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NONLINEAR OPTICAL PROPERTIES OF SEMICONDUCTOR AND

OXIDE NANOSTRUCTURES

Yanjun Ma, PhD

University of Pittsburgh, 2013

Light-matter interaction is a historically ancient topic, yet it is still under intense research,

owing to the invention of novel optical techniques and the growth of unprecedented materials.

The first goal of the work presented in this thesis is to understand the fundamental origin

of various nonlinear optical phenomena. Susceptibilities are physical quantities describing

the way that a material system responds to an optical field. We present in Chapter 3 the

derivations of susceptibilities based on quantum mechanical statistics, revealing the electronic

origin of optical nonlinearities.

Different theoretical tools have been applied to the interaction between light and a mate-

rial system. Among them, the Jaynes-Cumming model is of importance in that it describes

the interplay between a quantized light field and a two-level system. In Chapter 4, we will

theoretically discuss the application of the Jaynes-Cumming model to the Faraday/Kerr

rotation experiments on a single electron spin. As a magneto-optic effect, Faraday/Kerr

rotation is one example of various nonlinear optical processes that are studied in detail in

Chapter 3.

The second part of this thesis is dedicated to experimental demonstration of applications

by exploiting different nonlinear mechanisms. One example is the mode-locked ultrafast laser

discussed in Chapter 5. Another is the generation and detection of THz radiation in oxide

nanostrucutures, which is covered in both Chapter 6 and Chapter 7.
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1.0 INTRODUCTION

Nonlinear optics is the study of phenomena that occur as a consequence of the modification

of the optical properties of a material system by the presence of light. Nonlinear optical

phenomena are nonlinear in the sense that they occur when the response of a material to an

applied optical field depends in a nonlinear manner on the strength of the optical field. For

example, in the two-photon absorption process (See Chapter 3), the absorbed optical energy

is converted to electric current that scales quadratically with the strength of the applied

light field.

1.1 NONLINEAR SUSCEPTIBILITY

In order to describe an optical nonlinearity more precisely, let us consider how the dipole

moment per unit volume, or polarization1 ~P (ω) of a material system depends on the strength

~E(ω) of an applied optical field. In the case of linear optics, the induced polarization depends

linearly on the electric field

~P (ω) = ε0χ
(1) ~E(ω), (1.1)

where the coefficient χ(1) is known as the linear susceptibility and ε0 is the permittivity of

vacuum. In Chapter 2 and Chapter 3, we will see the derivation of the linear susceptibility.

In nonlinear optics, the optical response of a material system can often be described by gen-

1Since in the time domain, generally, the polarization is given by the convolution between the susceptibility
and the electric field, to simplify the expression, we work in the frequency domain.
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eralizing Eq.(1.1) by expressing the polarization ~P (ω) as a power series in the field strength

~E(ω) as

~P (ω) = ε0(χ(1) ~E(ω) + χ(2) ~E2(ω) + χ(3) ~E3(ω) + . . .). (1.2)

The quantities χ(2) and χ(3) are known as the second and third order nonlinear optical

susceptibilities, respectively. The quantities ~P (2)(ω) = χ(2) ~E2(ω) and ~P (3)(ω) = χ(3) ~E3(ω)

are second and third order of nonlinear polarizations, respectively. For now, we write down

susceptibilities as scalar quantities. In Chapter 3, we will study the derivation of nonlinear

susceptibilities based on density matrix formulism. We will also show the tensorial nature

of the susceptibilities.

Typically, only laser light is sufficiently intense to modify the optical properties of a

material system. This is because generally the nonlinear susceptibilities are by far smaller

than the linear susceptibility χ(1). From linear optics, we see the refractive index is

n =
√
εr =

√
1 + χ(1), (1.3)

where the quantity εr is the relative permittivity of a material system, which is assumed to

be nonmagnetic. From Eq.(1.3), it can be seen that the linear susceptibility χ(1) is on the

order of unity.

We can make a simple order-of-magnitude estimate of the size of these nonlinear suscep-

tibilities. One can expect that the lowest-order nonlinear polarization ~P (2)(ω) is comparable

to the linear response when the amplitude of the applied field ~E(ω) is on the order of the

characteristic atomic electric field Eatom

Eatom = e2/(4πε0a
2
0), (1.4)

where e is the charge of the electron and a0 is the Bohr radius of the hydrogen atom.

Numerically, we find Eatom = 5.14× 109 V/cm. The second order susceptibility χ(2) will be

on the order of χ(1)/Eatom ≈ 1/Eatom. We therefore find that χ(2) ≈ 1.94 × 10−10 cm/V.

Similarly, we expect χ(3) to be on the order of 1/E2
atom, which gives χ(3) ≈ 3.78 × 10−20

cm2/V2.
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The reason that the polarization plays a key role in the description of nonlinear optics

is that a time-varying polarization can act as the source of new components of the electro-

magnetic field. To see that, we need to derive the wave equation.

Typically, in nonlinear optical media, neither free charge nor free current exists. Inside

a material, we have

~D = ε ~E = ε0
~E + ~P ,

and

~B = µ ~H.

The Maxwell equations are

∇ · ~D = 0

∇ · ~B = 0

∇× ~E = −∂
~B

∂t

∇× ~H =
∂ ~D

∂t
. (1.5)

The equation for the divergence of ~D and the equation for the curl of ~H can be rewritten as

∇ · ~E = 0 (1.6)

∇× ~B = µ
∂

∂t
(ε0

~E + ~P ). (1.7)

If the material is nonmagnetic (µr ≈ 1), then µ = µ0 = 1
ε0c2

. The wave equation is then

(∇2 − 1

c2

∂2

∂t2
) ~E =

1

ε0c2

∂2

∂t2
~P . (1.8)

The right-hand side of Eq.(1.8) is indeed the polarization term. Therefore if we know the

polarization, we can derive the light field by solving the differential equation Eq.(1.8).
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1.2 MATERIALS

1.2.1 Semiconductor Quantum Dot

A quantum dot structure confines electrons in all directions, which means that their states

are quantized in all directions. Because of the strong localization of the electrons inside a

quantum dot, the quantum dot is sometimes referred to an artificial atom[1].

There are different ways to produce quantum dot semiconductor structures. The syn-

thesis of colloidal quantum dots is realized by controllably heating and cooling a solution of

crystals so that semiconductor nanocrystals of desired size nucleate out of the solution[2].

A second type of quantum dot is formed from a high quality GaAs/AlGaAs quantum

well[3, 4]. A 2D electron gas is formed by doping the AlGaAs layer with Si. Lateral confine-

ment is then accomplished by etching a mesa structure[5] or by forming lateral electrodes

using electron beam lithography. By applying a bias to the lateral contacts, the electrons

in the 2DEG are depleted, thus forming a region with a potential minimum defined by the

electrodes. These types of quantum dots allow extraordinary control over the carriers and

have been used to measure single spins electrically[6].

A third type of quantum dot is formed during growth and provides confinement based

on the material structure, either by interface roughness in a quantum well structure or by

the epitaxial layer forming islands on the substrate. The first type is known as interface

fluctuation quantum dots. These are made by pausing the growth of the quantum well

material, during which time the atoms migrate to form large monolayer islands. The second

type are self-assembled quantum dots, which form because of strain between the substrate

and epitaxial layer. The different growth modes of self-assembled quantum dots are classified

as Stranski-Krastanow (SK) or Volmer-Weber (VW). SK growth is characterized by the

initial formation of a few monolayers of the epitaxial material on the substrate, which is

known as the wetting layer. At some point layer growth becomes unfavorable because of

strain and islands begin to form. This is considered the normal growth mode for hetero-

epitaxial growth and is what occurs for growth of Ge on Si and InAs on GaAs. VW growth

is the direct formation of islands of the epitaxial material on the substrate. This occurs
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because the epitaxial molecules bond more strongly to each other than the substrate. SK

growth of Ge on Si will produce ≈ 20 nm dots, however if a nucleation layer of C is first

deposited, Ge will grow in the VW growth mode and form dots with size < 10 nm.

Quantum dots can be applied to various applications such as LEDs[7], lasers[8] and

single-photon sources[9]. Electron spins in quantum dots have also been suggested as imple-

mentations of qubits for quantum computation[10]. One way to experimentally detect the

electron spins in quantum dots is through magneto-optical effects such as Kerr rotation. In

Chapter 4, we will discuss our theoretical study of Faraday rotation of a single electron spin

in a single quantum dot.

1.2.2 Oxide Nanostructure

SrTiO3, which was studied extensively in the 1950s and 60s, shows diverse properties[11]. Its

cubic structure and high dispersion once made synthetic strontium titanate a prime candidate

for simulating diamond2. At room temperature, it is a centrosymmetric paraelectric material

with a perovskite structure (Figure 1.1). At low temperatures it approaches a ferroelectric

phase transition with a very large dielectric constant ∼ 104 but remains paraelectric down to

the lowest temperatures measured as a result of quantum fluctuations, making it a quantum

paraelectric[12].

SrTiO3, a non-polar oxide, can itself be used as a substrate for growth of LaAlO3, a po-

lar oxide. In 2004, by using pulsed laser deposition (PLD) to grow thin layer of LaAlO3 on

top of SrTiO3 substrate, Ohtomo and Hwang discovered the existence of a two-dimensional

electron gas (2DEG) at the interface of these two insulators[13]. Since then scientists are

exploring the mechanism resulting in the formation of the 2DEG experimentally and theo-

retically. Oxygen vacancies are believed to be responsible for materials grown at low oxygen

pressure. Electron reconstruction due to the polar catastrophe is believed to be responsible

for crystals grown at high oxygen pressure[14]. Since LaAlO3 is a polar material, when its

thickness exceeds a critical value that is found to be 3 unit cells (u.c.)[15], there is polar-

2A simulant is a material that imitates another one. A diamond simulant, in general, means the material
looks close to the original in terms of color, refraction and dispersion of light and hardness. See dimondreview
for detailed information.
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Ti 
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Figure 1.1: (a)The atomic structure of SrTiO3. (b) A piece of 5mm x 5mm SrTiO3 crystal.

ization catastrophe in which an electronic reconstruction occurs, transferring e/2 charge per

unit cell to the interface, resulting in the 2DEG formation. The sheet carrier density is

theoretically calculated to be 3.2× 1014 cm−2. However, the experimentally measured value

is on the order of 1013 cm−2[13, 16, 15, 17]. Further study shows that one possibility for

solving this discrepancy between theory and experiment is that part of electrons are doped

to the interface are in localized states[16].

Both LAO and STO are materials with wide bandgaps. For LAO, the indirect bandgap

between the valence band and conduction band is Eg ≈ 5.6 eV [13, 18], which is about

λg ≈ 220 nm. For STO, its direct bandgap is about Eg ≈ 3.75 eV (λg ≈ 330 nm) while its

indirect bandgap is about Eg ≈ 3.25 eV (λg ≈ 380 nm)[19]. In terms of the optical properties,

both materials show inversion symmetry in the bulk (Table 1.1). Because of that, the χ(2)

tensor vanishes. At the interface, however, since the inversion symmetry is broken, a finite

χ(2) term will emerge, which can be confirmed from second harmonic generation[20].

