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Abstract

Our murine models of human monocytic ehrlichiosis (HME) have shown that severe and fatal ehrlichiosis is due to
generation of pathogenic T cell responses causing immunopathology and multi-organ failure. However, the early events in
the liver, the main site of infection, are not well understood. In this study, we examined the liver transcriptome during the
course of lethal and nonlethal infections caused by Ixodes ovatus Ehrlichia and Ehrlichia muris, respectively. On day 3 post-
infection (p.i.), although most host genes were down regulated in the two groups of infected mice compared to naı̈ve
counterparts, lethal infection induced significantly higher expression of caspase 1, caspase 4, nucleotide binding
oligomerization domain-containing proteins (Nod1), tumor necrosis factor-alpha, interleukin 10, and CCL7 compared to
nonlethal infection. On day 7 p.i., lethal infection induced highly significant upregulation of type-1 interferon, several
inflammatory cytokines and chemokines, which was associated with increased expression levels of Toll-like receptor-2
(TLR2), Nod2, MyD88, nuclear factor-kappa B (NF-kB), Caspase 4, NLRP1, NLRP12, Pycard, and IL-1b, suggesting enhanced TLR
signals and inflammasomes activation. We next evaluated the participation of TLR2 and Nod2 in the host response during
lethal Ehrlichia infection. Although lack of TLR2 impaired bacterial elimination and increased tissue necrosis, Nod2 deficiency
attenuated pathology and enhanced bacterial clearance, which correlated with increased interferon-c and interleukin-10
levels and a decreased frequency of pathogenic CD8+ T cells in response to lethal infection. Thus, these data indicate that
Nod2, but not TLR2, contributes to susceptibility to severe Ehrlichia-induced shock. Together, our studies provide, for the
first time, insight into the diversity of host factors and novel molecular pathogenic mechanisms that may contribute to
severe HME.
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Introduction

Human monocytic ehrlichiosis (HME) is an emerging tick-borne

disease caused by Ehrlichia chaffeensis, a Gram-negative obligate

intracellular bacterium that lacks lipopolysaccharide (LPS) [1–4].

E. chaffeensis causes pancytopenia and hepatic dysfunction, which

progress to a potentially fatal multiorgan system disorder that

mimics toxic shock syndrome despite antibiotic treatment [5–8].

Ehrlichiae infect several myeloid cells, such as macrophages,

monocytes, and dendritic cells, and thus cause systemic infection

[2,3,9–12]. In mice, innocuous or fatal ehrlichial diseases that

mimic different spectra of HME occur following infection with E.

muris and Ixodes ovatus Ehrlichia (IOE), respectively [13–15]. These

two Ehrlichia species are not only genetically and antigenically

related to E. chaffeensis but also cause human infections [14,15].

Lethal Ehrlichia infection is characterized by extensive tissue

damage in the absence of overwhelming infection, suggesting an

immune-mediated pathology [16–20]. Protective immunity

against Ehrlichia is mediated by interferon (IFN)-c production by

CD4+ T helper (Th)1 cells and natural killer T (NKT) cells [20–

22]. However, these cells undergo apoptosis at late stages of severe

infection [17,23]. Recently, we demonstrated that cytotoxic and

cytokine-producing NK and CD8+ T cells mediate tissue injury

and impair anti-Ehrlichia protective immunity during lethal

Ehrlichia infection [20,23].

Innate immune cells express many pattern recognition receptors

(PRRs) that are activated upon recognition of pathogen-associated

molecular patterns [24–28]. The most characterized PRRs are the

TLRs, which are transmembrane proteins localized either at the

cell surface or within endosomal membranes. Upon activation,

these receptors initiate signaling pathways dependent on adaptor

proteins, such as MyD88, that result in activation of nuclear

factor-kappa B (NF-kB) [26–30]. Other intracellular PRRs that

emerged as sensors for intracellular microbial infection are the

nucleotide-binding oligomerization domain (Nod)-like receptor

protein (NLR) family, which includes Nod1 and Nod2 [31–34].

Nod1 and Nod2 signal via the adaptor molecule Rip2, a protein

kinase required for activation of NF-kB and MAPK cascades,

resulting in production of many cytokines and chemokines. Nod1

and Nod2 activation are upstream sensory signals for activation of

the inflammasomes in the cytosol, which forms only in response to
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danger signals, including bacterial or viral infection. Activation of

the inflammasomes leads to cleavage of caspase 1, which in turn

cleaves pro-interleukin (IL)-1b and pro-IL-18, producing biolog-

ically active IL-1b and IL-18 [35–38]. These cytokines play

different roles in inflammation and host defense against pathogens

[39–42]. Currently, there are four defined inflammasomes.

NLRP3 and Nalp1 trigger activation in response to extracellular

adenosine-5’-triphosphate and pore-forming toxins [43,44].

NLRC4 is able to recognize many bacterial proteins found in

the bacterial type III secretion apparatus [35–38]. Absent in

melanoma 2 is able to sense cytosolic double-stranded DNA [45].

The first objective of this study was to better understand the

pattern of gene expression underlying immune responses against

Ehrlichia during tissue damage or recovery following lethal or

nonlethal infections, respectively. Our results suggest that genes

with specific biologic functions, including inflammasomes, TLR2

and Nod2, and several cytokines and chemokines are differentially

regulated during mild and severe ehrlichiosis. The second

objective is to examine the contribution of Nod2 or TLR2 to

host defense against Ehrlichia and pathogenesis of HME. Strikingly,

we found that TLR2-dependent host responses contribute to

protective immunity against Ehrlichia. In contrast, Nod2-depen-

dent host responses negatively regulate anti-Ehrlichia protective

immunity and promote the development of pathogenic immune

responses, thus enhancing susceptibility to Ehrlichia-induced toxic

shock.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the University of Pittsburgh in accordance with the

institutional guidelines for animal welfare.

