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Strategies to protect against viral infections are essential during pregnancy.  Maternal-fetal 

transmission can have serious pathological outcomes, including fetal infection, growth 

restriction, birth defects, and/or death.  Throughout pregnancy, the placenta (composed of 

polarized trophoblasts amid stromal and vascular arrangements) is an indispensable tissue that 

forms a barrier at the maternal-fetal interface.  Viruses have likely evolved specific mechanisms 

to exploit the protective functions of placental trophoblasts to initiate fetal infection.  Despite the 

severity of pathologic disease associated with fetal viral infection, little is known regarding 

virus-host interactions at the maternal-fetal interface.  In this work, we have examined the 

mechanisms by which – 1) placental trophoblasts protect against invading viruses and 2) 

coxsackievirus B (CVB), a virus associated with fetal pathology, gains entry into polarized 

trophoblasts.  As a model, we have used cultured primary human trophoblasts (PHTs) and 

immortalized human (BeWo) trophoblasts.  

We have found that PHTs are highly resistant to infection by six disparate viruses.  PHTs 

transfer this resistance to non-placental recipient cells through exosome-mediated delivery of 

select placental microRNAs (miRNAs).  We show that members of the chromosome 19 miRNA 

cluster (C19MC), which are almost exclusively expressed in the primate placenta, are packaged 

within trophoblast-derived exosomes, and attenuate viral replication in recipient cells by 

inducing autophagy. 

VIRUS-HOST INTERACTIONS AT THE MATERNAL-FETAL INTERFACE  

Elizabeth Delorme-Axford, PhD 

University of Pittsburgh, 2013
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To study CVB entry into placental trophoblasts, we have merged virological and cell 

biological techniques, combined with pharmacological inhibitors and siRNAs directed against 

diverse cellular endocytic and signaling components, to characterize the pathways hijacked by 

CVB to promote its entry into human trophoblasts.  We found the kinetics of CVB entry and 

uncoating in placental trophoblasts similar to those described in polarized intestinal epithelial 

cells.  CVB entry into placental trophoblasts requires decay accelerating factor (DAF) binding, 

and is associated with the relocalization of virus from the apical surface to intercellular tight 

junctions.  We have identified a divergent mechanism for CVB entry that is independent of 

clathrin, caveolae, and dynamin II but is dependent on lipid-rafts and Src family tyrosine kinase 

signaling.  Our studies model viral transmission and infection at the maternal-fetal interface, and 

have the therapeutic potential for preventing prenatal infections, pre-term labor, and birth 

defects. 
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1.0  INTRODUCTION 

1.1 PLACENTAL TROPHOBLASTS 

The placenta is a highly unique tissue, formed only during pregnancy, which is absolutely 

essential for maintaining and sustaining the development of a fetus.  The primordial placenta 

begins to form approximately 6-7 days post-conception [1] and reviewed [2].  The placenta is 

primarily composed of specialized epithelial cells known as trophoblasts [3], and is derived from 

the outer trophoblast layer of the blastocyst during development of the conceptus [2].  The inner 

layer of the blastocyst will eventually form the developing embryo [3].  About one week post-

conception, the trophoblastic cells begin to superficially invade the maternal uterine epithelium, 

reviewed [4].  The placenta proper begins to form as the trophoblast layer develops into a fused 

outer layer of multinucleated syncytiotrophoblasts and an inner layer of mononuclear 

cytotrophoblasts [4].  Around five weeks of pregnancy, the first cytotrophoblasts cells migrate 

from the placenta to differentiate and further invade into the spiral arteries of the endometrial 

wall [2, 5].  

The placenta serves as the foremost maternofetal barrier during pregnancy by facilitating 

exchanges between maternal and fetal circulation [3].  Within the sterile environment of the 

uterus, the placenta also maintains a microbial-free milieu through both its highly complex 

architecture and innate immune functions, further described below [6].  As pregnancy 

progresses, the placental structure becomes more architecturally complex and defined; full 



 2 

placental modification is complete by 16 weeks of pregnancy (Figure 1.1) [4, 7].  Beyond 16 

weeks, further arrangements only occur at the primary villi [4].  The placenta is composed of 

villous tree structures (or villi) formed by intricate arrangements of stroma (a mesenchymal core 

of supportive connective tissue), fetal blood vessels that interdigitate throughout the villi, and 

trophoblasts (Figure 1.1B) [4, 8].  The hemochorial placental villi are composed of 

syncytiotrophoblasts, which are in direct contact with maternal blood.  Therefore, the 

syncytiotrophoblasts serve as an initial line of defense against any probable invading pathogens.  

Progenitor cytotrophoblast cells underlie the syncytiotrophoblast layer and sit on a basement 

membrane anchored to the stroma.  Beyond the main villous arrangement extend the extravillous 

cytotrophoblasts, which invade into the maternal uterine wall, or decidua.   

Moreover, in addition to the inherent structural complexity of the placenta, there are 

numerous APPs (antimicrobial proteins and peptides) secreted by the placenta into the amniotic 

fluid within the fetal compartment, reviewed [6].  These APPs include lactoferrin (bactericide 

and fungicide [9]), bactericidal permeability-increasing protein (BPI), histones H2A and H2B 

(inhibit the bacterial endotoxin activity of LPS, lipopolysaccharide) [10], and α-defensins 

(bactericide, fungicide, protozoacide, and enveloped virucide [11]) [6].  Interestingly, this points 

to a key, active role for the placenta in mediating antimicrobial defense, and contrasts with 

previous theories wherein pregnancy is viewed as an immunosuppressed state to support and 

prevent rejection of the semi-allogeneic fetus [12, 13].  However, there remains much to be 

discovered regarding the plethora of mechanisms the placenta must maintain to prevent the 

spread of infectious diseases to the fetus during pregnancy.        
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Figure 1.1. Human placental structure.  (A) Shown is a schematic of the human placenta at approximately 6 

weeks of pregnancy.  Maternal features: MY (myometrium), spiral arteries, decidua (or the uterine lining during 

pregnancy), and intervillous space.   Embryonic features: VT (villous tree), UC (umbilical cord), AF (amniotic 

fluid), and embryo.  (B) Shown is an enlarged view of the box in A (villous tree).  EVT (extravillous trophoblasts) 

invade and anchor the placenta into the decidual wall.  STB (syncytiotrophoblasts) overlay the villous tree and are in 

direct contact with maternal blood.  sCTB (subsyncytial cytotrophoblasts) lie between the STB and basement 

membrane of the villous tree.  Villous trees are formed with a core of stroma amid fetal blood vessels.  Figure 

modified from Robbins JR et al. 2010, full reference in text. 

1.1.1 Syncytiotrophoblasts 

The syncytiotrophoblasts are highly polarized and maintain a dense layer of microvilli at the 

apical surface (Table 1.1) [14].  These microvilli are critical to facilitate the exchange of 

nutrients, gases, and wastes between the mother and the fetus.  Furthermore, the 

syncytiotrophoblasts are multinucleated, terminally differentiated cells which no longer undergo 

mitotic division [14].  The syncytiotrophoblasts appear to be active participants in antimicrobial 

defense during pregnancy.  Several lines of evidence support a role for the syncytiotrophoblasts 

as an antimicrobial bottleneck in preventing pathogen transmission across the remainder of the 
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placental unit (see section 1.2, “Infections During Pregnancy”) [7, 8, 15-19].  Exchange of gas, 

nutrients, and wastes occurs via the syncytiotrophoblast layer, either actively or passively [14].  

The syncytiotrophoblasts are also the major synthesizers for critical hormones necessary for 

sustaining the pregnancy including: hCG (human chorionic gonadotropin), hCS (human 

chorionic somatotropin; also known as hPL or human placental lactogen), other hGHs (human 

growth hormones), oxytocin, leptin, erythropoietin, CRH (corticotropin-releasing hormone), 

hPRL (human prolactin), and PTHrP (parathyroid hormone-related protein) [3, 14].  

1.1.2 Villous cytotrophoblasts 

Cytotrophoblasts form the cellular barrier underlying the syncytiotrophoblast layer (Table 1.1).   

These cells lie on a basement membrane covering the placental villi [14].  In contrast to the 

syncytiotrophoblast, the cytotrophoblasts are mononuclear cells that continue to undergo 

proliferation.  Cytotrophoblasts function as undifferentiated progenitors for both the overlaying 

syncytiotrophoblasts and the extravillous invasive trophoblasts that serve to anchor the placenta 

into the maternal uterine wall [5].  Throughout pregnancy the cytotrophoblasts are mitotically 

active until they fuse to form a syncytium to replenish the syncytiotrophoblast layer.  The 

cytotrophoblast stratum is a continuous monolayer but becomes increasingly discontinuous 

throughout the duration of pregnancy [3, 14].  The precise mechanisms guiding cytotrophoblast 

to syncytiotrophoblast fusion are currently under debate.  However, the proportion of 

cytotrophoblastic to syncytialized nuclei persists at a ratio of approximately 1:9 throughout 

pregnancy [14].  Together, both the syncytiotrophoblast and the cytotrophoblast cells form an 

innate feto-placental defense unit against pathogen invasion. 
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Table 1.1. Differences between placental cytotrophoblasts and syncytiotrophoblasts. 

 

1.2 INFECTIONS DURING PREGNANCY 

A significant and complex, yet inadequately characterized epithelial barrier that is absolutely 

essential for protection from invading pathogens, are the polarized trophoblasts of the human 

placenta.  The placenta constitutes the major physical and cellular barrier at the maternal-fetal 

interface, and serves as the main site for gas and nutrient exchange between mother and fetus.  

As mentioned above (see section 1.1, “Placental Trophoblasts”), the syncytiotrophoblast cells 

lie in direct contact with maternal blood, and therefore comprise the initial line of defense against 

entering viruses.  Additionally, gas and nutrient exchange primarily occurs across the 

syncytiotrophoblast layer and between the fetal capillaries located within the stroma of the 
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villous trees [7].  Therefore, it is easy to see how any pathogens potentially present within the 

maternal blood could easily be transmitted to the fetus.     

In utero viral transmission from mother to fetus can potentially occur by four transit 

routes: (a) maternal endothelial microvasculature to endovascular extravillous cytotrophoblasts, 

(b) infected macrophages from maternal blood to placental trophoblast populations, (c) 

ascending infection (via the urogenital tract) culminating in vertical and/or (d) paracellular routes 

mainly through maternal blood via the syncytiotrophoblast and fetal capillaries.  Currently, the 

molecular mechanisms by which pathogens cross from the maternal to fetal to cause infection 

remain poorly defined.    

Historically, the literature investigating host-pathogen interactions at the maternal-fetal 

interface has been limited.  Recently, however, a series of papers have been published 

investigating key prenatal pathogens (such as Listeria monocytogenes and Toxoplasma gondii) 

and transmission of infection into the trophoblasts of placental explants [7, 8, 19].  Robbins et al. 

initially identified that Listeria monocytogenes infected various trophoblast populations with 

varying efficiencies [7].  These studies were performed using first trimester human placental 

explant cultures grown in on Matrigel extracellular matrix (ECM) substrates [7].  Remarkably, 

this model retains the in vivo architecture of the placenta including the syncytiotrophoblast 

covering of the villous trees, the underlying cytotrophoblasts, and the invasive extravillous 

trophoblasts (EVTs).  Robbins and colleagues found that L. monocytogenes primarily initiated 

infection at the villous cytotrophoblasts, which were not covered by a syncytiotrophoblast layer, 

while the syncytiotrophoblasts resisted infection [7].  Subsequent studies by Zeldovich et al. 

demonstrated that L. monocytogenes was trapped within vacuoles, late endosomes, and/or 

acidified lysosomes within isolated, purified EVTs or within EVTs of placental explants [8], 
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which could severely limit the spread of bacteria throughout the rest of the placental organ.   

Similarly, Robbins et al. examined Toxoplasma gondii parasitic infection in placental explants 

[19].  Interestingly, only EVTs or subsyncytial cytotrophoblasts (in which overlying 

syncytiotrophoblast breaks were present) were susceptible to infection [19].  Also in this study, 

the syncytiotrophoblasts were most resistant to infection and colonization by T. gondii [19].  

Clearly, investigation into the routes by which diverse pathogens initiate vertical transmission to 

gain access to the fetal compartment is a key area for research; not only to advance our 

understanding of host-pathogen interactions and the diverse mechanisms that cells employ to 

defend themselves against microbial invasion, but also for its significance in maternal-fetal 

health.  Knowledge gained by further investigation into pathogen invasion at the maternal-fetal 

interface has the therapeutic potential to reduce the incidences of fetal infection and death, pre-

term labor, and birth defects in utero. 

1.2.1 TORCH Infections  

During pregnancy, any maternal infection can potentially lead to vertical transmission and 

subsequent fetal disease.  However, primary TORCH perinatal infections have been identified as 

being particularly detrimental with highly pathological outcomes.  The term TORCH was 

initially coined by Nahmias et al. to designate microorganisms associated with known congenital 

and fetal disease [20].  Common neonatal clinical presentations of TORCH agents include: 

growth retardation, hepatosplenomegaly, jaundice, hemolytic anemia, 

microcephaly/hydrocephaly, intracranial calcification, pneumonitis, myocarditis, cardiac 

abnormalities, chorioretinitis, keratoconjunctivitis, cataracts, glaucoma, and hydrops [21].  

TORCH infections include toxoplasmosis, other [such as Parvovirus B19, varicella zoster virus 
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(VZV), human immunodeficiency virus (HIV), enteroviruses, and/or the bacteria Listeria 

monocytogenes and Treponema pallidum (the causative agent of syphilis)], rubella, 

cytomegalovirus, and herpes simplex viruses type 1 and 2 [20-24].  The acronym was later 

proposed to be expanded to TORCHES (to now include syphilis) [25].  There is currently 

controversy regarding routinely screening for the TORCHES panel in the clinic due to the cost-

effectiveness versus the benefits outcome; officially, it is currently not recommended to do so 

[24].  Nevertheless, some clinics routinely screen for the main TORCHES pathogens and select 

others, such as HIV.  The main TORCH microorganisms are further described in detail below.  

1.2.1.1  Toxoplasmosis 

Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii [26].  It can be spread 

through undercooked, contaminated food or through accidental ingestion of Toxoplasma oocytes 

following contact with infected cat feces.  If vertical transmission of Toxoplasma gondii occurs 

during pregnancy, it can result in devastating effects to the fetus.  The severity of clinical 

manifestations are somewhat dependent on which stage of pregnancy fetal infection occurs [24].  

If infection occurs in the first trimester, fetal death is often the result [24].  Second trimester 

infections commonly cause eye problems (chorioretinitis), hydrocephalus, and/or intracranial 

calcifications in the developing brain [24].  Third trimester infections are often asymptomatic, 

but the fetus may present with pathologies later on including fever, intrauterine growth 

restriction (IUGR), microcephaly, seizure, hearing loss, maculopapular rash, jaundice, 

hepatosplenomegaly, anemia, and lymphadenopathy [24].  If infection does occur during 

pregnancy, mothers may remain asymptomatic, and diagnoses are typically made through 

serologic testing [26].  Current therapies aimed towards treating in utero Toxoplasma gondii 

infections include drugs, such as pyrimethamine and sulfadiazine, supplemented with folinic 
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acid; however, this does not eliminate all of the parasites completely [26].  Thus, continued 

investigation into therapeutic strategies for prevention and full eradication of maternal-fetal 

infection with Toxoplasma gondii is critical for reducing the incidences of fetal death and/or 

birth defects.   

1.2.1.2    Rubella virus 

Rubella is a member of the Rubivirus genus within the Togaviridae family, and an enveloped 

virus with a positive-sense ssRNA genome of 9.7 kb.  Rubella virus infections in utero can lead 

to deafness, cataracts, heart defects, mental retardation, and liver and spleen damage [27].  

Fortunately, there is a vaccine available (MMR – measles, mumps, and rubella).  Modern 

vaccine programs have been successful in nearly eradicating congenital rubella disease; however, 

prenatal rubella infections are still possible [21].  However, there is no specific treatment for 

pregnant mothers infected with rubella virus [28].  The only available therapeutic option is non-

specific immune globulin; however, this does not ensure complete inhibition of fetal 

transmission [28].   

1.2.1.3    Cytomegalovirus (CMV) 

Human cytomegalovirus (hCMV) is a member of the β-herpesvirus family.  CMV is an 

enveloped virus with a large, dsDNA genome of approximately 240 kb.  Furthermore, CMV 

remains a significant cause of disease in neonate and immunocompromised populations.  In utero 

CMV infections are one of the most detrimental prenatal and neonatal pathogens, causing 

symptoms such liver, lung, and spleen pathologies, jaundice, seizures, and/or IUGR [29].  

Permanent and long-term effects of congenital CMV infection include hearing and/or vision loss, 

small head, mental disabilities, lack of coordination, seizures, and/or death [29].  Unfortunately, 
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there are currently limited therapeutic strategies aimed at treating CMV infections in utero and in 

affected neonates.  In cases of severe CMV infection, antiviral therapy will likely only have a 

modest effect on improving neonatal outcome [30].  Existing treatment options include using 

CMV immune globulin in pregnant mothers and the antiviral nucleoside analog ganciclovir in 

infected neonates [30].  Therefore, investigation into the causes and potential therapeutic 

approaches is key to preventing CMV-related birth defects and neonatal diseases. 

1.2.1.4    Herpes simplex viruses 1 and 2 (HSV-1 and -2) 

Herpes simplex viruses-1 and -2 (HSV-1 and -2) are members of the α-herpesvirus family, 

enveloped viruses with linear dsDNA genomes of 152 and 155 kb, respectively.  HSV-1 is the 

causative agent of cold sores, and HSV-2 is associated with genital ulcers.  Vertical transmission 

is relatively low (~5%), and the greatest risk of HSV transmission occurs during vaginal birth 

[31, 32].  If a mother has an active genital HSV infection the risk of transmission to the fetus 

during labor is around 80% [31].  HSV infections acquired in utero can cause miscarriage but 

can also be characterized by symptoms such as skin lesions or scarring, eye wounds 

(chorioretinitis, microphthalmia, cataract), neurologic issues (intracranial calcifications, 

microcephaly, seizures, encephalomacia, IUGR, and psychomotor developmental delays, or even 

stillbirth, reviewed [32].  Neonatal HSV infection acquired during vaginal delivery is 

characterized by: 1) skin, eye, or oral lesions which can progress to encephalitis, 2) HSV 

encephalitis (that can progress to neurologic morbidity), 3) multi-organ system pathology 

(including central nervous system, liver, lung, brain, adrenals, skin, eye and/or mouth) with a 

mortality risk >80% without treatment [32].  The best preventative measure is to establish 

whether the pregnant mother has, or is at risk for acquiring, HSV.  The mother can be treated 

with antiviral drugs such as acyclovir or valacyclovir during the third trimester can prevent 
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active HSV infections; however, these therapies are not approved for use during pregnancy [32].  

If the mother does have an active HSV infection at the time of birth, neonatal transmission can 

be reduced by cesarean delivery [32].  However, if fetal transmission has already occurred and 

the neonate presents with symptoms of HSV infection shortly after birth, treatment with the 

antiviral agent acyclovir can be used to prevent progression of the disease [32].  Unfortunately, if 

severe pathologies exist, antiviral therapy may not be enough to guarantee increased survival.  

Thus, development of improved approaches to both prevention and treatment of neonatal 

infectious diseases is crucial to reducing incidences of pre-term delivery, birth defects, and death. 

1.2.2 Coxsackievirus B (CVB) 

Group B coxsackieviruses (CVBs) are non-enveloped, positive-sense single-stranded RNA 

viruses and enteric members of the family Picornaviridae.  CVB infections are generally 

asymptomatic or cause mild flu-like symptoms in most healthy individuals.  However, for 

reasons that are unclear, CVB infections can also result in severe pathologies, such as aseptic 

meningitis, myocarditis, and pancreatitis [33, 34].   

Maternal CVB infection and consequential fetal transmission have been associated with 

severe pathological outcomes, including miscarriage [35], stillbirth [36], fetal sepsis [37] and 

death [38, 39], fetal myocarditis [40-42], meningoencephalitis [43], hydrops fetalis [44], 

congenital skin lesions [45], aseptic meningitis [46], neurodevelopmental delays [47], and the 

development of type I diabetes [48, 49] and thyroiditis later in life [50].  Currently, testing for 

enterovirus infections during pregnancy is not routine, and thus there is a lack of data regarding 

its prevalence.  Nonetheless, the consequential detrimental fetal pathologies of undetected and 
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untreated in utero enterovirus infections further demonstrates how critical it is to further our 

understanding of host-pathogen interactions at the maternal-fetal interface. 

1.3 VIRUS ENTRY 

1.3.1    Virus entry mechanisms  

Viruses gain entry into host cells through a variety of ways, including classical endocytic routes 

such as through clathrin- [51] or caveolar-dependent [52], or via macropinocytosis reviewed 

[53].  Additionally, other viruses may internalize via mechanisms that combine aspects of 

multiple endocytic mechanisms (such as CVB [54, 55]) or that utilize unconventional pathways 

to gain access to hosts, such as caveolar-independent lipid-raft pathways [56] or clathrin- and 

lipid-raft-independent routes such as human papillomavirus 16 (HPV-16) [57] (Figure 1.2).  

Moreover, the same virus may exploit diverse mechanisms and activate multiple signaling 

cascades, depending on cell type (organ of origin, non-polarized v. polarized, undifferentiated v. 

differentiated, cell line v. primary cell) and the particular subset of proteins and co-factors 

present within that cell; for further review see [58].  

 Briefly, clathrin-dependent endocytosis involves the uptake of vesicles coated with 

clathrin and requires dynamin II and the recruitment of various adaptor complexes such as AP2 

(adaptor protein 2) and accessory proteins such as AP180 and epsin [59].  Internalization of 

clathrin-coated vesicles by this endocytic route may be ligand-dependent or constitutive [60].  

Incoming vesicles fuse with early endosomes, wherein cargo is sorted and either recycled to the 

cell surface or trafficked further along the endosomal pathway to multivesicular bodies or 

lysosomes [61].  Caveolae are a subdomain of lipid rafts, forming morphologically distinct 
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invaginations (Ω shaped, 50-100 nm) at the plasma membrane, reviewed [62, 63].  However, 

endocytosis of caveolae structures is not constitutive, is triggered by specific ligands, and 

requires dynamin II [62, 64, 65].  Importantly, caveolae may also serve as scaffolds for the 

organized assembly of signaling molecules [66].  Lipid rafts are defined as detergent resistant, 

highly liquid-ordered, hydrophobic plasma membrane microdomains composed primarily of 

cholesterol and sphingolipids [62].  Non-caveolar lipid rafts are devoid of caveolin-1 and 

caveolae, and may or may not require dynamin II for internalization.  Macropinocytosis is a non-

clathrin, non-caveolar, dynamin-independent mechanism that requires actin for the non-specific 

uptake of fluid and other cargo, reviewed [53, 67].  The incoming vesicles termed 

macropinosomes (0.5-10 μm) are formed by the closure of actin-dependent membrane ruffles 

[68, 69].  

 

 

 

Figure 1.2. Viruses enter cells through a variety of pathways.  Shown is a schematic of diverse viruses and the 

endocytic mechanisms utilized to enter host cells, including CME (clathrin-mediated endocytosis), 

macropinocytosis, caveolin and/or lipid-rafts, and other novel pathways.  The beads at the neck of the endocytic 

vesicle indicate mechanisms that require the GTPase dynamin II.  Additional pathways that viruses use may include 

phagocytosis or the IL-2-dependent route.  Mechanisms that may be used but have not yet been identified to be 

required by any viruses, such as GEEC (GPI-enriched endocytic compartments), flotillin, and Arf6 (ADP-

ribosylation factor 6).  Figure modified from Mercer J et al. 2010, full reference in text. 



 14 

1.3.2    VSV entry 

Vesicular stomatitis virus (VSV) is an enveloped member of the Rhabdoviridae family, and a 

negative-sense ssRNA virus with a genome of 11 kb, reviewed [70, 71].  VSV can infect both 

insects and mammals (typically cattle), but rarely humans [70].  VSV was selected in these 

studies because it is an excellent model virus with a well characterized endocytic mechanism and 

is particularly sensitive to host antiviral strategies such as a type I interferon (IFN) [72] and 

autophagy [73-75].  To enter cells, VSV usurps the host clathrin machinery, as demonstrated by 

prior studies utilizing siRNAs towards clathrin heavy chain, dominant-negative mutants of Eps15 

(or epidermal growth factor substrate 15, a clathrin adaptor protein), and chlorpromazine, a 

pharmacological inhibitor of clathrin [51].  Later reports confirmed that VSV internalization 

occurred very quickly (within three minutes) and was dependent on the GTPase dynamin II (dyn 

II), but not clathrin adaptor complex AP2 [76].  VSV virions were present within early 

endosomes within one to two minutes following entry [76].  The low pH environment of the 

early endosome was required for the induction of conformational changes within VSVG (VSV 

glycoprotein), resulting in virion acidification for subsequent uncoating [71].  These studies 

overturned previous models in which decreased pH (6.2) was thought to contribute to alterations 

in VSVG, leading to fusion between the VSV viral envelope and the early endosome membrane 

[77, 78].   

1.3.3    CVB entry into polarized epithelia  

Enteroviruses (including CVB) are spread primarily via the fecal-oral route whereby, an 

individual is exposed upon consuming fecally contaminated food.  The virus must first enter the 
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polarized epithelial cells of the gastrointestinal (GI) tract to initiate host entry and infection [79].  