Thiel et al. [15] have demonstrated that an electric field can be used to reversibly induce

the 2DEG. Dr. Cheng Cen in our group has used a conducting AFM probe to pattern

nanoscale devices in the interface [21, 22]. Wires with width as small as 2.1 nm have been
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LaAlO3 SrTiO3

Crystal System Trigonal Cubic

Crystal Class 3̄m(D3d) m3̄m(Oh)

χ(2) elements All vanish All vanish

Table 1.1: Table for LaAlO3 and SrTiO3

drawn by applying a positive bias to an AFM tip in contact with the sample. By varying the

magnitude of the tip bias the potential profile can be modulated. Experiments performed

in vacuum demonstrate that the switching performance of a transistor is not degraded after

nine days. These wires are used as building blocks for more complicated structures like

diodes [23], single-electron transistors [24] and photoconductive nanostructures [25] that will

be discussed in Chapter 6 and nanoscale broadband THz generator and detector which will

be discussed in Chapter 7.

As a summary, LaAlO3/SrTiO3 shows various interesting properties: when two insulating

materials are put together, the interface becomes conducting [13, 15]. At the low temperature

it can be superconducting [26, 27]; when two transparent materials are grown together, the

photoconductivity from visible to near-infrared wavelength, is discoverd at the interface [25];

when two nonmagnetic materials are stacked together, magnetic ordering can show up at

the interface[28, 29]. There is also discussion of the coexistence of superconductivity and

ferromagnetism [30, 31].
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2.0 LIGHT-MATTER INTERACTION

The focus of this thesis is the interaction between light and electrons in solids. This chapter

serves as an extended introduction about light-matter interaction. First of all, the quantiza-

tion of the electromagnetic field is reviewed. The motion of electrons under the influence of

external electric field ~Eex and magnetic field ~Bex in solids is theoretically described by the

Drude-Lorentz model. The simplest case for a solid state system is a bipartite system which

contains only two energetic states. The interaction between the light field and a bipartite

system is described by the Jaynes-Cumming model, which will be briefly covered in this

chapter. The discussion in this chapter forms the basis for Chapter 4 that presents the study

of Faraday rotation due to a single electron spin in quantum dots.

2.1 QUANTUM MECHANICAL MODEL OF LIGHT

In this section, the light field is assumed to be in an empty space, which means that the charge

density is zero ρ = 0 and the current density is vanishing j = 0. Important results such as

the quantization of electromagnetic field, Fock states and coherent states are summarized in

this section.
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2.1.1 Quantization of Electromagnetic Field

We start with the classical description of the electromagnetic field given by the Maxwell

equations[32]

∇ · ~E = 0, (2.1)

∇× ~E = −∂
~B

∂t
, (2.2)

∇ · ~B = 0, (2.3)

∇× ~B =
1

c2

∂ ~E

∂t
. (2.4)

A scalar potential function φ and a vector potential function ~A are introduced so that both

the electric field and magnetic field can be written in the following forms:

~E = −∇φ− ∂ ~A

∂t
, (2.5)

~B = ∇× ~A. (2.6)

Under Coulomb gauge,

∇ · ~A = 0, (2.7)

according to Eq.(2.1), one can have

∇2φ = 0. (2.8)

The electric and magnetic field will then be

~E = −∂
~A

∂t
, (2.9)

~B = ∇× ~A. (2.10)

Note that both the electric field ~E and the magnetic field ~B are real physical quantities,

which indicates that the vector potential ~A should be real as well. By replacing the ~E and ~B

9



in Eq.(2.4) with the above results, one can obtain the wave equation for the vector potential

~A.

∇2 ~A− 1

c2

∂2 ~A

∂2t
= 0. (2.11)

The fact that the vector potential ~A satisfies the wave equation suggests that ~A = ~A(~r, t)

can be decomposed on the basis of plane waves[33].

~A(~r, t) =
1

ε
1/2
0 L3/2

∑
~k

∑
s

[c~ksε̂~kse
i(~k·~r−ω~kt) + c∗~ksε̂

∗
~ks
e−i(

~k·~r−ω~kt)], (2.12)

where the coefficient before summation is introduced to simply the Hamiltonian, which will

be shown later on. The second term on the right side of Eq.(2.12) is the complex conjugate

of the first term, which is there to ensure ~A is real. ε̂~ks and its complex conjugate are unit

vectors defining the polarization directions for a plane wave propagating in the direction of

~k with frequency ω~k. The subscript s indicates the two mutually perpendicular transverse

directions that are normal to wave vector ~k. This can be seen from the Coulomb gauge

condition by taking the following identity into account:

∇eı~k·~r = ∂me
iknrnm̂ = iknδnme

iknrnm̂ = i~kei
~k·~r.

One can then have ~k · ε̂ = ~k · ε̂∗ = 0. The electric and magnetic field can be found from

Eq.(2.12), Eq.(2.9) and Eq.(2.10)

~E(~r, t) =
i

ε
1/2
0 L3/2

∑
~k

∑
s

ω~k[c~ksε̂~kse
i(~k·~r−ω~kt) − c.c.], (2.13)

~B(~r, t) =
i

ε
1/2
0 L3/2

∑
~k

∑
s

[c~ks(̂
~k × ε~ks)e

i(~k·~r−ω~kt) − c.c.]. (2.14)

By introducing the following functions[33]

q~ks(t) = [c~kse
−iω~kt + c.c.], (2.15)

p~ks(t) = −iω~k[c~kse
−iω~kt − c.c.], (2.16)
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the electric and magnetic field can also be expressed in terms of q~ks and p~ks

~E(~r, t) =
i

2ε
1/2
0 L3/2

∑
~k

∑
s

{[ω~kq~ks(t) + ip~ks(t)]ε̂~kse
i~k·~r − c.c.}, (2.17)

~B(~r, t) =
i

2ε
1/2
0 L3/2

∑
~k

∑
s

{[q~ks(t) +
i

ω~k
p~ks(t)]

~k × ε̂~kse
i~k·~r − c.c.}. (2.18)

The energy of the electromagnetic field can be calculated as

H(t) =
1

2

∫
L3

[ε0
~E2(~r, t) + µ0

~B2(~r, t)]d3r =
1

2

∑
~k

∑
s

[p2
~ks

(t) + ω2
~k
q2
~ks

(t)]. (2.19)

Note that q~ks(t) and p~ks(t) form a pair of canonical coordinates. From Eq.(2.15) and

Eq.(2.16), one can see both functions oscillate sinusoidally in time, and p~ks(t) shows a π
2

phase shift relative to q~ks(t). Therefore, based on Fourier analysis, one can think of q~ks(t)

and p~ks(t) as two independent variables. Namely, partial derivatives like
∂q~ks
∂p~ks

and
∂p~ks
∂q~ks

should

vanish. Since different ~k represents different plane waves and s represent different polariza-

tion directions, one can expect
∂p~ks
∂p~ij

= δ~k~iδsj and
∂q~ks
∂q~ij

= δ~k~iδsj. The Poisson bracket for q~ks(t)

then can be calculated as the following:

{q~ks, q~uv} =
∑
~ij

[
∂q~ks
∂q~ij

∂q~uv
∂p~ij

−
∂q~ks
∂p~ij

∂q~uv
∂q~ij

] = 0. (2.20)

The Poisson bracket for p~ks(t) is

{p~ks, p~uv} =
∑
~ij

[
∂p~ks
∂q~ij

∂p~uv
∂p~ij

−
∂p~ks
∂p~ij

∂p~uv
∂q~ij

] = 0. (2.21)

The Poisson bracket between q~ks(t) and p~ks(t) is

{q~ks, p~uv} =
∑
~ij

[
∂q~ks
∂q~ij

∂p~uv
∂p~ij

−
∂q~ks
∂p~ij

∂p~uv
∂q~ij

] =
∑
~ij

∂q~ks
∂q~ij

∂p~uv
∂p~ij

. (2.22)

The above summation is nonzero only when ~k = ~u and s = v. Therefore

{q~ks, p~uv} = δ~k~uδsv. (2.23)
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From Eq.(2.19), Hamiltonian equation can be derived as

dq~ks(t)

dt
=

∂H(t)

∂p~ks(t)
, (2.24)

dp~ks(t)

dt
= − ∂H(t)

∂q~ks(t)
. (2.25)

Now we are finally ready to describe the electromagnetic field in quantum mechanics.

The canonical pair q~ks(t) and p~ks(t) can be replaced with operators q̂~ks(t) and p̂~ks(t) in Hilbert

space. It should be mentioned here that since classically both q~ks(t) and p~ks(t) are real, in

Hilbert space, operators q̂~ks(t) and p̂~ks(t) should be Hermitian. Based on the postulates of

quantum mechanics, each pair of canonically conjugate operators has the nonzero commuta-

tor ih̄. The Poisson brackets Eq.(2.20), Eq.(2.21) and Eq.(2.23) can be extended to Hilbert

space as the following commutators:

[q̂~ks(t), q̂~uv(t)] = 0 (2.26)

[p̂~ks(t), p̂~uv(t)] = 0 (2.27)

[q̂~ks(t), p̂~uv(t)] = ih̄δ~k~uδsv (2.28)

In Hilbert space, the electric field, magnetic field and Hamiltonian are

~̂E(~r, t) =
i

2ε
1/2
0 L3/2

∑
~k

∑
s

{[ω~kq̂~ks(t) + ip̂~ks(t)]ε̂~kse
i~k·~r − h.c.}, (2.29)

~̂B(~r, t) =
i

2ε
1/2
0 L3/2

∑
~k

∑
s

{[q̂~ks(t) +
i

ω~k
p̂~ks(t)]

~k × ε̂~kse
i~k·~r − h.c.}, (2.30)

Ĥ(t) =
1

2

∑
~k

∑
s

[p̂2
~ks

(t) + ω2
~k
q̂2
~ks

(t)], (2.31)

where h.c. stands for Hermitian conjugate, and ε̂~ks should be understood as unit vectors for

polarization directions, not quantum mechanical operators.

