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Abstract

The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome
and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the
involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine
two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced
upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor
detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of
nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and
deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor
and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent
variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected
chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the
opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop
formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU
binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the
repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior
of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the
packaging and processing of genetic information.
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Introduction

The highly abundant nucleoid protein HU contributes to both

the spatial organization and biological processing of bacterial

DNA [1]. The dimeric protein binds with little or no sequence

specificity to DNA, introducing a large bend and concomitant

unwinding of the double-helical structure [2–5] (Figure 1A). The

bending enhances the likelihood that the ends of HU-bound DNA

fragments come into close contact and the chances that a short,

linear molecule spontaneously adopts a tight circular arrangement

[6,7]. Indeed, the presence of HU stimulates the enzymatic closure

of very short DNA chains that would otherwise remain open linear

species [8,9].

The contribution of HU to biological processing is tied to the

looping of DNA induced by proteins, such as the tetrameric Lac

repressor assembly (LacR), that simultaneously bind to two

separate, widely spaced sites on DNA [10] (Figure 1B). The

presence of HU increases the efficacy of repression of the E. coli

lactose (lac) genes [11–13], suggesting that HU as well as LacR

contribute to the looping of DNA. Deletion of the genes that code

for HU drastically alters the chain-length dependent pattern of lac

repression in modified cells [11–13].

The LacR tetramer is a deformable entity capable of

undergoing large-scale motions away from the twofold symmetric

V-shaped arrangement of protein components found in the low-

resolution crystal complex with DNA [14]. Diverse experiments

[15–22] suggest that the protein can interconvert between a tightly

closed state with the arms of the ‘‘V’’ in intimate contact and a

fully extended form with DNA binding sites located on opposite

sides of the protein assembly. The mix of open and closed states

varies in different studies. Whether or not such deformations play

a role in gene expression remains an open question.

Current understanding of how HU and LacR might contribute

to the transcription of the lac genes derives from indirect

theoretical and computational analyses [11–13,23–25] of the

effects of DNA chain length on gene expression in E. coli cells with

and without HU. According to these studies, which incorporate

ideal elastic-rod representations of DNA in statistical mechanical

treatments of the looping free energy, the DNA appears to soften

in the presence of HU. The best fits of theory and computation
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against experiment point to substantial reduction in the effective

elastic constants and concomitant changes in the apparent double-

helical repeat of DNA upon HU binding. The different patterns of

oscillation of gene expression with the distance between lac

operator sites hint of a change in DNA loop type in the presence of

HU [25], i.e., a different overall fold of DNA constrained by the

precise locations of the sites on LacR to which the DNA operator

sequences bind [26,27]. Indeed, the free energies of DNA looping

derived in one study [24] suggest that LacR may assemble in a

fully extended, open form in vivo. The precise contributions of HU

and LacR to DNA looping and gene expression are not clear from

this perspective.

Here we take a more direct approach to the question of how

proteins mediate the looping of DNA, by incorporating the known

three-dimensional structural effects of both HU and LacR on

DNA in Monte-Carlo simulations of the likelihood of LacR-

mediated loop formation. Our work takes advantage of new

methods that we have developed to study the ring-closure

properties of HU-bound DNA [6,28] and to determine the free

energies of LacR-mediated DNA loops [27,29]. We treat the

double helix at the level of base-pair steps with elastic potentials

that consider the intrinsic structure and deformability of successive

base pairs [30], including those randomly bound by HU. We also

take account of global deformations of LacR from the V-shaped

structure observed in the crystalline state [14,31] and consider the

four distinct orientations of DNA operator sequences on the two

LacR binding headpieces [26,27] (Figure 1C). We determine the J

factor of looping, an analog of the well-known measure of polymer

cyclization [32], from the fraction of spatial arrangements that

satisfy the restrictions on DNA end-to-end displacement and base-

pair orientation imposed by the LacR assembly, and relate the

computed values to the J factors derived from gene repression

studies [11–13], single-molecule measurements [33–36], and

fluorescence resonance energy transfer experiments [22].

The simulated structures immediately reveal how HU may

participate in and stabilize LacR-mediated DNA looping and how

HU, LacR, and DNA may work in concert to guide the chain-

length-dependent variation in lac gene repression. The binding of

HU controls the dependence of the J factor on chain length in

ways that cannot be mimicked by an ideal elastic model of DNA.

HU and DNA affect the global organization of LacR, and changes

in LacR structure, in turn, alter the levels of HU binding to DNA

and the orientation of DNA on LacR. The length of the DNA

determines whether the operators bind in antiparallel or parallel

orientations on LacR, whether the LacR is opened or closed, and

how many HU molecules bind to the loop. The presence of HU

limits the opening of DNA-bound LacR, increases the mix of

looped states, and guides the fold of the LacR-anchored DNA.

The composite interactions hint of ways in which large protein

assemblies may coordinate the packaging and processing of genetic

information. The unanticipated interplay of protein and DNA

structure revealed in the simulations offers new ideas on how to

control and enhance protein-mediated DNA looping.

Results

Looping of short DNA on LacR is typically easier than
cyclization

Short DNA chains close more easily into LacR-mediated loops

than form minicircles at most chain lengths (Figure 2A). Cycliza-

tion imposes more restrictive constraints on the spatial pathways of

DNA than looping. The last base pair of a successfully closed

linear duplex must not only approach the first base pair but also

make that approach from behind, with the chain leaving and

returning to its origin in the same direction (Figure 2B). By

contrast, the ends of a DNA fragment looped between the binding

sites of a protein lie farther apart and the intervening residues can

leave and return to the anchoring sites in the same or the opposite

direction. In both types of structures the ends of the chain must

satisfy orientational constraints that allow for either chemical bond

formation or specific interactions with protein (see Methods).

These requirements are best met if the ends of the chain are

appropriately phased with the ,10.5 bp DNA helical repeat.

Chains differing in length by 5–6 base pairs (bp) thus exhibit very

different propensities to adopt a constrained configuration.

Figure 1. Molecular constraints imposed on protein-mediated DNA loops. (A) The non-specific architectural protein HU introduces a sharp
bend in the DNA loop upon binding. (B) The Lac repressor assembly (LacR) sets the positions of the DNA operators at the ends of the loop. (C) The
loop adopts one of four possible orientations on the LacR headpieces. The color-coding in B and C distinguishes the operator strands in terms of their
contacts to the four LacR monomers: blue (strand A); red (strand B), yellow (strand C), green (strand D). The arrows denote the 59-39 directions of the
operators on the binding headpieces, the characters A and P specify the antiparallel or parallel orientations of the bound operators, and the numerals
1 and 2 distinguish whether the first operator (O3) points toward the inside or outside of the assembly. The HU-bound DNA is represented by the
best resolved crystal complex of the Anabaena protein with DNA (PDB entry 1P51) [2] and the LacR-DNA is a model obtained by composition [27] of
currently available X-ray data [14,31] (see Methods). Note the very different bending of the protein-bound DNA, toward and around HU but away
from the two LacR headpieces. Molecular images rendered with Chimera [73].
doi:10.1371/journal.pone.0056548.g001

Interplay of Protein and DNA on the lac Operon
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Here we compare the ease of looping a DNA fragment of chain

length N between the binding headpieces of the Lac repressor

assembly and the cyclization of a DNA molecule of the same

length. We define the length of the DNA loops in the conventional

sense, as the number of base pairs between the centers of the

bound operator sequences. The loops thus include seven rigid base

pairs from the inner half of each operator and N – 14 bp of

deformable DNA. All N bp of the minicircle undergo the same

types of deformations as those imposed on the protein-free

segments of the loops. The rigid base pairs on the bound operators

follow the trajectory of DNA observed in the high-resolution

crystal complex of a LacR dimer with a symmetric operator [31]

and the deformable DNA is subject to standard fluctuations in

bending and twisting about the canonical B-type structure [6,28]

(see Methods). The HU bound to DNA adopts one of the

pathways found in the crystal complexes with the Anabaena protein

[2].