Mice and Ehrlichia infection
Female C57BL/6J, B6.129-Tlr2tm1Kir/J, and B6.129S1-

Nod2tm1Flv/J mice of 8–12 weeks of age were obtained from

Jackson Laboratories (Bar Harbor, ME). All animals were housed

under specific pathogen-free conditions at the Animal Research

Facility in the University of Pittsburgh. Two species of monocytic

Ehrlichia were used in this study: the highly virulent IOE and the

mildly virulent E. muris. IOE and E. muris stocks were propagated

by passage through wild type C57BL/6 mice. Single-cell

suspensions from spleens harvested from mice 7 days post-

infection (p.i.) were stored in sucrose and potassium phosphate

(SPK) buffer (0.5 M K2HPO4, 0.5 M KH2PO4, and 0.38 M

sucrose) in liquid nitrogen and used as stocks. Mice were infected

intraperitoneally (i.p.) with a lethal high dose of IOE (104

organisms/mouse) or a nonlethal high dose of E. muris (2 6 105

organism/mouse). Mice were monitored daily for signs of illness

and survival.

Reverse transcription and real-time polymerase chain
reaction (RT-PCR) arrays

Quantitative RT-PCR was carried out for groups of genes that

are involved with different functions, such as immune regulation,

innate and adaptive immune responses, and host cell survival.

RNA was isolated from liver tissues using the Ambion RNA

isolation kit (Life Technologies, Grand Island, NY), and cDNA

was synthesized using the SA Biosciences RT2 First Strand Kit

(QIAGEN, Valencia, CA) following the manufacturer’s recom-

mendations. The expression levels of , 200 genes were

determined using SA Bioscience Pathway Finder RT2 ProfilerTm

PCR arrays for apoptosis, inflammasomes, cytokines, and innate

and adaptive immune responses following the manufacturer’s

recommendations. Data were collected using an Applied Biosys-

tems 7900 HT Real-Time PCR System. The array plate

contained 5 house-keeping genes, including GAPDH and b-actin,

and one set for genomic DNA contamination as reference genes

and a control. Comparative threshold cycle values were analyzed

using SA Biosciences software, and fold regulation values were

plotted. Fold regulation values were calculated by dividing the

expression fold changes of the candidate genes by the expression

fold changes of the reference genes using the comparative

threshold cycle method. Upregulation or down regulation of host

genes was determined based on comparison with naı̈ve mice.

Using cut-off criteria, a 5-fold upregulation or downregulation was

considered to be significant and of biologic importance.

Flow cytometry
Splenocytes were harvested, counted, and resuspended in

staining buffer at a concentration of 106 cells/tube. FcRs were

blocked with a mAb (clone 2.4G2) against mouse CD16 and

CD32 for 15 min. The following fluorescein isothiocyanate

(FITC)-, phycoerythrin (PE)-, PerCP-Cy5.5-, Alexa Fluor-, and

allophycocyanin-conjugated monoclonal antibodies (mAb) were

purchased from BD Biosciences: anti-CD3 (clone 145- 2C11),

anti-CD4 (clone RM4-4), anti-CD8a (clone 53-6.7), and anti-

NK1.1 (clone PK136). Appropriate isotype control mAb, includ-

ing FITC-, PE-, or allophycocyanin-conjugated hamster IgG1

(A19-3), rat IgG1 (R3-34), rat IgG2a (R35-95), mouse IgG1 (X40),

and rat IgG2b (A95-1) were purchased from BioLegend (San

Diego, CA). Lymphocyte and granulocyte populations were gated

based on forward and side scatter parameters; 20,000–50,000

events were collected using BD-LSR or BD FACSCalibur (BD

Immunocytometry Systems, San Jose, CA) flow cytometers. Data

were analyzed using FlowJo software (TreeStar, Ashland, OR).

In vitro splenocyte stimulation and cytokine enzyme-
linked immunosorbent assay (ELISA)

Spleens were harvested and single-cell suspensions were

prepared as described before [19–21]. A total of 2–56106 cells

were seeded into a 12-well tissue culture plate in RPMI,

supplemented with 10% heat-inactivated fetal bovine serum, 1%

HEPES buffer, and 100 mg/ml penicillin and streptomycin.

Splenocytes were cultured with and without IOE antigens. After

48 hours, the culture supernatants were collected and an IFN-c
concentration was determined using the mouse Quantikine ELISA

kit (R&D Systems, Minneapolis, MN) according to the manufac-

turer’s recommendations. The minimum detection limit for IFN-c
is 2 pg/ml.

Bacterial burden determination using real-time PCR
Total DNA was isolated from liver and spleen tissues using the

DNeasy Blood and Tissue kit (QIAGEN). Bacterial burden was

determined using a Step One Plus Real-Time PCR machine (Life

Technologies, Grand Island, NY) targeting the EM/IOE dsb gene

as previously described (16). The primers and probes used are as

follows: EM/IOE dsb-F: 59-CAG GAT GGT AAA GTA CGT

GTG A-39; EM/IOE dsb-R: 59- TAG CTA AYG CTG CCT

GGA CA-39; EM/IOE probe: (6FAM)-AGG GAT TTC CCT

ATA CTC GGT GAG GC-(MGB-BHQ). The eukaryotic

housekeeping gene gapdh was amplified using the following

primers/probes: GAPDH-F: 59-CAA CTA CAT GGT CTA
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CAT GTT C-39; GAPDH-R: 59-TCG CTC CTG GAA GAT G-

3’; GAPDH probe: (6FAM)-CGG CAC AGT CAA GGC CGA

GAA TGG GAA GC-(MGB-BHQ). The comparative cycle

threshold method was used to determine the bacterial burden as

described previously [19]. The results were normalized to the

levels of expression of the gapdh in the same sample and expressed

as copy number per 104 copies of gapdh [16,38]. PCR analyses

were considered negative for ehrlichial DNA if the critical

threshold values exceeded 40 cycles.

Histopathology and terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay

Tissue sections were fixed in a 10% solution of neutral buffered

formalin, dehydrated in graded alcohols, embedded in paraffin

wax, and stained with hematoxylin and eosin (H&E). Semi-

quantitative analysis of the liver lesions was carried out using three

parameters: the number of necrotic cells, the number of apoptotic

cells, and the number of inflammatory foci in each high power

field (HPF). TUNEL staining was performed on unstained tissue

sections, showing apoptotic cell death without focal necrosis, as

described previously.

