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The first section of this dissertation describes the discovery and studies of new radical 

desulfonylation reactions. These reactions allow convenient access to structurally diverse imines 

under mild conditions. We have examined several related desulfonylation reactions, and the 

results of this investigation support the general mechanism that we initially proposed. 

The second section details the synthesis of (±)-epimeloscine, (±)-meloscine, and analogs. 

The invention of a novel, cascade radical annulation of divinylcyclopropanes enables expedient 

synthesis of (±)-epimeloscine and (±)-meloscine, and analogs. Preliminary studies on a chirality 

transfer approach towards (+)-meloscine are discussed. This approach delivered only moderate 

chirality transfer, however, a new cascade cope/ene reaction was discovered along the way.   
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1.0  STUDIES OF N-SULFONYL RADICAL ELIMINATION REACTIONS 

1.1 INTRODUCTION 

1.1.1 Axially Chiral Anilides 

Eliel defines axial chirality as chirality stemming from four substituents held in a non-planar 

arrangement around an axis, such that the molecule is not superimposable to its mirror image.1 

Axial chirality arises from the restriction of free rotation about this axis or bond. Axially chiral 

compounds undergo isomerization when provided with enough energy to overcome the barrier of 

bond rotation. Representative classes of axially chiral compounds include allenes (1.1),2 biaryl 

compounds (1.2),3 anilides (1.3) and benzamides (1.4)4 with substituents at the ortho positions of 

aryl rings (Figure 1). These compounds play important roles in organic synthesis and are often 

medicinally relevant.5 For example, one of the most well known axially chiral compounds, 

BINAP 1.2,6 is extensively used in academia and industry as transition metal ligand for 

asymmetric synthesis. Several complex natural products that contain elements of axial chirality, 

including murrastifoline F7 and haouamine A,8 were also discovered and synthesized recently 

(Figure 2). 
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Figure 1 Representative Axially Chiral Compounds 

 

 

Figure 2 Structures of Haouamine A and Murrastifoline F 

 

Axial chirality is often present in ortho-substituted anilides, as shown in Figure 3. In 

compounds like 1.5, the steric hindrance of ortho-substituents X and Y prevents the coplanar 

arrangement of the aromatic ring with the amide group. For example, the early crystal structure 

of N-methyacetanilide (where X = Y = H) showed that the amide and aryl planes were arranged 

nearly perpendicular to each other in the solid state.9 Therefore, the N-aryl bond becomes an axis 

of chirality when X and Y are different. If the other substituents on the amide do not have any 

stereogenic centers, then such anilides consist of a pair of enantiomers that can interconvert by 

rotation of the N-aryl bond. A high enough barrier of the N-aryl bond allows an anilide to be 

separated as two rotational isomers, or atropisomers. Oki defined atropisomers as 

interconvertible conformers with a longer half-life than 1000 s at a given temperature.10 
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According to this definition, the separation of atropisomeric anilides at 300 K requires a 

rotational barrier higher than 22.3 kcal/mol for the N-aryl bond. 

 

Figure 3 A Twisted Anilide 

 

Sizes of substituents on the amide nitrogen atom and aryl ring significantly affect the 

rotational barriers of N-aryl bonds, as illustrated in Figure 4.11 When one ortho substituent is 

hydrogen and the other is iodine, in the case of N-isopropyl acrylamide 1.6, the barrier of N-aryl 

rotation is 22.8 kcal/mol. The presence of a bulky t-Bu group at the ortho-position provides a 

significantly boost of the N-aryl rotational barrier, as shown in the cases of N-methyl substituted 

amides 1.7 and 1.8. When the ortho hydrogen substituent of 2-iodoanilide 1.6 is replaced with a 

methyl group, shown in the case of N-methyl acrylamide 1.9, the N-aryl rotational barrier is also 

dramatically increased. In comparison of with propionamides such as 1.8, benzoyl anilides such 

as 1.7 tend to have lower barriers. It is likely that aryl groups twist out of planarity with the 

amide group, reducing the steric repulsion with ortho-substituents in the rotation transition 

state.11 
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Figure 4 Rotational Barriers of Selected Axially Chiral Anilides 

 

The enantioselective preparation of axially chiral anilides is challenging. Uemura,4c, 12 

Curran,13 Taguchi,14 and Maruoka15 reported enantioselective syntheses of axially chiral anilides, 

but the scope of substrates is limited. Currently the most general method for preparation of 

axially chiral anilides is resolution of racemates by semi-preparative chiral HPLC. The Chiralcel 

OD column and the (S,S)-Whelk O1 column are especially efficient for such resolutions.16 

1.1.2 Chirality Transfer and Radical Cyclizations of Axially Chiral Anilides 

“Memory of chirality” occurs when the reaction of a chiral starting material results in a chiral 

product, despite proceeding through a configurationally labile intermediate containing no other 

permanent chiral features.17 Chirality transfer is a subset of “memory of chirality”. By definition, 

transfer of chirality requires destruction of the original chiral element with concomitant 

formation of a new one elsewhere. 18 Common examples of chirality transfer include SN2' 

nucleophilic displacements and sigmatropic rearrangements. The efficiency of chirality transfer 

is calculated by dividing the proportion of the major enantiomer in the product by the proportion 
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of the major enantiomer in the starting material. This is a measurement of the percentage of the 

configurationally labile intermediate reacted that conserves its memory of chirality.  

            Like an enantiopure compound with stereocenters, an axially chiral anilide may also 

serve as a valuable chiral substrate for enantioselective synthesis, provided that the chirality 

transfer is high and reliable. In 1999, the Curran group first disclosed chirality transfer in 

intramolecular radical cyclizations of axially chiral anilides19 (Scheme 1.1). In a typical 

example, Et3B/Bu3SnH induced radical cyclization of atropisomer (P)-1.10 smoothly proceeded 

to form dihydroindole (S)-1.11 in 86% yield and with 90% chirality transfer. The scope of this 

reaction is broad, and anionic and organometallic versions were also developed.20 

 

Scheme 1.1 Radical Cyclization of an Axially Chiral Anilide with Chirality Transfer 

 

A mechanistic scheme for the chirality transfer in the above reaction is shown in Figure 

5. Two features are key to the excellent chirality transfer of this reaction. First, the radical 

cyclization (1.12a→1.13a) is considerably faster than the N-aryl rotation (1.12a→1.12b), even 

though the initially formed aryl radical species 1.12a has a lower rotational barrier than the aryl 

iodide (P)-1.10. Second, the cyclization is face-selective and only occurs to the back face of the 

alkene, presumably because the radical is also in the back. 



 6 

 

Figure 5 A Mechanistic Scheme for the Chirality Transfer in the Radical Cyclization of (P)-1.10 

 

In Figure 5, chirality transfer was realized in radical cyclizations through a face-selective 

addition of the intermediate aryl radical to the olefin acceptor on the amide side chain. Recently, 

Curran and Guthrie developed 6-exo-trig radical cyclizations with excellent chirality transfer 

(Scheme 1.2).21 These reactions were termed “reverse” cyclizations because the positions of the 

radical precursors and acceptors were reversed to prior substrates like 1.10 (Figure 5). In a 

typical example of a single 6-exo-trig cyclization, treatment of atropisomer (P)-1.14 with Et3B 

and Bu3SnH generated 4-disubstituted dihydroquinoline-2-one (S)-1.15 in 63% yield and with 

96% chirality transfer. 
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Scheme 1.2 A “Reverse-Type” 6-Exo-Trig Radical Cyclization 

 

A variety of mono- and disubstituted dihydroquinoline-2-ones were synthesized via this 

methodology, with excellent enantioselectivity and diastereoselectivity. Importantly, 

dihydroquinoline-2-ones are a class of medicinally useful compounds, but they had rarely been 

synthesized enantioselectively before.22 

            Figure 6 illustrates the mechanistic origin for chirality transfer. In the ground state of the 

initially formed radical 1.16, the radical SOMO orbitals are orthogonal to the alkene LUMO 

orbitals. Thus the cyclization requires coordinated rotation of the N-aryl bond, the aryl-alkenyl 

bond and CO-CH2• bond, as indicated, to reach a twisted transition state TS-1.17. Finally, TS-

1.17 progresses to the cyclized product (S)-1.15. Compared to aryl radical 1.12a, which has only 

one substituent ortho to the amide group (Figure 5), amidoyl radical 1.16 has a considerably 

higher rotational barrier of N-aryl bond due to the presence of two ortho substituents. So the N-

aryl bond of 1.16 will not rotate 180° to reach the transition state (not shown) that ultimately 

leads to the enantiomeric (minor) product. Conformationally, this transition state may also be 

accessed by rotating the aryl-alkenyl bond of 1.16 about 180°. However, this possibility is 

excluded because such rotation requires the C=C bond to eclipse with the N-aryl bond.  
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Figure 6 A Model for the Chirality Transfer in the Cyclization of (P)-1.14 

 

To culminate this work, an efficient tandem 6-exo-trig/5-exo-trig cyclization reaction was 

demonstrated (Scheme 1.3). Atropisomerically pure substrate 1.18 was prepared by chiral HPLC 

resolution of its racemic variant, and subsequent flash chromatography separation of 1.18 yielded 

two diastereomers (not shown). Each isomer was treated with Bu3SnH and Et3B under syringe 

pump conditions. In both cases, highly substituted 6,6,5-tricyclic product 1.19 was isolated as 

single isomer in 51% yield, with 99% chirality transfer.  

 

Scheme 1.3 Tandem 6-Exo-Trig/5-Exo-Trig Radical Cyclization of An 2-Alkenylanilide 
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Figure 7 depictes models for the above cyclizations. The model for the first cyclization 

(chirality transfer step) is similar to the one described in Scheme 1.4. The allyl group orients s-

cis to the carbonyl group in TS-1.21, so trans-ring fused product 1.22 is favored. The 

diastereoselectivity of the second cyclization was explained by a chair-like transition state TS-

1.23 with the ester substituent placed at an equatorial position, according to the Beckwith-Houk 

model.23 

 

Figure 7 A Transition-State Model for the Tandem Cyclization of 1.18 

 

The tandem 6-exo-trig/5-exo-trig radical cyclization is a potentially powerful tool to 

quickly access complex ring systems in natural products such as meloscine (Chapter 2.1). 

Moreover, the reliable chirality transfer in radical cyclizations of axially chiral amides suggested 

a fundamentally new way to establish the absolute configuration in heterocycles containing 

dihydroquinoline-2-one moieties. 
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1.1.3 Radical β-Elimination of Sulfonyl Groups  

A radical that has a sulfonyl group at the β-position can undergo a facile elimination reaction, 

ejecting a sulfonyl radical with the formation of a double bond.24 The radical β-sulfonyl 

elimination reaction has often been applied in combination with other reaction processes. For 

example, the intermolecular radical addition/elimination sequence has proved synthetically 

useful.25  

Three typical modes of radical sulfonyl elimination reactions are shown in Figure 8. 

Most commonly, radical sulfonyl elimination proceeds on substrates that have both the sulfonyl 

group and the radical placed on adjacent carbons atoms.26,46,47 For example, treatment of β-

sulfonyl thioester 1.28 with Bu3SnH provided alkene 1.30 in 61% yield, presumably via 

elimination of β-sulfone radical 1.29. Another well-documented class of sulfonyl radical 

elimination reactions involves amido radicals with sulfonyl groups on the adjacent carbons. 

These reactions give imines, oximes, and hydrozones, depending on the N-substitution pattern of 

the precursors.27 For example, irradiation of a mixture of cyclohexyl iodide, α-sulfonyl oxime 

ether 1.31 and hexabutylditin afforded cyclohexyl-substituted oxime ether 1.33 in 91% yield.43 It 

was proposed that addition of cyclohexyl radical to 1.31 gives amino radical 1.32, which releases 

a phenylsulfonyl radical to form oxime ether 1.33. Alternatively, β-sulfonyl radical elimination 

reactions may occur on nitrogen centers and produce imine products.  
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Figure 8 Representative Classes of Radical β-Sulfonyl Elimination Reactions 

 

The third mode of sulfonyl radical elimination reactions, which features “reverse” 

position of the radical on C and the sulfonyl group on N, is much less common. In 1958, Stacey, 

Sauer, and McKusick reported examples of vinylsulfonamide isomerization that could be 

promoted by either irradiation or AIBN initiation (Scheme 1.4).28 In a typical reaction, 

vinylsulfone 1.34 was isolated in 50% yield after heating a solution of AIBN and 

vinylsulfonamide 1.35 at 90 °C for 3 h. Mechanistic studies suggested the radical chain character 
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of these reactions. It was proposed that homolytic cleavage of the N-S bond initiates the chain 

process, producing a tosyl radical that adds to another molecule of 1.34. Imine 1.36 is formed, 

along with concomitant release of a new tosyl radical that propagates the reaction. Finally, 1.36 

quickly tautomerizes in an ionic fashion to form enamine 1.35. In 1974, Hertler studied the scope 

of this reaction, and his experimental results supported the radical chain mechanism.29 

 

Scheme 1.4 Radical Induced Vinylsulfonamide Rearrangement 

 

Following the initial discovery of vinylsulfonamide isomerization, several research 

groups occasionally encountered possible radical N-sulfonyl elimination reactions. In an effort to 

construct the bicyclic scaffold of α-kainic acid, Cossy conducted radical cyclization of enamide 

1.37 bearing an alkyne side chain (Scheme 1.5).30 However, the expected tin-

addition/cyclization sulfonamide product 1.39 was not formed. Instead, bicylic imine product 

1.38 was obtained in 82% yield.  

 

Scheme 1.5 An Unexpected N-Desulfonylation Reaction Reported by Cossy 
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In 2001, Murphy reported an interesting cascade radical cyclization of N-2-iodophenyl-

N-1,4-pentadienyl-3-sulfonamide 1.40 that gave desulfonylated 3-allylindole 1.41 in 24% 

yield.31 According to Murphy’s proposed mechanism, initial 5-exo-trig cyclization of 1.40, 

followed by a subsequent 4-exo-trig cyclization, generates tricyclic primary radical 1.42. This 

radical then rearranges to form α-amino radical species 1.43, which then undergoes sequential β-

sulfonyl radical elimination/tautomerization to produce 1.41 (Scheme 1.6). 

 

Scheme 1.6 An Unexpected N-Desulfonylation Reaction Reported by Murphy 

 

In another interesting example presented by Murphy, submission of ortho-

diazophenylsulfonamide 1.44 to tetrakis(dimethylamino)ethylene (TDAE) 1.45 generated indole 

in 33% yield.32 Murphy proposed that diazonium salt 1.44 is reduced by TDAE to form aryl 

radical 1.46. Radical translocation of 1.46 provides α-amino radical species 1.47 that ejects a 

sulfonyl radical to form 3H-indole, which readily tautomerizes to provide 1H-indole (Scheme 

1.7). 
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Scheme 1.7 Dehydrogenation of a Dihydroindole via N-Desulfonylation 

 

More recently, Zard discovered a novel approach to substituted pyrroles via N-sulfonyl 

elimination.33 As shown in Scheme 1.8, heating a mixture of AIBN, vinylsulfonamide 1.48, and 

xanthate 1.49 provided pyrrole 1.50 in 54% yield. The initiation of this reaction is thought to 

involve the generation of an ethyl radical that abstracted the xanthate group of 1.49 to give α-

keto radical species 1.51. Addition of radical 1.51 to vinylsulfonamide 1.48 produces imine 1.52, 

releasing a sulfonyl radical that propagates the chain reaction. Spontaneous condensation of 1.52 

affords pyrrole 1.50.  
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Scheme 1.8 Zard’s Pyrrole Synthesis via N-Desulfonylation 

 

A related process was disclosed by Renaud (Scheme 1.9).34 In a typical reaction, addition 

of vinylsulfonamide 1.54 and di-tert-butylhyponitrite (DTHP) to a premixed solution of alkene 

1.53 and catecolborane furnished alkylated pyruvate 1.55 in 20% yield. Mechanistically, Renaud 

suggested that DTHP initiation of in situ generated alkylborane 1.56 provides alkyl radical 1.57 

that adds to vinylsulfonamide 1.54. Sulfonyl elimination of the resulting α-amino radical species 

1.58, followed by hydrolysis of the resulting iminoester upon silica gel chromatography, 

provides pyruvate 1.55. 
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Scheme 1.9 Renaud’s Pyruvate Synthesis via N-Desulfonylation 

 

Most recently, Zard reported a creative synthetic method for making benzazepinones 

using an unexpected N-sulfonyl elimination reaction. As shown in Scheme 1.10, reaction of 

sulfonamide 1.59 with di-tert-butylperoxide initiator (DTBP) in refluxing chlorobenzene affords 

benzazepinone 1.60 in 73% yield. Zard proposed that loss of a xanthate group of 1.59 generates 

secondary radical 1.61, which cyclizes to the phenyl ring to form aryl radical 1.62 bearing a 7-

membered ring. Subsequent elimination of a methanesulfonyl radical, followed by 

rearomatization, produces benzazepinone 1.60. 
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Scheme 1.10 Zard’s Benzazepinone Synthesis via Radical Cyclization/N-Desulfonylation 

 

Aside from aforementioned examples of N-desulfonylation that involve carbon-carbon 

bond forming events, direct removal of sulfonyl groups from certain types of amides have been 

achieved using tin hydride and electrochemistry (Scheme 1.11).35 In addition, scattered examples 

of photo-induced, homolytic N-sulfonyl bond cleavage have been reported.36 

 

Scheme 1.11 Radical and Electrochemical Cleavage of Amide Sulfonyl Groups 

 

While carbon-centered, α-sulfonamido radicals can undergo facile elimination of 

sulfonyl radicals, as shown in above examples, different reactivities of these radicals have been 

observed. For example, the Somfai group reported that cyclization of 1.85 under syringe pump 

condition afforded sulfonamide 1.88 in 57% yield (Scheme 1.12).37 Mechanistically, 5-exo-trig 
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cyclization of initially formed primary radical 1.86 to the enamide moiety produces intermediate 

α-amino radical 1.87, which is reduced by tin hydride to form sulfonamide product 1.88. 

 

Scheme 1.12 Somfai’s Cyclization Experiment 

 

The interesting precedents listed above illustrate the synthetic potential of N-sulfonyl 

elimination under radical conditions, combined with other processes, to provide facile access to 

heterocycles that are structurally novel and biologically relevant. However, neither the scope nor 

mechanism of radical N-sulfonyl elimination has yet to be systematically studied. Even though 

indirect evidence for the formation of defonylated imine products has been shown, in most cases 

they were not isolated. It was suggested that they either tautomerize into corresponding enamines 

or hydrolyze to generate ketones. Nonetheless, some of these products may form by other ways 

(Scheme 1.13). In Renaud’s reaction (Scheme 1.9), for example, oxidation of electron-rich 

radical 1.58 may provide iminium ion 1.63 that can be converted to ketone 1.55 via hydrolysis. 

Only Cossy actually isolated the imine product, however, she proposed a mechanism that does 

not involve β-sulfonyl radical elimination.30 
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Scheme 1.13 An Alternative Reaction Pathway of α-Amino Radical 1.58 

 

In the course of our synthetic studies of meloscine alkaloids, we discovered an 

unexpected, imine-forming radical desulfonylation reaction. In Chapter 1.2, we report our 

studies on the scope and mechanism of this reaction. 

1.2 RESULTS AND DISCUSSION 

1.2.1 Discovery of an Imine-Forming, Radical N-Desulfonylation Reaction  

To probe the viability of a tandem radical 6-exo-trig/5-exo-trig cyclization strategy in the 

synthesis of meloscine alkaloids, we designed model compounds 1.64a and 1.64b for testing the 

first 6-exo-trig cyclization (Scheme 1.14). The electron-withdrawing benzenesulfonyl group was 

chosen as the enamine protecting group, because electron transfer side reactions are a potential 

risk for radical cyclizations of electron-rich enamines.38 
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Scheme 1.14 A Model System for Testing the Radical Cyclization Strategy in the Synthesis of Meloscine 

 

1) Synthesis of Model Substrates 

 

There are only few reported syntheses of 3-aryl-δ2-pyrroline systems similar to 1.64a.39 

Strong basic conditions were used for several transformations in these syntheses. Considering the 

sensitivity of the ortho-TMS functionality of substrate 1.64b, we planned to develop a unified 

approach toward 1.64a and 1.64b without using any harsh conditions. Initial attempts at Suzuki 

coupling40 or α-arylation of sulfonamide41 routes were unfruitful. However, synthesis of 

substrate 1.64a was achieved by Stille coupling of arylstannane 1.66a and vinyl iodide 1.67 

(Scheme 1.15). 

 

Scheme 1.15 A Stille-Coupling Approach towards 1.64a and 1.64b 

 

An attempted synthesis of arylstannane 1.68 and its boronate analog 1.69 is shown in 

Scheme 1.16. Deprotonation of commercially available 2,6-dibromoaniline with LDA, followed 

by addition of TMSCl, produced bis-TMS protected aniline 1.70 in 69% yield. Lithium-bromide 
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exchange of 1.70, followed by a silyl migration and hydrolysis of the remaining N-TMS group,42 

provided ortho-TMS-substituted aniline 1.71 in 91% yield. However, reactions of 1.71 with 

hexabutylditin, pinacolborane, or pinacolato diborane, using several typical catalytic systems, 

failed to produce arylstannane 1.66b or arylboronate 1.68. 

 

Scheme 1.16 Attempted Synthesis of Arylstannane 1.68 and Arylboronic Ester 1.69 

 

Arylstannane 1.74 was synthesized in a two-step sequence (Scheme 1.17). Deprotonation 

of known trifluoroacetamide 1.72 with NaH, followed by addition of benzyl bromide, provided 

2-iodoanilide 1.73 in 91% yield. Subsequently, palladium-catalyzed cross-coupling of 1.73 with 

hexabutylditin in refluxing toluene gave arylstannane 1.74 in 84% yield.43 

 

Scheme 1.17 Synthesis of Arylstannane 1.74 
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The preparation of the vinyl iodide 1.67 was accomplished in a four-step sequence 

(Scheme 1.18). DIBAL-H reduction of known sulfonamide 1.75, followed by dehydration of the 

resulting crude hemiaminal with citric acid in refluxing toluene, afforded enesulfonamide 1.76 in 

80% yield over two steps.44 Enesulfonamide 1.76 reacted with iodine monochloride and sodium 

methoxide to provide crude alkyl iodide 1.77 in 95% yield.45 This product was heated with 3 

equiv of citric acid in refluxing toluene to eliminate methanol, furnishing the target vinyl iodide 

1.67 in 57% yield. 

 

Scheme 1.18 Synthesis of Vinyl Iodide 1.67 

 

Next, we surveyed three typical conditions for Stille coupling of arylstannane 1.74 with 

vinyliodide 1.67. Refluxing a solution of reactants and Pd(PPh3)4 in toluene46 resulted in no 

desired product. After submission of the reactants to a mixture of Pd2(dba)3⋅CHCl3, (2-furyl)3P, 

and CuI (Farina-Liebeskind conditions),47 coupling product 1.78 was formed in 25% yield with 

an appreciable amount of biaryl byproduct from 1.74. Finally, the target product 1.78 was 

prepared in 87% yield on multi-gram scale by reacting the substrates with Pd(PPh3)4, LiCl, and 

CuCl, according to Corey’s protocol (Scheme 1.19).48 
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Scheme 1.19 Stille-Coupling of Arylstannane 1.74 and Vinyl Iodide 1.67 

 

Treatment of trifluoroacetamide 1.78 with NaBH4 produced aniline 1.79 in 96% yield. 

Subsequent acylation of 1.79 with bromoacetyl bromide in the presence of pyridine furnished α-

bromoamide 1.64a in 83% yield (Scheme 1.20). Similarly, treatment of aniline 1.79 with rac-2-

bromo-propionyl bromide provided precursor 1.80 in 94% yield (Scheme 2.7). In principle, 

anilide 1.80 consists a maximum of four possible diastereomers, because it contains two axes of 

chirality as well as a stereogenic center. However, only two diastereomers 1.80a and 1.80b were 

observed by NMR, suggesting that one of the aforementioned axes of chirality, likely the aryl-

dihydropyrrole bond, rotates fast relative to the NMR time scale. Most of aromatic signals of 

1.80a and 1.80b overlapped on 1H NMR spectrum, but the other signals separated into two sets, 

which were integrated in a 2.3:1 ratio. The two diastereomers were observed as a single spot on 

TLC. However, the separation of 1.80a and 1.80b should not be important to the cyclization 

reaction, since we expected both diastereomers to give the same product as in Scheme 1.3. 
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Scheme 1.20 Synthesis of Cyclization Precursors 1.64a and 1.80 

 

2) Discovery of β-Sulfonyl Elimination Reactions 

 

With precursors 1.64a and 1.80 in hand, we set out to study the radical 6-exo-trig 

cyclization reactions. Based on Somfai’s results (Scheme 1.12), we anticipated sulfonamide 

products of the reaction to be formed in this reaction. However, the reaction took an unexpected 

course. 

In a typical experiment, AIBN and Bu3SnH were mixed with a 0.01 M solution of 

substrate 1.64a in refluxing benzene (Scheme 1.21). After 30 min, the solvent was removed, and 

the residue was partitioned between acetonitrile and hexane to remove most of the tin byproduct 

into the hexane layer. After column chromatography purification of the acetonitrile extract, a 

single major product was isolated in 75% yield whose structure was assigned as tricyclic imine 

1.81. Based on 1H and 13C NMR spectroscopy, several features were indicative of the spiroimine 

structure: 1) benzenesulfonyl signals were absent in the 1H NMR spectrum; 2) a singlet at δ 7.51 
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ppm (H1) on the 1H NMR spectrum, as well as a carbon signal at 167.8 ppm, suggested the 

presence of an imine; and 3) mutually coupled doublets of two geminal protons at δ 2.97 ppm 

and 2.67 ppm (H2a and H2b) were observed. This CH2 group is isolated between the quaternary 

center and the lactam carbonyl in a spiro structure. In addition, the molecular weight of 1.81 is 

determined to be 290.1414 by HRMS (EI), and this was in line with a calculated molecular 

weight of 290.1419 [M]+. 

 

Scheme 1.21 Unexpected Formation of Desulfonylated Imine 1.64a 

 

A proposed mechanism for the formation of imine 1.81 is outlined in Figure 9. Initially 

formed amidoyl radical 1.82 cyclizes to the dihydropyrrole alkene, generating β-sulfonyl radical 

1.83. Instead of reacting with tin hydride to give sulfonamide 1.65a, 1.83 eliminates a 

benzenesulfonyl radical to give imine 1.81. The released benzenesulfonyl radical abstracts a 

hydrogen atom from a second molecule of Bu3SnH to form benzenesulfinic acid and a new tin 

radical that possibly propagates the chain reaction. Aldimines are in general easy to hydrolyze, 

but the presence of an adjacent quaternary center in 1.81 presumably stabilizes the imine 

functionality. In addition, this quarternary center prevents the formation of the enamine 

tautomer.  
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Figure 9 Proposed Mechanism for the Formation of Imine 1.81 

 

To study the diastereoselectivity of the radical cyclization, we subjected substrate 1.80 to 

the same reaction condition as described above (Bu3SnH, 80 °C; Scheme 1.22). The solvent was 

evaporated and the crude product was determined to be a pair of diastereomers in a 3:1 ratio, 

based on 1H NMR analysis. Column chromatography provided less polar 1.84a in 50% yield and 

more polar 1.84b in 13% yield. In another experiment, Bu3SnH and Et3B21 were added to a 0.01 

M solution of substrate 1.80 in benzene, and the mixture was stirred at room temperature for 30 

min. The crude product was determined to be a 5:1 mixture of 1.84a and 1.84b. These products 

were collected together in one fraction and the combined yield was 43%. 
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Scheme 1.22 Radical Cycliation of 1.80 with Bu3SnH at Different Temperatures 

 

We performed NOESY experiments on both diastereomers to determine the relative 

stereochemistry of 1.84a and 1.84. Strong H1/H2 and H3b/methyl cross-peaks together with a 

weak H1/methyl cross-peak were observed in the spectrum of major isomer 1.84a (Figure 10). A 

strong H1/methyl cross-peak and a weak H1/H2 cross-peak were observed on the spectrum of 

minor isomer 1.84b. In addition, the H3b/methyl cross-peak, as shown in the spectrum of 1.84a, 

was not found in the spectrum of 1.84b. Therefore, the methyl group should be anti to the imine 

group in 1.84a. This stereochemical assignment was later unambiguously confirmed by X-ray 

crystallography of stereoisomer 1.84a. 

 

Figure 10 Stereochemical Assignment of 1.84a and 1.84b by NOESY and X-Ray Crystallography 
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In summary, the first radical 6-exo-trig cyclization smoothly proceeded on the model 

systems, and byproducts of 7-endo-trig cyclization or premature reduction were not detected. In 

addition, an interesting radical, imine-forming β-sulfonyl elimination reaction was discovered. 

1.2.2 Scope and Limitations of the Radical N-Sulfonyl Elimination Reaction 

1) 3-Alkyl Substituted 2,3-Dihydropyrroles 

 

To test the generality of the β-sulfonyl elimination reaction, we decided to study cyclization 

behaviors of N-sulfonyl dihydropyrrole 1.85 (Scheme 1.23),37a a substrate similar to 1.64a 

(Scheme 1.21). The Somfai group reported that cyclization of 1.85 under syringe pump 

condition afforded reduced spirosulfonamide 1.88 in 57% yield.  

 

Scheme 1.23 Cyclization of 1.85 

 

Mechanistically, Somfai suggested that 5-exo-trig radical cyclization of dihydropyrrole 

1.85 produces intermediate α-amino radical 1.87, which is reduced by tin hydride to form 

sulfonamide product 1.88. We have shown that similar α-amino radicals generated after 6-exo-

trig cyclizations can eliminate benzenesulfonyl radical to form imines (Section 1.2.1). Therefore, 

even though spirosulfonamide 1.88 was isolated as the single major product of Somfai’s 

reaction, we wondered whether imine product 1.89 could be produced along with 1.88 under tin 

hydride treatment (Scheme 1.24). 
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Scheme 1.24 Possible Reaction Pathways of Radical 1.87 

 

To test this idea, we synthesized Somfai’s substrate 1.85 in five steps from sulfonamide 

1.75, according to his procedures (Scheme 1.25). Under Oppolzer’s conditions,49 sulfonamide 

1.75 was alkylated with unactivated alkyl iodide 1.91 to provide 1.92 in 31% yield. DIBAL-H 

reduction of 1.92, followed by acidic dehydration of the resulting crude hemiaminal, afforded 

crude enamide 1.93. Deprotection of silylether 1.93 with TBAF generated the corresponding 

crude alcohol, which was subsequently subjected to triphenylphosphine and carbon tetrabromide 

to furnish the target bromide substrate 1.85 in 63% yield over four steps. Spectroscopic data of 

1.85 matched with Somfai’s,37a and yields of all the intermediates were comparable to reported 

ones. 

 

Scheme 1.25 Synthesis of Somfai’s Substrate 1.85 
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The hypothesized N-desulfonylation of 1.85 was quickly supported by a cyclization 

experiment conducted under the condition of a fixed tributyltin hydride concentration (Scheme 

1.26). A mixture of AIBN, Bu3SnH (0.03 M), and bromide substrate 1.85 in benzene was 

refluxed for 30 min. A characteristic N-CH2 peak of known bicyclic imine 1.89, shown as a 

triplet of doublets at δ 3.86 ppm, was found in the crude product. Notably, a similar signal at 

4.02 ppm that represents the N-CH2 group of tricyclic imine 1.84a was also observed by 1H 

NMR (Section 1.2.1). We calculated a 57% NMR yield of 1.89 by integrating this N-CH2 peak 

against the aromatic peak of 1,3,5-trimethoxybenzene as an internal standard. In addition, key 

signals of the reported sulfonamide product 1.88, namely the N-C(a)H2 peak shown as a singlet at 

3.09 ppm and the N-C(b)H2 peak shown as a triplet at 3.33 ppm, were detected in the crude 

product. The NMR yield of 1.88 was calculated to be 23%. 

 

Scheme 1.26 Cyclization of 1.85 with a Fixed Concentration of Bu3SnH 

 

It was difficult to isolate imine 1.89 due to the contamination of alkylstannane 

byproducts. We addressed this issue by in situ functionalization (Scheme 1.27). The cyclization 

reaction of dihydropyrrole 1.85 with tin hydride was repeated, and the crude reaction mixture 

containing 1.89 was sequentially treated with NaBH4 and benzoyl chloride. The resulting crude 

benzamide 1.94 was isolated in 31% yield after flash chromatography.  
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Scheme 1.27 Conversion of In Situ Generated Imine 1.89 to Benzamide 1.94 

 

Next, we repeated Somfai’s experiment under syringe pump conditions (Scheme 1.28). A 

solution of AIBN (0.2 eq.) and Bu3SnH (1.5 eq.) in benzene was added via syringe pump to a 

solution of 1.85 (0.06 M) and AIBN in refluxing benzene over a period of 3 h. Full conversion of 

the starting material was achieved. Based on 1H NMR analysis, the crude product was a mixture 

of imine 1.89 and sulfonamide 1.88, in a 2.5:1 ratio, along with some unidentifiable byproducts. 

Careful purification of the crude product afforded the target sulfonamide product 1.88 in 15% 

yield. Thus we partially reproduced Somfai’s experiment despite that the formation of imine was 

also observed. 

 

Scheme 1.28 Cyclization of 1.85 under the Syringe Pump Conditions 

 

In addition to Somfai’s radical mechanism for the formation of sulfonamide 1.88, we 

considered that ionic pathways might be possible because a bromide on a primary carbon is a 

good leaving group (Scheme 1.29). 
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Scheme 1.29 An Ionic Pathway for the Formation of Spirosulfonamide 1.88 

 

To differentiate ionic and radical pathways, we first conducted two control experiments 

without AIBN initiation (Scheme 1.30). In the first experiment, 4 equiv of Bu3SnH was added 

via syringe pump to a 0.01 M solution of bromide 1.85 in refluxing benzene over a period of 2 h. 

Complete conversion of the starting material was observed, judged by 1H NMR analysis of the 

crude product, and a 2.5:1 mixture of spirosulfonamide 1.88 and imine 1.89 was observed. In the 

second experiment, 4 equiv of Bu3SnH was added to a 0.01 M solution of bromide 1.85 in 

refluxing benzene in one portion. After 12 h, a 2.5:1 mixture of imine 1.89 and unconsumed 

bromide 1.85 was observed by 1H NMR. The results of these two experiments suggested that 

bromide 1.85 likely underwent self-initiation in the absence of AIBN.   

 

Scheme 1.30 Cyclization of 1.85 in the Absence of AIBN 

 

Next, we decided to prepare phenylselenide 1.96 (Scheme 1.31). Bromides and 

phenylselenides have comparable reactivities toward tin hydride, but unlike bromide, 
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phenylselenide is not a good leaving group in SN2 reactions. Therefore, treatment of a solution of 

bromide 1.85 with an in situ prepared solution of phenylselenide anion in EtOH provided 

phenylselenide substrate 1.96 in 73% yield.50 

 

Scheme 1.31 Synthesis of Phenylselenide 1.96 

 

Phenylselenide substrate 1.96 was cyclized under the conditions of fixed tin hydride 

concentration in the same manner of bromide 1.85 (Scheme 1.32). Evaporation of the solvent 

provided a crude product that contained imine 1.89 and unidentifiable byproducts, based on 1H 

NMR analysis. No spirosulfonamide product 1.88 was detected, and the NMR yield of imine 

1.89 was calculated to be 60%.  

 

Scheme 1.32 Cyclization of 1.96 under the Fixed Concentration Conditions 

 

Similar results were obtained using the syringe pump conditions (Scheme 1.33). The use 

of a double-syringe pump ensured that this experiment was conducted in the same fashion as the 

cyclization of bromide substrate 1.85. Based on 1H NMR analysis, a 4:1 mixture of imine 1.89 

and spirosulfonamide 1.88 was formed, along with 53% of unconsumed starting material. In 

another experiment, full conversion of the phenylselenide substrate 1.94 was achieved using 3 
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equiv of Bu3SnH, and the crude imine product 1.89 was converted to benzamide 1.94 in an 

overall yield of 65%. 

 

Scheme 1.33 Cyclization of 1.96 under the Syringe Pump Conditions 

 

In summary, we studied the cyclization behaviors of bromide 1.85 and phenylselenide 

1.94 under both syringe pump conditions and the conditions of fixed tin hydride concentration. 

Under both conditions, cyclization of bromide 1.85 generated spiroimine 1.89 as the major 

product, along with an appreciable amount of spirosulfonamide product 1.88. Cyclization of 

phenylselenide 1.94 gave predominantly imine product 1.89 under both conditions. Even though 

the origin of the difference between our results and Somfai’s remained unclear, our studies of 

Somfai’s system broadened the current scope of the radical N-desulfonylation reaction. 

 

2) 4,5-Disubstituted 2,3-Dihydropyrrole Substrate and Mechanistic Evidence on the β-

Scission of an α-Sulfonamidoyl Radical 

 

Having demonstrated the utility of radical N-desulfonylation to produce spirocyclic 

imines, we sought to extent this method to the synthesis of fused-bicyclic imines. We were 
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especially interested in a radical cyclization reaction reported by Cossy, as illustrated in Section 

1.1.3 (Scheme 1.5). Reaction of enamide 1.37 with Et3B and Bu3SnH provided imine 1.38 in 

82% yield. Two possible mechanisms for the formation of 1.38 were considered by Cossy 

(Figure 11). In the β-elimination mechanism, the addition of tributyltin radical to the alkyne of 

1.37 generates vinyl radical 1.97, which undergoes a 5-exo-trig cyclization followed by β-

sulfonyl elimination to form imine 1.39. Finally, destannylation of this intermediate provides 

1.38, possibly upon purification of the reaction mixture on silica gel. In the sulfonyl abstraction 

mechanism, tributyltin radical attacks the tosyl group of 1.37 to form intermediate α-aminyl 

radical 1.98. Then a 5-exo-dig cyclization takes place and produces vinyl radical 1.99, which is 

reduced by tin hydride to give 1.38.  
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Figure 11 Two Possible Mechanisms for the Formation of Imine 1.38 

 

            Cossy suggested that the sulfonyl abstraction mechanism was more likely because the 

vinylstannane intermediate 1.39 proposed in the first mechanism was not detected in the crude 

product before column chromatography purification. In other words, even though an imine 

product was formed, the authors concluded that β-elimination of sulfonyl radical was not 

involved. Based on our previous discoveries of N-desulfonylation reactions, however, the 

“reversed” mechanism seemed unlikely. 
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To understand the mechanism and to expand the scope of the reaction, we designed 

dihydropyrrole substrate 1.100 with a bromide in place of the alkyne on the 4-alkyl chain 

(Scheme 1.34). The expected product of cyclization in the β-elimination pathway is imine 1.101. 

However, the cyclization will not occur if the reaction proceeds through the sulfonyl abstraction 

mechanism, because the bromide is not a radical acceptor.  

 

Scheme 1.34 Bromide Substrate 1.100 and Expected Cyclization Product 1.101 

 

Scheme 1.35 illustrates a ten-step synthesis of substrate 1.100. Commercial hydrolactam 

1.102 was protected as TBDPS ether 1.103 in 98% yield. Deprotonation of 1.103 with n-BuLi, 

followed by addition of tosyl chloride, provided tosylimide 1.104 in 93% yield. 

