0.38)
2 Toe tip - 3.99 (1.43) - -5.52 (2.66) - 5.12 (0.65)
3 Toe tip 5.06 (2.15) 4.77 (0.27) -8.90 (8.57) -9.68 (1.96) 6.60 (1.93) 4.83 (0.30)
4 Toe tip 4.31 (0.96) 6.28 (0.59) -6.47 (4.02) -12.70 (5.64) 5.38 (0.87) 6.34 (0.54)

Toe tip 2.55 (0.89) 5.32 (0.78) -3.94 (1.87) -11.30 (3.76) 4.39 (1.43) 5.92 (1.15)
Front 

Forefoot 4.22 (1.11) 4.68 (1.19) -6.49 (2.11) -13.81 (3.66) 5.54 (1.52) 4.85 (1.06)

Middle 
Forefoot 6.23 (1.58) 4.54 (1.28) -10.28 (2.43) -17.43 (3.67) 6.76 (1.72) 4.63 (1.15)

Break 7.26 (1.87) 4.35 (1.42) -15.11 (3.22) -21.85 (3.67) 7.37 (1.86) 4.41 (1.30)
Inferior 

Heel - - -5.20 (1.15) -4.44 (0.54) 3.52 (1.58) 6.86 (0.49)

Toe tip 3.29 (0.67) 0.71 (0.29) -4.71 (1.30) -0.75 (0.31) 4.31 (0.73) 3.85 (2.74)
Front 

Forefoot 3.00 (0.62) 1.74 (0.77) -5.96 (1.70) -2.11 (0.74) 3.63 (0.70) 3.54 (2.03)

Middle 
Forefoot 3.69 (0.59) 2.93 (1.25) -9.96 (1.41) -4.67 (1.05) 4.15 (0.57) 3.96 (1.21)

Break 4.21 (0.59) 3.85 (0.98) -14.63 (1.51) -8.13 (1.05) 4.56 (0.64) 4.49 (0.72)
Inferior 

Heel - - -4.14 (1.60) -0.42 (1.96) 2.22 (0.10) 4.85 (1.01)

Stair Ascent Minimum Foot Clearance Measures

6

Resultant Clearance (cm) Vertical Clearance (cm)Horizontal Clearance (cm)

5

 

C.2 STAIR DESCENT 

The results in Table 39 are average distances for foot clearance of the prosthetic and sound limb 

during stair descent.  The values highlighted in gray are the overall minimum clearance values 

for the inferior heel for each variable, as this marker was used to assess the risk of tripping.  Only 

the toe tip marker was available to analyze the forefoot clearance of subjects 1 through 4.  

Subject 2 had marker visibility issues for the sound limb.  Overall, the resultant clearance for the 

forefoot markers was not calculated because the forefoot is not the focus for assessing trip risk 
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during stair descent.  Subjects 3, 4, and 5 have negative vertical clearance values for the sound 

limb foot because the toe tip had passively tilted down over the step edge prior to initial forefoot 

motion as a result of the prosthetic limb progression.  The same pattern was seen in the prosthetic 

foot for subjects 2 and 4.  Subject 4 had large horizontal clearance values for the toe tip due to an 

attempt to descend the stairs with a step-over-step method.  Subject 6 had a shoe size smaller 

than the step tread, which resulted in negative horizontal clearance values because the forefoot 

markers were behind the step edge during stance. 

 

Table 39. Mean (standard deviation) minimum foot clearance distances during stair descent for 
all subjects.  The gray highlighted values signify the overall minimum clearance for the forefoot.  

The resultant clearance was not analyzed for the forefoot markers; a dash indicates N/A. 
 
 

Subject Position Sound Limb Prosthetic Limb Sound Limb Prosthetic Limb Sound Limb Prosthetic Limb
1 Toe tip - - 3.66 (4.06) 6.50 (0.52) 1.22 (1.65) 4.73 (0.88)
2 Toe tip - - - 9.69 (0.37) - -4.81 (0.79)
3 Toe tip - - 5.20 (1.27) 2.08 (0.27) -2.44 (0.55) 1.68 (0.17)
4 Toe tip - - 17.54 (9.79) 29.24 (22.60) -7.18 (0.44) -0.48 (10.89)

Toe tip - - 9.46 (0.95) 4.93 (0.71) -5.81 (0.81) 3.38 (0.71)
Front 

Forefoot - - 6.98 (0.81) 2.70 (0.74) -4.40 (0.66) 1.98 (0.82)

Middle 
Forefoot - - 3.56 (0.80) -0.83 (0.72) -2.19 (0.58) 2.34 (1.05)

Break - - -0.65 (0.79) -5.24 (0.66) 0.46 (0.33) 3.30 (0.95)
Inferior 

Heel 3.73 (0.78) 3.85 (0.67) 5.94 (1.37) 11.35 (2.32) 5.31 (2.08) 4.09 (0.83)

Toe tip - - -0.58 (2.67) -1.67 (0.76) 1.59 (0.55) 4.53 (0.41)
Front 

Forefoot - - -3.13 (2.50) -2.88 (0.76) 0.97 (0.39) 2.73 (0.46)