The following operators can be defined[33]
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â~ks(t) =
1√

2h̄ω~k
[ω~kq̂~ks(t) + ip̂~ks(t)], (2.32)

â†~ks(t) =
1√

2h̄ω~k
[ω~kq̂~ks(t)− ip̂~ks(t)]. (2.33)

The commutation relations for â~ks(t) and â†~ks(t) are straightforward to compute

[â~ks(t), â~uv(t)] = 0 (2.34)

[â†~ks(t), â
†
~uv(t)] = 0 (2.35)

[â~ks(t), â
†
~uv(t)] = δ~k~uδsv (2.36)

By comparing Eq.(2.15) and Eq.(2.16) with Eq.(2.32) and Eq.(2.33), one realizes that the

classical counterpart of â~ks(t) and â†~ks(t) are c~kse
−iω~kt and c∗~kse

iω~kt, respectively. The time

dependence of both operators is harmonic:

â~ks(t) = â~ks(0)e−iω~kst, (2.37)

â†~ks(t) = â†~ks(0)eiω~kst. (2.38)

The Hermitian operators q̂~ks(t) and q̂~ks(t) can be solved from Eq.(2.32) and Eq.(2.33) in

terms of â~ks(t) and â†~ks(t):

q̂~ks(t) =

√
h̄

2ω~k
(â~ks(t) + â†~ks(t)), (2.39)

p̂~ks(t) = −i
√
h̄ω~k

2
(â~ks(t)− â

†
~ks

(t)). (2.40)

The relations above can be used to replace the q̂~ks(t) and p̂~ks(t) in Eq.(2.29), Eq.(2.30) and

Eq.(2.31).
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~̂E(~r, t) =

√
h̄ω~k

2ε0L3

∑
~ks

[â~ks(t)e
i~k·~rε̂~ks − â

†
~ks

(t)e−i
~k·~rε̂∗~ks], (2.41)

~̂B(~r, t) = i

√
h̄

2ε0L3
ω~k

∑
~ks

[â~ks(t)e
i~k·~r~k × ε̂~ks − â

†
~ks

(t)e−i
~k·~r~k × ε̂∗~ks], (2.42)

Ĥ(t) =
∑
~ks

h̄ω~ks[â
†
~ks

(t)â~ks(t) +
1

2
]. (2.43)

2.1.2 Coherent State of Light

In quantum mechanics, the electromagnetic field is quantized as we briefly discussed in the

previous section. The state of light can be described by different quantum states such as

coherent states and squeezed states. Since a laser is widely exploited to study of light-

matter interaction in laboratories, we will focus on the coherent state which is used for

coherent light source such as lasers and parametric oscillators. It is convenient to represent

a coherent state on the basis of Fock states |n~ks >, which is the eigenstate of number operator

n̂~ks ≡ â†~ks(t)â~ks(t)

n̂~ks|n~ks >= n~ks|n~ks >, (2.44)

where n~ks means the number of photons in the mode specified by the indices ~k and s and

< n~ks|n~uv >= δ~k~uδsv. By using the commutation relation Eq.(2.36) the effect of â~ks(t) and

â†~ks(t) on Fock states can be derived. For simplicity, the subscripts ~k and s will be omitted

from now on. Each operator, however, is still understood to be associated with a specific

mode of the electromagnetic field. The time dependence is also ignored because it is simply

harmonic oscillation (See Eq.(2.37) and Eq.(2.38)). For â, one can have

ân̂|n >= nâ|n >, (2.45)

ân̂|n >= (1 + n̂)â|n >, (2.46)

14



which gives immediately

n̂â|n >= (n− 1)â|n >, (2.47)

which means that â|n >= g|n − 1 >. Without losing the generality, the coefficient g can

be assumed to be real (Complex coefficient only provides a global phase factor to the state,

which is not important in quantum mechanics.).

g2 =< n− 1|g2|n− 1 >=< n|â†â|n >= n. (2.48)

Therefore g =
√
n. For â†, one can start with

n̂â†|n >= â†(1 + n̂)|n >= (n+ 1)â†|n >, (2.49)

which indicates that â†|n >= f |n + 1 >. Again the coefficient f is assumed to be real. Its

value is

f 2 =< n+ 1|f 2|n+ 1 >=< n|ââ†|n >=< n|(1 + n̂)|n >= n+ 1. (2.50)

Therefore f =
√
n+ 1. As a summary, one can have the following relations

â|n > =
√
n|n− 1 >, (2.51)

â†|n > =
√
n+ 1|n+ 1 > . (2.52)

Based on the above results, the operators â~ks(t) and â†~ks(t) are called annihilation and

creation operators respectively.

The coherent state is defined as the eigenstate of annihilation operators:

â|α >= α|α > . (2.53)

In the presentation of Fock states, the coherent state is

|α >= e−
|α|2
2

∞∑
n=0

αn√
n!
|n > . (2.54)
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The probability to be in the state |n > is

p(n) = | < n|α > |2 = e|α|
2 |α|2n

n!
. (2.55)

The eigenvalue of a coherent state |α > physically means the average number of photons

< α|â†â|α >= |α|2 =
∞∑
n=0

np(n). (2.56)

2.2 DRUDE-LORENTZ MODEL

The motion of electrons under the influence of an external electric field ~Eex and magnetic

field ~Bex in solids is theoretically described by the Drude-Lorentz model.

m~̈r(t) = −mω2
0~r(t)−mγ~̇r(t)− e ~Eex − e

~v

c
× ~Bex, (2.57)

where r is the distance between electrons and positive nuclei, m is the mass of the carrier,

ω0 is the resonant frequency due to the bounding force and the term mγ~̇r(t) describes the

damping effect. When the speed of the carrier ~v is much lower than the speed of light c, the

last term in Eq.(2.57) vanishes1.

By doing Fourier transformation on both sides of Eq.(2.57), one has

m(ω2 − ω2
0 − iωγ)~r(ω) = e ~Eex(ω). (2.58)

The solution is found easily to be

~r(ω) =
e ~Eex(ω)

m

1

ω2 − ω2
0 − iωγ

(2.59)

The polarization is defined as the average of the electric dipole moment over the volume

~P (ω) = Ne~r(ω), (2.60)

1This can be confirmed by noticing that the Fermi speed vF is typically order of 106 m/s, which is two
orders of magnitude smaller than the speed of light
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Metal ωp (1015 Hz) λp (nm) Ep (eV)

Au 2.183 137.43 ∼ 9

Pt 1.244 241.16 ∼ 5.13

Ag 2.18 137.62 ∼ 8.98

Al 3.57 84.03 ∼ 14.71

Cu 1.914 156.74 ∼ 7.389

K 0.8896 337.23 ∼ 3.72

Na 1.381 217.23 ∼ 5.71

Table 2.1: Table for plasmon frequency, wavelength and energy in metals

where N is the number of carriers per unit volume. The polarization can also be related to

the external electric field through the susceptibility χ

~P (ω) = ε0χ~Eex. (2.61)

Therefore the susceptibility can be solved as

χ =
Ne2

ε0m

1

(ω2 − ω2
0 − iωγ)

. (2.62)

In Chapter 3, we will see the Eq.(2.62) is actually the first order of susceptibility. Higher

orders of nonlinear susceptibilities can be derived in the formalism of the quantum density

matrix. The term

ωp =

√
Ne2

ε0m
(2.63)

is defined as the plasmon frequency. This is the bulk plasmon frequency. Typically, for

metals, the plasmon frequency is in the UV light frequency range (Table 2.1)2.

For metals, the plasmon frequency plays an important role in terms of optical properties.

When the light frequency is lower than the plasmon frequency, the electrons can respond fast

2The information for this table is from www.wave-scattering.com.
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|𝑒 > 

|𝑔 > 

ℏ𝜔𝑎 

Figure 2.1: The eigenstates of a bipartite system.

enough to screen the light field. Therefore, the light is reflected. When the light frequency

is higher than the plasmon frequency, the electrons cannot screen the field, and the light is

transmitted. In Chapter 8, we will discuss another important plasmonic effect happening

at the interface between metals and dielectrics, which is said to be the surface plasmon

polariton (SPP). SPP has different characteristics than the bulk plasmons.

Let’s consider a bipartite system that has only only two energy levels (Figure 2.1), ground

state |g > and one excited state |e >. They form a complete basis

< g|g >=< e|e >= 1, (2.64)

< g|e >=< e|g >= 0, (2.65)

|g >< g|+ |e >< e| = I, (2.66)

where I is the identical operator. We also assume that they both have definite parities (either

symmetry or antisymmetry). The Hamiltonian for two-level system is defined in such a way

that
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ĤA|g > = −1

2
h̄ωa|g >, (2.67)

ĤA|e > =
1

2
h̄ωa|e >, (2.68)

where ωa is the resonant frequency and h̄ωa is the energy gap. The Hamiltonian is then

ĤA =
1

2
h̄ωa(|e >< e| − |g >< g|). (2.69)

Similar to the case of the electromagnetic field in which â or â† annihilates or creates a

photon, here we can introduce operators, in the Schrödinger picture, to lower or raise the

energy level [33]:

b̂|g > = 0, (2.70)

b̂|e > = |g >, (2.71)

b̂†|g > = |e >, (2.72)

b̂†|e > = 0. (2.73)

Based on the definition, we can find

b̂†b̂|g > = 0, (2.74)

b̂†b̂|e > = |e >, (2.75)

b̂b̂†|g > = |g >, (2.76)

b̂b̂†|e > = 0. (2.77)

Therefore we obtain the relations
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b̂ = |g >< e|, (2.78)

b̂† = |e >< g|, (2.79)

b̂†b̂ = |e >< e|, (2.80)

b̂b̂† = |g >< g|. (2.81)

Eq.(2.69) becomes

ĤA =
1

2
h̄ωa(b̂

†b̂− b̂b̂†) ≡ h̄ωaσz. (2.82)

The commutation relations can be found

[σ̂z, b̂] =
1

2
[(|e >< e| − |g >< g|), |g >< e|] = −|g >< e| = −b̂. (2.83)

and

[σ̂z, b̂
†] =

1

2
[(|e >< e| − |g >< g|), |e >< g|] = |e >< g| = b̂†. (2.84)

In the Heisenberg picture, b̂ and b̂† will be

b̂(t) = eiωaσztb̂e−iωaσzt = b̂e−iωat, (2.85)

b̂†(t) = eiωaσztb̂†e−iωaσzt = b̂†eiωat. (2.86)

2.3 LIGHT-MATTER INTERACTION

Now we consider the interaction between light and solid state systems. For simplicity, we

assume the material is nonmagnetic, which means the relative permeability µr ≈ 1. We focus

on the interaction between the electric field and electrons. The total charge is q =
∫
d3rρ(~r).
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In [32], it is shown that when a charge distribution is in an external potential Φ(~r), the total

energy is

E = qΦ(0)− ~d · ~E − 1

6

∑
ij

Qij
∂Ej
∂ri

(0) + . . . . (2.87)

If the charge is distributed over a space with dimensions much smaller than the wavelength

of the electromagnetic field, then the electric field can be treated as a spatially uniform field.

The field gradient approaches to zero, which results in the vanishing of the quadruple and

even higher order terms. If the total charge is neutral, such as in the case of atoms, then the

first term in Eq.(2.87) is zero, leaving only the dipole term present. To illustrate the dipole

interaction, we can study a simple example of a two-level system that has only one electron

interacting with light. Since only one electron is included, the second term in Eq.(2.87)

becomes

V = −e~r · ~E. (2.88)

The unperturbed Hamiltonian is

ĤA = h̄ωaσz, (2.89)

ĤL = h̄ωk(â
†â+

1

2
), (2.90)

where ωa is the resonant frequency and ωk is the frequency of light. It is assumed that the

states of the bipartite system have definite parities. The quantum mechanical operator of

the electric dipole is

d̂ = −e~̂r = −e(|g >< g|+ |e >< e|)~̂r(|g >< g|+ |e >< e|)

= −e(~rge|g >< e|+ ~reg|e >< g|)

= ~dgeb̂+ ~d∗geb̂
†. (2.91)

Because we assume that the dimensions of the bipartite system is by far less than the

wavelength, we have the following approximation:
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ei
~k·~r ≈ 1− i~k · ~r ≈ 1.

The electric field operator then is

~̂E =

√
h̄ω

2ε0L3
(âε̂− â†ε̂∗). (2.92)

The interaction operator becomes

V̂ =

√
h̄ω

2ε0L3
(~dgeb̂+ ~d∗geb̂

†)(âε̂− â†ε̂∗). (2.93)

By introducing the rotating wave approximation, V̂ can be simplified as

V̂ =

√
h̄ω

2ε0L3
(~d∗geb̂

†âε̂− ~dgeb̂â
†ε̂∗). (2.94)

The physical picture of the b̂†â term is that by absorbing one photon the bipartite system

is promoted to excited state. On the contrary, the term b̂â† means that the bipartite system

decays from its excited state to ground state by emitting a photon.