Phenyselenylation of compound 1.104, followed by oxidation of the resulting phenylselenide 

with H2O2, afforded enamide 1.105 in 63% yield over two steps. Conjugate addition of 

homoallyl cuprate to this product in the presence of TMSCl gave 1.106 in 83% yield. Sequential 

ozonolysis, NaBH4 reduction, and Appel reaction provided bromide 1.107 with an overall yield 

of 45% over three steps. Finally, reduction/dehydration reactions of 1.107 provided target 

dihydropyrrole 1.100 in 65% yield over two steps.  
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Scheme 1.35 Synthesis of Bromide Substrate 1.100 

 

Next, we conducted the key cyclization experiment under conditions that were similar to 

Cossy’s (Scheme 1.36). Treatment of bromide 1.100 with Et3B and Bu3SnH (0.03 M) at room 

temperature afforded target imine product 1.101 in 54% yield. Neither the cyzliation/hydrogen 

abstraction product nor the premature reduction product was detected by TLC or 1H NMR. This 

example further expanded the scope of the radical cyclization/β-sulfonyl elimination reaction. In 

addition, Cossy’s direct N-S scission hypothesis was invalidated since alkylbromides did not 

behave as radical acceptors (Figure 11). 

 

Scheme 1.36 Formation of Imine 1.101 
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To further support our conclusions, we designed a simple control experiment in which 

primary alcohol 1.108, an intermediate towards Somfai’s substrate 1.85, was subjected to the 

standard AIBN/Bu3SnH conditions (Scheme 1.37). We found neither the isomerization product 

1.109 nor the directly desulfonylated product 1.110 in the crude reaction mixture. Instead, 

alcohol 1.108 was recovered in 89% yield after flash chromatography. These results suggest that 

direct N-S bond cleavage of 1.108 and structurally similar dihydropyrroles should be a negligible 

process under typical conditions for radical cyclization.     

 

Scheme 1.37 Attempted Isomerization of Enesulfonamide 1.108 

 

3) Indole Substrates 

 

 Radical cyclizations of indoles that occur on the 3-position are interesting processes in 

that aromaticity of substrates is disrupted with the formation of carbon-centered α-amino 

radicals. In addition, such processes generate 3,3'-spiroindole products that are often regarded as 

“privileged” structures in medicinal chemistry. Despite of their potential value, only a handful of 

examples of these reactions have been reported. In these examples, the initially formed α-amino 

radicals after radical cyclization abstracted hydrogen from Bu3SnH to form 2,3-

dihydroindoles.51Shown in Figure 12 are two typical examples. Fang reported that treatment of 
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3-bromobutyl-substituted indole 1.111 with Bu3SnH afforded spiro-dihydroindole 1.112 in 81% 

yield.51a As one of the key steps in Nicolaou’s synthesis of (−)-aspidophytine,51b radical 

cyclization of xanthate 1.113 under standard AIBN/Bu3SnH conditions produced pentacycle 

1.114 in 58% yield.  

 

Figure 12 Two Examples of 3,3'-Spiroindole Synthesis by Radical Cyclization 

 

In 2005, Stevens reported an interesting example of spiroindole synthesis via halogen 

atom transfer radical cyclization (Figure 13).52 In the presence of TMEDA and CuCl, radical 

cyclization of trichloroacetamide 1.115 produced 2-chlorinated spiroindole 1.118 in 64% yield. 

The authors noted that prolonged reaction time led to the formation of imine product 1.119. 

Nonetheless, the experimental details and mechanism for the formation of 1.119 were not 

discussed. Given our discovery of radical N-sulfonyl cleavage in 2,3-dihydropyrrole systems, we 

expect that the initially generated α-amino radical 1.117, in the absence of copper, will expel a 

sulfonyl radical to give imine product 1.119.  
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Figure 13 Cyclization of 1.115 and Hypothesized Formation of Imine 1.119 from Radical 1.117 

 

To test the hypothesis, we prepared substrate 1.115 in a three-step sequence, according to 

Stevens’ procedures (Scheme 1.38). Deprotonation of commercially available indole-3-

carbaldehyde with NaH, followed by addition of TsCl, afforded sulfonylation product 1.120 in 

87% yield. Reductive amination of 1.120 with benzylamine, NaBH(OAc)3, and acetic acid 

provided secondary amine product 1.121 in 83% yield. Finally, this compound was acylated with 

trichloroacetyl chloride to give target substrate 1.115 in 97% yield. 
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Scheme 1.38 Synthesis of Trichloroacetamide 1.115 

 

In initial experiments, a mixed solution of AIBN and Bu3SnH (2~6 equiv) in benzene 

was added slowly via syringe pump to a solution of 1.115 in refluxing benzene. However, only 

complex mixtures were generated. We then conducted the reaction under fixed concentration 

conditions. AIBN and 2 equiv of Bu3SnH were mixed with a 0.01 M solution of 1.115 in 

refluxing benzene (Scheme 1.39). After 0.5 h, a mixture of two new products was observed by 

TLC. Whereas it was difficult to get a clean sample of the minor, less polar product by column 

chromatography, the major, more polar product 1.122 was carefully isolated as a single 

diasteroeomer in 51% yield. The 2D structure of 1.122 was solved based on several key features 

of the 1H NMR spectrum, including: 1) a sharp singlet at 4.45 ppm denoting Ha, and 2) the 

absence of both sulfonyl and imine signals.   
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Scheme 1.39 Radical Cyclization of 1.115 to Provide Desulfonylated Spiroindoles 

 

Next, we decided to synthesize the fully reduced product 1.124 that could be easily 

characterized. Six equivalents of Bu3SnH was used to achieve full conversion of the starting 

material (Scheme 1.39). After column chromatography, dihydro-spiroindole 1.124 was obtained 

as a single major product in 78% yield. Several key signals in the 1H NMR spectrum of 1.124 are 

characteristic, including: 1) four sets of methylene protons at 4.64~2.62 ppm, 2) a free aliphatic 

N-H signal at 3.74 ppm, and 3) the absence of both sulfonyl and imine protons. The structural 

assignment of 1.124 was also confirmed by 13C NMR, IR, and HRMS.  

These results offered solid evidence for our hypothesis regarding the sulfonyl radical 

elimination of α-amino radical species 1.117 (Figure 13). We concluded that the initially formed 

dichloroimine product 1.119 could be further reduced by Bu3SnH to provide dihydroindoles 

1.122 or 1.124, or possibly dichloro product 1.123 (not isolated), depending on the stoichiometry 

of Bu3SnH that was used (Scheme 1.39). Whereas reduction of dichloromethylene group is 

believed to occur via a radical mechanism, the mechanism for Bu3SnH-mediated imine reduction 
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is unclear. Compared to imine 1.81 that is stable towards the Bu3SnH conditions (Section 1.2.1), 

the electron-withdrawing groups of 1.119 are closer to the imine group.  

 

Scheme 1.40 In Situ Reduction of Dichloroimine 1.119 

 

Encouraged by our studies of Stevens’ system, we decided to extend the N-

desulfonylation chemistry to indoles bearing an additional aryl ring. Very reactive radical 

species, such as alkyl and trichloromethyl radicals, have shown effective in breaking the indole 

aromaticity. It is also worth mentioning that our preliminary studies have shown that α-amidoyl 

radicals lack of such reactivities. Therefore, we chose precursors 115 and 116 bearing aryl iodide 

moieties that would provide reactive aryl radicals 117 and 118 (Scheme 2.27). Spiro-bisindoles 

119 and 120 were the expected products of the radical cyclization reactions. 
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Figure 14 Proposed N-Desulfonylation Reactions Triggered by Cyclization of Aryl Radicals 

 

Indoles 1.125 and 1.128 were conveniently synthesized via reductive amination (Scheme 

1.41). Reductive amination of 1-tosyl-1H-indole-3-carbaldehyde 1.120 in the presence of 2-

iodoaniline, acetic acid, and NaBH(OAc)3 gave secondary aniline 1.131 in 66% yield, which was 

subsequently methylated to provide target precursor 1.125 in 91% yield. Commercially available 

ethyl 3-formyl-1H-indole-2-carboxylate 1.132 was tosylated to form indole 1.133 in 29% yield. 

Reductive amination of this product in the manner of 1.131 provided corresponding secondary 

aniline in 64% yield, which was then acylated with acetyl chloride to furnish 1.128 in 80% yield. 



 46 

 

Scheme 1.41 Synthesis of Aryl Iodides 1.125 and 1.128 

 

As we expected, cyclization of indole precursor 1.125 under the fixed tin-hydride-

concentration condition provided desulfonylated dihydroindole product 1.134 in 47% yield after 

column chromatography (Scheme 1.42). Two and half equiv of tin hydride was required to 

achieve full conversion of the starting matarial, and the formation of imine 1.127 was not 

observed under this condition. We believe that the initially formed imine 1.127 was quickly 

reduced by Bu3SnH in a similar manner of 1.119 (Scheme 1.40). In another experiment, radical 

cylcization of precursor 1.128 produced desulfonylated, yet not fully reduced product 1.130 in 

71% yield. 
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Scheme 1.42 N-Desulfonylation of 1.125 and 1.128  

 

4) 2-Iodobenzenesulfonyl as a Protecting/Radical Translocating Group for 1,2,3,4-

Tetrahydroquinoline 

 

Protecting groups are frequently used in organic synthesis to allow selective elaboration 

of one or several particular functional groups within complex settings. In most cases, protecting 

groups do not participate in desired bond-forming processes and need to be removed separately. 

In this regard, protecting/radical translocating (PRT) groups are attractive because they not only 

serve as traditional protecting groups, but selectively activate a remote functionality for a bond-

forming process.53 For example, Curran demonstrated that treatment of o-bromobenzyl ether 

1.135 with Bu3SnH provided 3-phenylpropanal 1.138, which was trapped with 2,4-dinitrophenyl 

hydrazine (2,4-DNPH) to provide hydrazone 1.139 in 66% yield over two steps (Scheme 

1.43).53b It was proposed that initially generated aryl radical 1.136 underwent 1,5-hydrogen 

transfer to produce tertiary alkyl radical 1.137 that afforded 1.138 via β-elimination. In this case, 
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the o-bromobenzyl group serves as a self-oxidizing protecting group that can be removed under 

reductive conditions. 

 

Scheme 1.43 o-Bromobenzyl as a Self-Oxidizing PRT Group for Alcohols 

 

We envisioned an interesting merger of the radical N-desulfonylation chemistry with the 

concept of self-oxidizing PRT group (Scheme 1.44). As a bonus, the protecting group is 

simultaneously removed after the bond-forming process. 2-Iodo- and 2-bromo-benzenesulfonyl 

groups were selected to integrate with standard sulfonyl protecting groups for amines.  

 

Scheme 1.44 2-Iodo(bromo)benzenesulfonyl a Self-Oxidizing PRT Group for Amines 

 

Several sulfonamide precursors were synthesized and subjected to Bu3SnH conditions 

(Scheme 1.45). Only directly reduced products were detected in the reactions of simple pyrroline 

and piperidine derivatives (1.140 and 1.141). Finally, a mixture of AIBN, Bu3SnH (0.02 M), and 
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1,2,3,4-tetrahydroquinoline precursor 1.142 was refluxed for 30 min. To our delight, 3,4-

dihydroquinoline 1.143 was isolated in 55% yield after column chromatography.  

 

Scheme 1.45 Substrates for Testing 2-Iodo(bromo)benzenesulfonyl as a PRT Group 

 

The above results suggest that a radical stabilizing group next to the α-sulfonamidoyl 

group is required for successful 1,5-hydrogen transfer/desulfonylation process. Further 

investigation of this reaction is currently undergoing in the Curran lab. 

1.3 CONCLUSIONS 

We discovered a tandem radical cyclization/N-sulfonyl elimination reaction in the course of 

synthetic studies of meloscine. Several classes of spiro- and fused-imine products were accessed 

via this reaction, as demonstrated by eight representative examples. We carefully studied two 

related cyclization reactions reported by Somfai and Cossy. We partially reproduced Somfai’s 

results and more importantly, proved the formation of an unreported spiroimine as the major 

product under fixed tin hydride concentration conditions. For Cossy’s reaction, we were able to 
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exclude the direct radical cleavage of N-S bond as a mechanism for imine formation. Instead, the 

imine forms by sulfonyl radical elimination. Finally, the radical desulfonylation reaction was 

extended to tetrahydroisoquinoline system. We illustrated that 2-iodobenzenesulfonyl acts as a 

protecting/radical translocating (PRT) group for tetrahydroquinoline. This reaction features a 

neutral condition for deprotection of N-sulfonyl group, with concomitant activation of a C-H 

bond of tetrahydroquinoline. 

1.4 EXPERIMENTALS 

General Information:  Chemicals and solvents were purchased from commercial suppliers and 

used as received, except as follows. Dichloromethane, THF, ether, and toluene were dried by 

passing through an activated alumina column. All reactions were carried out under an inert 

atmosphere of dry argon, unless otherwise indicated.  

 All reactions were followed by TLC or 1H NMR spectroscopy. TLC visualizations were 

performed by illumination with a UV lamp (254 nm) or staining with a phosphomolybdic acid 

solution in ethanol and heating. All flash chromatography was performed with 230-400 mesh 

silica gel purchased from Sorbent Technoloies as the stationary phase. 

 1H NMR spectra were recorded on a Bruker Avance instruments at 300, 400 and 500 MHz 

with deuterated chloroform as solvent, unless otherwise indicated. 13C NMR spectra were 

measured on Bruker Avance instruments at 75, 100, 125, 150, 175 MHz. The chemical shifts in 

spectra were measured in parts per million (ppm) on the delta (δ) scale relative to the resonance 

of the solvent peak (CDCl3: 1H = 7.27 ppm, 13C = 77.0 ppm). Unless otherwise noted, NMR 

spectra were recorded at 293 K. 
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 IR spectra were recorded on a Nicolet Avatar 360 FTIR spectrometer and ran as thin films 

on sodium chloride plates. Mass spectra were obtained on Fisons Autospec high-resolution 

magnetic sector mass spectrometer or a Micromass Q-Tof Ultima mass spectrometer. Optical 

rotations were measured on a Perkin-Elmer 241 Polarimeter using a 1 dm cell length. All quoted 

optical rotation values are corrected for 100% ee samples, and have the units (deg cm2 g-1). 

 Ethyl 3-formyl-1H-indole-2-carboxylate 1.132 and 2-Iodobenzenesulfonyl chloride were 

purchased from Ryan Scientific, Inc. Compounds 1.140 and 1.141 were prepared by known 

procedures, and the spectral data matched the reported ones.54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 52 

 

2,2,2-Trifluoro-N-(2-iodophenyl)acetamide (1.72): Et3N (7.1 mL, 51.3 mmol) was added to a 

solution of 2-iodoaniline (10.2 g, 46.7 mmol) in THF (60 mL) at −15 °C, followed by dropwise 

addition of trifluoroacetic anhydride (7.1 mL, 51.3 mmol). The reaction mixture was stirred at 

−15 °C for 30 min and then at room temperature for 2 h. The reaction was quenched with water 

and the aqueous layer was extracted with Et2O. The combined organic layers were washed with 

brine, dried over NaSO4, and concentrated in vacuo. The residue was passed through a pad of 

silica gel (1:10 EtOAc/hexanes) to provide the title compound (14.0 g, 95%) as a white solid: 1H 

NMR (300 MHz, CDCl3) δ 8.28 (s, 1H), 8.23 (dd, J = 8.1 Hz, 1.2 Hz, 1H), 7.85 (dd, J = 8.1, J = 

1.2 Hz, 1H), 7.42 (dt, J = 7.8 Hz, 1.2 Hz, 1H), 6.98 (dt, J = 7.8 Hz, 1.2 Hz, 1H). Above spectral 

data are consistent with reported ones.55   

 

 

N-Benzyl-2,2,2-trifluoro-N-(2-iodophenyl)acetamide (1.73): A solution of trifluoroacetamide 

1.72 (3.0 g, 9.52 mmol) in DMF (10 mL) was added dropwise to a suspension of NaH (11.43 

mmol) in DMF (25 mL) at 0 °C. After 30 min, a solution of BnBr (1.36 mL, 11.43 mmol) in 

DMF (10 mL) was added dropwise at 0 °C. The reaction mixture was warmed to room 

temperature and stirred for 12 h. The reaction was quenched with a saturated aqueous NH4Cl 

solution and the aqueous layer was extracted with Et2O. The combined organic layers were 
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washed with brine, dried over MgSO4, and concentrated in vacuo. The crude product was 

purified by flash chromatography (silica gel, 1:50 EtOAc/hexanes) to provide the title compound 

(3.5 g, 91%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.97 (dd, J = 7.8 Hz, 1.5 Hz, 1H), 

7.33-7.17 (m, 6H), 7.09 (dt, J = 7.8 Hz, 1.5 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.74 (d, J = 14.1 

Hz, 1H), 4.04 (d, J = 14.1 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 156.9 (q, JCF = 35.2 Hz), 

140.1, 134.8, 131.4, 131.3, 130.7, 129.7, 128.7, 128.6, 128.3, 116.1 (q, JCF = 287.2 Hz), 99.4, 

53.8; HRMS (TOF ES) calcd for C15H11NOF3NaI [M+Na]+: 427.9735, found: 427.9705.  

 

 

N-Benzyl-2,2,2-trifluoro-N-(2-(tributylstannyl)phenyl)acetamide (1.74): Pd(PPh3)4 (143 mg, 

0.12 mmol) and hexabutylditin (3.7 mL, 7.4 mmol) were added to a solution of aryliodide 1.73 

(1.0 g, 2.5 mmol) in toluene (20 mL), and the reaction mixture was refluxed for 24 h. The 

solvent was evaporated and the crude product was purified by flash chromatography (silica gel, 

1:50 EtOAc/hexanes) to provide the title compound (1.2 g, 84%) as a light green oil: 1H NMR 

(300 MHz, CDCl3) δ 7.53 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.33-7.27 (m, 4H), 7.15-7.10 (m, 3H), 

6.51 (d, J = 7.5 Hz, 1H), 5.75 (d, J = 13.5 Hz, 1H), 3.83 (d, J = 13.5 Hz, 1H), 1.59-1.47 (m, 6H), 

1.34 (m, 6H), 1.10 (m, 6H), 0.90 (t, J = 7.2 Hz, 9H); 13C NMR (100 MHz, CDCl3) 156.9 (q, JCF 

= 35.0 Hz), 144.4, 142.5, 138.1, 135.1, 130.1, 129.7, 128.5, 128.3, 128.23, 128.21, 116.5 (q, JCF 

= 287.0 Hz), 55.4, 29.0 (t, JCSn = 10.0 Hz), 27.3 (t, JCSn = 31.0 Hz), 13.6, 10.3 (t, JCSn = 170.0 

Hz); FTIR (thin film, CH2Cl2, cm-1) 2957, 2926, 2854, 1693, 1465, 1437, 1205, 1176, 1154; 

HRMS (EI) calcd for C23H29NOF3Sn [M−C4H9]+: 508.1219, found: 508.1229. 
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1-(Phenylsulfonyl)-2,3-dihydro-1H-pyrrole (1.76): A DIBAL-H solution (1 M in hexane, 39 

mL) was added dropwise to a solution of sulfonamide 1.75 (5.8 g, 26 mmol) in THF (250 mL) 

−78 °C. After 1 h, the reaction mixture was diluted with Et2O (200 mL) and a saturated aqueous 

potassium-sodium tartrate solution (400 mL) was added. The mixture was stirred for 12 h. The 

aqueous layer was extracted with Et2O, and the combined organic layers were washed with brine, 

dried over MgSO4, and concentrated in vacuo. The crude hemiaminal product was dissolved in 

toluene (150 mL). Citric acid (5.4 g, 26 mmol) was added and the reaction mixture was stirred at 

80 °C for 4 h. The reaction mixture was cooled to room temperature and a saturated aqueous 

NaHCO3 solution was carefully added. The aqueous layer was extracted with EtOAc and the 

combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. 

The crude product was purified by flash chromatography (silica gel, 1:4 EtOAc/hexanes) to 

provide the title compound (4.3 g, 80%) as a white solid: mp 114-115°C; 1H NMR (300 MHz, 

CDCl3) δ 7.78 (d, J = 7.8 Hz, 2H), 7.61-7.50 (m, 3H), 6.38 (td, J = 4.2 Hz, 2.1 Hz, 1H), 5.12 (td, 

J = 4.2 Hz, 2.7 Hz, 1H), 3.50 (t, J = 9.0 Hz, 2H), 2.48 (tt, J = 9.0 Hz, 2.4 Hz, 2H); 13C NMR (75 

MHz, CDCl3) δ 135.8, 133.01, 130.52, 129.08, 127.67, 111.56, 47.23, 29.06; FTIR (thin film, 

CH2Cl2, cm-1) 3094, 2989, 2940, 2878, 1613, 1468, 1446, 1169, 1114, 1090, 1065; HRMS (EI) 

calcd for C10H11NO2S [M]+: 209.0510, found: 209.0510.  

 

 

trans-3-Iodo-2-methoxy-1-(phenylsulfonyl)pyrrolidine (1.77): Sodium methoxide (5.8 g, 107 

mmol) was added to a solution of enamide 1.76 (11.2 g, 53.5 mmol) in MeOH (200 mL), 
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followed by dropwise addition of a solution of ICl (1 M in CH2Cl2, 54 mL). After 30 min, the 

reaction was quenched with a saturated aqueous NaS2O3 solution. The aqueous layer was 

extracted with EtOAc and the combined organic layers were washed with brine, dried over 

MgSO4, and concentrated in vacuo. The crude product was washed with mixed hexane/Et2O 

(4:1) to provide the title compound (18.7 g, 95%) as a yellow solid: mp 80-81 °C; 1H NMR (300 

MHz, CDCl3) δ 7.93 (d, J = 6.9 Hz, 2H), 7.61-7.50 (m, 3H), 5.22 (s, 1H), 4.17 (d, J = 4.8 Hz, 

1H), 3.52 (dt, J = 8.7 Hz, 1.2 Hz, 1H), 3.48 (s, 3H), 3.44-3.36 (m, 1H) 2.58 (dddd, J = 13.8 Hz, 

10.8 Hz, 8.1 Hz, 5.7 Hz, 1H), 2.07 (dd, J = 13.8 Hz, 5.7 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 

137.7, 133.0, 129.0, 128.1, 98.5, 56.1, 46.3, 34.3, 25.3; FTIR (thin film, CH2Cl2, cm-1) 2937, 

1446, 1349, 1288, 1207, 1164, 1098, 1014; HRMS (TOF ES) calcd for C11H14NO3NaSI 

[M+Na]+: 389.9637, found: 389.9627. 

 

 

4-Iodo-1-(phenylsulfonyl)-2,3-dihydro-1H-pyrrole (1.67): Citric acid (2.60 g, 12.4 mmol) was 

added to a solution of 1.77 (7.08 g, 20.22 mmol) in toluene (240 mL) and the reaction mixture 

was refluxed for 6 h. The reaction mixture was cooled to room temperature and a saturated 

aqueous NaHCO3 solution was carefully added. The aqueous layer was extracted with Et2O, and 

the combined organic layers were washed with brine, dried over MgSO4, and concentrated in 

vacuo. The crude product was purified by flash chromatography (silica gel, 1:5 EtOAc/hexanes) 

to provide the title compound  (3.88 g, 57%) as a yellow solid: mp 106-107 °C; 1H NMR (300 

MHz, CDCl3) δ 7.79 (dd, J = 7.8 Hz, 1.8 Hz, 2H), 7.63-7.53 (m, 3H), 6.57 (t, J = 2.1 Hz, 1H), 

3.55 (t, J = 9.0 Hz, 2H), 2.70 (dt, J = 9.0 Hz, 2.1 Hz, 2H); 13C NMR (300 MHz, CDCl3) δ 

135.74, 135.47, 133.28, 129.31, 127.65, 70.52, 48.21, 39.61; FTIR (thin film, CH2Cl2, cm-1) 
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3105, 3062, 2857, 1607, 1474, 1445, 1351, 1166, 1099; HRMS (TOF ES) calcd for 

C10H10NO2NaSI [M+Na]+: 357.9375, found: 357.9355. 

 

 

N-Benzyl-2,2,2-trifluoro-N-(2-(1-(phenylsulfonyl)-4,5-dihydro-1H-pyrrol-3-

yl)phenyl)acetamide (1.78): A Schlenck tube (100 mL) was charged with LiCl (1.14 g, 26.87 

mmol) and flame-dried under vacuum. Upon cooling, CuCl (2.22 g, 22.34 mmol) and Pd(PPh3)4 

(0.518 g, 0.448 mmol) were added and the mixture was degassed under vacuum with an Ar 

purge. Anhydrous DMSO (15 mL) was introduced, followed by a solution of arylstannane 1.74 

(3.05 g, 5.37 mmol) in anhydrous DMSO (5 mL), and finally a vinyl iodide 1.67 (1.5 g, 4.48 

mmol). The resulting mixture was degassed three times through freeze-pump-thaw processes, 

and stirred at room temperature for 30 min and then heated to 60 °C for 1.5 h. The reaction 

mixture was cooled, diluted with Et2O, and washed with a 5% aqueous NH4OH solution (30 mL) 

and brine (150 mL). The aqueous layer was extracted with Et2O, and the combined organic 

layers were washed with brine, dried over MgSO4, and concentrated in vacuo. The crude product 

was purified by flash chromatography (silica gel, 1:3 EtOAc/hexanes) to provide the title 

compound (1.90 g, 87%) as a yellow oil: 1H NMR (300 MHz, CDCl3) δ 7.84 (dd, J = 7.8 Hz, 1.5 

Hz, 2H), 7.59-7.54 (m, 3H), 7.29 (t, J = 6.3 Hz, 3H), 7.24 (dt, J = 6.3 Hz, 1.5 Hz, 2H), 7.10 (dd, 

J = 7.8 Hz, 1.5 Hz, 2H), 7.46 (dt, J = 7.8 Hz, 1.5 Hz, 1H), 6.68 (t, J = 1.5 Hz, 1H), 6.57 (d, J = 

7.8 Hz, 1H), 5.53 (d, J = 13.5 Hz, 1H), 3.79-3.70 (m, 2H), 3.56 (app q, J = 9.3 Hz, 1H), 2.85 (t, J 

= 9.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 157.10 (q, JCF = 35.2 Hz), 135.49, 134.63, 133.35, 
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132.01, 131.04, 129.62, 129.53, 129.41, 129.19, 128.63, 128.39, 128.33, 127.61, 127.08, 120.43, 

116.20 (q, JCF = 287.2 Hz) 53.41, 47.18, 32.03; FTIR (thin film, CH2Cl2, cm-1) 3066, 2939, 

1692, 1613, 1493, 1447, 1358, 1207, 1168, 1093, 1047; HRMS (TOF ES) calcd for 

C25H21N2O3F3NaS [M+Na]+: 509.1123, found: 509.1147.  

 

 

N-Benzyl-2-(1-(phenylsulfonyl)-4,5-dihydro-1H-pyrrol-3-yl)aniline (1.79): NaBH4 (16 mg, 

0.432 mmol) was added in two portions to a solution of trifluoroacetamide 1.78 (30 mg, 0.062 

mmol) in EtOH (1 mL). The reaction mixture was stirred at room temperature for 3 h. After the 

solvent was evaporated, the residue was purified by flash chromatography (silica gel, 1:3 

EtOAc/hexanes) to provide the title compound (23 mg, 96%) as a colorless oil: 1H NMR (300 

MHz, CDCl3) δ 7.61-7.58 (m, 2H), 7.53-7.29 (m, 8H), 7.13 (dt, J = 7.8 Hz, 1.5 Hz, 1H), 7.24 (dt, 

J = 6.3 Hz, 1.5 Hz, 2H), 7.10 (dd, J = 7.8 Hz, 1.5 Hz, 2H), 7.46 (dt, J = 7.5 Hz, 1.5 Hz, 1H), 6.96 

(dd, J = 7.5 Hz, 1.5 Hz, 1H), 6.83 (t, J = 1.8 Hz, 1H), 6.72 (dt, J = 7.5 Hz, 1.2 Hz, 1H), 6.69 (d, J 

= 7.8 Hz, 1H), 4.30 (s, 2H), 4.07 (brs, 1H), 3.58 (t, J = 9 Hz, 1H), 2.84 (dt, J = 9 Hz, 1.5, 1H); 

13C NMR (75 MHz, CDCl3) δ 145.34, 139.03, 135.09, 132.98, 129.07, 128.90, 128.39, 127.73, 

127.70, 127.53, 127.36, 127.07, 122.67, 119.91, 117.63, 111.16, 46.86, 46.80, 32.85; IR (thin 

film, CH2Cl2, cm-1) 3340, 3031, 2923, 2853, 1596, 1500, 1448, 1349, 1164, 1090, 1043, 749, 

704; HRMS (EI) calcd for C23H22N2O2S [M]+: 390.1402, found: 390.1408.  
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N-Benzyl-2-bromo-N-(2-(1-(phenylsulfonyl)-4,5-dihydro-1H-pyrrol-3-yl)phenyl)acetamide 

(1.64a): Pyridine (10 µL, 0.128 mmol) and bromoacetyl bromide (7 µL, 0.077 mmol) were 

successively added to a solution of aniline 1.79 (25 mg, 0.064 mmol) in CH2Cl2 (1 mL). After 10 

min, the reaction mixture was quenched with a saturated aqueous NH4Cl solution, and the 

aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with brine, 

dried over MgSO4, and concentrated in vacuo. The crude product was purified by flash 

chromatography (silica gel, 1:2.5 EtOAc/hexanes) to provide the title compound (27 mg, 83%) 

as a viscous, colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.86-7.83 (m, 2H), 7.61-7.54 (m, 3H), 

7.31-7.19 (m, 5H), 7.15-7.11 (m, 2H), 7.06 (td, J = 7.8 Hz, 1.5 Hz, 1H), 6.71 (s, 1H), 6.67 (dd, J 

= 7.8 Hz, 0.9 Hz, 1H), 5.55 (d, J = 13.8 Hz, 1H), 3.73 (d, J = 13.8 Hz, 1H), 3.75-3.68 (m, 1H), 

3.52 (app q, J = 9.3 Hz, 1H), 3.46 (d, J = 16.8 Hz, 1H), 3.42 (d, J = 16.8 Hz, 1H), 2.83 (t, J = 9 

Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 166.3, 137.2, 136.1, 135.5, 133.4, 131.8, 130.6, 129.5, 

129.4, 129.3, 129.2, 128.5, 128.4, 127.9, 127.7, 120.0, 52.0, 47.1, 32.0, 27.5; FTIR (thin film, 

CH2Cl2, cm-1) 3062, 1662, 1356, 1167; HRMS (TOF ES) calcd for C25H23N2O3NaSBr [M+Na]+: 

533.0510, found: 533.0506. 
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1'-Benzyl-4,5-dihydro-1'H-spiro[pyrrole-3,4'-quinolin]-2'(3'H)-one (1.81): A mixture of 

bromoacetamide 1.64a (12 mg, 0.023 mmol), Bu3SnH (18 µL, 0.069 mmol), and AIBN (1 mg) in 

benzene (2.5 mL) was refluxed for 30 min. The solvent was evaporated, and the residue was 

partitioned between hexane (5 mL) and acetonitrile (5 mL) to remove most of the tin residue. 

The acetonitrile layer was concentrated in vacuo, and the crude product was purified by flash 

chromatography (silica gel, 2:1 EtOAc/hexanes) to provide the title compound (5 mg, 75%) as a 

colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.51 (s, 1H), 7.34-7.15 (m, 6H), 7.04-6.95 (m, 3H), 

5.35 (d, J = 16.2 Hz, 1H), 5.10 (d, J = 16.2 Hz, 1H), 4.08 (m, 2H), 2.97 (d, J = 15.6 Hz, 1H), 

2.67 (d, J = 15.4 Hz, 1H), 2.22 (dt, J = 13.2 Hz, 6.6 Hz, 1H), 1.89 (dt, J = 13.2 Hz, 6.6 Hz, 1H); 

13C NMR (75 MHz, CDCl3) 168.7, 167.8, 138.7, 136.6, 129.2, 128.8, 128.4, 127.3, 126.5, 125.0, 

123.6, 116.4, 61.1, 54.8, 46.1, 39.5, 35.9; FTIR (thin film, CH2Cl2, cm-1) 3033, 2960, 2867, 

1676, 1625, 1600, 1495, 1455, 1379, 1324, 1284, 1223, 1192; HRMS (EI) calcd for C19H18N2O 

[M]+: 290.1419, found: 290.1414. 

 

 

N-Benzyl-2-bromo-N-(2-(1-(phenylsulfonyl)-4,5-dihydro-1H-pyrrol-3-

yl)phenyl)propanamide (1.80): Aniline 1.79 (200 mg, 0.513 mmol) was acylated in the manner 

of 1.64a and purified by flash chromatography (silica gel, 1:2.5 EtOAc/hexanes) to provide the 
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title compound (252 mg, 94%) as a colorless oil, in a 2.3:1 ratio of two inseparable 

diastereomers. 1H NMR (300 MHz, CDCl3) δ major isomer: 6.60 (t, J = 1.5 Hz, 1H), 5.56 (d, J = 

13.8 Hz, 1H), 3.90 (q, J = 3.6 Hz, 1H), 2.80 (td, J = 9.3 Hz, 1.8 Hz, 1H), 1.49 (J = 6.6 Hz, 3H); 

minor isomer: 6.43 (d, J = 7.5 Hz, 1H), 5.45 (d, J = 13.8 Hz, 1H), 4.24 (q, J = 3.6 Hz, 1H), 2.91 

(td, J = 9.3 Hz, 1.8 Hz, 1H), 1.69 (d, J = 6.6 Hz, 3H); overlapping signals: 7.86-7.83 (m, 2H), 

7.59-7.55 (m, 3H), 7.35-7.05 (m, 8H), 6.87-6.84 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 169.8, 

169.7, 137.0, 136.9, 136.3, 136.1, 136.0, 135.8, 133.4, 133.2, 132.2, 131.9, 130.5, 130.0, 129.5, 

129.4, 129.3, 129.1, 129.0, 128.5, 128.4, 128.3, 128.2, 127.8, 127.7, 127.5, 120.0, 119.9, 51.8, 

51.7, 47.4, 47.2, 39.6, 39.2, 32.2, 32.0, 22.5, 21.6; FTIR (thin film, CH2Cl2, cm-1) 3063, 1741, 

1664, 1447, 1358, 1167, 1093, 1070; HRMS (EI) calcd for C26H25N2O3SBr [M]+: 524.0769, 

found: 524.0761. 

 

 and  

(3R*,3'R*)-1'-Benzyl-3'-methyl-4,5-dihydro-1'H-spiro[pyrrole-3,4'-quinolin]-2'(3'H)-one 

(1.84a) and (3R*,3'S*)-1'-Benzyl-3'-methyl-4,5-dihydro-1'H-spiro[pyrrole-3,4'-quinolin]-

2'(3'H)-one (1.84b):  

AIBN initiation at 80 °C. Compound 1.80 (126 mg, 0.24 mmol) was subjected to the condition 

described for cyclization of compound 1.81. Purification of the crude product by flash 

chromatography (silica gel, 2:1 EtOAc/hexanes) provided two diastereomers 1.84a and 1.84b. 

The less polar diastereomer, 1.84a, was isolated (36 mg, 50%) as a colorless oil, which was 

crystallized from vapor diffusion of EtOAc/hexanes: mp 117-118 °C; 1H NMR (300 MHz, 
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CDCl3) δ 7.46 (t, J = 2.4 Hz, 1H), 7.33-7.15 (m, 6H), 7.00 (td, J = 7.5 Hz, 1.2 Hz, 1H), 6.98 (d, J 

= 7.5 Hz, 1H), 6.92 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 5.31 (d, J = 16.2 Hz, 1H), 5.10 (d, J = 16.2 Hz, 

1H), 4.03 (td, J = 6.9 Hz, 2.4 Hz, 2H), 3.03 (q, J = 6.9 Hz, 1H), 2.16 (app dt, J = 13.8 Hz, 6.9 

Hz, 1H), 1.70 (app dt, J = 13.8 Hz, 6.9 Hz, 1H), 1.21 (d, J = 6.9 Hz, 3H); 13C NMR (75 MHz, 

CDCl3) δ 170.8, 168.4, 138.3, 136.9, 130.9, 128.8, 128.3, 127.2, 126.6, 124.6, 123.4, 116.3, 62.2, 

59.2, 46.5, 40.7, 30.3, 10.4; FTIR (thin film, CH2Cl2, cm-1) 3032, 2940, 2868, 1677, 1625, 1600, 

1494, 1455, 1378, 1325, 1259, 1215; HRMS (EI) cald for C20H20N2O, 304.1576 [M]+, found: 

304.1580. The more polar diastereomer, 1.84b, was isolated (9 mg, 13%) as a colorless oil: 1H 

NMR (300 MHz, CDCl3) δ 7.70 (s, 1H), 7.34-7.15 (m, 6H), 7.05-6.94 (m, 3H), 5.39 (d, J = 16.2 

Hz, 1H), 5.00 (d, J = 16.2 Hz, 1H), 4.08-4.02 (m, 2H), 2.81 (q, J = 7.2 Hz, 1H), 2.21 (app dt, J = 

13.8 Hz, 6.9 Hz, 1H), 1.86 (app dt, J = 13.8 Hz, 6.9 Hz, 1H), 1.28 (d, J = 7.2 Hz, 3H); 13C NMR 

(75 MHz, CDCl3) δ 171.7, 167.8, 138.0, 136.8, 128.8, 128.3, 128.1, 127.2, 126.4, 125.9, 123.7, 

116.0, 60.8, 58.5, 46.0, 44.6, 36.8, 13.2; FTIR (thin film, CH2Cl2, cm-1) 2933, 1674, 1600, 1495, 

1455, 1382, 1319, 1276, 1228; HRMS (TOF ES) calcd for C20H20N2ONa [M+Na]+: 327.1473, 

found: 327.1451. A sample of 1.84a for X-ray crystallography analysis was prepared by vapor 

diffusion crystallization method. A dram glass vial (2 mL) was charged with a solution of imine 

1.84a (3 mg) in EtOAc (0.2 mL), and this vial was placed in a 150 mL beaker containing hexane 

(5 mL). After 48 h, a small crystal precipitated at the bottom of the vial. 