Despite the obvious barrier that a polarized epithelial monolayer poses, pathogens, such as CVB, 

have evolved to exploit protective cellular mechanisms, such as components of junctional 

complexes, endocytic pathways, and signaling networks, to enter hosts.   

There are six serotypes of CVB (CVB1-6); all of which require the coxsackievirus and 

adenovirus receptor (CAR), a tight junction (TJ)-localized type I transmembrane protein, to enter 

and infect cells [80-82].  A subset of CVB serotypes (CVB1, CVB3-RD, CVB5) also utilize 

decay-accelerating factor (DAF or CD55) as a secondary receptor for virus attachment and entry 

[54, 83-86].  DAF, a GPI-anchored apical surface membrane protein, localizes to the apical 

surface of polarized intestinal epithelial cells [54, 85].  We previously demonstrated that CVB3-

RD exploits an unique mechanism of entry in polarized intestinal epithelial cells [54, 55] and 

further reviewed [58].  CVB initially utilizes DAF as an attachment factor at the apical surface, 

and following binding, CVB induces DAF clustering [54].  CVB and DAF complexes traffic to 

the TJ via DAF-mediated Abl signaling and Rac-dependent actin reorganization; whereby CVB 

subsequently interacts with CAR for events required for entry [54, 87].  Earlier work has 

demonstrated that CVB enters by a lipid-raft dependent, dynamin-independent mechanism that 

combines features of caveolar endocytosis and macropinocytosis in polarized intestinal epithelial 

cells and requires Src kinases Abl and Fyn [54, 55].  Activation of Fyn kinase is required for 

caveolin phosphorylation prior to CVB internalization at the TJ [54].  Endocytosis of TJ protein 

occludin, along with small GTPases Rab34 and Rab5 were found to be required for CVB entry.  

In contrast, CVB entry into polarized HBMEC (human brain microvascular endothelial cells) 

requires caveolar endocytosis, dynamin II, and unidentified Src family tyrosine kinases (SFKs) 

[88].  However, in non-polarized HeLa cells, dynamin II and lipid rafts were necessary for CVB 



 16 

entry, while clathrin and caveolin-1 were not [89].  Additionally, unknown tyrosine kinases were 

necessary for early events in CVB infection but were not required for entry [89].  Thus, it has 

become apparent that CVB entry varies across non-polarized (HeLa) and various polarized 

epithelial and endothelial cell types (Caco-2, HBMEC) [54, 55, 88, 89]. 

1.4 EXOSOMES  

Exosomes are extracellular vesicles approximately 30-100 nm in size released by most cell types, 

and have a characteristic density ranging from 1.13-1.19 g/mL, reviewed [90-92].  Exosomal 

vesicles have been isolated in vivo from various sources, including urine, blood plasma, amniotic 

fluid, breast milk, synovial fluid, epididymal fluid, ascites pleural effusions, and bronchoalveolar 

lavage fluid [92].  Exosomes have recently gained much interest in the literature mainly due to 

their roles as cargo nanovesicles [93, 94] and as modulators of intercellular communication [92, 

94-96].  Various components have been identified to be exosomal cargo, including protein, 

mRNAs, and small RNAs such as miRNAs [94, 97].  The exosomal membrane is composed of 

cholesterol, sphingomyelin- and ceramide-rich lipid rafts [98].  These small vesicles are sensitive 

to disruption by various methods including repeated freeze/thaw and sonication [99, 100].  

  Not only do mammalian cells utilize exosomes for mediating intercellular 

communication, but viruses have usurped these mechanisms as well [101-103].  For example, 

components of human tumor virus EBV (Epstein Barr virus) was recently found within 

exosomes released from nasopharyngeal carcinomas (NPC) [102].  These exosomes contained 

latent EBV, EMBV LMP1 (latent membrane protein 1), viral miRNAs, and signal transduction 

molecules [102].  More recently, Dreux et al. published that exosomes containing hepatitis C 
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virus (HCV) particles from infected, permissive Huh-7.5 cells were sufficient to activate type I 

IFN signaling in non-permissive pDCs (plasmacytoid dendritic cells) [103].  Moreover, the 

exosomes containing the viral RNA were transferred between cells in a process requiring 

Annexin A2 (ANXA2), an RNA-binding protein necessary for multivesicular body (MVB) 

biogenesis, and various ESCRT proteins (CHMP4B, Atg4B, and TSG101) – factors necessary 

for exosome biogenesis [103].  Taken together, these studies indicate that both cells and 

pathogens utilize exosomes to facilitate critical roles in shaping the gene expression and 

signaling responses of their target recipient cells.        

The mechanisms of exosome biogenesis have been controversial and not well defined in 

the literature to date.  One model of exosome biogenesis proposes that exosomes are generated 

within late endosomes, or MVBs, and are subsequently released into the extracellular space via 

fusion with the plasma membrane of the exosome-producing cell (Figure 1.3).  Within the 

MVBs, ILVs (or intraluminal vesicles) are formed from the inward budding of the MVB 

membrane, giving rise to the subsequently released vesicles known as exosomes [92, 97].  

However, Booth et al. argued that Jurkat T cells produce exosomes from outward budding at 

discrete regions of the plasma membrane; these vesicles were also positive for exosomal markers 

such as the lipid N-Rh-PE and tetraspannins CD63 and CD81 [104].  Similarly, the role of the 

ESCRT (endosomal sorting complex required for transport) machinery has been contentious with 

various groups debating its involvement [105-107]; while others cite no evidence for its 

connection [95, 104, 108].  Furthermore, exosomes are characterized by a particular subset of 

markers, including those that are commonly present in MVBs such as TSG101, Alix, and Gag, 

among others [109], supporting that exosomes biogenesis conceivably is regulated through the 
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MVB pathway.  Additionally, exosome protein composition may be (and likely is) dependent on 

the cell type from which the exosome is derived.    

Likewise, the mechanisms by which exosomes are internalized into their target cells, and 

the factors responsible for mediating the intended recipient cell selection are somewhat 

controversial.  Feng et al. recently published that the internalization of exosomes occurs via 

phosphoinositide 3-kinase (PI3K)-dependent and dynamin II-dependent phagocytosis [110].  

However, another group – Parolini et al. described that exosome uptake was dependent on a low-

pH membrane fusion event between the exosome and the recipient cell [111].  It is possible that 

these exosome internalization events are cell-type dependent and contingent on whether the 

exosomes in question are targeted for a particular recipient cell type.  For example, does that cell 

have the correct docking factors or is the uptake process somewhat non-specific if the particular 

recipient cell is not the intended target?  There is a void in the literature regarding exosomal 

target cell selection, and identification of both the cell and exosomal factors involved in exosome 

uptake.  New evidence has suggested that the specific tetraspannin protein components anchored 

into the exosomal membrane may be key determinants in selecting which cells are targeted for 

internalizing a particular subset of exosomes [112].  Recently, exosomes have become the focus 

of pharmaceutical interest; these small vesicles have therapeutic promise as potential vaccine 

candidates, tumor immunotherapy modulators, and biomarkers (for diagnostic and prognostic 

purposes) [109]. 
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Figure 1.3. Exosome release and uptake.  (A) Shown is a schematic of exosome biogenesis through fusion of 

MVBs (containing ILVs) with the plasma membrane of the producer cell.  (B) Exosomes are released into the 

extracellular space, and (C) are taken up by recipient cells by endocytic mechanisms that are currently under debate. 

 

Intriguingly, circulating exosomes are a normal feature of human pregnancy [98].  

Placental exosomes have been isolated from the blood of pregnant women [113, 114], 

supernatants of cultured trophoblast cells [115], and trophoblast cell lines [116].  The 

syncytiotrophoblast cells are believed to release the exosomes, which may mediate “fetal-

maternal cross-talk for adaptation of the maternal organism to the ongoing pregnancy,” reviewed 

[98].  Thus far, these and/or additional roles for placental exosomes have not been further 

defined or experimentally established in the literature.  
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1.5 MICRORNAS (MIRNAS) 

1.5.1 Overview and biogenesis 

Mature microRNAs (miRNAs) are small (19-25 nt), non-coding ssRNAs that typically 

downregulate select messenger RNAs (mRNAs) post-transcriptionally reviewed [117] and 

described further below.  However, recent literature has shown that miRNAs can also function to 

post-transcriptionally stabilize or upregulate mRNA expression [118, 119].  One mechanism by 

which stabilization of the target mRNA occurs is by miRNA binding to the 3‟UTR (untranslated 

region) of the target mRNA to prevent RBPs (RNA binding proteins) from mediating RNA 

degradation [119].  

RNA polymerase II (Pol II) directs the transcription of most primary miRNA (pri-

miRNA) genes [120, 121]; whereas RNA Pol III mediates the transcription of other pri-miRNAs 

[117, 122].  The resulting pri-miRNA transcripts have structures similar to that of mRNA with 5‟ 

methylguanosine caps (5‟ m
7
GpppN) and 3‟ polyA tails [121] and reviewed [123].  As shown in 

Figure 1.4, pri-miRNAs are generated into precursor miRNAs (pre-miRNAs) by a 

„microprocessor‟ complex, consisting of RNase III enzyme Drosha and DGCR8 (DiGeorge 

syndrome critical region gene 8) in the canonical pathway of miRNA biogenesis [117].  Pre-

miRNAs (60-80 nt), characterized by their distinct hairpin secondary structure, are then exported 

from the nucleus to the cytoplasm.  This process is dependent on both RAS-related nuclear 

protein-guanosine triphosphate (RAN-GTP) and Exportin-5.  Mature miRNAs are produced by 

RNase III Dicer and TRBP [HIV trans-activating response (TAR) RNA binding protein]-

dependent cleavage of the hairpin stem to generate a duplex miRNA/miRNA* [124].  The 

duplex undergoes strand separation, and one strand of the miRNA is selectively loaded into the 
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miRNA-induced silencing complex (miRISC), which consists of a core of Argonaute2 (Ago2) 

and GW182 (glycine-tryptophan repeat containing protein of 182 kDa), Dicer, and TRBP [123, 

125].  To note, there are at least four Argonaute proteins in the mammalian system (Ago1-2), but 

only Ago2 is associated with miRISC mRNA degradation [123, 126].  However, the precise 

mechanism governing miRISC strand selection is currently under debate [127].  Although recent 

evidence has suggested that there is a structural bias for strand selection based on the stem loop 

position within each strand of the duplex miRNA, which could allow for more efficient miRISC 

assembly [128].  Khvorova et al. have described that strand selection and subsequent miRISC 

loading is dependent on the thermodynamic stability of the base pairs of each duplex strand at its 

5‟ end; the strand with the less stable base pair is subsequently selected and loaded onto the 

miRISC for mRNA targeting [129] and reviewed [130].   
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Figure 1.4. Processing mature miRNAs through the miRISC.  Shown is an overview of miRNA biogenesis.  (A) 

Either RNA Pol II or III directs pri-miRNA transcription.  (B) Pri-miRNA transcripts are structurally similar to 

mRNAs with 5‟ methylguanosine caps (5‟ m
7
GpppN) and 3‟ polyA tails.  (C) Pri-miRNAs are generated into pre-

miRNAs by a „microprocessor‟ complex, consisting of RNase III enzyme Drosha and DGCR8 (DiGeorge syndrome 

critical region gene 8).  Pre-miRNAs have distinct hairpin secondary structures, and are exported from the nucleus to 

the cytoplasm (a RAN-GTP- and Exportin-5-dependent process).  (D) Mature miRNAs are produced by RNase III 

Dicer and TRBP-dependent cleavage of the hairpin stem to produce a duplex miRNA/miRNA*.  (E) The duplex 

undergoes strand separation, and one miRNA strand is selectively loaded onto the miRISC.  Figure modified from 

Lodish HF et al. 2008, full reference in text. 

 

The mature miRNA guides the RISC to its target mRNA, and depending on the degree of 

complementarity between the miRNA and 3‟UTR mRNA target, the miRNA either: represses 

translation or induces mRNA degradation [117].  The seed sequence (nt 2-7 or 2-8) located in the 

5‟ conserved region of the miRNA, largely directs which genes will be targeted.  A single 

miRNA can potentially interact with (and target) hundreds of mRNAs to regulate global gene 

expression [131-133].  Prediction software tools such as TargetScan (http://www.targetscan.org) 

http://www.targetscan.org/
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use miRNA seed sequence predictions to calculate expected mRNA targets.  In addition to the 

transfer of miRNAs via exosomes, it has also been reported that miRNAs associate in non-

vesicle form in vivo, bound to components of the RISC complex such as Ago2 [134].  

1.5.2 Antiviral miRNAs 

Viruses have evolved extraordinary mechanisms to subvert and manipulate the host innate 

immune response.  More recently, miRNAs have emerged as strategic participants in virus-host 

interactions.  Host miRNAs can influence either antiviral or proviral responses [135].  Similarly, 

certain viruses, including members of the herpesvirus and polyomavirus families, encode for 

miRNAs to regulate the expression of host and/or viral genes during infection [136].  Thus, an 

increased awareness of miRNA functioning during infection will provide insight into the 

multifaceted interplay between viral and host defense mechanisms.      

Recently, miR-199a-3p, a cellular miRNA, was identified by Santhakumar et al. to confer 

antiviral effects against a panel of α, β, and γ Herpesviruses [including HSV-1, murine 

cytomegalovirus (MCMV), and murine herpesvirus-68 (MHV-68)] in a combined miRNA 

mimic-inhibitor genome-wide screen [135].  Following the screen, four miRNAs (including 

miR199a-3p) were found to have antiviral effects as indicated by low levels of viral replication 

with the miRNA mimic, and by enhanced replication with an antagonist (anti-miRNA) [135].  To 

further assess the effects of the identified antiviral miRNAs, each miRNA was overexpressed in 

NIH 3T3 cells [135].  Cells were then infected with the herpesvirus panel as described or Semliki 

Forest virus (SFV), a positive-sense ssRNA virus.  SFV was used for comparison because it 

increased the diversity of the viruses tested, and the antiviral effects of miR-199a-3p were further 

validated through these studies.  The authors concluded that the observed phenotype of miR-
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199a-3p was most likely due to the targeting of host genes, rather than direct targeting of virus-

specific sequences.  Direct targeting of viral mRNA was less probable due to the high sequence 

diversity of each viral genome tested.  Analysis of predicted miR-199a-3p targets revealed 

pathways that may be important for suppressing viral infection, including PI3K/Akt, 

ERK/MAPK, and oxidative stress signaling [135].  However, the validation of these targets, and 

the mechanism(s) by which miR-199a-3p mediates antiviral signaling is currently unknown.  

These findings were significant because although antiviral miRNAs have been previously 

described, a genome-wide screen for broadly antiviral cellular miRNAs had never before been 

reported.   

Interestingly, work by Pedersen et al. has demonstrated that IFN-β also impacts host 

miRNA expression during virus infection [137].  However, the eight host miRNAs that were 

identified to be upregulated by IFN-β had sequence-predicted targets within the HCV genome to 

directly target the virus for RNA degradation, reducing viral replication [137].  More recently, 

Witwer et al. showed that, following HIV infection, select miRNAs (miR-26a, -34a, -145, and 

let-7b) inhibited IFN-β secretion [138].  This further demonstrated that viruses subvert host 

miRNA networks to promote their infectious life cycles.  Taken together, these data point 

towards a role for viruses in manipulating host miRNAs, to activate or suppress cellular 

pathways, and/or to potentially target viral genomes directly to attenuate virus infection.  Clearly, 

elucidation of virus-host miRNA interactions are necessary to help us to better understand the 

complex interplay between invading pathogens and host immune defense systems.   

1.5.3 Chromosome 19 miRNA cluster (C19MC)  

The human chromosome 19 miRNA cluster (C19MC) is the largest known human miRNA 
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cluster, comprising 46 miRNAs that are highly expressed in the human placenta and 

trophoblastic exosomes [113, 115, 116, 139-142].  C19MC-associated miRNAs are almost 

exclusively expressed in the placenta with both inheritance and expression solely derived from 

the paternally expressed allele [140].  Although less common, C19MC miRNAs have been 

identified to be expressed in very rare, aggressive brain tumors and liver cancers [143-145] and 

further reviewed [146].  The C19MC is expressed on region 19q13.41 of chromosome 19, spans 

over 100 kb, and is primate-specific [147] and reviewed [141].  C19MC miRNAs are transcribed 

by RNA Pol II, and are thought to be transcribed as a long non-coding transcript from which 

mature miRNAs are generated [141] and reviewed [148].  Furthermore, using miRNA profiling, 

recent work has detected the relatively high expression of the majority of C19MC-associated 

mature miRNAs in PHT-derived exosomes, and found a strong correlation between C19MC 

miRNA levels in PHT cells and PHT-derived exosomes [115, 139].  Interestingly, C19MC 

miRNAs have been detected in the plasma of pregnant women [115, 116, 139], and blood plasma 

levels of C19MC miRNAs “decrease dramatically after delivery” [116].  Furthermore, Luo et al. 

reported that circulating C19MC miRNAs were lower during the first-trimester of pregnancy 

compared to full-term [116].  In correlation to this, clinical reports describe pathogen infection 

occurring during the first trimester as being associated with more severe and dangerous 

pathological outcomes than infection during later stages of pregnancy [149, 150].  Luo et al. also 

described the presence of C19MC miRNAs in exosomes from cultured trophoblast cells [116].  

Thus far, the functions of the C19MC associated miRNAs during pregnancy have not yet been 

described in the literature.  
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1.6 AUTOPHAGY 

1.6.1 Introduction to autophagy 

Autophagy is an evolutionarily conserved process of cellular “self-eating” that degrades aged 

organelles, protein aggregates, and ubiquitylated cargo by the formation of autophagosomes, 

double-membrane vesicles, for fusion with lysosomes reviewed [151].  Under resting conditions, 

basal levels of autophagy are very low [151].  However, multiple forms of stimuli and cell stress 

can induce autophagy (Figure 1.5), including cellular development and differentiation, nutrient 

deprivation, oxidative and endoplasmic reticulum (ER) stress, accumulation of aged organelles, 

hypoxia, and pathogen infection [151-154].  Under normal cellular conditions, various molecules 

function as inhibitors of autophagy, such as the class I PI3K/Akt signaling pathway, nutrient 

abundance, and cytoplasmic p53 [155, 156].  Downstream of PI3K/Akt, mTOR (mammalian 

target of rapamycin) is a potent negative regulator of autophagy [157].  mTOR forms a complex 

with ULK1, Atg13, and FIP200 – known as mTORC1 (mammalian target of rapamycin 

complex-1) – to inhibit autophagy [155].  ULK1 and Atg13 are hyperphosphorylated by mTOR, 

thus maintaining repression of the autophagy pathway [155].  

During autophagy, structures known as autophagosomes are formed, which are 

characterized by double- or multi- membranes (approximately 300-900 nm) [158].  There are 

four distinct phases of ATG (autophagy-related gene) activity throughout the progression of 

autophagic flux, reviewed [159].  The first stage is known as the initiation phase (or the 

nucleation step) of autophagosome formation and involves the mTORC1, the ULK1/2, and the 

Class III PI3K complexes, reviewed [156, 159].  However, the source(s) of the autophagosome 

membrane has been under constant debate with various groups citing mitochondrial origin [160], 
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endoplasmic reticulum, plasma membrane, and/or Golgi, reviewed [161].  In the canonical 

pathway of autophagy (under conditions such as nutrient deprivation), mTOR association with 

ULK1-Atg13-Fip200 is limited and ULK1 and Atg13 remain hypophosphorylated, allowing for 

membrane expansion and the generation of the isolation membrane, or phagophore [159, 161].  

Along different arms of the pathway, eukaryotic initiation factor-2 (eIF2), c-jun-N-terminal 

kinase-1 (JNK1), various GTPases, and intracellular calcium act upstream to induce autophagy 

[159].  This activates the Class III PI3K complex, composed of vacuolar protein-sorting-34 

(VPS34), VPS15, Beclin-1, ATG14, AMBRA1, UVRAG (ultraviolet radiation resistance-

associated gene protein), and Rubicon [156, 159].  The complex generates phosphatidylinositol-

3-phosphate (PI3P), possibly on the ER membrane [156, 159].  Rubicon negatively regulates the 

fusion of autophagosomes and lysosomes by interacting with UVRAG [156].  Its direct binding 

with BCL2 and BCL-XL negatively regulates beclin-1.  At the ER, the factor DFCP1 prepares for 

the expansion of the phagophore into a structure known as the omegasome [156, 161].  

Additional proteins such as ATG9, WIPI1-4, and VMP1 are present on the preliminary 

autophagic membrane [156].     

In the second stage of autophagy (also known as the elongation step) vesicle extension 

and completion occurs through two separate, conserved ubiquitin-like conjugation systems [156, 

159].  The first system requires the ATG12-conjugation system involving a heterotrimeric 

complex ATG16L1-ATG12-ATG5, which is localized to the isolation membrane and crucial for 

LC3-PE (phosphatidylethanolamine) conjugation [156, 159].  The ATG12-complex is required 

for proper elongation [156].  ATG7, an E1-like enzyme, and ATG10, an E2-like enzyme, 

promote the association of the heterotrimeric ATG12-complex on the autophagosome membrane 

[156, 159].     
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The second system – the LC3-conjugation system – is indispensable for membrane 

expansion and closure [156].  The LC3-conjugation system is comprised of LC3 (microtubule-

associated protein light chain-3) and additional autophagy related factors – ATG7, ATG4A-D, 

and ATG3 [156, 159].  LC3 is present at both the inner and outer autophagosome membrane 

with adapter functions for other substrates (including p62, NBR1, and NDP52) at the inner 

membrane [156].  LC3-I (18-kDa molecular weight protein) is converted to its secondary form 

LC3-II (16-kDa molecular weight protein) by ATG7- and ATG4-mediated cleavage, followed by 

ATG3-mediated PE (phosphatidylethanolamine)-lipidation at a conserved glycine residue at the 

LC3 C-terminus [159].  The completion of the autophagosome is followed by an ATG9 and 

ATG19 concerted removal of the ATG12 complex and outer membrane-associated LC3.  The 

third phase consists of autophagosome docking and fusion with lysosomes, to form 

autolysosomes.  The final step is the degradation of the autolysosome vesicle and its cargo, 

which is completed by lysosomal cathepsins B, D, and L.  As autophagy is an evolutionarily 

conserved cell survival and recycling pathway, the residual by-products of lysosomal 

degradation – such as amino acids and lipids – are exported to the cytoplasm for the anabolic 

generation of new macromolecules [162, 163].  More recently, alternatives of the canonical 

pathway have been identified (e.g. independent of „required‟ factors [164, 165]) and variations 

(such as mitophagy, lipophagy, virophagy, pexophagy, etc.) further complicate an already 

convoluted and inherently complex primordial biological mechanism.  
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Figure 1.5. Multiple pathways to autophagy.  Shown is a schematic demonstrating two of the myriad of pathways 

leading to the autophagic response.  (Left) Autophagy as an antiviral innate immune response downstream of TLR 

signaling following the recognition of viral nucleic acids. (Right) Autophagy is induced in response to cellular 

nutrient deprivation. 

1.6.2 Autophagy as an antiviral host defense mechanism  

The autophagy pathway also participates in antiviral host defense by: targeting cytoplasmic 

viruses for lysosomal degradation (known as xenophagy or virophagy) [166], limiting viral 

replication [74, 167], and/or interacting with innate immune components such as toll-like 

receptors (TLRs) and associated adaptors [168, 169].  Previous work has indicated that 

autophagy may be required for the activation of antiviral IFN-mediated signaling by certain 

viruses [73, 170, 171].  Autophagosome-mediated sequestration of viral antigens was required 

for recognition and innate immune signaling by endosomal toll-like receptor-7 (TLR7) [73, 171].   

Several viruses have been identified to be susceptible to host-induced antiviral autophagy 

including Sindbis virus [167], tobacco mosaic virus [172], and VSV [73-75].  Other viruses have 
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evolved mechanisms to overcome autophagy such as HSV-1 [173-175], human cytomegalovirus 

(hCMV) [176, 177], Kaposi‟s sarcoma herpesvirus (KSHV), and human immunodeficiency virus 

(HIV), reviewed [159].  However, certain viruses usurp the host autophagy machinery to 

promote and enhance their replication such as HCV [178], the picornaviruses poliovirus (PV) 

[179] and CVB [180, 181], VZV, EBV, (Epstein-Barr virus), hepatitis B virus (HBV), HPV-16, 

parvovirus B19, simian virus-40 (SV40), influenza A virus, and dengue virus reviewed [159].  

1.6.3 Autophagy as a post-birth survival mechanism  

Autophagy has been recognized as a critical post-birth survival mechanism during the early 

neonatal starvation period [154, 182-184].  This is especially important in the time immediately 

following birth when the supply of nutrients, which had been driven by the placenta, is no longer 

available [154, 182].  Mouse pups deficient in an essential autophagy factor Atg5 (and thus could 

not undergo autophagy) died within one day post-delivery compared to wild-type littermates 

[182].  Numerous studies have indicated that loss of vital pro-autophagy genes including Atg3, 

Atg7, Atg9, Atg16L1, Beclin-1, and FIP-200 lead to early embryonic lethality, reviewed [154].  

Autophagy is essential for maintaining survival immediately following birth, prior to the 

availability of mother‟s milk for neonatal nourishment.       