The very different constraints on the ends of the minicircles and

loops give rise to a phase shift in the chain-length dependent

variation in the J factors of the two types of structures (Figure 2A)

and also in loops of different types (Figure S1 in the Supporting

Information). The offset in maxima and minima thus leads to

striking differences in the ease of looping compared to cyclization

at chain lengths where looping is highly probable and cyclization is

less likely, i.e., values of N where there is a local peak in the

computed J factors of looping and a dip in the J factors of

cyclization. The probability of forming a DNA loop bound to the

recognition headpieces of a rigid, V-shaped LacR structure in the

absence of HU, i.e., the ease of introducing a protein-free DNA

segment between the LacR-bound nucleotides in the model in

Figure 1B, can be 4–5 orders of magnitude greater than that

associated with the covalent closure of DNA of the same chain

length and an additional 3–5 orders of magnitude more likely if

formed on the same rigid assembly in the presence of HU (at levels

of one randomly bound HU dimer for every 150 bp of DNA). The

likelihood of chain cyclization in the absence of the structural

protein, however, slightly exceeds that of looping under the same

conditions at a few chain lengths where the DNA is less likely to

adopt the end-to-end arrangements required for binding to the

rigid V-shaped LacR complex. By contrast, the probability of loop

formation in the presence of HU always exceeds that of

circularization in the absence of the protein.

HU modulates the chain-length dependence of LacR-
mediated looping

The introduction of HU perturbs the regular oscillations in the

J factor with chain length found for both ring closure and looping

in the absence of the architectural protein (Figure 2). In contrast to

ring closure and looping without HU, where the chances of the

chain ends coming into appropriate contact increase with chain

length between 75 and 150 bp, the probability of LacR-mediated

DNA loop formation in the presence of HU is roughly comparable

in short chains of lengths differing by multiples of a helical turn

(10–11 bp). That is, the magnitudes of the peaks and valleys in the

J factors of looping show little, if any, dependence on chain length

over the range of values considered here. The bound HU dampens

the oscillations in J so that LacR-mediated loops are easily formed

at most chain lengths. The peaks and valleys in the latter looping

profile are 5–6 bp out of phase from those associated with

cyclization in the presence of HU [6]. The different constraints

imposed on the ends of the successfully closed loops compared to

those placed on a circular structure of the same chain length, in

combination with the local deformations of DNA induced by HU,

give rise to the shifts in phase and magnitude of the simulated

curves.

HU increases the mix of DNA loops formed on V-shaped
LacR

The complex chain-length-dependent variation of J with chain

length in the HU-bound loops reflects the predominance of

different types of DNA loops at different chain lengths, i.e.,

different orientations of bound DNA on the protein assembly

(Figure 1C). The loops responsible for the higher peaks in the plot

of J vs. N bind to the LacR headpieces in an antiparallel fashion

and those associated with the secondary peaks in a parallel fashion

(compare the populations of the antiparallel (A1, A2) and parallel

(P1, P2) loops with N and the corresponding plot of J vs. N in

Figure 3A). The secondary peaks in J become less apparent at

longer chain lengths, where they contribute to broad, asymmetric

valleys in the J(N) profile. Although some very short HU-decorated

loops adopt exclusively parallel or antiparallel orientations, most

DNA fragments bind to the rigid LacR headpieces in either

orientation. The likelihood of DNA looping in both orientations

Figure 2. HU enhances the looping propensities of DNA. The
probability of DNA looping between the headpieces of the rigid, V-
shaped LacR assembly in the presence (+) or absence (2) of HU exceeds
that of forming protein-free DNA minicircles of the same chain length N.
The looping and cyclization propensities, or J factors [32], in (A) are
obtained from the fraction of simulated configurations in ensembles of
1012–1016 fluctuating duplexes with chain ends in the requisite spatial
disposition. The cartoon in (B), constructed using 3DNA [64,65] from the
base-pair step parameters of successfully closed chains, illustrates the
relative deformations of DNA entailed in cyclization compared to the
formation of parallel and antiparallel loops of the same chain length
(105 bp) and the different constraints on DNA ends. Configurations of
HU-bound loops in A are generated such that there is one HU dimer
randomly bound, on average, every 150 bp of DNA in the simulated
ensembles. The double helix is assumed to be naturally straight in its
equilibrium rest state, inextensible, and capable of isotropic bending
and independent twisting at the base-pair level. The protein-bound
DNA is modeled implicitly in terms of the base-pair-step parameters
found in the currently best-resolved crystal structure of operator-bound
LacR [31] and the four high-resolution structures of DNA with Anabaena
HU [2–4]. The shading of blocks in B denotes the minor-groove edges of
the base pairs and the small arrows the end-to-end separation and
direction of terminal base pairs. Note that the illustrated loops include
only the (inner) halves of the bound operators counted in the chain
length.
doi:10.1371/journal.pone.0056548.g002

Interplay of Protein and DNA on the lac Operon
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on LacR increases with increase in chain length. The oscillatory

changes in loop type stem from the different spatial constraints

imposed on the ends of parallel vs. antiparallel loops (see

Figure 2B).

The DNA loops bound to the rigid LacR assembly in the

absence of HU show a less pronounced, chain-length-dependent

alternation of loop type (Figure 3B). The computed preference for

antiparallel looping at different chain lengths agrees with our

earlier analytical assessment of the cost of looping DNA in all

possible orientations on the rigid V-shaped LacR assembly

[27,29]. The small fraction of parallel loops found here occurs at

chain lengths in the vicinity of the local dips in the J factor. Close

examination of the J(N) plot (Figure 3B) shows that these states

occur at values of N where there is a slight shoulder in the curve

brought about by the secondary looped configurations. The J

factors associated with the formation of the four kinds of LacR-

mediated loops reveal the greater difficulty in binding DNA in

parallel compared to antiparallel orientations on the protein

assembly (see Figure S1 in the Supporting Information).