Et3B initiation at room temperature. A mixture of compound 1.80 (60 mg, 0.12 mmol), 

tributyltin hydride (150 µL, 0.56 mmol), and Et3B (123 µL, 0.14 mmol) in benzene (11 mL) was 

stirred for 30 min. The solvent was evaporated and the crude product was purified by flash 

chromatography to provide a 5:1 mixture of 1.84a and 1.84b (15 mg, 43% combined yield). 
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3-(4-(tert-Butyldimethylsilyloxy)butyl)-1-(phenylsulfonyl)pyrrolidin-2-one (1.92): A 

LiHMDS solution (1 M in THF, 13.9 mL) was added dropwise to a solution of sulfonamide 1.75 

(2.6 g, 11.5 mmol) in THF (20 mL) −78 °C, and the mixture was stirred for 30 min. A solution of 

alkyl iodide 1.91 (9 mL, 34.6 mmol) in HMPA (6 mL) was added in one portion at −78 °C, and 

the reaction mixture was stirred at this temperature for 12 h. The reaction was quenched with 

water and the aqueous layer was extract with Et2O. The combined organic layers were washed 

with brine, dried over MgSO4, and concentrated in vacuo. The crude product was purified by 

flash chromatography (silica gel, 1:5 EtOAc/hexanes) to provide the title compound (1.5 g, 31%) 

as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 8.05-8.02 (m, 2H), 7.64-7.61 (m, 1H), 7.56-7.51 

(m, 3H), 3.95 (ddd, J = 9.9 Hz, 8.7 Hz, 2.7 Hz, 1H), 3.69 (appt dt, J = 9.6 Hz, 6.9 Hz, 1H), 3.55 

(t, J = 6.3 Hz, 1H), 2.46-2.36 (m, 1H), 2.28-2.18 (m, 1H), 1.77-1.70 (m, 2H), 1.49-1.41 (m, 2H), 

1.37-1.27 (m, 2H), 0.86 (s, 9H), 0.01 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 175.3, 138.1, 134.0, 

129.0, 128.0, 63.7, 45.5, 43.2, 32.4, 29.9, 25.9, 25.0, 23.2, 18.3, -5.3; FTIR (thin film, CH2Cl2, 

cm-1) 2931, 2858, 1737, 1362, 1228, 1254, 1172, 1102; HRMS (TOF ES) calcd for 

C20H33NO4NaSiS [M+Na]+: 434.1797, found: 434.1806. 

 

 

4-(4-Bromobutyl)-1-(phenylsulfonyl)-2,3-dihydro-1H-pyrrole (1.85):  

A solution of DIBAL-H (1 M in hexane, 25.3 mL) was added dropwise to a solution of 

sulfonamide 1.92 (1.3 g, 3.16 mmol) in THF (15 mL) at −78 °C. The reaction mixture was 
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stirred at this temperature for 2 h. It was diluted with Et2O and quenched with a saturated 

aqueous potassium-sodium tartrate solution. The mixture was stirred overnight. The aqueous 

layer was extracted with Et2O and the combined organic layers were washed with brine, dried 

over MgSO4, and concentrated in vacuo. The crude hemiaminal product was dissolved in toluene 

(25 mL). Citric acid (663 mg, 3.16 mmol) was added and the reaction mixture was stirred at 80 

°C for 4 h. The reaction mixture was cooled to room temperature and a saturated aqueous 

NaHCO3 solution was carefully added. The aqueous layer was extracted with Et2O and the 

combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo 

to give the crude ene-sulfonamide 1.93: 1H NMR (300 MHz, CDCl3) δ 7.76 (m, 2H), 7.61-7.49 

(m, 3H), 6.08 (s, 1H), 3.57 (t, J = 6.0 Hz, 2H), 3.50 (t, J = 8.7 Hz, 2H), 2.32 (J = 8.7 Hz, 2H), 

2.00 (J = 6.0 Hz, 2H), 1.42-1.36 (m, 4H), 0.89 (s, 9H), 0.03 (s, 6H). 

Crude ene-sulfonamide 1.93 was dissolved in THF (40 mL), and a TBAF solution (1 M 

in THF, 4 mL) was added at 0 °C. After 2 h, the reaction was quenched with a saturated aqueous 

NaHCO3 solution, and the aqueous layer was extracted with Et2O. The combined organic layers 

were washed with brine, dried over MgSO4, and concentrated in vacuo. The residue was passed 

through a short pad of silica gel (silica gel, 1:2 EtOAc/hexanes) to afford the crude alcohol 

intermediate: 1H NMR (300 MHz, CDCl3) δ 7.79-7.75 (m, 2H), 7.62-7.49 (m, 3H), 6.08 (t, J = 

1.5 Hz, 1H), 3.61 (q, J = 5.7 Hz, 2H), 3.49 (t, J = 9.0 Hz, 2H), 2.32 (t, J = 9.0 Hz, 2H), 2.00 (t, J 

= 7.5 Hz, 2H), 1.53-1.39 (m, 4H). The above spectral data were identical to those reported.37a 

The crude alcohol intermediate was dissolved in CH2Cl2 (4 mL), followed by addition of 

CBr4 (156 mg, 0.47 mmol) and Ph3P (128 mg, 0.49 mmol) at 0 °C. The reaction was quenched 

with water after 2 h. The aqueous layer was extract with Et2O, and the combined organic layers 

were washed with brine, dried over MgSO4, and concentrated in vacuo. The crude product was 
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purified by flash chromatography (silica gel, 1:5 EtOAc/hexanes) to provide the title compound 

(105 mg, 61% over 4 steps) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.76 (m, 2H), 7.63-

7.50 (m, 3H), 6.10 (t, J = 1.2 Hz, 1H), 3.50 (t, J = 9.0 Hz, 2H), 3.36 (t, J = 6.6 Hz, 2H), 2.33 (t, J 

= 9.0 Hz, 2H), 2.02 (t, J = 7.5 Hz, 2H), 1.76 (quintet, J = 7.5 Hz, 2H), 1.50 (quintet, J = 7.5 Hz, 

2H); 13C NMR (75 MHz, CDCl3) 135.7, 132.9, 129.0, 127.7, 126.5, 124.6, 47.6, 33.4, 32.1, 32.0, 

27.3, 25.8; HRMS (TOF ES) calcd for C14H19NO2SBr [M]+: 344.0306, found: 344.0320. The 

above spectral data were identical to those reported.37a 

 

 

4-(4-(Phenylselanyl)butyl)-1-(phenylsulfonyl)-2,3-dihydro-1H-pyrrole (1.96): NaBH4 (19 

mg, 0.5 mmol) was added in one portion to a solution of diphenyl diselenide (52 mg, 0.17 mmol) 

in EtOH (3 mL), and the mixture was stirred for 30 min. A solution of bromide 1.85 (115 mg, 

0.33 mmol) in EtOH (2 mL) was added and the reaction mixture was stirred for 12 h. The solvent 

was evaporated and the crude product was purified by flash chromatography (silica gel, 1:5 

EtOAc/hexanes) to provide the title compound (102 mg, 73%) as a colorless oil: 1H NMR (300 

MHz, CDCl3) δ 7.76 (d, J = 7.2 Hz, 2H), 7.59-7.45 (m, 5H), 7.26-7.24 (m, 3H), 6.06 (s, 1H), 

3.48 (t, J = 9.0 Hz, 2H), 2.87 (t, J = 7.2 Hz, 2H), 2.89 (t, J = 8.7 Hz, 2H), 1.98 (t, J = 7.2 Hz, 

2H), 1.62 (quintet, J = 7.2 Hz, 2H), 1.46 (quintet, J = 7.2 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 

135.8, 132.8, 132.4, 130.4, 129.1, 129.0, 127.7, 126.9, 126.8, 124.4, 47.6, 32.1, 29.5, 27.6, 27.5, 

27.4; FTIR (thin film, CH2Cl2, cm-1) 3060, 2930, 2855, 1579, 1476, 1445, 1351, 1166, 1092; 

HRMS (TOF ES) calcd for C20H23NO2NaSSe [M+Na]+: 444.0512, found: 444.0497. 
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General Procedures for the cyclization of bromide 1.85 and phenylselenide 1.96 under fixed 

tin-hydride concentration conditions:  

In a sealed tube, alkyl bromide 1.85 (0.1 mmol) or phenylselenide 1.96 (0.1 mmol) was mixed 

with AIBN (0.03 mmol) and Bu3SnH (0.3~0.6 mmol) in benzene (10 mL). The mixture was 

heated at 80°C for 30 min. The solvent was evaporated and 1,3,5-trimethyoxybenzene (0.1 

mmol) was added as the internal standard for calculating the NMR yields of known spiro-imine 

1.8956 and spiro-sulfonamide 1.88.37a   

 

General Procedures for the cyclization of bromide 60 and phenylselenide 64 under syringe 

pump conditions:  

A solution of AIBN (0.03 mmol) and Bu3SnH (0.22~0.45 mmol) in benzene (2.5 mL) was added 

to a refluxing solution of alkyl bromide 1.85 (0.15 mmol) or phenylselenide 1.96 (0.15 mmol) in 

benzene (2.5 mL) via syringe pump over a period of 3 h. The solvent was evaporated and 1,3,5-

trimethyoxybenzene (0.1 mmol) was added as the internal standard for calculating the NMR 

yields of known spiro-imine 1.8956 and spiro-sulfonamide 1.88.37a 

 

 

Phenyl(2-azaspiro[4.4]nonan-2-yl)methanone (1.94): Cyclization of phenylselenide 1.96 (57 

mg, 0.14 mmol) under abovementioned syringe pump condition afforded crude spiro-imine 1.89. 

It was dissolved in EtOH (1.5 mL), and NaBH4 (5 mg, 0.14 mmol) was added in one portion. 

After 1 h, the reaction mixture was diluted with Et2O and washed with a saturated aqueous 
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NaHCO3 solution. The aqueous layer was extracted with Et2O and the combined organic layers 

were washed with brine, dried over MgSO4, and concentrated in vacuo.  

The resulting crude amine product was dissolved in CH2Cl2 (2 mL), followed by 

dropwise addition of pyridine (50 µL, 0.61 mmol) and benzoyl chloride (50 µL, 0.43 mmol). The 

reaction mixture was stirred for 3 h before it was diluted with CH2Cl2 and quenched with a 

saturated aqueous NaHCO3 solution. The aqueous layer was extract with CH2Cl2, and the 

combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. 

The crude product was purified by flash chromatography (silica gel, 1:2 EtOAc/hexanes) to 

provide the title compound (18 mg, 59%) as a colorless oil, in a 1.2:1 ratio of rotamers: 1H NMR 

(300 MHz, CDCl3) δ major rotamer: 3.69 (t, J = 6.9 Hz, 2H), 3.25 (s, 2H), 1.84 (t, J = 6.9 Hz, 

2H); minor rotamer: 3.48 (t, J = 6.9 Hz, 2H), 3.49 (s, 2H), 1.79 (t, J = 6.9 Hz, 2H); overlapping 

signals: 7.54-7.51 (m, 2H), 7.49-7.37 (m, 3H), 1.70-1.48 (m, 8H); 13C NMR (75 MHz, CDCl3) δ 

170.0, 169.7, 137.1, 137.0, 129.7, 128.2, 127.1, 127.0, 60.8, 57.4, 50.1, 49.1, 48.3, 45.7, 38.0, 

36.7, 36.5, 36.2, 24.8, 24.6; FTIR (thin film, CH2Cl2, cm–1) 2950, 2864, 1630, 1576, 1447, 1416; 

HRMS (EI) cald for C15H19NO, 229.1467 [M]+, found: 229.1458. 

 

 

2-(Phenylsulfonyl)-2-azaspiro[4.4]nonane (1.88): Cyclization of bromide 1.85 under 

abovementioned fixed tin hydride concentration condition afforded a 2:1 mixture of spiro-imine 

1.89/spiro-sulfonamide 1.88. The mixture was then subjected to flash chromatography (1:5 

EtOAc/hexanes) to afford the title compound (15%) as a colorless oil: 1H NMR (400 MHz, 

CDCl3) δ 7.86-7.83 (m, 2H), 7.60-7.52 (m, 3H), 3.33 (t, J = 7.2 Hz, 2H), 3.09 (s, 2H), 1.65 (t, J = 

7.2 Hz, 2H), 1.59-1.55 (m, 4H), 1.36-1.32 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 137.2, 132.5, 
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129.0, 127.4, 58.7, 49.9, 47.4, 37.4, 36.4, 24.5. The above spectral data were identical to those 

reported.37a  

 

 

 

(S)-5-((tert-Butyldiphenylsilyloxy)methyl)pyrrolidin-2-one (1.103): TBDPSCl (5.73 g, 20.85 

mmol) and imidazole (2.95 g, 43.43 mmol) were added to a solution of hydrolactam 1.102 (2 g, 

17.37 mmol) in DMF (20 mL). The reaction mixture was stirred at room temperature for 12 h. It 

was diluted with Et2O and successively washed with a 10% citric acid solution, a saturated 

aqueous NaHCO3 solution and water. The organic fraction was dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, 1:1 

EtOAc/hexanes) to provide the title compound (6.02 g, 98%) as a light yellow oil: 1H NMR (300 

MHz, CDCl3) δ 7.65-7.62 (m, 4H), 7.45-7.37 (m, 6H), 5.80 (brs, 1H), 3.85-3.76 (m, 1H), 3.62 

(dd, J = 10.2 Hz, 3.9 Hz, 1H), 3.50 (dd, J = 10.2 Hz, 7.8 Hz, 1H), 2.34 (dd, J = 7.5 Hz, 1.5 Hz, 

1H), 2.32 (d, J = 7.5 Hz, 1H), 2.14 (td, J = 12.9 Hz, 7.8 Hz, 1H), 1.77-1.65 (m, 1H), 1.05 (s, 9H). 

The above spectral data were identical to those reported.30  

 

 

(S)-5-((tert-Butyldiphenylsilyloxy)methyl)-1-tosylpyrrolidin-2-one (1.104):  
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A LiHMDS solution (1 M in THF, 17.8 mL) was added dropwise to a solution of amide 1.103 (6 

g, 16.97 mmol) in THF (60 mL) at −78 °C, and the mixture was stirred at this temperature for 10 

min. A solution of tosyl chloride (3.88 g, 20.37 mmol) in THF (10 mL) was added dropwise at 

−78 °C. The reaction mixture was slowly warmed to room temperature and then stirred for 1 h. 

The reaction was quenched with a saturated aqueous NH4Cl solution, and the aqueous layer was 

extract with Et2O. The combined organic layers were washed with brine, dried over MgSO4, and 

concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, 1:5 

EtOAc/hexanes) to provide the title compound (8.01 g, 93%) as a viscous, colorless oil: 1H NMR 

(300 MHz, CDCl3) δ 7.89 (d, J = 8.1 Hz, 2H), 7.60-7.56 (m, 4H), 7.49-7.36 (m, 6H), 7.24 (d, J = 

8.1 Hz, 2H), 4.46-4.42 (m, 1H), 4.01 (dd, J = 10.8 Hz, 4.2 Hz, 1H), 3.81 (dd, J = 10.8 Hz, 2.4 

Hz, 1H), 2.68 (appt td, J = 17.4 Hz, 10.2 Hz, 1H), 2.40 (s, 3H), 2.37-2.14 (2H), 2.04-2.00 (m, 

1H), 1.01 (s, 9H). The above spectral data were identical to those reported.30 

 

 

(S)-5-((tert-Butyldiphenylsilyloxy)methyl)-1-tosyl-1H-pyrrol-2(5H)-one (1.105): A solution 

of sulfonamide 1.104 (1.02 g, 1.97 mmol) in THF (4 mL) was added dropwise to a solution of 

LiHMDS (2.17 mmol) in THF (6 mL) at −78 °C. After30 min, a solution of PhSeBr (558 mg, 

2.36 mmol) in THF (4 mL) was added dropwise at −78 °C. The reaction mixture was stirred at -

78°C for 30 min and then at room temperature for 1 h. The reaction was quenched with a 

saturated aqueous NH4Cl solution, and the aqueous layer was extracted with Et2O. The combined 

organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. The crude 

product was passed through a pad of silicagel (silica gel, 1:4 EtOAc/hexanes) to give the crude 
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phenylselenide product as an inseparable mixture of diastereomers: 1H NMR (300 MHz, CDCl3) 

δ 7.89 (d, J = 7.8 Hz, 2H), 7.52-7.14 (m, 17H), 4.23-4.00 (m, 3H), 3.83-3.71 (m, 1H), 2.44-2.28 

(m, 4H), 2.20-2.05 (m, 1H), 0.98 (s, 9H). The crude phenylselenide product was dissolved in 

EtOAc (25 mL) and cooled to 0°C. A 30% H2O2 solution (1.2 mL) was added in one portion and 

the reaction mixture was warmed to room temperature. After 30 min, the reaction mixture was 

diluted with Et2O and successively washed with water, brine and a saturated aqueous NaHCO3 

solution. The organic layer was dried over MgSO4 and concentrated in vacuo. The crude product 

was purified by flash chromatography (1:3 EtOAc/hexanes) to give the title compound (1.31 g, 

63%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.88 (d, J = 8.4 Hz, 2H), 7.58-7.54 (m, 

4H), 7.46-7.36 (m, 6H), 7.26-7.22 (m, 2H), 7.08 (dd, J = 6.0 Hz, 1.8 Hz, 1H), 6.02 (dd, J = 6.0 

Hz, 1.5 Hz, 1H), 4.80-4.76 (m, 1H), 4.22 (dd, J = 10.2 Hz, 3.3 Hz, 1H), 3.99 (dd, J = 10.2 Hz, 

6.3 Hz, 1H), 2.39 (s, 3H), 0.97 (s, 9H). The above spectral data were identical to those 

reported.30 

 

 

(4S,5S)-4-(But-3-enyl)-5-((tert-butyldiphenylsilyloxy)methyl)-1-tosylpyrrolidin-2-one 

(1.106): A solution of but-3-enylmagnesium bromide (0.5 M in THF, 13 mL) was added 

dropwise to a solution of CuBr•Me2S (134 mg, 0.65 mmol) in THF (2 mL) at −78 °C, and the 

mixture was stirred at this temperature for 10 min. TMSCl (275 µL) was added to the resulting 

organocuprate solution at −78 °C, followed by addition of a solution of enamide 1.105 in THF (5 

mL). The reaction mixture was stirred at -78°C for 2 h, and then a saturated aqueous NH4Cl 

solution was added. The aqueous layer was extracted with Et2O, and the combined organic layers 
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were washed with brine, dried over MgSO4, and concentrated in vacuo. The crude product was 

purified by chromatography (silica gel, 1:4 EtOAc/hexanes) to give the title compound (510 mg, 

83%) as a colorless oil: [α]D
23 −18.5 (c 8.0 mg/mL, CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.86 

(dd, J = 6.6 Hz, 1.8 Hz, 2H), 7.61-7.57 (m, 4H), 7.46-7.36 (m, 6H), 7.26-7.23 (m, 2H), 5.68 (tdd, 

J = 16.5 Hz, 10.5 Hz, 6.6 Hz, 1H), 4.98-4.92 (m, 2H), 4.06-4.04 (m, 1H), 3.94 (dd, J = 10.5 Hz, 

4.8 Hz, 1H), 3.87 (dd, J = 10.5 Hz, 2.7 Hz, 1H), 2.79 (dd, J = 17.4 Hz, 8.7 Hz, 1H), 2.40 (s, 3H), 

2.24 (appt q, J = 8.1 Hz, 1H), 2.03-1.95 (m, 3H), 1.42-1.22 (m, 2H), 1.01 (s, 9H); 13C NMR (75 

MHz, CDCl3) δ 173.6, 144.9, 137.1, 135.8, 135.7, 135.6, 132.8, 132.5, 130.0, 129.5, 128.1, 

127.9, 127.8, 115.6, 66.0, 65.3, 37.7, 34.1, 33.9, 30.6, 26.8, 21.7, 19.2; FTIR (thin film, CH2Cl2, 

cm-1) 3071, 2931, 2858, 1738, 1596, 1424, 1360, 1170, 1111; HRMS (TOF ES) cald for 

C32H39NO4NaSiS, 584.2267 [M+Na]+, found: 584.2239. 

 

 

(4S,5S)-4-(3-Bromopropyl)-5-((tert-butyldiphenylsilyloxy)methyl)-1-tosylpyrrolidin-2-one 

(1.107): Ozone was bubbled to a solution of alkene 1.106 (220 mg, 0.39 mmol) in 

CH2Cl2/MeOH (1:1, 8 mL) at −78 °C over a period of 30 min. Me2S (1 mL) was added at −78 °C 

and the reaction mixture was stirred for 4 h. The reaction mixture was purged with Ar before the 

solvent was evaporated. The crude aldehyde product was dissolved in MeOH (3 mL). NaBH4 (10 

mg, 0.27 mmol) was added in one portion and the reaction mixture was stirred for 2 h. The 

solvent was evaporated, and the residue was diluted with Et2O and washed with a saturated 

aqueous NaHCO3. The organic layer was dried over MgSO4 and concentrated in vacuo. The 

residue was passed through a short pad of silica gel (silica gel, 1:1 EtOAc/hexanes) to provide 
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crude alcohol product, which was then dissolved in CH2Cl2 (2 mL). CBr4 (85 mg, 0.26 mmol) 

and Ph3P (71 mg, 0.27 mmol) were added, and the reaction mixture was stirred for 2 h. The 

crude product was purified by flash chromatography (silica gel, 1:4 EtOAC/hexanes) to provide 

the title compound (90 mg, 45%) as a colorless oil: [α]D
23 −18.3 (c 8.3 mg/mL, CHCl3); 1H 

NMR (300 MHz, CDCl3) δ 7.87 (dd, J = 6.9 Hz, 1.5 Hz, 2H), 7.62-7.58 (m, 4H), 7.47-7.38 (m, 

6H), 7.28-7.25 (m, 2H), 4.04-4.02 (m, 1H), 3.94 (dd, J = 10.2 Hz, 5.1 Hz, 1H), 3.88 (dd, J = 10.5 

Hz, 2.7 Hz, 1H), 3.32-3.27 (m, 2H), 2.80 (dd, J = 17.7 Hz, 8.4 Hz, 1H), 2.40 (s, 3H), 2.21 (app q, 

J = 7.8 Hz, 1H), 1.98 (dd, J = 17.7 Hz, 1.2 Hz, 1H), 1.76 (quintet, J = 7.2 Hz, 2H), 1.47-1.32 (m, 

2H), 1.03 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 173.1, 145.0, 135.6, 135.5, 132.7, 132.4, 130.0, 

129.5, 128.1, 127.9, 127.8, 65.8, 65.2, 37.5, 33.9, 33.2, 32.7, 29.5, 26.8, 21.6, 19.1; FTIR (thin 

film, CH2Cl2, cm-1) 3070, 2932, 2858, 1736, 1428, 1361, 1170, 1112; HRMS (TOF ES) cald for 

C31H38NO4NaSiSBr, 650.1372 [M+Na]+, found: 650.1344. 

 

 

(2S,3S)-3-(3-bromopropyl)-2-((tert-butyldiphenylsilyloxy)methyl)-1-tosyl-2,3-dihydro-1H-

pyrrole (1.100): A DIBAL-H solution (1 M in hexane, 0.32 mL) was added dropwise to a 

solution of sulfonamide 1.107 (100 mg, 0.16 mmol) in THF (2 ml) at −78 °C. After 1 h, the 

reaction mixture was diluted with Et2O and a saturated aqueous potassium-sodium tartrate 

solution was added. The mixture was stirred for 12 h. The aqueous layer was extracted with 

Et2O, and the combined organic layers were washed with brine, dried over MgSO4, and 

concentrated in vacuo.  The crude hemiaminal was dissolved in toluene (5 mL), and citric acid 

(34 mg, 0.16 mmol) was added. After refluxing for 3 h, the reaction mixture was cooled to room 
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temperature and a saturated aqueous NaHCO3 solution was carefully added. The aqueous layer 

was extract with Et2O, and the combined organic layers were washed with brine, dried over 

MgSO4, and concentrated in vacuo. The crude product was purified by flash chromatography 

(silica gel, 1:6 EtOAc/hexanes) to provide the title compound (65 mg, 65%) as a colorless oil: 1H 

NMR (300 MHz, CDCl3) δ 7.70-7.65 (m, 4H), 7.56 (d, J = 7.8 Hz, 2H), 7.49-7.39 (m, 6H), 7.32-

7.27 (m, 2H), 6.30 (d, J = 3.9 Hz, 1H), 5.05 (t, J = 3 Hz, 1H), 3.93 (dd, J = 9.9 Hz, 3.9 Hz, 1 H), 

3.71 (dd, J = 9.9 Hz, 8.4 Hz, 1 H), 3.31 (ddd, J = 7.8 Hz, 3.9 Hz, 3.9 Hz, 1H), 3.09 (t, J = 6.6 Hz, 

2H), 2.78 (m, 1 H), 2.43 (s, 3H), 1.49-1.35 (m, 2H), 1.07 (s, 9H), 0.89-0.79 (m, 1H), 0.71-0.60 

(m, 1H); 13C NMR (75 MHz, CDCl3) δ 143.9, 135.7, 135.6, 133.5, 133.2, 133.0, 129.8, 129.6, 

128.3, 127.8, 127.7, 127.6, 115.5, 65.6, 65.2, 45.7, 34.2, 33.3, 29.3, 26.9, 21.6, 19.3; FTIR (thin 

film, CH2Cl2, cm-1) 3070, 2931, 2858, 1470, 1429, 1355, 1166, 1110; HRMS (TOF ES) cald for 

C31H38NO3NaSiSBr, 634.1423 [M+Na]+, found: 634.1401. 

 

 

(1S,3aR,6aS)-1-((tert-Butyldiphenylsilyloxy)methyl)-1,3a,4,5,6,6a-

hexahydrocyclopenta[c]pyrrole (1.101): Bu3SnH (71 µL, 0.26 mmol) and Et3B (1 M in hexane, 

35 µL) were added to a solution of enamide 1.100 (54 mg, 0.088 mmol) in benzene (9 mL), and 

the reaction mixture was stirred for 30 min. The solvent was evaporated and the crude product 

was purified by flash chromatography (silica gel, 1:4 EtOAc/hexanes) to provide the title 

compound (18 mg, 55%) as a colorless oil: [α]D
23 +97.7 (c 3.0 mg/mL, CHCl3); 1H NMR (300 

MHz, CDCl3) δ 7.70-7.66 (m, 4H), 7.44-7.37 (m, 6H), 3.91-3.85 (m, 2H), 3.73-3.69 (m, 1H), 

3.36 (t, J = 8.1 Hz, 1H), 2.67 (tt, J = 8.1 Hz, 2.7 Hz, 1H), 1.74-1.46 (m, 5H), 1.32-1.23 (m, 1H), 
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1.05 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 170.2, 135.7, 135.6, 133.8, 133.6, 129.6, 129.5, 

127.7, 127.6, 83.4, 66.4, 55.4, 41.9, 34.2, 29.1, 26.8, 24.9, 19.3; FTIR (thin film, CH2Cl2, cm-1) 

2933, 2860, 1625, 1470, 1427, 1112, 1028; HRMS (TOF ES) cald for C24H32NOSi, 378.2253 

[M+H]+, found: 378.2270. 

 

 

Attempted isomerization of alcohol 100: 

A mixture of alcohol 1.108 (5.6 mg, 0.020 mmol), AIBN (1.0 mg, 0.006 mmol), and Bu3SnH (16 

µL, 0.060 mmol) in benzene (1.5 mL) was heated at 80 °C for 1 h. The solvent was evaporated, 

and the residue was purified by flash chromatography (silica gel, 1:2 EtOAc/hexanes) to provide 

recovered 1.108 (5 mg, 89%) as a colorless oil. 

 

 

N-Benzyl-2,2,2-trichloro-N-((1-tosyl-1H-indol-3-yl)methyl)acetamide (1.115): The title 

compound was prepared as a mixture of 2.5:1 rotamers: 1H NMR (300 MHz, CDCl3) δ major 

rotamer: 4.87 (s, 2H), 4.73 (s, 2H); minor rotamer: 4.99 (s, 2H), 4.66 (s, 2H); overlapping 

signals: 8.04 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.8 Hz, 2H), 7.45-7.12 (m, 10H), 2.37 (s, 3H). The 

above spectral data were identical to those reported.52 
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1'-Benzyl-4'-chlorospiro[indoline-3,3'-pyrrolidin]-5'-one (1.122): A mixture of tin hydride 

(110 µL, 0.411 mmol), AIBN (17 mg, 0.102 mmol), and trichloroacetamide 1.115 (110 mg, 

0.205 mmol) in benzene (10 mL) was refluxed for 30 min. The solvent was evaporated and the 

residue was purified by flash chromatography (silica gel, 30% EtOAc/hexanes) to provide the 

title compound (33 mg, 51%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.39-7.26 (m, 

5H), 7.18-7.10 (m, 2H), 6.74 (td, J = 7.5 Hz, 1.0 Hz, 1H), 6.68 (d, J = 7.5 Hz, 1H), 4.63 (d, J = 

14.4 Hz, 1H), 4.53 (d, J = 14.4 Hz, 1H), 4.45 (s, 1H), 3.77 (brs, 1H), 3.75 (d, J = 10.2 Hz, 1H), 

3.63 (d, J = 9.6 Hz, 1H), 3.48 (d, J = 9.6 Hz, 1H), 3.25 (d, J = 10.2 Hz, 1H); 13C NMR (75 MHz, 

CDCl3) δ 169.3, 151.6, 135.4, 129.5, 128.9, 128.3, 128.1, 126.6, 125.6, 118.8, 110.1, 61.5, 58.6, 

55.0, 52.2, 47.2; FTIR (thin film, CH2Cl2, cm-1) 3334, 3030, 2922, 2856, 1701, 1607, 1486, 

1465, 1257, 742; HRMS (TOF ES) cald for C18H17N2ONaCl, 335.0927 [M+Na]+, found: 

335.0916. 

 

 

1'-Benzylspiro[indoline-3,3'-pyrrolidin]-5'-one (1.124): A mixture of tin hydride (150 µL, 

0.560 mmol), AIBN (4 mg, 0.023 mmol), and trichloroacetamide 1.115 (50 mg, 0.093 mmol) in 

benzene (10 mL) was refluxed for 30 min. The solvent was evaporated and the residue was 
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purified by flash chromatography (silica gel, 75% EtOAc/hexanes) to provide the title compound 

(20 mg, 78%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.37-7.25 (m, 5H), 7.06 (d, J = 

8.4 Hz, 2H), 6.75 (t, J = 7.8 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 4.62 (d, J = 14.4 Hz, 1H), 4.41 (d, 

J = 14.4 Hz, 1H), 3.75 (brs, 1H), 3.50 (d, J = 14.4 Hz, 1H), 3.48 (d, J = 14.4 Hz, 1H), 3.39 (d, J 

= 13.8 Hz, 1H), 3.36 (d, J = 13.8 Hz, 1H), 2.87 (d, J = 16.8 Hz, 1H), 2.65 (d, J = 16.8 Hz, 1H); 

13C NMR (75 MHz, CDCl3) δ 173.0, 150.7, 136.2, 132.5, 128.8, 128.6, 128.3, 127.8, 122.1, 

119.3, 110.0, 60.6, 58.3, 46.7, 45.8, 44.0; FTIR (thin film, CH2Cl2, cm-1) 3336, 2920, 2855, 

1680, 1608, 1488, 1256, 745, 702; HRMS (TOF ES) cald for C18H18N2ONa, 301.1317 [M+Na]+, 

found: 301.1304. 

 

 

2-Iodo-N-((1-tosyl-1H-indol-3-yl)methyl)aniline (1.131): 2-Iodoaniline (241 mg, 1.10 mmol), 

acetic acid (60 mg, 1.00 mmol), and sodium triacetoxyborohydride (637 mg, 3.00 mmol) were 

added to a stirred solution of 1-tosyl-1H-indole-3-carbaldehyde 1.120 (300 mg, 1.00 mmol) in 

1,2-dichloroethane (8 mL). After 12 h, the reaction was quenched with a saturated NaHCO3 

solution and the aqueous layer was extracted with 1,2-dichloroethane. The combined organic 

layer was washed with brine, dried with MgSO4, and concentrated in vacuo. The residue was 

purified by flash chromatography (silica gel, 15% EtOAc/hexanes) to give the title compound 

(330 mg, 66%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 8.01 (d, J = 8.1 Hz, 1H), 7.73-

7.69 (m, 3H), 7.58 (d, J = 7.8 Hz, 1H), 7.51 (s, 1H), 7.36 (td, J = 7.8 Hz, 1.2 Hz, 1H), 7.27 (m, 



 76 

1H), 7.22-7.14 (m, 3H), 6.58 (dd, J = 8.1 Hz, 1.2 Hz, 1H), 6.50 (td, J = 7.5 Hz, 1.2 Hz, 1H), 

4.54-4.47 (m, 3H), 2.35 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 146.9, 145.0, 139.1, 135.6, 135.1, 

129.9, 129.6, 126.9, 125.1, 124.2, 123.4, 119.9, 119.6, 119.2, 114.0, 111.1, 85.6, 40.2, 21.6; 

FTIR (thin film, CH2Cl2, cm-1) 3394, 3061, 2921, 1589, 1502, 1448, 1367, 1277, 1173, 1121, 

1005, 970, 810, 744; HRMS (EI) cald for C22H19N2O2SI, 502.0212 [M]+, found: 502.0198. 

 

 

2-Iodo-N-methyl-N-((1-tosyl-1H-indol-3-yl)methyl)aniline (1.125): A NaHMDS solution (450 

µL, 1M in THF) was added dropwise to a solution of aniline 1.131 (150 mg, 0.30 mmol) in THF 

(5 mL) at −78 °C. After 30 min, iodomethane (46 µL, 0.75 mmol) was added dropwise at this 

temperature. The reaction mixture was then stirred at room temperature for 12h. A saturated 

aqueous NaHCO3 solution was added, and the aqueous layer was extracted with diethyl ether. 

The combined organic layer was washed with brine, dried over MgSO4, and concentrated in 

vacuo. The residue was purified by flash chromatography (silica gel, 20% EtOAc/hexanes) to 

afford the title compound (140 mg, 91%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.97 

(d, J = 8.1 Hz, 1H), 7.88 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.70 (d, J = 8.1 Hz, 2H), 7.60-7.54 (m, 

2H), 7.32-7.17 (m, 5H), 7.02 (dd, J = 8.1 Hz, 1.2 Hz, 1H), 6.80 (t, J = 7.8 Hz, 1H), 4.24 (s, 2H), 

2.67 (s, 3H), 2.33 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 153.8, 144.8, 140.3, 135.4, 135.3, 

130.6, 129.9, 129.1, 126.8, 125.7, 125.4, 124.8, 123.1, 122.2, 120.6, 119.5, 113.7, 98.6, 51.7, 

42.4, 21.7; FTIR (thin film, CH2Cl2, cm-1) 3053, 2947, 1596, 1470, 1446, 1367, 1173, 1119, 
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1093, 978, 812, 747, 702; HRMS (TOF ES) cald for C23H22N2O2SI, 517.0447 [M+H]+, found: 

517.0460. 

 

 

1-Methyl-3,3'-spirobi[indoline] (1.134): A mixture of aryl iodide 1.125 (70 mg, 0.136 mmol), 

tributyltin hydride (91 µL, 0.340 mmol) and AIBN (7 mg, 0.040 mmol) in benzene (13 mL) was 

refluxed for 20 min. TLC suggested the starting material was not completely consumed. Tin 

hydride (163 µL, 0.610 mmol) was added in two portions with a catalytic amount of AIBN. After 

20 min, the solvent was evaporated, and the residue was purified by flash chromatography (silica 

gel, 20% EtOAc/hexanes) to provide the title compound (15 mg, 47%) as a colorless oil: 1H 

NMR (600 MHz, CDCl3) δ 7.18 (t, J = 7.8 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 7.04 (d, J = 7.8 Hz, 

1H), 7.01 (d, J = 7.8 Hz, 1H), 6.77-6.72 (m, 3H), 6.60 (d, J = 7.8 Hz, 1H), 3.78 (d, J = 9.0 Hz, 

1H), 3.63 (d, J = 9.0 Hz, 1H), 3.62 (d, J = 9.0 Hz, 1H), 3.27 (d, J = 9.0 Hz, 1H), 2.82 (s, 3H); 13C 

NMR (75 MHz, CDCl3) δ 153.1, 151.4, 135.3, 134.1, 128.4, 128.2, 124.1, 123.6, 119.3, 118.6, 

109.7, 107.5, 68.9, 60.3, 54.5, 36.1; FTIR (thin film, CH2Cl2, cm-1) 3374, 3046, 2949, 2853, 

2805, 1606, 1487, 1463, 1295, 1252, 1151, 1121, 1021, 745; HRMS (EI) cald for C16H16N2, 

236.1313 [M]+, found: 236.1313. 
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Ethyl 3-formyl-1-tosyl-1H-indole-2-carboxylate (1.133): Ethyl 3-formyl-1H-indole-2-

carboxylate 1.132 (150 mg, 0.69 mmol) and tosyl chloride (197 mg, 1.04 mmol) were added to a 

stirred suspension of Cs2CO3 (675 mg, 2.07 mmol) in DMF (4 mL). After 30 min, the reaction 

was quenched with a saturated aqueous NH4Cl solution, and the aqueous layer was extracted 

with EtOAc. The combined organic layer was washed with brine, dried over MgSO4, and 

concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, 15% 

EtOAc/hexanes) to afford the title compound (75 mg, 29%) as a colorless oil: 1H NMR (400 

MHz, CDCl3) δ 10.16 (s, 1H), 8.29 (d, J = 8.0 Hz, 1H), 8.02-7.98 (m, 3H), 7.46 (td, J = 7.6 Hz, 

1.2 Hz, 1H), 7.38 (td, J = 7.6 Hz, 1.2 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 4.61 (q, J = 7.2 Hz, 2H), 

2.39 (s, 3H), 1.50 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 185.3, 161.1, 146.4, 139.3, 

135.3, 134.4, 130.2, 127.9, 127.8, 127.4, 125.7, 125.3, 123.1, 120.9, 114.2, 63.7, 21.9, 14.2; 

FTIR (thin film, CH2Cl2, cm-1) 2924, 2360, 1734, 1680, 1545, 1380, 1321, 1268, 1206, 1179, 

1141, 1111, 1086, 1015, 986, 817, 749; HRMS (TOF ES) cald for C19H17NO5NaS, 394.0725 

[M+Na]+, found: 394.0699.  

 

 

Ethyl 3-((2-iodophenylamino)methyl)-1-tosyl-1H-indole-2-carboxylate (1.90): A mixture of 

aldehyde 1.133 (66 mg, 0.178 mmol), 2-iodoaniline (43 mg, 0.195 mmol), anhydrous MgSO4 (64 

mg, 0.533 mmol), and pyridinium p-toluenesulfonate (13 mg, 0.053 mmol) in CH2Cl2 (2 mL) 

was stirred for 12 h. The reaction was quenched with a saturated aqueous NaHCO3 solution, and 
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the aqueous layer was extracted with CH2Cl2. The combined organic layer was washed with 

brine, dried over MgSO4, and concentrated in vacuo. The resulting crude imine was dissolved in 

EtOH (3 mL), and NaBH4 (20 mg, 0.533 mmol) was added in one portion. After 3 h, the reaction 

was quenched with a saturated aqueous NaHCO3 solution, and the aqueous layer was extracted 

with EtOAc. The combined organic layer was washed with brine, dried over MgSO4, and 

concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, 15% 

EtOAc/Hexane) to afford the title compound (65 mg, 64%) as a colorless oil: 1H NMR (500 

MHz, CDCl3) δ 8.07 (dd, J = 8.0 Hz, 1.0 Hz, 1H), 7.81 (m, 2H), 7.67 (m, 2H), 7.43 (td, J = 7.5 

Hz, 1.5 Hz, 1H), 7.30 (m, 1H), 7.21 (m, 3H), 6.72 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 6.49 (td, J = 7.5 

Hz, 1.5 Hz, 1H), 4.53 (s, 1H), 4.48 (q, J = 7.0 Hz, 1H), 2.34 (s, 3H), 1.39 (t, J = 7.0 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 162.4, 146.8, 145.1, 139.1, 136.8, 134.4, 129.7, 129.6, 129.5, 128.9, 

127.2, 126.9, 124.4, 124.3, 120.8, 119.3, 115.5, 110.9, 85.5, 62.6, 39.0, 21.6, 14.0; FTIR (thin 

film, CH2Cl2, cm-1) 3395, 2982, 1724, 1590, 1503, 1451, 1371, 1312, 1266, 1177, 1006, 814, 

746; HRMS (EI) cald for C25H23N2O4SI, 574.0423 [M]+, found: 574.0408. 