Statistical analyses
The two-tailed t test was used for comparisons of mean values

for two experimental groups, and one-way analysis of variance was

used for comparisons of multiple experimental groups. Data were

represented by means 6 standard deviations (SDs) or standard

errors of the mean. P values P values # 0.001 were considered

highly significant (***); P value # 0.01 were considered moderately

significant (**), and p values # 0.05 were considered significant (*).

Results

Identification of transcripts altered by lethal Ehrlichia
infection

Previous murine studies indicated that protection against

Ehrlichia is mediated by IFN-c and CD4+ Th1 cells whereas

Ehrlichia-induced shock can be attributed to CD4+ Th1 hypore-

sponsiveness and the induction of pathogenic NK and CD8+ T

cells mediating host cell apoptosis and necrosis [17–23]. In this

study, we examined the expression of several genes that are

involved in host cell survival and innate and adaptive immune

responses in the livers of murine models of mild and fatal

ehrlichiosis caused by E. muris and IOE, respectively. We chose to

study the liver for two reasons: 1) the liver is the primary site for

Ehrlichia infection and pathology in humans and mice [5,7,12,13],

and 2) previous studies indicated that the spatial and temporal

changes in immune responses in the liver are strong predictors of

disease progression in a mouse model of fatal HME [23]. We

analyzed gene transcripts relevant to specific pathways, including:

apoptosis, inflammasomes, and TLR signaling, and innate and

adaptive immune responses. Overall, lethal or nonlethal infections

induced significant (p # 0.05) downregulation of several genes on

day 3 p.i. On the other hand, the majority of gene transcripts were

upregulated on day 7 p.i. with both bacterial species but with more

dramatic changes in response to lethal than nonlethal infection

(Table 1 and 2).

Lethal ehrlichiosis is associated with pro- and anti-
inflammatory cytokines, chemokine storm, and a
reduced Th1 response

We have recently shown that fatal ehrlichiosis in humans is

associated with higher serum levels of chemokines and pro-

inflammatory cytokines than detected in patients with mild

ehrlichiosis [17], [23]. Thus, we examined whether similar events

exist in murine models of fatal and mild ehrlichiosis. We found

that lethally infected mice express significantly elevated levels of

several chemokines/chemokine receptors compared to naı̈ve and

nonlethally infected mice on day 3 p.i., which include CCL3/MIP-

1a, CCL4/MIP-1b, CCL6, CCL7/MCP-3, CCL8/MCP-2, CCL9,

CCL12, CCL24, CCR2, CCR3, CXCL5, CXCL9/Mig, CXCL10/IP-

10, and CXCL13 (Table 1 and Fig. 1A and 1C). In addition to their

roles as chemoattractants for macrophages, T cells, NK cells, and

granulocytes, most of these chemokines also contribute to the

activation of macrophages and T cells. In addition, CXCL10 and

CXCL9 chemokines are induced by IFN-c. On day 7 p.i., in

addition to chemokines upregulated on day 3 p.i., lethal infection

further induced higher expression of CCL2, CCL6, CCL11, CCL19,

CCR7, CXCR1, and CXCL11 compared to nonlethal infection

(Table 1 and Fig. 1B and 1D).

Compared to naive or nonlethally infected mice, lethally

infected mice have increased expression of tnf-a at early and late

stages of infection, which was associated with upregulation of traf1,

but not traf2 (Fig. 1E and 1F). TRAF1 and TRAF2 proteins are

members of TNF receptors-associated protein family and they

mediate signal transduction from various receptors of TNFR

superfamily. Expression of the pro-inflammatory Il-1a was only

elevated in lethally infected mice at early, but not at late, stages of

infection (Fig. 1E and 1F). IL-6 expression was not significantly

upregulated in either infection group on day 3 p.i. but was highly

significantly upregulated on day 7 p.i. in response to lethal

infection than nonlethal infection (Table 1 and Fig. 1E and 1F).

Higher expression of tnf-a in lethally infected mice was also

associated with upregulation of anti-inflammatory il-10 on days 3

and 7 p.i. compared to nonlethally infected and naive mice (Table

1 and Fig 1G and 1H). Notably, differential overexpression of il-10

during lethal infection did not influence global ifn-c expression,

which was comparable in both lethally and nonlethally infected

mice on days 3 and 7 p.i. (Table 1 and Fig. 1G and 1H). However,

the ifn-c/il-10 ratio was lower in lethally compared to nonlethally

infected mice on day 3 p.i. (1/5 vs. 5) and on day 7 p.i. (3.5 vs. 22).

Since IL-10 and IFN-c have suppressor and stimulatory effects on

macrophages activation and Th1 responses, respectively, the

higher ratio of ifn-c/il-10 is a better indication of protective

immunity against intracellular pathogens such as Ehrlichia than the

level of each cytokine alone. Consistent with our previous studies

[17–21], the expression of Th2 or suppressive cytokines, such as il-

4, il-13, or TGF-b was negligible in all groups of mice (data not

shown).

Our data also showed that lethal IOE infection induced

significantly higher upregulation of IFN-b in the liver than that

induced by nonlethal E. muris infection (Fig. 1G and 1H). Although

IFN-bis known for its anti-viral effect, it promotes induction of

chemokines secretion, maturation of dendritic cells and activation

of cytotoxic NK cells and is associated with inflammasome

activation and regulation of IL-1b secretion [24,25,33]. Further,

the expression of IL-1receptor antagonist (il-1ra) was significantly

upregulated in nonlethal infection on day 3 p.i., while it was

upregulated in lethally infected mice on day 7 p.i. only (Table 1

and Fig. 1G and 1H). IL-1ra is a natural antagonist of IL-1a and

IL-1b signaling that prevents uncontrolled immune activation by

IL-1a/b through competitive binding to the IL-1 receptor.

