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A critical event in the rejection of transplanted organs is the migration of effector or memory T 

cells to the graft.  The prevailing view is that the key steps involved in this process, integrin-

mediated firm adhesion followed by transendothelial migration, are dependent on the activation 

of Gαi-coupled chemokine receptors on T cells.  In contrast to this view, we demonstrate in vivo 

that cognate antigen is necessary for the firm adhesion and transendothelial migration of CD8+ 

effector T cells specific to graft antigens and that both steps occur independent of Gαi signaling.  

Presentation of cognate antigen by either graft endothelial cells or bone marrow derived antigen 

presenting cells that extend into the capillary lumen was sufficient for T cell migration.  The 

adhesion and transmigration of antigen non-specific (bystander) effector T cells, on the other 

hand, remained dependent on Gαi but required the presence of antigen-specific effector T cells.  

These findings underscore the primary role of cognate antigen presented by either endothelial or 

bone marrow derived antigen-presenting cells in the migration of T cells across endothelial 

barriers and have important implications for the prevention and treatment of graft rejection. 
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1.0  INTRODUCTION 

1.1 OVERVIEW 

Allograft rejection is caused by both naïve and memory T cells [1].  Naïve T cells encounter 

alloantigens in secondary lymphoid tissues where they differentiate into effector T cells – these 

in turn migrate to and reject the graft [2].  Memory T cells, in contrast, can initiate rejection by 

directly homing to the graft itself [3-5].  The prevailing view is that effector and memory T cell 

migration to vascularized organ transplants follows the classical leukocyte migration paradigm 

[6].  According to this paradigm, chemokines displayed on the inflamed endothelium engage 

Gαi-coupled chemokine receptors on rolling T cells and trigger their firm adhesion and 

transmigration via integrin-dependent mechanisms [7].  Although blocking integrins has been 

shown to reduce T cell infiltration and delay graft rejection [8, 9], targeting individual or 

multiple chemokine receptors has had modest or no effects [10-12].  This prompted us to re-

examine the role of Gαi-coupled chemokine receptors in the migration of effector and memory T 

cells to vascularized organ transplants.   

Using mouse models of heart and kidney transplantation and intravital high-resolution 

microscopy, we establish that T cell firm adhesion and transmigration across the graft 

endothelium is primarily driven by cognate antigen and not by Gαi-dependent chemokine 

receptor signaling.  Importantly, we demonstrate that the antigen presentation step required for T 
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cell migration is not restricted to endothelial cells but is also carried out by bone marrow derived 

antigen-presenting cells in the graft. 

1.2 ROLE OF CD8+ T CELLS IN ALLOGRAFT REJECTION 

Naïve and memory T cells both play an important role in mediating the rejection of vascularized 

organ transplants [1].  Naïve T cells are exposed to alloantigens in secondary lymphoid tissues 

where they are primed to differentiate into effector T cells which in turn migrate to and reject the 

graft [2].   

Alloreactive T cell recognition of allograft MHC antigen is the main precipitating event 

that eventually leads the rejection of vascularized organ transplants [13].  Alloreactive T cells are 

thought to recognize alloantigens through either the direct or indirect pathway [14].  In the 

“direct” pathway, intact donor major histocampatibilty complexes (MHC) with peptide are 

recognized directly by T cells on the surface of donor antigen presenting cells [15].  In the 

“indirect” pathway, recipient antigen presenting cells process donor MHC molecules and utilize 

self MHC to present this non-self peptide to recipient T cells [15].  However, experiments 

demonstrating that dendritic cells (DCs) are able to acquire and present functional MHCs from 

the surrounding microenvironment has led to the theory that CD8+ T cells may be able to 

recognize alloantigen “directly” through the “semi-direct” pathway [16].  Therefore, although the 

specific mechanisms remain unclear, three different pathways have been proposed by which 

CD8+ T cells recognize alloantigen (Figure 1) [15].  
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Figure 1. Pathways of alloantigen presentation. 

 

 

 

 

 

 

 

 

The three pathways of alloantigen presentation (direct, indirect, and semi-
direct) are shown.  The frequency (%) of T cells that react to a specific 
pathway is indicated where known. APC: antigen presenting cell; MHC: 
major histocompatibility complex molecule; TCR: T cell receptor for antigen.  
Taken from: Kaplan et al, Immunotherapy in Transplantation: Principles and 
Practice, Wiley-Blackwell, 2012.  
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CD8+ memory T cells are crucial players in the adaptive immune response that protects 

against infection [17] because of their long-term survival in humans [18] and rapid response to 

foreign antigen [19].  Unfortunately, due to a phenomenon known as heterologous immunity,  

 

Figure 2. Heterologous immune response: cross-reactivity or bystander activation. 

 

 

 

 

 

 

 

Previous immunological exposures can influence the course of future immune 
responses to unrelated stimuli, a phenomenon termed as heterologous 
immunity.  This event may occur through at least two mechanisms: T-cell 
cross-reactivity or bystander activation.  (A) The normal immune response to 
a pathogen, such as a virus, occurs when APCs process viral protein and 
present antigenic peptides complexed to self-major MHC molecules. (B) 
Unlike the standard immune response, the precursor frequency in 
alloreactivity can be as high as 1 in 10.  A portion of the alloreactive 
repertoire may also recognize various antigens in the context of self-MHC.  
This ‘molecular mimicry’ occurs when a foreign MHC molecule containing 
self-peptide imitates the viral antigen complexed to self-MHC.  (C) 
Alternatively, the heterologous response could occur through bystander 
activation, as viral-specific T cells release growth factors, cytokines, 
inflammatory mediators, etc., activating alloreative T cells in a non-specific 
manner. Taken from: Adams et al, Heterologous Immunity: an overlooked 
barrier to tolerance, Immunological Reviews, 2003.  
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CD8+ memory T cells that are generated during immunological responses to infections (Figure 2, 

A) cross-react with donor allo-antigens (Figure 2, B) [20].  In addition to cross reactivity, 

alloreactive T cells could become activated in a non-specific manner by the release of 

inflammatory mediators from viral-specific T cells, a process known as bystander activation 

(Figure 2, C) [21].  Unlike naïve T cells, CD8+ memory T cells have the ability to migrate 

directly from the bloodstream to reject allograft tissue without prior antigenic priming in 

lymphoid organs (Figure 3) [3].  Therefore, CD8+ memory T cells are an important barrier to 

allograft survival and lead to the rejection of life saving organ transplants [22].   

 

 

 

 

Figure 3. Memory T cells are able to migrate directly to the recipient’s graft. 

 

 

 

 

Unlike naïve T cells that require activation by antigen within secondary 
lymphoid tissue, CD8+ memory T cells have the ability to migrate directly 
from the bloodstream to reject allograft tissue without prior antigenic priming 
in lymphoid organs. 
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Acute organ transplant rejection has been successfully reduced by treatment with 

immunosuppressive drugs [23].  However, side effects including renal toxicity, neurotoxicity and 

the induction of diabetes, limit the dosage that may be provided and the long-term effectiveness 

of treatment [24-26].  Furthermore, immunosuppressive therapy leads to an increased risk of 

infection and malignancy, affecting the over-all health of the patient [27].  The induction of 

donor-specific tolerance has consequently become a major goal in the field of transplantation 

research [28].  Although many tolerance induction strategies successfully target naïve T cells, 

memory T cells have proven to be a barrier [20].   

Due to both the side effects of immunosuppressive drugs used for the prevention of 

allograft rejection [24-26] and the barriers to successful tolerance induction [20], developing 

novel treatment modalities to prevent the migration of CD8+ effector or memory T cells to 

allograft tissue may prolong organ transplant survival.  However, the signals and mechanisms 

involved in CD8+ memory T cell migration to transplanted organs have not been determined. 

 

1.3 TRANSENDOTHELIAL MIGRATION OF CD8+ T CELLS 

There is though to exist a common blood-borne pool of memory T cells, which possess broad 

migratory capability [29] and undergo transendothelial migration from the bloodstream to 

peripheral tissues in order to perform their role in immune surveillance, host defense and 

transplant rejection [3, 30].  Although the specific mechanism of CD8+ memory T cell migration 

has not been determined, it is thought to operate under the paradigm of the leukocyte adhesion 

cascade: selectin mediated rolling, chemokine receptor activation, firm arrest due to binding of 
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high-affinity adhesion molecules to endothelial ligands, and subsequent transendothelial 

migration (Figure 4) [31].  Circulating leukocytes are thought to constitutively express low 

affinity adhesion molecules [32], which undergo conformational change to their high-affinity 

state after chemokine receptor signaling [33]. 

 

 

 

Figure 4. The updated leukocyte adhesion cascade. 

 

 

 

 

 

 

The orginal three steps are shown in bold: rolling, which is mediated by 
selectins, activation, which is mediated by chemokines, and arrest, which is 
mediated by integrins.  Progress has been made in defining additional steps: 
capture (or tethering), slow rolling, adhesion strengthening and spreading, 
intravascular crawling, and paracellular and transcellular transmigration.  Key 
molecules involved in each step are indicated in boxes.  Taken from: Ley et 
al, Getting to the site of inflammation: the leukocyte adhesion cascade 
updated, Nature Reviews Immunology, 2007.  
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1.4 THE ROLE OF CHEMOKINE RECEPTOR SIGNALING IN 

TRANSENDETHELIAL MIGRATION OF LEUKOCYTES 

Chemokines presented by the endothelium bind specific G-protein coupled receptors (GPCRs) 

expressed on the surface of leukocytes and stimulate intracellular signaling, predominantly 

through the Gαi pathway, which is responsible for the firm arrest of leukocytes and their 

subsequent trans-endothelial migration [34].  Intracellular signaling modulates adhesion 

molecule function by two different methods [35]:  (i) triggering the lateral mobility of adhesion 

molecules on the plasma membrane to form heterodimer clusters, known as clustering [36]; and 

(ii) stimulating conformational change of adhesion molecules to their high-affinity state [34].  

Although lateral mobility clustering is involved [37], studies suggest that adhesion molecules 

must adopt their high-affinity conformation in order to facilitate the firm arrest and subsequent 

transendothelial migration of lymphocytes [7].   