1.7 CLASSICAL ANTIVIRAL TYPE I INTERFERON (IFN) SIGNALING 

Interferons (IFNs) are key regulators of host antiviral innate and adaptive immune responses 

[185].  Type I IFNs include IFN- (of which there are 13 subtypes in humans) and IFN- (one 
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gene in humans), reviewed [186].  Following microbial challenge, pathogen-associated 

molecular patterns (PAMPs) are recognized by pattern-recognition receptors (PRRs) of the 

innate immune system, such as TLRs, retinoic-acid-inducible gene I (RIG-I)-like helicase (RLH) 

family members including RIG-I and MDA5 (melanoma differentiation associated gene 5), or 

DNA-dependent activator of IFN-regulatory factors (DAI), reviewed [186].  For specific viral 

PAMPs recognized by various PRRs, see Table 1.2.  PRR recognition of PAMPs leads to 

downstream activation of transcription factors, such as NF-κB (nuclear factor-κB) and IRFs (IFN 

regulatory factors) for the downstream activation of type I IFNs and select pro-inflammatory 

cytokines [186].  TLRs initiate downstream host defense signaling cascades through the 

recruitment of adaptors (such as MyD88, Toll/IL-1R (TIR) homology domain-associated protein 

(TIRAP)/MyD88-adaptor-like (MAL), TIR-domain-containing adaptor protein-inducing IFN-β 

(TRIF)/TIR-domain-containing-molecule 1 (TICAM1), and TRIF-related adaptor molecule 

(TRAM), reviewed [187].  Certain viral TLRs, including TLR3, 7, 8, and 9 localize to 

endosomes; others, such as TLR2 and 4 localize to the cell membrane (Table 1.2).  Viral PAMP 

stimulation of TLRs (and other PRRs) triggers transcription and extracellular secretion of type I 

IFN. 
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Table 1.2. Pattern recognition receptors that detect viral components. 

 

 

 

Both IFN- and IFN- exert their downstream effects by binding to type I IFN-/ 

receptors (IFNAR1/2) located at the cell membrane [188].  Activation of IFNAR1/2 results in 

downstream signaling via the JAK-STAT signaling pathway.  JAKs, or Janus kinases, are a 

receptor tyrosine kinase family including JAK1-3 and TYK2, whose self-phosphorylation serves 

as a docking site for the recruitment of STATs (signal transduction and activators of 

transcription) [186].  Following recruitment, STATS are phosphorylated, and then dissociate 

from their receptors to form hetero-or homo-dimers.  STAT dimers migrate to the nucleus to 

bind promoter cis-elements containing ISREs (IFN-stimulated response elements) to potentially 

induce the transcription of hundreds of antiviral IFN-stimulated genes (ISGs) [185, 186].  ISGs, 

such as RNA-dependent protein kinase (PKR), oligo-adenylate synthetase (OAS), myxovirus-

resistance protein (Mx) GTPase, and ribonuclease L (RNase L) exert a variety of antiviral 
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effects, including degradation of viral nucleic acids, inhibition of viral replication and gene 

translation to suppress infection [189].    

1.8 GOALS OF THIS DISSERTATION 

At the present time, our current knowledge regarding virus-host interactions at the maternal-fetal 

interface during pregnancy is limited.  The damaging fetal pathologies resulting from prenatal 

infections are clear, including but are not limited to: miscarriage, in utero fetal disease (sepsis, 

myocarditis, meningoencephalitis, aseptic meningitis, hydrops fetalis), stillbirth, pre-term labor, 

and neonatal pathologies (deafness, blindness, mental retardation, seizures, neurodevelopmental 

delays, and congenital lesions), and the development of childhood disease (type I diabetes and 

thyroiditis).  Existing strategies to protect against, or to treat, in utero pathogen infections during 

pregnancy are limited.   

Elucidation of the endocytic pathways and host signaling events associated with virus 

entry and trophoblast-mediated host defense are key factors for investigating and modeling 

pathogen transmission and infection during pregnancy.  Presently, the endocytic and signaling 

mechanisms utilized by viruses to enter and infect placental trophoblasts are unknown.  

Similarly, the defense mechanisms (used by trophoblasts to protect the developing embryo from 

pathogen invasion and infection) are poorly understood.  These studies also have the therapeutic 

potential for preventing prenatal infections, pre-term labor, and birth defects.  Specific targeting 

of molecular mediators of virus infection in the placenta is critical for reducing the incidences of 

prenatal infections and their resulting pathologies in utero. 
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 In the first chapter of these studies, our initial goal was to investigate the susceptibility of 

in vitro cultures of primary human trophoblast (PHT) cells (isolated from normal term placentas) 

to virus infection.  Surprisingly, we observed that PHTs were highly resistant to infection by a 

panel of disparate viruses (CVB, PV, VSV, VV, CMV, HSV-1).  Furthermore, we uncovered the 

remarkable finding that conditioned medium harvested from PHTs is sufficient to confer viral 

resistance to recipient cells.  Our second aim was to determine the component found within PHT 

conditioned medium that was responsible for conferring the viral resistant phenotype to recipient 

cells.  Unexpectedly, we found that PHT-derived exosomes present within the conditioned media 

were capable of inducing antiviral effects.  Our third objective was to determine the component 

within PHT-derived exosomes that was sufficient for producing the antiviral phenotype in 

recipient cells.  Interestingly, we identified three antiviral members (miR-512-3p, miR-516b-5p, 

miR-517-3p) of the chromosome 19 microRNA (miRNA) cluster (C19MC), which are expressed 

almost exclusively in the placenta and trophoblastic exosomes [113, 115, 139, 140].  Our fourth 

goal was to elucidate a possible mechanism by which the placental exosomes exerted their 

antiviral effects.  We found that autophagy was induced by PHT conditioned medium, PHT-

derived exosomes, and by the identified antiviral C19MC miRNAs, and was sufficient to 

function in an antiviral capacity. 

 The first aim of the second chapter of this dissertation was to investigate the endocytic 

mechanism by which Coxsackievirus B (CVB), a virus known to cause prenatal and neonatal 

pathologies, enters trophoblast cells.  We discovered that CVB hijacks a non-clathrin, non-

caveolar, lipid-raft dependent but dynamin II-independent pathway to enter and infect 

trophoblasts.  Our second objective was to determine host signaling pathways required for CVB 

entry into trophoblasts.  We found that CVB requires Src family tyrosine kinases to enter and 
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infect trophoblast cells.  Our final goal was to compare CVB entry in immortalized BeWo and 

primary trophoblasts.  We found that the entry kinetics and the requirement for lipid rafts were 

strikingly similar for CVB entry into either immortalized or primary trophoblasts.  Taken 

together, this work provides valuable insight into critical interactions between viruses and 

trophoblasts at the maternal-fetal interface.  
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2.0  PLACENTAL EXOSOMES CONFER VIRAL RESISTANCE 

2.1 INTRODUCTION 

Strategies to reduce fetal infection are essential during pregnancy, where maternal to fetal 

transmission of microbes can adversely impact the developing embryo, both prenatally and post-

birth [47, 190, 191].  Within the human hemochorial placental villi, the multinucleated 

syncytiotrophoblasts are in direct contact with maternal blood, and constitute a primary epithelial 

barrier for mediating fetal defense against invading microbes.  Currently, there are limited 

therapeutic options to prevent maternal-fetal transmission of pathogens during pregnancy.  

Additionally, little is known regarding the mechanisms regulating pathogen entry and invasion, 

transmission, and host defense at the maternal-fetal interface.        

In this chapter, we have examined the susceptibility of primary placental human 

trophoblast (PHT) cells to infection by diverse viruses, and the mechanisms by which these cells 

transfer and induce viral resistance to recipient cells.  Our studies model viral transmission and 

infection in the placenta, and have the therapeutic potential for preventing prenatal infections, 

pre-term labor, and birth defects.  These results illuminate pathways employed by human 

trophoblasts to suppress viral infections systemically by conferring viral resistance to non-

placental cells, suggesting a novel mechanism for shielding placental and maternal cells against 

viral infections during pregnancy. 
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2.2 RESULTS 

2.2.1 Primary human trophoblasts (PHTs) resist virus infection 

To model virus-host interactions at the maternal-fetal interface and to investigate the 

susceptibility of primary human trophoblasts (PHTs) to virus infection, we infected PHT cells
1
 

with a panel of viruses including coxsackievirus B3 (CVB), poliovirus (PV), vesicular stomatitis 

virus (VSV), vaccinia virus (VV), herpes simplex virus-1 (HSV-1), and human cytomegalovirus 

(CMV) (Figure 2.1a).  We found that PHT cells were highly resistant to infection by all of the 

viruses we tested (CVB, PV, VSV, VV, HSV-1, CMV), when compared to non-PHT (e.g. HeLa, 

human foreskin fibroblast (HFF), U2OS, and/or Vero) cells as assessed by immunofluorescence 

microscopy, RT-qPCR, or TC-ID50 assays (Figure 2.1a and Figure 2.2a-d).  This lack of viral 

replication was not due to inefficient viral binding and/or entry as virus was observed to 

internalize in PHTs but this did not lead to a productive infection (Figure 2.2e).  In fact, early 

gene expression of DNA viruses HSV-1 (Tk or thymidine kinase) and VV (rpo35) was barely 

initiated compared to non-PHT cells, indicating that inhibition of replication occurred very early 

in the virus life cycle (Figure 2.2d).  Additionally, we did not detect any defects in common 

endocytic pathways utilized by viruses for their entry such as clathrin- or caveolar-mediated, by 

transferrin (Tfn) and cholera toxin B (CTB) uptake assays (Figure 2.2f).  Transferrin (tfn) uptake 

is dependent on clathrin- [192], and CTB is dependent upon caveolar or non-caveolar lipid raft-

mediated endocytosis [28, 110, 111].  We also obtained no evidence of pre-existing antiviral and 

inflammatory signaling in PHTs as assessed by IRF3 (IFN regulatory factor 3) or NF-κB subunit 

p65 translocation (Figure 2.7a).   

                                                 

1
 PHT cells provided by Dr. Yoel Sadovsky (Magee Womens Research Institute,  

  Pittsburgh, PA).   
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Figure 2.1. Conditioned PHT medium and exosomes confer viral resistance to recipient cells.  (a) PHT or non-

PHT cells were infected with a panel of viruses, including coxsackievirus B (CVB), poliovirus (PV), vesicular 

stomatitis virus (VSV), vaccinia virus (VV), herpes simplex virus-1 (HSV-1), or cytomegalovirus (CMV).  Non-

PHT cells were as follows: HeLa (CVB, PV), U2OS (VSV, HSV-1, and VV), and human foreskin fibroblasts (HFF, 

CMV).  Shown are the percent of infected cells (assessed by IF; *p<0.0001).  (b) Non-PHT recipient cells were 

exposed for 24 hr to non-conditioned or conditioned PHT medium, and then infected with CVB, VSV, or VV.  Non-

PHT cells were as follows: HFF (CVB) and U2OS (VSV, VV.  Shown are the percent of infected cells [assessed by 

IF (CVB, VSV) or RT-qPCR (VV); *p<0.05, **p<0.005].  (c) Left, cells were exposed to non-conditioned or 

conditioned PHT medium for 24 h, and then infected with VSV or CVB.  Right, primary cells were infected with 

VSV following exposure to non-conditioned or conditioned PHT medium (*p<0.05, **p<0.005).  (d) Conditioned 

PHT medium was subjected to heat inactivation or sonication prior to 24 hr exposure to Vero cells, then infected 

with VSV.  Percent infection assessed as in (a; *p<0.0001).  (e) U2OS cells were exposed for 24 hr to non-

conditioned, conditioned, exosome-depleted conditioned medium, exosomes purified from PHT, JEG-3, or from 

three preparations of murine dendritic cell (DC), and then infected with VSV. Percent infection assessed as in (a); 

(*p<0.0005).  Each PHT exosome preparation was derived from a different placental preparation. 

2.2.2 Conditioned PHT medium confers viral resistance  

To identify the factor responsible for conferring viral resistance in PHT cells, we tested whether 

PHT conditioned medium (isolated from naïve PHT cells 48-72 hr post-plating) could transfer 

viral resistance to non-PHT recipient cells (Figure 2.1b-c, Figure 2.3a,d-e and Figure 2.7e).  

We found that exposure of diverse non-PHT recipient cells (U2OS, RL-95, Caco-2, Vero, and/or 

HT1080) for 24 hr prior to infection significantly decreased the replication of CVB, VSV, or VV 

by immunofluorescence microscopy, RT-qPCR, luciferase, and/or TCID50 assay (Figure 2.1b-c, 

Figure 2.3a,d-e and Figure 2.7e).  We observed antiviral effects with multiple viruses across 

numerous conditioned medium samples isolated from independent and unrelated PHT 

preparations (Figure 2.3d-e and Figure 2.7e).  Shown are only a sampling as we have tested >20 
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independent conditioned medium preps from individual PHT cell culture isolations.  PHT 

conditioned medium not only conferred antiviral effects in several immortalized cell types 

(Figure 2.1b-c, left panel, Figure 2.3a,d-e and Figure 2.7e), but also in physiologically relevant 

fetal and/or maternal cells human umbilical vein endothelial cells (HUVEC), human uterine 

microvascular endothelial cells (HUtMVEC), human placental fibroblasts, and HFFs (Figure 

2.1c, right panel).  In contrast, conditioned medium from other cell types such as immortalized 

trophoblast BeWo cells had no effect on virus infection (Figure 2.3b).  This effect was not the 

result of direct neutralization of the virus as incubating virus alone in the presence of conditioned 

medium and subsequently performing plaque assays had no effect on viral titers (Figure 2.3c).  

Similar to what we had observed in the PHT cells, we found that VV early gene expression was 

poorly initiated, as measured by rpo35 mRNA expression (a subunit encoding the DNA-directed 

RNA polymerase expressed within 2 hr of virus entry [193, 194]), suggesting that infection had 

not initiated in recipient cells cultured in conditioned PHT medium (Figure 2.3e).  Together, this 

data indicated that an antiviral factor secreted by PHT cells into the medium was capable of 

transferring viral resistance to non-placental recipient cells.  
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Figure 2.2. PHT cells resist virus infection. (a) Vero (top) or PHT (bottom) cells were infected with the indicated 

dilutions of GFP-VSV, GFP-HSV-1, or YFP-VV for ~40-45 hr. Shown are representative immunofluorescent 

images.  (b) TCID50 assays for VSV in either Vero (top) or PHT (bottom) cells.  Cells were infected with the 

indicated serial dilutions of virus for ~40-45 hr and then stained with crystal violet.  (c) TCID50 assays for CVB in 

either Vero (top) or PHT (bottom) cells.  Cells were infected with the indicated serial dilutions of virus for ~40-45 hr 

and then stained with crystal violet.  (d) PHT and U2OS cells were infected in parallel with CVB, VSV, HSV-1, or 

VV for ~6-7 hr.  Relative CVB, VSV, HSV-1 (VP26-GFP or early gene Tk) or VV (GFP or early gene rpo35) RNA 

was assessed by RT-qPCR (*p<0.0001).  (e) Virus entry assays were performed in PHT cells with PV, HSV-1, VV, 

or CVB (60 min post-infection). DAPI-stained nuclei are shown in blue and viruses are shown in green.  (f) Cholera 

toxin subunit B (CTB) (green) and transferrin (Tfn) (red) uptake in PHT cells.  PHT cells were exposed to Alexa 

Fluor-488 conjugated CTB and Alexa Fluor-594 conjugated Tfn for 60 min at 37
°
C, fixed, and assessed using 

confocal microscopy.  Shown are representative images of internalized CTB and Tfn.  Inset, 3x zoom. 
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Figure 2.3. The antiviral effects of PHT conditioned medium.   (a) TCID50 assays foFigure 2.3r VSV in Vero 

cells pretreated for 24 hr non-conditioned medium (top, in triplicate) or three independent preparations of 

conditioned PHT medium.  Cells were infected in the indicated dilution of virus in the presence of non-conditioned 

or conditioned medium for ~40-45 hr and then stained with crystal violet.  (b) Vero cells were exposed to non-

conditioned (Non-cond) or conditioned (Cond) medium isolated from BeWo cells for 24 hr and then infected with 

VSV.  Shown is the percent of infected cells (as assessed by IF).  (c) VSV was incubated in non-conditioned (Non-

cond) or conditioned (Cond) PHT medium (in the absence of cells) for 1 hr at 37
o
C then plaque assays performed.  

Shown are VSV titers (in pfu/mL).  (d) Left, U2OS cells were exposed to non-conditioned (Non-cond) or 

conditioned (Cond) media from two independent PHT preparations and infected with VSV.  Relative VSV RNA 

was assessed by RT-qPCR (*p<0.0001).  Right, Caco-2 or Vero cells were exposed to conditioned (Cond) medium 

isolated from four independent preparations of PHT cells for 24 hr prior to infection with VSV. Shown are the 

percent of infected cells as assessed by IF (*p<0.0005).   (e) U2OS cells exposed to non-conditioned or conditioned 

PHT medium were infected with VSV or VV for ~6 hr.  Relative VSV or VV (early gene rpo35 or early gene GFP).  

RNA was assessed by RT-qPCR (*p<0.0001).  (f) HFF cells were exposed to non-conditioned (Non-cond) or 

conditioned PHT media for 24 hr before and during infection with CMV.  Shown is the percent of infected (cells 

(assessed by IF; *p<0.05).  (g) U2OS cells stably expressing control- or C19MC-BAC were infected with CMV, and 

infection levels assessed by RT-qPCR.  Data are shown as fold-change over control (*p<0.0001).  In all panels, data 

are displayed as mean ±SD. 
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2.2.3 PHT exosomes confer viral resistance  

Based on our data obtained with the PHT conditioned medium, it was clear that a specific factor 

present in the medium was capable of conferring viral resistance to non-placental recipient cells.  

To examine and identify the factor present in the PHT conditioned medium, we subjected the 

medium to a variety of treatments, and found that the antiviral effect was not diminished by heat-

inactivation or RNase treatment (Figure 2.1d and data not shown).  However, the transfer of 

viral resistance was abolished by sonication and partially eliminated by repeated freeze-thawing 

(Figure 2.1d and data not shown).  Interestingly, exosomes are sensitive to disruption by 

sonication and repeated freeze/thaw and [99, 100].  Exosomes also function as cargo 

nanovesicles [93, 94] and mediators of intercellular communication [92, 94-96].  Consequently, 

we investigated the role of PHT-derived exosomes in transferring viral resistance to recipient 

cells
2
 (Figure 2.1e).  We found that exosomes purified from PHT conditioned medium reduced 

VSV infection in recipient cells, and that the antiviral effect was lost using conditioned medium 

depleted of PHT exosomes (Figure 2.1e).  In contrast, exosomes isolated from other cell types 

such as JEG-3, an immortalized human placental choriocarcinoma cell line, or primary murine 

dendritic cells had little to no effect on VSV infection (Figure 2.1e).  Altogether, these data 

directly support that PHT-derived exosomes are a key component within conditioned PHT 

medium with the capability to transfer viral resistance non-placental recipient cells. 

                                                 

2
 Purified exosomes and exosome-depleted conditioned media were provided by Dr.   

  Yoel Sadovsky (Magee Womens Research Institute, Pittsburgh, PA).   
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2.2.4 C19MC-derived miRNAs confer viral resistance 

The transfer of mRNA, miRNA, and proteins via exosomes facilitates intercellular 

communication [94-96].  Intriguingly, placental trophoblasts and trophoblast-derived exosomes 

almost exclusively express miRNAs from the primate-specific chromosome 19 miRNA cluster 

(C19MC) [113, 115, 116, 139-142].  Although C19MC miRNAs are among the most abundant 

miRNAs in human trophoblasts and exosomes [115], their function remains unknown.  We 

therefore investigated whether expression of the entire C19MC could induce viral resistance in 

non-PHT cells (U2OS).  U2OS cells were stably transfected with either a control-BAC (bacterial 

artificial chromosome) or a BAC-expressing the entire C19MC
3
 (Figure 2.4a).  VSV infection 

was significantly reduced in U2OS cells stably expressing a C19MC-encoding BAC compared to 

cells expressing the control-BAC (Figure 2.4a).  To narrow down which C19MC miRNAs may 

be selectively involved in mediating antiviral effects, we transiently transfected U2OS cells with 

miRNA mimics of 16 C19MC-derived miRNAs (representing the most highly expressed 

miRNAs and/or the two subfamilies of the C19MC [115, 195]); this markedly diminished VSV 

infection (Figure 2.4b and Table 2.1).  

 

 

                                                 

3
 Stable control- and C19MC-BAC U2OS cells were provided by Dr. Yoel Sadovsky  

  (Magee Womens Research Institute, Pittsburgh, PA).   
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Figure 2.4. PHT and exosomal C19MC miRNAs confer viral resistance to recipient cells.  (a) U2OS cells stably 

expressing control- or C19MC-BAC were infected with VSV (infection levels assessed by RT-qPCR; *p<0.0001).  

(b) U2OS cells were transfected with C19MC miRNA mimics that represent the miRNA sub-groups detailed in 

Table 2.1 or control mimics, and then infected with VSV (shown as percent infected cells assessed by IF; *p<0.05, 

**p<0.001).  (c) U2OS cells transfected with mimics of the six highest expressed C19MC miRNAs, scrambled 

control, or non-C19MC (miR-1, -424, -630, -720) miRNA mimics were infected with VSV (infection level assessed 

by IF or qPCR; *p<0.0005).  (d) U2OS cells transfected with mimics of the top three antiviral C19MC miRNAs or 

with scrambled control mimics were infected with VSV (infection assessed by RT-qPCR; *p<0.05, **p<0.0001).  

(e) U2OS cells, transfected with scrambled control or miR-517b mimic, were infected with VV or HSV-1 [infection 

assessed as in (D); *p<0.0001]. 

 

 

We also observed a potent inhibition of VSV infection using miRNA mimics of the 

highest expressed C19MC miRNAs [115], but not with the lowest expressed miRNAs (Figure 

2.4b and Table 2.1).  To identify individual antiviral C19MC miRNAs, we transiently 

transfected singular mimics from among the highest expressed C19MC (Figure 2.4c and Table 

2.1).  A significant reduction of VSV infection was detected with mimics of miR-517-3p, -516b-

5p, and -512-3p (Figure 2.4c-d).  We did not detect any appreciable effect on VSV infection 

with several non-C19MC-associated miRNAs, including miR-1, 424, -630, and -720
4
. (Figure 

2.4c).  Similarly, we found that miR-517-3p also decreased infection by the DNA viruses VV 

and HSV-1, suggesting a broadly antiviral function for this miRNA (Figure 2.4e).  

 
 

                                                 

4
 Data for experiments involving miR-1, -630, and -720 were provided by were provided  

  by Dr. Yoel Sadovsky (Magee Womens Research Institute, Pittsburgh, PA).   
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Table 2.1. Groups of C19MC miRNA mimics. 

 

2.2.5 Conditioned PHT medium and exosomes induce autophagy  

Viruses have developed exceptional strategies to evade and hijack cellular immune mechanisms.   

A variety of exceptional host cell strategies have been identified as critical components in 

mammalian innate immune regulation during viral infection.  One vital mechanism by which 

host cells protect against invading pathogens is through autophagy (see section 1.6, 

“Autophagy”), an evolutionarily conserved lysosomal degradation pathway.  The autophagy 

pathway participates in antiviral host defense by: targeting cytoplasmic viruses for lysosomal 

degradation (known as xenophagy or more recently, virophagy) [166], limiting viral replication 

[74, 167], and/or interacting with innate immune components such as TLRs and associated 

adaptors [73, 168, 169].  Remarkably, we found that exposure of recipient cells (U2OS, Vero) to 

PHT conditioned medium or to purified PHT-derived exosomes (as assessed by the formation of 

mRFP-LC3b-positive punctae and by electron microscopy), whereas conditioned-medium 

depleted of PHT-exosomes had no effect (Figure 2.5a-b and Figure 2.6a-b).  Furthermore, PHT 
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conditioned medium induced the upregulation (>2-fold) of several key pro-autophagy transcripts 

(e.g., ATG4C, UVRAG, LC3A, and PIK3C3) while having no effect on other innate immune 

pathway components (e.g. toll-like receptors, interferon regulatory factors, cytokine-mediated 

signaling) in U2OS cells exposed to conditioned PHT medium (Figure 2.6c and Appendix B), 

supporting the induction of autophagy.  Additionally, the pharmacological agent 3-

methyladenine (3-MA), an inhibitor of the type III PI3K critical for autophagosome biogenesis 

[196], inhibited canonical autophagic induction in recipient cells exposed to conditioned PHT 

medium (Figure 2.5c).  Lastly, we investigated VSV entry into recipient cells that had been 

previously cultured in conditioned PHT medium, and found that incoming VSV particles were 

trafficked to LC3b-positive punctae, suggesting that viruses are shuttled from the endosomal to 

the autophagic pathway for degradation, limiting viral replication (Figure 2.5d). 
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Figure 2.5. PHT-derived exosomes induce autophagy in recipient cells.  (a) U2OS cells transfected with mRFP-

LC3b were exposed to non-conditioned (Non-cond), PHT conditioned (Conditioned), exosome-depleted conditioned 

PHT medium (Exo-depleted), or purified PHT exosomes (Purified exo) for 24 hr.  LC3b punctae formation was 

assessed by confocal microscopy.  Top, confocal micrographs.  Bottom, quantification of mRFP-LC3b punctae per 

cell (*p<0.0001).  (b) Top, electron micrographs of cells exposed to non-conditioned or conditioned PHT medium 

(Vero), exosome-depleted conditioned PHT medium (Vero), or purified PHT exosomes (U2OS).  Arrows denote 

autophagosomes.  Bar=500 nm.  Bottom, (Figure 2.5 continued) quantification of electron micrographs of cells 

exposed to non-conditioned (Vero and U2OS), conditioned PHT media samples (Vero and U2OS), exosome-

depleted conditioned medium (Vero), or purified PHT exosomes (U2OS) (*p<0.0001).  (c) U2OS cells transfected 

with mRFP-LC3b were exposed to non-conditioned or conditioned PHT medium in the absence or presence of 3-

MA for 8 hr as indicated.  LC3b punctae formation assessed by confocal microscopy.  Top, confocal micrographs.  
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(Figure 2.5 continued) Bottom, quantification of mRFP-LC3b punctae (*p<0.0005).  (d) Top, immunofluorescence 

images of VSV entry into U2OS cells transiently transfected with mRFP-LC3b exposed to non-conditioned (left) or 

conditioned (right) PHT medium.  VSV particles are shown in green and DAPI-stained nuclei are shown in blue 

(inset, 5x magnification).  Areas of colocalization appear as yellow.  Bottom, quantification of the extent of 

colocalization between VSV particles and mRFP-LC3B positive punctae (*p<0.0001). 