DNA chain length controls the uptake of HU on LacR-
mediated loops

In addition to the variation in binding orientation, the LacR-

mediated DNA loops formed on the rigid V-shaped assembly in

the presence of HU take up different numbers of proteins at

different chain lengths (Figure 4). The amount of bound HU

depends upon loop type. The antiparallel loops that contribute to

the local maxima in the J factors typically bind a single HU dimer,

whereas the parallel loops found at the dips in J generally take up

2–3 dimers. Moreover, the HU composition in the antiparallel

loops changes abruptly with increase in chain length, particularly

at low values of N. The parallel loops, by contrast, tend to bind two

HU dimers regardless of chain length. Small populations of

parallel loops with one or three bound HU dimers accumulate

with increase of chain length. See Figure S2 in the Supporting

Information for the chain-length-dependent variation in the

number of HU dimers bound to the four types of DNA loops

formed on the rigid LacR complex.

DNA looping on rigid LacR mimics key in-vivo looping
properties

The J factors of DNA loops attached to the rigid LacR assembly

(Figure 5A) mimic the complex, chain-length-dependent variation

in looping propensities deduced from gene-expression profiles [11–

13], here re-expressed as J factors (see Methods). Specifically, the

simulations performed in the presence of HU capture the peaks

and valleys in looping occurrences detected in wild-type cells and

successfully distinguish the primary and secondary peaks in these

data. The computed values of the J factor and the amplitudes of

the J(N) profiles of the HU-bound loops, however, exceed those

extracted from experiment. The simulations performed in the

absence of HU show the decrease in gene-expression levels found

in mutant cells that do not express HU [12,13] as well as the

observed oscillatory variation in J with chain length. The

computed looping probabilities, however, fall substantially below

those found upon deletion of the HU gene, and the amplitude of

the simulated J(N) profile of HU-free DNA greatly exceeds that

deduced from experiment.

Figure 3. HU increases the mix of DNA loops formed on LacR.
The types of DNA loops formed on the V-shaped LacR assembly
underlie the chain-length-dependent variation in the J factor. Note the
more complex plot of J(N) and the greater diversity of loops obtained in
the presence (A) compared to the absence (B) of randomly bound HU
molecules. The diversity is expressed in terms of the fraction of loops
floop with DNA bound to LacR in one of the four specified orientations.
See Figure 1C for schematics of the antiparallel (A1, A2) and parallel (P1,
P2) forms and the legend to Figure 2 for computational details. The
wider range of N in (A) vs. (B) reflects the greater ease of forming short
LacR-mediated loops in the presence of HU.
doi:10.1371/journal.pone.0056548.g003

Figure 4. DNA chain length controls the uptake of HU on LacR-
mediated loops. The distribution of HU molecules bound to DNA
loops mediated by the rigid, V-shaped LacR protein assembly varies
regularly and abruptly with chain length N. The value of fHU

corresponds to the fraction of loops with the specified number of
bound HU dimers. See the legend to Figure 2.
doi:10.1371/journal.pone.0056548.g004

Interplay of Protein and DNA on the lac Operon
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Opening of LacR captures other known looping
properties

Allowance for global deformations of the LacR assembly

dampens the simulated variation in J with chain length compared

to that found under identical conditions with the rigid LacR

template (Figure 5B). The model assumed here in the absence of

high-resolution structural information — the ‘free’ (energetically

unpenalized) opening of LacR between the V-shaped crystallo-

graphic structure and a fully extended form via rotational changes

Da about an axis through the four-helix bundle that holds the two

arms of the complex in place (see Methods) — significantly

enhances the looping of DNA fragments of the lengths least likely

to form on the rigid LacR template, the reference state where Da is

zero. The deep local minima in the J(N) profiles of HU-free DNA

in Figure 5A become secondary maxima or shoulders on primary

maxima in Figure 5B. In addition, some of the higher peaks in J

occur at slightly longer chain lengths than those associated with

the rigid LacR model. These changes in phase reflect the changes

in twist imposed on the ends of the DNA loop by the simple

opening motion. Alternate pathways that couple rotations about

the long axes of the LacR arms with global opening of the complex

and/or impose an energy penalty on large-scale deformation [27]

could preserve this phasing. On the other hand, the amplitudes of

the J(N) profiles determined using the deformable LacR model

compare more favorably with the range of values extracted from

lac-expression studies than those found for loops formed on the

rigid LacR structure. Moreover, the deviations between the

predicted looping propensities of the HU-free DNA attached to

the deformable repressor protein and the repression levels found in

mutant cells are smaller than the corresponding differences

obtained with the V-shaped model. The variation in LacR has a

lesser effect on the J factors of the HU-bound loops, i.e., the

deviations between predicted and observed values are comparable

for loops formed on rigid and deformable LacR. As described in

further detail below, the structural response of DNA to the

assumed opening of the LacR assembly differs in the presence or

absence of HU.

DNA loop length and HU levels guide the opening of
LacR

The changes in the J factors associated with the opening of

LacR reflect unexpected changes in the configurations of the DNA

loops that are formed between the binding headpieces of the

tetrameric assembly. The separation of the bound operators, i.e.,

the distance between the ends of the intervening loop, increases

with increase in the angle between the arms of LacR. The degree

of opening in the complex assembly depends upon both the DNA

chain length and the presence or absence of HU (Figure 6). For

example, the change in the angle of opening, Da, between the

arms of the LacR assembly is less pronounced when bound to

DNA of lengths more likely to close into loops (points of higher

density on the contour plots), and the variation in the opening

angle with chain length is muted in the presence compared to the

absence of HU.

In the absence of HU, the opening angle exhibits a strong

periodic dependence on chain length (Figure 6B). The LacR

assembly opens by 10–40u from the V-shaped structure when

bound to the ends of a DNA loop corresponding to one of the

higher peaks in the J factor and by 60–120u when associated with

a loop where there is a secondary peak in J. The full range of

LacR opening occurs for HU-free DNA loops at selected

intermediate chain lengths, e.g., loops with center-to-center inter-

operator distances of 113, 123, 134, or 144 bp. By contrast, the

opening of the LacR proteins that anchor DNA loops in the

presence of HU is limited (Figure 6A). The LacR opening angle is

10–15u on average when attached to loops with a J factor at or

near a local maximum and 30–40u when bound to loops with a J

factor in the vicinity of a local minimum. The mean angle between

the protein arms, however, slowly increases with the length of

bound DNA (see line plots above the respective contour surfaces in

Figure 6). As a result, roughly 20% of the LacR tetramers that

incorporate HU-bound DNA loops of 140–150 bp open by 50u or

more, and the majority of repressors attached to HU-free DNA of

these lengths deform beyond this extent.