The migration of CD8+ memory T cells to both the skin and the small intestine is 

dependent on chemokine receptor stimulation [38, 39].  Skin homing cells express adhesion 

molecule cutaneous lymphocyte antigen (CLA), as well as either chemokine receptor CCR10 or 

CCR4 [40, 41].  CD8+ memory T cells that migrate to the small intestine express the integrin 

α4β7 and the chemokine receptor CCR9 [42].  Genetic deletion of chemokine receptors CCR1, 

CCR5 or CXCR3 in the host resulted in reduced effector T cell accumulation in cardiac 

allografts and significantly delayed rejection [43-45].  Additional experiments examining 

effector T cells demonstrated that treatment with either anti-CCR5 or anti-CXCR3 monoclonal 

blocking antibodies prolonged allograft survival [43, 44].   
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Figure 5. Memory T cells migrate to heart allografts independent of CXCR3 chemokine signaling. 

 

 

 

 

 

 

 

 

 

 

Migration of wild type (WT) and CXCR3-/- memory T cells to cardiac 
allografts: Sorted WT (CD45.2, Thy1.1) and CXCR3-/- (CD45.2, Thy1.2) 
polyclonal CD4+ and CD8+ memory T cells were cotransferred to congenic 
(CD45.1, Thy1.2) recipients 2 days after cardiac allograft transplantation. 
Allografts were harvested at 20 and 72 hr after cell transfer. Cotransferred 
WT and CXCR3-/- memory T cells that infiltrated the graft were identified 
and quantitated by flow cytometry according to the gating strategy shown (a). 
(b) Quantitation of transferred WT and CXCR3-/- memory T cells recovered 
from allografts removed from WT recipients (two independent experiments; 
n=3 mice/experiment; mean+/-SD). Proliferation of recovered CD8 memory 
T-cell populations determined by CFSE dilution is shown in the histograms. 
(c) Immunofluorescence staining of cardiac allograft tissue demonstrating the 
presence of CXCR3-/- (CD45.2) memory T cells within the myocardium 6 
days after transfer to congenic WT (CD45.1) recipients. Transferred T cells 
appear green (CD45.2+), endothelial cells red (CD31+), and nuclei blue 
(DAPI). White bar=50 [mu]m (magnification, x60). (d) Quantitation of 
transferred naive WT T cells and WT and CXCR3-/- memory T cells as 
described under (b) except that recipients were aly/aly-spleen mice (two 
independent experiments; n=3 mice/experiment; mean+/-SD). n.s.=not 
significant. Taken from: Oberbarnscheidt, Walch, et al, Memory T cells 
migrate to and reject vascularized cardiac allografts independent of the 
chemokine receptor CXCR3, Transplantation, 2011.  
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However, recent studies demonstrated that blocking recipient chemokine receptor 

CXCR3 had minimal impact on mouse cardiac allograft rejection [11].  In our investigation of 

the role of chemokines in memory T cell migration, we found that the migration of both CD4+ 

and CD8+ memory T cells to heart allografts occurs independent of CXCR3 chemokine receptor 

stimulated signaling (Figure 5) [12].  In addition, we demonstrated that cardiac allograft rejection 

by memory T cells is independent of CXCR3 and CCR5 chemokine signaling (Figure 6) [12].  

Taken together these findings indicate that the role of chemokine receptor signaling, through the 

common Gαi pathway, in the migration of effector and memory T cells to vascularized organ 

transplants should be more thoroughly investigated. 

 

 

Figure 6. Cardiac allograft rejection by memory T cells is independent of CXCR3 and CCR5. 

 

 

 

 

 

 

Cardiac allograft rejection by memory T cells is independent of CXCR3 and 
CCR5: CD4+ and CD8+ memory T cells were transferred to aly/aly-spleen 
recipients 2 days after cardiac transplantation and allograft survival was 
determined by palpation (a). Control mice did not receive any exogenous T 
cells or received naive T cells. Rat anti-mouse CCR5 antibody was 
administered daily for 15 days starting on the day before transplantation. No 
significant difference in allograft survival was observed among the groups 
that received memory T cells. (b) Representative cardiac allograft histology 
(hematoxylin-eosin staining) from the indicated groups showing extensive 
cellular infiltrate and myocyte destruction with active arteritis (magnification, 
x30). Taken from: Oberbarnscheidt, Walch, et al, Memory T cells migrate to 
and reject vascularized cardiac allografts independent of the chemokine 
receptor CXCR3, Transplantation, 2011.  
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1.5 CHEMOKINE INDEPENDENT MIGRATION OF T CELLS 

Adhesion molecules expressed on the surface of T cells must adopt a high-affinity conformation, 

which may occur through chemokine stimulated Gαi signaling, in order to promote endothelial 

crawling and subsequent transendothelial migration [7].  Pertussis toxin (PTx) is a commonly 

used toxin that irreversibly blocks Gαi function and thereby inhibits chemokine-dependent T cell 

migration [46, 47].  Although the treatment of CD8+ memory T cells with PTx prior to adoptive 

transfer into a (non-transplanted) mouse inhibited migration to the recipient’s lymph nodes and 

peritoneal cavity, PTx treatment did not alter CD8+ memory T cell migration to the recipient’s 

bone marrow, lung or liver [48].  These results suggested that the migration of memory to T cells 

to select peripheral tissues, in a non-inflammatory microenvironment, may occur independent of 

chemokine signaling [48].  More specifically in a mechanistic sense, these results also suggest 

that the adhesion molecules on memory T cells may adopt a high-affinity conformation 

independent of endothelial chemokine stimulated signaling through the Gαi pathway.  

Naïve T cells have been the predominant cell type utilized in the majority of in-vivo and 

in-vitro studies investigating the migration of lymphocytes to peripheral tissues, leading to the 

currently accepted paradigm for the leukocyte adhesion cascade [31].  However, the phenotype 

and function of naïve T cells differ dramatically from primed effector or memory T cell 

subpopulations [49]. The analysis of human CD4+ memory T cells identified a subset that 

constitutively express the high-affinity VLA-4 integrin (α4β1), prior to chemokine stimulation, 

which mediate high rates of initial attachment and firm arrest to VCAM-1 under flow conditions 

[50].  In comparison, human CD4+ naïve T cells do not constitutively express high affinity VLA-

4 and exhibit significantly lower accumulation on VCAM-1 enriched endothelium [50].  This 



 12 

phenotypic difference in constitutive high-affinity adhesion molecule expression between CD4+ 

memory and naïve T cell populations could explain some of the functional differences that have 

been observed between CD8+ memory and naïve T cells.   

Compared to naïve T cells, memory T cells are preferentially recruited to sites of 

inflammation and immune reactions [51].  Two-photon live tissue intravital imaging data has 

shown that CD8+ memory T cells generated more frequent invasive filopodia and transmigrated 

more rapidly than their naïve counterparts [7].  Autoaggressive T cells, known as 

encephalitogenic T lymphoblasts, that initiate experimental autoimmune encephalomyelitis 

(EAE) in a mouse model, express an elevated level of high-affinity VLA-4 adhesion molecules 

that facilitate firm arrest to endothelial VCAM-1, without a requirement for chemokine-

stimulated Gαi signaling [52].  Furthermore, the T lymphoblasts were captured independent of 

selectin mediated rolling [52].  This suggests a model in which constitutively expressed high-

affinity VLA-4 is the exclusive receptor responsible for encephalitogenic T lymphoblast capture 

to the CNS blood vessel wall [53].   

Murine peripheral blood T lymphocytes have also been shown to constitutively express a 

small subset of high affinity VLA-4 adhesion molecules that allow for firm arrest on endothelial 

VCAM-1, even in the absence of stimulatory chemokines [53].  IL-2 signaling, which is 

involved in the development of CD8 memory T cells [20, 54, 55], appears to trigger the 

induction of high-affinity VLA-4 integrin on circulating peripheral blood T lymphocytes in a 

chemokine independent fashion [56].  Additional studies demonstrated that the quantity of high-

affinity VLA-4 is upregulated on T cells that are dependent on IL-2 [57].  More directly re-

evaluating the leukocyte adhesion cascade in primed effector or memory T cells is necessary due 
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to the numerous phenotypic and functional differences between naïve and primed effector or 

memory T cells. 

 

1.6 THE ROLE OF COGNATE ANTIGEN PRESENTATION IN THE MIGRATION 

OF T CELLS 

Chemokine stimulated inside-out signaling through the Gαi pathway has been the major focus 

when investigating the mechanisms of leukocyte adhesion, as they pertain to migration of T cells 

to sites of inflammation or vascularized organ transplants.  However, an alternative mechanism 

that may direct the migration of effector or memory T cells is the interaction of the T cell 

receptor (TCR) with cognate antigen presented by endothelial or tissue resident antigen-

presenting cells (APC) [58-62].  Cognate antigen stimulation of the TCR triggers inside-out 

signaling, independent of the Gαi pathway [63, 64], which changes the conformation of integrins 

(namely, LFA-1 and VLA-4) from a low affinity to a high affinity ligand binding state (Figure 7) 

[63, 65, 66].  

Intravital microscopy of the murine cremasteric vascular bed revealed that recognition of 

endogenously derived HY peptide on the endothelium enhanced the transendothelial migration 

of HY-specific T cells into the tissue [59].  However, this study did not investigate the specific 

roles of chemokine-stimulated Gαi signaling versus cognate antigen stimulation through the TCR 

on either the firm adhesion or transendothelial migration.  An analysis of the early stages of a 

mouse autoimmune diabetes model found that diabetogenic CD4+ T cells only infiltrated islets of 
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Figure 7. Intergrin inside-out signaling. 

 

 

 

 

 

 

 

 

The figure outlines the key signaling events that occur downstream of 
chemokine and T and B cell receptors that lead to integrin activation. Inactive 
integrins exist in a bent conformation, and the α and β cytoplasmic tails are 
held in close proximity by a salt bridge between residues found in the 
membrane-proximal region of the tail. Activation of a variety of signaling 
pathways results in the recruitment of GTP-bound Rap1 and activated talin to 
the integrin, leading to tail separation. The conformational change in the 
cytoplasmic region is transmitted through the integrin transmembrane domain 
and results in structural changes in the extracellular region, leading to an open 
conformation that can bind ligand with high affinity. The C-terminal rod 
domain of talin interacts with the actin cytoskeleton to provide physical 
coupling of the integrin to the actin network of the cell. Many other molecules 
interact with integrin cytoplasmic tails, but exactly how these interactions are 
coordinated with integrin activation is unclear. Taken from: Abram, et al, The 
ins and outs of leukocyte integrin signaling, Annual Review of Immunology, 
2009.  
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Langerhans presenting their specific cognate antigen, and that this migration process occurred 

independent of chemokine stimulated the Gαi signaling [67, 68].  The infiltration of antigen 

specific diabetogenic CD4+ T cells was required in order to induce the migration of non-specific 

CD4+ T cells to the islets of Langerhans and initiate the development of murine autoimmune 

diabetes signaling [67, 68]. Dissecting the roles of chemokine-stimulated Gαi signaling and the 

presentation of cognate antigen on the migration of CD8+ effector or memory T cells to 

vascularized organ transplants would provide specific details to be included in the paradigm of 

the leukocyte adhesion cascade. 