 

 

 

 

Figure 2.6. Medium from PHT cells induces autophagy in recipient cells.  (a) Vero cells were transfected with 

mRFP-LC3b and at 24 hr post-transfection were exposed for 24 hr to either non-conditioned (Non-cond) or 

conditioned medium isolated from four independent PHT preparations.  Cells were exposed to rapamycin (Rap) as a 

positive control.  Shown are the levels of autophagic induction as determined by quantification of mRFP-LC3b 

positive punctae (*p<0.0001).  (b) Vero and U2OS cells were co-transfected with mRFP-LC3b and then exposed to 

non-conditioned (Non-cond) or conditioned PHT medium (Cond) 24 hr post-transfection.  Cells were exposed to 

rapamycin (Rap) as a positive control.  Shown are the levels of autophagic induction as determined by quantification 

of mRFP-LC3b positive punctae by confocal microscopy (*p<0.0001).  (c) Relative mRNA levels in U2OS cells 

exposed to non-conditioned or conditioned PHT medium for 24 hr, and analyzed using autophagy or toll-like 

receptor (TLR)-targeted RT-qPCR arrays.  (d) U2OS cells stably expressing a control- or C19MC-BAC were 

transfected with mRFP-LC3b, fixed after 48 hr, and analyzed for mRFP-LC3b punctae by confocal microscopy 

(*p<0.0001). 

2.2.6 Antiviral effects of C19MC miRNAs are not the result of type I IFN signaling 

In contrast, we detected no effect of PHT conditioned medium or C19MC-associated miRNAs 

on the induction of the canonical antiviral type I IFN signaling (Figure 2.7b-g).  We also 

observed antiviral effects of conditioned PHT medium in HT1080 Jak1-deficient cells that fail to 
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respond to type I IFNs (and cannot induce downstream antiviral signaling), further supporting 

that induction of type I IFNs is not the major pathway responsible for conferring viral resistance 

in recipient cells (Figure 2.7e).  We found no evidence of: type I IFNs present in conditioned 

PHT medium by performing enzyme-linked immunosorbent assay (ELISA) for IFN-β (data not 

shown), or induction of a type I IFN response as measured by reporter gene assay for IFN-β or 

ISRE activity with conditioned medium cultured on cells for 24 hr (Figure 2.7b-c).  We also did 

not observe any indication of a hyper-activated IFN-response in recipient cells cultured with 

conditioned PHT medium, and transfected with the synthetic dsRNA analog poly(I:C) (a ligand 

of the antiviral toll-like receptor-3, TLR3 [197]) (Figure 2.7b).  Additionally, there was no 

evidence of IRF3 nuclear translocation in recipient U2OS cells exposed to conditioned PHT 

medium or in U2OS C19MC-BAC cells (Figure 2.7d,f), or the induction of ISGs such as ISG56 

as assessed by RT-qPCR (Figure 2.7g).  

2.2.7 C19MC-derived miRNAs induce autophagy 

We next investigated whether C19MC miRNAs were capable of inducing autophagy as we had 

previously observed their role in transferring type I IFN-independent viral resistance.  

Transfection of U2OS cells with mimics of the six highest expressed C19MC miRNAs (Figure 

2.8a-b), or stably expressing the C19MC-BAC (Figure 2.6d), or mimics of individual C19MC 

miRNAs that significantly decreased viral infection (Figure 2.8c) induced autophagy (as 

assessed by mRFP-LC3b punctae formation and/or electron microscopy).  Next, we investigated 

whether the observed increase in the number of autophagosomes was due to autophagic flux 

(rather than a block of downstream degradation) (Figure 2.8d).  During autophagy, p62 links 

LC3-II with ubiquitylated substrates, associates with autophagosomes, and undergoes 
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degradation by autolysosomes [198].  p62 is a marker of autophagic flux, as expression levels 

decrease during prolonged autophagy.  Our results indicated a characteristic decrease in p62 

expression in U2OS C19MC-BAC cells compared to control-BAC, supporting that the 

upregulation of autophagy was due to increased flux through the autophagic pathway (Figure 

2.8d).  
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Figure 2.7 The antiviral effects of conditioned PHT medium are not due to type I IFN.   (a) Confocal 

micrographs of PHT cells stained with anti-NF-κB p65 subunit or IRF3 antibodies (red).  DAPI-stained nuclei are 

shown in blue.  (b) IFN-β luciferase assays in U2OS cells exposed to non-conditioned (Non-cond) medium of three 

independent preparations of conditioned PHT medium (Cond).  In parallel, exposed cells were transfected with 1 μg 

poly(I:C).  (c) ISRE luciferase assays in U2OS cells exposed to non-conditioned medium (Non-cond) or three 

independent preparations of conditioned PHT medium (Cond).  As a positive control, naïve cells were transfected 

with 1 μg poly(I:C).  (d) Immunofluorescence microscopy for IRF3 (red) in control (mock-exposed) U2OS cells or 

cells exposed to non-conditioned (Non-cond) or conditioned PHT medium (Cond).  As a positive control, naïve cells 

were infected with VSV (right, green).  DAPI-stained nuclei are shown in blue.  (e) Control (wt) or JAK-deficient 

(U4A) HT1080 cells were exposed to non-conditioned (Non-cond) or three independent (preparations of conditioned 

PHT medium (Cond) and infected with VSV.  In parallel, cells were exposed to 1000 U of purified human IFN-β.  

Shown are the relative amounts of VSV RNA as assessed by RT-qPCR and normalized to non-conditioned control-

treated cells (*p<0.0001).  (f) Immunofluorescence microscopy for IRF3 (red) and DAPI-stained nuclei (blue) in 

control Del-BAC or C19MC-expressing BAC U2OS cells.  (g) ISG56 mRNA levels as assessed by in mock (non-

transfected) U2OS cells or cells transfected with control (CTL) miRNA mimics or mimics of the highest six 

expressed C19MC-associated miRNAs (*p<0.05, **p<0.0001).  In parallel, cells were transfected with 1 μg 

poly(I:C) as a positive control.  In (B, C, F, and H) panels, data are displayed as mean ±SD. 
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Figure 2.8. C19MC miRNAs induce autophagy.  (a) Top, electron micrographs of U2OS cells transfected with 

scrambled control or the six highest expressed C19MC miRNA mimics (Table 2.1).  Black arrows denote 

autophagosomes and/or autolysosomes.  Bar=500 nm.  Bottom, quantification of electron micrographs shown at top 

(*p<0.005), or in PHT cells.  (b) U2OS cells were transfected with mRFP-LC3b and either scrambled control or the 

six highest expressed C19MC miRNA mimics.  Top, confocal micrographs.  Bottom, quantification of mRFP-LC3b 

punctae per cell (*p=0.0005).  (c) Left, electron micrographs of U2OS cells transfected with scrambled control or 

the most robust antiviral miRNA mimics.  Black arrows denote autophagosomes and/or autolysosomes.  Bar=500 

nm.  Right, quantification of adjacent electron micrographs (*p<0.005).  (d) Top, a representative immunoblot for 

p62 or GAPDH in U2OS cells stably transfected with either control Del- or C19MC-BAC. Bottom, densitometry of 

p62 levels (normalized to GAPDH) from three independent immunoblots (*p<0.05). 

2.2.8 Autophagy is a mechanism of viral resistance  

In these studies, we have observed and reported a clear inhibition of viral replication and a 

pronounced induction of autophagy in recipient cells cultured in conditioned PHT medium and 

in cells expressing C19MC-derived miRNAs (Figure 2.5a-b, Figure 2.6a-b,d and Figure 2.8).  

We next wanted to investigate whether the antiviral effects observed were the result of the 

increased autophagy.  To do so, we treated cells with 3-MA which stably expressing either the 

entire C19MC- or control-BAC (a pharmacological inhibitor of autophagosome biogenesis 

[196]) (Figure 2.9a).  We found that 3-MA treatment restored VSV infection (as assessed by 

relative RNA using RT-qPCR) in C19MC-BAC cells (Figure 2.9a).  We further validated our 

results by silencing Beclin-1 (which is critical for the induction of autophagy [199] and reviewed 

in [200]) with RNAi, and found that loss of Beclin-1 partially restored VSV infection in C19MC-
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BAC expressing cells
5
 (Figure 2.9b).  As we had previously observed very high basal levels of 

autophagy in PHTs (Figure 2.8a), we examined whether addition of 3-MA would enhance virus 

infection in PHTs (Figure 2.9c).  Interestingly, treatment of PHT cells with 3-MA bolstered 

VSV infection as measured by viral RNA (Figure 2.9c).  Although the overall level of infection 

remained fairly low (~10% overall infection), suggesting additional mechanisms are involved in 

the protection of PHT cells from pathogens.  Taken together, these data demonstrate that the 

upregulation of autophagy is crucial for the antiviral effect of C19MC miRNAs. 

 

 

 

 

 

 

 

                                                 

5
 Data related to beclin-1 silencing experiments were provided by Dr. Yoel Sadovsky  

  (Magee Womens Research Institute, Pittsburgh, PA).   
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Figure 2.9. Suppression of autophagy abrogates C19MC-medated antiviral effects.  (a) U2OS cells transfected 

with scrambled control or miRNA mimics of the six most prevalent C19MC miRNA mimics.  Cells were exposed to 

3-MA before and during VSV infection. Relative VSV RNA was analyzed by RT-qPCR (*p<0.0005).  (b) U2OS 

cells stably expressing control- or C19MC-BAC transfected with scrambled control siRNA or beclin-1 siRNA for 72 

hr were infected with VSV, and relative infection was determined by RT-qPCR (*p<0.05, determined using 

ANOVA with Bonferroni‟s correction).  Bottom, immunoblots for beclin-1 or actin in cells transfected as described 

above.  (c) PHT cells were treated with 3-MA for 30 min prior to infection with GFP-VSV (in the presence of 3-

MA).  Relative VSV RNA was analyzed by RT-qPCR (*p<0.005). 

2.2.9 Model  

Our current model for the transfer of viral resistance between placental trophoblasts and recipient 

cells at the maternal-fetal interface is delineated in the schematic shown in Figure 2.10.  

Placental trophoblasts, which are highly resistant to virus infection and exhibit high resting levels 

of autophagy prior to viral stimulation, secrete exosomes containing C19MC-miRNAs into the 

extracellular space (Figure 2.10).  Exosomes harboring C19MC miRNAs are taken up by, as yet, 

unidentified recipient cells.  Internalization of the exosomes enables the release of the miRNAs 

into the recipient cell for targeting of mRNAs, ultimately altering recipient cell gene expression.  

Through as yet unrevealed mRNA targets, autophagy is upregulated in the recipient cell (Figure 

2.10).  Entering viruses (such as VSV) utilize the host cell endosomal pathway to initiate their 
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trafficking for uncoating and replication.  Through either endosome-autophagosome fusion 

(forming an amphisome), or an as yet unidentified mechanism, virus becomes sequestered within 

autophagosomes (Figure 2.5d and Figure 2.10).  Autophagic flux promotes progression of the 

virion-bound autophagosomes through the pathway, wherein autophagosomes fuse with 

lysosomes (forming autolysosomes), and the autophagic cargo (including virus) are subsequently 

degraded.  Thus, this model was conceived based on the data presented in this chapter and 

provides a mechanism by which maternal-fetal tissues are protected from invading microbes 

during pregnancy.       

 

 

 

Figure 2.10. Model depicting the exosome-mediated transfer of C19MC miRNAs.  Primary placental 

trophoblasts release exosomes (EXO) containing C19MC miRNAs (C19), which are taken up by recipient cells.  

The C19MC miRNAs induce autophagy by targeting as-yet   unidentified mRNAs.  Incoming viral particles (in red) 

are likely trafficked in endocytic vesicles (EV) from the endosomal pathway into pre-existing autophagosomes 

(APs), which then fuse with lysosomes to form autolysosomes (AL), as a mechanism to degrade these virus-

containing vesicles. 
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2.3 DISCUSSION 

The placenta is a critical physical and immunological barrier for fetal protection from invading 

pathogens throughout pregnancy.  In this chapter, we have presented the remarkable finding that 

primary human trophoblast (PHT) cells are resistant to infection by a panel of disparate viruses 

(e.g. CVB, PV, VSV, VV, HSV-1, CMV) as measured by multiple assays (immunofluorescence, 

luciferase, RT-qPCR, and TCID50) (Figure 2.1a and Figure 2.2a-d).  These antiviral effects 

were not due to pre-existing type I IFN or NF-κB inflammatory signaling, or to defects in virus 

entry or host endocytic routes (either expression or function) (Figure 2.2e-f and Figure 2.7a).  

The block of replication occurred very early in the viral life cycle as overall viral RNA (VSV, 

CVB) and early gene expression of HSV-1 gene Tk (thymidine kinase) and VV gene rpo35 

(encoding a subunit of a DNA-directed RNA polymerase that is expressed within 2 h post-entry 

[193, 194] is inhibited in PHT cells (Figure 2.2d).    

Furthermore, PHTs were able to transfer viral resistance to non-placental, recipient cells 

through trophoblast conditioned medium, trophoblast-derived exosomes, stable expression of the 

entire C19MC, or select miRNAs from the primate- and placenta-specific chromosome 19 

miRNA cluster (C19MC), which are cargo of PHT exosomes (Figure 2.1b-e, Figure 2.3a,d-e, 

Figure 2.4 and Figure 2.7e).  Moreover, sonication and depletion of exosomes from conditioned 

PHT medium completely abrogated the antiviral effect (Figure 2.1d-e).  We found no evidence a 

factor in conditioned trophoblast medium capable of directly neutralizing the virus, as incubating 

virus in conditioned medium alone had no detectable effect on virus titer (Figure 2.3c).  We also 

found that inhibition of viral replication occurred early in the virus life cycle as expression of a 

VV early gene rpo35 was also inhibited in recipient cells exposed to conditioned PHT medium 

(Figure 2.3e).  
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Although the target cells of these exosomes have yet to be identified in vivo, the data 

presented in this chapter demonstrates that relevant maternal-fetal cell types such as placental 

fibroblasts, human uterine maternal vascular endothelial cells (HUtMVEC), human umbilical 

vein endothelial cells (HUVEC), and human uterine epithelial (RL-95) cells are receptive and 

become antiviral following exposure to conditioned trophoblast medium (Figure 2.1c).  During 

pregnancy, the placenta may serve as an antimicrobial conduit by secreting trophoblastic 

exosomes and antiviral miRNAs into maternal circulation.  Taken together, these data uncover a 

pathway that may serve to defend the developing fetus and surrounding maternal tissues against 

microbial invaders. 

  Additionally, our data demonstrate that conditioned PHT medium, purified PHT 

exosomes, stably expressing the entire C19MC, or select miRNAs of the C19MC family potently 

stimulate autophagy as assessed by multiple assays (LC3b-positive punctae, electron 

microscopy, and p62 autophagic flux; Figure 2.5a-b, Figure 2.6 and Figure 2.8).  Exosome 

depletion of conditioned trophoblast medium did not induce autophagy (Figure 2.5a-b).  

Autophagy is a critical antimicrobial host defense pathway [74, 156, 166-169].  Surprisingly, we 

found no role for type I IFN signaling in recipient cells following exposure to conditioned 

trophoblast medium or when expressing C19MC miRNAs using a variety of assays (JAK1
-/- 

deficient cells, luciferase assays for the IFN-β or ISRE promoters, IRF3 translocation, ISG 

induction by RT-qPCR, and ELISA for IFN-β) (Figure 2.7b-g and data not shown).   

 Inhibition of C19MC-induced autophagy by either the pharmacological agent 3-MA or 

by siRNA-mediated silencing of autophagy factor beclin-1 was sufficient to restore viral 

infection (Figure 2.9a-b).  Considering that at least one of the viruses tested in this study (eg. 

CVB [180, 181]) may actually benefit from the formation of autophagic vesicles as a mechanism 
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to enhance replication; CVB was nevertheless susceptible to the antiviral effects of C19MC 

miRNAs.  However, in contrast to autophagy pathways induced following host viral recognition, 

cells, which have either been exposed to PHT conditioned medium, PHT exosomes, or 

transfected with C19MC miRNAs, exhibit robust levels of autophagy prior virus exposure.  

Based on our evidence with VSV entry into cells undergoing C19MC miRNA-induced 

autophagy (Figure 2.5d), entering viruses may be shuttled to endosomes for subsequent 

trafficking to the autophagic pathway for degradation, significantly impacting viral uncoating 

and/or replication.  Further supporting our model (Figure 2.10) and as mentioned earlier, both 

PHTs and recipient cells expressed very low levels of early gene expression when infected with 

HSV-1 and/or VV (Figure 2.2d and Figure 2.3f), suggesting that inhibition of replication occurs 

very early in the virus life cycle.  Moreover, by electron microscopy, PHT cells demonstrated 

very high baseline levels of autophagy (without viral challenge) (Figure 2.8a) and the 

application of autophagy inhibitor 3-MA enhanced viral susceptibility (Figure 2.9c), implying 

that autophagy may be one mechanism by which PHT cells defend against viral invaders.  

However, these results do not exclude other mechanisms for viral resistance in placental 

trophoblasts or other functions by which autophagy may benefit the maternal-fetal unit.               

 In contrast to the other viruses investigated in this study, exposure to conditioned PHT 

medium and expression of the entire C19MC-BAC, significantly increased CMV infection 

(Figure 2.3f-g).  This revealed that while C19MC miRNAs inhibited the replication of many of 

the viruses we have tested (VSV, CVB, HSV-1, VV), as-yet unknown mechanisms may account 

for the functioning of C19MCs in a proviral way to bolster CMV infection.  Intriguingly, 

congenital CMV infection is one of the most dangerous prenatal and neonatal pathogens, leading 

to temporary symptoms such liver, lung, and spleen pathologies, jaundice, seizures, and/or IUGR 
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[29].  Permanent and long-term effects of congenital CMV infection include hearing and/or 

vision loss, small head, mental disabilities, lack of coordination, seizures, and/or death [29].  

However, our data and the findings of others indicate that syncytiotrophoblasts are highly 

resistant to infection by CMV and other microbes, and that the cytotrophoblasts may be a key 

entry site for facilitating pathogen invasion into the fetal compartment [7, 8, 15-19].  

Interestingly, CMV is also known to counteract antiviral autophagy in response to virus 

stimulation [176, 177].  A virus related to CMV – HSV-1 also has measures to thwart antiviral 

autophagy [173-175], but it remains sensitive to the antiviral effects of C19MC miRNAs (Figure 

2.4e).  However, the specific mechanism(s) underlying the upregulation of CMV infection by 

C19MC miRNAs are likely complex, involving diverse viral and/or cellular strategies. 

 This work demonstrates a role for transferrable, autophagy-dependent antiviral responses 

(Figure 2.10).  Whereas our data demonstrates the effect of select C19MC miRNAs – miR-512-

3p, -516b-5p, and -517-3p – on viral infection and autophagy, the targets involved in mediating 

these antiviral and pro-autophagy responses have not yet been identified.  Although the search 

for the mRNA targets of miR-512-3p, -516b-5p, and -517-3p and other C19MC miRNAs are 

ongoing.  It is possible that other, as-yet untested members of the C19MC could be involved in 

antiviral responses, perhaps synergistically with those select miRNAs that we have so far 

identified.  A further complication of trying to identify miRNA targets is the sheer magnitude of 

the number of miRs (~46) that are C19MC family members.  Additionally, mRNA targets may 

be targeted for degradation or for upregulation of gene expression (see section 1.5 “MiRNAs”).  

Furthermore, the possibility exists that there may be other components present within PHT 

conditioned medium or exosomes that contribute to the observed antiviral effects that have yet to 

be recognized.  These components may interact with a network of C19MC miRNAs and/or their 
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targets to mount antiviral responses, spanning diverse and possibly redundant pathways. Thus, 

C19MC miRNAs may direct a pathogen-specific response, facilitating the deployment of a 

selective repertoire of defense mechanisms designed to protect the developing feto-placental unit 

against diverse viral infections. 
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3.0  CVB ENTRY INTO HUMAN PLACENTAL TROPHOBLASTS 

3.1 INTRODUCTION 

As discussed in subsection 1.2.2 “Coxsackievirus B”, maternal-fetal transmission of Group B 

coxsackieviruses (CVBs) during pregnancy has been associated with severe pathological 

outcomes for the fetus, including but not limited to congenital skin lesions [45], 

neurodevelopmental delays [47], hydrops fetalis [44], the development of type I diabetes [48, 49] 

and thyroiditis later in life [50], fetal myocarditis [40-42], meningoencephalitis [43], aseptic 

meningitis [46], fetal sepsis [37], miscarriage [35], stillbirth [36], and/or death [38, 39].  

Throughout pregnancy, the placenta is an indispensable tissue that forms a physical and 

immunological barrier at the maternal-fetal interface.  Despite the severity of pathologic disease 

associated with fetal CVB infection during pregnancy, little is known regarding the strategies 

used by viruses to gain entry into placental trophoblasts. 

In this chapter, we have examined the mechanism(s) by which CVB, a virus that causes 

fetal pathology, gains entry into polarized placental trophoblasts.  Examination of the kinetics of 

CVB entry and uncoating in placental trophoblasts have revealed similarities to those previously 

described in polarized intestinal epithelial cells.  Similarly, CVB entry into placental trophoblasts 

requires DAF binding, and involves the relocalization of virus from the apical surface to 

intercellular tight junctions.  In contrast, we have identified a divergent mechanism for CVB 

entry into polarized trophoblasts that is non-clathrin, non-caveolar, dynamin II-independent, and 
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lipid-raft dependent, but requires Src family tyrosine kinase signaling.  These studies highlight 

the complexity associated with viral entry into human placental trophoblasts, and may serve as a 

model for how other pathogens have evolved to disrupt the placental barrier. 

3.2 RESULTS  

3.2.1 BeWo cells are an appropriate model to study virus-host interactions at the 

maternal-fetal interface  

To determine that immortalized BeWo human trophoblast cells are a plausible in vitro model for 

investigating CVB entry into polarized placental trophoblasts, we stained for cell markers that 

demonstrate polarized apical-basolateral localization (Figure 3.1A).  As expected, we observed 

distinct localization of tight junction (TJ)-associated protein zonula occludens-1 (ZO-1) at the 

apical TJ.  We also detected the basolateral marker Na
+
/K

+
 ATPase at the basolateral domain in 

BeWo cells, further supporting that BeWo cells are polarized epithelial cell models with the 

capability to form intercellular junctions [201, 202].     

We also investigated whether CVB3-RD receptors DAF and CAR demonstrate polarized 

localization in BeWo placental trophoblasts (Figure 3.1B).  DAF was found at the apical 

surface, and CAR localized to the tight junction (TJ), similar to other polarized cell types [54, 

82].  Additionally, it was observed that CVB forms characteristic double-membrane 

autophagosome-like replication complexes in BeWo trophoblasts (Figure 3.1F), similar to that 

detected in other cell types following picornavirus infection [179, 180, 203].  These data reveal 

that BeWo placental trophoblasts are an appropriate polarized cell model for studying virus-host 

interactions at the maternal-fetal interface. 
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Figure 3.1. DAF is required for efficient CVB infection of placental trophoblasts.  (A) Confocal micrographs of 

BeWo cells stained for the TJ marker ZO-1 (red), and the basolateral marker Na
+
/K

+
 ATPase (green), DAPI-stained 

nuclei (blue).  (B) Confocal micrographs of BeWo cells fixed and stained for DAF (red) and CAR (green).  (C) 

BeWo cells were grown on collagen-coated chamber slides, then infected with either CVB3-RD or CVB3-Nancy (5 

PFU/cell).  Images were captured and quantified.  Shown is the percent-infected cells (VP1+/DAPI as assessed by 

IF; *p<0.0005).  (D) BeWo cells were grown on collagen-coated transwells and infected with CVB3-RD from either 

the apical or basolateral surfaces.  Shown is the percent-infected cells (VP1+/DAPI as assessed by IF; *p<0.0001).  

(E) BeWo cells were incubated with either control (mock or nonspecific mAb) or anti-DAF mAb (IF7) antibody for 

60 min, and then infected with CVB. RNA was isolated and RT-qPCR was performed.  Shown is the percent 

infection assessed by relative RNA (*p<0.005).  (F) CVB-infected BeWo cells demonstrate numerous 

autophagosome-like structures.  (Left) Magnification=30,000x. Bar=500nm.  (Right) Zoom of autophagosome 

structures shown on left.  In C-E, data are displayed as mean ±SD. 