 

 

Ethyl 3-((N-(2-iodophenyl)acetamido)methyl)-1-tosyl-1H-indole-2-carboxylate (1.128): 

DMAP (4 mg, 0.03 mmol), pyridine (19 µL, 0.23 mmol), and acetyl chloride (8 µL, 0.11 mmol) 

were added to a stirred solution of 1.90 (33 mg, 0.057 mmol) in CH2Cl2 (2 mL) at 0 °C. The 

reaction mixture was then stirred at room temperature for 12 h. It was diluted with CH2Cl2 and a 
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saturated aqueous NaHCO3 solution was added. The aqueous layer was extracted with EtOAc, 

and the combined organic layer was washed with brine, dried over MgSO4, and concentrated in 

vacuo. The crude product was purified by flash chromatography (silica gel, 25% 

EtOAc/hexanes) to afford the title compound (29 mg, 80%) as a colorless oil: 1H NMR (400 

MHz, CDCl3) δ 8.00 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 7.82 (d, J = 8.0 Hz, 

1H), 7.70 (d, J = 8.0 Hz, 2H), 7.41 (t, J = 8.0 Hz, 1H), 7.30-7.27 (m, 1H), 7.19 (d, J = 8.0 Hz, 

2H), 7.10 (td, J = 7.6 Hz, 1.2 Hz, 1H), 7.02 (td, J = 7.6 Hz, 1.2 Hz, 1H), 6.40 (dd, J = 7.6 Hz, 1.2 

Hz, 1H), 5.74 (d, J = 14.4 Hz, 1H), 4.52 (d, J = 14.4 Hz, 1H), 4.17-4.01 (m, 2H), 2.35 (s, 3H), 

1.78 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ major rotamer: 62.3, 21.6, 

13.9; minor rotamer: 60.4, 21.1, 14.2; overlapping signals: 169.9, 161.4, 145.0, 143.0, 140.1, 

136.5, 134.5, 131.3, 130.6, 130.0, 129.6, 129.5, 129.0, 127.3, 126.9, 124.6, 122.6, 121.9, 115.1, 

100.0, 39.4, 22.8; FTIR (thin film, CH2Cl2, cm-1)  2982, 1723, 1664, 1469, 1372, 1313, 1267, 

1177, 1017, 762; HRMS (TOF ES) cald for C27H25N2O5NaSI, 639.0427 [M+Na]+, found: 

639.0479. 

 

 

Ethyl 1'-acetylspiro[indole-3,3'-indoline]-2-carboxylate (1.130): In a sealed tube, a mixture of 

tin hydride (28 µL, 0.105 mmol), AIBN (1 mg, 0.006 mmol), and aryl iodide 1.128 (13 mg, 

0.021 mmol) in benzene (2 mL) was refluxed for 30 min. The solvent was evaporated and the 

residue was purified by flash chromatography (silica gel, 60% EtOAc/hexanes) to provide the 

title compound (5 mg, 71%) as a colorless oil, in a 5:1 ratio of rotamers: 1H NMR (400 MHz, 
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CDCl3) δ major rotamer: 4.73 (d, J = 12.0 Hz, 1H), 2.28 (s, 3H); minor rotamer: 4.80 (d, J = 12.0 

Hz, 1H), 2.59 (s, 3H); overlapping signals: 8.36 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 7.6 Hz, 1H), 

7.49 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.2 Hz, 1H), 7.32-7.27 (m, 2 H), 6.89 (t, J = 7.6 Hz, 1H), 

6.42 (d, J = 7.6 Hz, 1H), 4.31-4.29 (m, 3H), 1.26 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, 

CDCl3) δ 171.3, 168.2, 160.7, 152.6, 145.2, 144.2, 129.8, 129.5, 128.9, 124.0, 123.9, 122.7, 

122.3, 118.1, 64.2, 62.3, 55.4, 24.4. 14.0; FTIR (thin film, CH2Cl2, cm-1) 2923, 1722, 1665, 

1593, 1482, 1402, 1339, 1267, 1146, 1106, 1021, 754; HRMS (TOF ES) cald for C20H18N2O3Na, 

357.1215 [M+Na]+, found: 357.1239.  

 

 

2-(2-iodophenylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (1.142): A solution of 2-iodo-

benzenesulfonyl chloride (100 mg, 0.33 mmol) in CH2Cl2 (1 mL) was added to a mixture of 

piperidine (36 µL, 0.36 mmol), triethylamine (70 µL, 0.50 mmol), and DMAP (4 mg, 0.033 

mmol) in CH2Cl2 at 0 °C. After 30 min, the reaction was quenched with a saturated aqueous 

NH4Cl solution, and the aqueous layer was extracted with CH2Cl2. The combined organic layer 

was dried with MgSO4, concentrated in vacuo. The crude product was purified by flash 

chromatography (silica gel, 40% EtOAc/hexanes) to afford the title compound (103 mg, 89%) as 

a colorless oil: 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 7.8 Hz, 1.5 Hz, 1H), 8.09 (dd, J = 7.2 

Hz, 1.2 Hz, 1H), 7.52 (td, J = 7.5 Hz, 1.2 Hz, 1H), 7.23-7.06 (m, 5H), 4.53 (s, 2H), 3.61 (t, J = 

6.0 Hz, 1H), 2.95 (t, J = 6.0 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 143.1, 140.9, 133.5, 133.4, 

131.9, 129.0, 128.3, 126.8, 126.4, 126.3, 92.8, 46.9, 43.2, 28.8; FTIR (thin film, CH2Cl2, cm-1) 
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3053, 2947, 1596, 1470, 1446, 1367, 1173, 1119, 1093, 1015, 978, 747; HRMS (TOF ES) cald 

for C15H14NO2NaSI, 421.9688 [M+Na]+, found: 421.9654. 

 

 

3,4-Dihydroisoquinoline (1.143): A mixture of sulfonamide 1.142 (56 mg, 0.14 mmol), AIBN 

(7 mg, 0.042 mmol), and Bu3SnH (75 µL, 0.28 mmol) in benzene (13 mL) was refluxed for 30 

min. The solvent was evaporated, and the residue was purified by flash chromatography (silica 

gel, 10% MeOH/CH2Cl2) provided the title compound (10 mg, 54%) as a colorless oil: 1H NMR 

(300 MHz, CDCl3) δ 8.35 (brs, 1H), 7.40-7.26 (m, 3H), 7.17 (d, J = 7.2 Hz, 1H), 3.79 (td, J = 7.5 

Hz, 2.1 Hz, 2H), 2.77 (t, J = 7.8 Hz, 1H). The above spectral data were identical to those 

reported.57 
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2.0  TOTAL SYNTHESES OF (±)-EPIMELOSCINE, (±)-MELOSCINE, AND 

ANALOGS 

2.1 INTRODUCTION 

Dr. David Guthrie recently demonstrated that slow addition of Bu3SnH and Et3B to anilide 1.18 

leads to tricycle 1.19 in 51% yield.21 The ring system in this tricycle resembles the A/B/C ring 

system of several typical Melodinus alkaloids, including meloscine 2.1, epimeloscine 2.2, and 

scandine 2.3 (Scheme 2.1). This tandem reaction served as a starting point for our synthetic 

studies on meloscine alkaloids.  

 

Figure 15 A Tandem Radical Cyclization Reaction That Generates the A,B,C Ring System of Meloscine and 

Related Alkaloids 
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2.1.1 Structures and Biosynthesis of Meloscine Alkaloids 

Meloscine 2.1, a representative member of Melodinus alkaloids, was isolated from the New 

Caledonian plant Melodinus Scandens Forst in 1969.58 The structures of meloscine and related 

alkaloids epimeloscine and scandine were later established with the aid of NMR spectroscopic 

and X-ray crystallographic techniques. The structural uniqueness of these alkaloids is 

represented by the existence of a dihydroquilolin-2-one moiety (rings A/B) within the 

monoterpenoid Aspidosperma alkaloid skeleton. 

Early biosynthetic studies suggested that meloscine derives from hydrolysis and 

decarboxylation of scandine 2.3. In turn, scandine 2.3 could arise from oxidative rearrangement 

of Aspidosperma alkaloid 18,19-dehydrotabersonine 2.4 (Scheme 2.1).58 In the 80s, Levy and 

Palmisano successfully realized the skeletal rearrangement of Aspidosperma to Melodinus 

alkaloids by achieving a partial synthesis of meloscine and scandine starting from 18,19-

dehydrotabersonine.59,60 The rearrangment yields were low, but these results solidified the early 

biosynthetic hypothesis. 

	
  

Scheme 2.1 Proposed Biosynthesis of Scandine and Meloscine 

 

Extracts of some Melodinus species are traditional Chinese folk medicines to treat 

meningitis and rheumatic heart disease.61 However, the biological activities of meloscine 

alkaloids remain unknown, even though they were isolated more than 40 years ago. 
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Vincadifformine 2.5, a putative biosynthetic precursor of tetrahydroscandine 2.6,62 shows 

moderate cytotoxic activities against several cancer cell lines (Figure 16).63  

	
  

Figure 16 Structures of Vincadifformine and Tetrahydroscandine 

 

2.1.2 Previous Synthetic Studies on Meloscine Alkaloids 

Meloscine alkaloids are interesting synthetic targets because of their intriguing structures. In 

particular, their highly functionalized cyclopentane C ring has four stereocenters, two 

(meloscine) or three (scandine) of which being quaternary centers. The fusion of this ring with a 

dihydroquinoline-2-one moiety (rings A/B) poses a significant synthetic challenge (Figure 15).  

In 1989, Overman published the first total synthesis of (±)-meloscine and (±)-

epimeloscine that features a classic cascade aza-Cope-Mannich sequence.64 Scheme 2.2 outlines 

several key transformations of this synthesis. Nucleophilic addition of enolate 2.7 to bicyclic 

ketone 2.8, which was prepared in 12 steps from 2-oxocyclopentaneacetate, produced cyclic 

carbamate 2.9 in 78% yield. Wittig reaction of 2.9 followed by hydrolysis generated complex 

styrene 2.10 in 78% yield over two steps. This intermediate underwent the key aza-Cope-

Mannich cascade to afford tricyclic ketone 2.11 in 83% yield. Subsequent Wolff rearrangement 

of the C ring and a late-stage lactamization ultimately forged the pentacycle 2.14 as a 4:1 

mixture of diastereomers, which were separated by flash chromatography. The major 
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diastereomer was elaborated over 4 steps to produce (±)-meloscine 2.15a. (±)-Epimeloscine 

2.15b was obtained along the way from the minor diastereomer. 

 

Scheme 2.2 Summary of Overman’s Synthesis of (±)-Meloscine and (±)-Epimeloscine 

 

In 2008, Bach reported an enantioselective synthesis of (+)-meloscine (Scheme 2.3).65 

This elegant synthesis highlighted several novel transformations including: 1) a highly 

enantioselective [2+2] cycloaddition of quinolone 2.16 with enol-ether 2.17, and 2) a subsequent 

ring expansion of the cycloaddition product 2.19. These two reactions set up the A,B,C ring 

system in 2.20 with the desired absolute stereochemistry. Diketone 2.20 was then converted into 



 87 

tetracyclic intermediate 2.21 by reductive amination. Further elaboration of 2.21 provided diene 

2.22, which underwent RCM to form the E ring of (+)-meloscine 2.1.  

 

Scheme 2.3 Summary of Bach’s Synthesis of (+)-Meloscine 

 

In a synthesis of (±)-meloscine that appereared during our work, Mukai efficiently 

constructed the A,B,C,D ring system via an intramolecular Pauson-Khand reaction of 

propiolamide 2.24.66 The E ring was then installed by a RCM reaction of symmetrical triene 2.25 

with complete stereocontrol (Scheme 2.4). Although the Bach and Mukai syntheses are very 
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different, they share a general feature. That is, they efficiently make the A,B,C,D ring system, 

but then use more than ten steps to make ring E. 

 

Scheme 2.4 Summary of Mukai’s Synthesis of (±)-Meloscine 

 

Most recently, the Feldman group reported a total synthesis of (±)-meloscine by using the 

allene-azide-cycloaddition chemistry (Scheme 2.5).67 One of the pivotal steps was the 

thermolysis of in situ generated allene 2.27, which led to bicyclic imine 2.28 in 55% yield. The 

lactam ring of tetracycle 2.30 was later formed via microwave assisted Goldberg-type coupling 

of aryl bromide 2.29. Finally, ring-closing metathesis of triene 2.26 in the manner of Mukai’s 

synthesis completed the molecule. Prior to the publication of Mukai’s synthesis, we 

independently designed and executed a similar RCM reaction for our synthesis of (±)-

epimeloscine and (±)-meloscine.  
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Scheme 2.5 Summary of Feldman’s Synthesis of (±)-Meloscine 

 

In addition to these total syntheses, several interesting synthetic routes have been 

developed to construct the melodan core.68 In 1999, Schultz reported an asymmetric route to the 

B,C,D core structure of scandine based on a tandem intramolecular Mannich/aldol reaction 

(Scheme 2.6).68b Reductive alkylation of enentioenriched aromatic amide 2.31 forged 1,4-

hexadiene 2.32 in 93% yield, with the establishment of an essential stereogenic quaternary 

center. Stereochemical relay during the ensuing 6 transformations gave acyclic precursor 2.33. 

Subsequently, a tandem Mannich/Aldol reaction smoothly converted acyclic precursor 2.33 to 

bicyclic amide 2.34 in 72% yield, which was elaborated into tricyclic compound 2.35 over 3 

steps. 
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Scheme 2.6 Schultz’s Synthesis of a Tricyclic Core of Scandine 

 

In 2003, Denmark reported an elegant synthesis of the pentacyclic core of scandine by 

using a tandem conjugate addition/cycloaddition reaction (Scheme 2.7).68a In the key reaction, 

conjugate addition of tert-butyl acetate enolate to nitroalkene 2.36, followed by quenching with 

TESCl, produced 2.37. This intermediate then underwent intramolecular [3+2] cycloaddition to 

give silyl nitroso acetal 2.38 in 78% yield. This product was converted to ortho-iodoanilide 2.39 

in 12 steps. Intramolecular Heck reaction of 2.39 generated the lactam ring (B ring), providing 

tetracycle 2.40 in 88% yield. The pyrrolidine ring (D ring) was subsequently furnished by a 

reductive amination of 2.40, giving pentacycle 2.41 in 88% yield. 
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Scheme 2.7 Denmark’s Synthesis of a Pentacyclic Core of Scandine 

 

Most recently, an innovative approach towards the core structure of scandine was 

disclosed by Stoltz (Scheme 2.8).68c Palladium-catalyzed [3+2] addition of vinylcyclopropane 

2.43 and β,2-dinitrostyrene 2.42 rapidly assembled the highly substituted cyclopentane ring of 

2.44. This dinitro-intermediate was reduced by zinc powder to give tricyclic amine 2.45 in 79% 

yield, which underwent reductive amination with cinnamyl aldehyde to produce diene 2.46 in 

80% yield. This product was first protected with acetyl group and then treated with Grubbs II 

catalyst, affording tetracycle 2.47 in 84% yield.  
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Scheme 2.8 Stoltz’s Synthesis of a Tetracyclic Core of Scandine 

2.1.3 Radical [3+2] Annulation Reaction of Vinylcyclopropanes and Alkenes 

Vinylcyclopropanes (VCPs) are an important class of building blocks in organic synthesis. The 

inherent ring strain of VCPs, as well as their bent HOMO that tends to conjugate with the double 

bond,69 enable rich chemistry of VCPs.70 The remarkable reactivities of VCPs can be illustrated 

by a variety of rearrangement,70b, 71 cycloaddition,72 and annulation reactions73 mediated by 

transition-metals, thermolysis, and external free radical sources. From the standpoint of atom- 

and step-economy,74 cycloaddition of a VCP with a synthon containing a multiple bond 

represents a powerful approach towards five-membered carbocycles and heterocycles. For 

example, a cyclopentane can be accessed via [3+2] cycloaddition of a VCP and an alkene. 

Nonetheless, there are only scattered examples of transition-metal-catalyzed [3+2] cycloaddition 

of VCPs and two-carbon synthons,70a, 72a, 75 despite of the extensive documentation of the [5+2] 

counterpart.70a, 72c, d, 76 The reported, transition-metal catalyzed [3+2]-cycloaddition 
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methodologies have a relatively limited substrate scope.72a, 75c, d In addition, thermal activation of 

such process remains unexplored.  

Radical mediated, formal [3+2] vinylcyclopropane cycloaddition, on the other hand, has 

offered great opportunities on the synthesis of highly substituted cyclopentanes.73 In 1986, 

Feldman reported remarkable examples of thiol- or selenyl-radical mediated annulation reaction 

of vinylcyclopropanes and dioxygen to give dioxolanes.77 Following this seminal work, Feldman 

and Oshima reported related annulation reactions between vinylcyclopropanes and two-carbon 

synthons.73, 78 For example, treatment of vinylcyclopropane 2.48 and tert-butyl acrylate with 

diphenyl disulfide and AIBN under irradiation condition produced a diastereomeric mixture of 

cyclopentane 2.49 in a combined yield of 44% (Scheme 2.9).73a 

 

Scheme 2.9 Radical [3+2] Annulation of a Vinylcyclopropane and an Alkene 

 

Mechanistically, addition of phenylthiol radical to vinylcyclopropane 2.48 generates 

2.50, which undergoes irreversible β-scission to give a new radical 2.51 that is stabilized by the 

adjacent ester group. Addition of this radical to tert-butyl acrylate produces radical 2.52 that 
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cyclizes to provide a new radical (not shown). This radical collapses to form cyclopentane 2.49 

and regenerates a phenylthiol radical.  

The application of radical [3+2] vinylcyclopropane annulation to natural product total 

synthesis is a promising but underdeveloped area. In 1991, Feldman reported model studies of 

(±)-rocaglamide 2.57 via an intramolecular, radical [3+2] annulation of vinylcyclopropane-yne 

2.53 (Scheme 2.10).79 A few years later, Feldman demonstrated the utility of this methodology 

in the synthesis of brefeldin scaffold 2.56, in which a vinylcyclopentane motif was embedded in 

a macrocyclic structure.80 As far as we know, no natural product has yet been synthesized by 

radical [3+2] vinylcyclopropane annulation. 

 

Scheme 2.10 Feldman’s Syntheses of the Core Structures of (±)-Rocaglamide and (±)-Brefeldin A 
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2.2 TOTAL SYNTHESIS OF (±)-EPIMELOSCINE AND (±)-MELOSCINE 

2.2.1 Synthesis Plan 

Our retrosynthetic analysis for meloscine is outlined in Figure 17. We plan to close the E ring by 

using a diastereotopic group-selective RCM reaction on tetracyclic triene intermediate 2.59 in 

the final step. Presumably, the ring closure will be biased towards the α-vinyl group of the 

cyclopentane ring (C), which is closer to the N-allyl group than the β-vinyl group. Both Mukai 

and Feldman independently devised a very similar, late-stage RCM strategy in their syntheses of 

(±)-meloscine,66-67 and Mukai published his synthesis soon after we completed the synthesis of 

(±)-epimeloscine and (±)-meloscine.66  
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Figure 17 Retrosynthetic Analysis of (±)-Meloscine 

 

Recognizing the problem of late introduction of the vinyl group at C-5 quaternary carbon 

in both Bach’s and Mukai’s syntheses, we envisioned that a cascade radical annulation of a 

divinylcyclopropane 2.62 will forge the B,C of the A,B,C,D rings with the requisite geminal 

vinyl groups in a single step. In the design, we propose that a trialklytin or thiol radical will first 

attack one of the two vinyl groups on the cyclopropane ring with rapid ring opening, releasing 

the ring strain to form intermediate α-amidoyl radical 2.60.80 Subsequent tandem 6-exo-trig/5-

exo-trig cyclization followed by β-scission of the tributyltin/thiol radical will generate target 

divinylcyclopentane 2.59. The stereochemical outcome of the tandem cyclization will be dictated 

by the first 6-exo-trig cyclization because the second 5-exo-trig cyclization must generate a cis-
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fused [5,5] ring system.23a The diastereoselectivity of the 6-exo-trig cyclization is uncertain 

because a new quaternary stereogenic center at the junction of B/C rings is formed. However, 

both stereoisomers are interesting because one of them is the core structure of meloscine and the 

other is the core structure of epi-meloscine. Even though there are no examples of radical 

reactions of 1,1'-divinylcyclopropanes, precedents of radical [3+2] annulation of 

monovinylcyclopropanes73, 79 and our studies on radical cyclization of ortho-alkenyl anilides21 

support the viability of this approach.  

Annulation precursor 2.62 will be formed by amide coupling of divinylcyclopropinoic 

acid 2.63 with aniline 2.64. Previous syntheses of 3-aryl-δ2-pyrrolines like 2.64 are limited to 

substrates with carbamate groups on the dihydropyrrole nitrogen.39 To synthesize sulfonamide 

analogs of 2.64 that served our studies of N-sulfonyl elimination, we discovered a Stille-coupling 

route that requires arylstannane 1.67 and vinyl iodide 1.74 (Section 1.2.1, Scheme 1.19). 

Therefore, we anticipate that aniline 2.64 will be provided by cross-coupling of arylstannane or 

arylboronic ester 2.65 with vinyl iodide 2.66.  

The synthesis and reactivity of 1,1'-divinylcyclopropanes remain unexplored, despite of 

extensive synthetic studies on the mono-vinyl and 1,2-divinyl counterparts.70-71, 81 To our 

knowledge, thermal isomerization to vinylcyclopentene is the only known reaction of 1,1'-

divinylcyclopropane.82 We foresaw two challenges for the synthesis of divinylcyclopropane 

2.63. First, we were concerned about the thermodynamic stability of 2.63 and related 

intermediates because thermal rearrangements of vinylcyclopropanes are well documented.70b, 71, 

81b Second, it is difficult to directly incorporate the geminal vinyl groups onto the cyclopropane 

ring by cyclopropanation reactions. In Section 2.2.3, we describe our discoveries of a scalable 

route towards building block 2.63. 
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2.2.2 Construction of a Tetracyclic Core of (±)-Epimeloscine 

Having validated the feasibility of the first 6-exo-trig radical cyclization in our proposed cascade 

annulation event (Scheme 1.21), we set out to study the tandem cyclization of a model substrate 

2.68 that would provide tetracycle 2.69, a simplified A,B,C,D ring system of meloscine 

alkaloids. Scheme 2.11 illustrates the synthesis of tandem precursor 2.68. N-Benzyl aniline 1.79 

was synthesized by Stille coupling, as described in Section 1.2.1. Racemic 2-bromo-4-butenoic 

acid was prepared according to known procedures.83 Reaction of this acid with oxalyl chloride 

generated acid chloride 2.67, which was added to a solution of 1.79 and Et3N in CH2Cl2, 

producing amide 2.68 74% yield. This product is a 1.5:1 mixture of inseparable diastereomers 

because it has both an axis of chirality (the N-Ar bond) and a stereogenic center. Reaction of 

2.68 with AIBN and Bu3SnH only produced a complex mixture without any major product 

identifiable by TLC or 1H NMR. 

 

Scheme 2.11 Attempted Tandem Cyclization of Sulfonamide 2.68 

 

As mentioned earlier, an electron-withdrawing protective group is preferred, so we 

synthesized N-Boc protected precursor 2.74 in a similar manner of its sulfonamide analog 2.69 

(Scheme 2.12). A mixture of sodium methoxide and commercially available N-Boc-2,3-

dihydropyrrole was treated with iodine monochloride to provide hemiaminal ether 2.70 in 91% 

yield. This product was then heated with 3 equiv of citric acid in refluxing toluene to afford vinyl 
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iodide 2.71 in 41% yield. Under Corey’s conditions,48 Stille-coupling of vinyl iodide 2.71 with 

arylstannane 1.74 at room temperature furnished bicyclic heterocycle 2.72 in 95% yield. 

Reductive cleavage of the trifluoroacetyl group with NaBH4 generated aniline 2.73 in 76% yield. 

Finally, acylation of 2.73 with in situ prepared acid chloride 2.67 produced target precursor 2.74 

in 51% yield. The 1H NMR spectrum of 2.74 was even more complicated than that of N-sulfonyl 

precursor 2.68 due to the existence of carbamate rotamers. Despite the complex NMR spectrum, 

2.74 was pure by TLC, and its structural assignment was supported by HRMS. 

 

Scheme 2.12 Synthesis of Carbamate Precursor 2.74 of the Tandem Radical Cyclization 

 

Substrate 2.74 was reacted with Et3B and Bu3SnH, and tetracyclic product 2.75 was 

isolated as a single stereoisomer in 51% yield after column chromatography (Scheme 2.13). We 

did not observe appreciable amounts of UV-active side products by TLC analysis. The molecular 

weight of 2.75 is determined to be 432.2422 by HRMS (EI), and this was in line with the 
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calculated molecular weight of 432.2413 [M]+. Even though the 1H NMR spectrum of 2.75 was 

complicated by minor impurities in the upfield region, the proposed structure was evidenced by 

the absence of vinyl protons in the 1H NMR spectrum, as well as a distinct doublet at δ 1.04 ppm 

attributed to the methyl signal on the cyclopentane ring. Aside from these features, most of 1H 

NMR signals come in pairs, presumably due to the presence of N-Boc rotamers. 

 

Scheme 2.13 Cyclization of 2.74 and Conversion of Carbamate 2.75 to Sulfonamide Analog 2.76 

 

To remove the complications caused by the N-Boc group, carbamate 2.75 was treated 

with TFA, and the resulting crude amine was protected with PhSO2Cl to provide sulfonamide 

2.76 in 59% yield over two steps. The complete structure of this compound was unambiguously 

solved with the aid of 1D and 2D NMR spectroscopy, HRMS, and single crystal crystallography. 

As shown in the ORTEP structure (Figure 18), the first 6-exo-trig cyclization generated the 

stereochemistry of B/C ring fusion of epimeloscine 2.15b. The C/D ring fusion is cis, as 

predicted. Moreover, the second 5-exo-trig cyclization forged the cyclopentane ring with a 

methyl group syn to the pyrrolidine ring, as predicted by the Beckwith-Houk model.23b, 84 In the 

proposed synthesis of meloscine, however, this stereochemical outcome is a minor point because 

of the presence of two symmetrical vinyl groups. This successful model of tandem cyclization 

encouraged us to undertake the synthesis of meloscine alkaloids. 



 101 

 

Figure 18 ORTEP Structure of Tetracyclic Sulfonamide 2.76 

2.2.3 Synthesis of the Dihydropyrrole Fragment 

The Stille-coupling route was successfully applied to the synthesis of sulfonamide 1.78, as 

shown in Section 1.2.1. Nonetheless, this synthesis involves the use of a toxic arylstannane 1.74 

that required three steps of preparation from 2-iodoaniline. To avoid the use of stannane reagents 

and to shorten the synthetic sequence, we decided to study the Suzuki-coupling reaction85 

between vinyl iodide 2.71 and commercially available boronic ester 2.77 (Scheme 2.14).  

 

Scheme 2.14 A Suzuki Coupling Route to Bicyclic Carbamate 2.78  

 

Vinyl iodide 2.71 was originally synthesized via an iodination-demethanolation process 

from commercially available 2,3-dihydropyrrole (Scheme 2.12). However, this process gave 

only 35% overall yield despite its expediency. In addition, we observed a tendency of 

diminishing yield upon scale-up. To develop a scalable approach to this key building block, we 
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looked into a copper-catalyzed 5-endo-cyclization reaction that was developed by Jiang.86 Thus, 

crude diiodide 2.80 was conveniently prepared by treatment of known but-3-yn-1-ylcarbamate 

2.7987 with NaI and I2, according to Jiang’s procedures (Scheme 2.15). Next, cyclization of 2.80 

in the presence of CuI, 2,2'-bipyridyl, and K3PO4 in refluxing toluene furnished the target vinyl 

iodide 2.71 in 61% overall yield.  

 

Scheme 2.15 Improved Synthesis of 2.71 and Suzuki Coupling of 2.71 and 2.77 

 

There are only a handful of precedents for Suzuki coupling between amino-substituted 

aryl-boronic ester 2.77 and β-haloenamides.88 We tested several typical conditions for the 

Suzuki-coupling reaction between vinyl iodide 2.71 and 2.77. Heating a mixture of 2.71, 2.77, 

Pd(PBu3)2 and KOtBu at 80 °C in tert-butanol did not give target product 2.78. Instead, the target 

coupling product 2.78 could be obtained in 14% yield when reacting a mixture of 2.71, 2.77, 

Pd(dppf)2Cl2, and Na2CO3 in DMF. Replacing Na2CO3 with Tl2CO3 increased the yield to 30%. 

Pleasingly, the use of 5 mol% of Pd(OAc)2, 3 equiv of barium hydroxide octahydrate, and 20 

mol% of (2-dicyclohexylphosphino)biaryl ligand further improved the yield of 2.78 to 69%.88d 

This optimized reaction, in combined with the improved synthesis of vinyl iodide 2.71, enabled a 
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four-step, multi-gram scale synthesis of aniline 2.78 from commercially available 1-amino-4-

butyne (Chapter 2.5). Only two column chromatography purifications were required. Aside 

from its efficiency, this modular process based on cross-coupling underpinned later studies on 

the divergent synthesis of meloscine analogs (Chapter 2.3). 

2.2.4 Synthesis of the Divinylcyclopropane Fragment 

The initially attempted route towards divinylcyclopropane acid 2.63 relied on redox 

manipulation of known diester 2.81, which was synthesized in three steps from commercially 

available 3-benzyloxy-1,2-propanediol (Scheme 2.16).89 Hydrogenolysis of 2.81 with 5% (w/w) 

of Pd(OH)2/C in ethanol removed the benzyl group to generate crude alcohol 2.82. Reaction of 

this product with TBDPSCl afforded the corresponding silylether, which was then reduced with 

6 equiv of DIBAL-H to generate crude diol 2.83. Swern oxidation of this product afforded 

dialdehyde 2.84 in 20% yield over 4 steps. Treatment of 2.84 with methyltriphenylphosphonium 

bromide and NaHMDS gave corresponding crude diene, which reacted with TBAF to generate 

crude, volatile divinyl alcohol 2.85. However, the use of several oxidative reagents, including 

chromium (VI) compounds and Dess-Martin periodinane (DMP),90 failed to provide acid 2.63 or 

aldehyde 2.86 in useful yield. 
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Scheme 2.16 Attempted Synthesis of Divinylcyclopropane 2.63 from Known Cyclopropane 2.81 

 

To circumvent late-stage oxidation in the presence of vinyl groups, we chose to 

synthesize cyclopropane 2.87 because its protected hydroxyl groups could be elaborated into 

geminal vinyl groups (Scheme 2.17). However, preliminary studies suggested that when TBS 

was used as the protecting group for 2.87, lactonization occurred under both basic and acidic 

desilylation conditions. To avoid the use of acid and base in the deprotection reaction of 2.87, we 

chose benzyl as the protecting group for 2.87 because it can be removed under neutral 

hydrogenolysis conditions.  

 

Scheme 2.17 Proposed Synthesis of 2.63 from Protected Diol 2.87 
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Scheme 2.18 shows the application of this strategy to a successful synthesis of 

divinylcyclopropane acid 2.63. Slow addition of ethyl diazoacetate to a mixture of known bis-

benzyl ether 2.8891 and of rhodium acetate dimer (1 mol%) gave cyclopropane 2.89 in 69% 

yield. Both benzyl groups were removed by using 4% (w/w) Pd(OH)2/C under 60 psi H2 without 

any detectable lactone formation. Ethanol was initially used as the solvent for the 

hydrogenolysis. Because it was difficult to remove ethanol from crude diol 2.90, a large excess 

of oxidant (4.5–7 equiv) was required to achieve high conversion of 2.90 in the subsequent 

oxidation reaction. Ethyl acetate was found a better solvent for the hydrogenolysis reaction 

because, unlike ethanol, residual ethyl acetate does not impede the next oxidation reaction. 

Subsequently, crude diol 2.90 was treated with 0.1 equiv of TEMPO and 3 equiv of iodobenzene 

diacetate (BAIB) to generate dialdehyde 2.91 in 86% yield over two steps. This product was then 

added to a pre-mixed solution of methyltriphenylphosphonium bromide and KHMDS, providing 

the corresponding divinylcyclopropane ester. Hydrolysis of this product with LiOH furnished the 

target acid 2.63 in 60% yield over two steps. Multigram-scale synthesis of 2.63 has been realized 

by this route, which requires only five reactions and three flash chromatography purifications. 

We were also pleased to find that divinylcyclopropane 2.63 was stable to prolonged storage at 

−20°C.  
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Scheme 2.18 Five-Step Synthesis of Divinylcyclopropane Fragment 2.63 

2.2.5 The Cascade Radical Annulation Reaction 

Amide bonds have restricted rotation due to their partial double-bond character.92 In many cases, 

E/Z rotamers of an amide can be observed by NMR spectroscopy, or even isolated under bench 

conditions. According to the Curtin-Hammett Principle,93 divergent reaction pathways can be 

expected for amide E/Z rotamers when the ongoing reactions are faster than the interconversion 

between E/Z rotamers. This type of kinetics is especially prevalent in radical reactions because 

they are generally very fast. Therefore, adoption of correct amide conformation is crucial to the 

success of intramolecular radical reactions.  

To this end, we initially chose N-benzyl-protected anilide 2.92 as the annulation 

precursor. Its ground-state conformation is expected to be predominantly the E-rotamer 2.92a,11, 

94 which is pre-disposed to undergo the annulation reaction (Figure 19).95 Fast cyclopropane 

ring-opening of 2.92a generates α-amidoyl radical 2.94a which leads to the target tetracycle 2.96 

by fast radical annulation (productive pathway). Likewise, cyclopropane ring-opening of the 

disfavored Z-rotamer 2.92b forms α-amidoyl radical 2.92b, which will not be positioned for the 

annulation (unproductive pathway). Because the interconversion between radicals 2.92a and 
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2.92b is slow due to hindered rotation of amide bond, the reaction outcome is ultimately dictated 

by the ground-state distribution of rotamers 2.92a and 2.92b. In this case, the productive reaction 

pathway is predominant. In contrast, secondary-anilide 2.93 will adopt Z-conformation 2.93b,11, 

94 and the unproductive pathway that does not lead to 2.97 is predominant.  

 

Figure 19 Reaction Kenetics of Anilides 2.92 and 2.93 under Radical Conditions 

 

The synthesis of tertiary amide 2.92 required N-benzyl aniline 2.73. This fragment was 

prepared in 70% yield by reductive amination of 2.78 with benzaldehyde, NaBH(OAc)3, and 

acetic acid (Scheme 2.19).96 Next, we surveyed several coupling reagents for the amide coupling 
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reaction of anilinde 2.73 with acid 2.63. Unfortunately, the use of DCC, EDCI, or HATU failed 

to generate target amide 2.92, presumably due to the low nucleophicity of aniline partner 2.73. 

 

Scheme 2.19 Attempted Coupling of 2.73 and 2.63 

 

We then turned to conditions that involved activation of acid 2.63 to the corresponding 

acid chloride 2.98 (Scheme 2.20). Reaction of 2.63 with oxalyl chloride gave crude acid chloride 

2.98, which was added to a pre-mixed solution of DMAP, pyridine, and aniline 2.73. An 

unknown, polar side-product was isolated by flash chromatography, and target coupling product 

2.92 was not detected by TLC or NMR. In another experiment, acid 2.63 reacted with Ghosez 

reagent (1-chloro-N,N,2-trimethyl-1-propenylamine)97 to produce crude acid chloride 2.98. This 

product was then transferred to a pre-mixed solution of pyridine, DMAP, and aniline 2.73. To 

our delight, amide product 2.92 was isolated in 83% yield after flash chromatography. 

 

Scheme 2.20 Synthesis of 2.92 by Coupling of 2.73 and Acid Chloride 2.98 
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The molecular weight of 2.92 was determined to be 493.2488 by HRMS (EI), and this is 

in line with the calculated molecular weight of 493.2467 [M+Na]+. In addition, the co-existence 

of signals of two diastereotopic vinyl groups and dihydropyrrole supported the structural 

assignment of amide 2.92.  

Like the N-Boc-protected model compound 2.74 (Scheme 2.12), the existence of multiple 

rotamers substantially complicated the interpretation of the 1H and 13C NMR spectra of 2.92. To 

remove the complication caused by the N-Boc rotamers, sulfonamide analog bh.124-38 was 

prepared and characterized by Mr. E. Ben Hay (Figure 20). The presence of only two sets of 

NMR signals suggested that either of the amide, N-aryl, or aryl-vinyl bonds of bh.124-38 has a 

reasonably high rotational barrier. We were mostly concerned about whether the doubled signals 

of bh.124-38 should be attributed to the amide rotamers because, as stated earlier, the groud-

state amide geometry is critical to the ensuing annulation reaction. This concern was eliminated 

after re-examining the NMR spectra of structurally similar amide 1.64a that shows only one set 

of signals. Based on our previous studies of ortho-alkenyl anilides,20a, 83 we tentatively attributed 

the doubled NMR signals of bh.124-38 to the slow rotation of its N-aryl bond. By analogy, this 

conclusion also applies to carbamate 2.92.  

 

Figure 20 Structures of 2.92 and Its Sulfonamides Analogs bh.124-38 and 1.64a  

 

Confident about our structural assignment of amide 2.92, we examined the pivotal 

cascade annulation reaction under a series of conditions (Table 1). Reactions of 2.92 with 
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PhSSPh,73a N-heterocyclic carbene boronodithiolate,98 CCl4 or TTMSS99/AIBN in refluxing 

benzene or toluene, did not provide a detectable amount of tetracycle 2.96 (entries 1–4). 

Formation of only a trace amount of 2.96 was observed using tosylcyanide and AIBN (entry 5). 

Nonetheless, we were excited to find that 2.96 could be obtained in 24% yield by refluxing a 

solution of substrate 2.92, AIBN, and Bu3SnH (0.02 M) in benzene (entry 6). Slow addition of 

Bu3SnH/AIBN by syringe pump boosted the yield to 41% (entry 7). We then reasoned that a 

higher temperature would accelerate the interconverion of E/Z rotamers of precursor 2.92, 

thereby further increasing the conversion of 2.92 to 2.96. Indeed, slow addition of 

Bu3SnH/AIBN to a refluxing solution of 2.92 in toluene gave 2.96 in 55% yield as a single 

diastereomer (entry 8). Slow addition of PhSH/AIBN to a refluxing solution of 2.92 in toluene 

also yielded the target product, but in far lower yield of 22% (entry 9). 