 

1.7 TWO-PHOTON INTRAVITAL MICROSCOPY 

Intravital microscopy is the most advantageous technique to utilize in order to determine the 

mechanistic details of T cell migration to vascularized organ transplants [69].  

Immunofluorescence of histological tissue sections is a useful technique that provides a static 

analysis of cellular migration [12].  However, intravital microscopy facilitates the dynamic 

analysis of cellular morphology, interactions and motility parameters [70].  In regard to the 

leukocyte adhesion cascade, live in vivo imaging of graft tissue allows the visualization of 

specific steps including firm adhesion and transmigration [71].   

Two-photon fluorescence occurs when two photons, of approximately the same energy, 

excite a fluorophore simultaneously [72].   The excitation level produced by the two photons 

together is equal to a single photon possessing twice the amount of energy [73].  Therefore, light 

from two photons together result in an excited molecule emitting fluorescence equivalent to that 
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caused by a single photon with half the wavelength (Figure 8) [73].  The longer infra-red (IR) 

wavelengths used in two-photon microscopy are advantageous for two reasons: (1) light 

scattering is decreased at longer wavelengths [74] and (2) biological tissues are considered 

optically transparent in the “optical window” from 700  to 900nm because of the minimal 

absorbance of light by water, lipids and hemoglobin within these higher wavelengths (Figure 9) 

[72].   The optical transparency of tissues to IR light allows two photon microscopes to penetrate 

tissues deeper than single photon confocal microscopes, up to 400µm in the lymph nodes as an 

example [75].   

 The other main advantage of two-photon microscopy over single-photon confocal 

microscopes is that excitation is confined exclusively to the focal plane (Figure 8) [76].  This 

limits the photobleaching and phototoxicity of a biological sample imaged by two-photon 

 

 

Figure 8. Localization of excitation by two-photon excitation. 

 

 

(a) Single-photon excitation of fluorescein by focused 488-nm light (0.16 
NA). (b) Two-photon excitation using focused (0.16 NA) femtosecond pulses 
of 960-nm light.  Taken from: Zipfel, et al, Nonlinear magic: multiphoton 
microscopy in the biosciences, Nature Biotechnology, 2003. 
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microscopy to occur only at the focal plane [73].  Tissue damage is decreased by using two-

photon microscopy because the generation of toxic byproducts of excitation, such as singlet 

oxygens and free radicals, is reduced [74].  Two-photon microscopy overcomes the limitations of 

single-photon confocal microscopy by reducing the amount of light scattering, photobleaching 

and phototoxicity.  

 

 

Figure 9. The absorption spectra of major tissue light absorbers haemoglobin and water. 

 

 

 

In the ‘optical window’ between 700 and 900 nm there is little single-photon 
absorption (except by melanin that has a high absorption coefficient and may 
be present in lymph nodes and spleens of non-albino mice). Biological tissues 
are considered optically transparent in this commonly used imaging window.-
Taken from: Phan, et al, Practical intravital two-photon microscopy for 
immunological research: faster, brighter, deeper, Immunology & Cell 
Biology, 2010. 
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Two-photon microscopy is regarded as the gold standard methodology for intravital 

imaging analysis of living animals in minimally invasive fashion [77].  Two-photon microscopy 

has been utilized to analyze the dynamic cellular interactions of lymphocytes in the murine lungs 

[78], lymphoid organs [79], and the central nervous system [80].  Additionally, our laboratory 

 

 

Figure 10. Setup for two-photon microscopy of the transplanted mouse kidney. 

 

 

 

(A) Renal graft in imaging cup and holder arm (white arrow) before 
placement of cover slip. Note vascular pedicle (red arrow) and exposed ureter 
(yellow arrow). (B) Anaesthetized mouse with renal graft immobilized in 
imaging cup (white arrow) under objective lens of upright microscope.  Taken 
from: Camirand, et al, Multiphoton Intravital Microscopy of the Transplanted 
Mouse Kidney, American Journal of Transplantation, 2011. 
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established a procedure to perform two-photon intravital microscopy of the transplanted mouse 

kidney (Figure 10) [69].  Two-photon intravital microscopy is the ideal existing methodology to 

investigate the specific steps of the leukocyte adhesion cascade as it pertains to the migration of 

effector and memory T cells to vascularized organ transplants. 

 

1.8 CLINICAL RELEVANCE 

The central paradigm of the leukocyte adhesion cascade is that chemokine stimulated signaling 

through the Gαi pathway is required for the firm arrest of leukocytes and their subsequent trans-

endothelial migration into tissues [34].  Early experiments involving effector T cells 

demonstrated that treatment with either anti-CCR5 or anti-CXCR3 monoclonal blocking 

antibodies prolonged allograft survival [43, 44].  However, recent studies have failed to confirm 

a necessary role for these chemokine receptors in rejection of vascularized organ transplants 

[11].  On the other hand, blockade of VLA-4 leads to cardiac allograft prolongation and possible 

long-term acceptance [81].  However, perhaps due to diminished immunosurveillance, the 

treatment of patients with monoclonal antibodies against VLA-4 has been associated with the 

development of progressive multifocal leukoencephalopathy (PML), which is a deadly 

demyelinating disease of the white matter in the brain [82].  Therefore, understanding the 

specific roles of chemokine stimulation and cognate antigen recognition in the firm adhesion and 

transmigration of effector or memory T cells to vascularized allografts may provide an additional 

therapeutic targets that could be utilized to prolong the survival of life saving organ transplants. 
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2.0  METHODS 

2.1 MICE 

C57BL/6J (B6) (Thy1.2, CD45.2, H-2b), B6.PL-Thy1a/CyJ (Thy1.1, CD45.2, H-2b), BALB/cJ 

(BALB/c) (H-2d), C57BL/6J-Tg(CAG-OVA)916Jen/J (CD45.2, H-2b) (B6-OVA), C57BL/6-

Tg(TcraTcrb)1100Mjb/J (CD45.2, H-2b) (OT-I), and B6 CD11c-YFP mice were purchased from 

The Jackson Laboratory (Bar Harbor, ME).  B6.Cg-Tcratm1Mom Tg(TcrLCMV)327Sdz (P14) 

mice (CD45.2, H-2b) and B6 H2Kb-/- were purchased from Taconic (Germantown, NY).  B6 

OVA+CD11c-YFP+ mice and OVA+H2Kb-/- mice were generated by cross breeding B6-OVA 

mice with either B6 CD11c-YFP or B6-H2Kb-/- mice respectively.  H2kB6-Ly5.2/Cr (Thy1.2, 

CD45.1, H-2b) were purchased from National Cancer Institute (NCI).  OT-I mice were bred onto 

the Rag-/-Thy1.1 and Rag-/-Thy1.2 backgrounds.   Alymphoplasia mice (Map3k14aly/aly, Thy1.2, 

H-2b) (aly/aly) were purchased from CLEA (Osaka, Japan) and bred onto a B6 CD45.1 congenic 

background.  All animals were maintained under SPF conditions.   

2.2 SURGICAL PROCEDURES AND BONE MARROW CHIMERAS 

Splenectomies and heterotopic transplantation of vascularized heart and kidney grafts were 

performed as previously described [2, 69, 83].  Heart graft rejection was defined as cessation of 
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palpable heartbeat and was confirmed by histological analysis.  Bone marrow chimeras were 

generated by irradiating recipient mice with 1000cGy from a Nordion Gamma Cell 40 cesium 

source.  After irradiation the mice were injected retro-orbitally with 1 x 107 donor bone marrow 

cells.  After an 8-week reconstitution period, blood was phenotyped to verify appropriate 

reconstitution.  Chimerism was consistently greater than 90 – 95% in the blood and was 

confirmed in selected kidneys.  

 

2.3 GENERATION, ISOLATION, AND ADOPTIVE TRANSFER OF EFFECTOR 

AND MEMORY T CELLS 

2.3.1 Polyclonal Cells. 

Polyclonal CD4+ and CD8+ effector and memory T cells were generated as described [12].  

Briefly, B6 (CD45.2) mice on the Thy1.1 and Thy1.2 backgrounds were immunized i.p. with 2 x 

107 BALB/c splenocytes on days 0 and 21.  One or 6-8 wks after the first immunization, spleen 

and lymph node cells were harvested to obtain effector and memory T cells, respectively, and 

enriched for T cells by negative selection, labeled with carboxyfluorescein diacetate 

succinimidyl ester (CFSE) (Invitrogen), treated or not with 200 ng/ml pertussis toxin (PTx) 

(Sigma) for 30 minutes at 37° C (5% CO2), and CD44highCFSE+ CD4+ and CD8+ effector and 

memory T cells were sorted on a BD Aria Plus high-speed sorter (purity ~95%).  To study 

migration, equal numbers of PTx treated (Thy1.1, CD45.2) and untreated (Thy1.2, CD45.2) 

CD4+ and CD8+ effector or memory T cells (2-3 x 106 each) were co-transferred i.v. into B6 
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(Thy1.2, CD45.1) or splenectomized aly/aly (aly/aly-spleen, Thy1.2, CD45.1) recipients of 

BALB/c heart allografts.  To study allograft rejection, the same number of PTx treated or 

untreated memory T cells were transferred separately into aly/aly-spleen recipients. 