3.2.2 DAF is required for efficient CVB entry 

Coxsackievirus B 3 isolate RD (CVB3-RD) requires two virus receptors: DAF (or CD55) – a 

virus attachment factor – and coxsackie and adenovirus receptor (CAR) – a receptor for virus 

entry and uncoating [54, 80, 81, 83-87, 139].  To define the requirement of DAF in CVB 

infection in trophoblasts, we infected with either CVB3-RD (a DAF-binding CVB) or CVB3-

Nancy (a non-DAF-binding CVB) (Figure 3.1C).  Interestingly, there is only a single amino acid 



 64 

difference between CVB3-RD and CVB3-Nancy [204].  The ability to bind DAF is conferred to 

CVB3-Nancy if a glutamate residue within viral capsid protein VP3 (VP3-234E) is substituted 

with a glutamine residue (Q) [204].  We observed that BeWo cells were poorly infected with 

CVB3-Nancy (<10%) compared to infection with CVB3-RD, indicating that DAF was necessary 

for efficient infection of placental trophoblasts (Figure 3.1C).  (Unless otherwise stated, all 

subsequent CVB infections were performed with CVB3-RD.)  To determine the efficiency of 

CVB3-RD (a DAF-binding CVB isolate) to facilitate infection in a polarized manner, we 

cultured BeWo cells on collagen-coated transwells and then initiated infection at either the apical 

or basolateral domain (Figure 3.1D).  We found CVB infection initiated at the apical surface to 

be less efficient (>55%) than infection at the basolateral surface (Figure 3.1D).  This is 

consistent with previous work in polarized endothelial cells [88].  We further investigated the 

requirement of DAF in the CVB infection of trophoblast cells by incubating BeWo cells with an 

anti-DAF blocking antibody (IF7) [205], a control antibody, or without antibody (Figure 3.1E), 

and then infected with CVB.  BeWo cells demonstrated significantly lower levels of CVB 

infection when incubated in the presence of the IF7 antibody (>80% less) compared to 

incubation with either mock antibody or no antibody (Figure 3.1E).  Taken together, these data 

indicate DAF is critical for mediating efficient CVB infection in the placental trophoblasts. 

3.2.3 Kinetics of CVB entry into BeWo trophoblasts 

To examine the kinetics of CVB entry in placental trophoblasts, we performed an 

immunofluorescence-based virus internalization assay and serial staining procedure that 

distinguishes between surface-associated (in red) and internalized (in green) virus particles in 

BeWo cells (Figure 3.2A and described further in 5.15.2 “Serial staining for virus entry 
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assay”).  We bound virus (MOI 100-150) to BeWo cells at room temperature, then shifted the 

cells to 37°C to facilitate synchronized entry in the presence of virus-free medium.  Cells were 

then fixed after the desired time points (0, 30, 60, 90 min).  Following binding (0 min), CVB was 

observed bound at the apical surface (presumably to DAF) (Figure 3.2A).  By 30 min, CVB 

relocated to the TJ, for subsequent interaction with CAR (Figure 3.2A).  Virus internalized to 

perinuclear compartments by 90 min (Figure 3.2A).  This time course of entry was very similar 

to that which we have observed previously with CVB in other polarized cell types [54].  

3.2.4 CAR does not internalize with CVB during entry  

We next investigated whether the virus receptor CAR internalized with CVB in polarized 

trophoblasts (Figure 3.2B), as CAR internalization with CVB appears to be cell-type dependent 

[54, 89].  It was previously found that CAR did not internalize with virus in polarized intestinal 

epithelial cells [54], but did enter with CVB in non-polarized cells [89].  We found no evidence 

of CAR internalization by 90 min during CVB entry (Figure 3.2B), consistent with CVB entry 

in polarized intestinal cells [54].  BeWo cells transfected with a small-interfering RNA (siRNA) 

to CAR effectively silenced CAR expression as assessed by western blot analysis (Figure 3.2D).  

Loss of CAR also inhibited CVB entry (Figure 3.2C) and infection (>90%) (Figure 3.2D) in 

BeWo trophoblasts.  Taken together, these data indicate that the kinetics and dependence on 

CAR for virus entry in BeWo trophoblast cells are similar to CVB entry in other polarized cell 

types [54]. 
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Figure 3.2. Kinetics of CVB entry into placental trophoblasts.  (A) CVB (100-150 PFU/cell) was bound to 

BeWo cells at RT, unbound virus removed, and cells were incubated at 37°C to facilitate virus entry.  Cells were 

fixed at the indicated time points and serially stained for virus [prior to permeabilization (VP1out) or after 

permeabilization (VP1in)].  Red or colocalized (red and green overlapping) fluorescence denotes virus bound on the 

cell surface; distinctively green fluorescence (no red) denotes internalized virus.  DAPI is shown in blue.  Magnified 

inserts (3x). (B) Cells were bound with CVB (100-150 PFU/cell), washed, and incubated at 37°C to facilitate virus 

entry for the indicated times prior to fixation.  Cells were permeabilized and stained for virus (green) or CAR (red).  

Confocal micrographs are shown.  (C) BeWo cells were transfected with either control or CAR siRNAs for a 

minimum of 48 hr.  Cells were bound with CVB (100-150 PFU/cell), washed, and incubated at 37°C to facilitate 

virus entry for 90 min prior to fixation.  Cells were permeabilized and stained for virus (green).  Confocal 

micrographs are shown.  (D) Top, BeWo cells were transfected with either control or CAR siRNAs for a minimum 

of 48 hr.  Scramble siRNA was used as control.  Cells were infected with CVB (5 PFU/cell), then fixed and stained 

for VP1.  Images were captured and quantified.  Shown are the percent-infected cells (VP1+/DAPI as assessed by 

IF; *p=0.0001). Bottom, immunoblot analysis for CAR expression (top) and GAPDH (bottom) in BeWo cells 

transfected with either control or CAR siRNA. 
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3.2.5 Clathrin endocytosis is not required for CVB entry  

To dissect the entry mechanism by which CVB enters placental trophoblast cells, we generated a 

neutral-red (NR) containing CVB based on the protocols of other NR incorporated 

picornaviruses such as poliovirus [206] and echovirus 7 [207].  NR is an RNA-binding dye that, 

when cultured in the presence of virus, becomes readily incorporated into the viral RNA during 

viral propagation.  After incorporation of the neutral red, the resulting NR-containing CVB 

virions are light sensitive.  All subsequent virus purification, plaquing, and experimentation must 

be performed under semi-dark conditions to prevent irreversible damage to the virions.   

Following light exposure, the NR-virions are unable to replicate as the close proximity of the NR 

dye and RNA within the viral capsid, causes crosslinking of the viral RNA, and the resulting 

virus particle can no longer replicate [206, 208, 209].  Upon entry of the virus into host cells, and 

subsequent uncoating and RNA release, the NR dye disengages from the viral RNA, and the 

virion is able to replicate.  In this way, this method has been utilized to screen pharmacological 

inhibitors of host endocytic and signaling pathways to tease out drugs that act specifically on 

virus entry from those drugs that may (also) inhibit non-entry events, such as replication.  If a 

drug functions to inhibit CVB entry, light-exposure will inactivate virions bound to the host cell 

surface, and thus we will not observe virus infection.  However, if a drug inhibits a non-entry 

step of the virus life cycle, light exposure will have no effect on virions that have already 

entered, uncoated, and released their genomes.  We verified that the NR-incorporated CVB was 

light sensitive by performing plaque assays under both illuminated and non-illuminated 

conditions, and observed a significant loss of titer (data not shown).    

We performed modified neutral-red infectious center (NRIC) assays to assess the 

propensity of known pharmacological inhibitors of the clathrin endocytic pathway to inhibit 
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CVB entry and infection in BeWo cells (Figure 3.3A).  In the NRIC assay, BeWo cells were 

incubated in the presence of the indicated drug for 60 minutes at 37°C prior to initiating infection 

(see Figure 5.2).  Cells were infected with NR-incorporated CVB for 2 hr to allow entry to occur 

(under semi-dark conditions).  Cells undergoing infection were then exposed to a light box for 20 

min (illuminated), while a dark only control (non-illuminated) was maintained in the dark.  After 

light exposure, cells were washed with PBS, trypsinized, and equal amounts of cells were seeded 

onto a fresh, naïve monolayer of cells in media that was absent of both virus and drug.  Naïve 

cells are allowed to infect for about 24 hr to determine if the drug prevented CVB from 

successfully entering the BeWo cells and uncoating.  We observed that chlorpromazine, a 

pharmacological drug known to induce loss of clathrin and adaptor AP2 from the plasma 

membrane [210] and reviewed in [211] significantly inhibited CVB in the NRIC assay under 

illuminated (>80%) but not under non-illuminated conditions.  We also tested 

monodansylcadaverine (MDC), an inhibitor of clathrin-endocytosis that functions by stabilizing 

clathrin-coated pits at the plasma membrane, reviewed [211] in the CVB NRIC assay (Figure 

3.3A).  Under illuminated conditions, there was no significant effect on CVB infection; 

conversely, we observed a partial reduction of CVB infection under non-illuminated conditions 

(~35%) (Figure 3.3A).  As a control, we also tested the effects of chlorpromazine and MDC on 

vesicular VSV infection (Figure 3.3B); VSV utilizes a clathrin-dependent pathway to enter and 

infect host cells [51, 76, 212] and described further in subsection 1.3.2 “VSV Entry”.  Both 

chlorpromazine and MDC significantly inhibited VSV infection as expected (~95% and >85%, 

respectively).   

To further confirm the results obtained with the pharmacological agents, we performed a 

standard virus infection assay with BeWo cells transfected with a siRNA targeting clathrin heavy 
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chain (CHC) (Figure 3.3C).  Transfection with the CHC siRNA had no effect on CVB infection 

in BeWo cells, despite good levels of knockdown (Figure 3.3C).  As a control, we also detected 

inhibition of transferrin uptake when cells were transfected with the CHC siRNA compared to 

control (Figure 3.4).  We also observed colocalization of early endosome marker EEA1 and 

transferrin in control siRNA-transfected cells but not in cells transfected with the CHC siRNA 

(Figure 3.4).  Additionally, we found no role for dynamin II (see subsection 3.2.6 “Dynamin II 

is not required for CVB entry”) a GTPase essential for clathrin endocytosis [213], in CVB 

entry.  Taken together, these data indicate that clathrin-mediated endocytosis was not required 

for CVB entry and infection into placental trophoblasts. 
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Figure 3.3. Clathrin-mediated endocytosis is not required for CVB entry into BeWo trophoblast cells.  (A) 
NRIC assay in cells treated with either chlorpromazine (12.5 μg/mL) or MDC (100 μM).  Shown are  the percent-

infected cells (VP1+/DAPI as assessed by IF; *p<0.005, **p<0.0001).  (B) Cells were pre-treated for 60 min prior to 

and during GFP-VSV infection with either chlorpromazine (12.5 μg/mL) or MDC (100 μM).  Images were captured 

and quantified. Shown are  the percent-infected cells (GFP+/DAPI as assessed by IF; *p<0.001).  (C) Cells were 

transfected with either control or clathrin heavy chain (CHC) siRNAs for a minimum of 48 hr. (Left) Cells were 

infected with CVB (5 PFU/cell) then fixed and stained for VP1.  Images were captured and quantified.  Shown are  

the percent-infected cells at left (VP1+/DAPI as assessed by IF; not significant).  (Right) Immunoblot analysis for 

CHC expression (top) and GAPDH (bottom).  (D) BeWo cells were pre-treated with dynasore (25 μM) for 60 min 

prior to and during infection with either CVB or GFP-VSV.  Cells were fixed and stained for VP1 (CVB) or 

assessed for GFP-expression (GFP-VSV).  Images were captured and quantified.  Shown are  the percent-infected 

cells (VP1+ or GFP+/DAPI as assessed by IF; *p<0.0005).  (E) BeWo cells were transfected with either control or 

dynamin II (dyn II) siRNAs for a minimum of 48 hr. (Left) Cells were infected with CVB (5 PFU/cell), then fixed 

and stained for VP1.  Images were captured and quantified.  Shown are  the percent-infected cells at left 

(VP1+/DAPI as assessed by IF; (not significant).  (Right) Immunoblot analysis for dyn II expression (top) and 

GAPDH (bottom). 
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Figure 3.4. Dynamin II and clathrin heavy chain siRNAs inhibit transferrin uptake.  Shown are confocal 

micrographs of BeWos transfected with either control scrambled, dynamin II (dyn II), or clathrin heavy chain 

(CHC) siRNAs for a minimum of 48 hr.  Cells were incubated with transferrin conjugated to Alexa Fluor 594 shown 

in red (Tfn; 10 μg/mL) for 30 min then fixed and stained for EEA1 (green).  DAPI is shown in blue. 

3.2.6 Dynamin II is not required for CVB entry into placental trophoblasts  

We also investigated whether the small GTPase dynamin II (dyn II), which is critical for the 

endocytosis of clathrin- [213] and caveolar-vesicles [64, 65], was involved in CVB entry into 

polarized trophoblasts.  Previous work demonstrated that dynamin II was required for CVB entry 

into polarized human brain microvascular endothelial cells [88] and non-polarized cells [89], but 
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was not necessary for internalization into polarized intestinal epithelial cells  [54].  We found 

that dynasore, a pharmacological inhibitor of dynamin [214] – had little to no effect on CVB 

infection, while it potently inhibited VSV infection (>98%) (Figure 3.3D).  To further validate 

our findings, we transfected BeWo cells with siRNAs towards dyn II and performed a standard 

infection assay (Figure 3.3E).  Transfection with the Dyn II siRNA had no effect on CVB 

infection in BeWo cells, despite good levels of knockdown (Figure 3.3E).  As a control, we also 

detected inhibition of transferrin uptake when cells were transfected with the Dyn II siRNA 

compared to control (Figure 3.4).  Transferrin uptake is dependent on clathrin- and dynamin II 

dependent endocytosis [192].  We also observed colocalization of early endosome marker EEA1 

and transferrin in control siRNA-transfected cells but not in cells transfected with the dyn II 

siRNA (Figure 3.4).  Taken together, these data indicate that dynamin II-dependent endocytosis 

was not required for CVB entry and infection into placental trophoblasts. 

3.2.7 Lipid rafts but not caveolae are required for CVB entry 

As we did not observe a significant role for clathrin-mediated endocytosis in the entry of CVB in 

BeWo trophoblasts, we examined whether lipid rafts and/or caveolae were involved.  Earlier 

work has demonstrated that caveolin-1 was required for CVB entry into polarized intestinal 

epithelial cells [54] and human brain microvascular endothelial cells (HBMEC) [88].  However, 

lipid rafts, but not caveolin, were necessary for CVB entry into non-polarized cells [89].  To 

determine whether lipid rafts and/or caveolae were required for CVB entry into placental 

trophoblasts, we tested the lipid raft inhibitors filipin, nystatin, and methyl-β-cyclodextrin 

(MβCD) in our modified NRIC assay.  However, we found no significant effect using filipin or 

nystatin on CVB infection either with or without light illumination (Figure 3.5A).  Filipin and 
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nystatin are both polene antibiotics that produce aggregates in the plasma membrane, thereby 

sequestering cholesterol and disturbing the ordered structure of both lipid rafts and caveolae, 

reviewed in [211].  MβCD functions by isolating, and thus depleting, cholesterol from cell 

membranes, and disrupting lipid rafts, reviewed [211].  We detected complete inhibition of CVB 

infection with MβCD with light illumination, but no effect without illumination (Figure 3.5A), 

indicating that MβCD likely inhibits CVB entry (rather than a non-entry event) in BeWo cells.  

As a control, we performed cholera toxin B (CTB) uptake assays in BeWo cells in the presence 

of MβCD, and observed a significant lack of CTB internalization in MβCD-treated cells 

compared to untreated (data not shown).  MβCD targets and depletes both caveolae-dependent 

and caveolae-independent lipid rafts, reviewed [211].  CTB uptake (and other cargo that utilize 

these pathways such as SV40) is dependent on caveolae in certain cell types [52, 215, 216], but 

may also use non-caveolar lipid raft pathways as well [56, 217, 218].  Thus, MβCD would block 

either caveolae-dependent or caveolae-independent CTB uptake in this assay.   

To further investigate whether caveolae were involved in CVB entry, we transfected 

BeWo cells with either control or caveolin-1 (cav-1) siRNAs, and infected with CVB (Figure 

3.5B).  Caveolae are a specific type of lipid raft, which form morphologically distinct 

invaginations (50-100 nm) at the plasma membrane and are dependent on the integral membrane 

protein caveolin-1 (cav-1), reviewed [62].  We observed no significant effect on CVB infection, 

despite good levels of cav-1 protein knockdown as assessed by western blotting (Figure 3.5B).  

As a control, we examined whether CTB uptake was inhibited by the cav-1 siRNA, and found 

that CTB uptake was not inhibited (data not shown).  However, this is not surprising as CTB 

may utilize either caveolae-dependent [215], or caveolae-dependent (if the caveolae pathway is 

not available) mechanisms to internalize [217, 218].  Additionally, we found no role for dynamin 
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II (see subsection 3.2.6 “Dynamin II is not required for CVB entry”), a GTPase necessary for 

caveolar-mediated endocytosis [64, 65], in CVB entry.    

To further validate our findings that the cholesterol-depleting agent MβCD inhibited 

CVB entry, we performed a virus entry assay to examine whether MβCD specifically blocked 

virion endocytosis (Figure 3.5C).  At 90 minutes post-entry, internalized virus was observed 

within the trophoblast cells under the mock condition; however, in the presence of MβCD, virus 

was detected extracellularly and did not internalize.  Based on both the NRIC and CVB entry 

assays, MβCD, a lipid raft disrupting and cholesterol-depleting agent was found to inhibit CVB 

internalization, suggesting that lipid rafts are necessary for CVB entry into trophoblasts.  Taken 

together, these data indicate that CVB entry in BeWo trophoblasts is independent of caveolin-1 

and caveolae.  Thus, CVB entry into placental trophoblasts is clathrin, dynamin II, and caveolin-

1 independent but is dependent on cholesterol-enriched lipid rafts. 
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Figure 3.5. Lipid rafts, but not caveolin, are required for CVB entry.  (A) NRIC assay in BeWo monolayers 

treated with filipin (3 μg/mL), nystatin (25 μg/mL), or MβCD (5 mM). Shown are  the percent-infected cells 

(VP1+/DAPI as assessed by IF; *p<0.0001).  (B) Cells transfected with either control or caveolin-1 (cav-1) siRNAs 

for a minimum of 48 hr were infected with CVB (5 PFU/cell) then fixed and stained for VP1 (left).  Images were 

captured and quantified. Shown are  the percent-infected cells at left (VP1+/DAPI as assessed by IF; not 

significant). (Right) Immunoblot analysis for cav-1 expression (top) and GAPDH (bottom).  (C) Cells were pre-

treated with MβCD (5 mM) for 60 min prior to and during binding with CVB (100-150 PFU/cell) at RT.  Unbound 

virus was removed, and cells were incubated at 37°C (in the presence of drug) to facilitate virus entry.  Cells were 

fixed at 90 min and serially stained for virus [prior to permeabilization (VP1out) and with a green fluorophore after 

permeabilization (VP1in)].  Red or colocalized (red and green overlapping) fluorescence denotes virus bound on the 

cell surface; distinctively green fluorescence (no red) denotes internalized virus. 

3.2.8 Macropinocytosis is not required for CVB entry 

Macropinocytosis is a non-clathrin, non-caveolar, dynamin-independent mechanism that requires 

actin for the non-specific uptake of fluid and other cargo, reviewed [53, 67].  The incoming 

vesicles, termed macropinosomes (0.5-10 μm), are formed by the closure of actin-dependent 
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membrane ruffles [68, 69].  Previously, it has been shown that CVB entry requires features of 

macropinocytosis in polarized human intestinal epithelial cells [55].  Therefore, we also 

investigated the possible role of macropinocytosis in facilitating CVB entry in polarized 

trophoblasts (Figure 3.6).  To examine whether macropinocytosis was involved in facilitating 

CVB entry into placental trophoblasts, we performed the NRIC assay under both illuminated and 

non-illuminated conditions using pharmacological inhibitors of macropinocytosis – EIPA and 

rottlerin (Figure 3.6A).  The pharmacological agent EIPA (ethyl isopropyl amiloride) is an 

inhibitor of the epithelial Na
+
/H

+ 
exchanger [219, 220], and rottlerin is a non-specific inhibitor of 

PKC (protein kinase C) [212, 221]; both the Na
+
/H

+ 
exchanger and PKC are necessary for 

macropinocytosis.  We found that both EIPA and rottlerin inhibited CVB replication under 

illuminated conditions using the NRIC assay (>97%) (Figure 3.6A).  Under dark only 

conditions, EIPA had no effect on CVB infection (Figure 3.6A).  However, rottlerin also 

partially reduced CVB replication under non-illuminated conditions (>75%), suggesting that it 

also inhibited steps in the virus life cycle that occur post-entry (Figure 3.6A).   

The actin cytoskeleton is a key mediator of macropinocytosis, particularly in the 

formation and closure of membrane ruffles [68].  To determine if the actin cytoskeleton played a 

role in mediating CVB entry into BeWo placental trophoblasts, we also tested the actin 

polymerizing inhibitors cytochalasin D (CytoD) [222] and latrunculin A (LatA) [222, 223] 

(Figure 3.6B).  If macropinocytosis were involved in CVB entry into placental trophoblasts, 

overall infection and entry should be sensitive to treatment with CytoD and LatA [69].  We 

performed a standard infection assay using NR-CVB and light illumination 2 hr p.i., and found 

that these drugs had no significant effect on CVB infection in BeWo cells (Figure 3.6B).  We 

also investigated whether Rho GTPases were involved in CVB entry into placental trophoblasts 
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by assessing the effects of toxin B (derived from Clostridium difficile), an inhibitor of Rho 

GTPases [224, 225].  The Rho family of GTPases (Rho, Rac, Cdc42) mediates critical 

coordination and spatiotemporal regulation of cellular actin dynamics, which enable 

macropinocytosis and other actin-dependent cell processes such as membrane ruffling, 

protrusion, and retraction, reviewed in [58, 226].  We found that instead of inhibiting CVB, 

treatment with toxin B actually enhanced CVB infection in BeWo cells (>200%) (Figure 3.6B).  

We also investigated whether CVB internalization was accompanied by an increased uptake of 

dextran and/or colocalization with the macropinosome marker rabankyrin-5 [227, 228]. We did 

not see any evidence of increased dextran uptake when performing a virus internalization assay, 

and there was no association between CVB particles and dextran or rabankyrin-5 positive 

vesicles (data not shown).  Furthermore, we did not observe any evidence of macropinosome 

formation when BeWo cells were co-stained for actin (using phalloidin) following a virus entry 

assay (data not shown).  Taken together, these data indicate that macropinocytosis is not 

involved in facilitating CVB entry into placental trophoblasts. 
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Figure 3.6. Macropinocytosis is not involved in CVB entry into placental trophoblasts.  (A) NRIC assay in 

BeWo cells treated with EIPA (102 μM) or rottlerin (10 μM).  Shown are  the percent-infected cells (VP1+/DAPI as 

assessed by IF; *p<0.0001).  (B) BeWo cells were pre-treated for 60 min prior to and during neutral-red CVB (NR-

CVB) infection with cytochalasin D (CytoD; 2.5 μg/mL), latrunculin A (LatA; 1 μM), or toxin B (1 ng/mL).  Cells 

were illuminated 2 hr p.i. to inactivate virions that had not yet entered. Images were captured and quantified.  Shown 

are  the percent-infected cells (VP1+/DAPI as assessed by IF; *p<0.0005). 

3.2.9 CVB entry is dependent on Src family tyrosine kinases 

In addition to examining the endocytic route by which CVB enters, we also investigated 

potential signaling mechanisms utilized by CVB to enter and infect trophoblasts.  We performed 

an initial pharmacological drug screen using the standard virus infection assay with NR-CVB 

and light illumination 2 hr p.i., and found that the PI3K inhibitor wortmannin [229] or the 

tyrosine phosphatase inhibitor pervanadate [230] had no effect on CVB infection (Figure 3.7A).  

In this assay, we also tested additional inhibitors of cellular signaling pathways, which reduced 

CVB infection including the pan tyrosine kinase inhibitor genistein (>60%) [231], the SFK 

inhibitor PP2 (~70%) [232], the microtubule depolymerizing agent nocodazole (>70%) [233], 

and the myosin II inhibitor blebbistatin (>85%) [234] (Figure 3.7A).  To further verify whether 

these drugs were acting on CVB entry (rather than a non-specific post-entry event such as 
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replication), we applied the CVB NRIC assay under both illuminated and non-illuminated 

conditions.  Using the NRIC assay under illuminated conditions, we observed a reduction of 

CVB infection with genistein (~85%) and PP2 (~90%) but saw no effect on CVB infection under 

the non-illuminated condition (Figure 3.7B).  This indicated that any inhibition of CVB 

infection due to genistein and PP2 was occurring on virus entry rather than a non-entry event, as 

there was no effect with the drug under the „dark only‟ condition.    