Table 1 Screening of Conditions for the Radical Annulation of 2.92 
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The existence of multiple N-Boc rotamers once again complicated the 1H NMR analysis 

of tetracycle 2.96. Nonetheless, the assigned structure of 2.96 was supported by several 

distinctive signals, including: 1) singlets at 4.52 ppm (minor rotamer) and 4.36 ppm (major 

rotamer) attributed to the C19H adjacent to the N-Boc group, and 2) a pair of dd signals at 3.03 

ppm (major rotamer) and 2.97 ppm (minor rotamer) attributed to the C3H adjacent to the amide 

carbonyl. In addition, HRMS and 13C NMR results of 2.96 were in line with the proposed 

structure.  

The stereochemistry of 2.96 was unknown at this stage, but was quickly established by a 

three-step conversion to (±)-N-benzyl-epimeloscine 2.100 (Chapter 2.2.6). We proposed a 

transition-state model that accounts for the stereochemical outcome of the annulation reaction 

(Figure 21). Tin radical-mediated ring-opening of DVCP 2.92 produces interconverting radicals 

2.Aa and 2.Ab, which undergo the first 6-exo-trig cyclization through transition states 2.Ba and 

2.Bb. Subsequent 5-exo-trig cyclization, followed by β-elimination of the tin radical, affords 

annulated products 2.96 and epi-2.96. Studies of related systems suggested that the 

interconversion between 2.Aa and 2.Ab is fast compared to the ensuing 6-exo-trig cyclization.83 

Therefore, the stereochemical outcome of the 6-exo-trig cyclization is dictated by the relative 

stability of transition states 2.Ba and 2.Bb. Compared to 2.Ba that leads to tetracycle 2.96, 

transition state 2.Bb is substantially less favored due to the steric repulsion between the large 

alkyl group R and the dihydropyrrole radical acceptor. Thus, tetracycle epi-2.96 should form as a 

minor product and, in this case, was not detected.  
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Figure 21 Proposed Stereochemical Model for the Key Annulation Reaction of 2.92 

2.2.6 Completion of the Synthesis 

The completion of the synthesis requires installation of N-allyl functionality that is necessary for 

the final ring-closing metathesis. The Boc group of tetracycle 2.96 was removed with a dilute 

TFA solution in DCM, and allyl bromide was added to the resulting crude amine to provide 

allylamine 2.99 in 83% yield. Subsequent RCM reaction smoothly proceeded with 5 mol% of the 

second-generation Hoveyda-Grubbs catalyst,100 providing benzyl-protected pentacycle 2.100 as 

the sole product in 94% yield (Scheme 2.25). 

 

Scheme 2.21 Synthesis of N-Benzyl-Epimeloscine from Tetracycle 2.96 
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The 2D structure of 2.100 was then validated by techniques of HMRS, 1H/13C NMR, and 

1H-1H COSY. Although its stereochemistry could not be unambiguously assigned, we found that 

2.100 bore considerable spectral resemblance to epimeloscine 2.15b in terms of chemical shifts. 

For example, the C19HN groups of both 2.100 and epimeloscine 2.15b show as singlets at about 

4 ppm in 1H NMR spectra, whereas the chemical shift of the corresponding singlet in meloscine 

2.15a is 3.52 ppm.101  

Limited options were available for the removal of the amide benzyl group because harsh 

conditions are required.102 Considering the instability of the terminal vinyl groups towards 

hydrogenolysis conditions, we elected to use single-electron reducing reagents for the final 

debenzylation reaction of 2.100.103 Disappointingly, pilot reactions using sodium or lithium 

metal with naphthalene or di-tert-butylbiphenyl (DBB) only resulted in the formation of complex 

mixtures (Scheme 2.22). 

 

Scheme 2.22 Unsuccessful Debenzylation of 2.100 

 

To circumvent the protecting-group manipulation, we decided to attempt the annulation 

of unprotected amide 2.93 (Scheme 2.23). The aforementioned risk of this approach could 

possibly be outweighed by its step-economy. Thus, secondary anilide precursor 2.93 was easily 

prepared in 77% yield by acylation of 2.78 with in situ prepared acid chloride 2.98. Gratifyingly, 

syringe pump addition of Bu3SnH/AIBN to a refluxing solution of 2.93 in toluene provided the 
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target tetracycle 2.97, although in low yields ranging from 22% to 38%. This reaction was tested 

on several different scales (56 mg, 115 mg, 180 mg, and 250 mg), and the best yield (38%) was 

obtained from a 56 mg scale experiment. Again, the stereochemistry of 2.97 was not 

immediately established, but was later confirmed by elaboration of 2.97 into (±)-epimeloscine 

2.15b in three steps. 

 

Scheme 2.23 Synthesis of Tetracycle 2.97 by Radical Annulation of 2.93 

 

Conversion of tetracycle 2.97 to (±)-epimeloscine 2.15b was accomplished in the manner 

of 2.100. The Boc group of 2.97 was removed by TFA, and the resulting crude amine was 

allylated to provide the triene 2.101 over two steps in 73% yield. Finally, RCM of this product 

furnished (±)-epimeloscine 2.15b as the sole product in 89% yield. 1H and 13C NMR data of the 

synthetic sample were identical to those reported.101 Its structure was also confirmed by HRMS 

data.  

 

Scheme 2.24 Completion of the Synthesis of (±)-Epimeloscine 
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Bernauer demonstrated that epimeloscine undergoes epimerization under basic conditions 

to provide meloscine exclusively.101 We repeated this reaction by heating (±)-epimeloscine 2.15b 

with two equiv of KOtBu in tert-butanol and obtained (±)-meloscine 2.15a in 86% yield 

(Scheme 2.25). The 1H and 13C NMR data of synthetic meloscine 2.15a were consistent with 

those reported previously.65-66 

 

Scheme 2.25 Epimerization of Epimeloscine to Meloscine 

 

The main problem with the synthesis described above is the low-yielding radical 

annulation of secondary anilide 2.93. To address this issue, we decided to protect the amide N-H 

with a removable group, which would ensure a favorable amide conformation for the annulation 

reaction (Scheme 2.26).11, 94 Thus, treatment of 2.78 with Boc2O and catalytic LiClO4 afforded 

bis-carbamate 2.102 in 94% yield.104 Deprotonation of 2.102 with KHMDS, followed by 

quenching the resulting anion with acid chloride 2.98, furnished bis-carbamate 2.103 in 73% 

yield. Now, annulation of key precursor 2.103 under the syringe pump conditions gave tetracycle 

2.104 in 53% yield. This is better than the yield for the annulation of secondary anilide 2.93, and 

importantly, the yield of 2.104 is also reproducible. 
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Scheme 2.26 Improved Synthesis of Epimeloscine by Annulation of Bis-Carbamate 2.103 

 

The 1H NMR spectrum of 2.104 was very similar to that of tetracycle 2.97 in terms of 

chemical shift and peak splitting pattern. In particular, two singlets at 4.47 ppm and 4.32 ppm 

represents the diagnostic C19H signal of bis-carbamate 2.104, and the corresponding signal of 

2.97 is shown as two singlets at 4.50 ppm and 4.35 ppm. This spectral feature, coupled with a 

two-step conversion of 2.104 into allylamine 2.101, confirmed the stereochemical assignment of 

tetracycle 2.104. Treatment of 2.104 with dilute TFA removed both Boc groups, and the 

resulting crude amine reacted with allyl bromide to furnish 2.101 in 68% yield over two steps.  

To summarize, we have developed an efficient total synthesis of (±)-epimeloscine and 

(±)-meloscine based on a novel, radical annulation of a divinylcyclopropane.105 Annulation of N-

benzyl amide substrate 2.92 afforded target tetracycle 2.96 in 55% yield, which was readily 

converted to N-benzyl epimeloscine. However, the benzyl group could not be removed. To 

address this issue, we chose secondary anilide 2.93 that annulated to provide target tetracycle 

2.97 in low yields (22~38%). Elaboration of this product quickly furnished (±)-epimeloscine and 
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(±)-meloscine. This route delivered 18 mg of (±)-epimeloscine and 4 mg of (±)-meloscine. To 

improve the efficiency of the key radical annulation reaction, we replaced secondary anilide 2.93 

with N-Boc protected tertiary amide 2.103, which annulated to give target tetracycle 2.104 in 

52% yield. This product can be elaborated in the same manner of 2.97 to form (±)-epimeloscine 

and (±)-meloscine.  

2.3 SYNTHESIS OF MELOSCINE ANALOGS 

From the standpoint of diversity-oriented-synthesis, the small family of meloscine alkaloids 

represents a poorly populated “chemistry space”,106 where the structure/property relationships 

are yet to be established. This fact could be partially attributed to the insufficient supplies of 

meloscine alkaloids and their structural analogs, from either natural or synthetic sources.64-66, 101, 

107 Given our development of an efficient synthesis meloscine and epimeloscine,105 we initiated a 

synthetic program to produce meloscine derivatives with new scaffolds. First we aimed to 

prepare a small library via late-stage functionalization of either epimeloscine or advanced 

intermediates that were used in our original total synthesis.  

Figure 20 outlines four groups of meloscine analogs that we planned to synthesize: 1) 

lactam and sulfonamide E-ring analogs 2.105a and 2.106a that will be made from tetracyclic 

intermediate 2.96; 2) six- and seven-membered D-ring analogs 2.109a and 2.110a that will be 

constructed from vinyl iodides 2.107 and 2.108; 3) vinyl-side-chain analogs 2.111 that will be 

accessed by cross-metathesis or hydroboration reactions of N-benzyl epimeloscine 2.100; and 4) 

analogs with different amide substituents 2.112. 
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Figure 22 Synthesis Plan for the Meloscine Analogs 

2.3.1 Synthesis of E-Ring Analogs 

The synthesis of lactam analog 2.105a and sulfonamide analog 2.106a was illustrated in Scheme 

2.27. Tetracycle 2.96 was deprotected with dilute TFA, and the resulting crude amine 

intermediate was acylated with acryloyl chloride to give acrylamide 2.113 in 92% yield. In 

parallel, sequential treatment of above-mentioned crude amine with Et3N and ClSO2CH2CH2Cl 

chloride provided sulfonamide 2.114 in 30% yield.108 Now, RCM reaction of acrylamide 2.113 

with 10 mol% of second generation Hoveyda-Grubbs catalyst, produced N-benzyl-16-oxo-

epimeloscine 2.105a in 84% yield. RCM of vinylsulfonamide 2.114 in the same manner 

furnished analog 2.106a in 74% yield. Interestingly, both analogs 2.105a and 2.106a underwent 

smooth epimerization with KOtBu in tert-butanol at 80 °C, providing new analogs 2.105b and 

2.106b in 86% and 84% yield respectively.  
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Scheme 2.27 Synthesis of E-Ring Analogs of Meloscine 

 

2.3.2 Synthesis of D-Ring Analogs  

We then synthesized analogs with different sized D-rings. The flexibility of the Suzuki-coupling 

strategy allowed facile introduction of D-ring analogs from commercially available ene-

carbamates 2.115 and 2.116 (Scheme 2.28). N-Boc-3,4-dihydro-2H-pyridine 2.115 was 

converted to vinyl iodide 2.107 in two steps using Sulikowski’s procedures.109 Treatment of 

2.115 with iodine monochloride and sodium methoxide gave hemiaminal ether 2.117 in 97% 

yield. This product was then heated with 5 mol% TFA in refluxing toluene to afford known vinyl 

iodide 2.107 in 79% yield. Suzuki coupling of 2.107 with boronic acid ester 2.77 in the manner 

of 2.78 provided aniline 2.119 in 82% yield. Subsequent N-Boc protection in the manner of 

2.102 generated bis-carbamate 2.121 in 97% yield, which was then acylated with acid chloride 

2.98 in the manner of 2.103 to afford precursor 2.123 for the key radical annulation. 

Gratifyingly, slow addition of Bu3SnH and AIBN to a refluxing solution of 2.123 furnished the 
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target tetracycle 2.125 in 44% yield, along with minor, inseparable impurities. In parallel, 

tetracycle 2.126 was made from seven-memered ene-carbamate 2.116 by the same route and 

with comparable yields. 

 

Scheme 2.28 Synthesis of Tetracycles 2.125 and 2.126 

 

The assigned structure of 2.125 is supported by 1H NMR and HRMS analyses, however, 

the presence of minor, inseparable impurities complicates the 13C NMR spectrum. The diagnostic 

C19H signal of 2.125 is shown as two singlets at 4.79 ppm and 4.63 ppm in the 1H NMR 

spectrum, which are more downfield than the corresponding signals of five-membered D-ring 

analog 2.104 (Scheme 2.26). To confirm the structural assignment of 2.125, we removed both 

Boc groups with dilute TFA. Flash chromatography purification of the crude product provided 

free amine 2.127 in 80% yield, which was fully characterized by 1H and 13C NMR, COSY, and 
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HRMS.  The “epimeloscine-type” B/C ring fusion of 2.127 was unambiguously established by 

this X-ray crystallography analysis (Figure 21).  

 

Figure 23 Deprotection of Bis-Carbamate 2.125 and ORTEP Structure of 2.127 

 

The assigned 2-D structure of seven-membered D-ring analog 2.126 is supported by 

1H/13C NMR and HRMS analysis. In the 1H NMR spectrum, the C11H signal overlaps with the 

terminal vinyl protons. This signal is even more downfield than the corresponding signal of six-

membered D-ring analog 2.125. We also made free amine derivative 2.128 in the manner of 

2.127 (Scheme 2.29). Even though amine 2.128 was not purified by flash chromatography, the 

C11H signal is easily distinguishable by 1H NMR, shown as a singlet at 3.53 ppm. This chemical 

shift is very close to that of the corresponding C19H in 2.127, and therefore we assigned 

“epimeloscine-type” stereochemistry of 2.128 based on analogy. This assignment is also 

supported by the analogy between the 1H NMR spectra of allylamine derivatives 2.129 and 2.130 

(Scheme 2.30). 
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Scheme 2.29 Deprotection of Bis-Carbamate 2.126 

 

 The synthesis of target analogs 2.109a and 2.109b was then completed via sequential N-

Boc deprotection, allylation, and RCM, in the manner of 2.104 (Scheme 2.30). Allylation of 

amines 2.113 with an excess amount of allyl bromide (5–10 equiv) at 50 °C provided triene 

2.129 in 73% yield. RCM of this product with 5 mol% of Hoveyda-Grubbs II catalyst furnished 

target pentacycle 2.109a in 74% yield. Applying the same reaction sequence on crude amine 

2.128 produced seven-membered D-ring analog 2.110a in similar efficiency. Finally, 

epimerization of pentacycles 2.109a and 2.110a smoothly proceeded with 2 equiv of KOtBu in 

tert-butanol, providing 2.109b and 2.110b in 82% and 84% yield, respectively. 

 

Scheme 2.30 Completion of the Synthesis of Six- and Seven-Membered D-Ring Analogs 
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The diagnostic C19H signal of six-membered D-ring analog 2.109a is shown as a singlet 

at 3.53 ppm in 1H NMR spectrum, and the chemical shift of the corresponding singlet of 2.109b 

is much more upfield, at 2.93 ppm. This pattern is in-line with the 1H NMR spectra of 

epimeloscine/meloscine pair. Surprisingly, the chemical shift of the C19H singlet in the 1H NMR 

spectrum of seven-membered D-ring analog 2.110a is about 0.5 ppm more downfield than that of 

the corresponding signal of 2.110b. 

Next, we planned to synthesize meloscine analogs through a traditional-medicinal-

chemistry based approach. In particular, we envisioned that direct functionalization of the amide 

moiety, or the terminal vinyl group of meloscines, would quickly provide an array of interesting 

compounds (Figure 20). We first examined the possibility of direct benzylation of the amide 

group. Initial experiments of benzylating epimeloscine with NaH and BnBr were not successful. 

However, we found that benzylation of secondary anilide 2.101 with KHMDS and BnBr gave 

2.99 in 68% yield (Scheme 2.36). 

 

Scheme 2.31 N-Benzylation of 2.101 to Produce 2.99 

 

We found it difficult to functionalize the terminal alkene moiety of N-benzyl 

epimeloscine 2.100 under either cross-metathesis110 or hydroboration111 conditions  (Scheme 

2.32). In most cases, the attempted reactions either provided no conversion of the starting 

material, or resulted in the formation of complex mixtures. A potential problem associated with 

these reactions could be the local steric hindrance of the substrate.  



 124 

	
  

Scheme 2.32 Attempted Functionalization of the Terminal Vinyl Group of 2.100 

 

In conclusion, we have synthesized lactam and sulfonamide E-ring analogs of meloscine 

from tetracycle 2.96. In addition, we have demonstrated the generality of the radical [3+2]-

annulation reaction of divinylcyclopropane-enamides that enables facile preparation of six- and 

seven-membered D-ring analogs. 

2.4 PRELIMINARY STUDIES ON THE MEMORY-OF-CHIRALITY APPROACH 

TOWARDS (+)-MELOSCINE 

2.4.1 Radical Annulation of Enantio-enriched Divinylcyclopropane Anilides 

Our next goal was to test an enantioselective variant of the current racemic synthesis of 

meloscine alkaloids. In the racemic synthesis, three out of four required stereocenters were 

constructed by the cascade radical annulation reaction, while the group-selective RCM reaction 
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forged the final one.105 We elected to establish the absolute chemistry of (+)-meloscine by an 

asymmetric radical cascade reaction. However, the lack of an obvious chiral element in the 

radical annulation precursors poses a major challenge for this strategy. In the racemic synthesis, 

the only stereocenter present in 2.104 is eventually destroyed during the annulation reaction.  

The design of a memory-of-chirality (MOC) reaction could be a potentially appealing 

solution to this challenge. In a typical MOC reaction, a stereogenic center of the starting material 

is first destroyed, and a “conformationally chiral” reactive intermediate is generated.112 This 

reactive intermediate does not readily racemize and is quickly consumed by the subsequent 

reaction with high stereoselectivity.17b, 19, 20b, 110, 112-113 A typical example of asymmetric radical 

reaction via MOC is shown in Figure 22. Irradiation of solution of enantiopure N-

hydroxypyridine-2-thione ester 2.132 and thiophenol in toluene gives tetrahydropyran (S)-2.134 

in 92% yield with 86% ee.112e Mechanistically, decarboxylation of 2.132 generates radical 

2.133a that is stereoselectively captured by PhSH, an efficient hydrogen donor. Slow ring flip of 

2.133a generates enantiomeric radical 2.133b, which is reduced by PhSH to produce (R)-2.134 

as the minor product. 

 

Figure 24 Radical Reduction of Enantio-Pure 2.132 with Memory of Chirality 
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We decided to test whether a memory-of-chrality (MOC) approach would enable the 

production of enantio-enriched product 2.137 via stereoselective cyclization of enantiomerically 

pure substrate 2.135 (Figure 23). In principle, cyclization of dynamically chiral radical 2.136 

would afford target MOC product 2.137, given that the interconversion of 2.136 to ent-2.136 was 

slower than the ensuing radical cyclization. On the other hand, if the interconversion of 2.136 to 

ent-2.136 is much faster than the cyclization, then rac-2.137 will be generated.  

 

Figure 25 Proposed Radical Annulation of Enantio-Enriched Divinylcyclopropane 2.135 with MOC 

 

Before undertaking the enantioselective synthesis of annulation precursors, we conducted 

several proof-of-concept experiments (Scheme 2.33). Racemic secondary anilide 2.93 was 

resolved by chiral HPLC (S,S-Whelk O1 column) to give enantiomers 2.93a (the first eluting 

enantiomer, FEE) and 2.93b (the second eluting enantiomer, SEE) with greater than 80% ee. 
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Similarly, resolution of N-benzyl-substituted anilide 2.92 provided enantiomers 2.92a (FEE) and 

2.92b (SEE) with greater than 90% ee. Subjection of both 2.93a and 2.93b to the standard 

AIBN/Bu3SnH condition, however, produced only racemic tetracycle 2.97 in 33% yield. 

Nonetheless, we were able to obtain target annulation product 2.96 with moderate degree of 

enantiomeric excess (37%) from N-benzyl substituted precursors 2.92a and 2.92b. To probe the 

temperature effect, we subsequently performed the same reaction with PhSH and V-70 initiatior 

at room temperature. Disappointingly, the reaction provided 2.96 in 21% yield, with even 

slightly lower ee (27%). 

 

Scheme 2.33 Pilot Experiments for Testing the MOC Strategy in the Synthesis of (+)-Meloscine 

 

In conclusion, the above pilot experiments show that annulation of enantio-enriched 

secondary anilide 2.93 gives only racemic tetracyclic product 2.97. Nonetheless, annulation of 
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enantio-enriched tertiary anilide 2.92 affords target tetracycle 2.96 with partial memory of 

chirality. These results will serve as the basis for the design of new divinylcyclopropane 

annulation reactions with improved memory of chirality. 

2.4.2 Discovery of a Tandem Cope/Ene Reation of a Phenyl-Substituted 

Divinylcyclopropane 

Encouraged by the initial MOC experiments that offered partial chirality transfer, we decided to 

investigate other substrates that contained an additional substituent on the cyclopropane ring. 

Diallylamide 2.138 was chosen as the initial target (Figure 24). We speculated that ring-opening 

of enantio-pure 2.138 could generate dynamically chiral tertiary radical 2.139 that might be less 

prone towards racemization than a secondary radical counterpart. 

 

Figure 26 The Design of New Divinylcyclopropane Substrates for Testing MOC in the Radical Annulation 
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The retrosynthesis of diallylamide 2.138 is shown in Figure 25. The amide bond of 2.138 

will be constructed by coupling of diallylamine and acid 2.141. We envision that a copper-

catalyzed SN2' replacement of allylic phosphate intermediate 2.142 will allow rapid assembly of 

the divinyl moiety of cyclopropane 2.141. In turn, methylene-cyclopropane 2.142 will be 

prepared by Rh-catalyzed cyclopropanation of known allenic phosphate 2.143. 

 

Figure 27 Retrosynthesis of Diallylamide 2.138 

 

Scheme 2.40 illustrates the successful execution of this route for the synthesis of phenyl-

substituted substrate 2.147. Ethyl phenyldiazoacetate was added to a refluxing solution of known 

allenic phosphate 2.143114 and Rh2(esp)2 catalyst115 (0.2 mol%) in DCM, providing methylene-

cyclopropane 2.144 in 57% yield. This product was slowly added to a pre-mixed solution of 

copper cyanide (20 mol%) and vinylmagnesium bromide (3 equiv). Gratifyingly, the target SN2' 

product 2.145 was obtained in 56% yield after careful chromatography purification. The regio-

selectivity (SN2':SN2) of the cuprate substitution was determined to be 3:1, according to 1H NMR 

analysis of the crude product. Treatment of 2.145 with KOH gave no hydrolyzed product 2.146 

at room temperature, and elevated temperature (50 °C) was required for the completion of the 
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hydrolysis reaction. However, an unidentifiable side-product was formed under this condition, 

and it is inseparable from target acid 2.146 by flash chromatography. We then optimized the 

hydrolysis reaction using Gassman’s procedures.116 Reaction of a mixture of 2.145, KOtBu, and 

H2O at room temperature afforded crude acid 2.146 without the formation of aforementioned 

side-product. This product was treated with Ghosez reagent to generate corresponding acid 

chloride, which was subsequently added to diallylamine to form amide 2.147 in 69% yield. 

 

Scheme 2.34 Four-Step Synthesis of Diallylamide 2.147 

 

This route was also applied to the attempted synthesis of divinylcyclopropane diester 

2.152 (Scheme 2.35). Rh2(esp)2-Catalyzed cyclopropanation of allenic phosphate 2.143 with 

dimethyl diazomalonate in the manner of 2.144 provided methylene-cyclopropane 2.149 as 3:1 

mixture of E/Z isomers in 57% yield. Unfortunately, subjection of this product to a premixed 

solution of CuCN and vinylmagnesium bromide only produced a complex mixture. Treatment of 

methylene-cyclopropane 2.144 with a premixed solution of NHC-CuCl complex 2.150117 (1 

mol%) and vinylmagnesium bromide (1.5 equiv), however, furnished ring-opened diene 2.151 as 

the sole product in 70% yield.  
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Scheme 2.35 Attempted Synthesis of 2.152 by SN2' Vinylation of 2.149 

 

The structural assignment of the ring-opened diene 2.151 is supported 1H/13C NMR and 

HRMS analyses. Given the known, magnesium-halide mediated ring-opening of related 

cyclopropene diesters,118 we proposed a tandem ring-opening/δ-elimination mechanism for the 

formation of 2.151 (Figure 26). 

 

Figure 28 Proposed Mechanism for the Formation of 2.151 
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 Before conducting MOC experiments that required chiral resolution of diallylamide 

2.147, we decided to obtain a racemic sample of the expected annulation product 2.154. Thus, 

AIBN and Bu3SnH were slowly added via syringe pump to a solution of 2.147 in refluxing 

toluene. To our surprise, target bicycle 2.154 was not detected. Instead, a tricyclic benzo-

annulene 2.155 was isolated as the sole product in 65% yield. The structural assignment of 2.134 

is supported by several spectral features in the 1H NMR spectrum: 1) the presence of only seven 

vinyl protons suggesting that two vinyl groups of diallylamide 2.147 are incorporated in the 

skeleton of 2.155; 2) a doublet at 0.62 ppm attributed to the methyl group on C14; and 3) a triplet 

of triplet at 6.07 ppm attributed to the C8 vinyl proton. In addition, the structure of 2.155 was 

fully assigned by HRMS, 13C, DEPT-135, COSY, and HMQC NMR analysis. 

 

Scheme 2.36 Formation of Unexpected Tricycle 2.155 

 

Figure 27 shows our mechanistic hypothesis of this reaction. Given the known, thermal-

induced 1,2-divinyl-cyclopropane/cycloheptadiene rearrangement,71b we speculated that a similar 

process provided the benzo-annulene fragment of 2.155. Presumably, the γ-lactam ring of 2.155 

was generated via a subsequent intramolecular Alder-ene reaction. Based on this mechanism, the 

stereoselectivity of this cascade reaction originates from: 1) a boat-like transition-state that is 
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required for the Cope rearrangement; and 2) the arrangement of one allyl group and Ha that is 

required for the subsequent ene-reaction (shown in intermediate 2.161). To test this hypothesis, a 

sample of diallylamide 2.147 in CDCl3 was placed in an oil bath at 40 °C. After 36 h, a 3:2 

mixture of 2.147 and tricycle 2.155 was observed by 1H NMR. Complete conversion of 2.147 to 

2.155 was observed after heating a solution of 2.147 in refluxing toluene for 3 h. These results 

showed that this reaction is thermal driven. 

 

Figure 29 Proposed Mechanism for the Formation of Tricycle 2.155 

 

As a second test of this new reaction, we prepared bis-cinnamylamide analog 2.156 and 

conducted a thermal experiment (Scheme 2.37). The expected tricycle 2.157 was carefully 

isolated in 45% yield from several unidentified byproducts.  
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Scheme 2.37 Tandem Cope/Ene Reaction of Bis-cinnamylamide 2.156 

 

We also made ester substrate 2.158 for testing the tandem Cope/Ene reaction (Scheme 

2.38). However, vinyl cyclopentene 2.159 was obtained in 73% yield after refluxing a solution of 

2.158 in toluene for 3 h. The expected tricycle 2.160 was not detected by TLC or 1H NMR. 

Further studies on the scope and limitations of the new tandem Ene/Cope reaction are currently 

undertaken by Mr. E. Ben Hay. 

 

Scheme 2.38 Thermal Rearrangement of Divinylcyclopropane Ester 2.158 
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2.5 CONCLUSIONS 

The tandem 6-exo-trig/5-exo-trig radical cyclization methodology of ortho-alkenyl anilides has 

been extended to the synthesis of pentacyclic meloscine alkaloids. Based on this methodology, 

we have developed a novel cascade radical annulation reaction of a divinylcyclopropane, which 

enabled an expedient synthesis of (±)-epimeloscine and (±)-meloscine. Our synthesis provides 

(±)-epimeloscine in a longest linear sequence of 10 steps and in about 6% yield. Another key 

transformation of our synthesis is a group-selective RCM reaction that, in combination with the 

cascade radical reaction, dramatically facilitates the construction of the allylic quaternary center. 

In addition, the facile, five-step synthesis of divinylcycloprionic acid 2.63 provides opportunities 

to broaden the scope and utility of the new annulation reaction.  

A divergent synthesis of meloscine analogs has been achieved via late-stage 

functionalization of epimeloscine and its derivatives. We made lactam and sulfonamide E-ring 

analogs as well as expanded D-ring analogs. In all cases, the cascade annulation produced the 

C16-epi isomers, which could later be epimerized. This work sets the stage for the preparation of 

new libraries of meloscine analogs.  

To develop an enantioselective synthesis of (+)-meloscine, we conducted preliminary 

studies on a MOC-based approach. Partial chiral transfer was observed in the radical annulation 

reaction of an enantio-enriched tertiary amide, while annulation of an enantio-enriched 

secondary amide analog gave only racemic product. A redesigned model compound for MOC 

studies was efficiently synthesized using a copper-catalyzed SN2'-displacement reaction. 

However, this substrate did not undergo the expected radical annulation reaction. Instead, it 

rearranged through an unexpected, thermal-driven Cope/ene pathway to provide a tricyclic 
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benzo-annulene. We anticipate this reaction to provide quick access to an array of unusual 

spiro/fused tricycles. 

2.6 EXPERIMENTALS 

General Information:  Chemicals and solvents were purchased from commercial suppliers and 

used as received, except as follows. Dichloromethane, THF, ether, and toluene were dried by 

passing through an activated alumina column, unless otherwise indiciated. All reactions were 

carried out under an inert atmosphere of dry argon unless otherwise indicated.  

 All reactions were followed by TLC or 1H NMR spectroscopy. TLC visualizations were 

performed by illumination with a UV lamp (254 nm), in combined with staining with a solution 

of phosphomolybdic acid in ethanol, or a solution of anisaldehyde in ethanol, and heating. All 

flash chromatography was performed with 230-400 mesh silica gel purchased from Sorbent 

Technoloies as the stationary phase, or by CombiFlash system (Teledyne ISCO). 

 1H NMR spectra were recorded on Bruker Avance instruments at 300, 400, 500, 600 and 

700 MHz with deuterated chloroform as solvent, unless otherwise indicated. 13C NMR spectra 

were measured on Bruker Avance instruments at 75, 100, 125, and 150 MHz. The chemical 

shifts in spectra were measured in parts per million (ppm) on the delta (δ) scale relative to the 

resonance of the solvent peak (CDCl3: 1H = 7.27 ppm, 13C = 77.0 ppm). Unless otherwise noted, 

NMR spectra were recorded at 293 K. 

 IR spectra were recorded on a Nicolet Avatar 360 FTIR spectrometer and ran as thin films 

on sodium chloride plates.  Mass spectra were obtained on Fisons Autospec high-resolution 

magnetic sector mass spectrometer or a Micromass Q-Tof Ultima mass spectrometer. 
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 N-Boc-2,3-dihydropyrrole, N-Boc-2,3-dihydro-2H-pyridine 2.115, and N-Boc-2,3,4,5-

tetrahydroazepine 2.108 were purchased from Sigma-Aldrich. Vinyl iodide 2.107 was prepared 

in two steps from 2.115 using known procedures.45 Arylboronic ester 2.77 was purchased from 

Boron Molecular Inc. Carbamate 2.79 was prepared in one step from 1-amino-3-butyne 

(purchased from Sigma-Aldrich) using known procedures.87 Bis-benzyl ether 2.88 was prepared 

in one step from 2-methylene-1,3-propenediol (purchased from Sigma-Aldrich) using known 

procedures.91 Allenic phosphate 2.143 was prepared in one step from 2,3-butadien-1-ol 

(purchased from Sigma-Aldrich) using known procedures.114 Ethyl phenyldiazoacetate119 and 

dimethyl diazomalonate120 were prepared in one step using known procedures.   

 

 

trans-tert-Butyl 3-iodo-2-methoxypyrrolidine-1-carboxylate (2.70): Sodium methoxide (1.82 

g, 33.68 mmol) was added to a stirred solution of N-Boc-2,3-dihydropyrrole (3.01 g, 16.84 

mmol) in MeOH (60 mL). An ICl solution (1 M in CH2Cl2, 18.5 mL) was added dropwise, and 

the mixture was stirred for 30 min after the completion of addition. The reaction was quenched 

with a saturated aqueous Na2S2O3 solution, and the aqueous layer was extracted with Et2O. The 

combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. 

The crude product was purified by flash chromatography (silica gel, 15% EtOAc/hexanes) to 

provide the title compound (5.01 g, 91%) as a colorless oil, in a nearly 1:1 ratio of N-Boc 

rotamers: 1H NMR (300 MHz, CDCl3) δ 5.37, 5.24 (s, 1H, rotamers), 4.22 (d, J = 4.8 Hz, 1H), 

3.71-3.55 (m, 1H), 3.50-3.46 (m, 1H), 3.41, 3.62 (s, 3H, rotamers), 2.50-2.47 (m, 1H), 2.16-2.09 

(m, 1H), 1.50 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 155.1, 154.4, 96.4, 96.2, 80.6, 80.3, 56.2, 
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55.9, 44.9, 44.3, 33.8, 32.9, 28.4, 27.0, 26.2; FTIR (thin film, CHCl3) 2976, 1706, 1478, 1384, 

1343, 1164, 1116, 1075 cm-1; HRMS (EI) cald for C10H18NO3NaI, m/z 350.0229 [M+Na]+, 

found: 350.0239. 

 

 

tert-Butyl 4-iodo-2,3-dihydro-1H-pyrrole-1-carboxylate (2.71): A solution of 2.70 (3.64 g, 

11.13 mmol) and citric acid (7.0 g, 33.39 mmol) in toluene (100 mL) was refluxed for 6 h in a 

250 mL flask fitted with a Dean-Stark trap. The mixture was cooled to room temperature and the 

solid was filtered off. The filtrate was washed with a saturated aqueous NaHCO3 solution and 

brine, dried over MgSO4, and concentrated in vacuo. The residue was purified by flash 

chromatography (silica gel, 7% EtOAc/hexanes) to provide the title compound (1.37 g, 42%) as 

a colorless oil: 1H NMR (300 MHz, CDCl3) δ 6.77, 6.64 (rotamers, s, 1H), 3.80-3.73 (m, 2H), 

2.87-2.81 (m, 2H), 1.47 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 151.0, 150.4, 135.8, 80.9, 80.7, 

66.2, 46.5, 45.9, 39.8, 38.7, 28.3; FTIR (thin film, CHCl3) 2975, 2930, 1703, 1611, 1477, 1454, 

1396, 1244, 1173, 1128 cm-1; HRMS (TOF ES) cald for C9H14NO3INa, m/z 317.9991 [M+Na]+, 

found: 318.0002. 

 

Large-scale preparation of vinyl iodide 2.71 from 4-amino-1-butyne:  

 N-Boc protection of 4-amino-1-butyne: Boc2O (9.39 g, 42.98 mmol) was added to a 

solution of 4-amino-1-butyne (2.70 g, 39.07 mmol) in diethyl ether (ACS reagent grade; 150 

mL) at −78 °C, and the reaction mixture was stirred at this temperature for 2 h. A saturated 

aqueous NaHCO3 solution was added, and the biphasic mixture was stirred vigorously at room 

temperature for 10 min. The aqueous layer was extracted by diethyl ether, and the combined 
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organic layer was dried over MgSO4 and concentrated in vacuo. The resulting crude carbamate 

2.79 (6.6 g) was directly used for the next reaction. 

 Diiodination of alkyne 2.79: NaI (17.57 g, 117.20 mmol) and I2 (11.90, 46.88 mmol) were 

added sequentially to a stirred solution of tert-butyl but-3-yn-1-ylcarbamate 2.7987 (6.6 g, 39.07 

mmol) in dichloromethane (150 mL). The reaction mixture was stirred in dark for 12 h, before a 

saturated aqueous solution of Na2S2O3 was added. After vigorously stirred for 10 min, the 

biphasic mixture was transferred into a separatory funnel. The aqueous layer was extracted with 

dichloromethane, and the combined organic layers was dried over MgSO4, and concentrated in 

vacuo. The crude diiodide product 2.80 (15.5 g) appeared as an yellow oil, as a 6:1 mixture of N-

Boc rotamers, and was directly subjected to the next reaction without purification: 1H NMR (400 

MHz) δ 6.99 (s, 1H), 4.65 (brs, 1H, major rotamer), 4.40 (brs, 1H, minor rotamer), 3.38-3.34 (m, 

2H), 2.76 (t, J = 6.5 Hz, 2H), 1.46 (s, 9H). 

 Copper-mediated 5-endo-trig cyclization of diiodide 2.80: The crude diiodide 2.80 (8.20 

g, 19.39 mmol; based on a hypothetical 100% yield of the diiodonation reaction) was dissolved 

in toluene (300 mL), followed by addition of K3PO4 (12.35 g, 58.17 mmol), 2,2'-bipyridyl (3.03 

g, 19.39 mmol), CuI (1.85 g, 9.70 mmol), and water (0.3 mL). The reaction mixture was refluxed 

for 48 h, before it was cooled to room temerature and filtered through a pad of celite. The solvent 

was removed by rotary evaporation, and the residue was loaded on a pad of silica gel (diameter = 

2.5 in, height = 3 in). The desired cyclic vinyl iodide 2.71 (3.50 g, 61% over two steps; with 

>90% purity) was separated from 2,2'-bipyridyl ligand with an eluent of 30% Et2O/hexanes 

(~600 mL).  
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tert-Butyl 4-(2-(N-benzyl-2,2,2-trifluoroacetamido)phenyl)-2,3-dihydro-1H-pyrrole-1-

carboxylate (2.72): Vinyl iodide 2.71 (1.20 g, 4.07 mmol) was coupled with arylstannane 1.74 

(2.77 g, 4.88 mmol) in the manner of sulfonamide analog 1.78. After aqueous workup and ether 

extraction, the combined organic layer was concentrated in vacuo. The residue was passed 

through a short pad of silica gel (hexanes→1:5 EtOAc/hexanes) to provide the title compound 

(1.74 g, 95%) as a colorless oil, in an unidentified ratio of rotamers: 1H NMR (300 MHz, CDCl3) 

δ 7.32-6.82 (m, 9H), 6.62-6.59 (m, 1H), 5.63-5.51 (m, 1H), 4.04-3.98 (m, 1H), 3.86-3.76 (m, 

2H), 3.11-3.00 (m, 1H), 2.95-2.82 (m, 1H), 1.53 (s, 9H). HRMS (EI) cald for C24H25N2O3F3, 

446.1817 [M]+, found: 446.1814. This product was contaminated with minor, inseparable 

impurities, and was directly subjected to the subsequent N-trifluoroacetyl deprotection reaction 

without further purification. 