 

2.3.2 Monoclonal (TCR-tg) cells. 

Dendritic cells (DC) were generated by culturing bone marrow cells with IL-4 and GM-CSF 

(Peprotech) for 8 days.  DC were stimulated with 100 ng/ml LPS overnight and pulsed with 

either 10 g/ml OVA         

for 2 hours at 37° C.  2-3 x 106 OVA or LCMV peptide-pulsed DC were injected i.v. with 5 x 

105 OT-I (Thy1.1, CD45.2) or P14 (Thy1.2, CD45.2) T cells, respectively, into B6 (Thy1.2, 

CD45.1) mice based on published method [84].  Five days later, spleen and lymph node cells 

were labeled with CFSE, treated with PTx or not, and OT-1 and P14 effectors recovered by high-

speed sorting CD45.2+CD8+CFSE+ cells.  Flow analysis confirmed that > 95% of these cells 

were CD44high and were OVA or LCMV MHCI-tetramer positive (Beckman-Coulter).  OT-I 

and/or P14 effectors, with or without PTx treatment, were then co-transferred i.v. (1-2 x 106 

each) into B6 (Thy1.2, CD45.1) recipients of either B6-OVA or B6 heart grafts.   

To study the role of VLA-4 in migration, OT-I effector T cells were incubated prior to 

transfer with 100 µg/ml monoclonal rat anti-mouse VLA-4 antibody (PS/2, BioXCell) on ice for 

20 minutes.  In addition, recipients received 250 µg PS/2 i.p. on the day of cell transfer, and 1 

and 2 days later.   

For the intravital imaging studies, cells were labeled prior to transfer with 2 M CFSE, 

cell tracker orange (CTO), or cell tracker violet (CTV) (Invitrogen) and high-speed sorted by 
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gating on CD45.2+CFSE+/CTO+/CTV+ cells and using the following dump channel: 

CD4+CD45R/B220+CD11c+CD11b+CD49b+Ly-76+CD16/32+F4/80+.  Flow analysis confirmed 

that sorted populations were > 95% CD8+CD44+ and were tetramer positive.  OT-I and/or P14 

effectors, with or without PTx treatment, were then co-transferred i.v. (7-10 x 106 each) into B6 

(Thy1.2, CD45.1) recipients of either a B6-OVA, B6 or chimeric kidney grafts. 

2.4 ANALYSIS OF CELL MIGRATION BY FLOW CYTOMETRY 

Heart grafts, kidney grafts, spleen, and lymph nodes were harvested at the indicated time points 

after T cell transfer.   Lymphocytes were isolated from heart and kidney grafts as previously 

described [12].  Total number of recovered lymphocytes was determined and the transferred 

polyclonal and monoclonal T cells enumerated by flow cytometry by gating on the 

CD45.2+Thy1.1+ and CD45.2+Thy1.2+ populations after live/dead cell discrimination and 

exclusion of non-T cells (CD45R/B220+CD11c+CD11b+CD49b+Ly-76+CD16/32+ F4/80+ cells).  

All fluorochrome- or biotin-tagged antibodies were purchased from BD Pharmingen, 

eBioscience, Biolegend, or R&D Systems:  BDCD90.1 (OX-7), CD90.2 (30-H12), CD45.2 

(104), CD45.1 (A20), CD8  (53-6.7), CD4 (RM4-5), CD44 (IM7), CD62L (MEL-14), 

CD45R/B220 (RA3-6B2), CD11c (HL3), CD11b (M1/70), CD49b (DX5), Ly-76 (TER-119), 

CD16/32 (2.4G2), and F4/80 (BM8).  Fixable live/dead Aqua cell stain (405nm excitation) was 

purchased from Invitrogen.  Flow acquisition was performed on LSRII and LSRFortessa 

analyzers (BD Biosciences), and data analyzed using Flowjo software (Treestar Corp.). 
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2.5 INTRACELLULAR CYTOKINE STAINING 

OT-I and P14 effector T cells were cultured overnight with B6 splenocytes in the presence of 5 

µg/mL of SIINFEKL or KAVYNFATM peptides respectively with Brefeldin A (eBioscience).  

Cells were stained for surface markers and then fixed/permeabilized (BD cytofix/cytoperm).  

Cells were then stained with IFNγ (XMG1.2, eBioscience) or isotype control.   

 

2.6 MUTLI-PHOTON INTRAVITAL MICROSCOPY AND IMAGE ANALYSIS 

Multi-photon intravital microscopy was performed on transplanted kidneys using an established 

method [69].  An Olympus FluoView FV1000 microscope with a Mai Tai DeepSee 

femtosecond-pulsed laser (Spectra-Physics), tuned and mode-locked to either 825nm or 860nm, 

was used for all experiments.  The recipient mouse was anesthetized with isoflurane and oxygen 

and placed on a heating pad to maintain core body temperature at 37°C.  An i.v. line was inserted 

in the external jugular vein to provide 5% dextrose lactated ringer’s solution for hydration and 

500kDa dextran conjugated with either FITC or Rhodamine for visualization of blood vessels in 

the transplanted kidney.  The kidney graft was extraverted from the abdominal cavity with intact 

vascular connection and immobilized in a custom cup mount [69].  A coverslip was placed on 

top of kidney and z-stacks were visualized with a 25x water immersion objective (SP1 NA:1.05) 

25 µm to 55 µm below the kidney capsule.  12 slices were acquired at a step size of 2.7 µm.  

Brightness and laser power were adjusted based on the imaging depth and kept below phototoxic 

levels.  Dwell time was set to 8 µs/pixel and resolution was a maximum of 512 x 512.  The 
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scanning area was cropped to adjust for a 30 second-long stack that was then repeatedly scanned 

up to 60 times for a maximum imaging time of 30 minutes per location.  These settings were 

repeated up to five locations per transplanted kidney.  T cells were enumerated at seven 

independent time points per z-stack.  

Volocity software (Perkin-Elmer) was utilized to analyze acquired movies.  Drift was 

corrected using the blood vessels as a reference point.  Cells present in the field of view for at 

least five time points (> 2 min) were tracked in the x, y, and z direction for the duration of each 

video.  Cells were determined to have firmly adhered if they were arrested for >30 sec in the 

capillary lumen and transmigrated if the majority or all of the cell body had moved outside the 

capillary lumen at any time during the course of their tracking.  The motility parameters were 

plotted using Volocity. 

 

2.7 IN-VITRO MIGRATION ASSAY 

5µm pore size chemotaxis assay chamber (Millipore) was utilized with or without 0.5 g/ml IP-

10 in medium in the bottom chamber.  5x104 OT-I effector T cells, isolated as described above, 

with or without pre-treatment with PTx were placed in the top chamber of each well for a total of 

7-12 wells per group.  The chamber was incubated at 37° C for 3 hrs after which the cells in the 

bottom chamber were collected and counted using a hemocytometer and trypan blue exclusion.  

The assay was repeated using OT-I effector T cells re-stimulated with SIINFEKL-pulsed DCs at 

37°C for two hours prior to use in the chemotaxis assay.   This restimulation protocol was 

sufficient to induce IFNγ production in 60% of the cells. 
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2.8 STATISTICAL METHODS 

Statistical analysis of allograft survival was calculated using the log-rank test.  All other 

experiments were analyzed using unpaired t test (2-tailed) for samples with normal distribution 

and the Mann-Whitney test (2-tailed) for samples with a non-Gaussian distribution.  All 

statistical calculations were made in GraphPad Prism 5.0c.  Significance was set at P<0.05.   

 

 

2.9 STUDY APPROVAL 

All animal studies were approved by the University of Pittsburgh IACUC, Protocol# 12050385, 

PHS assurance # A3187-01. 
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3.0  RESULTS 

3.1 CD8+ T CELLS MIGRATE TO HEART ALLOGRAFTS INDEPENDENT OF GαI 

SIGNALING  

 

To investigate whether Gαi-dependent chemokine receptor signaling in T cells is required for 

their migration to vascularized organ grafts, we transplanted BALB/c (H-2d) heart allografts into 

B6 (H-2b) mice and two days later co-transferred pertussis toxin (PTx)-treated and untreated 

CD4+ and CD8+ memory or effector (CD44high) T cells from B6 mice immunized with BALB/c 

splenocytes.  PTx ADP-ribosylates Gαi proteins, irreversibly blocking Gαi mediated signal 

transduction and thereby inhibiting chemokine-dependent T cell migration [46, 47].   

Grafts were removed 1, 3, and 6 days after cell transfer and the transferred CD8+ T cells 

were identified by flow cytometry using congenic markers.  Comparable numbers of PTx-treated 

and untreated CD8+ memory T cells were present in the grafts on days 1, 3, and 6 after transfer 

and the two cell populations proliferated equally, progressing from no division on day 1 to > 8 

divisions by day 6 (Figure 11).  Results similar to those in Figure 11 were obtained when memory 

T cells were transferred to splenectomized alymphoplastic (aly/aly) mice lacking secondary 

lymphoid tissues due to an autosomal recessive mutation that causes a deficiency in the systemic 

lymph nodes (Figure 12), indicating that PTx-treated CD8+ memory T cells migrate to the grafts  
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Figure 11. Gαi-independent migration of memory T cells to heart allografts. 

 

 

 

 

without first proliferating in secondary lymphoid tissues.  Likewise, equal numbers of PTx-

treated and untreated CD8+ memory T cells infiltrated allografts allowed to heal for 50 days in 

splenectomized aly/aly recipients (Figure 13), suggesting that acute graft inflammation is not a 

pre-requisite for T cell migration.   

Migration of T cells to the lymph nodes is directed by a Gαi-dependent signaling process 

[85]. Therefore, the significantly diminished migration of PTx-treated T cells to the lymph 

nodes, as compared to untreated cells, confirmed that chemokine stimulated Gαi signaling was 

blocked in these cells (Figure 14).   

PTx-treated and untreated T cells were co-transferred into recipients of 
BALB/c cardiac allografts 2 days after transplantation.  Graph depicts 
enumeration of transferred memory CD8+ T cells in the graft on day one, 
three and six after cell transfer.  T cell proliferation for co-transferred cells 
treated with PTx (black outline) and untreated (grey) is shown in the CFSE 
histograms.  Results are mean ± s.e.m.; n.s. = not significant. 
 



 29 

 

 

Figure 12. Gαi-independent migration occurs in the absence of secondary lymphoid tissue. 

 

 

 

 

 

Next, we extended our analysis of the migration of BALB/c primed allo-reactive T cells 

to vascularized organ transplants from memory T cells to effector T cells.  The migration of 

CD8+ effector T cells was examined utilizing the same experimental methods as previously 

detailed for memory T cells, except that grafts were removed at three and six days after cell 

transfer.  Similar to results for memory T cells, CD8+ effector T cells migrated to the grafts 

independent of Gαi signaling (Figure 15).   