Lethal ehrlichiosis is associated with activation of
inflammasomes

We have previously shown that lethal ehrlichiosis in mice is

associated with increased il-18 production relative to nonlethal

Roles of TLR2 and Nod2 in Monocytic Ehrlichiosis
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infection, suggesting inflammasome activation. Lack of IL-18/IL-

18R interaction protected mice from lethal Ehrlichia infection,

which revealed a detrimental role of IL-18 in this disease process

[46]. Our data here show that lethal infection also induced higher

expression of il-1b on day 7 (Fig. 2B), but not day 3 (Fig. 2A), when

compared to nonlethally infected mice. Late il-1b expression in

lethally infected mice correlated with an early higher expression of

caspase 1 and caspase 4 (also known as caspase 11) on day 3 p.i.

compared to nonlethal infection (Fig. 2C). The expression of

caspase 1 was similar in both groups of mice on day 7 p.i., whereas

the expression of caspase 4 remained higher in lethally infected

mice than in nonlethally infected mice (Fig. 2D).

Although lethal infection induced higher levels of caspases 1 and 4

on day 3 p.i., we detected downregulation of several inflamma-

somes genes (nlrp1, nlrp3, nlrc12) or slight changes in the expression

of several inflammasomes (nlrc4 and aim2) in both mice groups at

that time (Table 2 and Fig. 2E). However, on day 7 p.i., the liver

transcriptional profile showed higher levels of nlrp1 and nlrp12 in

lethally infected mice, whereas nlrp3 and nlrc4 transcript levels

were equally increased in both groups of infected mice compared

Table 1. Differential gene expression of chemokine and cytokines.

Post infection day 3 Post infection day 7

# Gene Symbol Non-lethal/E. muris Lethal/IOE Non-lethal/E. muris Lethal/ IOE

1 Ccl2 1.1 –1.3 38.7 978.9

2 Ccl3 4.6 26.2 5.7 147.7

3 Ccl4 1.2 13.2 16.6 234.4

4 Ccl5 1.5 1.0 4.9 78.9

5 Ccl6 1.4 15.3 2.5 1.9

6 Ccl7 –1.1 641.5 82.4 726.6

7 Ccl8 –1.1 130.3 15.3 281.3

8 Ccl9 1.7 7.9 3.8 8.2

9 Ccl11 1.2 2.0 2.7 28.3

10 Ccl12 2.6 520.1 48.4 452.1

11 Ccl19 –1.5 6.1 13.1 19.5

12 Ccl24 1.4 16.3 5.5 –4.2

13 CCR2 –1.1 8.9 7.5 3.7

14 Ccr3 67.0 361.4 3.0 2.4

15 Ccr7 –2.2 2.5 2.2 16.2

16 Cxcl1 1.5 1.4 23.6 80.4

17 Cxcl5 1.5 19.9 8.1 14.4

18 Cxcl9 –1.9 221.9 54.9 132.1

19 Cxcl10 –1.2 84.0 27.1 178.0

20 Cxcl11 –27.6 2.8 12.1 130.9

21 Cxcl13 1.8 12.9 2.8 9.3

22 Il1alpha 1.6 15.2 4.5 3.7

23 Il6 –1.2 1.1 5.1 24.9

24 Tnf 1.6 59.3 19.6 52.4

25 Tnfsf11 1.9 2.6 18.6 2.4

26 Tnfrsf10b 3.0 1.8 2.0 15.0

27 Tnfsf10 –1.3 9.3 4.3 8.2

28 Traf1 4.0 13.4 6.9 42.9

29 Traf2 –1.3 –1.1 125.5 2.4

30 Ifnb1 1.1 2.2 2.8 275.7

31 Ifng 4.8 7.1 111.9 154.8

32 Il12a 1.9 2.6 3.3 11.8

33 Il12b 1.5 2.1 19.9 32.7

34 Il10 –1.3 35.2 5.3 43.6

35 Il1ra 2.1 9.4 9.8 181.1

#1–21 Chemokine and their receptor
#22–29 Pro-inflammatory cytokines and signaling genes
#30–33 Type-1 interferons and Th1 cytokines
#34–35 Anti-inflammatory cytokines
doi:10.1371/journal.pone.0058514.t001
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to naı̈ve mice (Table 2 and Fig. 2F). Transcripts for the adaptor

molecule, Pycard (PYD and CARD containing domain), were

more upregulated in lethal infection on day 7 p.i. than (Fig. 2F).

Together, these data suggest that lethal—but not nonlethal—

infection is associated with inflammasome activation.

Upregulation of TLR2 and Nod2 signaling during late
stage of lethal Ehrlichia infection

Host cells express a variety of PRRs that recognize different

microbial molecular patterns, among which are extracellular and

endosomal TLRs and cytoplasmic Nod1 and Nod2 [24-28]. Our

data show that lethal and nonlethal Ehrlichia infection downreg-

ulated most Toll-like receptors (tlr2, tlr3, tlr4, and tlr9) on day 3 p.i.

(Table 2 and Fig. 3A). However, lethally infected mice had a

Table 2. Differential gene expression of TLR, Inflammasomes, and Apoptosis Receptors.