LacR deformability changes the mix of DNA loops and
levels of bound HU

Allowance for opening of LacR preserves general features of the

DNA loops formed on the rigid LacR assembly. Specifically, the

loops anchored to the deformable template exhibit chain-length-

dependent variations in loop type and HU uptake similar to those

Figure 5. DNA loops simulated in the presence of HU and
deformable LacR capture in-vivo looping properties. The
predicted ease of DNA loop formation between the headpieces of (A)
a rigid V-shaped LacR complex and (B) a deformable LacR assembly
mimics looping propensities deduced from the in-vivo expression of lac
genes [11–13]. The chain-length-dependent gene-expression profiles of
E. coli cells are expressed as J factors using Eqn. (4). Values of J for a
strain with wild-type (WT) proteins and a mutated strain (DHU) that
cannot express HU are depicted respectively by large and small dark
symbols, with data reported in different publications for the same DNA
construct [11–13] expressed as average values. The simulated J factors
reflect the likelihood that an ideal, naturally straight DNA molecule folds
along a pathway compatible with the spatial constraints imposed by
the binding of LacR and the presence or absence of HU (points
connected respectively by thick and thin lines).
doi:10.1371/journal.pone.0056548.g005

Interplay of Protein and DNA on the lac Operon
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reported in Figures 3 and 4 for loops attached to the rigid LacR

assembly (see Figures S3, S4, S5, S6 in the Supporting Information

for histograms and contour surfaces associated with the DNA

loops bound to deformable LacR). Loops of the same chain length,

however, do not necessarily bind the same number of HU dimers

or attach to the LacR headpieces in the same manner. As evident

from the molecular snapshots in Figure 7, the opening of the

repressor generally perturbs the spatial arrangements of LacR-

bound DNA whether or not HU is present. The examples are

illustrative of the changes in global structure found in small DNA

loops that differ in length by roughly half a double-helical turn and

correspond to states near local maxima and minima in the J(N)

profiles. The 109-bp loops, illustrated on the left half of Figure 7A,

form with roughly tenfold greater likelihood on the rigid LacR

assembly than the 115-bp loops, depicted on the same half of

Figure 7B. The corresponding loops formed on the deformable

LacR template, shown on the right halves of the two images, occur

with equivalent to roughly fourfold greater frequency in the

respective absence or presence of HU.

Variation of LacR structure in the absence of HU has limited

effect on the configurations of the 109-bp loops, which adopt

relatively similar antiparallel arrangements on rigid and deform-

able LacR assemblies (Figure 7A, top right and left). By contrast,

the opening of the protein rearranges the tightly curved, HU-free

115-bp loops anchored in antiparallel orientations on the V-

shaped structure to extended forms bound in parallel orientations

on the deformable template (Figure 7B, top right and left). The

different responses in DNA at the two chain lengths mirror the

degree to which the LacR opens upon loop formation. The change

in the mean opening angle ÆDaæ between the arms of DNA-bound

LacR is much smaller for the 109-bp loops for than the 115-bp

loops, with respective values of 27u and 87u. The degree of

opening in the latter structures is comparable to that found

previously to account for the DNase I cutting properties of very

short HU-free LacR-mediated DNA loops [27].

The effects of LacR opening on the DNA looping pathways are

especially pronounced in the presence of HU. Whereas nearly all

the 109-bp loops bound to the rigid LacR protein adopt

antiparallel configurations in the presence of HU, those formed

on the deformable assembly include a notable proportion of

parallel arrangements under the same conditions (Figure 7A,

bottom left and right). The fraction of HU-bound 115-bp loops

anchored in parallel orientations to deformable LacR exceeds the

fraction successfully attached to the rigid LacR template

(Figure 7B, bottom right and left). The opening of LacR changes

the number of HU dimers bound to the looped DNA. Slightly

more HU binds, on average, to loops anchored to a deformable

template than to the rigid LacR structure (1.3 versus 1.1 HU

dimers per 109-bp loop and 1.9 versus 1.8 dimers per 115-bp

loop).

LacR opening contributes to in vitro looping of DNA
The values of the J factors obtained from the simulations

performed in the absence of HU bracket the values found for short

DNA loops in tethered particle motion studies [36] (Figure 8). The

computed likelihood of forming short LacR-mediated loops bound

to the headpieces of the rigid tetrameric assembly is slightly lower

than the observed measurements, and that of looping DNA on the

deformable LacR structure is slightly higher than the experimental

data. The latter loops, however, take better account of the

observed responses of surface-tethered DNA molecules to internal

loop formation than the former. Specifically, the predominant

parallel orientations of the HU-free 94-bp loops formed on the

deformable LacR assembly, where the increment in the simulated

opening angle Da fluctuates around a mean value of 27u, would

have a lesser effect on the end-to-end extension of the long DNAs

in which they are embedded than the corresponding 89- and 100-

bp loops, which are predicted to adopt antiparallel arrangements

on more opened (Da = 71–79u) LacR structures. Indeed, the DNA

chains capable of forming internal LacR-mediated loops of 94 bp

in solution are 100–150 Å longer than those with the same O1 and

Osym operator sites separated by 89 or 100 bp [36]. The DNA

loops attached to the rigid LacR template do not account for this

difference in chain extension. Simulated chains of these lengths

form on the rigid protein assembly in similar antiparallel

orientations.

The predicted occurrences of loops of selected chain lengths

anchored in either antiparallel or parallel orientations against

opened or closed tetramer structures also provide a rationale for

the two distinct types of looping detected experimentally. For

example, the predicted configurations of 153- and 158-bp loops

Figure 6. DNA loop length and HU levels govern the opening
of LacR. Contour surfaces of the likelihood of DNA loop formation as a
function of chain length N and the change in the LacR opening angle
Da reveal the deformations of the repressor induced by DNA chain
length and suppressed by HU. Note the narrower range and lesser
variation in Da found in loops (A) simulated in the presence of
randomly bound HU compared to (B) those generated in the absence of
the architectural protein. The average values of the opening angle at
each chain length are reported in the line plots above the contour
surfaces. The blue-to-red scale on the lower right denotes the
probability of loop formation over the specified range of opening
angles and chain lengths. Red denotes the more easily formed loops
with higher J factors and blue the loops with lower J factors.
doi:10.1371/journal.pone.0056548.g006
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Figure 7. The composite interactions of DNA, LacR, and HU produce a multiplicity of looped states. Molecular snapshots reveal the
complex interplay of protein and DNA structure in simulated LacR-mediated DNA with (A) 109 and (B) 115 base pairs between the centers of bound
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appear to account for the motions of beads attached to the ends of

constructs with internal loops of these sizes [35]. Whereas the

former loops anchor preferentially in antiparallel orientations on

partially opened LacR structures, the latter form on both opened

and closed tetrameric assemblies (Figure S6 in Supporting

Information). The distinct end-to-end differences in the simulated

ensembles mirror the tether lengths detected experimentally, i.e., a

single state for the shorter loops and two states for the longer loops

[35].

The opening and closing of the LacR assembly that accompa-

nies the simulated formation of DNA loops of different sizes also

accounts for the chain-length-dependent variation in looping

topology detected in recent fluorescence resonance energy transfer

studies [22]. Notably, both the predicted and observed opening of

the tetramer is greater when attached to DNA of lengths less easily

closed into loops. Our models, however, do not take account of the

long, naturally curved DNA fragments that comprise roughly 60%

of the experimentally generated loops and lie in different settings

with respect to the lac operators. Whereas the naturally straight

DNA considered in our computations shows no preference to

orient on LacR in one antiparallel form over the other, the

centrally positioned curved insert apparently contributes to the

propensity of many of the experimental constructs to adopt one

antiparallel arrangement in preference to the other. Moreover,

differences in DNA sequence near the ends of the constructs, but

between the LacR-bound operators, appear to influence the

relative populations of loops of the same length. For example, only

one of the five 156-bp constructs adopts an extended arrangement

consistent with the predicted looping. The other constructs bind to

LacR in one or the other antiparallel orientation or sample a mix

of antiparallel and parallel states. Interpretation of this rich set of

data with a model that takes account of the intrinsic structure and

deformability of individual base-pair steps, including the setting of

naturally curved inserts, promises to reveal new insights into the

sequence-dependent properties of DNA.