PTx-treated and untreated T cells were co-transferred into recipients of 
BALB/c cardiac allografts 2 days after transplantation.  Graph depicts 
enumeration of transferred memory CD8+ T cells in the graft of 
splenectomized aly/aly recipients on day one, three and six after cell transfer.  
T cell proliferation for co-transferred cells treated with PTx (black outline) 
and untreated (grey) is shown in the CFSE histograms.  Results are mean ± 
s.e.m.; n.s. = not significant. 
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Figure 13. Acute graft inflammation is not required for Gαi-independent T cell migration.  

 

 

 

 

 

In contrast to our experimental findings for alloreactive BALB/c primed memory and 

effector T cells, neither naïve (CD44low) (Figure 16) nor pre-existing (natural) memory (Figure 17) 

T cells transferred from non-immunized mice could be detected in significant numbers in the 

grafts.   

 

 

PTx-treated and untreated T cells were co-transferred into recipients of 
BALB/c cardiac allografts 50 days after transplantation.  Graph depicts 
enumeration of transferred memory CD8+ T cells in the graft of 
splenectomized aly/aly recipients on day one, three and six after cell transfer.  
T cell proliferation for co-transferred cells treated with PTx (black outline) 
and untreated (grey) is shown in the CFSE histograms.  Results are mean ± 
s.e.m.; n.s. = not significant. 
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Figure 14. PTx treatment of transferred CD8 T cells blocks their migration to lymph nodes. 

 

 

 

 

Figure 15. Gαi-independent migration of effector T cells to heart allografts 

Graph depicts enumeration of co-transferred PTx treated (white) and 
untreated (black) CD8+ memory T cells in the lymph nodes on day one, three 
and six after cell transfer.  Results are mean ± s.e.m.; n.s. = not significant;  
*p<0.05, **p<0.01, ***p<0.001. 

PTx-treated and untreated T cells were co-transferred into recipients of 
BALB/c cardiac allografts 2 days after transplantation.  Graph depicts 
enumeration of transferred effector CD8+ T cells in the graft on day three and 
six after cell transfer.  Results are mean ± s.e.m.; n.s. = not significant. 
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Figure 16. Transferred naïve T cells do not migrate of to heart allografts. 

 

 

 

 

Figure 17. Transferred natural memory T cells do not migrate of to heart allografts. 

 

 

PTx-treated and untreated naïve T cells were co-transferred into recipients of 
BALB/c cardiac allografts 2 days after transplantation.  Graph depicts 
enumeration of transferred naive CD8+ T cells in the graft on day three and 
six after cell transfer.  Results are mean ± s.e.m.; n.s. = not significant. 

PTx-treated and untreated natural memory T cells were co-transferred into 
recipients of BALB/c cardiac allografts 2 days after transplantation.  Graph 
depicts enumeration of transferred natural memory CD8+ T cells in the graft 
on day three and six after cell transfer. Results are mean ± s.e.m.; n.s. = not 
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Using splenectomized aly/aly recipients in which allograft rejection is dependent on the 

transfer of effector or memory T cells [2, 3], we observed that PTx-treated memory T cells cause 

acute rejection of heart allografts albeit with a short but not significant delay compared to their 

untreated counterparts (Figure 18).   

 

 

Figure 18. Memory T cell mediated rejection of heart allografts occurs independent of Gαi. 

 

 

 

 

Taken together, these results indicate that, contrary to the prevailing view, Gαi-dependent 

chemokine receptor signaling is not necessary for the migration of effector and memory T cells 

to vascularized organ transplants. 

 

 

PTx-treated or untreated memory T cells were transferred into recipients of 
BALB/c cardiac allografts 2 days after transplantation.  Graph depicts heart 
allograft survival in splenectomized aly/aly recipients that received either 
PTx-treated or untreated memory T cells.  Results are mean ± s.e.m.; n.s. = 
not significant;  *p<0.05, **p<0.01, ***p<0.001.  
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3.2 COGNATE ANTIGEN DIRECTS THE MIGRATION OF CD8+ EFFECTOR T 

CELLS TO VASCULARIZED ALLOGRAFTS  

 

An alternative mechanism that could govern effector or memory T cell migration and 

accumulation in the tissues is interaction of the T cell receptor (TCR) with cognate antigen 

presented by the endothelium or tissue antigen antigen-presenting cells (APC) [58-62].  Similar 

to chemokine receptors, the TCR triggers inside-out signaling that changes the conformation of 

integrins (namely, LFA-1 and VLA-4) from a low to a high affinity ligand binding state [63, 65, 

66].  Unlike chemokine receptors, however, inside-out signaling via the TCR is independent of 

Gαi [63, 64].  Since we observed that blocking Gαi does not impede the migration of effector or 

memory T cells to the grafted tissue, we asked whether TCR engagement by cognate antigen 

drives the migration process. 

 To test this possibility, we transplanted B6-OVA transgenic hearts, which express the 

non-self antigen ovalbumin (OVA), or syngeneic B6 hearts, which do not express OVA, into B6 

recipients and then co-transferred PTx-treated and untreated TCR-transgenic OT-I or P14 CD8+ 

effector T cells.  All T cell transfers were performed two days after heart transplantation.  Since 

OVA is recognized by the OT-I but not the P14 TCR (Figure 19), this model allowed us to dissect 

the requirements for the migration of antigen-specific (OT-I) and non-specific (P14) T cells.   

On day 3 after cell transfer, both PTx-treated and untreated OT-I effector cells were present in 

B6-OVA grafts in comparable numbers (Figure 20) and had proliferated equally (Figure 21).  In 

contrast, OT-I cells did not migrate to wild-type B6 grafts that lack OVA, and neither PTx-

treated nor untreated P14 effector cells, which do not recognize OVA, migrated to B6-OVA 
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grafts (Figure 20).  PTx-treated OT-I cells did not home to lymph nodes in these experiments 

(Figure 22), indicating that Gαi was adequately blocked.  Moreover, PTx-treated OT-I effector T 

 

 

 

Figure 19. Monoclonal effector T cells react specifically to their cognate Ag with or without PTx. 

 

 

 

 

 

Monoclonal OT-I (specific to the SIINFEKL peptide of the OVA antigen) and 
P14 (specific to the KAVYNFATM peptide located in the GP33 epitope of 
the LCMV virus) CD8+ effector T cells were generated in vivo by co-transfer 
of naïve T cells with their respective peptide-pulsed bone marrow derived 
dendritic cells.   OT-I and P14 CD8+ effector T cells were then either treated 
with PTx or not and incubated overnight with either SIINFEKL or 
KAVYNFATM peptide-pulsed dendritic cells.  Intracellular cytokine staining 
and subsequent flow cytometry analysis depicts the percentage of OT-I and 
P14 CD8+CD44+ effector T cells expressing interferon gamma.  Flow plots 
are from one representative experiment.  Three independent experiments were 
performed with OT-I effector T cells.  Two independent experiments were 
performed with the P14 effector T cells. 
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Figure 20. Cognate antigen directs the migration of effector T cells to heart grafts. 

 

 

 

 

 

Figure 21. OT-I effector T cells proliferate in B6-OVA grafts on day 3 with or without PTx. 

 

 

PTx-treated and untreated OT-I or P14 effector T cells were co-transferred 
into recipients 2 days after transplantation of heart grafts which either express 
(B6-OVA) or do not express (B6) the cognate antigen for OT-I T cells. 
Transferred cells were enumerated in the grafts 3 days after transfer.  Results 
are mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, ***p<0.001.  

PTx-treated and untreated OT-I effector T cells were co-transferred into 
recipients 2 days after transplantation of heart grafts that express (B6-OVA) 
the cognate antigen for OT-I T cells. T cell proliferation for co-transferred 
cells treated with PTx (black outline) and untreated (grey) is shown in the 
CFSE histograms.  
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Figure 22. PTx treatment of transferred CD8+ T cells blocks their migration to lymph nodes. 

 

 

 

 

cells did not migrate in response to a chemokine gradient in vitro, either before or after 

restimulation with antigenic peptide, further confirming irreversible inhibition of Gαi function in 

these cells (Figure 23).   

Anti-VLA4 antibodies blocked the migration of PTx-treated OT-I effector cells to the 

graft (Figure 24), indicating that integrin activation, occurring via a Gαi-independent pathway, 

was still required for effector T cell migration.  These findings indicate that cognate antigen 

recognition is necessary for integrin-dependent migration of antigen-specific effector T cells to 

the graft while Gαi signaling is not required. 

Graph depicts enumeration of co-transferred PTx treated (white) and 
untreated (black) OT-I CD8+ effector T cells in the recipient’s lymph nodes 
on day three after cell transfer.  Results are mean ± s.e.m.; n.s. = not 
significant;  *p<0.05, **p<0.01, ***p<0.001. 
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Figure 23. PTx treatment blocks the in-vitro migration of re-stimulated OT-I effector T cells. 

 

 

 

 

To study the requirements for the migration of non-specific (bystander) T cells, we co-

transferred P14 and OT-I effector cells with or without PTx treatment to recipients of B6-OVA 

grafts.  P14 cells migrated to the graft only when antigen-specific OT-I cells were present and 

only P14 migration was inhibited when both cell populations were treated with PTx (Figure 25).  

In contrast, the migration of OT-I cells to the graft was independent of both P14 cells and Gαi 

signaling (Figure 26).  Therefore, migration of antigen non-specific (bystander) T cells to the 

graft is dependent on both antigen-specific effector T cells and Gαi.  

To investigate the roles of cognate antigen and Gαi in the transmigration of effector T 

cells across the graft endothelium, we performed real-time, two-photon intravital imaging of 

mouse kidney transplants, a procedure we had established in our laboratory [69].  Unlike the 

In vitro migration of PTx-treated and untreated OT-I effector T cells in 
response to IP-10 before and 6 hours after re-stimulation with cognate 
antigen.  Results are mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, 
***p<0.001. 
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Figure 24. VLA-4 is required for the migration of OT-I effector T cells to B6-OVA heart grafts. 

 

 

 

 

 

flow cytometry approach utilized in Figure 20, intravital microscopy permitted the direct 

visualization and enumeration of T cells early after transfer, prior to their proliferation in the 

graft (Figure 27).  It also allowed us to determine whether they had firmly adhered to the capillary 

wall or transmigrated and to calculate their motility parameters.   