By combining all the above results, one can obtain the full Hamiltonian

Ĥ = ĤL + ĤA + V̂

= h̄ωk(â
†â+

1

2
) + h̄ωaσz

+

√
h̄ω

2ε0L3
(~d∗geb̂

†âε̂− ~dgeb̂â
†ε̂∗). (2.95)

This Hamiltonian Ĥ is Jaynes-Cumming model[34]. Jaynes-Cumming model is of great

interest in atomic physics and quantum optics, both experimentally and theoretically.
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3.0 NONLINEAR OPTICAL RESPONSE

Nonlinear optical effects, resulting from the interaction between light and solid state systems,

is the focus of the study of this thesis. As pointed out in Chapter 1, nonlinear responses can

be described by the polarization

~P = ε0(χ(1) ~E + χ(2) ~E ~E + χ(2) ~E ~E ~E + ...). (3.1)

In this chapter we will review the derivation of nonlinear susceptibilities χ(n). This is

usually done with density matrix formulism, which describes the dynamics of an ensemble

of electrons[35]. Before we begin the calculation for χ(n), let’s briefly review the properties

of density matrix formulism.

3.1 DENSITY MATRIX

The Hamiltonian H is used for the solid state system. Its eigenstates are give by

Ĥ|n >= En|n > . (3.2)

Any general state can be decomposed on the basis

|Φ(t) >=
∑
n

Cn(t)|n > . (3.3)

According to the theory of quantum mechanics, the probability for the system to be

found in the state |k > is
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pk(t) = | < k|Φ(t) > |2

=
∑
mn

Cm(t)C∗n(t) < k|m >< n|k >

=< k|ρ̂|k >, (3.4)

where the operator

ρ̂(t) =
∑
mn

Cm(t)C∗n(t)|m >< n| ≡
∑
mn

ρmn(t)|m >< n| (3.5)

is defined as the density matrix operator. The off-diagonal elements have to do with the

coupling between different states, while the diagonal coefficients ρnn(t) = Cn(t)C∗n(t) repre-

sent the probability for the system to be in the eigenstate |n >. Therefore the trace of the

density matrix is

Tr(ρ̂(t)) =
∑
n

ρnn = 1. (3.6)

The expectation value of an operator Â can be found as

< Â > =< Φ(t)|Â|Φ(t) >

=
∑
mn

Cm(t)C∗n(t) < n|Â|m >

=
∑
mnl

Cm(t)C∗n(t) < n|l >< l|Â|m >

=
∑
mnl

Cm(t)C∗n(t) < l|Â|m >< n|l >

= Tr(Âρ̂(t)). (3.7)

From the Schrödinger equation and Eq.(3.3), we can have

Ċn(t) = − i
h̄
EnCn(t). (3.8)

The time evolution of ρ̂(t) is described by the Liouville equation
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d

dt
ρ̂(t) =

∑
mn

Ċm(t)C∗n(t)|m >< n|+
∑
mn

Cm(t)Ċ∗n(t)|m >< n|

= −
∑
mn

i

h̄
EmCm(t)C∗n(t)|m >< n|+

∑
mn

Cm(t)
i

h̄
EnC

∗
n(t)|m >< n|

= − i
h̄

(
∑
mn

Cm(t)C∗n(t)Ĥ|m >< n| −
∑
mn

Cm(t)C∗n(t)|m >< n|Ĥ

= − i
h̄

(Ĥρ̂(t)− ρ̂(t)Ĥ)

= − i
h̄

[Ĥ, ρ̂(t)]. (3.9)

More generally, the equation of motion can have a phenomelogical term describing the

damping effect [35, 36]

ρ̇mn(t) = − i
h̄

[Ĥ, ρ̂(t)]mn − γmn(ρmn(t)− ρeqmn), (3.10)

In Chapter 2, we see that the light field with a large number of photons can be treated

as a classical field. The interaction between such a field and a solid state system can be

described by the following potential energy

V̂ = −e~̂r · ~E =
∑
k

~̂d · ~E(ωk)e
−iωkt. (3.11)

3.2 NONLINEAR SUSCEPTIBILITY

In this section, we will describe how to derive the susceptibilities. The idea is that by using

the density matrix, the polarization induced by an optical field in a material can be deduced.

The nth order of polarization P (n) is related to the susceptibility χ(n) by the equation

P (n) = ε0χ
(n)En. (3.12)

In the following discussion, Eq.(3.12) will be modified because of the tensorial nature of the

susceptibilities.

25



3.2.1 First Order of Susceptibility

In order to calculate susceptibilities, we need to get an expression for the electric dipole

moment ~p =< d̂ >. The polarization is defined as

~P = N~p, (3.13)

where N is the electron density. From the previous discussion, we know < d̂ >= Tr(d̂ρ̂(t)).

Therefore we need to know the functional form of ρ̂(t). Let’s assume that the initial condition

is ρ̂(0) = ρ̂eq, where

ρnn(0) = ρeqnn, (3.14)

ρmn(0) = 0(m 6= n). (3.15)

The full Hamiltonian is Ĥ = Ĥ0 + V̂ so that the commutation relation becomes

[Ĥ, ρ̂(t)]mn = [Ĥ0, ρ̂(t)]mn + [V̂ , ρ̂(t)]mn

= (Ĥ0ρmn(t)− ρmn(t)|m >< n|Ĥ0) + [V̂ , ρ̂(t)]mn

= (Em − En)ρmn(t) + [V̂ , ρ̂(t)]mn. (3.16)

We can define h̄ωmn = Em − En. Eq.(3.10) then becomes

ρ̇mn(t) = −iωmnρmn(t)− i

h̄
[V̂ , ρ̂(t)]mn − γmn(ρmn(t)− ρeqmn). (3.17)

In the frame of the perturbation theory, we have

Vmk → λVmk, (3.18)

ρmn(t) = ρ(0)
mn(t) + λρ(1)

mn(t) + λ2ρ(2)
mn(t) + ..., (3.19)

where λ is the perturbation parameter which can vary from 0, meaning no perturbation, to

1, which implies full perturbation. From Eq.(3.17), Eq.(3.18) and Eq.(3.19), we can equate

the terms for the same order of λ to obtain
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ρ̇(0)
mn(t) = −iωmnρ(0)

mn(t)− γmn(ρ(0)
mn(t)− ρeqmn), (3.20)

ρ̇(1)
mn(t) = −(iωmn + γmn)ρ(1)

mn(t)− i

h̄
[V̂ , ρ̂(0)(t)]mn, (3.21)

ρ̇(2)
mn(t) = −(iωmn + γmn)ρ(2)

mn(t)− i

h̄
[V̂ , ρ̂(1)(t)]mn. (3.22)

We can assume the following steady state solution for ρ
(0)
mn(t) as the initial conditions:

ρ(0)
nn(t) = ρ(0)

nn(0) = ρ(eq)
nn , (3.23)

ρ(0)
mn(t) = 0(m 6= n). (3.24)

As we discussed before, all the states |n > have definite parity by assumption. The

expectation value of electric dipole moment induced by ρ̂(0) is

Tr( ~̂dρ̂(0)) =
∑
mnl

ρ(eq)
mn < l|~d|m >< n|l >

=
∑
mn

ρ(eq)
mn < n|~d|m >

=
∑
n

ρ(eq)
nn < n|~d|n >

= 0. (3.25)

This result is not surprising because in the equilibrium state, the electric dipole should be

randomly oriented and the ensemble average goes to zero.

The solution for a higher order ρ
(n)
mn(t) is given by [35]

ρ(n)
mn(t) =

∫ t

−∞
− i
h̄

[V̂ , ρ̂(n−1)(t
′
)]mne

−(iωmn+γmn)(t−t′ )dt
′
. (3.26)
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For the first order ρ
(1)
mn(t), we have

ρ(1)
mn(t) = −

∫ t

−∞

i

h̄
[V̂ , ρ̂(0)(t

′
)]mne

−(iωmn+γmn)(t−t′ )dt
′

= − i
h̄
e−(iωmn+γmn)t

∫ t

−∞

∑
l

(V̂mlρ
(eq)
ln − ρ

(eq)
ml V̂ln)e(iωmn+γmn)t

′

dt
′

= − i
h̄
e−(iωmn+γmn)t(ρ(eq)

nn − ρ(eq)
mm)

∫ t

−∞
V̂mne

(iωmn+γmn)t
′

dt
′

= − i
h̄
e−(iωmn+γmn)t(ρ(eq)

nn − ρ(eq)
mm)

∑
k

~̂dmn · ~E(ωk)

∫ t

−∞
e(i(ωmn−ωk)+γmn)t

′

dt
′

=
1

h̄
(ρ(eq)
mm − ρ(eq)

nn )
∑
k

~̂dmn · ~E(ωk)

(ωmn − ωk)− iγmn
e−iωkt. (3.27)

The electric dipole moment caused by ρ̂(1) is

Tr( ~̂dρ̂(1)) =
∑
mnl

ρ(1)
mn < l|~d|m >< n|l >

=
∑
mn

ρ(1)
mn
~dnm

=
∑
mn

1

h̄
(ρ(eq)
mm − ρ(eq)

nn )
∑
k

~dnm~dmn · ~E(ωk)

(ωmn − ωk)− iγmn
e−iωkt. (3.28)

According to Eq.(3.13), the polarization caused by ρ̂(1) is

P (1) = N
∑
mn

1

h̄
(ρ(eq)
mm − ρ(eq)

nn )
∑
k

~̂dnm ~̂dmn · ~E(ωk)

(ωmn − ωk)− iγmn
e−iωkt. (3.29)

From Eq.(3.1), we also have

P (1) = ε0χ
1
∑
k

~E(ωk)e
−iωkt. (3.30)

Hence the first order susceptibility χ(1) is

χ(1)(ωk) =
N

ε0h̄

∑
mn

(ρ(eq)
mm − ρ(eq)

nn )
~̂dnm ~̂dmn

(ωmn − ωk)− iγmn
. (3.31)
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It is not difficult to see the tensorial nature of the susceptibility. It is conventional to

express the susceptibility tensor in terms of its components

χ
(1)
ij (ωk) =

N

ε0h̄

∑
mn

(ρ(eq)
mm − ρ(eq)

nn )
d̂inmd̂jmn

(ωmn − ωk)− iγmn
. (3.32)

3.2.2 Second Order of Susceptibility

Once we have the first order susceptibility Eq.(3.32), we can calculate the second order

susceptibility χ(2). From Eq.(3.26), we have

ρ(2)
mn(t) =

∫ t

∞
− i
h̄

[V̂ , ρ̂(1)(t
′
)]mne

−(iωmn+γmn)(t−t′ )dt
′

= e−(iωmn+γmn)t

∫ t

∞
− i
h̄

∑
l

(V̂mlρ
(1)
ln (t

′
)− ρ(1)

ml(t
′
)V̂ln)e(iωmn+γmn)t

′

dt
′

= e−(iωmn+γmn)t∫ t

∞
− i
h̄

∑
lp

( ~̂dmlρ
(1)
ln (t

′
)− ρ(1)

ml(t
′
) ~̂dln) · ~E(ωp)e

(i(ωmn−ωp)+γmn)t
′

dt
′
. (3.33)