Middle 
Forefoot - - -6.37 (2.32) -5.42 (0.70) 1.75 (0.42) 2.31 (0.65)

Break - - -9.97 (2.13) -8.36 (0.58) 2.76 (0.36) 2.43 (0.78)
Inferior 

Heel 5.12 (0.61) 4.12 (0.96) 7.52 (1.02) 12.03 (3.38) 5.93 (0.77) 4.19 (0.97)

Stair Descent Minimum Foot Clearance Measures

5

6

Resultant Clearance (cm) Horizontal Clearance (cm) Vertical Clearance (cm)
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APPENDIX D 

RESPONSES TO STUMBLING 

The stumble perturbation outcome measures for subjects 3 and 6 are presented in this section.  

Table 40 provides the average trunk angle and velocity values seen during an unperturbed 

walking trial over a level surface.  Tables 41-42 show the resulting trunk values during the 

recovery period durations.  During the perturbation for subject 3, the obstacle became unattached 

from the device, slid across the floor, and was stepped on by the sound foot.  The perturbation 

for subject 6 obstructed the sound limb. 

 

Table 40. Average trunk angles and angular velocity while walking unperturbed over a level 
surface for subjects 3 and 6. 

 
 

  Sagittal Plane (deg) Frontal Plane (deg) Angular Velocity (deg/s) 

Subject Average 
Max 

Average 
Min 

Average 
Max 

Average 
Min Average 

3 17.61 11.86 6.32 -0.10 21.47 
6 39.14 31.11 1.04 -7.46 12.76 
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Table 41. Trunk angles in the sagittal and frontal planes during the stumble recovery durations 
for subjects 3 and 6. 

 
 

  Sagittal Plane (deg) Frontal Plane (deg) 

Subject At 
Contact 

Recovery 
Max 

Recovery 
Min 

At 
Contact 

Recovery 
Max 

Recovery 
Min 

3 14.18 14.18 11.80 0.84 0.97 -0.74 
6 33.96 42.10 33.96 -3.72 4.23 -3.83 

 
 
 

Table 42. Trunk angular velocity during the stumble recovery durations. 
 
 

  Angular Velocity (deg/s) 

Subject At 
Contact 

Recovery 
Max 

Recovery 
Min 

3 22.32 44.66 13.42 
6 3.76 60.99 3.33 

 
 
 
Subject 3 displayed a decrease of approximately 3 degrees in sagittal plane trunk angle 

during the stumble recovery duration, as the prosthetic foot was preparing for heel-strike (Figure 

60).  Following this heel-strike an increase in sagittal plane trunk flexion occurred when the 

subject stepped on the dislodged obstacle with the sound limb during the next step.  During the 

recovery duration, as the trunk angle in the sagittal plane decreased, the trunk angle in the frontal 

plane also decreased, corresponding to trunk tilt toward the left of vertical (Figure 61).  A 

maximum angular velocity maximum of 44.66 deg/s occurred at the instant of prosthetic limb 

heel-strike (Figure 62). 
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Figure 60. Sagittal plane trunk angle during the stumble perturbation trial for subject 3.  Initial 
contact with the obstacle and heel-strike of the first recovered step are identified by vertical lines.  

The sagittal plane trunk angle at initial contact is represented throughout the recovery duration 
by a dashed line. 
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Figure 61. Frontal plane trunk angle during the stumble perturbation trial for subject 3.  Initial 
contact with the obstacle and heel-strike of the first recovered step are identified by vertical lines.  
The frontal plane trunk angle at initial contact is represented throughout the recovery duration by 

a dashed line. 
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Figure 62. Trunk angular velocity during the stumble perturbation trial for subject 3.  Initial 
contact with the obstacle and heel-strike of the first recovered step are identified by vertical lines.  

The angular velocity at initial contact is represented throughout the recovery duration by a 
dashed line. 
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Subject 6 had a gait speed of 0.28 m/s and walked with a walker.  There was an 8.14 

degree difference in the sagittal plane trunk angle between the time of initial contact with the 

obstacle and the maximum trunk angle during the recovery duration (Figure 63).  Compared to 

the subject’s average maximum trunk angle in the sagittal plane during normal unperturbed 

walking, there was only a 2.96 degree difference between the maximum values, likely 

contributed to the use of a walker.  The trunk angle in the frontal plane saw a movement of 

approximately 8 degrees toward the right side (same side as the obstructed foot) following 

contact with the obstacle (Figure 64).  The trunk angular velocity rapidly increased to 57.23 

deg/s after initial contact with the obstacle, and the angular velocity reached a similar peak just 

prior to heel-strike of the first recovered step (Figure 65). 
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Figure 63. Sagittal plane trunk angle during the stumble perturbation trial for subject 6.  Initial 
contact with the obstacle and heel-strike of the first recovered step are identified by vertical lines.  