PTx-treated and untreated antigen-specific (OT-I) or bystander (P14) effectors were 

transferred into B6 recipients of either B6-OVA or B6 kidney grafts two days after 

transplantation and the grafts were imaged 24 hours later.  OT-1 and P14 cells present in 30  

  

PTx-treated and untreated OT-I effector T cells were co-transferred into 
recipients 2 days after transplantation of B6-OVA heart grafts which express 
the cognate antigen for OT-I T cells.  Transplant recipients were either 
injected (i.p.) with anti-VLA-4 antibody or not.  Transferred OT-I cells were 
enumerated in the grafts 3 days after co-transfer.  Control group (No anti-
VLA-4) was taken from the first experimental group in Figure 20.  Results are 
mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, ***p<0.001. 
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Figure 25. Migration of non-specific effector T cells requires antigen specific cells and Gαi signaling. 

 

 

 

 

 

 

second-long z-stacks (image volumes) were enumerated at multiple representative time points 

and in multiple tissue locations.  As shown in Figure 28 (Supplemental Movies 1 & 2), OT-I cells 

migrated to B6-OVA, but not control B6 kidney grafts and their migration was not inhibited by 

PTx.  In contrast, the migration of non-specific (P14) T cells to B6-OVA grafts was considerably 

less than that of OT-I cells (15 ± 4.3 vs 101 ± 3 cells per image volume, mean ± s.e.m., p<0.001) 

and was inhibited by PTx (Figure 28, Supplemental Movie 3).  These results confirm the primary 

role cognate antigen has in effector T cell migration to organ transplants.  Similar to heart graft 

data shown in Figure 25, substantial migration of antigen-non-specific (P14) T cells to kidney  

PTx-treated and untreated P14 effector T cells were transferred with (white) 
or without (black) OT-I cells into recipients 2 days after transplantation of 
B6-OVA heart grafts expressing the cognate antigen for OT-I T cells.  
Transferred P14 cells were enumerated in the grafts 3 days after transfer.  
Control group (No OT-I) was taken from the third experimental group in 
Figure 20.   Results are mean ± s.e.m.; n.s. = not significant;  *p<0.05, 
**p<0.01, ***p<0.001. 
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Figure 26. Migration of Ag specific T cells does not require “bystander” T cells or Gαi signaling. 

 

 

 

 

 

 

Figure 27. OT-I and P14 effector T cells do not proliferate in OVA grafts 24 hours after transfer. 

 

PTx-treated and untreated OT-I effector T cells were transferred with (white) 
or without (black) P14 cells into recipients 2 days after transplantation of B6-
OVA heart grafts expressing the cognate antigen for OT-I T cells.  
Transferred OT-I cells were enumerated in the grafts 3 days after transfer.  
Control groups (No P14) are taken from the first experimental group in Figure 
20.  Results are mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, 
***p<0.001. 

Cell tracker orange (CTO) stained OT-I and cell trace violet stained (CTV) 
P14 effector T cells were co-transferred into B6-OVA kidney graft recipients 
2 days after transplantation.  Grafts were harvested and analyzed by flow 
cytometry 24 hours after cell transfer.  T cell proliferation for co-transferred 
cells treated is shown in the histograms.  
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Figure 28. Cognate antigen directs the migration of effector T cells to kidney grafts. 

 

 

 

 

OT-I and P14 effector T cells were transferred into kidney graft recipients 2 
days after transplantation.  Grafts were imaged 24 hours after cell transfer.  Z-
stacks (0.45 x 0.45 x 0.03 mm) were obtained at 30 second intervals.  
Visualization (image panels) and enumeration (graph) of PTx-treated and 
untreated OT-I and P14 cells arrested in B6-OVA or B6 kidney grafts (n = 4-5 
movies/group, two independent experiments). Top image panels are volume-
rendered representative time point images showing arrested PTx-treated (red) 
and untreated (green) cells in each of the experimental groups.  Blood vessels 

  
 



 43 

 

 

 

 

 

 

Figure 29. Migration of non-specific T cells requires Ag specific OT-I cells and Gαi signaling. 

 

 

 

 

are labeled in blue.  Bottom panels are time projections of 30 min depicting 
PTx-treated (red) and untreated (green) cell tracks.   Scale bars, 50 μm. 
Results are mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, 

  

OT-I and P14 effector T cells were transferred into kidney graft recipients 2 
days after transplantation.  Grafts were imaged 24 hours after cell transfer.  Z-
stacks (0.45 x 0.45 x 0.03 mm) were obtained at 30 second intervals.  Image 
panels are volume-rendered representative time point images of B6-OVA 
grafts after co-transfer of P14 (red) and OT-I (green) cells that were either 
treated with PTx or not.  Blood vessels are labeled in blue. Graph is 
enumeration of P14 cells arrested in B6-OVA kidney grafts in the presence or 
absence of OT-I cells and PTx (n = 2-5 movies/group, two independent 
experiments).  Control groups (No OT-I) are taken from the third 
experimental group in Figure 28. Scale bars, 50 μm. Results are mean ± 
s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, ***p<0.001.   
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grafts was observed only when co-transferred with antigen-specific (OT-I) cells and was 

completely inhibited by PTx (Figure 29).   

 To determine the location of T cells in the graft, we tracked OT-I and P14 cells for >2 

minutes and ascertained whether they were arrested inside the capillaries or had transmigrated to 

the extra-capillary space.  We found that approximately half of the OT-I cells were firmly 

adhered inside the capillary lumina while a similar proportion had transmigrated (Figure 30 and 

Figure 31).  Pre-treatment with PTx did not reduce the number of either firmly adhered or 

transmigrated OT-I cells but completely inhibited the adhesion and transmigration of non-

specific T cells (P14) (Figure 30 and Figure 31).  A PTx-treated OT-I cell tracked transmigrating 

across the capillary wall of a B6-OVA graft is shown in Figure 32.   

 

 

Figure 30. Ag specific effector T cells firmly adhere to the graft vascular lumen independent of Gαi. 

 

 

Percent of OT-I and P14 cells, tracked in the experiment shown in Figure 28 
that had firmly adhered to the capillary wall of B6-OVA kidney grafts. 
Results are mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, 
***p<0.001.   
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Figure 31. Ag specific effector T cells undergo transendothelial migration independent of Gαi. 

 

 

 

 

 

 

Figure 32. Images of a PTx-treated OT-I cell transendothelial migrating in an OVA kidney graft. 

 

Percent of OT-I and P14 cells tracked in the experiment shown in Figure 28 
that had transmigrated into the extra-capillary space of B6-OVA kidney 
grafts. Results are mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, 
***p<0.001.   

Time-lapse images showing the transendothelial migration of a PTx-treated 
OT-I cell (red) in a B6-OVA kidney graft.  Cell was tracked in the experiment 
shown in Figure 28.  Blood vessel is labeled in blue.  Scale bars, 10 μm.  
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Motility analysis confirmed that the majority of PTx-treated and untreated OT-I cells and 

untreated P14 cells enumerated in Figure 28 had arrested in the graft, as judged by their low 

velocities, short displacements, and high arrest coefficients (Figure 33, Figure 34 and Figure 35) 

[86].  Significant differences in the motility of the three cell populations, however, were 

observed.  Antigen-specific (OT-I cells) had lower velocities and higher arrest coefficients than 

non-specific P14 cells.  Moreover, blocking Gαi in OT-I cells increased their velocity and 

reduced their arrest coefficient but they remained significantly less motile than P14 cells (Figure 

33, Figure 34 and Figure 35).   

 

 

Figure 33. Ag specific cells have a lower velocity than bystander cells in grafts with cognate Ag. 

Median velocity of PTx-treated (n = 223) or untreated (n = 265) OT-I cells 
and P14 cells without PTx treatment (n = 68) imaged in B6-OVA grafts. Cells 
were tracked in the experiments shown in Figure 28.  Results are mean ± 
s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, ***p<0.001.   
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Figure 34. Ag specific cells have less displacement than bystander cells in grafts with cognate Ag. 

 

 

 

 

 

Together, these findings indicate that antigen-specific effector T cells firmly adhere to 

and transmigrate across the graft endothelium in an antigen-dependent, Gαi-independent fashion.  

However, non-specific (bystander) effector T cells are dependent on the presence antigen-

specific effector T cells and Gαi signaling to enter the graft tissue. 

 

 

 

Displacement of PTx-treated (n = 223) or untreated (n = 265) OT-I cells and 
P14 cells without PTx treatment (n = 68) imaged in B6-OVA grafts. Cells 
were tracked in the experiments shown in Figure 28.  Results are mean ± 
s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, ***p<0.001.   
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Figure 35. Ag specific cells are arrested more than bystander cells in grafts with cognate Ag. 

 

 

 

 

 

Arrest coefficient of PTx-treated (n = 223) or untreated (n = 265) OT-I cells 
and P14 cells without PTx treatment (n = 68) imaged in B6-OVA grafts. Cells 
were tracked in the experiments shown in Figure 28.  Results are mean ± 
s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, ***p<0.001.   
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3.3 PRESENTATION OF COGNATE ANTIGEN BY EITHER GRAFT 

ENDOTHELIUM OR BONE MARROW DERIVED APC IS SUFFICIENT FOR THE 

TRANSMIGRATION OF EFFECTOR T CELLS 

 

 

We next sought to determine which graft cell is responsible for presenting antigen to migrating T 

cells.  Although it is suspected that antigen presentation in the vascular lumen is an exclusive 

function of endothelial cells [87], bone marrow derived APC such as dendritic cells are known to 

extend cellular processes across endothelial and epithelial barriers in several tissues [88-90].  We 

therefore analyzed by two-photon microscopy the migration of effector OT-I cells to B6-OVA 

kidney grafts that lack the MHC class I molecule H-2Kb (which is required for presenting 

cognate OVA peptide to OT-I cells) on the endothelium, bone marrow derived APC, or both. 

As shown in Figure 36, Figure 37 and Figure 38 (Supplemental Movies 4-6), H-2Kb 

expression on either graft APC or endothelium was sufficient for the firm adhesion and 

transmigration of OT-1 effectors.  In either case, however, migration was slightly less than that 

observed if H-2Kb was present on both cell types (compared to data in Figure 28, p < 0.05), while 

total absence of H-2Kb in the graft reduced migration to minimal levels (Figure 36).  Motility 

analysis revealed that antigen presentation by bone marrow derived APC caused a greater degree 

of effector T cell arrest than endothelial cells (Figure 39, Figure 40, and Figure 41).  This 

conclusion was true for total effector T cells in the graft as well as those arrested in the capillary 

lumen (Figure 39, Figure 40, and Figure 41).   
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Figure 36. Effector T cell migration is promoted by endothelial or APC presentation of cognate Ag. 