Discussion

Concerted protein-DNA interactions enhance DNA
looping propensities

The stiff, naturally straight double-helical structure of DNA

impedes formation of the short, protein-mediated looped struc-

tures implicated in bacterial gene regulation. Here we show how

perturbations of DNA induced by the random binding of the

nonspecific architectural protein HU and deformations of the Lac

repressor protein that anchors DNA enhance the likelihood of loop

formation. The precise arrangement of the DNA operators on the

anchoring protein determines the lengths of duplex most likely to

fit between the two binding sites, i.e., the number of turns of the

double helix with complementary strands in closest register with

those on the bound operators. The DNA chain length, in turn,

determines the preferred binding orientation of the loops on the

protein assembly. Chains with a greater looping propensity on

LacR tend to attach to the binding headpieces in antiparallel

arrangements and those with a lesser propensity in parallel

arrangements. The non-specific binding of the HU dimer

introduces sites of localized bending, untwisting, and helical axis

dislocation of DNA that not only reduce the separation between

points on the chain but also realign the double helix. The changes

in local structure appear to contribute to the greater build-up of

the architectural protein on the less readily formed DNA loops and

the enhanced likelihood of loop formation at such chain lengths.

The unanticipated interplay of DNA orientation and HU binding

levels (Figures 3 and 4) changes the simple oscillatory pattern of

looping preferences of pure DNA into a more complex chain-

length-dependent pattern (Figure 2A).

The opening of LacR from the crystallized V-shaped structure

similarly changes the strand alignment and three-dimensional

spacing of operators. The accompanying changes in the repressor

assembly with DNA chain length, however, differ from those

associated with HU, so that the combined effects of the two

proteins on DNA loop formation are not simply additive. For

example, whereas allowance for the binding of HU to loops

formed on the rigid LacR template or introduction of opening in

LacR in the absence of HU has little, if any, effect on the

orientations, shapes, and populations of 109-bp loops, the

combined effects of the two proteins generate new and different

types of loops (Figure 7A). In other words, the collective behavior

of the system is greater than the sum of its parts. Moreover, the

composite interactions of proteins and DNA create a multiplicity

of looped configurations that bring the predicted looping

propensities within range of the levels detected in vivo. The

structures that account for these data reveal surprising new

pathways that DNA may adopt between the headpieces of the Lac

repressor.

operators. Structures captured from computations performed in the absence and presence of randomly bound HU (upper and lower images in each
set) and with allowance for opening of LacR from the V-shaped tetrameric assembly (right and left images in the sets). Images rendered with PyMOL
(www.pymol.org) and drawn in a common viewing direction looking down the shortest principal axis of the Ca atoms in the LacR assembly, with the
core of protein strand A always shown on the left. The DNA is represented by a color-coded backbone (59 to 39 chain progression depicted by the
dark to light blue color change), and the protein by space-filled atomic representations (LacR in rose, HU in gold). The numbers below the images
denote the fraction of loops with the given loop orientation and the illustrated number of bound HU proteins in the simulated ensembles. Addition
(+) or removal (2) of HU and prohibition (Da = 0) or allowance (Da $0) for flexibility in LacR denoted along arrows.
doi:10.1371/journal.pone.0056548.g007

Figure 8. LacR opening contributes to in-vitro DNA looping.
Comparison of the simulated ease of LacR-mediated DNA loop
formation in the absence of HU with the looping propensities deduced
from tethered particle motion studies (filled-in circles bracketed by error
bars) [36] hints of possible LacR opening in vitro. Simulated values are
obtained from calculations with a rigid V-shaped protein complex
(Da = 0) and a deformable LacR assembly(Da $0) and connected
respectively by dashed and solid lines). See text for discussion of chain
extension.
doi:10.1371/journal.pone.0056548.g008
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The simulated structures capture the observed chain-
length dependence of looping

Significantly, the mix of looped states generated in the

simulations captures the chain-length dependent oscillations of

looping propensities extracted from gene-expression measure-

ments [11–13] (Figure 5). The absolute magnitudes of the

simulated J factors in the presence of HU, however, exceed those

associated with the measured repression levels in wild-type cells,

and the values of J computed in the absence of the architectural

protein fall short of the apparent looping behavior of mutant cells

that do not express HU. The dampening of the variation in J with

chain length, brought about by opening of the LacR model, hints

of similar global bending deformations in the cellular milieu, albeit

with concerted changes in twist consistent with the observed

phasing. Consideration of any one of a number of well-known

structural features of DNA, HU, or LacR — the sequence-

dependent dimeric structure and deformability of DNA [30], the

known propensity of HU to bind A+T-rich sequences [37], the

subtle differences in the structures of the Osym operators

(introduced in our model) vs. the O2 operator (used in the cited

experiments) on the LacR headpieces [38,39], etc. — could alter

the discrepancies in phasing. Indeed, the simple interchange of O1

and O2 operators on similar lac constructs shifts the experimen-

tally observed looping propensities such that chain lengths found

in one system to be most likely to form loops [11–13] become least

likely in the other [40] and vice versa.

Multiple protein factors contribute to ‘in vivo’ DNA
looping

The computations also suggest how both LacR and HU may

facilitate the looping of DNA in vivo. HU introduces the distortions

in DNA needed to form short loops with ease and LacR

deformability works in concert with HU to lower the barriers to

looping imposed by the DNA twist. The predicted probabilities of

loop formation attain the levels observed experimentally only in

the presence of HU (Figure 5). The periodic variation in the

uptake of HU with chain length (Figures 4, S2, S4) and the

concomitant opening and closing of LacR (Figures 6, S5, S6) allow

DNA operators with different spacings to align with nearly

comparable facility against the tetramer headpieces (Figure 5),

albeit via different folding pathways and loop orientations

(Figures 3, 7, S3). The correspondence between simulated and

measured J factors lends support to features of the model that

account for these data. For example, until now there was no

reason to expect to find different levels of HU on protein-mediated

DNA loops of different lengths and, to the best of our knowledge,

there have been no efforts to measure these values. The number of

bound proteins and the associated populations of parallel and

antiparallel loops depend as well upon the assumed binding levels,

i.e., HU concentration, and the pathways of HU-bound DNA.