From Eq.(3.27), the commutation relation is

~̂dmlρ
(1)
ln (t

′
) =

1

h̄
(ρ

(eq)
ll − ρ

(eq)
nn )

∑
k

~̂dml ~̂dln · ~E(ωk)

(ωln − ωk)− iγln
e−iωkt

′

, (3.34)

ρ
(1)
ml(t

′
) ~̂dln =

1

h̄
(ρ(eq)
mm − ρ

(eq)
ll )

∑
k

~̂dml · ~E(ωk) ~̂dln
(ωml − ωk)− iγml

e−iωkt
′

. (3.35)

The integral can be calculated to obtain

ρ(2)
mn(t) =

∑
lpk

e−i(ωp+ωk)t

{ρ
(eq)
nn − ρ(eq)

ll

h̄2

[ ~̂dml · ~E(ωp)][ ~̂dln · ~E(ωk)]

[(ωmn − ωp − ωk)− iγln][(ωln − ωk)− iγln]

− ρ
(eq)
ll − ρ

(eq)
mm

h̄2

[ ~̂dml · ~E(ωk)][ ~̂dln · ~E(ωp)]

[(ωmn − ωp − ωk)− iγml][(ωml − ωk)− iγml]
} (3.36)
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The electric dipole moment caused by ρ
(2)
mn(t) is

Tr( ~̂dρ̂(2)) =
∑
mnl

ρ(2)
mn < l|~d|m >< n|l >

=
∑
mn

ρ(2)
mn
~dnm

=
∑
mn

∑
lpk

e−i(ωp+ωk)t

{ρ
(eq)
nn − ρ(eq)

ll

h̄2

~dnm[ ~̂dml · ~E(ωp)][ ~̂dln · ~E(ωk)]

[(ωmn − ωp − ωk)− iγln][(ωln − ωk)− iγln]

− ρ
(eq)
ll − ρ

(eq)
mm

h̄2

~dnm[ ~̂dml · ~E(ωk)][ ~̂dln · ~E(ωp)]

[(ωmn − ωp − ωk)− iγml][(ωml − ωk)− iγml]
}. (3.37)

The spectrum of the dipole moments is

< ~̂d >=
∑
r

< ~̂d(ωr) > e−iωrt, (3.38)

Where ωr = ωp + ωk. The tensor χ(2)(ωp + ωk, ωp, ωk) is

χ
(2)
ijk(ωp + ωk, ωp, ωk) =

N

ε0h̄
2

∑
mnl

{(ρ(eq)
nn − ρ

(eq)
ll )

d̂inmd̂jmld̂kln
[(ωmn − ωp − ωk)− iγln][(ωln − ωk)− iγln]

− (ρ
(eq)
ll − ρ

(eq)
mm)

d̂inmd̂jmld̂kln
[(ωmn − ωp − ωk)− iγml][(ωml − ωk)− iγml]

}. (3.39)

3.2.3 Third Order of Susceptibility

The third order susceptibility χ(3) can be derived in a similar way. In order to simplify the

tedious derivation, we rewrite the ρ
(2)
mn(t) as

ρ(2)
mn(t) ≡

∑
lpk

Amnl(ωp, ωk)e
−i(ωp+ωk)t, (3.40)

where the coefficient Amnl(ωp, ωk) is
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Amnl(ωp, ωk) =
ρ

(eq)
nn − ρ(eq)

ll

h̄2

[ ~̂dml · ~E(ωp)][ ~̂dln · ~E(ωk)]

[(ωmn − ωp − ωk)− iγln][(ωln − ωk)− iγln]

− ρ
(eq)
ll − ρ

(eq)
mm

h̄2

[ ~̂dml · ~E(ωk)][ ~̂dln · ~E(ωp)]

[(ωmn − ωp − ωk)− iγml][(ωml − ωk)− iγml]
. (3.41)

The ρ
(3)
mn(t) is

ρ(3)
mn(t) =

∫ t

−∞
− i
h̄

[V̂ , ρ̂(2)(t
′
)]mne

−(iωmn+γmn)(t−t′ )dt
′

= e−(iωmn+γmn)t

∫ t

−∞
− i
h̄

∑
a

(V̂maρ
(2)
an (t

′
)− ρ(2)

ma(t
′
)V̂an)e(iωmn+γmn)t

′

dt
′

= e−(iωmn+γmn)t∫ t

−∞
− i
h̄

∑
aq

( ~̂dmaρ
(2)
an (t

′
)− ρ(2)

ma(t
′
) ~̂dan) · ~E(ωq)e

(i(ωmn−ωq)+γmn)t
′

dt
′

= e−(iωmn+γmn)t∫ t

−∞
− i
h̄

∑
aq

( ~̂dma
∑
lpk

Aanl(ωp, ωk)−
∑
lpk

Amal(ωp, ωk) ~̂dan)·

~E(ωq)e
(i(ωmn−ωq−ωp−ωk)+γmn)t

′

dt
′

= − i
h̄
e−(iωmn+γmn)t∫ t

−∞

∑
aq

∑
lpk

( ~̂dmaAanl(ωp, ωk)− Amal(ωp, ωk) ~̂dan)·

~E(ωq)e
(i(ωmn−ωq−ωp−ωk)+γmn)t

′

dt
′

=
1

h̄

∑
aq

∑
lpk

[Amal(ωp, ωk) ~̂dan − ~̂dmaAanl(ωp, ωk)] · ~E(ωq)

(ωmn − ωq − ωp − ωk)− iγmn
e−i(ωq+ωp+ωk)t. (3.42)

The electric dipole moment induced by ρ
(3)
mn(t) is
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Tr( ~̂dρ̂(3)) =
∑
mn

ρ(3)
mn
~dnm

=
1

h̄

∑
aq

∑
lpk

~dnm[Amal(ωp, ωk) ~̂dan − ~̂dmaAanl(ωp, ωk)] · ~E(ωq)

(ωmn − ωq − ωp − ωk)− iγmn
e−i(ωq+ωp+ωk)t

=
1

h̄

∑
aq

∑
lpk

[
~dnmAmal(ωp, ωk) ~̂dan · ~E(ωq)

(ωmn − ωq − ωp − ωk)− iγmn

−
~dnm ~̂dma · ~E(ωq)Aanl(ωp, ωk)

(ωmn − ωq − ωp − ωk)− iγmn
]e−i(ωq+ωp+ωk)t

=
1

h̄3

∑
aq

∑
lpk

e−i(ωq+ωp+ωk)t

[
(ρ

(eq)
aa − ρ(eq)

ll )~dnm[ ~̂dml · ~E(ωp)][ ~̂dla · ~E(ωk)][ ~̂dan · ~E(ωq)]

[(ωmn − ωq − ωp − ωk)− iγmn][(ωma − ωp − ωk)− iγla][(ωla − ωk)− iγla]

− (ρ
(eq)
ll − ρ

(eq)
mm)~dnm[ ~̂dml · ~E(ωp)][ ~̂dla · ~E(ωk)][ ~̂dan · ~E(ωq)]

[(ωmn − ωq − ωp − ωk)− iγmn][(ωma − ωp − ωk)− iγml][(ωml − ωk)− iγml]

− (ρ
(eq)
nn − ρ(eq)

ll )~dnm[ ~̂dal · ~E(ωp)][ ~̂dln · ~E(ωk)][ ~̂dma · ~E(ωq)]

[(ωmn − ωq − ωp − ωk)− iγmn][(ωan − ωp − ωk)− iγln][(ωla − ωk)− iγln]

+
(ρ

(eq)
ll − ρ

(eq)
aa )~dnm[ ~̂dal · ~E(ωp)][ ~̂dln · ~E(ωk)][ ~̂dma · ~E(ωq)]

[(ωmn − ωq − ωp − ωk)− iγmn][(ωan − ωp − ωk)− iγan][(ωal − ωk)− iγan]
]

. (3.43)

From Eq.(3.38), where ωr = ωq + ωp + ωk, the tensor χ(3)(ωq + ωp + ωk, ωq, ωp, ωk) is
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χ
(3)
ijkl(ωq + ωp + ωk, ωq, ωp, ωk) =

N

ε0h̄
3

∑
aq

∑
lpk

[
(ρ

(eq)
aa − ρ(eq)

ll )d̂inmd̂jmld̂klad̂lan
[(ωmn − ωq − ωp − ωk)− iγmn][(ωma − ωp − ωk)− iγla][(ωla − ωk)− iγla]

− (ρ
(eq)
ll − ρ

(eq)
mm)d̂inmd̂jmld̂klad̂lan

[(ωmn − ωq − ωp − ωk)− iγmn][(ωma − ωp − ωk)− iγml][(ωml − ωk)− iγml]

− (ρ
(eq)
nn − ρ(eq)

ll )d̂inmd̂jald̂klad̂lan
[(ωmn − ωq − ωp − ωk)− iγmn][(ωan − ωp − ωk)− iγln][(ωla − ωk)− iγln]

+
(ρ

(eq)
ll − ρ

(eq)
aa )d̂inmd̂jald̂klad̂lan

[(ωmn − ωq − ωp − ωk)− iγmn][(ωan − ωp − ωk)− iγan][(ωal − ωk)− iγan]
]

. (3.44)

Even higher order susceptibilities can be derived by repeating this procedure until the

nth order. However, the algebra will become more and more complicated, and since we

are mainly interested in the second and third order nonlinearities, we will only present the

formula up to n = 3 in this thesis.

3.2.4 Origin of Nonlinear Response

The optical nonlinearities we have discussed so far have electronic origin. The motion of

electrons is described by various dipole moments d̂nm which are included in the suscepti-

bilities. The unperturbed dipole moment, given by Eq.(3.28), has the same spectrum as

the input electromagnetic field. This describes the coherent response of electrons. If the

optical field is harmonic, the trajectories of the coherently driven electrons can be classi-

cally thought as perfect circles like in Figure 3.1(a). When the perturbation is included,

higher order dipole moments, for example the ones given by Eq.(3.37) and (Eq.(3.43)), show

spectral contents that are absent in the spectra of the incident fields. This describes the

incoherent response of electrons, which can be thought as jitters occurring on top of the

harmonic motion(Figure 3.1(b)). Since the trajectories now are generally an anharmonic

function of time, their spectra can contain frequencies that are not present in the incident

electromagnetic field.
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(a) (b) 

Figure 3.1: (a), The trajectory of the harmonic motion of electrons without perturbation in

real space. (b), The trajectory of the motion of electrons under perturbation.

Now we see that the motion of electrons can have a variety of frequencies that are not

necessary to be the same as the ones in the input optical field. It is usually true that not every

frequency can be emitted. For a certain frequency to be emitted as a field, the oscillations

of electric dipoles at that frequency have to be in-phase so that constructive interference can

occur. This is said to be the phase matching condition.

3.3 PROPERTIES OF SUSCEPTIBILITIES

To complete the study, here we summarize the properties that the nonlinear susceptibilities

have.