Post infection day 3 Post infection day 7

# Gene Symbol Non-lethal/E. muris Lethal/IOE Non-lethal/E. muris Lethal/ IOE

1 Cd14 1.4 1.0 3.5 77.5

2 Cd80 –2.1 1.0 5.8 8.8

3 Cd40 –1.4 21.7 17.4 58.3

4 Cd40lg –1.6 4.5 3.9 14.2

5 Tlr1 –3.4 1.9 3.7 7.4

6 Tlr2 –2.6 –5.4 8.0 62.9

7 Tlr3 –1.9 –1.3 1.7 9.7

8 Tlr9 –2.4 1.2 1.5 16.3

9 Jun 1.2 1.4 3.4 20.9

10 Myd88 –1.6 –1.1 2.2 8.8

11 Nf-kb2 –1.7 –2.5 4.4 7.7

12 Nod1 –1.6 80.8 2.0 1.8

13 Nod2 1.8 2.3 43.2 23.0

14 Ripk2 –1.1 4.4 2.8 6.7

15 Apaf1 1.3 1.5 3.0 10.3

16 Birc2 6.2 14.1 2.0 6.0

17 Ciita 2.1 2.6 122.6 16.6

18 Il1b 1.7 –1.3 2.0 7.8

19 IL-18 1.3 7.3 –1.7 2.8

20 Casp1 –1.5 12.5 14.5 15.7

21 Casp12 –1.9 2.0 6.2 11.3

22 Casp4 2.8 32.8 7.1 26.9

23 Nlrc5 1.3 –1.7 9.0 9.1

24 Nlrp12 –1.4 –1.2 –1.2 18.3

25 Nlrp1 –2.2 –3.6 1.1 6.3

26 Nlrp3 –1.3 –2.0 –3.0 5.0

27 Bcl2 9.9 10.7 6.1 2.8

28 Bcl2l2 2.8 1.1 1.8 40.7

29 Bak1 2.7 10.2 1.4 1.1

30 Bax 3.1 7.3 1.6 2.3

31 Apaf1 1.3 1.5 3.0 10.3

32 AIP1 2.0 6.6 2.8 1.6

33 AIP2 2.1 5.2 2.0 2.1

34 Fasl –2.5 10.7 7.2 15.6

35 Fadd 5.8 –2.6 1.8 –10.2

36 Tnfsf10 (TRAIL) –1.3 9.3 4.3 8.2

#1–4: Accessory and costimulatory molecules
#5–11: Toll-like receptors (TLRs) and TLR signaling
#12–17: Nod1/Nod2 and signaling genes
#18–26: Inflammasomes
#27–36: Apoptosis Receptors
doi:10.1371/journal.pone.0058514.t002

Roles of TLR2 and Nod2 in Monocytic Ehrlichiosis

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e58514



Roles of TLR2 and Nod2 in Monocytic Ehrlichiosis

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e58514



significant upregulation of these TLRs on day 7 p.i., mainly tlr2

(Fig. 3B), which correlated with significant upregulation of myd88

and nf-kb1 when compared to nonlethally infected and naı̈ve mice

(Table 2 and Fig. 3C and 3D). Levels of transcripts of other

adaptor proteins (e.g., trif, tram, and tirap) in both groups of infected

mice were not different from those in naı̈ve mice (data not shown),

suggesting that MyD88 is the main protein involved in TLR

signaling during ehrlichial infection.

Analysis of intracellular PRRs showed that nod1 was upregu-

lated 80-fold in lethally infected mice (Fig. 3E), with no significant

changes in expression in nonlethally infected mice on day 3 p.i. No

change in nod2 expression was detected in either group of mice on

day 3 p.i. (Fig. 3E). However, lethal infection induced higher

expression of nod2 on day 7 p.i. compared to nonlethal infection

(Table 2 and Fig. 3F). Activated Nod-2 recruits Ripk2, which

activates NF-kB by promoting the ubiquitination of the inhibitor

of nuclear factor kappa-B kinase (IKK) subunit of the Ikappa-B

kinase complex. Dominant-negative TRAF6 is known to inhibit

Ripk2-mediated activation of NF-kB. Our data show that ripk2

expression was not significantly increased (only 1.8-fold) during

nonlethal infection, but was increased approximately 10-fold

during lethal infection on day 7 p.i. (Fig. 3F). These data suggest

Figure 1. Lethal Ehrlichia infection induces higher expression of T-cell and NK cell chemokines and pro- and anti-inflammatory
cytokines. The expression levels of several genes in the livers of lethally (IOE) and nonlethally (E. muris) infected mice were examined on days 3 (A, C,
E, G) and 7 (B, D, F, H) p.i. by real time PCR. A-D show higher expression of chemokines in lethally than nonlethally infected mice. E-H show changes in
pro-inflammatory cytokine gene expression. Data presented as fold regulation, showing gene expression differences in lethally (IOE) and nonlethally
(E. muris) infected mice, normalized to housekeeping genes and relative to gene expression in naive mice. Data shown represent the mean 6 SD of
individual liver samples with three mice/group. Data represent two independent experiments (* P# 0.05, * P#0.01, *** P#0.001).
doi:10.1371/journal.pone.0058514.g001

Figure 2. Lethal Ehrlichia infection differentially activates the inflammasome compared to nonlethal infection. The expression levels of
inflammasome-linked pro-inflammatory cytokine IL-1b are reduced on day 3 p.i. (A) but augmented on day 7 p.i. (B) in lethally/IOE infected mice. (C)
and (D) show differential induction of caspase 1 and 4 expression on days 3 and 7 p.i. with IOE (lethal) and E. muris (nonlethal) infection. (E) and (F)
show differential expression of inflammasome components during lethal and nonlethal infections on day 3 and 7 p.i., respectively. Data shown
represent the mean 6 SD of individual liver samples with three mice/group. Data represent two independent experiments (* P# 0.05, * P#0.01).
doi:10.1371/journal.pone.0058514.g002
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that Nod2 ligation can lead to NF-kB activation in lethally—but

not in nonlethally—infected mice. Levels of traf6 did not

significantly differ in either infected group compared to naı̈ve

mice (Fig. 3E and 3F).

Contribution of Tlr2 and Nod2 to Ehrlichia-induced
immunopathology and bacterial clearance

Having observed that lethal IOE infection differentially

modulates tlr2 and nod2 levels, we decided to elucidate the

contributions of TLR2 and Nod2 to the pathogenesis of fatal

ehrlichiosis. We infected TLR2-/- and Nod2-/- mice with lethal

doses of IOE and compared the outcomes of infection to similarly

infected wild type (WT) mice and naı̈ve mice of both strains.

Consistent with previous reports [17], WT mice were highly

susceptible to lethal IOE challenge where six of six WT mice

succumbed to infection on days 9 and 10 p.i. Notably, while

TLR2-/- had increased susceptibility to IOE infection with six of

six mice succumbed on days 7 and 8 p.i., all Nod2-/- mice survived

till days 15 p.i. (Fig. 4A).