Other architectural proteins found in abundance in E. coli but

not considered in the present calculations may also contribute to

the looping associated with lac gene repression. For example, Fis, a

protein found in even greater abundance than HU during rapid

cell growth [41], introduces relatively smooth bends in DNA upon

binding [42] and stabilizes DNA looping in vitro [43]. The non-

specific association of such a protein could potentially account for

the underestimates in the looping propensities of mutant HU-free

cells in the present work (Figure 5). Conversely, reduction in the

assumed levels of HU could bring the predicted J factors to the

apparent levels found in wild-type cells. A fourfold dilution of HU

reduces the simulated cyclization propensities of short DNA chains

by the order-of-magnitude difference found here between

predicted and observed looping probabilities [6]. Lesser distortions

of protein-bound DNA also lower the computed J factor. The

observed and computed propensities of DNA minicircle formation

in the presence of the less severely bent high-mobility-group

protein Nhp6A is 1–2 orders of magnitude lower than that found

with identical levels of HU depending upon DNA chain length [7].

The J factors extracted from experimental data depend upon the

assumed concentration of LacR in vivo, which in turn reflects

uncertainties in both protein number and nucleoid volume (see

Methods). The random binding of one HU dimer per 500 bp of

DNA brings the computed looping propensities within close range

of the behavior of wild-type (WT) cells [44].

Relationship to earlier ‘parameter-free’ predictions of
LacR-mediated looping

The remarkable ease with which short fragments of a naturally

stiff DNA molecule can loop between different binding sites on

protein assemblies in vivo has stimulated a large body of work on

the nature of protein-mediated DNA looping, including studies

like the present of the Lac repressor-DNA assembly based on the

known physical properties of DNA and the constraints imposed by

the LacR complex on DNA loop formation. The approach taken

here and by several other groups [45–51] differs from the frequent

practice, mentioned in the Introduction, of fitting a set of model

parameters to experimental data and extracting the apparent

helical structure and elastic properties of the DNA. There are no

free parameters in the model. DNA is described, instead, in terms

of known molecular properties, i.e., the intrinsic structures and

fluctuations of successive base pairs in the free and protein-bound

state, and the correspondence with experimental data can be

directly related to features of the model.

Our estimates of the looping propensities of DNA anchored to

the V-shaped LacR assembly in the absence of HU accordingly

overlap with the recent computations of Towles et al. [50], who

adapted our earlier base-pair-level Monte-Carlo treatment of

DNA cyclization [6,28] to interpret the looping of DNA detected

in tethered particle motion experiments. The much looser bounds

imposed on the ends of the simulated loops in that work, however,

dampen the oscillations in the J factor with chain length compared

to the variation reported here for corresponding chain lengths.

Indeed, the predicted amplitude in J is even lower than that found

here with allowance for LacR opening. The changes in loop

topology associated with HU binding in the present work are

similar in spirit to the altered folds of DNA previously reported by

us upon incorporation of DNase I and CAP in determination of

the minimum-energy configurations of short LacR-mediated loops

[27,29] and by Perkins and associates [48,49] in the analysis of the

loops formed by intrinsically curved DNA sequences. The present

calculations and our recent simulations of DNA ring closure [6]

are unique in allowing for non-specific placement of HU and likely

structural fluctuations in the bound architectural protein. Our

strict adherence to anchoring conditions that restrict the DNA

operators to the curved pathway found in the crystal complex with

the Osym operator [31], however, preclude the formation of loops

that wrap on or around the LacR surface. The formation of such

loops requires drastic changes in the operator pathways [51].

Incorporation of other motions in the LacR-DNA complex, such

as rotations of binding headpieces like those captured in molecular

dynamics simulations [46] or deformation of protein-bound DNA

operators similar to those detected in NMR measurements [39],

may allow for the wrapping of DNA on the LacR assembly and

may enhance the likelihood of loop formation beyond the levels

found here with hypothetical LacR opening motions. Explicit

treatment of electrostatic interactions of the DNA polyanion and
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the many charged amino acids of LacR and HU may also change

the looping propensities. The present calculations introduce no

energetic penalties to limit the degree of LacR opening. The

allowance for ‘free’ global deformations, however, reveals a chain-

length dependence of repressor opening missed in studies that

restrict the tetramer to fully closed or extended conformations

[50,52]. The coordinated variation of DNA loop type and

repressor opening helps to resolve conflicting interpretation of

the in-vitro looping properties of DNA, e.g., whether the distribution

of looped states revealed in tethered-particle motion studies reflects

repressor opening or the mix of DNA orientations on a rigid

protein. Our findings suggest that the two processes may occur in

concert.

New directions
Consideration of the detailed structures of protein and DNA in

simulations of protein-mediated DNA looping reveals new insights

into ways that these molecules may interact at a local as well as a

global level. The DNA adopts different types of folds at different

chain lengths, nonspecific proteins like HU bind in different

numbers at these chain lengths, and anchoring proteins like LacR

deform to different degrees. The complex interplay of species is

surprising and beyond the expectations of conventional, more

phenomenological interpretations of DNA looping.

Our direct approach to loop formation allows us to take precise

account of the contributions of individual proteins to DNA

topology, both at the molecular level presented here and in terms

of classic topological variables. We are already taking advantage of

rigorous new methods to assess the geometry and topology of the

simulated DNA pathways [53] and measuring the changes in the

distributions of writhing numbers and total twist of loops

generated under different conditions [44]. We can examine the

supercoiling of DNA minicircles formed upon cyclization of LacR-

looped complexes [17] by combining the simulated structures of

loops of different lengths. Superposition of the two types of

antiparallel loops formed on a given LacR template, for example,

produces a figure 8 configuration. We can also include supercoil-

ing by adding base pairs to the ends of a simulated loop and

constraining the linking number of the composite DNA.

We will introduce other molecular species into the simulations

as structural information becomes available. For example, there is

no currently known structure of the Lac repressor bound to both

DNA and isopropyl b-D-1-thiogalactopyranoside (IPTG), a

molecular mimic of allolactose that induces transcription of the

lac operon. Gene expression studies [11] suggest that such a

complex may exist since repression persists in the presence of

inducer. Moreover, the structure may differ from the LacR

complex with DNA alone since the chain-length-dependent

expression levels differ in phase. Similarly, accumulating structural

information on how the histone-like nucleoid-structuring (H-NS)

protein interacts with DNA and brings distant fragments into close

contact [54,55] promises to add new insight into how the protein

destabilizes rather than stabilizes small loops [12].

Finally, Monte Carlo simulations of the type employed here

offer no insights into the dynamics of looping, such as the rates of

loop closure and opening. New methods that take account of time-

dependent fluctuations of clamped DNA structures [56] may help

in the future to shed light on these processes.

Methods

DNA model
DNA is modeled at the level of base-pair steps in terms of six

rigid-body parameters: three angular variables (h1, h2, h3) termed

tilt, roll, and twist and three variables (h4, h5, h6) called shift, slide,

and rise with dimensions of distance [57]. The base pairs are

represented by rectangular slabs and the configuration of a DNA

segment of N+1 base pairs, i.e., N base-pair steps, is specified by

giving, for 1#n#N+1, both the location rn of the center of the slab

that represents the nth base pair and a right-handed orthonormal

frame d0
1,d0

2,d0
3

� �
that is embedded in the base pair [58].