 

NH2

NBoc
 

tert-Butyl 4-(2-aminophenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (2.78): 2-aminophenyl 

pinacolboronate (3.60 g, 16.44 mmol), barium hydroxide octahydrate (11.00 g, 34.86 mmol), and 

2-(dicyclohexylphosphino)biphenyl (815 mg, 2.32 mmol) were added to a solution of vinyl 

iodide 20 (3.43 g, 11.62 mmol) in dioxane (ACS-reagent grade; 60 mL). Palladium acetate (130 

mg, 0.58 mmol) was then added, and the reaction mixture was stirred at 80 °C for 3 h. The 

reaction mixture was partitioned in ethyl acetate and water, and the aqueous layer was extracted 
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with EtOAc. The combined organic layers was then washed with brine, dried over MgSO4, and 

concentrated in vacuo. The residue was purified by flash chromatography (silica gel, 25% 

EtOAc/hexane) to provide the title compound (2.5 g, 83%) as a red oil (with inseparable Pd 

impurities; 3:1 rotamer ratio): 1H NMR (400 MHz, CD3CN) δ major rotamer: 6.98 (td, J = 7.2 

Hz, 1.2 Hz, 1H); minor rotamer: 6.91 (brs, 1H); overlapping resonances: 7.03 (d, J = 7.6 Hz, 

1H), 6.73 (d, J = 8.0 Hz, 1H), 6.69 (t, J = 7.2 Hz, 1H), 4.18 (brs, 2H), 3.76 (m, 2H), 3.02-2.97 

(m, 2H), 1.48 (s, 9H). Above spectral data were identical to those reported.39c 

 

NH

NBoc

Bn

 

tert-Butyl 4-(2-(benzylamino)phenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (2.73): A 

mixture of aniline 2.78 (245 mg, 0.941 mmol), benzaldehyde (115 µL, 1.04 mmol), acetic acid 

(54 µL, 0.94 mmol), and sodium triacetoxyborohydride (800 mg, 3.76 mmol) in 1,2-

dichloroethane (ACS-reagent grade; 6 mL) was stirred at room temperature for 5 h. The reaction 

was quenched with an aqueous NaOH solution (1 M), and the aqueous layer was extracted with 

dichloromethane. The combined organic layer was washed with brine, dried over MgSO4, and 

concentrated in vacuo. The residue was purified by flash chromatography (silica gel, 15% 

EtOAc/hexane) to provide the title compound (241 mg, 73%) as a colorless oil, in a 1.5:1 ratio of 

rotamers: 1H NMR (300 MHz, CDCl3) δ major rotamer: 4.38 (brs, 1H), 1.44 (s, 9H); minor 

rotamer: 4.64 (brs, 1H), 1.46 (s, 9H); overlapping resonances: 7.41-7.29 (m, 5H), 7.16-6.95 (m, 

3H), 6.80-6.59 (2H), 4.34 (s, 2H), 3.83 (t, J = 9.0 Hz, 2H), 3.08-2.98 (m, 2H); 13C NMR (75 

MHz, CDCl3) δ 151.4, 145.4, 139.4, 139.2, 128.7, 127.7, 127.6, 127.4, 127.0, 121.2, 121.0, 

118.4, 117.7, 117.2, 111.0, 80.4, 48.9, 48.3, 44.8, 44.2, 33.1, 31.8, 28.4; FTIR (thin film, CHCl3) 
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3029, 2975, 2929, 1700, 1598, 1504, 1452, 1408, 1364, 1269, 1170, 1117, 745 cm-1; HRMS 

(TOF ES) cald for C22H27N2O2, m/z 351.2073 [M]+, found: 351.2084. In another experiment, the 

title product was obtained in 76% yield by reductive cleavage of trifluoroacetamide 2.72 in the 

manner of sulfonamide analog 1.79 (Chapter 1.4). 

 

 

tert-Butyl 4-(2-(N-benzyl-2-bromopent-4-enamido)phenyl)-2,3-dihydro-1H-pyrrole-1-

carboxylate (2.74): Oxalyl chloride (14 µL, 0.16 mmol) and a drop of DMF were successively 

added to a stirred solution of acid 2.67 (29 mg, 0.16 mmol) in CH2Cl2 (1 mL). The mixture was 

warmed to room temperature and stirred for 2 h. This mixture containing the crude acid chloride 

was transferred dropwise to a stirred solution of aniline 2.73 (20 mg, 0.057 mmol) and Et3N (16 

µL, 0.114 mmol) in CH2Cl2 (2 mL) at 0 °C. After 1 h, the reaction was quenched with a saturated 

aqueous NH4Cl solution, and the aqueous layer was extracted with CH2Cl2. The combined 

organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. The crude 

product was purified by flash chromatography (1:3 EtOAc/hexane) to provide the title compound 

(26 mg, 74%) as a colorless oil, in a mixture of multiple rotamers (see attached 1H and 13C NMR 

spectra). FTIR (thin film, CHCl3) 3064, 2978, 2931, 1701, 1667, 1406, 1256, 1166, 735; HRMS 

(EI) cald for C27H31N2O3Br, 510.1518 [M]+, found: 510.1508.    
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N-Benzyl-2-bromo-N-(2-(1-(phenylsulfonyl)-4,5-dihydro-1H-pyrrol-3-yl)phenyl)pent-4-

enamide (2.68): Acylation of enesulfonamide 1.79 (25 mg, 0.064 mmol) with acid 2.67 (29 mg, 

0.16 mmol) in the manner of 62 gave the title compound (26 mg, 74%) as a white film, in a 

mixture of diastereomers (see attached 1H NMR spectrum).   

 

 

(3aS,4S,5aR,11bR)-tert-Butyl 7-benzyl-4-methyl-6-oxo-3a,4,5,5a,6,7-hexahydro-1H-

pyrrolo[3',2':2,3]cyclopenta[1,2-c]quinoline-3(2H)-carboxylate (2.75): A mixture of 

dihydropyrrole 2.74 (50 mg, 0.098 mmol), triethylborane (1 M in hexane, 49 µL), and Bu3SnH 

(52 µL, 0.196 mmol) in benzene (10 mL) was stirred at room temperature for 1 h. The solvent 

was evaporated, and the residue was purified by flash chromatography (silica gel, 20% 

EtOAc/hexanes) to provide the title compound (22 mg, 52%) as a colorless oil, in a 1:1 mixture 

of rotamers: 1H NMR (300 MHz, CDCl3) δ 7.30-6.96 (m, 9H), 5.35 (d, J = 15.9 Hz, 1H), 5.34 (d, 

J = 15.9 Hz, 1H), 4.99 (d, J = 15.9 Hz, 1H), 4.58 (d, J = 9.3 Hz, 1H), 4.44 (d, J = 9.0 Hz, 1H), 

3.53-3.28 (m, 2H), 2.90-2.79 (m, 1H), 2.54-2.39 (m, 1H), 2.29 (dd, J = 13.2 Hz, 6.6 Hz, 1H), 

2.26 (dd, J = 13.2 Hz, 6.6 Hz, 1H), 2.13-1.99 (m, 1H), 1.80-1.67 (m, 1H), 1.60-1.45 (m, 1H), 

1.54 (s, 9H), 1.50 (s, 9H), 1.05 (d, J = 6.9 Hz, 3H); HRMS (EI) cald for C27H32N2O3, m/z 

432.2413 [M]+, found: 432.2422. This product was contaminated with minor, inseparable 
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impurities, and was submitted to the subsequent N-Boc deprotection reaction without further 

purification. 

 

 

(3aS,4S,5aR,11bR)-7-Benzyl-4-methyl-3-(phenylsulfonyl)-2,3,3a,4,5,5a-hexahydro-1H-

pyrrolo[3',2':2,3]cyclopenta[1,2-c]quinolin-6(7H)-one (2.76): Crude carbamate 2.75 (22 mg, 

0.051 mmol) was stirred in a mixed solvent of dichloromethane/TFA (6:1, 3 mL). The solvent 

was evaporated after 2 h, and the residue was redissolved in dichloromethane and washed with 

an aqueous NaOH solution (1 M). The organic layer was dried over MgSO4, and the volume was 

reduced to 2 mL. Triethylamine (21 µL, 0.153 mmol) and benzenesulfonyl chloride (20 µL, 

0.153 mmol) were added sequentially, and the reaction mixture was stirred for 3 h. The solvent 

was evaporated, and the crude product was partitioned between acetonitrile and hexanes. The 

acetonitrile layer was concentrated in vacuo, and the residue was purified by flash 

chromatography (silica gel, 30% EtOAc/hexanes) to provide the title compound (10 mg, 59%) as 

a colorless oil: 1H NMR (400 MHz, CDCl3) δ 8.01-7.99 (m, 2H), 7.75 (tt, J = 7.2 Hz, 1.2 Hz, 

1H), 7.67-7.63 (m, 2H), 7.30-7.26 (m, 2H), 7.23-7.18 (m, 3H), 7.02 (td, J = 7.6 Hz, 1.2 Hz, 1H), 

6.92 (d, J = 7.6 Hz, 1H), 6.42 (td, J = 7.6 Hz, 1.2 Hz, 1H), 5.58 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 

5.23 (d, J = 16.0 Hz, 1H), 4.99 (d, J = 16.0 Hz, 1H), 4.33 (d, J = 9.2 Hz, 1H), 3.55 (t, J = 8.4 Hz, 

1H), 3.07 (ddd, J = 15.2 Hz, 9.2 Hz, 6.0 Hz, 1H), 2.76 (q, J = 6.4 Hz, 1H), 2.49-2.40 (m, 1H), 

2.25 (ddd, J = 13.6 Hz, 7.2 Hz, 6.4 Hz, 1H), 2.10 (td, J = 12.4 Hz, 7.6 Hz, 1H), 1.76 (q, J = 12.4 

Hz, 1H), 1.40 (dd, J = 12.4 Hz, 6.4 Hz, 1H), 1.32 (d, J = 6.8 Hz, 3H); 13C NMR (100 HMz, 
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CDCl3) δ 170.6, 139.0, 137.8, 137.0, 134.4, 133.0, 129.5, 128.7, 128.0, 127.5, 127.3, 127.0, 

122.8, 122.7, 116.6, 66.5, 55.5, 47.7, 47.0, 46.0, 37.0, 31.8, 31.1, 17.1; FTIR (thin film, CHCl3) 

2957, 2926, 2870, 1684, 1453, 1385, 1348, 1164, 1096, 756, 727; HRMS (TOF ES) cald for 

C28H29N2O3S, m/z 473.1899 [M+H]+, found: 473.1885. 

 A sample for X-ray crystallography analysis was prepared by vapor diffusion 

crystallization technique. A dram glass vial (2 mL) was charged with a solution of sulfonamide 

65 (2 mg) in benzene (0.5 mL), and this vial was placed in a 150 mL beaker containing hexane 

(5 mL). After 48 h, a small crystal precipitated at the bottom of the vial. 

 

 

Diethyl 2-((benzyloxy)methyl)cyclopropane-1,1-dicarboxylate (2.81): The title compound 

was prepared according to Burgess’s procedures89 (83% over two steps), except that the product 

was purified by flash chromatography (silica gel, 15% EtOAc/hexanes): 1H NMR (400 MHz, 

CDCl3) δ 7.37-7.28 (m, 5H), 4.49 (s, 2H), 4.26-4.09 (m, 4H), 3.55 (dd, J = 10.4 Hz, 6.0 Hz, 1H), 

3.50 (dd, J = 10.4 Hz, 6.0 Hz, 1H), 2.30-2.22 (m, 1H), 1.55 (dd, J =  7.6 Hz, 4.8 Hz, 1H), 1.44 

(dd, J =  10.2 Hz, 4.4 Hz, 1H), 1.31-1.23 (m, 6H). The above spectral data were identical to those 

reported.89 

 

 

2-(((tert-Butyldimethylsilyl)oxy)methyl)cyclopropane-1,1-dicarbaldehyde (2.83):  

 Synthesis of silylether 2.82:89 A flask was sequentially charged with Pd(OH)2/C catalyst 
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(340 mg) and a solution of benzyl ether 2.81 (6.80 g, 22.20 mmol) in MeOH (80 mL), under a 

stream of Ar. The flask was then fitted with a H2 balloon, and the reaction mixture was then 

stirred at room temperature for 12 h. It was filtered through a short pad of celite, and the filtrate 

was concentrated in vacuo. The resulting crude alcohol was dissolved in DMF (50 mL). 

TBDPSCl (7.02 g, 25.53 mmol) and imidazole (3.62 g, 53.18 mmol) were added, and the 

reaction mixture was stirred at room temperature for 12 h. The reaction mixture was diluted with 

diethyl ether and sequentially washed with a 10% aqueous citric acid solution, a saturated 

NaHCO3 solution, and brine. The organic layer was dried over MgSO4 and concentrated in 

vacuo. The residue was quickly passed through a pad of silica gel (0~10% EtOAc/hexanes), and 

the eluent was concentrated in vacuo, providing 2.82 (7.26 g) as a colorless oil: 1H NMR (300 

MHz, CDCl3) δ 7.74-7.63 (m, 4H), 7.44-7.36 (m, 6H), 4.29-4.06 (m, 4H), 3.75 (s, 1H), 3.73 (s, 

1H), 2.22-2.12 (m, 1H), 1.51 (dd, J = 7.5 Hz, 4.5 Hz, 1H), 1.36 (dd, J = 9.3 Hz, 4.5 Hz, 1H), 

1.28 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H), 1.04 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 

170.2, 167.9, 135.6, 134.8, 133.5, 133.4, 129.7, 127.7, 61.8, 61.5, 61.4, 32.9, 29.4, 26.7, 26.6, 

19.2, 18.5, 14.1, 14.0. This product was directly used for the next step without further 

purification. 

 DIBAL-H Reduction of 2.82: Diester 2.82 (6.80 g, 14.96 mmol) was dissolved in THF 

(80 mL). A DIBAL-H solution (1 M in hexanes, 89.7 mL, 89.74 mmol) was slowly added via a 

syringe pump at −78 °C. After 1 h, the reaction mixture was stirred at 0 °C for 3 h, before it was 

diluted with diethyl ether and treated with a saturated aqueous potassium sodium tartrate 

solution. The aqueous layer was extracted with diethyl ether, and the combined organic layer was 

dried over MgSO4 and concentrated in vacuo. The residue was passed through a short pad of 

silica gel (EtOAc) to provide crude diol 2.83 (3.10 g) as a colorless oil: 1H NMR (400 MHz, 
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CDCl3) δ 7.75-7.67 (m, 4H), 7.47-7.40 (m, 6H), 4.16 (t, J = 12.0 Hz, 1H), 3.76-3.69 (m, 2H), 

3.57-3.52 (m, 2H), 3.39 (t, J = 11.6 Hz, 1H), 2.59 (m, 1H), 1.60 (m, 1H), 1.29-1.22 (m, 1H), 1.07 

(s, 9H), 0.65 (dd, J = 8.4 Hz, 5.2 Hz, 1H), 0.36 (t, J = 5.2 Hz, 1H). This product was directly 

used for the next step without further purification.  

 Oxidation of the 2.83: A solution of DMSO (3.22 mL, 45.34 mmol) in dichloromethane 

(10 mL) was slowly added to a solution of oxalyl chloride (2.60 mL, 30.23 mmol) in 

dichloromethane (50 mL) at −78 °C, followed by dropwise addition of a solution of the crude 

diol 2.83 (2.80 g, 7.56 mmol). After 15 min, triethylamine (10.5 mL, 75.56 mmol) was added 

dropwise, and the reaction mixture was stirred at 0 °C for 30 min. H2O was added to quench the 

reaction, and the aqueous layer was extracted with dichloromethane. The combined organic layer 

was dried over MgSO4 and concentrated in vacuo. The residue was purified by flash 

chromatography (silica gel, 10% EtOAc/hexanes) to afford the title compound 2.84 (1.30 g, 20% 

over four steps) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 9.99 (s, 1H), 9.98 (s, 1H), 7.65-

7.61 (m, 4H), 7.48-7.39 (m, 6H), 4.06 (dd, J = 12.0 Hz, 4.4 Hz, 1H), 3.67 (dd, J = 12.0 Hz, 8.4 

Hz, 1H), 2.38 (ddd, J = 13.2 Hz, 8.4 Hz, 4.8 Hz, 1H), 1.91 (dd, J = 4.4 Hz, 3.6 Hz, 1H), 1.84 (q, 

J = 4.4 Hz, 1H), 1.04 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 197.4, 196.7, 135.6, 135.5, 133.0, 

132.9, 130.0, 127.9, 60.4, 44.9, 40.3, 26.8, 23.0, 19.1; FTIR (thin film, CHCl3) 3071, 2932, 

2858, 1705, 1427, 1110, 823, 741, 702; HRMS (TOF ES) cald for C22H27O3Si, m/z 367.1729 

[M+H]+, found: 367.1740. 

 

O
OBn
OBn

OEt  

Ethyl 2,2-bis(benzyloxymethyl)cyclopropanecarboxylate (2.89): A solution of ethyl 
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diazoacetate (566 mg, 4.47 mmol) in dichloromethane (2 mL) was added via syringe pump to a 

mixture of 2.88 (1.02 g, 3.73 mmol) and rhodium (II) acetate dimmer (16 mg, 0.037 mmol) in 

refluxing dichloromethane (3 mL) over a period of 5 h. After the addition was complete, the 

reaction mixture was refluxed for 12 h. The solvent was evaporated, and the residue was purified 

by flash chromatography (silica gel, 15% EtOAc/hexanes) to provide the title compound (870 

mg, 66%) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.36-7.27 (m, 10H), 4.53 (d, J = 12.8 

Hz, 1H), 4.50 (d, J = 12.8 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 4.43 (d, J = 12.0 Hz, 1H), 4.16-

4.07 (m, 2H), 3.89 (d, J = 10.0 Hz, 1H), 3.75 (d, J = 9.6 Hz, 1H), 3.59 (d, J = 10.0 Hz, 1H), 3.30 

(d, J = 9.6 Hz, 1H), 1.78 (dd, J = 8.0 Hz, 6.0 Hz, 1H), 1.27 (t, J = 5.6 Hz, 1H), 1.24 (t, J = 7.2 

Hz, 1H), 1.13 (dd, J = 8.0 Hz, 4.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 172.0, 138.6, 138.3, 

128.4, 128.3, 127.7, 127.6, 127.5, 127.4, 73.0, 72.9, 72.7, 68.3, 60.6, 30.8, 22.2, 16.7, 14.3; FTIR 

(thin film, CHCl3) 3063, 3030, 2980, 2861, 1724, 1496, 1453, 1407, 1366, 1384, 1300, 1217, 

1179, 1097, 1027, 738 cm-1; HRMS (TOF ES) cald for C24H25O4, m/z 377.1753 [M]+, found: 

377.1759.  

 

O
O
O

OEt  

Ethyl 2,2-diformylcyclopropanecarboxylate (2.91): Pd(OH)2/C catalyst (200 mg) was added 

under a flush of argon to a solution of bis-benzyl ether 2.89 (5.13 g, 14.47 mmol) in EtOAc 

(ACS-reagent grade; 80 mL). The reaction mixture was stirred under 60 psi of H2 for 12 h. The 

catalyst was filtered off, and the filtrate was concentrated in vacuo.  

 The crude diol 2.90 was dissolved in dichloromethane (80 mL). Iodobenzene diacetate 

(14.03 g, 46.7 mmol) and TEMPO (226 mg, 1.45 mmol) were added, and the reaction mixture 
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was stirred at room temperature for 12 h. The reaction was first quenched with a saturated 

aqueous Na2S2O3 solution to remove excess of iodobenzene diacetate, and was then treated with 

NaHCO3 power to remove acetic acid. The aqueous layer was extracted with dichloromethane, 

and the combined organic layer was washed with brine, dried over MgSO4, and concentrated by 

rotary evaporation (water aspirator; the water bath temperature was kept below 20 °C). The 

crude product was purified by flash chromatography (silica gel, 20% EtOAc/hexanes) to provide 

the title compound (2.12 g, 86%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 10.30 (s, 1H), 

9.64 (s, 1H), 4.22 (q, J = 7.2 Hz, 2H), 2.78 (t, J = 8.1 Hz, 1H), 2.28 (dd, J = 7.5 Hz, 4.5 Hz, 1H), 

2.02 (dd, J = 8.4 Hz, 4.5 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 196.8, 

195.7, 168.4, 62.3, 44.2, 38.9, 23.0, 14.2; FTIR (thin film, CHCl3) 2985, 2873, 1725, 1711, 

1381, 1247, 1192, 1006 cm-1; HRMS (TOF ES) cald for C8H10O4Na, m/z 193.0477 [M+Na]+, 

found: 193.0502. 

 

O
OH  

2,2-Divinylcyclopropanecarboxylic acid (2.63): A NaHMDS solution (1 M in THF, 32.1 mL) 

was added dropwise to a stirred solution of methyl triphenylphosphonium bromide (13.2 g, 37.0 

mmol) in THF (70 mL) at −78 °C. The reaction mixture was stirred at this temperature for 1 h, 

then a solution of dialdehyde 2.91 (2.1 g, 12.3 mmol) in THF (15 mL) was added dropwise. The 

reaction mixture was warmed to 0 °C and stirred for 2 h. The reaction was quenched with a 

saturated aqueous NH4Cl solution, and the aqueous layer was extracted with diethyl ether. The 

combined organic layer was washed with brine, dried over MgSO4, and concentrated by rotary 

evaporation (water aspirator; the water bath temperature was kept below 20 °C). The residue was 
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quickly passed through a short pad of silica gel (5% EtOAc/hexanes) to remove the polar 

phosphine oxide byproduct. The collected eluent was then concentrated by rotary evaporation 

(water aspirator; the water bath temperature was kept below 20 °C).      

 The crude divinyl ester was dissolved in a 1:1:1 mixture of THF/H2O/MeOH (90 mL). 

Lithium hydroxide monohydrate (592 mg, 24.7 mmol) was added, and the reaction mixture was 

stirred at room temperature for 5 h. The mixture was diluted with H2O (50 mL) and acidified 

with 3 M HCl until pH = 3. The mixture was extracted with dichloromethane, and the combined 

organic layer was dried over MgSO4 and concentrated by rotary evaporation (water aspirator; the 

water bath temperature was kept below 23 °C). The crude product (light yellow oil) could be 

directly used for the subsequent amide coupling reactions. To get an analytically pure sample, 

flash chromatography purification (silica gel, 50% EtOAc/hexanes) was performed to provide 

the title compound (1.02 g, 60%) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 5.96 (dd, J = 

16.8 Hz, 10.4 Hz, 1H), 5.95 (dd, J = 16.8 Hz, 10.4 Hz, 1H), 5.22 (dd, J = 10.0 Hz, 1.2 Hz, 1H), 

5.21 (dd, J = 17.2 Hz, 1.2 Hz, 1H), 5.14 (dd, J = 10.8 Hz, 1.2 Hz, 1H), 5.13 (dd, J = 16.8 Hz, 1.2 

Hz, 1H), 2.00 (dd, J = 8.0 Hz, 6.4 Hz, 1H), 1.63 (dd, J = 6.4 Hz, 4.8 Hz, 1H), 1.44 (dd, J = 8.0 

Hz, 4.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 177.1, 138.9, 135.3, 117.4, 115.3, 35.8, 28.8, 

20.0; FTIR (thin film, CHCl3) 3089, 2703, 1700, 1636, 1433, 1276, 1238, 1217, 991, 914, 853 

cm-1; HRMS (TOF ES) cald for C8H10O2K, m/z 177.0318 [M+K]+, found: 177.0315. 

 

HN

O

NBoc
 

tert-Butyl 4-(2-(2,2-divinylcyclopropanecarboxamido)phenyl)-2,3-dihydro-1H-pyrrole-1-
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carboxylate (2.93): The Ghosez reagent (76 µL, 0.576 mmol) was added to a solution of acid 

2.63 (80 mg, 0.576 mmol) in dichloromethane (2 mL), and the mixture was stirred at room 

temperature for 2 h. The resulting crude acid chloride solution was added dropwise to a mixture 

containing aniline 2.78 (100 mg, 0.384 mmol), pyridine (94 µL, 1.15 mmol), and DMAP (5 mg, 

0.038 mmol) in dichloromethane (3 mL) at 0 °C. The reaction mixture was warmed to room 

temperature and stirred for 5 h. It was diluted with dichloromethane and then washed with a 

0.5M NaOH solution (to remove the excess of acid 2.63 that may co-elute with the product) and 

a saturated CuSO4 solution. The organic layer was dried over MgSO4 and concentrated in vacuo. 

The crude product was purified by flash chromatography (silica gel, 30% EtOAc/hexanes) to 

provide the title compound (113 mg, 77%) as a colorless oil, in a 1.6:1 mixture of N-Boc 

rotamers: 1H NMR (400 MHz, CDCl3) δ major rotamer: 7.92 (brs, 1H), 7.09 (t, J = 8.4 Hz, 1H), 

6.22 (d, J = 6.0 Hz, 1H), 6.11 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 5.63 (dd, J = 17.2 Hz, 10.4 Hz, 

1H), 3.74-3.70 (m, 1H), 1.83 (dd, J = 10.8 Hz, 4.8 Hz, 1H), 1.46 (s, 9H); minor rotamer: 8.14 

(brs, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.62 (d, J = 7.6 Hz, 1H), 5.96 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 

5.95 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 1.63 (dd, J = 10.8 Hz, 4.8 Hz, 1H), 1.48 (s, 9H); 

overlapping resonances: 7.24-7.17 (m, 2H), 5.31-5.02 (m, 4H), 4.04-3.70 (m, 2H), 2.90-2.76 (m, 

1H), 2.18-2.13 (m, 1H), 2.07-1.95 (m, 1H), 1.38-1.32 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 

167.4, 152.0, 151.4, 139.4, 135.8, 134.5, 128.4, 128.3, 127.6, 127.4, 124.7, 122.9, 117.5, 116.8, 

114.7, 80.9, 80.6, 45.3, 44.8, 34.6, 33.0, 32.5, 32.2, 31.9, 28.4, 18.5, 18.3; FTIR (thin film, 

CHCl3) 3265, 2977, 1700, 1576, 1522, 1451, 1409, 1255, 1170, 1127, 905, 754 cm-1; HRMS 

(TOF ES) cald for C23H28N2O3Na, m/z 403.1998 [M+Na]+ , found: 403.1988. 
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N

O

NBoc

Bn

 

tert-Butyl 4-(2-(N-benzyl-2,2-divinylcyclopropanecarboxamido)phenyl)-2,3-dihydro-1H-

pyrrole-1-carboxylate (2.92): Benzylaniline 2.73 (100 mg, 0.285 mmol) was acylated in the 

same manner as 2.93, and the crude product was purified by flash chromatography (silica gel, 

20% EtOAc/hexanes) to provide the title compound (112 mg, 83%) as a colorless oil, that was a 

mixture of multiple rotamers (see attached 1H NMR and 13C NMR spectra): FTIR (thin film, 

CHCl3) 3084, 3063, 2977, 2929, 1703, 1654, 1616, 1450, 1405, 1365, 1282, 1256, 1169, 1128, 

1001, 906, 753 cm-1; HRMS (TOF ES) cald for C30H34N2O3Na, m/z 493.2467 [M+Na]+ , found: 

493.2488. 

 

 

tert-Butyl 4-(2-((tert-butoxycarbonyl)amino)phenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate 

(2.102): A mixture of free aniline 2.78 (510 mg, 1.96 mmol), LiClO4 (42 mg, 0.39 mmol), and 

Boc2O (869 mg, 3.92 mmol) in dichloromethane (25 mL) was stirred at room temperature for 12 

h. The remaining solid in the reaction mixture was filtered off, and the solvent was evaporated. 

The residue was purified by flash chromatography (silica gel, 15% EtOAc/hexanes) to provide 

the title compound (664 mg, 94%) as a brown oil, with a small amount of inseparable impurities 

(see attached 1H NMR spectrum).  
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tert-Butyl 4-(2-(N-(tert-butoxycarbonyl)-2,2-divinylcyclopropanecarboxamido)phenyl)-2,3-

dihydro-1H-pyrrole-1-carboxylate (2.103): The Ghosez reagent (80 µL, 0.608 mmol) was 

added to a solution of acid 2.63 (84 mg, 0.608 mmol) in toluene (2 mL), and the mixture was 

stirred at room temperature for 2 h. A KHMDS solution (0.5 M in toluene, 0.97 mL) was slowly 

added to a solution of 2.102 (172 mg, 0.406 mmol) in THF (5 mL) at 0 °C. After 30 min, a fresh 

solution of acid chloride 2.98 (0.608 mmol, in 2 mL of toluene), prepared from acid 2.63 and 

Ghosez reagent, was slowly added. The reaction mixture was then stirred at room temperature 

for 12 h, before it was partitioned between H2O and diethyl ether. The aqueous layer was 

extracted with diethyl ether, and the combined organic layer was dried with MgSO4 and 

concentrated in vacuo. The residue was purified by flash chromatography (silica gel, 15% 

EtOAc/hexanes) to provide the title compound (152 mg, 70%) as a colorless oil, that was a 

mixture of multiple rotamers (see attached 1H NMR and 13C NMR spectra): FTIR (thin film, 

CHCl3) 2977, 2931, 1732, 1700, 1451, 1408, 1368, 1299, 1253, 1156, 1128, 896, 757; HRMS 

(TOF ES) cald for C28H36N2O5Na, m/z 503.2522 [M+Na]+, found: 503.2519. 

 

N

NBoc

O

H

HBn

 

(3aS*,5aR*,11bR*)-tert-Butyl 7-benzyl-6-oxo-4,4-divinyl-3a,4,5,5a,6,7-hexahydro-1H-

pyrrolo[3ʹ′ ,2ʹ′:2,3]cyclopenta[1,2-c]quinoline-3(2H)-carboxylate (2.96): A solution of AIBN (9 
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mg, 0.054 mmol) and Bu3SnH (57 µL, 0.217 mmol) in toluene (3 mL) was added via syringe 

pump to a solution of divinylcyclopropane 2.92 (51 mg, 0.108 mmol) in refluxing toluene (9 mL) 

over a period of 4 h. The reaction mixture was cooled to room temperature, and the solvent was 

evaporated. The residue was purified by flash chromatography (silica gel, 15% EtOAc/hexanes) 

to provide the title compound (28 mg, 55%) as a colorless oil, in a 1.5:1 mixture of rotamers: 1H 

NMR (500 MHz, CDCl3) δ major rotamer: 4.36 (s, 1H), 2.97 (dd, J = 12.0 Hz, 6.0 Hz, 1H), 1.54 

(s, 9H); minor rotamer: 4.52 (s, 1H), 3.03 (dd, J = 12.0 Hz, 6.0 Hz, 1H), 1.51 (s, 9H); 

overlapping resonance: 7.34-7.16 (m, 6H), 7.02-6.95 (m, 3H), 6.15-5.90 (m, 2H), 5.39-5.34 (m, 

1H), 5.24-4.99 (m, 5H), 3.52-3.30 (m, 2H), 2.45-2.36 (m, 1H), 2.32-2.27 (m, 1H), 2.21-2.15 (m, 

1H), 1.61 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 171.1, 170.8, 154.4, 154.1, 144.4, 143.6, 

140.8, 140.6, 139.1, 137.1, 135.1, 134.9, 128.8, 127.8, 127.7, 127.3, 126.8, 123.3, 123.0, 122.7, 

116.7, 114.1, 113.4, 112.1, 112.0, 80.5, 79.8, 71.8, 71.5, 54.6, 54.4, 54.0, 53.4, 46.2, 45.8, 45.7, 

45.4, 45.2, 31.5, 31.3, 30.6, 30.5, 28.6, 28.5; FTIR (thin film, CHCl3) 2974, 2924, 1690, 1490, 

1455, 1392, 1159, 1110, 914, 754 cm-1; HRMS (TOF ES) cald for C30H34N2O3Na, m/z 493.2467 

[M+Na]+ , found: 493.2494. 

 

HN

NBoc

O

H

H

 

(3aS*,5aR*,11bR*)-tert-Butyl 6-oxo-4,4-divinyl-3a,4,5,5a,6,7-hexahydro-1H-

pyrrolo[3ʹ′ ,2ʹ′:2,3]cyclopenta[1,2-c]quinoline-3(2H)-carboxylate (2.97): Annulation of 2.93 

(56 mg, 0.147 mmol) in the manner of 2.96, followed by flash chromatography purification 

(silica gel, 30% EtOAc/CH2Cl2), provided the title compound (21 mg, 38%) as a colorless oil, in 



 155 

a 1.5:1 mixture of rotamers: 1H NMR (600 MHz, CDCl3) δ major rotamer: 6.97 (d, J = 7.2 Hz, 

1H), 6.01 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.91 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 4.35 (s, 1H), 2.87 

(dd, J = 12.0 Hz, 6.8 Hz, 1H), 1.54 (s, 9H); minor rotamer: 6.11 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 

5.97 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 5.20 (d, J = 17.6 Hz, 1H), 4.50 (s, 1H), 2.93 (dd, J = 12.0 

Hz, 6.8 Hz, 1H), 1.51 (s, 9H); overlapping resonances: 7.25-7.22 (m, 1H), 7.07-7.03 (m, 2H), 

6.88 (d, J = 7.6 Hz, 1H), 5.14-5.06 (m, 4H), 3.52-3.28 (m, 2H), 2.38-2.12 (m, 3H), 1.59 (dd, J = 

12.4 Hz, 6.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 171.8, 171.6, 154.5, 154.1, 144.2, 143.5, 

140.7, 140.6, 136.4, 133.1, 132.9, 128.0, 127.8, 123.5, 123.3, 123.1, 116.3, 116.2, 114.2, 113.5, 

112.1, 112.0, 80.5, 79.8, 71.4, 71.0, 55.1, 54.6, 54.1, 54.0, 45.5, 45.4, 45.3, 45.1, 31.6, 30.6, 30.3, 

29.6, 28.6, 28.5; FTIR (thin film, CHCl3) 3241, 3083, 2960, 2927, 1690, 1610, 1589, 1477, 

1393, 1301, 1250, 1171, 1111, 915, 756 cm-1; HRMS (TOF ES) cald for C23H29N2O3, m/z 

381.2178 [M+H]+, found: 381.2181. 

 

 

(3aR,5aR,11bR)-Di-tert-butyl 6-oxo-4,4-divinyl-4,5,5a,6-tetrahydro-1H-

pyrrolo[3',2':2,3]cyclopenta[1,2-c]quinoline-3,7(2H,3aH)-dicarboxylate (2.104): Bis-

carbamate 2.103 (104 mg, 0.216 mmol) was annulated in the manner of 2.96, and the crude 

product was partitioned between acetonitrile and hexanes to remove most of the tin residue. The 

acetonitrile layer was concentrated, and the crude product was purified by flash chromatography 

(silica gel, 15% EtOAc/hexanes) to provide the title compound (55 mg, 53%) as a colorless oil, 

in a 1.5:1 mixture of rotamers: 1H NMR (400 MHz, CDCl3) δ major rotamer: 6.00 (dd, J = 17.6 
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Hz, 10.8 Hz, 1H), 5.91 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 4.32 (s, 1H), 2.87 (dd, J = 12.4 Hz, 8.0 

Hz, 1H), 2.33 (t, J = 13.2 Hz, 1H), 1.54 (s, 9H); minor rotamer: 6.09 (dd, J = 17.6 Hz, 10.8 Hz, 

1H), 5.95 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 4.47 (s, 1H), 2.92 (dd, J = 12.4 Hz, 8.0 Hz, 1H), 2.37 

(t, J = 13.2 Hz, 1H), 1.51 (s, 9H); overlapping signals: 7.29-7.25 (m, 1H), 7.12 (t, J = 7.6 Hz, 

1H), 7.06-6.97 (m, 2H), 5.17-5.04 (m, 4H), 3.55-3.34 (m, 2H), 2.23-2.13 (m, 2H), 1.70-1.65 (m, 

1H), 1.62 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 169.8, 169.5, 154.5, 154.0, 152.0, 151.9, 

144.2, 143.4, 140.6, 140.5, 136.7, 135.0, 134.8, 127.7, 127.6, 124.7, 123.1, 122.8, 119.1, 119.0, 

114.2, 113.5, 112.0, 85.2, 85.1, 80.5, 79.9, 77.6, 71.8, 71.5, 54.9, 54.5, 54.0, 53.9, 46.6, 46.4, 

45.4, 45.3, 31.6, 30.6, 28.6, 28.5, 28.0, 27.8, 23.5, 22.7; FTIR (thin film, CHCl3) 2976, 2928, 

1698, 1454, 1392, 1368, 1249, 1150; HRMS (TOF ES) cald for C28H36N2O5Na, m/z 503.2522 

[M+Na]+, found: 503.2540. 

  

N

N

O

H

HBn

 

(3aS*,5aR*,11bR*)-3-Allyl-7-benzyl-4,4-divinyl-2,3,3a,4,5,5a-hexahydro-1H-

pyrrolo[3ʹ′ ,2ʹ′:2,3]cyclopenta[1,2-c]quinoline-6(7H)-one (2.99): Carbamate 2.96 (33 mg, 0.07 

mmol) was dissolved in 15:1 CH2Cl2/TFA (3 mL), and the reaction mixture was stirred at room 

temperature for 3 h. The solvent was evaporated and the residue was re-dissolved in 

dichloromethane. This solution was washed with a 1 M NaOH solution, dried over MgSO4, and 

concentrated in vacuo.  

 The crude amine product was dissolved in acetonitrile (1 mL), followed by addition of 

K2CO3 (10 mg, 0.140 mmol) and allyl bromide (8 µL, 0.091 mmol). The reaction mixture was 
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stirred at room temperature for 12 h. The reaction was quenched with water, and the mixture was 

extracted with dichloromethane. The combined organic layer was dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, 10% 

EtOAc/hexanes) to provide the title compound (24 mg, 83%) a colorless oil: 1H NMR (400 

MHz, CDCl3) δ 7.33-7.24 (m, 5H), 7.15 (td, J = 8.0 Hz, 1.6 Hz, 1H), 7.10 (dd, J = 8.0 Hz, 1.6 

Hz, 1H), 7.02-6.99 (m, 2H), 6.27 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.97 (dddd, J = 17.6 Hz, 10.8 

Hz, 6.8 Hz, 5.2 Hz, 1H), 5.78 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.39 (d, J = 16.0 Hz, 1H), 5.24 (dd, 

J = 17.2 Hz, 1.2 Hz, 1H), 5.15 (d, J = 10.8 Hz, 1H), 5.12 (d, J = 10.8 Hz, 1H), 5.11 (dd, , J = 

10.8 Hz, 1.6 Hz, 1H), 5.04 (dd, J = 17.6 Hz, 1.6 Hz, 1H), 5.03 (d, J = 17.6 Hz, 1H), 4.95 (d, J = 

16.0 Hz, 1H), 3.52 (m, 1H), 3.51 (s, 1H), 3.20 (dd, J = 13.2 Hz, 8.0 Hz, 1H), 2.97 (dd, J = 8.8 

Hz, 6.4 Hz, 1H), 2.91 (dd, J = 12.8 Hz, 6.4 Hz, 1H), 2.35 (ddd, J = 13.6 Hz, 8.8 Hz, 4.8 Hz, 1H), 

2.23 (t, J = 12.8 Hz, 1H), 2.11 (dd, J = 12.0 Hz, 6.4 Hz, 1H), 2.05 (dd, J = 12.8 Hz, 4.8 Hz, 1H), 

1.35 (dd, J = 12.0 Hz, 4.8 Hz, 1H); 13C NMR (100 HMz, CDCl3) δ 171.8, 143.8, 142.8, 139.6, 

137.5, 137.4, 135.9, 128.7, 127.2, 127.1, 126.9, 123.6, 122.5, 117.0, 116.7, 114.2, 113.2, 74.8, 

58.4, 55.3, 54.5, 50.9, 47.5, 46.3, 34.0, 32.7; FTIR (thin film, CHCl3) 3077, 2970, 2795, 1687, 

1601, 1454, 1387, 1210, 916, 753, 730 cm-1; HRMS (TOF ES) cald for C28H31N2O, m/z 

411.2436 [M+H]+, found: 411.2407. 