Consistent with our previous reports, compared to naı̈ve mice

(Fig. 4B and 4F) IOE-infected WT mice developed focal hepatic

necrosis and apoptosis on day 7 p.i. (Fig. 4C and 4G). In contrast,

IOE-infected Nod2-/- mice had no evidence of necrosis (Fig. 4E)

and presented with fewer inflammatory foci in the liver (Fig. 4J).

On the other hand, IOE-infected TLR2-/- mice developed

extensive necrosis (Fig. 4D) and inflammatory foci (Fig. 4J)

compared to infected Nod2-/- and WT mice on day 7 p.i. There

was a slight decrease in number of apoptotic cells in Nod2-/- mice

compared to WT and TLR2-/- mice on day 7 p.i. (Compare Fig.

4I to Figs. 4G and 4H). Interestingly, lack of Nod2 enhanced

bacterial clearance in different organs, and absence of TLR2

increased bacterial burden when compared to infected WT mice

on day 7 p.i. (Fig. 4K).These results collectively suggest that TLR2

Figure 3. Differential expression of TLR and NOD genes and downstream signaling molecules during lethal and nonlethal Ehrlichia
infection. The expression of TLRs (A and B), transcription factors (C and D), and Nod1 and 2 proteins and their downstream signaling molecules
(Ripk2 and TRAF6) ( E and F) were examined on days 3 and 7 following lethal (IOE) and nonlethal (E. muris) infection. The expression of TLR2 on day 7
p.i. with IOE was much pronounced than that of other TLRs. The expression of downstream signaling molecules MyD88 and NF-kB was significantly
upregulated on day 7 p.i. during IOE infection compared to E. muris infection. Nod1 was differentially upregulated on day 3, and Nod2 was
differentially upregulated on day 7 after IOE infection. Data shown represent the mean 6 SD of individual liver samples with three mice/group. Data
represent two independent experiments (* P# 0.05, * P#0.01).
doi:10.1371/journal.pone.0058514.g003
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Figure 4. Enhanced resistance of Nod2-/- mice to lethal ehrlichiosis compared to infected wild type and TLR2-/- mice. (A) Survival of
WT, TLR2-/- and Nod2-/- mice over 15 days after i.p. infection with high dose of IOE. The data shown represent one of two independent experiments
with a total of 6 mice/group. Liver sections from naı̈ve (B and F), IOE-infected WT mice (C and G), IOE-infected TLR2-/- mice (D and H), and IOE-infected
Nod2-/- mice (E and I) harvested on day 7 p.i. are stained with H&E. Original magnification for H&E images was 206and for TUNEL assays was 406.
H&E staining shows that IOE-infected Nod2-/- mice had significant decreases in necrosis compared to infected WT and TLR2-/- mice (arrowheads).
TUNEL assay reveals slightly decreased numbers of apoptotic cells (arrows) in Nod2-/- mice with approximately 4–7 apoptotic cells observed per HPF
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and Nod2 play distinct protective and detrimental roles during

ehrlichiosis, respectively.

Lack of Tlr2 or Nod2 influence innate immune responses
against Ehrlichia

We next examined the contribution of Nod2 and TLR2 to

protective or pathogenic immune responses mediated by different

innate and adaptive immune cells. Absence of Nod2 increased the

percentage (Fig. 5A) and absolute number (Fig. 5B) of NKT as well

as percentage (Fig. 6 A and 6B) and absolute number of CD4+ T

cells (Fig. 6C) in the spleens of infected mice compared to infected

WT and TLR2-/- mice. NKT cells and CD4+T cells mediate

elimination of intracellular ehrlichiae as shown before (11, 17-23).

Although lack of Nod2 did not influence the frequency of

pathogenic NK cells, it significantly decreased the percentage

and absolute number of pathogenic CD8+ T cells when compared

to infected WT and TLR2-/- mice (Fig. 6B and 6C). No significant

difference was observed in the total number of NK, CD4+ T cells,

and CD8+ T cells between TLR2-/- and WT mice. Interestingly,

enhanced resistance and attenuated pathology in IOE-infected

Nod2-/- mice correlated with increased antigen-specific production

of IFN-c and IL-10 in the spleen on day 7 p.i. compared to IOE-

infected WT and TLR2-/- mice (Fig. 7A and 7B), suggestive of an

enhanced Th1 and anti-inflammatory immune responses.

Discussion

In this study, we provide a detailed genome-wide microarray

analysis of whole liver during mild and fatal ehrlichiosis, which

offers a revealing new perspective on host responses during the

course of nonlethal and lethal Ehrlichia infection. Ehrlichia chaffeensis,

the causative agent of HME, leads to disease in Severe Combined

Immunodeficiency (SCID) mice but not in immunocompetent

mice [17,47]. However, several genes identified in our study are

consistent with prior reports that profiled the liver of SCID mice

infected with different human isolates of E. chaffeensis, each

belonging to a different genogroup [12,48]. This suggested that:

1) innate immune responses play a unique role in outcome of

Ehrlichia infections; and 2) host responses in our murine models of

HME using other Ehrlichia species (E. muris and IOE) mimic the

host responses to human E. chaffeensis isolates in SCID mice, thus

these models are optimal for further analysis of innate and

compared with to 6–10 apoptotic cells per HPF for the infected WT and TLR2-/- mice. Uninfected control mice had only one apoptotic cell/HPF. The
data shown are from a representative mouse from each group (n = 4) and are from one of three independent experiments with similar results. J) Data
show the quantitative analysis of the number of inflammatory foci/HPF determined by H&E staining in different groups of mice. K) shows bacterial
burden on day 7 p.i. in the livers and spleens of different groups of mice determined by quantitative real time PCR. The copy number of IOE was
normalized to the housekeeping gene GADPH. Bacterial burdens in livers and spleens were lower in IOE-infected Nod2-/- mice compared to WT mice
was but were significantly higher in IOE-infected TLR2-/- mice compared to WT mice. Data are expressed as means 6 SD with three mice/group and
are representative of three independent experiments.
doi:10.1371/journal.pone.0058514.g004

Figure 5. Enhanced resistance to Ehrlichia infection in Nod2-/- mice is associated with increased expansion of splenic NKT—but not
NK—cells. WT C57BL/6, TLR2-/-, and Nod2-/- mice were infected with a high dose of IOE. Splenocytes were harvested from all mice groups on day 7
p.i. and were analyzed directly by flow cytometry. (A) and (B) show increased percentages and absolute numbers, respectively, of protective NKT—
but not pathogenic NK—cells on days 7 p.i in Nod2-/- mice compared to WT and TLR2-/- mice. (A) Dot plot data are from one representative mouse
from each group (n = 4), and the numbers indicate the percentage of gated cells within each quadrant. (B) The mean 6 SD of absolute numbers of
cells/spleen is presented with three mice/group. The data are representative of three independent experiments.
doi:10.1371/journal.pone.0058514.g005
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adaptive immune responses during ehrlichiosis in immunocompe-

tent host.