The potential governing the fluctuations in base-pair steps is

assumed to follow a quadratic expression of the form:

Y~
1

2

X6

i~1

X6

j~1

fijDhiDhj , ð1Þ

where the Dhi are deviations of the base-pair-step parameters hi

from their intrinsic values h0
i and the fij are ‘stiffness’ constants. A

configuration of DNA is defined by the set of parameters at each

base-pair step and is said to be relaxed when all parameters adopt

their intrinsic values. Although the local, sequence-dependent

structure and deformability of neighboring base pairs can be

incorporated in the h0
i and fij [30], the DNA is treated here as an

ideal, inextensible, naturally straight molecule with an intrinsic

helical repeat of 10.5 bp/turn and the canonical B-DNA rest state

and force constants reported in our earlier publications [6,28].

The allowed bending fluctuations are consistent with the

persistence length of mixed-sequence DNA (,500 Å), the

variation in twist is compatible with the equilibrium topoisomer

distribution of DNA minicircles [59] and the fluorescence

depolarization anisotropy of ethidium bromide molecules interca-

lated in DNA minicircles [60], and translational parameters are

held at the intrisinc B-DNA values (0, 0, 3.4 Å). Use of this simple

model, in which all residues are subject to the same types of

deformations, is helpful in deciphering the effects of protein on the

global properties of DNA.

Chain construction
Generation of a three-dimensional representation of DNA

entails the transformation of the coordinate frame on each base

pair into a common reference frame. This is achieved using a serial

product of matrices An that incorporate the 361 displacement

vector rn and the 363 rotation matrix Tn,n+1, which relate the

coordinate frames on successive base pairs (n, n+1):

A1:N~A1A2 � � �AN{1AN , ð2Þ

where

An~
Tn,nz1 rn

0 1

� �
: ð3Þ

The Tn,n+1 and rn in this expression are generated from the rigid-

body parameters at each base-pair step using an analytical

formalism [61–63] that allows for the characterization of base-

pair arrangements independent of chain direction in known

structures and the precise reconstruction of models from these

values [64,65]. The 0 is a 163 null matrix.

The components of A1:N yield information about the properties

of the chain as a whole. For example, r1:N, the component of A1:N

analogous to rn in An, is the end-to-end vector of the N bp-step

chain, and the 3,3 element of A1:N is the angle c between the

normals of terminal base pairs (1 and N+1). The trace of the

accumulated transformation matrix T1:N is a function of c and the

end-to-end twist w [28].
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Protein-bound DNA
The presence of HU on DNA is modeled, as described

previously [6], by incorporation of the appropriate set of base-

pair-step parameters in a matrix AHU, which is the product of the

generator matrices constructed from the rigid-body parameters of

the 14 protein-bound steps in one of the four currently available

high-resolution complexes of DNA and the HU homodimer from

the cyanobacterium Anabaena [2] (PDB entries 1P51, 1P71, 1P78).

The DNA bound to LacR is similarly expressed by two matrix

products, AO3 and AO1, generated from the rigid-body parameters

of the 13 base-pair steps bound to each of the repressor

headpieces. In the absence of a high-resolution structure of the

LacR-DNA assembly with the O3 operator bound to one half of

the complex and the O1 operator to the other, the LacR-bound

DNA fragments are assumed to be congruent and are assigned the

rigid-body parameters of the palindromic Osym operator associ-

ated with the LacR dimer in the 2.6-Å resolution structure [31]

(PDB entry 1EFA). The assembly of two such dimers into the V-

shaped protein-DNA complex illustrated in Figure 1B is

performed by superposition of atoms from the dimer in common

with those in each half of the 2.7-Å resolution structure of the

tetramer without DNA-binding headpieces [14] (PDB entry 1LBI).

The same DNA-binding geometries are used in the opened forms

of LacR, which is modeled, as described in more detail below, by

rotating the dimeric arms about an axis located within the four-

helix polypeptide bundle at the tip of the V-shaped structure and

running roughly perpendicular to the plane in which the

projection of the tetrameric assembly forms a symmetric V.

Motions of this sort appear to connect the known crystalline forms

of LacR [14,15,21].

The HU, when present on DNA, is placed at random, non-

overlapping locations between the LacR-bound operators attached

to the ends of the chain. The HU can be positioned with respect to

either strand of DNA, yielding eight different HU-DNA config-

urations for each bound dimer site [6]. The operators are attached

to the LacR headpieces in two orientations, i.e., pointing toward or

away from the symmetry axis passing though the tip of the V-

shaped complex and thereby yielding four distinct orientations of

the DNA loops on the protein assembly [26,27] (Figure 1C). The

HU binding events introduce an overall bend of 112–129u in the

DNA, depending upon the selected template. The cited degree of

bending corresponds to the angle between the helical axes of the

DNA at the two ends of the protein-bound complexes. The

directions of the axes are averages of the local helical axes,

computed with the 3DNA software [64,65], for the last two base-

pair steps. The angle between DNA operators depends upon the

assumed extent of LacR opening (see below).

Configurational sampling
Representative configurations of DNA chains are obtained, as

described previously [28], by direct Monte-Carlo enumeration

using a standard Gaussian random-number generator [66] and a

modification of the Alexandrowicz half-chain pairwise-combina-

tion technique [67]. The random placement of the nonspecific HU

protein on DNA includes corrections for the potential overlap of

bound proteins and the generation of partial binding sites on

simulated half chains as detailed in full elsewhere [6]. The

probability that a site on DNA is occupied by HU, one HU dimer

per 150 bp of DNA, corresponds to the level of protein present

during the exponential growth phase of E. coli, i.e., ,30,000 HU

dimers [41] in the presence of a 4.66106-bp genome [68]. The

fixed concentration of HU is consistent with the relatively evenly

scattered distribution of HU in the E. coli nucleoid [69].

The configurations of DNA chains capable of closing into

minicircles or looping between the headpieces of the LacR

assembly are identified from the spatial disposition, i.e., rigid-body

parameters, of terminal base pairs. A joining step, which

introduces a phantom base pair at the far end of the chain, is

included in the calculations to test for the desired end-to-end

placement. The six step parameters that relate the coordinate

frames on the first and the last (phantom) base pairs should be null

in the wanted configuration. The end-to-end vector r1:N+1, the

global bend angle c, and the net twist angle w should also be zero,

and the accumulated matrix product A1:N+1 = A1:NAN:N+1 thus

equal to the 464 identity matrix. See Figure S7 in the Supporting

Information for a schematic of the constraints placed on the

terminal base pairs of a DNA fragment constrained to a specific

end-to-end arrangement.