We also tested nocodazole and blebbistatin under both illuminated and non-illuminated 

conditions in the NRIC assay (Figure 3.7C).  We detected near-complete inhibition of CVB with 

both nocodazole and blebbistatin under illuminated conditions, and significant inhibition (>80%) 

without light illumination (Figure 3.7C), In contrast, we detected near-complete inhibition of 

CVB with both nocodazole and blebbistatin under illuminated conditions, suggesting that the 

inhibitory effects of these agents may occur due to inhibition of post-entry events.  

Based on the NRIC assay results obtained with genistein and PP2, we sought to verify 

that SFKs were necessary for CVB entry into BeWo placental trophoblast cells (Figure 3.7A-

B,D).  We performed the immunofluorescence-based virus internalization assay in the presence 

of either genistein or PP2, and found that both drugs prevented CVB entry into BeWo 

trophoblasts (Figure 3.7D).  Thus, SFKs are required for CVB entry into placental trophoblasts.  

This is similar to the requirement of select members of the SFKs (Fyn and Abl) for CVB entry 

into human polarized intestinal epithelial [54] and endothelial cells [88], but not for entry into 

non-polarized cells [89].   
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Figure 3.7. CVB entry is dependent on Src family tyrosine kinases.  (A) BeWo cells were pre-treated for 60 min 

prior to and during neutral-red CVB (NR-CVB) infection with genistein (74 μM), PP2 (30 μM), wortmannin (2.5 

μM), pervanadate (50 μM), nocodazole (10 μg/mL), or blebbistatin (50 μM).  Cells were illuminated 2 hr p.i. to 

inactivate virions that had not yet entered.  Images were captured and quantified.  Shown are  the percent-infected 

cells (VP1+/DAPI as assessed by IF; *p<0.001).  (B) NRIC assay in BeWo monolayers treated with genistein (74 

μM) or PP2 (30 μM).  Shown are  the percent-infected cells (VP1+/DAPI as assessed by IF; *p<0.0001).  (C) NRIC 

assay in BeWo monolayers treated with nocodazole (10 μg/mL) or blebbistatin (50 μM).  Shown are  the percent-

infected cells (VP1+/DAPI as assessed by IF; *p<0.001).  (D) Cells were pre-treated with (74 μM) or PP2 (30 μM) 

for 60 min prior to and during binding with CVB (100-150 PFU/cell) at RT.  Unbound virus was removed, and cells 

were incubated at 37°C (in the presence of drug) to facilitate virus entry.  Cells were fixed at 90 min and serially 

stained for virus [prior to permeabilization (VP1out) and after permeabilization (VP1in)].  Red or colocalized (red and 

green overlapping) fluorescence denotes virus bound on the cell surface; distinctively green fluorescence (no red) 

denotes internalized virus.  Magnified inserts (2x). 

3.2.10 CVB entry into primary human trophoblasts (PHTs) 

As these studies utilized an immortalized human trophoblast cell line – BeWo [235, 236], we 

wanted to investigate whether CVB entry into primary human placental trophoblast cells (PHTs) 

followed a similar mechanism (Figure 3.8).  We found that the entry kinetics of CVB into PHTs 

were comparable to that in BeWo trophoblasts (Figure 3.2A and Figure 3.8).  CVB was bound 
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to the apical cell surface at 0 min (Figure 3.8).  Virus was observed to cluster at the apical 

domain and subsequently shuttle to the junction by 30 min (data not shown), with internalization 

by 90 min (Figure 3.8).  

We also investigated whether the cholesterol-depleting agent MβCD blocked CVB entry 

into PHTs, similar to BeWo trophoblasts (Figure 3.5C and Figure 3.8).  Indeed, MβCD 

inhibited CVB entry into PHTs at 90 min post-entry, as assessed by the immunofluorescence-

based virus internalization assay (Figure 3.8).  Thus, CVB utilizes similar entry kinetics and 

mechanisms in PHTs and BeWo trophoblasts.  Additionally, the consistency of CVB entry 

kinetics and the dependence of CVB on lipid rafts for entry into PHTs and BeWo trophoblasts 

further demonstrates that BeWo cells are excellent cell culture models for model virus-host 

interactions in vitro.  
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Figure 3.8. CVB entry into primary human trophoblasts requires lipid rafts.  Primary human trophoblasts 

(PHT) cells were grown in culture, and CVB (250 PFU/cell) was bound at RT for 1 hr.  Unbound virus was 

removed, and cells were incubated at 37°C to facilitate virus entry.  Cells were fixed at the indicated time points and 

serially stained for virus [prior to permeabilization (VP1out) and after permeabilization (VP1in)].  Red or colocalized 

(red and green overlapping) fluorescence denotes virus bound on the cell surface; distinctively green fluorescence 

(no red) denotes internalized virus.  DAPI is shown in blue.  (Bottom row) In parallel, cells were pre-treated with 

MβCD (5 mM) for 1 hr prior to and during binding with CVB (250 PFU/cell) at RT.  Unbound virus was removed, 

and cells were incubated at 37°C (in the presence of drug) to facilitate virus entry.  Cells were fixed and serially 

stained.  Magnified inserts (3x). 

3.3 DISCUSSION 

Viruses and other pathogens have clearly evolved mechanisms to subvert the protective placental 

barrier at the maternal-fetal interface, as incidences of fetal disease have been extensively 

reported [35-50].  Although the placenta has evolved its own innate immune functions to protect 
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itself and surrounding maternal tissues from virus infection (see chapter 2.0, “Placental 

exosomes confer viral resistance”), we cannot exclude that gestational stage, placental injury, 

and/or individual genetic variation may contribute to the propensity of viruses to enter and infect 

the placenta and/or neighboring cells.  To initiate vertical infection and entry into the fetal 

compartment, viruses must first traverse and exit maternal circulation (possibly via the 

endothelium) to confront the formidable obstacle presented by the placenta trophoblasts.  These 

findings reveal unprecedented insight into how enteroviruses may hijack the trophoblast cell 

defense machinery to initiate fetal infection in utero.      

In this study, we have found that BeWo immortalized trophoblasts serve as excellent in 

vitro polarized cell culture models for investigating host-pathogen interactions at the maternal-

fetal interface.  BeWo trophoblasts exhibited characteristic junctional complexes and unique 

polarized localization of apical, junctional, and basolateral proteins (Figure 3.1A-B).  The virus 

receptors DAF and CAR localized to the apical surface and tight junction (TJ), respectively 

(Figure 3.1B), which is consistent with what has been observed in other polarized cell types [54, 

82, 85, 88].  CVB3-RD also required the co-receptor DAF for efficient infection in BeWo 

trophoblasts (Figure 3.1C-E), which is also consistent with CVB3-RD infection in other 

polarized cell types [54, 85, 88].  Furthermore, CAR was required for both entry and infection in 

BeWo trophoblasts (Figure 3.2C-D), but did not internalize with virus (Figure 3.2B).  This is 

consistent to what has been found in polarized intestinal epithelial cells [54], but in contrast to 

CVB entry in non-polarized cells [89].   

Also presented here is a unique mechanism whereby Coxsackievirus B-3 isolate RD 

(CVB3-RD) enters and infects polarized human placental trophoblast cells.  In both 

immortalized and primary human trophoblasts (PHTs), we have found that CVB follows entry 
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kinetics similar to what has been observed in polarized human intestinal epithelial cells (Figure 

3.2A and Figure 3.8; [54]) with virus internalized to areas adjust to the nucleus by 90 min.  

Applying a modified NRIC assay with light-sensitive neutral-red CVB3-RD (NR-CVB) has also 

enabled us to dissect the route by which CVB usurps and hijacks the host cell machinery to enter 

and infect placental trophoblasts (Figures 3.3A, 3.5A, 3.6A and 3.7B-C).  We also detected no 

role for the clathrin or dynamin II-dependent endocytic machinery by utilizing known 

pharmacological inhibitors (chlorpromazine, MDC, dynasore) and siRNAs (CHC, dyn II) 

targeting these cellular components (Figure 3.3).  Again, this was similar to CVB entry into 

polarized intestinal epithelia [54]; however, this was also in contrast to CVB entry into polarized 

endothelia [88] and non-polarized cells [89], wherein dynamin II was required.  

We also found that lipid-rafts (but not caveolin-1) were necessary for CVB entry into 

polarized trophoblasts (Figure 3.5 and Figure 3.8).  By screening pharmacological inhibitors of 

caveolae and lipid rafts (filipin, nystatin, MβCD) in the modified NRIC assay, we determined 

that MβCD blocked both CVB infection and entry (Figure 3.5A,C).  To note, the 

pharmacological activities of filipin and nystatin differ from MβCD [211], which may potentially 

explain why an inhibitory effect on CVB was observed with MβCD but not with filipin or 

nystatin (Figure 3.5A).  Furthermore, transfection of a siRNA targeting caveolin-1 (cav-1), the 

transmembrane protein component critical for the formation of caveolae [62], had no effect on 

CVB infection in these cells, suggesting that lipid rafts but not caveolae were necessary for CVB 

entry into BeWo cells (Figure 3.5B).  This mechanism differs from CVB entry into polarized 

intestinal epithelial and human brain microvascular endothelial cells in which caveolin-1 was 

required [54, 88].  However, in non-polarized HeLa cells, both filipin and MβCD, but not the 

loss of cav-1 by siRNA targeting, reduced CVB infection [89].   
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Surprisingly, we found no role for macropinocytosis in the uptake of CVB into placental 

trophoblasts (Figure 3.6 and data not shown).  This demonstrates a divergent mechanism for 

CVB entry in comparison to polarized intestinal epithelial cells, which required features of 

macropinocytosis [55].  Interestingly, the mechanism of CVB entry into placental trophoblasts is 

very similar to HIV entry into polarized trophoblasts, which was independent of clathrin-, 

caveolae, dynamin II, and macropinocytosis but required free-cholesterol and lipid rafts [237].  

Furthermore, Vidricaire et al. found that filipin, but not MβCD, inhibited HIV entry and 

infection in immortalized JAR trophoblasts [237].       

Previous work has demonstrated a significant role for SFK members in mediating various 

aspects of CVB entry into polarized intestinal epithelial and human brain microvascular 

endothelial cells [54, 88].  Additionally, SFKs appeared to be important for early stages of CVB 

infection in non-polarized cells but were not required for virus entry [89].  Applying two 

pharmacological inhibitors – genistein (a pan tyrosine kinase inhibitor) [231] and PP2 (a SFK 

selective inhibitor) [232] – in both the CVB NRIC and internalization assays demonstrated that 

Src family tyrosine kinases were critical for CVB entry into BeWo trophoblasts (Figure 3.7A-

B,D).  Clearly, the inclination of CVB to usurp this cellular signaling pathway to promote its 

invasion into the host is a common strategy used across multiple polarized and non-polarized cell 

types (Figure 3.7A-B,D and [54]).  Given the key cellular functions of SFK members, this is not 

surprising.  SFKs, a family of non-receptor tyrosine kinases, are critical for a myriad of cellular 

processes.  Members of the SFKs are involved in intracellular signaling cascades, cell growth, 

differentiation, proliferation, motility, and survival, reviewed [238].  Furthermore, deregulation 

of SFKs contributes to the progression of various types of cancer, reviewed [239-241].  
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At the present time, the multitude of endocytic and signaling mechanisms utilized by 

diverse viruses (such as CVB) to enter and infect placental trophoblasts are unknown.  

Elucidation of the endocytic pathways and host signaling associated with virus entry are 

important for modeling pathogen transmission and infection of the placenta.  Specific targeting 

of molecular mediators of CVB entry in the placenta is critical for reducing the incidences of 

prenatal disease during pregnancy.  These studies also have the therapeutic potential for 

preventing prenatal infections, pre-term labor, birth defects, and fetal death. 
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4.0  CONCLUSIONS  

Throughout evolution, viruses and host cells have competed for supremacy.  Arguably, without 

complex pathogen defense strategies, fetal development could not be sustained due to the 

constant onslaught of microbes in our daily environment.  However, we also know that 

pathogens have developed effective countermeasures to overcome the innate protective 

mechanisms used by placental trophoblasts.  Often, in utero pathogen infections cause highly 

detrimental pathologies in the developing fetus, including pre-term labor, fetal and neonatal 

disease, birth defects, miscarriage, and even neonatal death [24, 26, 27, 29, 31, 32, 35-50, 190].  

Therefore, it is crucial that ongoing studies are aimed at investigating both virus entry (and other 

pregnancy-associated pathogens) and host defense at the maternal-interface.  This dissertation 

has explored both sides of virus-host interactions at the maternal-fetal interface – virus entry and 

placental trophoblast defense.  These studies have the potential for developing therapeutic 

strategies designed to reduce the incidence of pre-term labor, miscarriage, prenatal and neonatal 

pathologies, and birth defects. 

4.1 PLACENTAL EXOSOMES CONFER VIRAL RESISTANCE  

Abundant evidence exists supporting the devastating prenatal and neonatal diseases resulting 

from in utero infections [24, 26, 27, 29, 31, 32, 35-50, 190].  However, little was known 
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regarding the diverse strategies employed by cells at the maternal-fetal interface to defend 

against pathogen invasion.  As the placenta is an indispensible barrier to the fetal compartment, 

both functionally and physically, we were particularly interested in investigating the mechanisms 

by which placental trophoblasts protect the fetus from invading pathogens during pregnancy.  

Our initial studies investigated virus infection in primary human trophoblast (PHT) cells isolated 

from healthy, term placentas.  Astonishingly, we found that PHTs were resistant to infection by a 

panel of disparate viruses (e.g. CVB, PV, VSV, VV, HSV-1, CMV).  This was very intriguing as 

our PHT culture conditions promote trophoblast differentiation along the syncytiotrophoblast 

lineage [242, 243].  Previous work by others has also indicated that the syncytiotrophoblast cells 

may serve as a bottleneck for pathogen invasion into the placental unit to prevent transmission to 

the fetus [7, 15, 16, 19].  Evolutionarily, this is the ideal adaptation as the syncytiotrophoblast 

cells lie in direct contact with the maternal blood, and thus, would serve as the initial target site 

for any pathogen attempting to invade into the fetal compartment.  

Strikingly, we also found that PHTs were able to confer this antiviral effect to non-

placental recipient cells via trophoblast conditioned medium, trophoblast-derived exosomes, 

stable expression of the entire C19MC, or select miRNAs (miR-512-3p, miR-516b-5p, and miR-

517-3p) from the primate- and placenta-specific chromosome 19 miRNA cluster (C19MC).  

Intriguingly, C19MC miRNAs are cargo of PHT exosomes, and their expression levels in PHT-

exosomes correlates very closely to their expression levels in PHTs [115].  It is interesting to 

speculate that, during pregnancy, the secretion of placental-derived exosomes containing 

antiviral C19MC miRNAs may mediate systemic innate immune defense to the mother.  In our 

studies, we have identified that relevant maternal-fetal cell types including placental fibroblasts, 

human uterine maternal vascular endothelial cells (HUtMVEC), human umbilical vein 
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endothelial cells (HUVEC), primary human foreskin fibroblasts (HFF), and human uterine 

epithelial (RL-95) cells are receptive to PHT exosomes and mediate antiviral effects following 

exposure to conditioned trophoblast medium.  Additionally, we found that a number of non-

specific cell types, such as non-polarized (U2OS human osteosarcoma cells, Vero African green 

monkey kidney cells, Huh 7.5 human liver hepatocellular carcinoma, HT1080 human 

fibrosarcoma cells, and polarized (Caco-2 human intestinal epithelial cells).  This further 

demonstrates that PHT-derived exosomes are capable of transferring viral resistance to a wide 

variety of cell types.  These data point to the finding of a novel mechanism that may serve to 

defend the developing fetus and surrounding maternal tissues against microbial invaders. 

It has been published that human placental trophoblasts abundantly express both C19MC- 

and non-C19MC miRNAs and other small RNAs (snRNA, snoRNA, piRNA) throughout 

pregnancy [115, 116, 139-142].  Interestingly, C19MC miRNAs have been detected in the 

plasma of pregnant women [115, 116, 139], and the levels of C19MC miRNAs in maternal 

circulation “decrease dramatically after delivery” [116].  Furthermore, Luo et al. found that the 

blood plasma levels of maternal C19MC miRNAs were lower in the first-trimester of pregnancy 

compared to full-term pregnancies [116].  Remarkably, several clinical reports have described 

the pathogenicity of certain prenatal infections as being more detrimental during the first 

trimester (when according to Luo et al., circulating C19MC miRNA levels would be low) as 

compared to infection during later in pregnancy (when C19MC levels would be higher) [116, 

149, 150].  There appears to be a paradox in terms of the balance of virus infection and virus 

protection.  In our studies, we have observed that PHTs resist infection by a number of diverse 

viruses (CVB, PV, VSV, VV, HSV-1, CMV).  On the other hand, incidences of prenatal 

infections have been widely reported [24, 26, 27, 29, 31, 32, 35-50, 190].  The possibility exists 
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that individual variation in the number of and/or low numbers of circulating C19MC miRNAs 

(either due to genetic contributions or to the developmental stage of the pregnancy) in the 

maternal blood may offer one possible explanation for a defect in this seemingly perfect defense 

mechanism, contributing to the aberrant proliferation of incoming pathogens.  Altogether, this 

supports that circulating levels of C19MC miRNAs in the maternal blood contribute to antiviral 

effects in vivo.   

 In addition to inducing potent antiviral effects, our data support that conditioned 

trophoblast medium, purified PHT exosomes, and select miRNAs of the C19MC family robustly 

induce autophagy.  Autophagy has recently been identified as a significant antimicrobial host 

defense mechanism [74, 156, 166-169].  Surprisingly, we found no role for type I IFN signaling 

in recipient cells, and conditioned PHT medium had potent antiviral effects in cells incapable of 

inducing downstream ISGs.  Inhibition of C19MC-induced autophagy by either the 

pharmacological agent 3-MA or by siRNA-mediated silencing of beclin-1 was sufficient to 

restore viral infection (Figure 2.9a-b).  In contrast to autophagy stimulated in response to virus 

challenge as an arm of the host defense pathway, C19MC-dependent autophagy occurs prior to 

any viral stimulation.  Viruses internalizing through the endosomal pathway may be trafficked 

along the autophagic route, destined for degradation within lysosomes (and thus preventing viral 

uncoating and replication).  Our data demonstrated that entering VSV virions colocalized with 

LC3b-positive autophagosomes and that inhibition of viral replication occurs very early during 

the virus life cycle, further supporting this model.  However, additional study to fully elucidate 

the mechanism by which C19MC-induced autophagy promotes viral trafficking along the 

autophagic pathway is needed, and future work should be aimed towards this purpose.     

 Given that we did detect unusually high levels of baseline autophagy in PHT cells 
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(without viral stimulation), PHTs restricted infection very early in the virus life cycle, and the 

pharmacological inhibitor 3-MA bolstered infection in PHTs, autophagy may be one mechanism 

PHT cells employ to shield against pathogens.  There likely exists a highly complex repertoire of 

antimicrobial defense mechanisms used by placental trophoblasts to prevent vertical transmission 

to the fetus, given the inherent necessity to maintain a sterile environment for healthy 

development.  Further study is needed to fully establish the connection between placental 

trophoblasts and antiviral autophagy.  However, additional questions are raised as well.  Do 

C19MC miRNAs contribute to the antiviral phenotype of PHT cells?  As there are 46 unique 

miRNAs in this cluster, what other functions do C19MCs contribute to in the placental 

trophoblast?  And, what are the other mechanisms utilized by PHTs to defend against diverse 

microbial invaders?  Clearly, further investigation is required.    

Taken together, these data provides evidence for a novel autocrine, paracrine and/or 

systemic function of placental trophoblasts as facilitators of maternal-fetal communication via 

exosome-mediated delivery of trophoblast-derived miRNAs.  Although we have not yet 

identified the in vivo effector cells that these exosomes primarily target, the possibility remains 

that this delivery system may be critical to mediate antiviral effects and/or the upregulation of 

autophagy throughout the maternal-fetal unit.  Autophagy is critical for neonatal survival during 

the post-birth period [182, 183], reviewed [154, 244], and it is exciting to speculate that 

trophoblast-mediated exosomal transfer of C19MC miRNAs may be a component of this 

process.  

 As mentioned in section 2.3 “Discussion,” out of all of the viruses tested in this study, it 

is intriguing that CMV infection was considerably enhanced in recipient cells exposed to 

conditioned trophoblast medium or in cells stably expressing the entire C19MC-BAC.  CMV is a 
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component of the TORCH complex, owing to its highly pathologic effects on the fetus when 

infections occur in utero (see subsection 1.2.1 “TORCH infections”).  CMV infection during 

pregnancy is associated with fetal abnormalities including liver, lung, and spleen pathologies, 

jaundice, seizures, IUGR, hearing and/or vision loss, small head, mental disabilities, lack of 

coordination, seizures, and/or death [29].  Interestingly, CMV is also known to counteract 

antiviral autophagy in response to virus stimulation [176, 177].  However, in addition to CMV, at 

least one of the viruses tested in this study (eg. CVB [180, 181]) may actually benefit from 

autophagy as a mechanism to enhance replication.  So, why does CMV infection increase while 

the replication of the other viruses tested is inhibited?  Is this why CMV remains one of the 

leading infectious disease concerns during pregnancy?  Are other TORCH pathogens 

upregulated in response to conditioned medium and/or C19MC miRNAs?  Undoubtedly, further 

study is needed to determine the mechanisms by which C19MC miRNAs enhance CMV 

replication. 

 The data presented here demonstrates a role for a novel mechanism of transferrable, 

autophagy-dependent antiviral responses.  Future studies will be aimed towards testing and 

determining what other pathogens, particularly those among the TORCH complex, are 

susceptible to either the antiviral or proviral effects of C19MC miRNAs.  To expand upon the 

observations made in vitro, the development of a non-human primate animal model would be 

invaluable to studying virus-host interactions at the maternal-fetal interface.  This could also 

provide additional information on the route by which pathogens traverse the maternal blood to 

gain access to various trophoblast populations, and ultimately, to enter into the fetal 

compartment. 
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  However, a major question remains – what are the mRNA targets of the C19MC miRNAs 

(both in PHTs and in recipient cells)?  Furthermore, what are the mRNA targets of the C19MCs 

tested (miR-512-3p, -516b-5p, and -517-3p) that are responsible for the robust induction of 

autophagy?  Ongoing work in the laboratory is directed towards answering these questions.  

Furthermore, we do not know if these miRNAs act individually or synergistically in vivo with the 

antiviral/pro-autophagy miRNAs we have identified (miR-512-3p, -516b-5p, and -517-3p), or if 

there are other C19MC miRNAs that have yet to be recognized.  Individual miRNAs may 

potentially act on hundreds of protein targets, either directly or indirectly reviewed [245], further 

complicating mRNA target identification.  MiRNA target prediction databases such as 

TargetScan, miRanda, and PicTar generate predicted hits based on seed region base pairing in 

the 3‟UTR of mRNAs, but many projected targets are not true target mRNAs [245]. 

 Moreover, what is the therapeutic potential of developing exosome-based C19MC miRNA 

delivery systems for treating severe and/or chronic viral infections?  The potential for designing 

therapeutic strategies for combating infections, not only for during pregnancy but for routine 

applications, is attractive.  Currently, the market is limited in terms of the available antiviral 

treatments, and approved antivirals are mainly for the treatment of pre-existing, chronic viral 

infections, such as HIV or HSV [70].  Exosomal delivery of miRNAs or other small RNAs could 

theoretically be engineered to target specific cell populations.  The design of novel exosome-

mediated delivery system for therapeutic, or even preventative purposes would be a significant 

advance. 
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4.2 CVB ENTRY INTO HUMAN PLACENTAL TROPHOBLASTS 

From the data presented in chapter 2.0 “PHT exosomes confer viral resistance,” we know that 

the placenta mediates its own innate antiviral defense strategies.  However, this also raises 

several questions.  What contributes to the disruption of placental defense factors, resulting in 

fetal infection?  Are the EVTs truly the ‘weak link’ allowing for pathogen invasion?  It is 

important to also consider that placental injury, hypoxia, individual genetic variation, and defects 

in exosome packaging, secretion, and recipient cell uptake may potentially contribute to the 

propensity of prenatal microbial infections, despite existing trophoblast defense mechanisms.  

Therefore, we also investigated the mechanisms by which CVB, a virus known to cause fetal 

pathology, enters into human placental trophoblast cells to model virus-host interactions at the 

maternal-fetal interface. 

 In these studies, we have utilized both immortalized BeWo and primary human 

trophoblast (PHT) cells to investigate CVB entry.  We found that BeWo cells were excellent in 

vitro polarized models for studying virus-host interactions.  As immortalized BeWo cells are a 

cell line derived from a choriocarcinoma (a malignant trophoblast cancer) [235, 236], we 

expected there to be possible variability from normal trophoblast tissue.  Thus, we validated our 

key findings in PHT cells, and found strikingly similar results both in the kinetics of entry and in 

the lipid-raft dependent pathway utilized by the virus.   

 We found that CVB attachment factor and co-receptor DAF was necessary for efficient 

binding and entry into human placental trophoblasts.  We also uncovered no evidence for CVB 

receptor CAR internalization with virus, similar to what has been observed in polarized Caco-2 

intestinal epithelial cells [54].  However, CAR does internalize with CVB in non-polarized cells 

[89].  CAR is a junctional transmembrane protein that also interacts with ZO-1 and the multi-
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PDZ domain protein-1 (MUPP-1) [82, 246].  Addition of soluble CAR and anti-CAR antibodies 

disrupts tight junctions, reviewed [247].  One possible explanation for why CAR may not 

internalize with virus in polarized cells is that the virus may usurp normal homeostatic 

mechanisms for tight junction remodeling to promote its endocytosis [248].  