 

 

 

 

OT-I effector T cells were transferred into kidney graft recipients 2 days after 
transplantation.  Grafts were imaged by multiphoton intravital microscopy 24 
hours after cell transfer.  Visualization (image panels) and enumeration 
(graph) of OT-I cells arrested in B6-OVA kidney grafts that lack H-2Kb 
expression on the endothelium (WT to H-2kb-/- chimeric graft to WT 
recipient), APC (H-2kb-/- to WT chimeric graft to H-2kb-/- recipient), or both 
(H-2kb-/- graft to H-2kb-/- recipient) (n = 7-10 movies/group, 2 – 3 independent 
experiments).  Top panels are volume-rendered representative time point 
images showing arrested OT-I cells (red).  Green cells in top left panel are  
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Figure 37. Effector T cells firmly adhere irrespective of endothelial or APC Ag presentation. 

 

 

 

OT-I effector T cells were transferred into B6-OVA kidney graft recipients 2 
days after transplantation.  B6-OVA kidney grafts that lack H-2Kb expression 
on the endothelium, APC or both were imaged by multiphoton intravital 
microscopy 24 hours after cell transfer.  Percent of OT-I cells tracked in the 
experiments shown in Figure 36 that had firmly adhered to the capillary wall 
of the kidney grafts.  Results are mean ± s.e.m.; n.s. = not significant;  
*p<0.05, **p<0.01, ***p<0.001.  

CD11c-YFP+ dendritic cells.  Blood vessels are labeled in blue.  Bottom 
panels are time projections depicting OT-I cells (red) tracked over 
approximately 30 min.  Scale bars, 50 μm.  Results are mean ± s.e.m.; n.s. = 
not significant;  *p<0.05, **p<0.01, ***p<0.001.  
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Figure 38. Effector T cells arrested in the graft transmigrate irrespective of Ag presentation. 

 

 

 

 

 

Imaging of OT-1 effectors in B6-OVA kidneys in which bone marrow derived dendritic 

cells (DC) are genetically labeled with YFP confirmed that the majority of arrested T cells, 

irrespective of location, make stable contacts with graft DC (Figure 42).  An example of an OT-I 

cell arresting in the capillary lumen after contact with a DC is shown graphically (instantaneous 

velocity vs time) and in time lapse images in Figure 43 (Supplemental Movie 7).  Furthermore, 

OT-I cells maintained contact with graft DC throughout the transmigration process (example 

shown in Figure 44, Supplemental Movie 8).  These findings establish bone marrow derived graft 

APC as an alternative but remarkably robust pathway by which effector T cells firmly adhere to 

and transmigrate across the capillary wall. 

  

OT-I effector T cells were transferred into B6-OVA kidney graft recipients 2 
days after transplantation.  B6-OVA kidney grafts that lack H-2Kb expression 
on the endothelium, APC or both were imaged by multiphoton intravital 
microscopy 24 hours after cell transfer.  Percent of OT-I cells tracked in the 
experiments shown in Figure 36 that had transmigrated into the extra-
capillary space of the kidney grafts.  Results are mean ± s.e.m.; n.s. = not 
significant;  *p<0.05, **p<0.01, ***p<0.001.  
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Figure 39. Graft endothelial or APC Ag presentation lowers the velocity of effector T cells. 

 

 

 

 

 

 

 

 

 

 

 

OT-I effector T cells were transferred into B6-OVA kidney graft recipients 2 
days after transplantation.  Grafts were imaged by multiphoton intravital 
microscopy 24 hours after cell transfer and cell tracks are shown in Figure 36.  
(A) Median velocity of all OT-I cells tracked in B6-OVA kidney grafts that 
lack H-2Kb expression on the endothelium (n = 168), APC (n = 206) or both 
(n = 77).  (B) Median velocity of tracked OT-I cells that remained inside the 
vascular lumen without transmigrating in B6-OVA kidney grafts that lack H-
2Kb expression on the endothelium (n = 65), APC (n = 81), or both (n = 31).  
Results are mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, 
***p<0.001.  
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Figure 40. Graft endothelial or APC Ag presentation lowers the displacement of effector T cells. 

 

 

 

 

 

 

 

 

 

 

 

OT-I effector T cells were transferred into B6-OVA kidney graft recipients 2 
days after transplantation.  Grafts were imaged by multiphoton intravital 
microscopy 24 hours after cell transfer and cell tracks are shown in Figure 36.  
(A) Displacement of all OT-I cells tracked in B6-OVA kidney grafts that lack 
H-2Kb expression on the endothelium (n = 168), APC (n = 206) or both (n = 
77).  (B) Displacement of tracked OT-I cells that remained inside the vascular 
lumen without transmigrating in B6-OVA kidney grafts that lack H-2Kb 
expression on the endothelium (n = 65), APC (n = 81), or both (n = 31).  
Results are mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, 
***p<0.001.  
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Figure 41. Graft endothelial or APC Ag presentation increases the arrest of effector T cells. 

 

 

 

 

 

 

 

 

 

 

 

OT-I effector T cells were transferred into B6-OVA kidney graft recipients 2 
days after transplantation.  Grafts were imaged by multiphoton intravital 
microscopy 24 hours after cell transfer and cell tracks are shown in Figure 36.  
(A) Arrest coefficient of all OT-I cells tracked in B6-OVA kidney grafts that 
lack H-2Kb expression on the endothelium (n = 168), APC (n = 206) or both 
(n = 77).  (B) Arrest coefficient of tracked OT-I cells that remained inside the 
vascular lumen without transmigrating in B6-OVA kidney grafts that lack H-
2Kb expression on the endothelium (n = 65), APC (n = 81), or both (n = 31).  
Results are mean ± s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, 
***p<0.001.  
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Figure 42. Majority of arrested T cells, irrespective of location, make stable contact with graft DCs. 

 

 

 

 

 

 

 

 

 

 

B6-OVA kidneys that lack H-2Kb expression on the endothelium and in 
which bone marrow derived dendritic cells (DC) are genetically labeled with 
YFP were transplanted into B6 recipients with YFP labeled DCs.  OT-I 
effector T cells were transferred to the kidney graft recipients 2 days after 
transplantation.  Grafts were imaged by multiphoton intravital microscopy 24 
hours after cell transfer and cell tracks are shown in Figure 36.  Graph depicts 
the percent of OT-I cells making stable contacts with YFP+ DC of B6-OVA 
kidney grafts (n = 7 movies, 3 independent experiments). Results are mean ± 
s.e.m.; n.s. = not significant;  *p<0.05, **p<0.01, ***p<0.001.  
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Figure 43. Visualization and instantaneous velocity of OT-I cell arrested after contact with a DC. 

 

 

 

 

 

 

 

 

 

 

Visualization (image panels) and instantaneous velocity (graph) of an OT-I 
cell (red) arrested in a blood vessel (outlined by dashed line) after making 
stable contact with a YFP+ DC (green).  B6-OVA kidneys that lack H-2Kb 
expression on the endothelium and in which bone marrow derived dendritic 
cells (DC) are genetically labeled with YFP were transplanted into B6 
recipients with YFP+ labeled DCs.  OT-I effector T cells were transferred to 
the kidney graft recipients 2 days after transplantation.  Graft was imaged by 
multiphoton intravital microscopy 24 hours after cell transfer and cell tracks 
are shown in Figure 36.  Scale bars, 5 μm.  



 58 

 

 

 

 

Figure 44. Visualization of an OT-I T cell making stable contact with a DC during transmigration. 

  

 

 

 

 

 

 

Time-lapse images showing an OT-I cell (red) making stable contact with a 
YFP+ DC (green) throughout the transmigration process.  Blood vessel is 
labeled in blue and is subtracted in lower panels.  B6-OVA kidneys that lack 
H-2Kb expression on the endothelium and in which bone marrow derived 
dendritic cells (DC) are genetically labeled with YFP+ were transplanted into 
B6 recipients with YFP+ labeled DCs.  OT-I effector T cells were transferred 
to the kidney graft recipients 2 days after transplantation.  Graft was imaged 
by multiphoton intravital microscopy 24 hours after cell transfer and cell 
tracks are shown in Figure 36.  Scale bars, 5 μm.   
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4.0  DISCUSSION 

 

4.1 COGNATE ANTIGEN DIRECTS THE MIGRATION OF EFFECTOR T CELLS TO 

KIDNEY GRAFTS 

 

Our findings shed new light on the pathogenesis of transplant rejection, and more broadly, the 

immune surveillance of non-lymphoid tissues by CD8+ T cells.  We established that a key step in 

the rejection of transplanted organs, the migration of antigen-specific effector T cells into the 

inflamed graft, is governed by cognate antigen and not by Gαi-dependent chemokine signaling.   

However, the recruitment of non-specific “bystander” T cells requires both chemokine signaling 

through the Gαi pathway and the presence of antigen specific CD8+ effector T cells (Figure 45). 

The migration of antigen-specific CD8+ T cells to non-lymphoid tissues has been studied 

previously including: entry into the central nervous system (CNS) through the blood-brain 

barrier [60], and transmigration through cremasteric venules into the muscle tissue [59].  

Experiments in both settings demonstrated that the migration of antigen specific CD8+ T cells 

into the tissues was directed by presentation of cognate antigen [59, 60].  However, neither group  
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Figure 45. Distinct migratory paradigms for antigen specific versus “bystander” effector T cells. 

 

 

 

 

 

 

 

The migration of antigen-specific CD8+ effector T cells (black circles) into the 
transplanted organ is governed by cognate antigen (small black rectangles) 
stimulation of T cell receptor signaling which leads to the expression of high-
affinity adhesion molecules (blue ovals) on the cell surface.  The migration of 
antigen-specific CD8+ effector T cells is not governed by Gαi-dependent 
chemokine signaling.  However, the recruitment of non-specific “bystander” 
CD8+ effector T cells (red circles) requires both chemokine signaling through 
the Gαi pathway and the presence of antigen specific CD8+ effector T cells. 
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examined the mechanisms of leukocyte adhesion cascade involved in the recruitment of either 

antigen specific or non-specific “bystander” cells to the respective tissue type.  The specific roles 

of chemokine signaling through the Gαi pathway versus recognition of cognate antigen in both 

the firm adhesion and transendothelial migration of CD8+ T cells was not investigated in either 

study. 