A notable element within the liver transcriptome profile was

broad involvement of multiple pro-inflammatory interleukin and

TNF family members and their receptors. However, unlike LPS-

positive Gram-negative bacteria, severe infection with LPS-

negative Ehrlichia induced a concomitant upregulation of both

pro-inflammatory cytokine genes and key anti-inflammatory

genes, such as il-10 and il-1ra. In experimental models of non-

infectious inflammatory diseases, IL-10 knockout mice develop

severe colitis, whereas systemic administration of rIL-10 can

prevent development of colitis [49,50]. IL-10 mediates an anti-

inflammatory function and prevent pathology during infections

with intracellular pathogens; however, it also inhibits IFN-c-

mediated activation of phagocytic cells and suppresses the

differentiation of protective CD4+ Th1 cells, thus inhibit effective

elimination of intracellular bacteria [50,51]. The correlation

between late, but not early, expression and production of IL-10

in E. muris/ nonlethally infected mice and IOE-infected Nod2-/-

mice and survival, protective immunity, minimal pathology and

high IFN-c:IL-10 ratio at early and late stages of infection,

suggests that IL-10 may control excessive inflammatory responses

and thus inhibits immunopathology without negatively affecting

IFN-c mediated bacterial elimination. On the other hand,

production of IL-10 and lowered IFN-c:IL-10 ratio during early

and late stages of lethal IOE infection (Fig. 1E and F) could

account for the inhibition of effective bacterial elimination and

higher bacterial burden, which in turn would stimulate excessive

inflammation that cannot be controlled by IL-10. Similar to the

anti-inflammatory function of IL-10, IL-1ra binds to IL-1 receptor

I but fails to trigger signal transduction, thereby acting as a

competitive inhibitor of IL-1a and IL-1b [52,53]. Our data show

that IL-1ra was upregulated early during nonlethal infection,

which correlated with less inflammation and minimal pathology.

On the other hand, IL-1ra was upregulated at a late stage of lethal

infection but was associated with severe inflammation and

pathology. Thus, it appears that late, but not early, induction of

IL-1ra during lethal infection may represent an unsuccessful

attempt by the host to decrease the excessive inflammation. In

contrast, early induction of IL-10 appears to play detrimental roles

in host response against Ehrlichia. More importantly, the ratio

between pro- and anti-inflammatory cytokines and differential

kinetics of their production during course of lethal and nonlethal

ehrlichial infection are important factors that seems to govern the

outcome of infection, degree of pathology, and host immune

responses during mild and severe ehrlichiosis.

Immunopathology in lethally infected mice is associated with

significant infiltration of NK and CD8+ T cells at sites of infection

(liver, lung, and peritoneum), which is known to cause tissue injury

[17–23]. Our data suggest that the development of immunopa-

thology could be attributed to the upregulation of chemokines and

their relevant receptors and the recruitment of CD8+ T cells,

monocytes, and NK cells in the liver of lethally, but not

nonlethally, infected mice. Monocytes and NK cells respond to

CCL2 (monocyte chemotactic protein [MCP]). CXCL9,

CXCL10, and CXCL11 (ligands for the CXCR3) mediate

migration of resting human NK cells. T cells and neutrophils

respond to CCL5 (RANTES) and CXCL8 (IL-8), respectively

Figure 6. Lack of Nod2 increased number of protective CD4+ T cells and decreased frequency of CD8+ T cells during severe Ehrlichia
infection. Spleen cells were harvested from IOE-infected Nod2-/-, TLR2-/-, and WT mice on day 7 p.i., and cells were analyzed directly ex vivo to
determine the frequency of CD4+ and CD8+ T cells. (A) The dot plot shows the percentage of CD3+CD4+ T cells in naı̈ve mice and IOE-infected WT,
TLR2-/-, and Nod2-/- mice. (B) CD3+ cells were gated and further analyzed for expression of CD4 and NK1.1. NK1.1- cells are thus divided into CD4+ T
cells (upper quadrant) and CD8+ T cells (lower quadrant). Nod2-/- mice have higher percentages of CD4+ T cells but lower percentages of CD8+ T cells
compared to other groups of mice. (C) The absolute numbers of CD4+ and CD8+ T cells in the four groups of mice. Dot plot data are from a
representative mouse from each group. The absolute number of cells represents the means 6 SD with three mice/group and is representative of
three independent experiments.
doi:10.1371/journal.pone.0058514.g006

Figure 7. Enhanced resistance to Ehrlichia infection in Nod2-/- mice is associated with increased IFN-c and IL-10 production. WT
C57BL/6, TLR2-/-, and Nod2-/- mice were infected with IOE. Splenocytes were harvested on day 7 p.i. and stimulated in vitro with IOE antigens. At 48
hours after in vitro antigen stimulation, the supernatant was collected and examined for IFN-c (A) and IL-10 (B) by enzyme-linked immunosorbent
assay. The data are expressed as the mean 6 SD for three mice in each group. The data shown are from one experiment that is representative of
three independent experiments.
doi:10.1371/journal.pone.0058514.g007
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[54,55]. Overproduction of CCL2 in the liver of murine

cytomegalovirus was found to be dependent on IFNa/b [56,57].