The joining step used in the assessment of cyclization makes use

of the Gaussian sampling technique. A randomly configured base-

pair step subject to the assumed elastic potential is added through

the components of AN:N+1. The step introduced in the determi-

nation of LacR-mediated looping incorporates the rigid-body

parameters, found in the complex of LacR with the DNA

operators, that relate the coordinate frames on the first and last

anchored base pairs, i.e., the matrix TN:N+1 and the vector rN:N+1

that express the coordinates of the first base pair of O3 and in the

frame of the last base pair of O1. The latter parameters depend

upon the conformation of LacR and are obtained for the open

forms of the protein by relating the aforementioned coordinate

frames on O3 and O1 to a coordinate frame embedded in one of

the dimeric arms of the V-shaped assembly. The origin of this

intermediate frame lies on the a-carbon (Ca) of Leu342 in the

tetramerization domain of the inner protein. The x-axis runs from

this atom to the Ca of Leu71 in the ligand-binding domain of the

same protein, and the z-axis is perpendicular to the plane that

contains the aforementioned atoms and the Ca of Thr336 from the

tetramerization domain of the second protein in the dimer. The

opening of LacR is effected by a rotation Da about the y-axis of

this frame. (See Figure S8 and Table S1 in the Supporting

Information for molecular images of various degrees of simulated

LacR opening and the associated rigid-body parameters of the

joining steps used to detect loop closure.) Here, for simplicity, we

assume that the opening of the repressor is ‘‘free’’, with no energy

penalty associated with the disruption of the small contact

interface believed to stabilize the V-shaped form. Introduction of

a penalty term proportional to the surface area of the contact

interface in the closed complex does not change the general

findings reported herein [44].

Because the chances are very low that the added base pair will

superimpose perfectly on the first base pair in any simulated

structure, the end conditions are relaxed and only configurations

that fall within the following bounds are classified as closed or

looped (depending upon the nature of the joining step): (i)

r1:N+1,15 Å, (ii) cos c $0.98, cos w $0.98. The angular limits

constrain the trace of T1:N+1 to values very close to 3 and the radial

bound limits the distance to excursions no more than 8.8% of the

contour length of the shortest (50-bp) sampled DNA chains.

Gene expression and looping J factors
The levels of gene expression determined in wild-type and HU-

depleted E. coli cells [11–13] are converted to J factors using the

the following method. The measured efficiency of repression is

assessed with a quantity called the reporter activity E9, defined as

the ratio of the raw b-galactosidase activity of a construct with two

operators Osym and O2 (and hence capable of forming a loop)

and that of a construct with a single operator O2. According to
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Sadler and Novick [70], these activities are proportional to the

probability that the operator closer to the promoter site (the O2

operator in the case of the constructs used in [11–13]) is not

occupied by a repressor. Following the derivation of Han et al.

[36], we can evaluate the potential states of binding of a repressor

to single-operator and double-operator constructs and express E9

as follows:

E0~

1zKOsym LacR½ �
� �

1zKO2 LacR½ �ð Þ

1z KOsymzKO2zKOsymKO2 LacR½ �z 1

2
KOsymKO2J

� �
LacR½ �

:ð4Þ

Here KOsym is the binding constant of LacR to the Osym operator

and KO2 the binding constant to the O2 operator, for which we

take the values KOsym = 1.36109 M21 and KO2 = 3.66107 M21.

These values are estimated using the method outlined by Zhang et

al. [24] with the assumed concentration of the LacR tetramer,

[LacR] = 103.8 nM, corresponding to the wild-type levels of LacR

produced by the engineered plasmid [11–13]. The latter value is

taken from the known copy number of LacR in E. coli detected by

equilibrium dialysis (an average of ten tetramers per cell) [71] and

the estimated volume of the E. coli nucleoid stored in the

CyberCell database (0.16 mm3) [72]. The concentration is roughly

fourfold lower if based on the reported cytoplasmic volume of E.

coli (0.67 mm3) [72]. Equation (4) is then solved for J in terms of the

measured value of E9.

Molecular reconstructions
Atomic-level representations of the protein-bound DNA loops

are generated by concatenation of three molecular fragments: (i)

the O3 DNA fragment at the start of the chain and the LacR

dimer to which it is bound, (ii) the simulated DNA loop with or

without bound HU, and (iii) the O1 DNA fragment at the chain

terminus and the associated LacR dimer. The coordinates of the

DNA are generated from the base-pair-step parameters using the

3DNA software [64,65]. The base-pair steps bound to the terminal

LacR dimers are assigned the rigid-body parameters found in the

high-resolution crystal complex and those on the intervening loop

are assigned the parameters found to place the ends of the

fragment in the vicinity of the desired arrangement. Any HU

molecules bound to the DNA loop are included in the latter set of

values. The coordinate transformations that effect the superposi-

tion of corresponding DNA atoms from the model and the

relevant crystal complex are then used to arrange the protein on

DNA. Molecular images are rendered with Chimera [73] or

PyMOL (www.pymol.org).

Supporting Information

Figure S1 Chain-length dependence of the probability
of DNA looping between the headpieces of the rigid, V-
shaped LacR assembly in different orientations com-
pared to the likelihood of forming protein-free mini-
circles of the same chain length. Note the differences in

magnitude and phase associated with the formation of antiparallel

(A1, A2) vs. parallel (P1, P2) loops and the similar phasing of the J

factors for the least easily formed (P2) loops and the minicircles, all

in the absence of HU. Top to bottom: A1; A2; P1; P2; minicircle.

(TIFF)

Figure S2 Chain-length dependence of the population of
HU molecules bound to the four types of DNA loops
mediated by the rigid, V-shaped LacR protein assembly.

Top to bottom: A1; A2; P1; P2. See the legend to Figure 2 for

details.

(TIFF)

Figure S3 Fraction of the four types of DNA loops floop

formed on the deformable LacR assembly and the
corresponding chain-length dependence of the J factor
determined in (A) the presence or (B) the absence of
randomly bound HU molecules.

(TIFF)

Figure S4 Fraction of HU molecules fHU bound to DNA
loops, of chain length N, mediated by the deformable
LacR protein assembly.

(TIFF)

Figure S5 Contour plots of looping probabilities, as a
function of chain length N and the change in the LacR
opening angle Da, for loops formed in different orienta-
tions on a deformable protein template in the presence of
HU. Distributions are normalized for each plot. See Figure S3 for

the relative abundance of each loop type. The blue-to-red scale at

the lower right denotes the frequency of loop closure.

(TIFF)

Figure S6 Contour plots of looping probabilities, as a
function of chain length and LacR opening angle, for
loops formed in different orientations on a deformable
protein template in absence of HU. See legend to Figure S5.

(TIFF)

Figure S7 Schematic of the geometric constraints used
to determine whether a linear DNA segment meets a
specific end-to-end arrangement. Here a sampled chain of N

base pairs (green blocks) adopts a configuration that approaches

the desired geometry (blue blocks). The end-to-end vector r (thick

black arrow) joins the Nth base pair of the simulated chain to that

in the perfectly configured chain. Precise chain alignment requires

that the net bend angle c between base normals, the end-to-end

Twist w (defined by the long axes and normals of the same base

pairs), and the components of r are null.

(TIF)

Figure S8 Molecular images illustrating the opening of
the LacR tetramer between the V-shaped model (Da = 06)
generated from known crystallographic information and
increasingly extended forms (Da = 30–1206) incorporated
in simulations of DNA looping.

(TIFF)

Table S1 Rigid-body parameters (hi, i = 1–6) describing
the spatial disposition of DNA operators bound in
different orientations on the Lac repressor assembly
as a function of the angle of opening, Da, between the
dimer halves.

(DOC)
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curvature of DNA influences LacR-mediated looping. Biophys J 93: 4342–4359.

49. Lillian TD, Goyal S, Kahn JD, Meyhöfer E, Perkins NC (2008) Computational
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