 

HN

N

O

H

H

 

(3aS*,5aR*,11bR*)-3-Allyl-4,4-divinyl-2,3,3a,4,5,5a-hexahydro-1H-

pyrrolo[3ʹ′ ,2ʹ′:2,3]cyclopenta[1,2-c]quinoline-6(7H)-one (2.101): N-Boc deprotection and 
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allylation of carbamate 2.97 (13 mg, 0.034 mmol) in the manner of 2.99 provided the title 

compound (8 mg, 73%) a colorless oil after flash chromatography purification (silica gel, 15% 

EtOAc/hexanes). Alternatively, the title compound could be obtained in similar yields via N-Boc 

deprotection and allylation of bis-carbamate 2.104 in the manner of 2.99: 1H NMR (500 MHz, 

CDCl3) δ 7.61 (s, 1H), 7.20 (td, J = 7.5 Hz, 1.5 Hz, 1H), 7.12 (d, J = 6.5 Hz, 1H), 7.03 (td, J = 

7.5 Hz, 1.0 Hz, 1H), 6.85 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 6.26 (dd, J = 17.5 Hz, 10.5 Hz, 1H), 5.97 

(dddd, J = 17.5 Hz, 10.5 Hz, 7.0 Hz, 6.0 Hz, 1H), 5.77 (dd, J = 17.5 Hz, 10.5 Hz, 1H), 5.25 (dd, 

J = 17.5 Hz, 1.5 Hz, 1H), 5.15 (d, J = 10.5 Hz, 1H), 5.11 (d, J = 11.0 Hz, 1H), 5.10 (dd, J = 10.5 

Hz, 1.5 Hz, 1H), 5.04 (dd, J = 17.5 Hz, 1.5 Hz, 1H), 5.02 (d, J = 17.5 Hz, 1H), 3.52 (dd, J = 13.5 

Hz, 5.5 Hz, 1H), 3.49 (s, 1H), 3.21 (dd, J = 13.5 Hz, 7.5 Hz, 1H), 2.98 (dd, J = 8.5 Hz, 6.0 Hz, 

1H), 2.82 (dd, J = 13.0 Hz, 5.5 Hz, 1H), 2.38 (ddd, J = 14.0 Hz, 9.0 Hz, 5.0 Hz, 1H), 2.17 (t, J = 

13.0 Hz), 2.09 (td, J = 12.0 Hz, 6.5 Hz, 1H), 1.45 (dd, J = 12.0 Hz, 5.0 Hz, 1H); 13C NMR (100 

HMz, CDCl3) δ 172.4, 143.7, 142.7, 136.8, 135.9, 135.6, 127.3, 124.0, 122.6, 117.0, 116.3, 

114.2, 113.3, 74.4, 58.4, 55.9, 54.6, 50.7, 47.2, 34.2, 31.8; FTIR (thin film, CHCl3) 3223, 3079, 

2971, 2917, 2795, 1687, 1473, 1395, 1295, 1246, 916, 752 cm-1; HRMS (TOF ES) cald for 

C21H25N2O, m/z 321.1967 [M+H]+, found: 321.1964. 

 

N

N

O H

H

Bn

 

(6bR*,6b1S*,12aS*,13aS*)-2-Benzyl-12a-vinyl-2,6b1,7,8,10,12a,13,13a-octahydro-1H-

indolizino[1ʹ′ ,8ʹ′:2,3,4]cyclopenta[1,2-c]quinolin-1-one (2.100): Hoveyda-Grubbs II catalyst (2 

mg, 0.004 mmol) was added to a solution of triene 2.99 (16 mg, 0.039 mmol) in toluene (5 mL), 
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and the reaction mixture was heated at 60 °C for 5 h. The solvent was evaporated, and the 

residue was purified by flash chromatography (silica gel, 50% EtOAc/CH2Cl2) to afford the title 

compound as a yellow oil (14 mg, 94%): 1H NMR (400 MHz, CDCl3) δ 7.35 (dd, J = 7.6 Hz, 1.2 

Hz, 1H), 7.33-7.29 (m, 2H), 7.25-7.23 (m, 3H), 7.11 (td, J = 7.6 Hz, 1.6 Hz, 1H), 7.02 (td, J = 

7.6 Hz, 1.2 Hz, 1H), 6.94 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 5.84 (dd, J = 10.0 Hz, 2.0 Hz, 1H), 5.75 

(dd, J = 17.2 Hz, 10.4 Hz, 1H), 5.72 (ddd, J = 10.4 Hz, 5.2 Hz, 1.6 Hz, 1H), 5.36 (d, J = 16.0 Hz, 

1H), 5.03 (d, J = 17.2 Hz, 1H), 5.00 (d, J = 10.4 Hz, 1H), 4.98 (d, J = 16.0 Hz, 1H),  3.96 (s, 

1H), 3.64 (dt, J = 17.6 Hz, 2.0 Hz, 1H), 3.28 (dd, J = 17.6 Hz, 5.6 Hz, 1H), 3.11-3.02 (m, 2H), 

2.94 (t, J = 8.8 Hz, 1H), 2.26 (dd, J = 12.4 Hz, 5.6 Hz, 1H), 2.15 (ddd, J = 13.2 Hz, 8.0 Hz, 1.2 

Hz, 1H), 1.82 (dd, J = 17.2 Hz, 13.2 Hz, 1H), 1.81 (t, J = 12.8 Hz, 1H); 13C NMR (100 HMz, 

CDCl3) δ 171.8, 144.8, 139.2, 138.1, 137.3, 131.3, 128.7, 127.1, 127.0, 126.7, 123.5, 122.5, 

121.1, 116.6, 112.4, 72.2, 54.9, 52.1, 48.4, 46.2, 46.0, 45.0, 35.5, 35.0; FTIR (thin film, CHCl3) 

3024, 2925, 2842, 1684, 1601, 1455, 1389, 1212, 754, 730 cm-1; HRMS (TOF ES) cald for 

C26H27N2O, m/z 383.2123 [M+H]+, found: 383.2146. 

 

HN

N

O H

H

 

(6bR*,6b1S*,12aS*,13aS*)-12a-Vinyl-2,6b1,7,8,10,12a,13,13a-octahydro-1H-

indolizino[1ʹ′ ,8ʹ′:2,3,4]cyclopenta[1,2-c]quinolin-1-one, (±)-epimeloscine (2.15b): Ring-

closing metathesis of triene 2.101 (16 mg, 0.05 mmol) in the manner of 2.100, followed by flash 

chromatography purification (silica gel, 5% MeOH/CH2Cl2), afforded the title compound as a 

yellow oil. Further purification by HPLC (C18 column, 70:30 CH3CN/H2O) provided (±)-
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epimeloscine (13 mg, 89%) as an off-white solid: mp 172-175 °C; 1H NMR (700 MHz, CDCl3) δ 

7.38 (brs, 1H), 7.36 (d, J = 7.0 Hz, 1H), 7.17 (td, J = 7.0 Hz, 1.4 Hz, 1H), 7.05 (t, J = 7.0 Hz, 

1H), 6.81 (d, J = 7.7 Hz, 1H), 5.82 (dd, J = 10.5 Hz, 2.8 Hz, 1H), 5.73 (dd, J = 17.5 Hz, 10.5 Hz, 

1H), 5.72 (ddd, J = 10.5 Hz, 5.6 Hz, 1.4 Hz, 1H), 5.03 (d, J = 16.8 Hz, 1H), 5.00 (d, J = 10.5 Hz, 

1H), 3.94 (s, 1H), 3.64 (dt, J = 17.5 Hz, 2.1 Hz, 1H), 3.28 (dd, J = 17.5 Hz, 4.9 Hz, 1H), 3.04 

(dd, J = 17.6 Hz, 9.1 Hz, 1H), 2.99 (dd, J = 13.3 Hz, 5.6 Hz, 1H), 2.94 (t, J = 9.1 Hz, 1H), 2.21 

(dd, J = 13.6 Hz, 6.3 Hz, 1H), 2.18 (dd, J = 13.6 Hz, 6.3 Hz, 1H), 1.84 (ddd, J = 14.0 Hz, 10.5 

Hz, 9.1 Hz, 1H), 1.74 (t, J = 13.3 Hz, 1H); 13C NMR (150 HMz, CDCl3) δ 172.6, 144.5, 136.5, 

136.0, 131.1, 127.0, 123.6, 122.7, 121.1, 116.1, 112.4, 71.6, 55.4, 51.9, 48.0, 45.9, 45.0, 35.6, 

34.0; FTIR (thin film, CHCl3) 3212, 3079, 2923, 2843, 1686, 1609, 1588, 1475, 1396, 1300, 

1253, 1152, 1108, 916, 755, 733 cm-1; HRMS (TOF ES) cald for C19H20N2O, m/z 293.1654 

[M+H]+, found: 293.1658. 

 

HN

N

O H
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(6bR*,6b1S*,12aS*,13aR*)-12a-Vinyl-2,6b1,7,8,10,12a,13,13a-octahydro-1H-

indolizino[1ʹ′ ,8ʹ′:2,3,4]cyclopenta[1,2-c]quinolin-1-one, (±)-meloscine (2.15a): Potassium tert-

butoxide (5 mg, 0.041 mmol) was added to a solution of (±)-epimeloscine 2.15b (6 mg, 0.021 

mmol) in tert-butanol (2 mL), and the reaction mixture was heated at 80 °C for 12 h. The solvent 

was evaporated and the residue was dissolved in a minimum amount of methanol. Flash 

chromatography purification (silica gel, 7% MeOH/CH2Cl2) provided the title compound (5 mg, 

83%) as an off-white solid: mp 206-210 °C; 1H NMR (700 MHz, CDCl3) δ 7.89 (brs, 1H), 7.40 
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(d, J = 7.7 Hz, 1H), 7.16 (t, J = 7.0 Hz, 1H), 7.06 (t, J = 7.7 Hz, 1H), 6.69 (d, J = 7.7 Hz, 1H), 

6.02 (m, 1H), 5.73 (d, J = 9.1 Hz, 1H), 5.55 (dd, J = 17.5 Hz, 10.5 Hz, 1H), 4.92 (d, J = 16.8 Hz, 

1H), 4.80 (d, J = 10.5 Hz, 1H), 3.52 (s, 1H), 3.31 (dd, J = 16.1 Hz, 5.6 Hz, 1H), 3.20 (dd, J = 

15.4 Hz, 7.7 Hz, 1H), 3.15 (d, J = 16.1 Hz, 1H), 2.97 (t, J = 9.1 Hz, 1H), 2.89 (dd, J = 11.9 Hz, 

7.7 Hz, 1H), 2.32 (dd, J = 13.3 Hz, 7.7 Hz, 1H), 2.18 (dd, J = 13.6 Hz, 9.8 Hz, 1H), 2.12 (dt, J = 

11.2 Hz, 5.6 Hz, 1H), 1.97 (dt, J = 13.3 Hz, 7.0 Hz, 1H); 13C NMR (100 HMz, CDCl3) δ 171.6, 

143.1, 135.0, 132.6, 127.9, 127.7, 127.0, 124.0, 115.3, 112.7, 82.3, 56.9, 53.0, 50.8, 48.0, 46.7, 

43.4, 42.1; FTIR (thin film, CHCl3) 3200, 3058, 2920, 1672, 1593, 1492, 1386, 1244, 754 cm-1; 

HRMS (TOF ES) cald for C19H20N2O, m/z 293.1654 [M+H]+, found: 293.1657. 

 

 

(3aS,5aR,11bR)-3-Acryloyl-7-benzyl-4,4-divinyl-2,3,3a,4,5,5a-hexahydro-1H-

pyrrolo[3',2':2,3]cyclopenta[1,2-c]quinolin-6(7H)-one (2.113): Carbamate 2.96 (27 mg, 0.057 

mmol) was dissolved a mixed dichloromethane/TFA (10:1, 2 mL). The reaction mixture was 

stirred at room temperature for 4 h, before the sovent was evaporated. The residue was 

redissolved in dichloromethane and washed with an aqueous NaOH solution (1 M). The solution 

was dried over MgSO4 and the volumn was reduced to 2 mL. Pyridine (19 µL, 0.23 mmol) and 

acryloyl chloride (19 µL, 0.114 mmol) were added at 0 °C. The reaction mixture was then stirred 

at room temperature for 2 h. It was diluted with dichloromethane, washed with an aqueous 

CuSO4 solution, dried over MgSO4, and concentrated in vacuo. The residue was purified by flash 

chromatography (silica gel, 30% EtOAc/dichloromethane) to provide the title compound (23 mg, 
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94%) as a colorless oil, in a 2:1 mixture of amide rotamers: 1H NMR (400 MHz, CDCl3) δ major 

rotamer: 6.21 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.89 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 4.86 (s, 1H), 

3.09 (dd, J = 12.0 Hz, 6.4 Hz, 1H), 2.48 (t, J = 13.2 Hz, 1H); minor rotamer: 6.08 (dd, J = 17.6 

Hz, 10.8 Hz, 1H), 5.85 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 4.55 (s, 1H), 3.07 (dd, J = 12.0 Hz, 6.4 

Hz, 1H), 2.59 (t, J = 13.2 Hz, 1H); overlapping resonance: 7.34-7.16 (m, 6H), 7.05-6.92 (m, 3H), 

6.52-6.49 (m, 2H), 5.79-5.75 (m, 1H), 5.39-5.00 (m, 6H), 3.71-3.51 (m, 2H), 2.36-2.18 (m, 2H), 

1.65-1.60 (m, 1H); 13C NMR (100 HMz, CDCl3) δ 170.9, 170.4, 164.8, 164.6, 144.2, 143.4, 

140.5, 139.4, 139.1, 137.9, 137.0, 136.9, 134.5, 134.4, 129.1, 128.8, 128.7, 128.2, 128.1, 127.9, 

127.8, 127.4, 127.3, 126.9, 126.8, 125.3, 123.5, 123.4, 122.9, 122.5, 116.9, 116.8, 115.8, 113.5, 

113.2, 112.2, 72.0, 71.5, 55.3, 54.6, 53.9, 52.8, 46.3, 46.2, 45.8, 45.7, 45.6, 45.5, 33.2, 31.6, 30.2, 

21.5; HRMS (TOF ES) cald for C28H29N2O2, m/z 425.2229 [M+H]+, found: 425.2213. 

 

 

(6bR,6b1S,12aS,13aR)-2-Benzyl-12a-vinyl-6b1,7,8,12a,13,13a-hexahydro-1H-

indolizino[1',8':2,3,4]cyclopenta[1,2-c]quinoline-1,10(2H)-dione (2.105a): Acrylamide 2.113 

(12 mg, 0.028 mmol) was dissolved in toluene (5 mL), and Hoveyda-Grubbs II catalyst (2 mg, 

0.0028 mmol) was added. The reaction mixture was stirred at 80 °C for 8 h, and another portion 

of Hoveyda-Grubbs II catalyst (2 mg, 0.0028 mmol) was added. After 4 h, the solvent was 

evaporated, and the residue was purified by flash chromatography (silica gel, 5% 

MeOH/dichloromethane, with 0.5% Et3N) to provide the title compound (9 mg, 80%) as a light 

brown oil: 1H NMR (400 MHz, CDCl3) δ 7.34-7.31 (m, 2H), 7.26-7.19 (m, 5H), 7.09 (d, J = 7.5 
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Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.30 (d, J = 10.0 Hz, 1H), 5.94 (d, J = 10.0 Hz, 1H), 5.80 (dd, J 

= 17.5 Hz, 10.5 Hz, 1H), 5.33 (d, J = 16.0 Hz, 1H), 5.25 (d, J = 11.0 Hz, 1H), 5.14 (d, J = 17.5 

Hz, 1H), 5.00 (d, J = 17.0 Hz, 1H), 4.60 (s, 1H), 4.31 (dd, J = 12.0 Hz, 7.0 Hz, 1H), 3.07 (dd, J = 

13.0 Hz, 5.0 Hz, 1H), 2.96 (td, J = 12.5 Hz, 5.0 Hz, 1H), 2.24 (dd, J = 12.5 Hz, 5.0 Hz, 1H), 2.07 

(t, J = 12.5 Hz, 1H), 1.89 (td, J = 12.5 Hz, 7.0 Hz, 1H), 1.50 (dd, J = 12.0 Hz, 5.0 Hz, 1H); 13C 

NMR (100 HMz, CDCl3) δ 170.0, 160.7, 142.7, 141.3, 139.7, 137.0, 136.0, 128.8, 127.7, 127.4, 

127.0, 123.1, 122.1, 121.8, 117.4, 117.3, 66.3, 55.8, 48.3, 48.2, 46.3, 43.6, 36.2, 34.1; FTIR (thin 

film, CHCl3) 2928, 1686, 1663, 1603, 1453, 1391, 1255, 753, 733; HRMS (TOF ES) cald for 

C26H25N2O2, m/z 397.1916 [M+H]+, found: 397.1909. 

 

 

(6bR,6b1S,12aS,13aS)-2-Benzyl-12a-vinyl-6b1,7,8,12a,13,13a-hexahydro-1H-

indolizino[1',8':2,3,4]cyclopenta[1,2-c]quinoline-1,10(2H)-dione (2.105b): Epimerization of 

N-Bn-10-oxoepimeloscine 2.105a (2.5 mg, 0.0063 mmol) by potassium tert-butoxide (1.4 mg, 

0.013 mmol) in the manner of meloscine 2.15b, followed by flash chromatography purification 

(silica gel, with 0.5% Et3N, 7% MeOH/dichloromethane), provided the title compound (1.8 mg, 

72%) as a thin film: 1H NMR (400 MHz, CDCl3) δ 7.35-7.30 (m, 4H), 7.22-7.16 (m, 3H), 7.08 

(td, J = 7.6 Hz, 1.2 Hz, 1H), 6.94 (dd, J = 8.0 Hz, 0.8 Hz, 1H), 6.35 (d, J = 9.6 Hz, 1H), 5.96 (d, 

J = 9.6 Hz, 1H), 5.49 (d, J = 17.6 Hz, 1H), 5.46 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 4.94 (d, J = 17.6 

Hz, 2H), 4.91 (d, J = 10.6 Hz, 1H), 4.48 (s, 1H), 4.06 (dt, J = 12.8 Hz, 8.4 Hz, 1H), 3.68 (ddd, J 

= 13.6 Hz, 10.4 Hz, 3.6 Hz, 1H), 3.22 (t, J = 10.0 Hz, 1H), 2.55 (dd, J = 13.6 Hz, 9.6 Hz, 1H), 
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2.39 (ddd, J = 13.2 Hz, 8.8 Hz, 4.0 Hz, 1H), 2.27 (dd, J = 13.6 Hz, 10.8 Hz, 1H), 2.07 (ddd, J = 

13.6 Hz, 10.4 Hz, 8.0 Hz, 1H); 13C NMR (150 HMz, CDCl3) δ 169.3, 162.0, 143.6, 143.2, 138.2, 

136.7, 128.9, 128.7, 127.3, 127.0, 126.3, 124.8, 123.8, 122.4, 116.2, 115.2, 57.3, 49.3, 47.5, 46.1, 

45.4, 43.7, 36.3, 29.7; FTIR (thin film, CHCl3) 2924, 1666, 1601, 1497, 1456, 1384, 1322, 923, 

756, 730; HRMS (TOF ES) cald for C26H25N2O2, m/z 397.1916 [M+H]+, found: 397.1935.   

 

 

(3aS,5aR,11bR)-7-Benzyl-4,4-divinyl-3-(vinylsulfonyl)-2,3,3a,4,5,5a-hexahydro-1H-

pyrrolo[3',2':2,3]cyclopenta[1,2-c]quinolin-6(7H)-one (2.114): Carbamate 2.96 (31 mg, 0.065 

mmol) was dissolved a mixed dichloromethane/TFA (10:1, 2 mL). The reaction mixture was 

stirred at room temperature for 4 h, before the sovent was evaporated. The residue was 

redissolved in dichloromethane and washed with an aqueous NaOH solution (1 M). The solution 

was dried over MgSO4, and the volumn was reduced to 2 mL. Collidine (43 µL, 0.324 mmol) 

and 2-chloroethane- sulfonyl chloride (14 µL, 0.129 mmol) were added at 0 °C. The reaction 

mixture was then stirred at room temperature for 12 h. It was diluted with dichloromethane, 

washed with an aqueous NH4Cl solution, dried over MgSO4, and concentrated in vacuo. The 

residue was purified by flash chromatography (silica gel, 50% EtOAc/dichloromethane) to 

provide the title compound (8 mg, 27%) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.33-

7.17 (m, 7H), 7.07-7.02 (m, 2H), 6.64 (dd, J = 16.8 Hz, 10.0 Hz, 1H), 6.35 (d, J = 16.8 Hz, 1H), 

6.14 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 6.05 (d, J = 10.0 Hz, 1H), 5.96 (dd, J = 17.6 Hz, 10.8 Hz, 

1H), 5.35 (d, J = 16.0 Hz, 1H), 5.21-5.11 (m, 4H), 4.99 (s, J = 16.0 Hz, 1H), 4.63 (s, 1H), 3.33-
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3.29 (m, 2H), 3.00 (dd, J = 12.4 Hz, 6.4 Hz, 1H), 2.39-2.20 (m, 3H), 1.63-1.56 (m, 1H); 13C 

NMR (100 HMz, CDCl3) δ 170.7, 143.2, 141.4, 139.0, 136.9, 135.2, 134.6, 128.8, 128.0, 127.8, 

127.4, 126.9, 123.4, 123.0, 116.9, 113.8, 113.2, 72.5, 54.7, 54.5, 46.6, 46.3, 46.0, 32.3, 31.0; 

FTIR (thin film, CHCl3) 3061, 2925, 1684, 1603, 1492, 1455, 1385, 1346, 1213, 1149, 1029, 

980, 920, 735; HRMS (TOF ES) cald for C27H29N2O3S, m/z 461.1899 [M+H]+, found: 461.1879. 

 

 

(6bR,6b1S,11aS,12aR)-2-Benzyl-11a-vinyl-6b1,7,8,11a,12,12a-hexahydro-9-thia-2,8a-

diazabenzo[c]cyclopenta[ef]fluoren-1(2H)-one 9,9-dioxide (2.106a): Ring-closing metathesis 

of vinylsulfonamide 2.114 (8 mg, 0.017 mmol) in the manner of 2.105a, followed by flash 

chromatography purification (silica gel, with 0.5% Et3N, 2% MeOH/dichloromethane), provided 

the title compound (6 mg, 84%) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 7.2 

Hz, 1H), 7.35-7.31 (m, 2H), 7.27-7.20 (m, 4H), 7.11 (d, J = 7.6 Hz, 1H), 7.03 (d, J = 8.0 Hz, 

1H), 6.61 (d, J = 10.8 Hz, 1H), 6.39 (d, J = 10.8 Hz, 1H), 5.85 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 

5.34 (m, 2H), 5.28 (d, J = 10.4 Hz, 1H), 5.03 (d, J = 16.0 Hz, 1H), 4.76 (s, 1H), 3.65 (td, J = 9.6 

Hz, 4.8 Hz, 1H), 3.35 (q, J = 9.6 Hz, 1H), 3.16 (dd, J = 13.2 Hz, 5.6 Hz, 1H), 2.50 (dd, J = 13.2 

Hz, 6.0 Hz, 1H), 2.23 (ddd, J = 13.6 Hz, 8.8 Hz, 4.8 Hz, 1H), 2.05 (t, J = 13.2 Hz, 1H), 1.85 (dt, 

J = 13.2 Hz, 8.0 Hz, 1H); 13C NMR (100 HMz, CDCl3) δ 169.8, 143.0, 140.6, 138.7, 136.8, 

134.9, 128.8, 127.4, 126.8, 124.0, 123.5, 122.9, 117.0, 116.5; FTIR (thin film, CHCl3) 3059, 

2921, 1683, 1602, 1492, 1455, 1390, 1339, 1158, 758, 734; HRMS (TOF ES) cald for 

C25H25N2O3S, m/z 433.1586 [M+H]+, found: 433.1606. 
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(6bR,6b1S,11aS,12aS)-2-Benzyl-11a-vinyl-6b1,7,8,11a,12,12a-hexahydro-9-thia-2,8a-

diazabenzo[c]cyclopenta[ef]fluoren-1(2H)-one 9,9-dioxide (2.106b): Epimerization of 

sulfonamide 2.105a (3.5 mg, 0.0081 mmol) by potassium tert-butoxide (1.8 mg, 0.016 mmol) in 

the manner of meloscine 2.15a, followed by flash chromatography purification (silica gel, with 

0.5% Et3N, 3% MeOH/dichloromethane), provided the title compound (3.0 mg, 86%) as a thin 

film: 1H NMR (600 MHz, CDCl3) δ 7.47 (d, J = 7.8 Hz, 1H), 7.33 (t, J = 7.8 Hz, 2H), 7.27-7.25 

(m, 1H), 7.19-7.16 (m, 3H), 7.13 (t, J = 7.8 Hz, 1H), 6.93 (d, J = 7.8 Hz, 1H), 6.80 (d, J = 10.8 

Hz, 1H), 6.35 (d, J = 10.8 Hz, 1H), 5.96 (dd, J = 17.4 Hz, 10.2 Hz, 1H), 5.48 (d, J = 16.2 Hz, 

1H), 5.10 (d, J = 10.2 Hz, 1H), 5.06 (d, J = 16.8 Hz, 1H), 4.99 (d, J = 17.4 Hz, 1H), 4.76 (s, 1H), 

3.82 (dd, J = 9.6 Hz, 7.2 Hz, 1H), 3.31 (ddd, J = 12.0 Hz, 10.2 Hz, 5.4 Hz, 1H), 2.97 (dd, J = 

12.6 Hz, 6.6 Hz, 1H), 2.32 (t, J = 12.6 Hz, 1H), 2.28 (dd, J = 12.6 Hz, 6.6 Hz, 1H), 2.16 (dd, J = 

13.2 Hz, 5.4 Hz, 1H), 2.06 (td, J = 12.6 Hz, 7.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 168.4, 

144.8, 140.9, 137.0, 136.3, 129.0, 128.9, 128.8, 127.5, 127.4, 126.2, 126.1, 124.4, 116.0, 115.9, 

80.2, 58.5, 50.1, 48.5, 47.6, 46.0, 42.3, 37.7; FTIR (thin film, CHCl3) 2955, 2918, 2851, 1666, 

1600, 1498, 1454, 1386, 1337, 1162; HRMS (TOF ES) cald for C25H25N2O3S, m/z 433.1586 

[M+H]+, found: 433.1599. 
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tert-Butyl 6-iodo-2,3,4,5-tetrahydro-1H-azepine-1-carboxylate (2.108): Sodium methoxide 

(0.55 g, 10.10 mmol) was added to a stirred solution of tert-butyl 2,3,4,5-tetrahydro-1H-azepine-

1-carboxylate (1.0 g, 5.10 mmol) in MeOH (20 mL). An ICl solution (1 M in CH2Cl2, 5.60 mL) 

was added dropwise, and the mixture was stirred for 30 min after the completion of addition. The 

reaction was quenched with a saturated aqueous Na2S2O3 solution, and the aqueous layer was 

extracted with Et2O. The combined organic layers were washed with brine, dried over MgSO4, 

and concentrated in vacuo. The crude 1-methoxy-2-iodo-tetrahydroazepine product was 

dissolved in toluene (75 mL), and the solution was heated at 130 °C. TFA (30 µL) was then 

added in one portion, and the reaction mixture was heated at this temperature for 10 min, during 

which time the colorless reaction mixture turned dark red. The reaction mixture was cooled to 

room temperature and neutralized with triethylamine (the reaction mixture turned yellow). The 

solvent was evaporated, and the residue was purified by flash chromatography (silica gel, 10% 

EtOAc/hexanes) to provide the title compound (1.1 g, 73%) as a colorless oil, in a 2:1 ratio of N-

Boc rotamers: 1H NMR (500 MHz, CDCl3) δ major rotamer: 6.96 (s, 1H); minor rotamer: 7.10 

(s, 1H); overlapping resonance: 3.66 (m, 2H), 2.77-2.75 (m, 2H), 1.78-1.74 (m, 4H), 1.48 (s, 

9H); FTIR (thin film, CHCl3) 2976, 2932, 1706, 1628, 1390, 1348, 1250, 1161, 976; HRMS 

(TOF ES) cald for C11H19NO2I, m/z 324.0461 [M]+, found: 324.0469. This product was 

contaminated with minor, inseparable impurities, and was submitted to the subsequent Suzuki-

coupling reaction without further purification.  

 

 

tert-Butyl 5-(2-aminophenyl)-3,4-dihydropyridine-1(2H)-carboxylate (2.119): Suzuki 
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coupling of vinyl iodide 2.107 (1.02 g, 3.20 mmol) and 2-aminophenyl pinacolboronate 2.77 

(0.86 g, 3.90 mmol) in the manner of 2.78, followed by flash chromatography purification (silica 

gel, 30% EtOAc/hexanes), afforded the title compound (brown oil, 0.67 g, 76%) as a mixture of 

N-Boc rotamers: 1H NMR (400 MHz, CDCl3) δ 7.09-7.05 (m, 2H), 6.90 (s, 1H), 6.77-6.73 (m, 

2H),  3.81 (brs, 2H), 3.65 (m, 2H), 2.33 (t, J = 6.5 Hz, 2H), 1.49 (s, 9H); 13C NMR (125 HMz, 

CDCl3) δ 152.8, 152.4, 143.9, 143.8, 129.8, 129.6, 127.8, 127.7, 124.9, 124.5, 118.5, 115.9, 

115.5, 115.2, 80.9, 80.7, 42.4, 41.3, 28.4, 26.2, 25.9, 22.1, 22.0; FTIR (thin film, CHCl3) 3450, 

3361, 2976, 2932, 1697, 1650, 1615, 1493, 1452, 1390, 1367, 1311, 1253, 1162, 1116, 749; 

HRMS (TOF ES) cald for C16H23N2O2, m/z 275.1760 [M+H]+, found: 275.1747.   

 

 

tert-Butyl 6-(2-aminophenyl)-2,3,4,5-tetrahydro-1H-azepine-1-carboxylate (2.120): Suzuki 

coupling of vinyl iodide 2.108 (1.05 g, 3.25 mmol) and 2-aminophenyl pinacolboronate 2.77 

(0.86 g, 3.90 mmol) in the manner of 2.78, followed by flash chromatography purification (silica 

gel, 30% EtOAc/hexanes), afforded the title compound (0.73 g, 78%) as a brown oil, in a 1:1 

mixture of N-Boc rotamers: 1H NMR (500 MHz, CDCl3) δ 7.07-7.02 (m, 2H), 6.75-6.71 (m, 

2H), 6.55 (m, 1H), 3.74  (t, J = 6.0 Hz, 2H), 2.49 (m, 2H), 1.85 (m, 4H), 1.49 (s, 9H); 13C NMR 

(125 HMz, CDCl3) δ 153.9, 143.2, 130.7, 129.6, 129.1, 127.9, 126.7, 118.5, 115.6, 80.6, 46.9, 

31.9, 28.4, 28.3, 25.0; FTIR (thin film, CHCl3) 3462, 3361, 2976, 2931, 2860, 1697, 1647, 1616, 

1493, 1452, 1393, 1367, 1306, 1241, 1161, 1117, 749; HRMS (TOF ES) cald for C17H25N2O2, 

m/z 289.1916 [M+H]+, found: 289.1925.   
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tert-Butyl 5-(2-(tert-butoxycarbonylamino)phenyl)-3,4-dihydropyridine-1(2H)-carboxylate 

(2.121): A mixture of LiClO4 (7 mg, 0.068 mmol), free aniline 2.119 (94 mg, 0.34 mmol), and 

Boc2O (82 mg, 0.38 mmol) in DCM (3 mL) was stirred at room temperature for 12 h. The 

solvent was evaporated, and the residue was purified by flash chromatography (silica gel, 15% 

EtOAc/hexanes) to give the title compound (123 mg, 97%) as a colorless oil, that was a mixture 

of multiple rotamers (see attached 1H NMR and 13C NMR spectra): FTIR (thin film, CHCl3) 

3418, 2977, 2932, 1704, 1650, 1514, 1447, 1386, 1367, 1312, 1252, 1159, 754; HRMS (TOF 

ES) cald for C21H30N2O4Na, m/z 397.2103 [M+Na]+, found: 397.2097.   

 

 

tert-Butyl 6-(2-(tert-butoxycarbonylamino)phenyl)-2,3,4,5-tetrahydro-1H-azepine-1-

carboxylate (2.122): N-Boc protection of aniline 2.120 (100 mg, 0.35 mmol) in the manner of 

2.121, followed by flash chromatography (silica gel, 15% EtOAc/hexanes), provided the title 

compound (125 mg, 93%) as a colorless oil, that was a mixture of multiple rotamers (see 

attached 1H NMR and 13C NMR spectra): FTIR (thin film, CHCl3) 3414, 2977, 2931, 1703, 

1513, 1481, 1448, 1389, 1367, 1246, 1160, 753; HRMS (TOF ES) cald for C22H33N2O4, m/z 

389.2440 [M+H]+, found: 389.2459. 
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tert-Butyl 5-(2-(N-(tert-butoxycarbonyl)-2,2-divinylcyclopropanecarboxamido) phenyl)-3,4-

dihydropyridine-1(2H)-carboxylate (2.123): Acid chloride 2.98 (0.22 mmol in 2 mL of 

toluene) was prepared from acid 2.63 (30 mg, 0.22 mmol) and Ghosez reagent (29 µL, 0.22 

mmol). In a separate fask, a NaHMDS solution (1 M in THF, 131 µL) was added dropwise to a 

solution of 2.121 (41 mg, 0.11 mmol) in THF (2 mL) at −78 °C. After 30 min, the 

abovementioned acid chloride solution was added dropwise at this temperature. The reaction 

mixture was slowly warmed to room temperature and stirred for 1 h. TLC analysis confirmed the 

completion of the reaction (the starting material and the product have the same Rf value, but 

show different colors unpon staining with p-anisaldehyde). The reaction was quenched with 

water, and the mixture was extracted with diethyl ether. The combined organic layer was dried 

over MgSO4 and concentrated in vacuo. The crude product was purified by flash 

chromatography (silica gel, 15% EtOAc/hexanes) to provide the title compound (24 mg, 83%) a 

colorless oil, in a mixture of multiple rotamers (see attached 1H and 13C NMR spectra): FTIR 

(thin film, CHCl3) 3086, 2978, 2933, 1733, 1702, 1649, 1386, 1298, 1254, 1160, 1119, 895, 759; 

HRMS (TOF ES) cald for C29H38N2O5Na, m/z 517.2678 [M+Na]+, found: 517.2673.   

 

 

tert-Butyl 6-(2-(N-(tert-butoxycarbonyl)-2,2-divinylcyclopropanecarboxamido) phenyl)-
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2,3,4,5-tetrahydro-1H-azepine-1-carboxylate (2.124): Acylation of (62 mg, 0.16 mmol) was in 

the manner of, followed by flash chromatography (silica gel, 15% EtOAc/hexanes), provided the 

title compound (51 mg, 63%) as a colorless oil, in a mixture of multiple rotamers (see attached 

1H and 13C NMR spectra): FTIR (thin film, CHCl3) 2978, 2932, 1733, 1701, 1647, 1391, 1368, 

1300, 1251, 1158, 757; HRMS (TOF ES) cald for C30H40N2O5Na, m/z 531.2835 [M+Na]+, 

found: 531.2816. This product was contaminated with minor, inseparable impurities.   

 

 

(4aS,6aR,12bR)-Di-tert-butyl 7-oxo-5,5-divinyl-2,3,5,6,6a,7-

hexahydropyrido[3',2':2,3]cyclopenta[1,2-c]quinoline-4,8(1H,4aH)-dicarboxylate (2.125): A 

solution of AIBN (4 mg, 0.026 mmol) and Bu3SnH (1 M in cyclohexane, 129 µL, 0.129 mmol) 

in toluene (3 mL) was added via syringe pump to a solution of 2.123 (32 mg, 0.065 mmol) in 

refluxing toluene (8 mL) over a period of 4 h. The reaction mixture was cooled to room 

temperature, and the solvent was evaporated. The residue was partitioned between acetonitrile 

and hexanes. The acetonitrile layer was washed with hexanes and then concentrated in vacuo. 

The crude product was purified by flash chromatography (silica gel, 15% EtOAc/hexanes) to 

provide the title compound 105 (15 mg, 52%, contaminated with minor, inseparable impurities) 

as a colorless oil, in a 2:1 mixture of N-Boc rotamers: 1H NMR (400 MHz, CDCl3) δ major 

rotamer: 7.10 (t, J = 7.2 Hz, 1H), 7.01 (d, J = 7.2 Hz, 1H), 6.09 (dd, J = 17.2 Hz, 10.2 Hz, 1H), 

5.92 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.25 (d, J = 17.2 Hz, 1H), 5.22 (d, J = 10.4 Hz, 1H), 4.94 (d, 

J = 17.2 Hz, 1H), 4.89 (d, J = 10.4 Hz, 1H), 4.63 (s, 1H), 4.20-4.16 (m, 1H), 2.52 (t, J = 12.8 Hz, 
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1H), 2.06 (dd, J = 13.2 Hz, 6.0 Hz, 1H), 1.52 (s, 9H); minor rotamer: 7.09 (t, J = 7.2 Hz, 1H), 

6.97 (d, J = 7.2 Hz, 1H), 6.28 (dd, J = 17.2 Hz, 10.2 Hz, 1H), 5.89 (dd, J = 17.6 Hz, 10.8 Hz, 

1H), 5.19 (d, J = 17.2 Hz, 1H), 5.15 (d, J = 10.8 Hz, 1H), 4.79 (s, 1H), 4.02-3.98 (m, 1H), 2.42 

(t, J = 12.8 Hz, 1H), 2.20 (dd, J = 13.2 Hz, 6.0 Hz, 1H), 1.52 (s, 9H); overlapping resonance: 

7.28-7.22 (m, 1H), 7.21-7.15 (m, 1H), 2.94-2.81 (m, 2H), 1.62 (s, 9H), 1.59-1.54 (m, 3H); FTIR 

(thin film, CHCl3) 2978, 2934, 1733, 1694, 1392, 1368, 1278, 1253, 1151, 915, 848, 758. This 

product was directly subjected to the next reaction without further purification. 