 To dissect the route by which CVB enters placental trophoblast cells, we performed a 

variety of assays and techniques, including immunofluorescence-based infection assays, NR-

CVB infections, NRIC assays, virus entry assays, pharmacological inhibitors, and siRNAs 

targeted towards cellular components involved in endocytosis and signaling.  We found that 

CVB required a non-clathrin, non-caveolar, and dynamin-independent, lipid-raft dependent route 

that required Src family tyrosine kinase signaling.  Although we uncovered similarities between 

CVB entry into placental trophoblasts with similarities to CVB entry into certain cell types, we 

also found differences (see section 3.3 “Discussion”).  As pharmacological inhibitors utilized in 

a standard infection assay can potentially inhibit multiple steps in the virus life cycle, we applied 

the NRIC assay to specifically discriminate the effects of a particular drug on virus entry v. other 

non-entry events.  For example, in a conventional infection assay, it may be difficult to 

distinguish between inhibition of virus entry versus a block of a non-entry event such as 

replication.  Given that pharmacological drugs can have a variety of off-target, non-specific 

effects [211], we also complimented our studies with siRNAs.  Taken together, these data 

identify key pathways necessary for successful CVB entry into human placental trophoblasts. 

 At the present time, our understanding is limited regarding the molecular events 

associated with pathogen entry into placental trophoblast cells.  In order to develop effective 

therapeutic strategies to prevent and combat infections during pregnancy, we must have an 

understanding of the pathways by which viruses associated with causing prenatal disease hijack 
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host pathways to enter, replicate, and disseminate.  Furthermore, microbial infections during 

pregnancy are associated with a variety of pathologies including induction of pre-term labor, 

birth defects, and/or fetal death.  Further study is required to effectively reduce the incidences of 

infectious diseases in utero. 

4.3 CONCLUDING REMARKS  

Thus far, there is still much to uncover by investigating virus-host interactions at the maternal 

fetal interface.  Here, we present work examining virus entry of a known prenatal pathogen and a 

novel means of innate transferrable trophoblast-mediated antiviral defense.  These studies are 

critical, not only to further our understanding of the molecular mechanisms involved in virus 

entry and host defense during in utero development, but also to develop therapeutic strategies 

aimed at preventing fetal disease.  Although we have presented here that human placental 

trophoblasts have complex mechanisms for thwarting viral invasion, infectious diseases continue 

to cause prenatal and neonatal pathologies [24, 26, 27, 29, 31, 32, 35-50, 190].  The second body 

of work presented here explored the mechanisms by which a known prenatal pathogen enters 

into human placental trophoblast cells.  Currently, the available therapeutic options for pathogen 

infections during pregnancy are limited [26, 28, 30, 32].  Even if an infection is identified and a 

treatment is available, there may be little therapeutic benefit if the infection is too far advanced.  

Therefore, continued investigation into the development of new therapeutics for treating prenatal 

infections is essential.  The identification of exosome-delivered C19MC miRNAs as potent 

inducers of viral resistance presents a novel option for prevention and treatment of virus 
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infections.  Undoubtedly, further study into both sides of virus-host interactions at the maternal 

fetal interface is critical for reducing the rates of preterm birth, birth defects, and fetal death. 
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5.0  MATERIALS AND METHODS 

5.1 CELLS 

Primary human trophoblasts (PHT) and primary placental fibroblasts were provided by Dr. Yoel 

Sadovsky at the Magee-Womens Research Institute (Pittsburgh, PA).  PHT cells were isolated 

from healthy singleton term placentas using the trypsin-deoxyribonuclease-dispase/Percoll 

method as described by Kliman et al., with previously published modifications [242, 249] under 

an exempt protocol approved by the Institutional Review Board at the University of Pittsburgh.  

Under the protocol, patients provided written consent for the use of de-identified, discarded 

tissues for research upon admittance to the hospital.  Isolated PHTs were maintained in DMEM 

(Sigma) containing 10% fetal bovine serum (FBS; Hyclone), 2% HEPES (20 mM/L), 1% 

Fungizone (Invitrogen), and antibiotics at 37°C.  Cells were maintained 72 hr after plating, with 

cell quality monitored both morphologically (by microscopy) and by medium human chorionic 

gonadotropin (hCG) levels by ELISA (DRG International) showing a characteristic increase in 

medium hCG as cytotrophoblasts differentiate into syncytiotrophoblasts [242, 243].  Primary 

placental fibroblasts were isolated and maintained in DMEM-H supplemented with 10% FBS, 

HEPES, L-glutamine, and antibiotics. 

BeWo cells were obtained from the ATCC and cultured in Ham‟s F-12K medium with 

Kaighn‟s modification containing 10% FBS and 1% penicillin/streptomycin.  Cells were plated 

on collagen-coated 8-well chamber slides (LabTek) at a density of 1.5 x 10
5 

cells/well, on 24-
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well plates at 2.4 x 10
5 

cells/well, on 12-mm Transwell-Col inserts (0.4-m pore size) (Costar) at 

1.25 x 10
6 

cells/well, or collagen-coated 6-well plates at 1.6 x 10
6
 cells/well.  Cells were grown a 

minimum of 48 hr prior to study.   

Human osteosarcoma U2OS, HFFs, Huh7.5, HeLa, and HT1080 cells were cultured in 

DMEM-H supplemented with 10% FBS and antibiotics.  HFF cells were provided by Dr. Jon 

Boyle, Department of Biological Sciences, University of Pittsburgh.  HuVEC (human umbilical 

vein endothelial cells) and HUtMVEC (human uterine microvascular endothelial cells) were 

provided by Dr. Carl Hubel at the Magee-Womens Research Institute (Pittsburgh, PA) and were 

cultured in phenol-red free GM-2 supplemented with 5% FBS and antibiotics.  Vero African 

green monkey kidney cells were maintained in DMEM-H supplemented with 5% FBS and 

antibiotics.  Caco-2 (ATCC clone) human intestinal epithelial cells were cultured in MEM 

supplemented with 10% FBS, non-essential amino acids, sodium pyruvate, and antibiotics.  All 

cells were maintained at 37
o
C in a 5% carbon dioxide (CO2)-air atmosphere. 

5.2 VIRUSES 

Experiments were performed with vesicular stomatitis virus (VSV), green fluorescent protein 

(GFP)-tagged VSV, coxsackievirus B3-Nancy (non-DAF binding) as described [89], 

coxsackievirus B3-RD isolate (CVB3-RD; DAF-binding) as described [54], recombinant yellow 

fluorescent protein (YFP)-tagged vaccinia virus (VV) as described [250], poliovirus (PV) as 

described [251], cytomegalovirus (hCMV Towne strain, obtained from Dr. William Goins 

(University of Pittsburgh), or GFP-tagged herpes simplex virus-1 (HSV-1, strain KOS) as 

described [252].  
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5.3 VIRUS EXPANSION AND PREPARATION 

5.3.1 VSV 

For VSV and GFP-VSV expansion, Vero cells were seeded on T-150 flasks.  One day later, cells 

were washed twice with phosphate buffered saline (PBS).  Virus (0.01 PFU/mL) was added to 

cells in 7 mL, 2% FBS Vero complete medium.  Cells were incubated at 37°C for 1 hr, rocking 

every 15 min to verify even virus distribution.  After 1 hr, virus inoculum was removed by 

aspiration, and 15 mL, 2% Vero complete medium was added/T-150 flask at 37°C.  Cells were 

dead by 48 hr.  The medium was removed from the flask.  A debris spin was performed at 1,500 

rpm for 15 min.  The supernatant was aliquoted and frozen at -80°C. 

5.3.2 CVB 

For CVB expansion, HeLa (clone 7b) cells were seeded on T-150 flasks.  When confluent, cells 

were washed with PBS.  CVB was bound in MEM containing 20 mM HEPES (1 μL virus/8 mL 

MEM).  Cells were incubated at RT for 1 hr, rocking.  After 1 hr, virus inoculum was removed.  

Cells were washed with PBS, and complete medium was added (10 mL/flask).  Cells were 

incubated at 37°C for 24 hr until cell death.  Flasks were then freeze (-80°C)/thawed (in warm 

water) for three times to lyse cells.  During the last thaw, four flasks worth of virus-containing 

media (40 mL) was added to a 50 mL conical, and 2 mL, 10% Triton X-100 was added.  The 

tube was inverted to mix and kept on ice for 10 min.  A debris spin was performed with a pre-

cooled SW28 rotor at 7,000 rpm for 20 min at 16°C in a Beckman XL-90 ultracentrifuge.   

Following the debris spin, the supernatant was added to a new 50 mL conical containing 3 mL, 
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10% SDS.  A sucrose cushion was prepared by adding 1.5 mL, 30% sucrose to an ultracentrifuge 

tube (for SW28 rotor).  SDS and supernatant were mixed by pipet, and slowly added to the side 

of the ultracentrifuge tube.  Ultracentrifuge tubes were balanced with PBS.  The sucrose cushion 

spin was performed using a pre-cooled SW28 rotor at 27,000 rpm for 3 hr at 16°C in a Beckman 

XL-90 ultracentrifuge.  Residual sucrose/SDS/PBS were removed (virus should be pelleted at the 

bottom of the tube).  Virus was resuspended in 1 mL PBS, aliquoted, and stored at -80°C.   

5.3.3 Neutral red labeled CVB     

To prepare neutral red-labeled CVB3-RD (NR-CVB3-RD), CVB3-RD was grown on HeLa cells 

(clone 7B) (as described in Materials and Methods subsection 5.3.2 “CVB”) in media containing 

neutral red dye (10 μg/mL; Sigma) [206, 207].  NR-CVB3-RD was purified and plaque assays 

were performed as described above.  All procedures were performed under semi-dark conditions.  

To test the light sensitivity of the NR-CVB3-RD, plaque assays were performed, and cells were 

exposed to a light box after the binding step (as described in Materials and Methods subsection 

5.4.2 “CVB”).    

5.4 PLAQUE ASSAYS  

5.4.1 VSV 

For VSV plaque assays, Vero cells were seeded on 12-well plates (4.5x10
5 

cells/well).  One day 

later, serial dilutions of virus (10
-5

 to 10
-9 

in DMEM) in duplicate were added to confluent cells 
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(200 μL/well).  VSV was bound to cells for 1 hr at 37°C, rocking every 15 min.  Virus inoculum 

was removed, and cells were washed with PBS.  Agarose overlay
6
 was added (1 mL/well).  

Plaque assays were incubated for ~24 hr at 37°C.  Agarose plugs were removed.  Plaques were 

visualized with crystal violet staining (0.05% crystal violent in 10% ethanol) and enumerated to 

calculate titers.   

5.4.2 CVB 

For CVB plaque assays, HeLa (7b) cells were seeded on 12-well plates (9x10
5 

cells/well).  One 

day later, serial dilutions of virus (10
-2

 to 10
-12 

in complete medium) in duplicate were added to 

confluent cells (150 μL/well).  CVB was bound to cells for 1 hr at RT, rocking every 15 min. 

Virus inoculum was removed, and cells were washed with PBS.  Agar overlay
7
 was added (1.5 

mL/well).  Plaque assays were incubated for ~40 hr at 37°C.  Titers were calculated by 

visualizing and enumerating plaques with 2xMTT/INT.   

To prepare the 2xMTT/INT solution, PBS (100 mL) was heated to 90°C, and 60 μL 

glacial acetic acid was added.  INT (150 mg; Sigma) was stirred in, and the solution was allowed 

to cool to 50-60°C.  MTT (600 mg) was stirred into solution.  Aliquots were stored at -20°C.   

                                                 

6
 Agarose overlay was prepared by adding 10 mL media overlay (25 mL 2xMEM, 2.5  

  mL FBS, 0.5 mL penicillin/streptomycin, 7.5 mL dH2O) and 3.5 mL, 1.6% agarose in  

  dH2O. 
7
 Agar overlay included a 1:1 mixture of agar (0.8% for CVB3-RD and 1.5% for CVB3- 

  Nancy) in dH2O with 10 mM MgCl2) and media overlay (2xMEM, 10% FBS, 2xNEAA,  

  and 2x penicillin/streptomycin). 
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5.4.3 Neutralizing virus plaque assays  

VSV virus stock was diluted 1:20 in either non-conditioned or conditioned PHT medium, then 

incubated at 37°C for 1 hr.  Plaques assays were performed on Vero cells (as described in 

subsection 5.4.1 “VSV”).  Plaques were visualized after 36 hr by staining with crystal violet. 

5.5 MODIFIED TCID50 VIRUS TITERING ASSAYS 

Vero or PHT cells were seeded to confluence on 96-well plates.  Cells were incubated with serial 

dilutions of virus (CVB, VV, GFP-VSV, HSV-1) for ~40-45 h, then stained with crystal violet. 

For experiments performed with conditioned medium, Vero cells were incubated in non-

conditioned or conditioned medium 24 hr prior to incubation with virus.  Serial dilutions of virus 

were made in either non-conditioned or conditioned medium, and cells were incubated and 

developed by staining with crystal violet. 

5.6 ANTIBODIES 

Mouse anti-VSV-G, mouse anti-hCMV gB glycoprotein, mouse anti-HA, rabbit anti-IRF3, rabbit 

anti-p65, rabbit anti-GAPDH conjugated to HRP, goat anti-beta-actin, and goat anti-EEA1 

antibodies were obtained from Santa Cruz Biotechnology.  Mouse anti-enterovirus VP1 (NCl-

Entero) monoclonal antibody was purchased from Novacastra Laboratories.  Affinity-purified 

CAR-specific rabbit antibody has been described [85]. Mouse anti-DAF (clone IF7) was a 
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generous gift from Dr. Jeffrey Bergelson (University of Pennsylvania) [205].  Mouse-anti 

clathrin heavy chain (CHC) and mouse anti-caveolin 1 (cav-1) antibodies were obtained from 

BD Transduction Laboratories.  Rabbit anti-dynamin II (dyn II) antibody was purchased from 

Abcam.  Rabbit anti-p62 and rabbit anti-Beclin1 antibodies were obtained from Cell Signaling 

Technology. 

5.7 PHARMACOLOGICAL AGENTS 

5.7.1 Autophagy assays  

Cells were pre-treated with 3-methyladenine (3-MA; 5 mM, Sigma) for 30-60 min prior to 

infection, and the drug was incubated throughout the duration of infection.  For mRFP-LC3b 

punctae assays, 3-MA was added for 30 min prior to non-conditioned or conditioned media 

exposure, and was present throughout.  Rapamycin (5 μM, Calbiochem) treatment or serum-

starvation with Hank‟s balanced salt solution (HBSS, Gibco) for 4 hr was used as a positive 

control for autophagy. 

5.7.2 CVB entry assays  

For pharmacological inhibitor studies, cells were pre-treated with inhibitor for 60 min before and 

during infection or entry assays in complete media.  However, for the experiments involving 

dynasore or drugs targeting lipid-raft disruption (filipin, nystatin, MβCD) were incubated in 

complete medium containing 10% NuSerum (BD Transduction Laboratories) rather than FBS as 
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the presence of serum can negatively impact the efficacy of these drugs [89, 253].  Dynasore (25 

μM), chlorpromazine (12.5 μg/mL), monodansylcadaverine (MDC; 100 μM), filipin (3 μg/mL), 

MβCD (5 mM), [EIPA 5-(N-ethyl-N-isopropyl) amiloride; 102 μM], and rottlerin (10-20 μM) 

were purchased from Sigma.  Nystatin (25 μg/mL) and Cytochalasin D (2.5 μg/mL) were 

obtained from MP Biomedicals.  Genistein (74 μM), PP2 (30 μM), wortmannin (2.5 μM), 

nocodazole (10 μg/mL), latrunculin A (1 μM), blebbistatin (50 μM), and toxin B (1 ng/mL) were 

purchased from Calbiochem. 

5.8 CONDITIONED MEDIUM TREATMENT 

Conditioned media from PHT or other cells were harvested between 48-72 hr post plating 

(Figure 5.1).  Non-conditioned medium was complete PHT medium (described in section 5.1 

“Cells”) that had not been incubated with PHT cells.  Conditioned media were subjected to 

sonication or heat-inactivation for 30 min at 65°C.  Recipient cells were exposed to conditioned 

medium for ~24 hr prior to assay. 

 

 

 

Figure 5.1. Culturing recipient cells with conditioned PHT medium.  Shown is a schematic of primary human 

trophoblast cells isolated from term placentas were cultured for approximately 48-72 hr to promote 

syncytiotrophoblast differentiation.  Media supernatant was collected from these cells (thereafter known as 

conditioned PHT medium).  The media was passed onto naïve permissive, non-PHT recipient cells and cultured for 

~24 hr.  Recipient cells were then infected with virus as indicated.  Schematic courtesy of Dr. Carolyn Coyne. 
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5.9 EXOSOME ISOLATION 

Purified exosomes were provided by Dr. Yoel Sadovsky, Magee-Womens Research Institute, 

Pittsburgh, PA and are further detailed in [115, 254].  Briefly, for the isolation of PHT (or JEG-

3) exosomes, cells were maintained for 48 hr in DMEM containing 10% FBS that had been 

previously ultracentrifuged at 108,000g for 10 hr to deplete pre-existing FBS exosomes.  

Supernatants from 200 million PHT cells were centrifuged at 300g for 5 min, 1,200g for 10 min, 

and 10,000g for 30 min.  Exosomes were concentrated by centrifugation at 2,500g for 25 min 

using a Vivacell 100 filter (BioExpress), then ultracentrifuged at 108,000g for 1 hr.  The pellet 

was subsequently ultracentrifuged on top of a 30% sucrose/D2O density cushion at 108,000g for 

1 hr [255].  The exosomal phase was collected and resuspended in PBS.  

Dendritic cell (DC) – derived exosomes were purified as previously described [256], 

from culture supernatants of C57Bl/6 mouse DC generated from bone marrow precursors 

cultured in medium supplemented 10% fetal calf serum (FCS), GM-CSF (1000 U/ml) and IL-4 

(500 U/ml).  During the last 48 hr of culture, DCs were maintained in medium supplemented 

with cytokines and 10% exosome-free FCS (overnight 100,000g centrifugation).  At day 6, DCs 

were incubated for 1 hr with 100 nM ionomycin and culture supernatants were centrifuged at 

300g (10 min), 1,200g (20 min), 10,000g (30 min) and then ultrafiltered (2000g, 20 min) through 

a Vivacell 100 filter.  The filtered supernatant was adjusted to 10 mL with PBS and 

ultracentrifuged (100,000g, 60 min) on top of 1.6 ml 30% sucrose/D2O density cushion [255]. 

The phase containing the exosomes was collected, adjusted to 10 ml PBS, rinsed overnight at 

4°C, and centrifuged at 100,000g for 1 hr.  The amount of exosome protein was assessed with a 

NanoDrop 2000c. 
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5.10 TRANSFECTIONS 

5.10.1 Plasmid transfection 

Plasmid transfections were performed using X-tremeGENE 9 (Roche) according to 

manufacturer‟s protocol.  The mRFP-LC3b expression construct was purchased from AddGene 

(plasmid 21075) and originally constructed by Tamotsu Yoshimori [257].  For experiments with 

conditioned media and purified exosomes, cells were exposed to media 24 hr post-transfection, 

and fixed 48 hr post-transfection.  For all other experiments, cells were assayed 48 hr post-

transfection. 

5.10.2 miRNA transfection 

Mimics for C19MC miRNAs (miRIDIAN) as well as a non-targeting control miRNA mimic 

were obtained from Thermo-Fisher Scientific (Dharmacon) as described [115].  U2OS cells were 

reverse transfected with one or multiple miRNA mimics or miRNA mimic control (final 

concentration 6 nM for each miRNA mimic) using DharmaFECT-1 transfection reagent 

(Thermo-Fisher Scientific) or HiPerfect (Qiagen) according to manufacturers‟ instructions.  The 

total concentration of non-targeting control miRNA mimics was adjusted to that of all active 

miRNA mimics.  Cells were assayed 48 hr post-transfection. 

5.10.3 siRNA (small interfering RNA) transfection 

For siRNA transfections, U2OS cells (3x10
5 

of trypsinized cells/well) were reverse transfected 
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using HiPerfect transfection reagent (Qiagen).  For silencing beclin-1, 40 nM per well of 

scrambled non-targeting siRNA (siControl) or beclin-1 siRNA (Cell Signaling, #6222S) were 

transfected. 

 BeWo cells were transfected with DharmaFECT 1 transfection reagent (Thermo-Fisher 

Scientific) according to manufacturer‟s protocol.  Final siRNA concentration per well was 25 

nM.  siRNAs targeting human dynamin II,  CHC, and cav-1 were obtained from Thermo-Fisher 

Scientific.  CAR siRNA was obtained from IDT (5‟-GGU GGA UCA AGU GAU UAU-3‟; 5‟-

AAU AAU CAC UUG AUC CAC-3‟).  Cells were assayed 48-72 hr post-transfection.  

5.11 VIRUS INFECTION ASSAYS 

For experiments assessing productive viral infection, PHT cells were infected with CVB, PV, 

VSV, VV, or HSV-1 for 14-15 hr (MOI=5), or CMV for 24 hr for immunofluorescence.  

Infections were performed with three individual PHT preparations in duplicate.  CMV infections 

were performed with two individual PHT preparations in triplicate.  For 3-MA experiments 

assessed by RT-qPCR, PHT cells were infected with GFP-VSV for 15 hr at MOI=5.  For 

experiments analyzing immediate early viral gene expression measured by RT-qPCR, PHT cells 

were infected with CVB, VSV, VV, or HSV-1 for 6-7 hr at MOI=1.  HeLa cells were infected 

with CVB or PV at an MOI = 5 for 8 hr.  HFF cells were infected with CMV for 24 hr, VSV or 

CVB (MOI=5), or HSV-1 (MOI=2.5) for 15 hr.  Vero cells were infected with VSV for 6 hr 

(MOI=5).  Caco-2 cells were infected with VSV or CVB for 7 hr (MOI = 5).  RL-95 cells were 

infected with CVB for 15 hr (MOI=5).  For immunofluorescence, U2OS cells were infected with 

CVB for 7 hr (MOI=5), VSV (MOI=5), VV, or HSV-1 (MOI=1) for 15 hr.  For RT-qPCR, 
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U2OS cells were infected with CMV, VSV, HSV-1 or VV for 5-6 h (MOI = 1).   

For infection of polarized BeWo cells, monolayers were cultured on collagen-coated 8-

well chamber slides (LabTek) at a density of 1.5x10
5 

or on 12-mm Transwell-Col inserts (0.4-m 

pore size; Costar) at 1.25x10
6 

cells/well, or on 6-well plates at 1.7x10
6
 cells/well at 37°C.  Cells 

were grown a minimum of 48 hr prior to study.  Virus infection experiments were performed at a 

multiplicity of 5 plaque-forming units (PFU) per cell with CVB3-RD, CVB3-Nancy, or GFP-

VSV.  For immunofluorescence-based infection assays, cellular infection occurred for 7-8 hr 

37°C.  For NR-CVB infections, cells were infected (MOI=5) for 7-8 hr.  At 2 hr p.i., cells were 

illuminated on a light box for 20 min.  For RT-qPCR based infection assays, cells were infected 

with CVB (MOI=5) for 6-7 hr.  For EM-based infection assays, cells were infected with CVB 

(MOI=10) for 14.5 hr.  CVB-infected cells were fixed with ice-cold 3:1 methanol-acetone for 5 

min, and GFP-VSV-infected cells fixed with 4% paraformaldehyde (PFA) at room temperature 

(RT).  

5.12 NEUTRAL RED INFECTIOUS CENTER ASSAY 

This assay was modified from [206, 207].  BeWo cells were pre-treated with the indicated 

inhibitors then infected with NR-CVB in the presence of inhibitor for 2 hr under semi-dark 

conditions (Figure 5.2).  Cells were then illuminated on a light box for 20 min.  Duplicate 

monolayers were maintained in the dark to control for non-specific effects of the 

pharmacological inhibitor on events unrelated to entry.  Cells were then washed, trypsinized, and 

spun down at 2,000 rpm.  Trypsin was removed, and cell pellets were resuspended in drug-free 

media.  Known amounts of cells were plated onto naïve cells (on collagen-coated 8-well 
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chamber slides).  Cells were allowed to infect for approximately 20-24 hr.  Cells were then fixed 

and stained for VP1.  Infection levels were assessed by immunofluorescence microscopy as 

described (5.15.3 “Immunofluorescence and confocal microscopy” and 5.15.4 

“Quantification and analysis”). 

 

 

 

Figure 5.2.  Modified NRIC (Neutral Red Infectious Center) Assay.  Shown is a schematic of the NRIC assay.  