3.3.1 Complex Conjugation

Recall that the energy difference h̄ωmn = Em − En. If the two indices are exchanged, then

ωnm = −ωmn. For the electric dipole operator, there is
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~̂dmn =< m| ~̂d|n >= (< n| ~̂d|m >)∗ = ~̂d∗nm

Because γmn is the damping rate, describing the decoherence between states |m > and |n >,

it is usually assumed to be real and symmetric about the indices γmn = γnm[36, 35]. Now if

we take the complex conjugate of χ(1), it will be

χ
(1)
ij (ωk)

∗ =
N

ε0h̄

∑
mn

(ρ(eq)
mm − ρ(eq)

nn )
d̂i
∗
nmd̂

j
∗
mn

(ωmn − ωk) + iγmn

=
N

ε0h̄

∑
mn

(ρ(eq)
mm − ρ(eq)

nn )
d̂imnd̂jnm

(−ωnm − ωk) + iγmn

=
N

ε0h̄

∑
mn

(ρ(eq)
nn − ρ(eq)

mm)
d̂imnd̂jnm

(ωnm + ωk)− iγnm

= χ(1)(−ωk). (3.45)

According to Eq.(3.39) and Eq.(3.44), we have similar results for χ(2) and χ(3):

χ(2)(ωp + ωk, ωp, ωk)
∗ = χ(2)(−ωp − ωk,−ωp,−ωk)

χ(3)(ωq + ωp + ωk, ωq, ωp, ωk)
∗ = χ(3)(−ωq − ωp − ωk,−ωq,−ωp,−ωk). (3.46)

3.3.2 Intrinsic Symmetry

The nonlinear polarization due to the tensor χ
(2)
ijk is

Pi(ωp + ωk) = χ
(2)
ijk(ωp + ωk, ωp, ωk)Ej(ωp)Ek(ωk). (3.47)

During the nonlinear process, physically it should not matter which of the fields, ~E(ωp)

and ~E(ωk), comes in first. There is no reason for the medium to favor one field over the

other. Mathematically this physical picture means that if two frequency components ωp and

ωk are interchanged, the value of χ(2) does not change as long as, when the frequencies are

interchanged, the corresponding indices for electric field are interchanged accordingly.

χ
(2)
ijk(ωp + ωk, ωp, ωk) = χ

(2)
ikj(ωp + ωk, ωk, ωp). (3.48)
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The valid of this identity has been rigorously proved and generalized for high orders of

susceptibilities in Ref. [35].

3.3.3 Lossless Medium and Kleinman Symmetry

As we pointed out in the Introduction chapter, if the medium has certain loss, the refractive

index will be a complex function, of which the imaginary part describes the absorption.

In density matrix formulsim, the dissipation is given by the γ term in Eq.(3.10). If the

dissipation in the medium can be ignored somehow (for example, the frequency of incident

photons are far away from the lowest resonant frequency), then the coefficient γ approaches

to zero [35]. It is obvious that from Eq.(3.32), the tensor χ(1) is real. This is true for χ(2)

and χ(3) too by examining Eq.(3.39) and Eq.(3.44).

If all frequencies are far away from resonance, then the mix of frequencies by susceptibility

tensors should be reversible, which means all the frequency components can be freely inter-

changed as long as the indices are interchanged accordingly. Let’s take χ
(2)
ijk(ωp + ωk, ωp, ωk)

as an example. Conventionally, the first argument in the tensor always is the sum of all the

remaining arguments. When the frequencies are exchanged, we should keep track of the sign

in front of each frequency:

χ
(2)
ijk(ωp + ωk, ωp, ωk) = χ

(2)
kij(−ωk,−ωp − ωk, ωp). (3.49)

However, we already know χ
(2)
kij(−ωk,−ωp − ωk, ωp) = χ

(2)∗
kij (ωk, ωp + ωk,−ωp). But since

the medium is lossless, the tensor should be real. We can have

χ
(2)
ijk(ωp + ωk, ωp, ωk) = χ

(2)
kij(ωk, ωp + ωk,−ωp). (3.50)

When the frequency of incident photons is far away from resonance in the medium, the

medium is dissipationless and the tensor is independent of the frequency, meaning we can

interchange the indices freely without interchanging the order of frequencies in the argument

list.
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3.3.4 Spatial Symmetry

The spatial symmetry that the materials have can put constraints on the susceptibility

tensors. In terms of crystals, there are seven crystal classes. The spatial symmetries for the

crystal classes and for isotropic materials are summarized in Table 3.1

The isotropic materials and cubic crystals have the highest symmetry: The χ(1) tensor

is diagonal and all nonzero elements are the same. They do not exhibit the property of

birefringence. All other crystal classes are anisotropic and consequently display the property

of birefringence. Tetragonal, trigonal, and hexagonal crystals are said to be uniaxial crystals

since there is only one particular direction (the z axis) for which the linear optical properties

show rotational symmetry. Crystals of the triclinic, monoclinic, and orthorhombic systems

are biaxial. Because of their complex structures, the χ(2) and χ(3) tensor for different crystal

systems will not be included in this thesis, but can be found in Ref.[35]. Note that one

important difference between χ(2) and χ(3) process is that every kind of crystal has nonva-

nishing χ(3) tensor, but only the materials that is non-centrosymmetric have nonzero χ(2)

coefficient. Materials that have inversion symmetry has no χ(2) term.

3.4 EXAMPLES OF NONLINEAR PROCESSES

3.4.1 Second Order Nonlinear Process

Second order nonlinear process results from χ(2) term. Two electric fields are involved in

this process.

3.4.1.1 Pockels Effect The Pockels effect is an electro-optical effect, which includes one

static field and one optical field:

Pi(ω) = ε0χ
(2)
ijk(ω, 0, ω)Ej(0)Ek(ω), (3.51)

where Ej(0) is the static field which, for example, can be an external DC voltage applied to

the material. The generated polarization has the same frequency as the optical field. When
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Crystal System χ(1)

Cubic, Isotropic


xx 0 0

0 xx 0

0 0 xx



Tetragonal, Trigonal, Hexagonal


xx 0 0

0 xx 0

0 0 zz



Orthorhombic


xx 0 0

0 yy 0

0 0 zz



Monoclinic


xx 0 xz

0 yy 0

zx 0 zz



Triclinic


xx xy xz

yx yy yz

zx zy zz


Table 3.1: Form of the linear susceptibility tensor χ(1) as determined by the symmetry

properties of the optical medium, for each of the seven crystal classes and for isotropic

materials. The nonvanishing elements are denoted by their cartesian indices [35].
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the Pockels effect is included, the polarization is

Pi = ε0(χ
(1)
ik + χ

(2)
ijkEj(0))Ek

= ε0χeffEk, (3.52)

where the effective susceptibility is

χeff = χ(1) + χ(2)E(0).

We can make use of the Pockels effect to construct an electro-optical modulator which

is also called a Pockels cell. The polarization is dependent on the electric field

~P = ε0χeff ~E

The wave equation Eq.(1.8) can be

∇2 ~E = εr
1

c2

∂2

∂t2
~E, (3.53)

where εr = 1 + χeff . Due to the tensor nature of χeff , the relative permittivity is generally

a tensor. By assuming that the optical field is a plane wave, one has

~k × ~k × ~E + εr
ω2

c2
~E = 0. (3.54)

or

∑
ij

((kikj − k2δij) + (εr)ij
ω2

c2
)Ej = 0. (3.55)

In its principle coordinate system, the permittivity tensor is [35]


εr1 0 0

0 εr2 0

0 0 εr3

 (3.56)
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For an uniaxial material, the permittivity tensor results in a tensor for refractive indices


n2

1 0 0

0 n2
2 0

0 0 n2
3

 (3.57)

where n1 = n2 6= n3. The special axis (n3) is called the c-axis. One can define

n1 = n2 ≡ no,

n3 ≡ ne.

The quantity n0 is said to be the ordinary refractive index while ne is referred as the ex-

traordinary refractive index. The appearance of two different indices of refraction is the

birefringence. The Eq.(3.55) becomes


n2
o
ω2

c2
− k2

2 − k2
3 k1k2 k1k3

k2k1 n2
o
ω2

c2
− k2

1 − k2
3 k2k3

k3k1 k3k2 n2
e
ω2

c2
− k2

1 − k2
2



E1

E2

E3

 = 0. (3.58)

In order to have a nonzero solution, the determinant of the matrix must be zero, which

gives rise to two solutions for the wave vector

k2 = n2
o

ω2

c2
(3.59)

and

k2
1

n2
0

+
k2

2

n2
0

+
k2

3

n2
e

=
ω2

c2
(3.60)

Because the group velocity is vg = ∇kω, for the first solution, the group velocity is

parallel to the wave vector ~k. For the second solution, however, generally the group velocity

is not parallel to the wave vector.
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Another way to describe the birefringence is the index ellipsoid matrix, which is the

inverse of the permittivity matrix, ηij = (εr)
−1
ij .

d =


1
n2
1

0 0

0 1
n2
2

0

0 0 1
n2
3

 (3.61)

Therefore we can write

~E =
1

ε0

η ~D

The wave equation Eq.(3.55) becomes

~k × ~k × η ~D +
ω2

c2
~D = 0. (3.62)

The unit vector in the direction of ~k is defined as k̂. Then the wave equation becomes

(k̂ × k̂ × η) ~D = − ω2

k2c2
~D = − 1

n2
~D. (3.63)

The matrix k̂×k̂×η has its eigenvalues the inverse of refractive indices and its eigenvectors

as the displacement fields. In the principle coordinates system the matrix η can be expressed

by a surface

x2
1

n2
0

+
x2

2

n2
0

+
x2

3

n2
e

= 1 (3.64)

This surface is called index ellipsoid. However, if an external field is applied, then the

refractive index will be modulated.

ηij = η
(0)
ij +

∑
k

rijkEk +
∑
mn

sijmnEmEn + · · · (3.65)

When the medium is lossless, the matrix ηij is real and symmetric. Since the first two indices

are symmetric, a reduced notation is used for rijk.

Let’s consider the medium that has symmetry 4̄2m(D2d) for example (the material that

has the symmetry of D2d belongs to the tetragonal crystal system, which is uniaxial.). We
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also assume that the electric field is in Z direction (Figure 3.2(a) and (b)). In this case the

index ellipsoid surface is

x2
1

n2
0

+
x2

2

n2
0

+
x2

3

n2
e

+ 2r63E3x1x2 = 1 (3.66)

By transforming to a new coordinate system

x =
x1 − x2√

2
(3.67)

y =
x1 + x2√

2
(3.68)

z = x3 (3.69)

the equation will become

x2(
1

n2
0

+ r63E3) + y2(
1

n2
0

− r63E3) +
z2

n2
e

= 1 (3.70)

where (Figure 3.2(c))

nx = n2
0 −

1

2
n3

0r63E3 (3.71)

ny = n2
0 +

1

2
n3

0r63E3 (3.72)

nz = ne. (3.73)

In this new principle coordinate system (Figure 3.2(b)), when the optical field propagates

a distance of L, the phase difference between its x and y component will be

δφ =
2π

λ
(ny − nx)L

=
2πn3

0r63E3L

λ
(3.74)
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Figure 3.2: The electro-optical effect. (a) Principle axes in the absence of an applied field.

(b) Principle axes in the presence of an applied field. (c) The intersection of the index

ellipsoid with the plane z = Z = 0.
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We also have V = E3L, which is the voltage cross the medium. Therefore the phase

difference will be

δφ =
2πn3

0r63V

λ
. (3.75)

It is clear that by controlling the voltage in the experiment, one can make use of the Pockels

effect to realize different phases.