 An analysis of insulin specific T cell migration to the islet of Langerhans in the setting of 

autoimmune diabetes yielded different results for CD4+ and CD8+ T cells [58, 67, 68].  Early in 

vivo experiments in NOD mice demonstrated that both chemokine stimulated Gαi signaling and 

antigen recognition through endothelial MHC class I expression were required for insulin-

specific CD8+ T cell migration to islets [58].  This is in contrast to the results for antigen specific 

CD4+ T cell migration that were obtained more recently by another group who utilized both IP-

HEL and NOD mice as models of murine autoimmune diabetes [67, 68].  In both murine models 

of autoimmune diabetes the migration of antigen-specific CD4+ T cells to the islets of 

Langerhans required the presentation of cognate antigen and occurred independent of chemokine 

signaling through the Gαi pathway [67, 68].  In contrast, the migration of non-specific CD4+ T 

cells to the islets of Langerhans required both the presence of antigen-specfic CD4+ T cells and 

chemokine stimulated Gαi signaling [67, 68].  Taken together, similar to our discovery with 

respect to CD8+ effector T cell migration to vascularized organ transplants, in the setting of 

autoimmune diabetes, cognate antigen may direct the infiltration of antigen specific T cells to 

islets of Langerhans.  The presence antigen specific T cells then initiates the resulting immune 

response involving the entrance of non-specific “bystander” T cells to the islets.  However, 

further study with respect to CD8+ T cells and autoimmune diabetes is required to elucidate the 

differences between the two groups’ findings with respect to each T cell subtype. 
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Antigen-dependent immune surveillance of non-lymphoid tissues may be advantageous 

to the host.  By restricting the entry of effector or memory T cells to non-lymphoid sites where 

non-self antigen is present, antigen-dependent T cell migration increases the efficiency by which 

the antigen is eliminated and at the same time prevents immunopathology in tissues where the 

antigen is absent.   

Our work has provided a greater understanding for the specific roles of chemokine 

stimulation and cognate antigen recognition in the firm adhesion and transmigration of effector T 

cells to vascularized allografts.  This information may suggest additional therapeutic targets that 

could be utilized to prolong the survival of life saving organ transplants.  New treatment 

modalities are required because although therapy that blocks the VLA-4 adhesion molecule leads 

to cardiac allograft prolongation and possible long-term acceptance [81], this treatment has been 

associated with the development of progressive multifocal leukoencephalopathy (PML), a deadly 

demyelinating disease of the white matter in the brain [82].  Based on the results of our work, 

anti-MHC class I monoclonal antibodies could be developed to prevent the presentation of 

cognate antigen to circulating graft specific effector or memory CD8+ T cells.  The efficacy of 

this treatment modality in reducing the transmigration of effector or memory T cells into graft 

tissue could be tested in vivo utilizing mouse recipients of vascularized organ transplants.  

Previous investigations involving the leukocyte adhesion cascade that focused on naïve T 

cells or utilized either polyclonal effector or memory T cells would not have uncovered distinct 

migratory paradigms for antigen specific and non-specific “bystander” effector T cells.   Naïve T 

cells have not been primed and initially travel to secondary lymphoid tissues in order to interact 

with antigen presenting cells, prior to their migration to graft tissue.  In contrast, the effector and 
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memory T cell populations utilized in our experiments migrate directly to organ transplants 

without the need for priming in the secondary lymphoid tissues.   

The use of either polyclonal effector or memory T cells would mask the distinct 

migratory paradigms for antigen specific versus non-specific “bystander” effector T cells.  

Utilization of a polyclonal model does not allow for the specific identification of either: (1) the 

antigen specific T cell subset that migrates in response to the presence of cognate antigen and 

operates independent of Gαi signaling, or (2) the non-specific “bystander” effector T cells that 

migrate in response to the presence of antigen-specific T cells and are dependent on Gαi 

signaling.  Due to the small percentage of antigen specific cells within a population of polyclonal 

effector or memory T cells, treatment with pertussis toxin to block chemokine stimulated Gαi 

signaling may significantly reduce overall cell migration.  However, the inability to distinguish 

the antigen specific cell population from the non-specific “bystander” population would not 

allow the investigator to identify the distinct migratory paradigms for both cell subsets.  

Subsequently, this previously undiscovered primary role for cognate antigen presentation in the 

migration of effector or memory T cells was not appreciated until the recent use of antigen 

specific T cells in experimental models.  
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4.2 EFFECTOR T CELL MIGRATION IS PROMOTED BY ENDOTHELIAL OR 

APC PRESENTATION OF COGNATE ANTIGEN. 

 

The role of cognate antigen presentation by the endothelium in the migration of T cells has been 

studied previously at the blood-brain barrier [60], the cremasteric venules [59] and pancreatic 

islets of Langerhans [58].  However, it has not been determined whether tissue resident bone 

marrow derived antigen presenting cells direct T cell migration into non-lymphoid tissues.  

Dendritic cell projections are capable of penetrating through epithelial and vascular beds 

and into the lumen of a variety of tissue types [88, 91, 92].  Confocal microscopy analysis of 

aortic CD11c+ dendritic cells located beneath the endothelium depicted processes that could 

penetrate endothelial cells and protrude into the lumen [88].  Two-photon microscopy of terminal 

ileum explants captured rare images of tissue resident dendritic cells that internalized 

noninvasive Salmonella bacterium through processes that extended into the lumen of the small 

bowel [91].  Similarly, immunofluorescence staining conducted by another group demonstrates 

that intraepithelial dendritic cells extend projections into the airway lumen [92].  

Girard et al demonstrated that dendritic cells controlled the migration of naïve T 

lymphocytes to lymph nodes by modulating the phenotype of high endothelial venules [93].  

Specifically, in vivo depletion CD11c+ dendritic cells decreased the firm adhesion and increased 

the rolling velocity of lymphocytes transiting through the high endothelial venules of peripheral 

lymph nodes [93].  Microscopy analysis conducted by the Unanue group reveals contact between 

CD11c-YFP+ dendritic cells and activated 3A9 T cells that have infiltrated the islets of 

Langerhans [67].  However, neither study directly proves a role for dendritic cells in the 

transendothelial migration of lymphocytes.  To our knowledge, visualization of bone marrow 
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Figure 46. Effector T cell migration is promoted by endothelial or APC presentation of cognate Ag. 

 

 

 

 

 

 

 

The migration of antigen-specific CD8+ effector T cells (black circles) into the 
transplanted organ is governed by cognate antigen (small black rectangles) 
stimulation of T cell receptor signaling which leads to the expression of high-
affinity adhesion molecules (blue ovals) on the cell surface.  Either 
endothelial or bone-marrow derived APCs (a dendritic cell is presented in 
yellow) may present cognate antigen and are sufficient to direct the migration 
of antigen-specific CD8+ effector T cells into the graft. 
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derived antigen presenting cells directing the transendothelial migration of circulating 

lymphocytes into the extravascular space has not been presented to date. 

 Intravital two-photon microscopy that we performed on the transplanted kidney 

established that antigen presentation by bone marrow derived graft antigen presenting cells is 

sufficient for arresting effector T cells in the capillary lumen and inducing their transmigration 

across the capillary wall.  This is a previously unappreciated pathway of effector T cell entry into 

vascularized organ transplants and it sheds new light on the pathogenesis and treatment of 

rejection.  Dendritic cells may become a specific target to prevent allograft rejection due to their 

role in promoting the migration of effector T cells into transplanted organs.  If specific cell 

surface markers are identified as being expressed by dendritic cells, yet absent from other cell 

types in organ transplants then those markers could become targets for future therapies aimed at 

depletion of dendritic cells from allograft tissue. 

Antigen presentation by the endothelium is also sufficient to direct the migration of 

effector T cells into transplanted organs.  However, endothelial cells may not be promising 

targets for ablation therapy to induce tolerance.   Targeted depletion of an allograft’s endothelial 

layer may lead to complications and side effects that disrupt the normal physiological functions 

of the transplanted organ.  

The specific roles of both recipient and donor bone marrow derived antigen presenting 

cells in the transmigration of graft specific effector T cells remain to be determined.  Different 

combinations of chimeric donor kidneys and recipient mice, with or without reconstitution of 

bone marrow derived antigen presenting cells, could be utilized to determine if any specialization 

occurs among APCs of donor or recipient origin. 
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To our knowledge, we present the first visual evidence of tissue resident dendritic cells 

arresting lymphocytes and maintaining interaction throughout the process transendothelial 

migration into the extravascular space.  This expands the accepted paradigm of the leukocyte 

adhesion cascade from a focus on cellular interaction with chemokines and ligands presented by 

the endothelial layer.   
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APPENDIX A 

SUPPLEMENTAL MOVIE LEGENDS 

Movies 1 – 3.  Time-lapse movies of PTx-treated (red) and untreated (green) OT-I effector cells 

in an B6-OVA kidney graft (Movie 1) or B6 kidney graft (Movie 2), and of PTx-treated (red) 

and untreated (green) P14 effector cells in a B6-OVA graft (Movie 3).  Blood vessels are labeled 

in blue.  All imaging was performed 24 hrs after cell transfer.  30 second-long z-stacks were 

repeatedly scanned up to 60 times for a maximum imaging time of 30 minutes.  Movies are 

shown at 10 frames per second.   

 

Movies 4 – 6.  Time-lapse movies of OT-I cells (red) in B6-OVA kidney grafts that lack H-2Kb 

expression on the endothelium (Movie 4), APC (Movie 5), or both (Movie 6).  Green cells in 

movie 4 are CD11c-YFP+ dendritic cells.  Blood vessels in all movies are labeled in blue.  

Imaging was performed as described for Movies 1 - 3.  Movies are shown at 10 frames per 

second.   
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Movie 7.   Time-lapse movie of an OT-I cell (red) arrested in the blood vessel (cyan) upon 

making contact with a CD11c-YFP+ dendritic cell (green).  Imaging was performed as described 

for Movies 1 - 3.  Movie is shown at 3 frames per second. 

 

Movie 8.   Time-lapse movie of an OT-I cell (red) making stable contact with a CD11c-YFP+ 

dendritic cell (green) during the transmigration process.  Blood vessel is labeled in cyan.  

Imaging was performed as described for Movies 1 - 3.  Movie is shown at 24 frames per second. 
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