To determine the mechanism by which CVB enters placental trophoblasts, a modified NRIC assay was performed 

(adapted from [206, 207]).  CVB was propagated in the presence of neutral red (NR) dye under semi-dark 

conditions.  After incorporation of NR, the CVB virions become light sensitive and all subsequent virus purification 

and experimentation was performed under semi-dark conditions.  This method enabled for the screening for 

inhibitors of various cellular endocytic and signaling pathways to dissect that may be required for CVB entry into 

placental trophoblasts.  BeWo cells were incubated in the presence of the indicated drug for 60 min at 37°C prior to 

initiating infection.  Cells were infected with NR-incorporated CVB for 2 hr to allow for virus entry.  Infected cells 

were exposed to a light box for 20 min (illuminated) while a dark only, (non-illuminated) control condition was 

maintained in the dark. After light exposure, cells were washed, trypsinized, and equal amounts of cells were seeded  

onto a fresh, naïve monolayer of cells in media absent of both virus and drug.  Naïve cells were allowed to infect for 

~24 hr.  Cells were fixed and stained for CVB capsid protein VP1. Infections were imaged and quantified as virus 

positive cells/DAPI using Image J software.  Schematic courtesy of Dr. Carolyn Coyne. 
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5.13 VIRUS ENTRY ASSAYS 

5.13.1 U2OS 

VSV entry assays in U2OS cells exposed to either non-conditioned or conditioned PHT medium 

for 24 hr prior to assay was performed by incubating cells with virus (MOI=500) for 1 hr at 37°C 

until fixation in 4% PFA followed by permeabilization in 0.25% Triton X-100.  VSV particles 

were visualized with anti-VSV-G antibody. 

5.13.2 BeWo cells 

CVB entry assays were performed with CVB3-RD (MOI=100-200) as indicated.  Virus in 

binding buffer was allowed to bind to cells for 1 hr at RT.  For BeWo cells, binding buffer was 

F12K with 20 mM HEPES.  Unbound virus was washed off, complete medium was added, and 

cells were placed at 37°C to initiate virus particle entry.  Virus entry was stopped by fixation 

with 4% PFA for 10 min at RT.  PFA was removed and cells were washed with PBS.  Cells were 

quenched 50 mM NH4Cl in PBS for 10 min.  Virus was visualized with anti-VP1 antibody 

following a serial staining procedure as further detailed in (5.15.2 “Serial staining for virus 

entry assay”). 

5.13.3 PHTs 

Virus entry assays in PHT cells were performed with CVB as described (in subsection 5.13.2 

“BeWo cells” and [54, 251]).  For PHTs, binding buffer was minimal essential media (MEM) 
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with 20 mM HEPES.  VV and HSV-1 internalization assays were performed by incubating PHT 

cells with virus (MOI=25) at 37°C until fixation at various time points (30, 60, 90 min).  VV and 

HSV-1 were visualized by GFP expression. 

5.14 CHOLERA TOXIN B AND TRANSFERRIN UPTAKE ASSAY 

Cholera toxin B (CTB) conjugated to Alexa Fluor 488 (8 μg/mL; Invitrogen) and transferrin 

conjugated to Alexa Fluor 594 (Invitrogen) uptake was performed essentially as previously 

described [89]. 

5.15 IMMUNOSTAINING  

5.15.1 General protocol  

Cell monolayers were cultured on 8-well chamber slides (Nunc LabTek) at 37°C.  Cells were 

then washed and fixed as indicated with either ice cold methanol or 3:1 methanol-acetone for 5 

min, or 4% paraformaldehyde in PBS (10 min) and permeabilized with 0.25% Triton X-100 in 

PBS (10 min).  Fixed monolayers were incubated with the primary antibody (1:500 in PBS, 1 hr 

RT), washed twice with PBS, incubated with 1:1000 Alexa Fluor-488 or -594-conjugated 

secondary antibodies (Invitrogen) in 10% species-specific serum/PBS for 30 min RT, washed 

three times with PBS, and then mounted with Vectashield (Vector Laboratories) containing 4‟,6-

diamidino-2-phenylindole (DAPI).  For GFP-expressing viruses or RFP-LC3b experiments, 
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fixed monolayers were fixed with 4% PFA, permeabilized with 0.25% Triton X-100 for 5 min, 

and then mounted with Vectashield containing DAPI. 

5.15.2 Serial staining for virus entry assay 

For CVB virus entry, a serial staining procedure was used to distinguish surface-associated virus 

under non-permeabilizing conditions from internalized virus under permeabilized conditions 

[251].  Following fixation with 4% PFA and quenching with NH4Cl (50 mM in PBS) (non-

permeabilizing condition), surface-associated virus was detected with VP1 primary antibody 

(1:500 in PBS, 1 hr RT), washed twice with PBS, incubated with 1:1000 Alexa Fluor-594 

secondary antibodies (Invitrogen) in 10% species-specific serum/PBS for 30 min RT, and 

washed three times with PBS.  Cells were refixed with 4% PFA, washed, and permeabilized with 

0.25% Triton X-100 for 10 min (permeabilizing condition).  Internalized virus was detected with 

VP1 primary antibody (1:500 in PBS, 1 hr RT), washed twice with PBS, incubated with 1:1000 

Alexa Fluor-488 secondary antibodies (Invitrogen) in 10% species-specific serum/PBS for 30 

min at RT, and washed three times with PBS.  Slides were mounted with Vectashield containing 

DAPI. 

5.15.3 Immunofluorescence and confocal microscopy  

For imaging of virus infection, cells were fixed and stained for markers of virus infection [CVB 

and PV (VP1), VSV (VSV-G), hCMV (gB)] or assessed for fluorescence-expression (VV-YFP, 

HSV-1-GFP, VSV-GFP).  Images were captured with an IX81 inverted microscope equipped 

with a motorized stage or with an Olympus Fluoview 1000 laser scanning confocal microscope.  
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Images of infected cells were taken using an Olympus PlanApo 10x/0.40 NA dry or Apo 

20x/0.75 NA dry objective, whereas all other images were taken with an Olympus PlanApo 

60x/1.42 NA oil objective.  For three-dimensional analysis of, XZ- or YZ-series stacks were 

acquired at 0.35-0.5 μm intervals through the cell monolayer. 

5.15.4 Quantification and analysis  

For virus infection assays, a minimum of three independent fields per condition were counted (at 

least 500 cells total) per replicate.  Infection levels are reported as the percentage of virus 

positive cells among the total number of cells, determined by DAPI staining using ImageJ (NIH) 

analysis.  In some cases (where indicated), results were normalized to control and reported (% 

control).    

For LC3b autophagy assays, at least 20 individual cells from a minimum of four 

independent fields were captured per condition.  The total number of mRFP-LC3b-positive 

punctae was quantified per cell using ImageJ analysis with identical settings per condition. 

Analysis of the extent of VSV-G and mRFP-LC3b punctae colocalization was performed using 

ImageJ. 

5.16 TRANSMISSION ELECTRON MICROSCOPY (TEM) 

Cells were seeded onto 6-well plates, assayed as noted, fixed with 2.5% glutaraldehyde in PBS 

for 1 hr, and then processed for electron microscopy as previously described [258].  Briefly, 

fixative was removed, and samples were washed three times in PBS at RT.  Samples were post-



 115 

fixed in 1% osmium tetroxide (OsO4) containing 1% potassium ferricyanide (K3Fe(CN)6) for 1 

hr, then washed three times in PBS.  Samples were dehydrated in a series of alcohol/PBS washes 

(10 min each): 30% EtOH, 50% EtOH, 70% EtOH, 90% EtOH, and three times in 100% EtOH.  

The samples were infiltrated with in 1:1 propylene oxide:Polybed 812 epoxy resin (Polysciences) 

for 1 hr at RT or overnight at 4°C.  Following subsequent changes of 100% resin the following 

day, the samples were embedded in molds, cured at 37°C overnight, and then 65°C for 48 hr.  

The technicians at CBI collected ultrathin sections (60 nm) on 100 mesh copper grids, then 

stained with 2% uranyl acetate in 50% methanol for 10 min, followed by 1% lead citrate for 7 

min.  Sections were imaged, and digital TEM images were captured using a JEOL JEM 1011 

transmission electron microscope at 80 kV fitted with a bottom mount AMT 2k digital camera 

(Advanced Microscopy Techniques).  The number of autophagosomes per cell (including 

amphisomes, autophagosomes, autophagic vacuoles, and autolysosomes) was manually 

quantified. 

5.17 RNA EXPRESSION STUDIES  

5.17.1 RNA isolation  

For cellular mRNA analysis, total RNA was extracted using TRI reagent (MRC) or RNeasy 

(Qiagen) according to manufacturer‟s protocol.  RNA samples were treated with RNase-free 

DNase (Qiagen).  
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5.17.2 cDNA synthesis  

Total RNA was reverse transcribed using iScript cDNA synthesis kit (Bio-Rad) or RT
2
 First 

Strand kit (SABiosciences).  For each sample, 1 μg RNA was used for cDNA synthesis.  

Autophagy and TLR RT-qPCR arrays (SABiosciences) were performed with 1 μg RNA per 96 

well plate and subjected to RT-qPCR using SYBR/ROX RT
2 

qPCR 2x master mix 

(SABiosciences) according to manufacturer‟s protocol. 

5.17.3 RT-qPCR (Real time quantitative polymerase chain reaction) 

RT-qPCR was performed using iQ SYBR Green Supermix (Bio-Rad) in an Applied Biosystems 

StepOnePlus real-time PCR machine according to the manufacturer's instructions.  Gene 

expression was calculated using the 2-ΔΔCT method normalized to human β-actin.  Relevant 

primer sequences are detailed below in Table 5.1.  For the autophagy and TLR qPCR arrays 

(SABiosciences), gene expression was defined from the threshold cycle (Ct), and relative 

expression levels were calculated using SABiosciences RT
2
 Profiler PCR array analysis 

automated software (http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php). 

 
 

 

 

 

 

 

 

 

http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php
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Table 5.1. Real-time PCR primers. 

 

5.18 IMMUNOBLOTS 

Cells were grown in 24-well plates and lysates and prepared with RIPA buffer [50 mM Tris-HCl 

(pH 7.4); 1% NP-40; 0.25% sodium deoxycholate; 150 mM NaCl; 1 mM EDTA; 1 mM 

phenylmethanesulfonyl fluoride; 1 mg/ml aprotinin, leupeptin, and pepstatin; 1 mM sodium 

orthovanadate], and insoluble material was precipitated by brief centrifugation.  Protein 

concentration of lysates was determined by BCA protein assay (Thermo Scientific).  Lysates 

containing equal amounts of protein were loaded onto 4-20% Tris-HCl gels (Bio-Rad) and 

transferred to polyvinylidene difluoride (PVDF) or nitrocellulose membranes.  Membranes were 

blocked in 5% nonfat dry milk, probed with the indicated antibodies, and developed with 

horseradish peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology) and 

SuperSignal West Pico or Dura, chemiluminescent substrates (Pierce Biotechnology).  
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Densitometry was performed using Image J. 

5.19 REPORTER GENE ASSAY 

Data for reporter gene assays was provided by Dr. Carolyn Coyne, University of Pittsburgh, 

Pittsburgh, PA.  Activation of IFNβ or ISRE promoters was measured by reporter assay.  U2OS 

cells were transfected with 1 μg of DNA/well of a 24-well plate, a 30:1 ratio of p-125 luc (IFNβ) 

or ISRE reporter plasmids to pRL-null as per manufacturer‟s protocol (Promega).  Cells were 

lysed in 100 μL of lysis buffer and the levels of firefly and renilla luciferase levels quantified 

using the Dual-Luciferase Reporter Assay System with a dual injector equipped Synergy 2 SL 

Luminescence Microplate Reader (BioTek).  Levels of firefly luciferase were normalized to 

control renilla luciferase levels.  For poly(I:C) treatment, cells were transfected with 1 μg 

poly(I:C)/well using XtremeGene-9 for 16 hr as per the manufacturer‟s protocol. 

5.20 STATISTICAL ANALYSIS 

Data are presented as mean ± SD.  Except where specified, Student‟s t-test was used to 

determine statistical significance for virus infection and autophagy assays when two sets were 

compared, and one-way analysis of variance (ANOVA) with Bonferroni‟s correction for post-

hoc multiple comparisons were used to determine statistical significance for reporter gene 

assays.  A p<0.05 was determined significant. 
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APPENDIX A 

ABBREVIATIONS 

3-MA: 3-methyl-adenine  

ADP: Adenosine diphosphate   

Ago2: Argonaute2 

ANOVA: Analysis of variance  

ANXA2: Annexin A2 

AP2: Adaptor protein 2 

APPs: Antimicrobial proteins and peptides 

Arf6: ADP-ribosylation factor 6 

ATCC: American type culture collection 

ATG: Autophagy-related gene  

BAC: Bacterial artificial chromosome 

BCA assay: Bicinchoninic acid assay 

C: Celsius 

C19MC: Chromosome 19 miRNA cluster 

CAR: Coxsackievirus and adenovirus receptor  
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Cav-1: Caveolin-1  

CHC: Clathrin heavy chain  

CME: Clathrin-mediated endocytosis  

CMV: Cytomegalovirus 

CO2: Carbon dioxide 

CRH: Corticotropin-releasing hormone  

 

CTB: Cholera toxin B 

CVB: Coxsackievirus B 

CVB3-Nancy: Coxsackievirus B3 isolate Nancy 

CVB3-RD: Coxsackievirus B3 isolate RD 

CytoD: Cytochalasin D  

D2O: Heavy water  

 

DAI: DNA-dependent activator of IFN-regulatory factors 

DAF: Decay-accelerating factor  

 

DAPI: 4‟,6-diamidino-2-phenylindole 

 

DGCR8: DiGeorge syndrome critical region gene 8 

 

DMEM: Dulbecco‟s modified Eagle medium 

 

DMEM-H: Dulbecco‟s modified Eagle medium-high glucose 

 

dsDNA: Double-stranded DNA  

 

Dyn II: Dynamin II 

 

EBV: Epstein Barr virus 

 

ECM: Extracellular matrix  

 

EDTA: Ethylenediaminetetraacetic acid  
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EEA1:  Endosome early antigen 1 

 

EIF2: Eukaryotic initiation factor-2  

 

EIPA: 5-(N-ethyl-N-isopropyl) amiloride 

 

ELISA: Enzyme-linked immunosorbent assay  

 

Eps15: Epidermal growth factor receptor substrate 15 

 

ERK1/2: Extracellular signal-regulated kinase 1/2  

 

ESCRT: Endosomal sorting complex required for transport  

 

EtOH: Ethanol 

 

EVTs: Extravillous trophoblasts 

 

FBS: Fetal bovine serum  

 

FCS: Fetal calf serum 

 

g: Gram 

 

GAPDH: Glyceraldehyde 3-phosphate dehydrogenase   

 

gB: Glycoprotein B 

 

GEEC: GPI-enriched endocytic compartments   

 

GFP: Green fluorescent protein  

 

GFP-VSV: Green fluorescent protein expressing vesicular stomatitis virus 

 

GI:  Gastrointestinal 

 

GM-CSF: Granulocyte  macrophage colony-stimulating factor 

 

GPI: Glycosylphosphatidylinositol 

 

GTP: Guanosine triphosphate  

 

GW182: Glycine-tryptophan repeat containing protein of 182 kDa 

 

HA: Hemagglutinin  
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HBMEC: Human brain microvascular endothelial cells  

 

HBSS: Hank‟s balanced salt solution  

 

HBV: Hepatitis B virus 

 

hCG: Human chorionic gonadotropin 

 

hCMV: Human cytomegalovirus  

 

hCS: Human chorionic somatotropin 

 

HCV: Hepatitis C virus  

  

HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

 

HFF: Human foreskin fibroblast 

 

hGHs: Human growth hormones 

 

HIV: Human immunodeficiency virus 

 

hPL: Human placental lactogen 

 

hPRL: Human prolactin 

 

HPV: Human papilloma virus 

 

Hr: Hours 

 

HUtMVEC: Human uterine microvascular endothelial cell 

 

HUVEC: Human umbilical vein endothelial cell  

 

HSV-1: Herpes simplex virus-1 

 

HSV-2: Herpes simplex virus-2 

 

IGF: Insulin growth factor 

 

IFN: Interferon  

 

IFNAR1/2: Type I IFN-α/β receptors 1 and 2 

 

IL: Interleukin 
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ILVs: Intraluminal vesicles  

 

INT: Iodonitrotetrazolium chloride  

 

IRF: Interferon regulatory factor  

 

ISG: Interferon stimulated gene   

 

ISRE: IFN-stimulated response elements 

IUGR: Intrauterine growth restriction  

 

JAK: Janus kinases  

 

JNK1: C-jun-N-terminal kinase-1  

 

K3Fe(CN)6: Potassium ferricyanide 

 

Kb: Kilobases 

 

KSHV: Kaposi‟s sarcoma herpesvirus  

 

L: Liter 

 

LatA: Latrunculin A 

 

LC3: Microtubule-associated protein light chain-3 

 

LMP1: Latent membrane protein 1 

 

LPS: Lipopolysaccharide  

 

MAL: MyD88-adaptor-like 

MβCD: Methyl-β-cyclodextrin  

  

MCMV: Murine cytomegalovirus   

 

MDA5: melanoma differentiation associated gene 5 

MDC: Monodansylcadaverine 

 

MEM:  Minimum essential medium 

 

mg: Milligram 
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g: Microgram 

 

MgCl2: Magnesium chloride  

 

MHV-68: Murine herpesvirus-68 

 

Min: Minutes 

 

miRISC: miRNA-induced silencing complex 

 

miRNA: MicroRNA 

 

mL: Milliliter  

 

μL: Microliter  

 

mM: Millimolar  

 

M: Micromolar  

 

m: Micrometer 

 

MMR: Measles, mumps, and rubella 

 

MOI: Multiplicity of infection 

 

mRFP: Monomeric red-fluorescent protein 

 

mRNA: Messenger RNA 

mTOR: Mammalian target of rapamycin  

mTORC1: Mammalian target of rapamycin complex-1 

MTT: Thiazolyl blue tetrazolium bromide 

MUPP-1: Multi-PDZ domain protein-1 

MVBs: Multivesicular bodies  

Mx: Myxovirus-resistance protein  

NaCl: Sodium chloride  

NEAA: Non-essential amino acids  
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NF-κB: Nuclear factor-κB 

ng: Nanogram 

NH4Cl: Ammonium chloride  

NIH: National Institutes of Health  

nm: Nanometer 

NPC: Nasopharyngeal carcinomas  

N-Rh-PE: Sulfonyl dioleoylphosphatidylethanolamine  

NR: Neutral red  

NR-CVB: Neutral red incorporated Coxsackievirus B 

NRIC: Neutral red infectious center  

nt: Nucleotide 

OAS: Oligo-adenylate synthetase  

OsO4: Osmium tetroxide  

PBS: Phosphate buffered saline  

PCR: Polymerase chain reaction  

pDCs: Plasmacytoid dendritic cells 

PAMP: Pathogen associated molecular pattern 

PE: Phosphatidylethanolamine 

PFA: Paraformaldehyde 

PFU: Plaque forming unit  

PHT: Primary human trophoblast  

P.i.: Post-infection 

PI3K: Phosphoinositide 3-kinase  
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PI3P: Phosphatidylinositol-3-phosphate  

PKC: Protein kinase C 

PKR: RNA-dependent protein kinase  

Pol: Polymerase  

Poly(I:C): Polyinosinic-polycytidylic acid  

Pre-miRNAs: Precursor miRNAs 

Pri-miRNA: Primary miRNA  

PRR: Pattern recognition receptor  

 

PTHrP: Parathyroid hormone-related protein 

 

PV: Poliovirus 

PVDF: Polyvinylidene difluoride  

RAN-GTP: RAS-related nuclear protein-guanosine triphosphate 

RAS: Rat sarcoma 

RBPs: RNA-binding proteins 

RIG-I: Retinoic-acid-inducible gene I  

RISC: RNA-induced silencing complex  

RLH: RIG-I-like helicase  

RNA: Ribonucleic acid  

RNase: ribonuclease 

RNA seq: Next-generation RNA sequencing  

Rpm: Revolutions per minute  

RT: Room temperature  

RT-qPCR: Real-time quantitative PCR 
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SDS: Sodium dodecyl sulfate  

siRNA: Small-interfering RNA 

SFKs: Src family kinases  

SFV: Semliki forest virus  

ssRNA: Single-stranded RNA  

STAT: Signal transduction and activators of transcription 

SV40: Simian virus-40 

TAR: Trans-activating response 

TCID50: 50% Tissue culture infectious dose 50 

TEM: Transmission electron microscopy  

Tfn: Transferrin 

TICAM1: TIR-domain-containing-molecule 1 

TIR: Toll/IL-1R homology domain 

TIRAP: TIR-associated protein 

TJ: Tight junction 

Tk: Thymidine kinase  

TLR: Toll-like receptor 

TORCH: Toxoplasma gondii, other, rubella virus, CMV, and HSV-1 and -2 

TORCHES: Toxoplasma gondii, other, rubella virus, CMV, HSV-1 and -2, and syphilis 

TRAM: TRIF-related adaptor molecule  

TRBP: HIV TAR RNA binding protein 

TRIF: TIR-domain-containing adaptor protein-inducing IFN-β 

Tris-HCl: Tris(hydroxymethyl)aminomethane-hydrochloride  
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U: Units  

UTR: Untranslated region  

UVRAG: Ultraviolet radiation resistance-associated gene protein 

VP: Virus protein  

VPS: Vacuolar protein-sorting  

VSV: Vesicular stomatitis virus 

VSVG: Vesicular stomatitis virus glycoprotein  

VV: Vaccinia virus 

VZV: Varicella zoster virus 

Wt: Wild-type 

YFP: Yellow fluorescent protein 

ZO-1: Zonula occludens-1 
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APPENDIX B 

EXPRESSION CHANGES IN AUTOPHAGY- AND TLR-RELATED TRANSCRIPTS 

Gene 
Fold-

change 

 
Gene 

Fold-

change 

 
Gene 

Fold-

change 

 
Gene  

Fold-

change 

ATG4C 3.2861 
 

MAP1LC3B 1.2209 
 

HMGB1 0.9027 
 

ATG10 0.724 

UVRAG 3.2696 
 

CHUK 1.2054 
 

TNFRSF1A 0.901 
 

FADD 0.7218 

CCL2 3.1764 
 

HSPA1A 1.1822 
 

ELK1 0.8971 
 

BAX 0.7145 

DAPK1 3.119 
 

ATG12 1.1791 
 

IL1B 0.8966 
 

PIK3R4 0.7073 

CTSS 3.1154 
 

RIPK2 1.1446 
 

UBE2V1 0.8948 
 

MK3 0.6992 

EIF2AK2 2.5184 
 

ATG16L1 1.1417 
 

GABARAP 0.8913 
 

HSPA8 0.6945 

RB1 2.3295 
 

PTGS2 1.1354 
 

IKBKB 0.8859 
 

MAPK8 0.68385 

BNIP3 2.3171 
 

TOLLIP 1.124 
 

PTEN 0.8814 
 

ATG7 0.6794 

MAP1LC3A 2.1561 
 

EIF2AK3 1.1192 
 

EIF4G1 0.8792 
 

MAPK8IP3 0.6767 

PIK3C3 2.1554 
 

IL8 1.1002 
 

GABARAPL2 0.8772 
 

NFRKB 0.6665 

BID 2.149 
 

UBE2N 1.0968 
 

MAP4K4 0.8748 
 

TAB1 0.6663 

AMBRA1 1.9193 
 

MAP3K7 1.0954 
 

CD180 0.8699 
 

ULK1 0.6621 

ARSA 1.849 
 

TLR4 1.0872 
 

CLN3 0.8339 
 

TICAM1 0.6597 

BCL2L1 1.7855 
 

APP 1.0846 
 

PRKAA1 0.8324 
 

CDKN1B 0.6285 

PRKRA 1.7526 
 

PPARA 1.0624 
 

FAM176A 0.8304 
 

TGM2 0.6192 

ATG4D 1.7454 
 

PELI1 1.0265 
 

TRAF6 0.8257 
 

DRAM2 0.6166 

SQSTM1 1.7187 
 

PRKAA2 1.0185 
 

MAP2K4 0.8234 
 

RPS6KB1 0.6072 

NFKBIA 1.6335 
 

FAS 1.0149 
 

NR2C2 0.8234 
 

RGS19 0.6005 

ATG4A 1.6288 
 

BECN1 1.0139 
 

BCL2 0.8218 
 

NFKB2 0.5946 

LY96 1.4979 
 

HSP90AA1 1.0107 
 

HTT 0.8135 
 

TMEM74 0.576 

NFKB1 1.45885 
 

HSPD1 0.9957 
 

TLR6 0.809 
 

ATG9A 0.5758 

TBK1 1.3469 
 

CSF2 0.9879 
 

ECSIT 0.804 
 

CASP8 0.57545 

TP53 1.3446 
 

HGS 0.9745 
 

BAD 0.8011 
 

JUN 0.5644 

MAP3K1 1.3294 
 

REL 0.9743 
 

BAK1 0.7987 
 

SARM1 0.5564 

DRAM1 1.3204 
 

CXCR4 0.9529 
 

MYD88 0.7962 
 

NFKBIL1 0.5528 

ATG3 1.289 
 

MAPK14 0.9497 
 

GAA 0.7936 
 

IRAK1 0.5404 

AKT1 1.2812 
 

IRF3 0.9437 
 

IRF1 0.7825 
 

FOS 0.5091 

TLR3 1.2655 
 

TICAM2 0.9347 
 

CASP3 0.7749 
 

TP73 0.5061 
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ATG16L2 1.2457 
 

ATG4B 0.9261 
 

GABARAPL1 0.7581 
 

TNFSF10 0.4193 

TGFB1 1.2354 
 

ATG5 0.9159 
 

HDAC1 0.7541 
 

IRGM 0.2952 

ULK2 1.2352 
 

HRAS 0.9159 
 

RAB24 0.7351 
 

TNF 0.2475 

SNCA 1.2286 
 

CTSB 0.9132 
 

RELA 0.7325 
 

ATG9B 0.2436 

  
       

IFNA4 0.1286 
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