3.4.1.2 Second Harmonic Generation Second harmonic generation (SHG) is a non-

linear process during which two identical optical fields E(ω) are mixed by the χ(2) tensor to

result in a field with doubled frequency E(2ω)

Pi(2ω) = ε0χ
(2)
ijk(2ω, ω, ω)Ej(ω)Ek(ω), (3.76)

During the second harmonic generation, both the energy and the momentum must be con-

served. The energy is naturally conserved since 2ω = ω + ω. This condition for the con-

servation of momentum is usually known as phase matching. Phase matching condition can

be seen from the wave equation Eq.(1.8). The polarization term on the right hand side of

the equation can be separated into linear and nonlinear part, P1 and PNL respectively. The

linear part is P1 = ε0χ
(1)E. The wave equation can then be rewritten as the following form:

(∇2 − ε
(1)
r

c2

∂2

∂t2
) ~E(~r, t) =

1

ε0c2

∂2

∂t2
~PNL(~r, t), (3.77)

where ε
(1)
r = 1 + χ(1). The result of the Fourier transform of the wave equation is.

(∇2 − ε
(1)
r ω2

c2
) ~E(~r, ω) = − ω2

ε0c2
~PNL(~r, ω). (3.78)

As usual we can represent the electric field as a plane wave

Ei = Ẽi(z)e−iωit = Aie
i(kiz−ωit),

where E1 and E2 represent the two input fields while E3 represents the output field. The

nonlinear polarization caused by the second order nonlinear process is
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PNL(~r, ω) = P̃NL(~r)e−iω3t

The spatial dependence part given by

P̃NL(~r) = ε0χ
(1)Ẽ1(z)Ẽ2(z) = ε0χ

(1)A1A2e
i(k1+k2)z

By plugging these quantities into the wave equation Eq.(3.78) one has

d2A3

dz2
+ 2ik3

dA3

dz
= −ω

2
3

c2
χ2A1A2e

i(k1+k2−k3)z. (3.79)

The solution to this equation has its maximum [35] when the momentum mismatching ∆k =

k1 + k2 − k3 vanishes, which is referred to as the phase matching condition

k1 + k2 = k3. (3.80)

Second harmonic generation is a special case of a more general process called sum fre-

quency generation, in which the input frequencies are ω1 and ω2 while the output field has

frequency ω3 = ω1 + ω2. This process is given by a nonlinear polarization

Pi(ω1 + ω2) = ε0χ
(2)
ijk(ω1 + ω2, ω1, ω2)Ej(ω1)Ek(ω2). (3.81)

Similarly we can have difference frequency generation during which a difference frequency

ω3 = ω1 − ω2 is generated by a polarization

Pi(ω1 − ω2) = ε0χ
(2)
ijk(ω1 − ω2, ω1, ω2)Ej(ω1)Ek(ω2). (3.82)

Second harmonic generation can be achieved with many nonlinear crystals such as Barium

Borate BaB2O4 (BBO) and Potassium Titanyl Phosphate (KTP). From the phase matching

condition and the definition ni = εr(ωi), we can have

n1ω1 + n2ω2 = n3ω3. (3.83)

We can assume that ω1 < ω2 < ω3. For normal dispersion, which means the refractive

index increases monotonically as a function of frequency, this condition cannot be fulfilled for
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Positive Uniaxial

(ne > no)

Negative Uniaxial

(ne < no)

Type I no3ω3 = ne1ω1 + ne2ω2 ne3ω3 = no1ω1 + no2ω2

Type II no3ω3 = no1ω1 + ne2ω2 ne3ω3 = ne1ω1 + no2ω2

Table 3.2: Phase matching methods for uniaxial crystals.

certain nonlinear processes. For example, for second harmonic generation, ω3 = 2ω1 = 2ω2,

then we end up with

n(ω) = n(2ω).

This is generally not satisfied because of the dispersion of the materials. For sum frequency

generation, ω3 = ω1 + ω2, we can have

(n1 − n3)ω1 = (n3 − n2)ω2. (3.84)

If the material has normal dispersion, then the left side is negative while the right side is

positive.

To overcome the difficulty of matching the phase in the presence of dispersion, birefrin-

gence is usually exploited. In type I phase matching, the polarization of two input electric

fields are parallel, namely they experience the same index. In type II phase matching, the

polarization of two input electric fields are perpendicular, namely one of them experiences

the normal index while the other experiences the extraordinary index (See Table 3.2).

3.4.1.3 Optical Parametric Amplifier Another χ(2) process is the optical parametric

process. The difference between a parametric and nonparametric process is that the state of

the optically active medium does not change during a parametric process while it does change

during a nonparametric process. Optical parametric amplification is related to the difference

frequency generation: The pumping frequency ωp is divided into two smaller frequencies ω1
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Figure 3.3: Optical parametric oscillator. (a), Band diagram for the optical parametric

process. (b), The structure of the optical parametric amplifier.

(the signal frequency) and ω2 (the idle frequency) (Figure 3.3(a)).

The cavity may be tuned to amplify one of the two frequencies, either ω2 or ω3, or both of

them. One application example of the optical parametric amplifier is the Opal laser system

in the lab, which is pumped by the output laser pulse from a Ti:sapphire laser (Tsunami)

and generates two infrared photons.

3.4.2 Third Order Nonlinear Process

A third order nonlinear process results from the χ(3) tensor.

3.4.2.1 Kerr Effect The Kerr effect is an electro-optical effect in which one static electric

field and two optical fields are involved. Since it is proportional to the square of the optical

field, it is referred as a quadratic electro-optical effect. The refractive index, including the

Kerr effect, is

n = n0 + n2I, (3.85)
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Figure 3.4: Kerr lensing effect induced by the third order nonlinearity.[38]

where I is the light intensity and the nonlinear refractive index n2 is related to the real part

of the third order susceptibility χ
(3)
R [37]

n2 =
χ

(3)
R

n2
0ε0c

. (3.86)

If an intense beam passes through a material that has large a χ(3) coefficient, and the

beam intensity has a Gaussian spatial distribution, then the refractive index will be the

largest at the center of the beam. The medium will effectively acts as a positive lens, which

focuses the beam (Figure 3.4). This is the effect of Kerr lensing1.

In Chapter 7, we will discuss the quadratic electro-optical effect experimentally charac-

terized in the oxide heterostructure LaAlO3/SrTiO3.

3.4.2.2 Self Phase Modulation Self phase modulation (SPM) is a third order process

that usually occurs during the interaction with intense light field such as the one induced by

ultrashort laser pulses. We can use Eq.(3.85) to study the self phase modulation. Suppose

the laser pulse has a Gaussian time dependence, then the intensity will be

1The effect described by Eq. (3.85) is also said to be the transverse Kerr effect. The self-phase modulation
discussed in the following section is sometimes said to be the longitudinal Kerr effect.
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I(t) = I0e
− t2

τ2 .

Then the refractive index, according to Eq.(3.85), will also be a function of time

n(t) = n0 + n2I0e
− t2

τ2 . (3.87)

After the beam passes through a distance L inside the medium, the phase factor becomes

φ(t) = ωct−
2π

λc
n(t)L. (3.88)

The instantaneous frequency is

φ̇(t) = ωc −
2π

λc
ṅ(t)L

= ωc + (
4πn2I0L

λcτ 2
e−

t2

τ2 )t

≡ ωc + αt, (3.89)

where the coefficient

α =
4πn2I0L

λcτ 2
e−

t2

τ2 (3.90)

is called the chirp parameter.

Figure 3.5 shows that a pulse propagating through a χ(3) medium undergoes a self fre-

quency shift (the red curve in Figure 3.5) because of self-phase modulation. The front of the

pulse is shifted to lower frequencies (red shift), the back to higher frequencies (blue shift).

Since the frequencies in such a pulse increases in time, it is said to be the up-chirp (Fig-

ure 3.6), which corresponds to a positive chirp parameter α. When the chirp parameter is

negative, it results in the case of down-chirp (Figure 3.7). By introducing new frequencies,

self-phase modulation can spectrally broaden the original pulse. In Chapter 5 we will dis-

cuss how the interplay between self-phase modulation and negative group velocity dispersion

(GVD) can result in the formation of an ultrashort laser pulse. In Chapter 6, supercontinuum

white light source [39] used for characterizing the spectral response of the oxide nanoscale

photodetector is realized by SPM.
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Figure 3.5: Self phase modulation. The blue curve is the intensity profile in the time domain.

The red curve shows the instantaneous frequency φ̇(t). (This figure is crafted by Emmanuel

Boutet and released on Wikipedia website.)
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Figure 3.6: Up-chirp induced by self-phase modulation.Blue and Red represent the wave

package in blue and red wavelength range, respectively.
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Figure 3.7: Down-chirp induced by self-phase modulation.
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3.4.2.3 Two Photon Absorption Two photon absorption (TPA) is related to the imag-

inary part of the χ(3) coefficient. The absorption coefficient is defined by

a = α + βI, (3.91)

where the α is the linear absorption coefficient while β is the two-photon absorption coeffi-

cient, which is related to the imaginary part of χ(3)[37]

β = χ
(3)
I

2ω

n2
0ε0c2

.

As a nonlinear process, two-photon absorption can be used to realize the interferometric

autocorrelation measurement. One example is the semiconductor material2GaAsP [42]. In

the experiments discussed in Chapter 7, we also use a GaAsP detector. Because of TPA,

when exposed to the mode-locked laser, the measured photocurrent from the GaAsP detector

shows a quadratic dependence on the incident light power (Figure 3.8).

3.5 ACOUSTO-OPTIC EFFECT

Acousto-optics is a branch of physics that studies the interactions between sound waves

and light waves, especially the diffraction of laser light by ultrasound or sound in general.

The acousto-optic effect is extensively used in the measurement and study of ultrasonic

waves. However, the growing principal area of interest is in acousto-optical devices for the

deflection, modulation, signal processing and frequency shifting of light beams. This is

due to the increasing availability and performance of lasers, which have made the acousto-

optic effect easier to observe and measure. Technical progresses in both crystal growth

and high frequency piezoelectric transducers have brought valuable benefits to acousto-optic

components’ improvements.

The acousto-optic effect is a specific case of photoelasticity, where there is a change of a

material’s permittivity ε due to a mechanical strain, meaning the susceptibility depends on

2GaAs1−xPx is a semiconductor. Its direct and indirect bandgap depend on the mole fraction of phos-
phorus [40, 41].
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Figure 3.8: GaAsP detector based on two-photon absorption. The white dots show the

measured results. The red curve is a fit to the function of I = aP 2, where I is the measured

photocurrent and P is the incident power.
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not only the electric field but also the local atomic displacement.

Acousto-optic modulators (AOM) and photoelastic modulators (PEM) are two examples

of acousto-optical devices. In an acousto-optic modulator, different parameters of the acous-

tic wave, including the amplitude and frequency, can be varied so that the properties of the

optical wave can be modulated through Bragg diffraction. A simple method of modulating

the optical beam propagating through the acousto-optic device is done by switching the

acoustic field on and off (Figure 3.9). When it is off, the beam is undiverted, the intensity of

light directed at the Bragg diffraction angle is zero. When switched on and Bragg diffraction

occurs, the intensity at the Bragg angle increases. So the acousto-optic device is modulating

the output along the Bragg diffraction angle, switching it on and off. The device is operated

as a modulator by keeping the acoustic wavelength (frequency) fixed and varying the drive

power to vary the amount of light in the deflected beam.