We show here that lethal IOE infection dramatically increased

expression of ifn-b compared to nonlethal E. muris infection. Thus,

it is possible that type-1 IFN could be the inducing factor

responsible for production of this extensive array of chemokines

during fatal Ehrlichia infection, which in turn enhances migration

of inflammatory and immune cells to the sites of infection thus

causing immunopathology.

Our data show for the first time that lethal infection is associated

with the upregulation of surface and intracellular PRRs, including

TLR2, Nod1, and Nod2. TLR2 binds to several microbial ligands,

including bacterial lipopeptides and endogenous damage-associ-

ated molecules like heat shock proteins or high-mobility group

box-1 [58-60]. Nod1 binds bacterial peptidoglycan (PGN) and

other secreted bacterial outer membrane proteins that access the

cytosol. Previous studies have shown that Ehrlichia lacks major

genes for PGN synthesis. However, a recent study demonstrated

that Ehrlichia encodes a low-molecular-weight penicillin-binding

protein homolog, which is one of the genes of PGN synthesis

conserved in Ehrlichia and other members of the family Anaplas-

mataceae [61]. Thus, it is possible that PGN-derived molecules are

processed in the phagosome where Ehrlichia resides and are then

injected into the cytoplasm via a type IV secretion system or other

unknown secretory pathway(s) where they bind and activate Nod

proteins.

Why lethal Ehrlichia infection highly increase Nod1 expression

early in infection is not yet clear. However, recent studies have

demonstrated that Nod1 signals, together with TLR2 signals,

within CD8+ T cells can lead to increased proliferation and

effector function of CD8+ T cells that are activated via TCR

ligation. Thus, Nod1 and TLR2 both function as costimulatory

receptors [62]. Other studies have shown that Nod1, acting in

conjunction with Nod2, enhances the cross-priming and activation

of antigen-specific cytotoxic CD8+ T cells by CD8a dendritic cells

[60]. Thus, it is possible that an early upregulation of Nod1

followed by upregulation of Nod2 could contribute to the

induction of pathogenic cytotoxic CD8+ T cells during Ehrlichia-

induced shock. Indeed, our data demonstrate that the absence of

Nod2 attenuated immunopathology (Fig. 4A and B) and enhanced

protective immunity and bacterial clearance (Fig. 4E). Enhanced

resistance of Nod2-/- mice to lethal infection correlated with a

reduction in the frequency of CD8+ T cells (Fig. 6B and 6C).

However, the effect of Nod1/2 on adaptive immunity against

Ehrlichia appears to be independent of TLR2, because TLR2-/-

mice were more susceptible to Ehrlichia infection than wild type

mice (Fig. 4). Thus, we postulate that Nod2 may promote cross-

priming of CD8+ T cells. Recently, we showed that lethal infection

enhanced the expression of MHC class II—but not class I—

molecules on dendritic cells, suggesting that induction of CD8+ T

cells occur via cross-presentation during lethal ehrlichiosis [46].

Enhanced resistance in Nod2-/- could be also due to effective

protective immunity as evidenced by increased number of NKT

and CD4+ T cells and elevated IFN-c production (Fig 5B, 6C and

7A). Together, these data suggest that Nod2 contributes to the

pathogenesis of fatal ehrlichiosis, possibly via mediating the

induction of pathogenic CD8+T cells as well as inhibiting

protective NKT and antigen-specific CD4+Th1 cell producing

IFN-c.

Nod2 binds to pro-caspase 1 and mediates the activation of the

inflammasome [60]. Recent study suggested that Chlamydia

trachomatis, other obligate intracellular bacteria activate inflamma-

some, which in tun support the bacterial growth within epithelial

cells [63]. Thus, another mechanism that could account for

effective bacterial elimination in IOE-infected Nod2-/- mice is due

to impaired inflammasome activation. In support of this possibil-

ity, we found that the responses of IOE-infected Nod2-/-mice

mimicked the phenotype of IOE-infected IL-18R-/- mice (46),

suggesting a common mechanism that involves inflammasome

activation. Indeed, our data here shows a differential upregulation

of IL-1b, caspase 1, caspase 4, and inflammasome proteins in

lethally infected mice, further support a detrimental role of

inflammasome activation either in mediating pathology or

impairing intracellular bacterial elimination during severe and

fatal ehrlichiosis.

Finally, our data reveal for the first time that TLR2 plays a

protective role by enhancing intracellular bacterial elimination.

Studies have shown that TLR2 and Nod2 cross-regulate the

functions of one another, owing to the fact that they recognize the

same bacterial molecule (i.e., surface-bound and secreted compo-

nents of bacterial PGN, respectively) [59,60,62]. These contrasting

effects of TLR2 and Nod2 on host defense against Ehrlichia are

thus perplexing. However, it is possible that PGN-activated TLR2

signals enhance the intracellular microbicidal functions of

phagocytic cells or that this effect could be negatively regulated

by PGN-mediated activation of Nod2 in wild type mice. Thus, in

the absence of Nod2 (such as in Nod-/- mice), negative regulation

of TLR2 is removed, and bacteria are effectively eliminated. In

contrast, the lack of TLR2 and unrestricted function of Nods in

TLR2-/- mice could lead to uncontrolled IOE infection and

immunopathology, which is consistent with the phenotype of IOE-

infected Nod2-/- mice (Fig. 4). Previous in vivo and in vitro studies

showed that the lack of Nod2 increased Th1 responses, which

mediate activation of intracellular bactericidal functions of

macrophages. Interestingly, our data demonstrate that IOE-

infected Nod2-/- mice had higher levels of IFN-c than IOE-

infected WT and TLR2-/- mice (Fig. 7D), which could be

responsible for the effective bacterial elimination in these mice.

In conclusion, our study indicates Nod2 mediates the dysreg-

ulated inflammatory responses and immunopathology during

lethal ehrlichiosis and TLR2 mediates effective clearance of

ehrlichiae in the absence of Nod2 signals. Our data thus define for

the first time unique molecular pathogenic mechanisms that may

account for the development of Ehrlichia-induced shock. Targeting

these pathways could represent a novel immunotherapeutic

strategy to combat these important infections and the associated

pathology.
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