 

 

(4aS,6aR,12bR)-5,5-divinyl-1,2,3,4,4a,5,6,6a-octahydropyrido[3',2':2,3]cyclopenta[1,2-

c]quinolin-7(8H)-one (127): Crude biscarbamate 125 (15 mg) was dissolved in a mixed solvent 

of dichloromethane/TFA (10:1, 3 mL), and the reaction mixture was stirred at room temperature 

for 4 h. The solvent was evaporated, and the residue was purified by flash chromatography 

(silica gel, 40% EtOAc/dichloromethane) to provide the title compound (7 mg, 35% over 2 steps) 

as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 8.19 (brs, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.20 

(td, J = 7.6 Hz, 1.6 Hz, 1H), 7.07 (td, J = 7.6 Hz, 1.6 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 6.32 (dd, 

J = 17.6 Hz, 10.8 Hz, 1H), 5.88 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.24 (d, J = 16.8 Hz, 1H), 5.21 

(d, J = 10.4 Hz, 1H), 4.98 (d, J = 16.4 Hz, 1H), 4.94 (d, J = 10.4 Hz, 1H), 3.64 (s, 1H), 2.94 (td, 

J = 11.6 Hz, 4.0 Hz, 1H), 2.86-2.83 (m, 1H), 2.75 (dd, J = 12.8 Hz, 6.4 Hz, 1H), 2.48 (t, J = 13.2 

Hz, 1H), 2.12 (dd, J = 12.4 Hz, 6.4 Hz, 1H), 1.59 (td, J = 11.6 Hz, 4.0 Hz, 1H), 1.52-1.47 (m, 

1H), 1.45-1.35 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 172.1, 146.1, 142.6, 136.6, 134.5, 127.2, 
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126.4, 122.8, 116.2, 113.7, 110.4, 67.2, 54.2, 47.2, 44.1, 41.8, 30.7, 25.0, 20.4; FTIR (thin film, 

CHCl3) 3218, 3079, 2934, 2859, 1682, 1475, 1396, 1304, 1254, 912, 758, 735; HRMS (TOF ES) 

cald for C19H23N2O, m/z 295.1810 [M+H]+, found: 295.1805. 

 A sample for X-ray crystallography analysis was prepared by slow evaporation 

crystallization technique. A test tube (13 mL) was charged with a solution of amine 127 (2 mg) 

in ethyl acetate (3 mL). After 72 h, a small crystal was found on the wall of this tube. 

 

 

(5aS,7aR,13bR)-Di-tert-butyl 8-oxo-6,6-divinyl-3,4,6,7,7a,8-hexahydro-1H-

azepino[3',2':2,3]cyclopenta[1,2-c]quinoline-5,9(2H,5aH)-dicarboxylate (2.126): Radical 

annulation of divinylcyclopropane 2.124 (41 mg, 0.081 mmol) in the manner of 2.125, followed 

by flash chromatography purification (silica gel, 15% EtOAc/hexanes), provided the title 

compound (15 mg, 36%) as a colorless oil, in a 1:1 mixture of N-Boc rotamers: 1H NMR (500 

MHz, CDCl3) δ 7.40-7.35 (m, 1H), 7.28-7.22 (m, 1H), 7.15-7.11 (m, 1H), 7.02, 6.97 (d, J = 8.0 

Hz, 1H), 5.94, 5.88 (dd, J = 17.5 Hz, 10.5 Hz, 1H), 5.85, 5.80 (dd, J = 17.5 Hz, 10.5 Hz, 1H), 

5.39-4.92 (m, 3H), 3.93, 3.65 (d, J = 15.0 Hz, 1H), 3.14, 3.12 (d, J = 15.0 Hz, 1H), 2.87, 2.84 

(dd, J = 8.0 Hz, 5.0 Hz, 1H), 2.45, 2.39 (t, J = 13.0 Hz, 1H), 2.12, 2.08 (dd, J = 8.0 Hz, 5.0 Hz, 

1H), 1.92-1.80 (m, 2H), 1.63 (m, 9H), 1.57-1.56 (m, 9H), 1.59-1.41 (m, 3H), 0.90 (m, 1H); 13C 

NMR (125 HMz, CDCl3) δ 169.9, 169.8, 156.0, 155.3, 152.2, 152.0, 146.1, 146.0, 141.8, 141.2, 

137.1, 136.7, 136.4, 136.2, 127.3, 127.1, 126.1, 125.3, 124.6, 124.1, 119.3, 119.0, 113.6, 113.1, 

112.1, 110.9, 85.0, 84.9, 80.7, 80.0, 68.3, 66.5, 54.3, 53.8, 51.6, 51.1, 48.8, 48.7, 43.3, 42.5, 30.5, 
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28.6, 28.5, 27.8, 25.9, 25.5, 25.3, 24.6, 23.5, 18.5, 18.1; FTIR (thin film, CHCl3) 2976, 2929, 

1688, 1421, 1368, 1278, 1249, 1149; HRMS (TOF ES) cald for C30H40N2O5Na, m/z 531.2835 

[M+Na]+, found: 531.2854. 

 

 

(4aS,6aR,12bR)-4-Allyl-5,5-divinyl-1,2,3,4,4a,5,6,6a-

octahydropyrido[3',2':2,3]cyclopenta[1,2-c]quinolin-7(8H)-one (2.129): Free amine 2.127 (15 

mg, 0.030 mmol) was dissolved in CH3CN (5 mL), followed by addition of K2CO3 (25 mg, 

0.182 mmol) and allyl bromide (13 µL, 0.182 mmol). The reaction mixture was stirred at 45 °C 

for 12 h. The reaction mixture was diluted with dichloromethane (20 mL), washed with water, 

dried over MgSO4, and concentrated in vacuo. The residue was purified by flash chromatography 

(silica gel, 50% EtOAc/hexane) to afford the title compound (8 mg, 80%) as a light yellow oil: 

1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 8.0 Hz, 1H), 7.51 (brs, 1H), 7.18 (td, J = 8.0 Hz, 1.5 

Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.45 (dd, J = 17.5 Hz, 10.5 Hz, 1H), 

6.11 (dd, J = 17.5 Hz, 10.5 Hz, 1H), 5.95-5.87 (m, 1H), 5.31-5.14 (m, 4H), 4.98 (d, J = 17.5 Hz, 

1H), 4.93 (d, J = 10.5 Hz, 1H), 3.71 (dd, J = 14.5 Hz, 5.5 Hz, 1H), 3.63 (s, 1H), 3.51 (dd, J = 

14.5 Hz, 7.0 Hz, 1H), 3.11-3.06 (m, 1H), 2.76 (dd, J = 12.5 Hz, 6.0 Hz, 1H), 2.76 (m, 1H), 2.55 

(t, J = 13.0 Hz, 1H), 2.00 (dd, J = 13.5 Hz, 6.5 Hz, 1H), 1.72-1.65 (m, 1H), 1.46-1.42 (m, 3H); 

13C NMR (125 HMz, CDCl3) δ 171.8, 147.2, 143.3, 136.9, 136.5, 134.6, 127.1, 126.7, 122.7, 

116.4, 115.8, 113.3, 109.9, 73.9, 57.7, 55.7, 47.0, 45.6, 44.8, 30.8, 24.1, 21.0; FTIR (thin film, 

CHCl3) 3236, 3080, 2922, 2851, 1684, 1474, 1393, 1302, 1253, 914, 758; HRMS (TOF ES) cald 
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for C22H27N2O, m/z 335.2123 [M+H]+, found: 335.2127. 

 

 

(5aS,7aR,13bR)-5-Allyl-6,6-divinyl-2,3,4,5,5a,6,7,7a-octahydro-1H-

azepino[3',2':2,3]cyclopenta[1,2-c]quinolin-8(9H)-one (2.130): N-Boc deprotection of bis-

carbamate 2.126 (23 mg, 0.045 mmol) in the manner of 2.127 provided crude amine 2.128 (mg,) 

as a colorless oil. This product was then allylated in the manner of 2.129, and the title compound 

(12 mg, 76%) was isolated as a light yellow oil after flash chromatography purification (silica 

gel, 50% EtOAc/hexane): 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 7.2 Hz, 1H), 7.44 (brs, 1H), 

7.21 (t, J = 7.6 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 6.43 (dd, J = 17.6 Hz, 

10.8 Hz, 1H), 6.02 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 5.99 (m, 1H), 5.26-5.14 (m, 4H), 4.98 (d, J = 

17.2 Hz, 1H), 4.90 (d, J = 10.8 Hz, 1H), 3.72 (m, 1H), 3.69 (s, 1H), 3.61 (dd, J = 10.4 Hz, 6.4 

Hz, 1H), 3.37 (t, J = 12.4 Hz, 1H), 2.81 (dd, J = 13.2 Hz, 6.0 Hz, 1H),  2.51 (t, J = 13.2 Hz, 1H), 

2.00 (dd, J = 12.8 Hz, 6.0 Hz, 1H), 1.90 (t, J = 12.8 Hz, 1H), 1.47-0.86 (m, 5H); 13C NMR (100 

HMz, CDCl3) δ 172.3, 147.8, 143.2, 137.6, 136.3, 134.3, 127.2, 126.6, 122.8, 116.5, 116.0, 

112.4, 109.9, 79.3, 61.8, 54.4, 50.8, 48.2, 47.0, 30.0, 27.4, 25.2, 21.0; FTIR (thin film, CHCl3) 

3239, 3081, 2925, 2861, 1682, 1472, 1401, 759; HRMS (TOF ES) cald for C23H29N2O, m/z 

349.2280 [M+H]+, found: 349.2276. 
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(6bR,6b1S,13aS,14aR)-13a-Vinyl-6b1,7,8,9,11,13a,14,14a-

octahydroquinolizino[1',9':2,3,4]cyclopenta[1,2-c]quinolin-1(2H)-one (2.109a): Hoveyda-

Grubbs II catalyst (1 mg, 0.0018 mmol) was added to a solution of triene 2.129 (6 mg, 0.018 

mmol) in toluene (4 mL). The reaction mixture was heated at 80 °C for 12 h. The solvent was 

evaporated, and the residue was purified by flash chromatography (silica gel, 5% 

MeOH/dichloromethane, with 0.5% Et3N) to provide the title compound (6 mg, 73%) as a white, 

amorphous powder: 1H NMR (600 MHz, CDCl3) δ 7.53 (d, J = 7.2 Hz, 1H), 7.38 (brs, 1H), 7.20 

(t, J = 7.2 Hz, 1H), 7.07 (t, J = 7.2 Hz, 1H), 6.81 (d, J = 7.8 Hz, 1H), 5.95-5.92 (m, 1H), 5.87 (d, 

J = 9.6 Hz, 1H), 5.69 (dd, J = 17.4 Hz, 10.8 Hz, 1H), 4.99 (d, J = 17.4 Hz, 1H), 4.89 (d, J = 10.8 

Hz, 1H), 3.56 (s, 1H), 3.22-3.16 (m, 2H), 2.92 (dd, J = 12.6 Hz, 4.8 Hz, 1H), 2.78 (td, J = 10.2 

Hz, 4.8 Hz, 1H), 2.64-2.62 (m, 1H), 2.21 (dd, J = 12.6 Hz, 4.8 Hz, 1H), 2.04 (t, J = 12.6 Hz, 1H), 

1.57-1.39 (m, 4H); 13C NMR (175 MHz, CDCl3) δ 171.9, 144.8, 136.5, 135.1, 133.0, 127.2, 

125.6, 122.9, 116.3, 110.7, 68.9, 51.1, 49.2, 48.4, 47.5, 45.7, 31.3, 25.5, 19.5; FTIR (thin film, 

CHCl3) 3411, 2927, 1684, 1474, 1399, 1302, 758, 726; HRMS (TOF ES) cald for C20H23N2O, 

m/z 307.1810 [M+H]+, found: 307.1809. 

 

 

(6bR,6b1S,13aS,14aS)-13a-Vinyl-6b1,7,8,9,11,13a,14,14a-
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octahydroquinolizino[1',9':2,3,4]cyclopenta[1,2-c]quinolin-1(2H)-one (2.109b): 

Epimerization of pentacycle 89 (4.6 mg, 0.015 mmol) by potassium tert-butoxide (3.0 mg, 0.030 

mmol) in the manner of meloscine 2.15a, followed by flash chromatography purification (silica 

gel, 3% MeOH/dichloromethane, with 0.5% Et3N), provided the title compound (4.0 mg, 87%) 

as an amporphous powder: 1H NMR (700 MHz, CDCl3) δ 7.51 (brs, 1H), 7.31 (d, J = 7.7 Hz, 

1H), 7.13 (t, J = 7.7 Hz, 1H), 6.98 (t, J = 7.7 Hz, 1H), 6.65 (d, J = 7.7 Hz, 1H), 5.79 (dd, J = 9.1 

Hz, 5.6 Hz, 1H), 5.36 (d, J = 9.8 Hz, 1H), 5.20 (dd, J = 17.5 Hz, 10.5 Hz, 1H), 4.66 (d, J = 17.5 

Hz, 1H), 4.46 (d, J = 11.2 Hz, 1H), 3.70 (t, J = 9.8 Hz, 1H), 3.14 (dd, J = 16.1 Hz, 5.6 Hz, 1H), 

2.95 (s, 1H), 2.92 (d, J = 11.2 Hz, 1H), 2.82 (d, J = 16.1 Hz, 1H), 2.46 (dd, J = 14.0 Hz, 11.9 Hz, 

1H), 2.28 (t, J = 11.9 Hz, 1H), 2.05 (dd, J = 14.0 Hz, 9.1 Hz, 1H), 1.95-1.93 (m, 2H); 13C NMR 

(175 MHz, CDCl3) δ 171.6, 143.2, 135.0, 132.4, 127.9, 127.7, 127.6, 127.1, 123.9, 115.2, 112.7, 

82.5, 56.8, 53.0, 51.0, 48.1, 46.9, 43.4, 42.2, 31.0; FTIR (thin film, CHCl3) 3420, 1649, 1387, 

1159; HRMS (TOF ES) cald for C20H23N2O, m/z 307.1810 [M+H]+, found: 307.1807. 

 

 

(6bR,6b1S,13aS,14aR)-13a-Vinyl-2,6b1,7,8,9,10,11,13a,14,14a-decahydro-1H-2,10a-

diazabenzo[c]cyclohepta[ef]fluoren-1-one (2.110a): Ring-closing metathesis of triene 2.130 

(11 mg, 0.032 mmol) in the manner of 2.109a, followed by flash chromatography purification 

(silica gel, 4% MeOH/dichloromethane, with 0.5% Et3N) to provide the title compound (8 mg, 

79%) as a white, amorphous powder: 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 7.5 Hz, 1H), 

7.61 (s, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.5 Hz, 1H), 5.94-5.90 
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(m, 1H), 5.69 (dd, J = 17.5 Hz, 10.5 Hz, 1H), 5.65 (d, J = 17.5 Hz, 1H), 5.02 (d, J = 17.5 Hz, 

1H), 4.97 (d, J = 10.5 Hz, 1H), 3.58 (s, 1H), 3.18 (m, 2H), 3.15 (dd, J = 11.5 Hz, 7.0 Hz, 1H), 

3.01 (t, J = 13.0 Hz, 1H), 2.80 (d, J = 14.0 Hz, 1H), 2.23 (t, J = 13.0 Hz, 1H), 2.08 (t, J = 6.0 Hz, 

1H), 1.75 (dd, J = 7.0 Hz, 6.0 Hz, 1H), 1.47-1.44 (m, 2H), 0.91-0.83 (m, 1H); 13C NMR (175 

MHz, CDCl3) δ 172.6, 145.4, 136.9, 135.3, 131.6, 127.1, 126.9, 124.8, 122.4, 117.0, 112.4, 73.8, 

58.0, 54.7, 53.0, 51.7, 50.9, 30.9, 29.6, 26.8, 24.5; FTIR (thin film, CHCl3) 3391, 2989, 2927, 

1685, 1474, 1401, 1158, 805, 756, 728; HRMS (TOF ES) cald for C21H25N2O, m/z 321.1967 

[M+H]+, found: 321.1973. 

 

 

(6bR,6b1S,13aS,14aS)-13a-Vinyl-2,6b1,7,8,9,10,11,13a,14,14a-decahydro-1H-2,10a-

diazabenzo[c]cyclohepta[ef]fluoren-1-one (2.110b): Epimerization of pentacycle 2.110a (4.0 

mg, 0.012 mmol) by potassium tert-butoxide (2.8 mg, 0.025 mmol) in the manner of meloscine 

2.15b, followed by flash chromatography purification (silica gel, 3% MeOH/dichloromethane, 

with 0.5% Et3N), provided the title compound (3.5 mg, 88%) as an amporphous powder: 1H 

NMR (700 MHz, CDCl3) δ 8.03 (brs, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.20 (t, J = 7.7 Hz, 1H), 7.12 

(t, J = 7.7 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), 6.09 (dd, J = 9.8 Hz, 4.2 Hz, 1H), 5.79 (dd, J = 16.8 

Hz, 10.5 Hz, 1H), 5.51 (d, J = 10.5 Hz, 1H), 4.97 (d, J = 16.8 Hz, 1H), 4.94 (d, J = 9.8 Hz, 1H), 

4.01 (s, 1H), 3.86 (d, J = 17.5 Hz, 1H), 3.46 (d, J = 14.7 Hz, 1H), 3.14-3.10 (m, 2H), 2.82 (dd, J 

= 13.3 Hz, 4.9 Hz, 1H), 2.10-2.07 (m, 1H), 1.80 (dd, J = 13.3 Hz, 4.9 Hz, 1H), 1.76 (d, J = 13.3 

Hz, 1H), 1.70-1.66 (m, 2H), 1.60 (m, 1H), 1.50 (m, 2H); 171.8, 144.7, 134.9, 130.1, 129.5, 
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128.5, 127.4, 126.7, 122.8, 116.1, 112.9, 75.2, 57.4, 57.0, 52.2, 49.3, 44.7, 40.0, 36.5, 27.0, 23.3; 

FTIR (thin film, CHCl3) 3400, 2925, 1674, 1481, 1395, 1157; HRMS (TOF ES) cald for 

C21H25N2O, m/z 321.1967 [M+H]+, found: 321.1977. 

 

 

Ethyl 2-(2-(diethoxyphosphoryloxy)ethylidene)-1-phenylcyclopropane-carboxylate (2.144): 

A solution of ethyl diazophenylacetate (1.30 g, 6.79 mmol) in dichloromethane (3 mL) was 

added dropwise to a solution of allenic phosphate 2.143 (1.00 g, 4.85 mmol) and Rh2(esp)2 (11 

mg, 0.015 mmol) in dichloromethane (10 mL). The reaction mixture was refluxed for 2 h, before 

the solvent was evaporated. The residue was purified by flash chromatography (silica gel, 70% 

EtOAc/hexanes) to provide the title compound (1.25 g, 70%) as a colorless oil: 1H NMR (400 

MHz, CDCl3) δ 7.39-7.30 (m, 5H), 6.35 (tt, J = 6.4 Hz, 2.4 Hz, 1H), 4.76 (t, J = 7.6 Hz, 2H), 

4.18-4.06 (m, 6H), 2.49 (d, J = 9.2 Hz, 1H), 1.79 (d, J = 9.2 Hz, 1H), 1.39-1.30 (m, 6H), 1.21 (t, 

J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 171.3, 137.4, 131.5, 129.1, 128.2, 127.5, 114.8 

(d, JC-P = 6.7 Hz), 66.6 (d, JC-P = 5.4 Hz), 63.9 (d, JC-P = 5.7 Hz), 63.8 (d, JC-P = 5.7 Hz), 61.5, 

32.1, 19.2, 16.1 (d, JC-P = 6.7 Hz), 14.1; FTIR (thin film, CHCl3) 3085, 3060, 2981, 2904, 1723, 

1637, 1447, 1366, 1296, 1241, 1196, 1061, 1027, 933, 914 cm-1; HRMS (TOF ES) cald for 

C18H25O6NaP, m/z 391.1286 [M+Na]+, found: 391.1266.  
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Dimethyl 2-(2-((diethoxyphosphoryl)oxy)ethylidene)cyclopropane-1,1-dicarboxylate 

(2.149): Cyclopropanation of allenic phosphate 2.143 (220 mg, 1.07 mmol) with dimethyl 

diazomalonate (272 mg, 1.71 mmol) in the manner of 2.144, followed by flash chromatography 

purification (silica gel, 100% EtOAc), provided the title compound (240 mg, 67%) as a colorless 

oil, in a 3:1 mixture of inseparable E/Z isomers: 1H NMR (500 MHz, CDCl3) δ major isomer 

(configuration not assigned): 6.18 (tt, J = 6.0 Hz, 3.0 Hz, 1H), 4.71 (ddt, J = 8.5 Hz, 6.0 Hz, 2.0 

Hz, 2H), 4.10 (q, J = 7.5 Hz, 4H), 3.74 (s, 6H), 2.25-2.24 (m, 2H), 1.34 (t, J = 7.0 Hz, 3H), 1.33 

(t, J = 7.0 Hz, 3H); minor isomer: 6.10 (tt, J = 6.0 Hz, 2.5 Hz, 1H), 4.68 (ddt, J = 8.5 Hz, 6.0 Hz, 

2.0 Hz, 2H), 4.12 (q, J = 7.5 Hz, 4H), 3.75 (s, 6H), 2.23-2.22 (m, 2H), 1.33 (t, J = 7.0 Hz, 3H), 

1.32 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ major isomer: 167.7, 126.1, 115.8 (d, JC-

P = 7.1 Hz), 65.9 (d, JC-P = 5.1 Hz), 63.9 (d, JC-P = 5.6 Hz), 52.9, 31.3, 17.7, 16.1 (d, JC-P = 6.5 

Hz); minor isomer: 167.6, 125.9, 115.9 (d, JC-P = 7.1 Hz), 65.8 (d, JC-P = 5.1 Hz), 63.8 (d, JC-P = 

5.6 Hz), 53.0, 31.6, 17.6, 16.0 (d, JC-P = 6.5 Hz); FTIR (thin film, CHCl3) 2987, 2957, 1736, 

1439, 1314, 1269, 1110, 1029, 884, 822; HRMS (TOF ES) cald for C13H21O8NaP, m/z 359.0872 

[M+Na]+, found: 359.0883.   

 

 

Ethyl 1-phenyl-2,2-divinylcyclopropanecarboxylate (2.145): A vinylmagnesium bromide 

solution (1 M in THF, 9.45 mL) was added to a suspension of CuCN (56 mg, 0.630 mmol) in 

THF (20 mL) at 0 °C. After 15 min, the reaction mixture was cooled to −78 °C, and a solution of 

methylene-cyclopropane 2.144 (1.16g, 3.15 mmol) in THF (5 mL) was added via syringe pump 
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over a period of 20 min. The reaction mixture was stirred at this temperature for 2 h, before a 

saturated aqeous NH4Cl solution was added to quench the reaction. The mixture was extracted 

with diethylether, and the combined organic layer was dried over MgSO4 and concentrated in 

vacuo. The residue that contains a 1.6:1 mixture of SN2'/SN2 regioisomers (judged by 1H NMR 

analysis) was purified by flash chromatography (silica gel, 10% Et2O/hexanes) to afford the title 

compound (400 mg, 52%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.39-7.38 (m, 2H), 

7.31-7.25 (m, 3H), 6.04 (dd, J = 17.0 Hz, 10.5 Hz, 1H), 5.29-5.20 (m, 3H), 4.98 (d, J = 17.0 Hz, 

1H), 4.91 (d, J = 10.5 Hz, 1H), 4.13-4.06 (m, 1H), 4.03-3.96 (m, 1H), 2.27 (d, J = 5.0 Hz, 1H), 

1.62 (d, J = 5.0 Hz, 1H), 1.17 (t, J = 7.0 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 170.1, 138.3, 

136.2, 135.2, 131.5, 127.8, 127.3, 117.6, 115.3, 61.1, 43.5, 38.0, 21.7, 14.2; FTIR (thin film, 

CHCl3) 3085, 3060, 2982, 1723, 1631, 1447, 1366, 1293, 1241, 1195, 1108, 1064, 1029, 993, 

915 cm-1; HRMS (TOF ES) cald for C16H19O2, m/z 243.1385 [M+H]+, found: 243.1392. 

 

 

Dimethyl 2-(1-bromobut-3-en-2-ylidene)malonate (2.151): A dipp-NHC-CuCl solution (0.1 M 

in diethyl ether, 52 µL) was prepared according to literature procedures, except that the filtration 

step was skipped. This solution was diluted with diethyl ether (5 mL), and vinyl-magnesium 

bromide solution (1 M in THF, 0.78 mL) was added slowly at 0 °C. After 15 min, a solution of 

methylene-cyclopropane 2.149 (174 mg, 0.517 mmol) was added dropwise. The reaction mixture 

was stirred at 0 °C for 1.5 h, before it was quenched with a saturated aqueous NH4Cl solution. 

The mixture was extracted with diethylether, and the combined organic layer was dried over 

MgSO4 and concentrated in vacuo. The residue was purified by flash chromatography (silica gel, 
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20% Et2O/hexanes) to afford the title compound (40 mg, 70%) as a colorless oil: 1H NMR (400 

MHz, CDCl3) δ 6.68 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 5.92 (d, J = 17.6 Hz, 1H), 5.68 (d, J = 10.2 

Hz, 1H), 4.55 (s, 2H), 3.83 (s, 3H), 3.82 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 165.6, 164.2, 

147.4, 131.6, 126.4, 124.0, 52.7, 52.6, 22.9; FTIR (thin film, CHCl3) 2956, 1789, 1730, 1437, 

1252, 1136, 1058, 736; HRMS (TOF ES) cald for C9H11O4Br, m/z 261.9841 [M]+, found: 

261.9825. 

 

 

1-Phenyl-2,2-divinylcyclopropanecarboxylic acid (2.146): A solution of ester 2.145 (360 mg, 

1.48 mmol) in diether ether (2 mL) was added to pre-mixed KOtBu (1.41 g, 12.60 mmol)/H2O 

(75 µL, 4.15 mmol) in diethylether (20 mL). The reaction mixture was stirred at room 

temperature for 12 h, and another portion of KOtBu (0.71 g, 6.30 mmol) was added. After 4 h, 

the reaction mixture was diluted with water and washed with dichloromethane. 6 N HCl was 

added dropwise until the PH reached 3, and the aqueous solution was extracted with 

dichloromethane. The combined organic layer was dried over MgSO4 and concentrated in vacuo 

to afford the crude acid (310 mg, 77%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.35-

7.27 (m, 5H), 6.07 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 5.30 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 5.29 (d, J 

= 10.8 Hz, 1H), 5.24 (d, J = 17.6 Hz, 1H), 4.98 (d, J = 17.2 Hz, 1H), 4.92 (d, J = 10.8 Hz, 1H), 

2.26 (d, J = 5.2 Hz, 1H), 1.69 (d, J = 5.2 Hz, 1H). This product was directly subjected to the 

subsequent amide coupling reactions without further purification. 
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N,N-Diallyl-1-phenyl-2,2-divinylcyclopropanecarboxamide (2.147): Ghosez reagent (72 µL, 

0.541 mmol) was added to a solution of crude acid 2.146 (116 mg, 0.541 mmol) in 

dichloromethane (2 mL), and the reaction mixture was stirred at room temperature for 2 h. The 

resulting acid chloride solution was added dropwise to a stirred mixture of diallylamine (133 µL, 

1.083 mmol) and pyridine (177 µL, 2.166 mmol) in dichloromethane (5 mL) was stirred at room 

temperature for 3 h. The reaction mixture was diluted with dichloromethane and poured into a 

saturated aqueous CuSO4 solution. The organic layer was collected, dried over MgSO4, and 

concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, 10% 

EtOAc/hexanes) to provide the title compound (110 mg, 70%) as a colorless oil: 1H NMR (400 

MHz, CDCl3) δ 7.56 (d, J = 7.2 Hz, 2H), 7.33-7.25 (m, 3H), 6.16 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 

5.62 (ddt, J = 17.2 Hz, 10.8 Hz, 5.6 Hz, 1H), 5.52 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 5.35 (ddt, J = 

17.2 Hz, 10.8 Hz, 5.6 Hz, 1H), 5.19-4.92 (m, 8H), 4.25 (dd, J = 16.0 Hz, 4.8 Hz, 1H), 4.03 (dd, J 

= 16.0 Hz, 4.8 Hz, 1H), 3.87 (dd, J = 16.0 Hz, 5.6 Hz, 1H), 3.67 (dd, J = 14.8 Hz, 6.0 Hz, 1H), 

1.97 (d, J = 5.6 Hz, 1H), 1.76 (d, J = 5.6 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 169.8, 138.6, 

137.8, 136.6, 133.3, 132.8, 129.7, 128.3, 127.1, 117.8, 116.9, 115.7, 114.7, 49.3, 46.5, 42.9, 37.5, 

21.7; FTIR (thin film, CHCl3) 3082, 3010, 2983, 2922, 1637, 1637, 1451, 1410, 1245, 1209, 

993, 920 cm-1; HRMS (TOF ES) cald for C20H23NONa, m/z 316.1677 [M+Na]+, found: 

316.1664. 
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(3'R,4'R)-1'-Allyl-4'-methyl-7-vinyl-6,9-dihydrospiro[benzo[7]annulene-5,3'-pyrrolidin]-2'-

one (2.155): A solution of diallylamide 2.147 (48 mg, 0.162 mmol) was dissolved in toluene and 

heated at 110 °C for 3 h. The solvent was evaporated, and the residue was purified by flash 

chromatography (silica gel, 20% EtOAc/hexanes) to provide the title compound (31 mg, 65%) as 

a colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.17-7.09 (m, 4H), 6.46 (dd, J = 17.5 Hz, 11.0 Hz, 

1H), 6.07 (tt, J = 6.0 Hz, 1.0 Hz, 1H), 5.87 (ddt, J = 17.0 Hz, 10.0 Hz, 6.5 Hz, 1H), 5.31 (dq, J = 

17.0 Hz, 1.5 Hz, 1H), 5.29 (dq, J = 10.0 Hz, 1.5 Hz, 1H), 5.22 (d, J = 17.0 Hz, 1H), 5.02 (d, J = 

11.0 Hz, 1H), 4.11 (ddt, J = 15.0 Hz, 6.5 Hz, 1.5 Hz, 1H), 4.01 (ddt, J = 15.0 Hz, 6.5 Hz, 1.5 Hz, 

1H), 3.83 (dd, J = 17.5 Hz, 6.5 Hz, 1H), 3.48 (m, 1H), 3.47 (dd, J = 10.0 Hz, 8.0 Hz, 1H), 3.22 

(dd, J = 15.5 Hz, 1.0 Hz, 1H), 2.98 (dd, J = 10.0 Hz, 6.0 Hz, 1H), 2.69 (ddq, J = 8.0 Hz, 7.0 Hz, 

6.0 Hz, 1H), 2.59 (d, J = 16.0 Hz, 1H), 0.62 (d, J = 7.0 Hz, 3H); 13C NMR (125 HMz, CDCl3) δ 

177.8, 140.3, 138.2, 137.6, 137.5, 132.4, 130.9, 130.2, 129.2, 126.8, 126.4, 118.6, 111.2, 54.1, 

51.6, 45.6, 35.8, 35.7, 33.9, 16.7; FTIR (thin film, CHCl3) 2926, 1683, 1438, 1263, 992, 927, 

760 cm-1; HRMS (TOF ES) cald for C20H24NO, m/z 294.1858 [M+H]+, found: 294.1848. 

  

 

N,N-Dicinnamyl-1-phenyl-2,2-divinylcyclopropanecarboxamide (2.156): Acylation of bis-

cinnamyl amine (99 mg, 0.367 mmol) with crude acid 2.146 (50 mg, 0.198 mmol) in the manner 
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of 2.147, followed by flash chromatography purification (silica gel, 10% EtOAc/hexanes), 

provided the title compound (64 mg, 72%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 

7.54-7.52 (m, 2H), 7.39-7.22 (m, 13H), 6.35 (d, J = 16.0 Hz, 1H), 6.31 (d, J = 16.0 Hz, 1H), 6.23 

(dd, J = 17.0 Hz, 10.5 Hz, 1H), 6.06 (dt, J = 16.0 Hz, 6.0 Hz, 1H), 5.65 (dt, J = 16.0 Hz, 6.0 Hz, 

1H), 5.60 (dd, J = 17.0 Hz, 10.5 Hz, 1H), 5.24 (dd, J = 10.5 Hz, 1.0 Hz, 1H), 5.18 (dd, J = 17.0 

Hz, 1.0 Hz, 1H), 5.07 (dd, J = 17.0 Hz, 1.0 Hz, 1H), 5.04 (dd, J = 10.5 Hz, 1.0 Hz, 1H), 4.44 (dd, 

J = 16.5 Hz, 5.5 Hz, 1H), 4.23 (dd, J = 16.5 Hz, 5.5 Hz, 1H), 4.11 (dd, J = 16.5 Hz, 6.0 Hz, 1H), 

3.91 (dd, J = 15.0 Hz, 6.5 Hz, 1H), 2.07 (d, J = 5.5 Hz, 1H), 1.81 (d, J = 5.5 Hz, 1H); 13C NMR 

(125 HMz, CDCl3) δ 169.9, 138.5, 137.8, 136.8, 136.7, 136.3, 132.8, 132.5, 129.9, 128.7, 128.6, 

128.5, 128.4, 127.8, 127.5, 127.2, 126.3, 124.7, 124.4, 115.8, 114.9, 48.9, 46.2, 43.2, 37.6, 22.1; 

FTIR (thin film, CHCl3) 3082, 3058, 3026, 2922, 1635, 1600, 1495, 1450, 1414, 1360, 968, 912, 

735 cm-1; HRMS (TOF ES) cald for C32H32NO, m/z 446.2484 [M+H]+, found: 446.2505. 

 

 

(3'R,4'R)-4'-Benzyl-1'-cinnamyl-7-vinyl-6,9-dihydrospiro[benzo[7]annulene-5,3'-

pyrrolidin]-2'-one (2.157): A solution of bis-cinnamylamide 2.156 (18 mg, 0.040 mmol) in 

toluene (1.5 mL) was heated at 110 °C in a sealed tube, for a period of 3 h. The reaction mixture 

was directly purified by flash chromatography (silica gel, 20% EtOAc/hexanes) to provide the 

title compound (8 mg, 44%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.40-7.28 (m, 5H), 

7.19-7.10 (m, 7H), 6.98 (d, J = 7.0 Hz, 2H), 6.59 (dd, J = 17.5 Hz, 11.0 Hz), 6.58 (d, J = 16.0 
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Hz, 1H), 6.21 (dt, J = 16.0 Hz, 7.0 Hz, 1H), 6.18 (m, 1H), 5.35 (d, J = 17.5 Hz, 1H), 5.16 (d, J = 

10.5 Hz, 1H), 4.25 (ddd, J = 15.0 Hz, 7.0 Hz, 1.0 Hz, 1H), 4.09 (ddd, J = 15.0 Hz, 7.0 Hz, 1.0 

Hz, 1H), 4.02 (dd, J = 17.0 Hz, 5.5 Hz, 1H), 3.47 (dd, J = 17.0 Hz, 7.0 Hz, 1H), 3.42 (d, J = 15.5 

Hz, 1H), 3.16 (dd, J = 10.0 Hz, 8.0 Hz, 1H), 3.11 (dd, J = 10.0 Hz, 7.5 Hz, 1H), 2.83 (dtd, J = 

15.5 Hz, 8.0 Hz, 4.0 Hz, 1H), 2.70 (d, J = 15.0 Hz, 1H), 2.47 (dd, J = 14.0 Hz, 4.0 Hz, 1H), 1.79 

(dd, J = 14.0 Hz, 12.0 Hz, 1H); 13C NMR (125 HMz, CDCl3) δ 177.9, 140.2, 139.7, 138.3, 138.2, 

137.2, 136.4, 134.1, 131.3, 131.2, 129.1, 128.8, 128.7, 128.4, 128.0, 127.0, 126.6, 126.5, 126.2, 

123.4, 112.0, 53.0, 49.6, 45.2, 43.7, 37.9, 35.7, 33.9; FTIR (thin film, CHCl3) 3026, 2940, 1684, 

1493, 1447, 1262, 968, 736 cm-1; HRMS (TOF ES) cald for C32H32NO, m/z 446.2484 [M+H]+, 

found: 446.2490. 

 

 

Allyl 1-phenyl-2,2-divinylcyclopropanecarboxylate (2.158): Ghosez reagent (12 µL, 0.093 

mmol) was added to a solution of crude acid 2.146 (20 mg, 0.093 mmol) in dichloromethane (1 

mL), and the reaction mixture was stirred at room temperature for 2 h. The resulting acid 

chloride solution was added drowpise to a mixture of allyl alcohol (13 µL, 0.187 mmol), 

pyridine (23 µL, 0.28 mmol), and DMAP (2 mg, 0.019 mmol) in dichloromethane (2 mL) at 0 

°C. The reaction mixture was stirred at room temperature for 12 h. The solvent was evaporated, 

and the residue was purified by flash chromatography (silica gel, 5% EtOAc/hexanes) to provide 

the title compound (16 mg, 67%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.41-7.26 (m, 

5H), 6.06 (dd, J = 17.0 Hz, 10.5 Hz, 1H), 5.82 (ddt, J = 17.0 Hz, 11.0 Hz, 5.5 Hz, 1H), 5.30 (dd, 
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J = 17.0 Hz, 10.5 Hz, 1H), 5.28 (d, J = 10.5 Hz, 1H), 5.23 (dd, J = 17.0 Hz, 1.0 Hz, 1H), 5.17 

(dd, J = 17.0 Hz, 1.0 Hz, 1H), 5.14 (dd, J = 10.5 Hz, 1.0 Hz, 1H), 5.00 (dd, J = 17.0 Hz, 1.0 Hz, 

1H), 4.93 (dd, J = 10.5 Hz, 1.0 Hz, 1H), 4.54 (ddt, J = 13.5 Hz, 5.5 Hz, 1.5 Hz, 1H), 4.47 (ddt, J 

= 13.5 Hz, 5.5 Hz, 1.5 Hz, 1H), 2.31 (d, J = 5.5 Hz, 1H), 1.65 (d, J = 5.5 Hz, 1H); 13C NMR (125 

HMz, CDCl3) δ 169.8, 138.2, 136.1, 135.1, 132.2, 131.6, 127.9, 127.3, 117.8, 117.6, 115.5, 65.7, 

43.4, 38.3, 22.0; FTIR (thin film, CHCl3) 3085, 2928, 1724, 1447, 1241, 1189, 992, 921; HRMS 

(TOF ES) cald for C17H19O2, m/z 255.1385 [M+H]+, found: 255.1388. 

 

 

Allyl 1-phenyl-3-vinylcyclopent-3-enecarboxylate (2.159): A solution of divinylcyclopropane 

2.158 (5.5 mg, 0.026 mmol) was dissolved in toluene and heated at 110 °C for 3 h. The title 

compound has the same Rf value as 2.158. The solvent was evaporated, and the residue was 

purified by flash chromatography (silica gel, 5% EtOAc/hexanes) to provide the title compound 

(4 mg, 73%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.36-7.25 (m, 5H), 6.53 (dd, J = 

17.0 Hz, 10.5 Hz, 1H), 5.81 (ddt, J = 17.0 Hz, 10.5 Hz, 5.5 Hz, 1H), 5.73 (brs, 1H), 5.19 (d, J = 

17.5 Hz, 1H), 5.15-5.11 (m, 3H), 4.57 (d, J = 5.0 Hz, 2H), 3.56 (d, J = 15.5 Hz, 1H), 3.54 (d, J = 

16.0 Hz, 1H), 2.89 (d, J = 15.0 Hz, 1H), 2.87 (d, J = 16.5 Hz, 1H); 13C NMR (125 HMz, CDCl3) 

δ 175.5, 143.6, 141.4, 133.0, 132.0, 128.4, 128.2, 126.9, 126.5, 117.6, 114.7, 65.6, 58.2, 43.2, 

41.1; FTIR (thin film, CHCl3) 3086, 2927, 2853, 1729, 1495, 1446, 1262, 1219, 1163, 988, 906; 

HRMS (TOF ES) cald for C17H19O2, m/z 255.1385 [M+H]+, found: 255.1375. 
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