The sagittal plane trunk angle at initial contact is represented throughout the recovery duration 
by a dashed line. 
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Figure 64. Frontal plane trunk angle during the stumble perturbation trial for subject 6.  Initial 
contact with the obstacle and heel-strike of the first recovered step are identified by vertical lines.  
The frontal plane trunk angle at initial contact is represented throughout the recovery duration by 

a dashed line. 
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Figure 65. Trunk angular velocity during the stumble perturbation trial for subject 6.  Initial 
contact with the obstacle and heel-strike of the first recovered step are identified by vertical lines.  

The angular velocity at initial contact is represented throughout the recovery duration by a 
dashed line. 
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APPENDIX E 

EQUATIONS FOR THE GEOMETRIC MODEL OF THE PROSTHETIC LIMB USED 

TO DETERMINE SEGMENT INERTIAL PRORPERTIES 

E.1 FOOT SEGMENT 

For each stadium solid in the foot segment, the lower bound stadium used the subscript 0 and 

upper bound stadium used the subscript 1.  The following equations are from the mathematical 

model presented by Yeadon for a series of stadium solids [66]. 

Half the width of the rectangle of the stadium is defined by r, and half the length of the 

rectangle of the stadium is defined by t.  Parameters r and t for a stadium at some distance, h, 

from the lower bounding stadium are: 

 

 
For a stadium that has uniform density p, area A(h), and thickness hdz, the stadium solid 

mass was given by: 
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The simplifying expressions in the mass equation were defined as: 

 

 
 Since the density of the foot segment was unknown but assumed to be constant, density 

was obtained using the measured mass and calculated volume of the foot segment. 

 

 
 The center of mass location from the proximal end of the foot segment (the posterior 

edge of the heel) was found using: 

 
 The simplifying expressions in the center of mass equation were defined as: 
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The mass moment of inertia about the medial-lateral axis at the proximal edge of the foot 

was found by determining the moment of inertia about the foot segment center of mass and then 

using the parallel axis theorem to move the rotational point some the distance, d, to the proximal 

edge. 

 

 

 
The simplifying expressions in the mass moment of inertia equation were defined as: 

 

 

 

 

E.2 SHANK SEGMENT 

All shank segment equations were provided in the Handbook of Equations for Mass and Area 

Properties of Various Geometrical Shapes [113].  The pylon and pylon adapter were modeled as 

hollow circular cylinders.  The standard dimensions of a pylon are 0.030 m outer diameter and 
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0.025 m inner diameter.  Thus, the inner diameter of the pylon adapter matched the outer 

diameter of the pylon.  To find the volume of a hollow cylinder the following equation was used: 

 
The density of the pylon and pylon adapter were known based on their material type, so 

the mass of each piece was calculated: 

 
 The center of mass of a hollow cylinder was found using the equation: 

 
 The moment of inertia for a hollow cylinder about its center of mass with a medial-lateral 

axis of rotation is: 

 
The knee joint was modeled as a rectangular prism.  The volume equation took into 

account the knee length (L), the medial-lateral distance (W), and the anterior-posterior distance 

(H). 

 
 The density of the knee joint was found using the knee volume and the measured mass of 

the shank segment minus the calculated masses of the pylon and pylon adapter. 

 
 The center of mass location of the knee joint was found using the equation: 
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 The moment of inertia of the knee joint about its center of mass with respect to the 

medial-lateral axis was found by: 

 
 The parallel axis theorem was used to determine the moment of inertia for the entire 

shank segment about the proximal point of the segment. 

 

E.3 THIGH SEGMENT 

All thigh segment equations were provided in the Handbook of Equations for Mass and Area 

Properties of Various Geometrical Shapes [113].  The proximal portion of the socket and 

residual limb was a right-angled wedge shape. The height of the shape was represented by h, the 

medial-lateral distance was a, and the anterior-posterior distance was b.  The volume was found 

by the equation: 

 
Using either the density of the socket material or the density of the residual limb, the 

mass of the thigh flap section was found for the socket and residual limb portions of the thigh: 

 
The moment of inertia for a right-angled wedge shape about its center of mass for a 

medial-lateral axis of rotation was found using: 

 

175 



A series of elliptical cylinders formed the intermediate length of the socket and residual 

portions of the thigh segment.  The symbol a represented half of the anterior-posterior distance 

and the symbol b represented half of the medial-lateral distance.  The volume was given by the 

equation: 

 
Again, since socket and residual limb density were known, the mass of the elliptical 

cylinders was found: 

 
The center of mass location for an elliptical cylinder was half of its height: 

 
The moment of inertia at the center of mass for an elliptical cylinder about the medial-

lateral axis of rotation was given by the equation: 

 
 For the distal elliptical paraboloid shape, the symbols a and b represent half of the 

anterior-posterior and medial-lateral distance, respectively.  The volume equation was: 

 
The center of mass for an elliptical paraboloid was given by: 

 
The moment of inertia about the center of mass of an elliptical paraboloid with respect to 

a medial-lateral axis of rotation was: 
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The thigh segment moment of inertia was reported at the proximal edge.  To determine 

this value, the parallel axis theorem was applied to the entire thigh segment moment of inertia 

found at its center of mass, such that the moment of inertia was moved to the correct proximal 

location: 
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