A PEM is an optical device used to modulate the polarization of a light source. The pho-

toelastic effect is used to change the birefringence of the optical element in the photoelastic

modulator. The principle of operation of photoelastic modulators is based on the photoelas-

tic effect, in which a mechanically stressed sample exhibits birefringence proportional to the

resulting strain. Photoelastic modulators are resonant devices at which the precise oscilla-

tion frequency is determined by the properties of the optical element/transducer assembly

(An example of photoelastic modulator is shown in Figure 3.10).

The transducer is tuned to the resonance frequency of the optical element along its long

dimension, determined by its length and the speed of sound in the material. A current

is then sent through the transducer to vibrate the optical element through stretching and

compressing which changes the birefringence of the transparent material. A certain amount

of retardation can be introduced in the transmitted light beam so that the polarization of

the transmitted light is varied coherently (Figure 3.11).
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Figure 3.9: An acousto-optic modulator. (This figure is made by J S Lundeen and released

on the website of Wikipedia.)
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Figure 3.10: A photoelastic modulator. (This figure is from the website of Hinds Instrument.)
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Figure 3.11: The quarter-wave and half-wave retardation induced by a PEM. (This figure is

from the website of Hinds Instrument.)
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3.6 MAGNETO-OPTIC EFFECT

A magneto-optic effect is any one of a number of phenomena in which an electromagnetic

wave propagates through a medium that has been altered by the presence of a quasistatic

magnetic field [43]. In such a material, left- and right-circularly polarized light can propagate

at different speeds, resulting in a number of important phenomena such as Faraday/Kerr

rotation. The Faraday effect causes a rotation of the plane of polarization which is linearly

proportional to the component of the magnetic field in the direction of propagation(Figure

3.12). One application of this effect is the Faraday isolators [44, 45]. The difference between

the Faraday effect and Kerr effect is that the transmitted light is measured for the Faraday

effect while the reflected light is measured for the Kerr effect (Figure 3.13)(See, for example,

the Chpater 5 in Ref.[46]).

In particular, in a magneto-optic material the presence of a magnetic field (either ex-

ternally applied or because the material itself is ferromagnetic) can cause a change in the

permittivity tensor of the material. Classically, we can consider the motion of electrons un-

der the influence of a magnetic field ~B = µ0χ(m)
~H, which is given by Eq.(2.57) in Chapter

2:

m~̈r(t) = −mω2
0~r(t)−mγ~̇r(t)− e ~E − eµ0χ(m)

~v

c
× ~H, (3.92)

where µ0 is the permeability of free space and χ(m) is the magnetic susceptibility. By per-

forming the Fourier transform on both sides, Eq.(3.92) becomes

−mω2~r(ω) = −mω2
0~r(ω)− imγω~r(ω)− e ~E(ω) + iµ0χ(m)

ωe

c
(~r(ω)× ~H(ω)). (3.93)

We treat the magnetic field as a perturbation by introducing a dimensionless parameter

λ. Therefore we have

~H → λ ~H, (3.94)

~r(ω) = ~r(0)(ω) + λ~r(1)(ω) + λ2~r(2)(ω) + ·. (3.95)
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Figure 3.12: Faraday rotation. The presence of a magnetic field can alter the polarization

of the light. (This figure is crafted by DrBob and released on the website of Wikipedia.)
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Figure 3.13: Different geometries for magneto-optical Kerr effect.

The unperturbed term ~r(0)(ω) can be solved from the equation

−mω2~r(0)(ω) = −mω2
0~r

(0)(ω)− imγω~r(0)(ω)− e ~E(ω). (3.96)

It is easy to have

~r(0)(ω) =
e

m

~E(ω)

(ω2 − ω2
0)− iγω

. (3.97)

The first order perturbation satisfies the equation

−mω2~r(1)(ω) = −mω2
0~r

(1)(ω)− imγω~r(1)(ω) + iµ0χ(m)ω
e

c
(~r(0)(ω)× ~H(ω)). (3.98)

It is straightforward to figure out that the solution is

~r(1)(ω) = −iµ0χ(m)ω
e

mc

~r(0)(ω)× ~H(ω)

(ω2 − ω2
0)− iγω

(3.99)

= −iµ0χ(m)
ωe2

m2c

~E(ω)× ~H(ω)

[(ω2 − ω2
0)− iγω]2

.
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The polarization of N electrons in a unit volume given by the zeroth order of perturbation

is

~P (0)(ω) = Ne~r(0)(ω), (3.100)

which is the result that we have seen in Eq.(2.61) of Chapter 2 . We define the electric

susceptibility as

χ(e)(ω) =
Ne2

ε0m

1

(ω2 − ω2
0 − iγω)

(3.101)

The first order of perturbation leads to

~P (1)(ω) = Ne~r(1)(ω) (3.102)

= − iω

µ0c5Ne
χ(m)χ

2
(e)(ω)( ~E(ω)× ~H(ω))

It is seen that in the case of magneto-optic effects, the polarization is modified by the

present magnetic field. Generally the magnetic susceptibility χ(m) is a tensor as well. The

microscopic origin of magneto-optic effects is electronic [43, 47]. The interaction between the

electron spins and the magnetic field causes the shift of electronic states and consequently

changes the dipole moments d̂nm that appear in the expression of susceptibilities. In Chapter

4, we discuss theoretically the Faraday rotation induced by a single electron spin.

61



4.0 INTRINSIC QUANTUM NOISE IN FARADAY-ROTATION

MEASUREMENTS OF A SINGLE-ELECTRON SPIN

Faraday rotation discussed in Chapter 3 is one way to realize quantum non-demolition mea-

surement of electron spin in quantum dots. To describe Faraday rotation, semiclassical

models are typically used, based on quantized electron spin states and classical electromag-

netic fields. Such treatments neglect the entanglement between electronic and photonic

degrees of freedom that produce intrinsic quantum noise, limiting the ultimate sensitivity

of this technique. We present a fully quantum-mechanical description of Faraday rotation,

and quantify this intrinsic noise. A method for measuring the purity of a given spin state is

suggested based on this analysis1.

4.1 INTRODUCTION

Because of the discovery of long-lived spin coherence in semiconductors such as GaAs[48], the

essential requirement of manipulating spins for spintronics and quantum information is now

possible. The first quantum computing proposal of Loss and DiVincenzo used electron spin

qubits in semiconductor quantum dots (QD)[49] and forecast the importance of measuring

single electrons and their spins.

The first step to realizing coherent manipulation of a single electron spin is to orient

the spin. Such orientation can be achieved optically (by exciting with circularly polar-

ized light)[50], electrically (by driving the electrons toward a ferromagnetic surface)[51] or

thermodynamically (by application of a uniform magnetic field at low temperatures). Photo-

1Yanjun Ma and Jeremy Levy, Phys. Rev. A 79, 023830 (2009)
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luminescence (PL) allows for measurement of electron spin polarization through the relation

between the circular polarization of light and electron spin orientation. However, PL is de-

structive in that it involves recombination of the electron with a hole. PL measurements

are intrinsically limited by the lifetime of the state, and it is not possible to monitor elec-

tron spin continuously. Furthermore, unless one uses a technique such as time-resolved

upconversion[52, 53, 54] or streak camera measurements, dynamical information is lost.

Time-resolved Faraday and Kerr rotation methods (hereafter referred to as Faraday rota-

tion) have been extensively developed[55, 56, 57], and allow one to probe the spin dynamics

of a single electron in a quantum dot. Faraday rotation results from a fundamental interac-

tion between electronic and photonic degrees of freedom. Seigneur et al.[58]have proposed

a scheme to implement quantum computation by using the single photon Faraday effect.

However, in most semiconductors the Faraday effect is usually quite weak, corresponding to

rotation angles θF ∼ 10−5rad for single electrons. Dynamic information is usually obtained

using pump-probe optical techniques: a circularly polarized pump beam creates an initially

spin-polarized electron population, and a probe beam subsequently interrogates the spin

state at a later time. The experiment is performed repeatedly as a function of the delay to

obtain a time-resolved signal with an acceptably high signal-to-noise ratio. In the case of a

single electron in a quantum dot, spin coherence can be achieved in the following manner:

the quantum dot is configured (either through biasing or doping) to begin in a state that

contains a single electron in the conduction band and no holes in the valence band. The

quantum dot is excited, promoting a second electron into the conduction band and leaving

behind a hole in the valence band. This state is often referred to as a “trion”. After one

of the electrons recombines with the hole, the remaining electron spin is partially polar-

ized. A linearly polarized probe pulse measures the spin of this electron via the Faraday

effect. In most cases, the electron neither begins in a pure state nor remains in one. Hy-

perfine interactions with nuclear spins quickly produce a mixed state on time scales ˜1-10

ns[59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69].In this paper, we study the noise introduced by

the mixed quantum state of the electron spin analytically and numerically. In this paper,

our previous analysis[70] about the noise is extended to a more formal quantum mechanical

frame. Since it’s from the spin state itself, we call it intrinsic noise.
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Figure 4.1: (Color online)light induced interband transition.
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4.2 THEORETICAL MODEL

Here we discuss in detail the quantum-mechanical source of this noise using a theoretical

model that treats both the electron and light field quantum mechanically. We model the

interaction between a single electron in a QD and a linearly polarized monochromatic probe

laser field. Based on the quantization of the light field that is presented in Chapter 2, we

have the Hamiltonian for the photon field written as

HP = h̄ωP (a†LaL + a†RaR), (4.1)

where ωP is the optical frequency of the probe laser, a†L and aL are creation and annihilation

operators for left circularly polarized (LCP) photons; a†R and aR are creation and annihilation

operators for right circularly polarized (RCP) photons. Due to optical selection rules [50]

spin-up (spin-down) electrons interact only with LCP (RCP) photons(See Figure 4.1). The

raising and lowering operators satisfy boson commutation relations

[am, a
†
n] = δmn, (m,n = L,R);

[am, an] = 0, [a†m, a
†
n] = 0.

The electron state is quantized as well. We assume that the electron resides in the con-

duction band quantum-confined ground state in an s-orbital, which means it has total angular

momentum J = 1
2
. In the valence band, the electronic ground states are constructed from

p-orbital, and hence the total angular momentum is J = 3
2
. Heavy-hole and light-hole inter-

mixing is neglected for simplicity and because it is not expected to affect qualitatively our

results. Only the heavy-hole subband is accounted for in our calculation. The Hamiltonian

for the electron is given by [71]

He = h̄ωe(σuz + σdz), (4.2)

where

σuz = b†cubcu − b†vubvu,
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σdz = b†cdbcd − b
†
vdbvd;

subscript ”c” and ”v” indicate conduction band and valence band respectively; subscripts

”u” and ”d” refer to spin-up or spin-down states of the electron. The fermion operators satisfy

anticommutation relations:

{biµ, b†jν} = δijδµν ,

{biµ, bjν} = 0, {b†iµ, b
†
jν} = 0,

where i and j indicate conduction band or valence band, and µ and ν indicate spin-up or

spin-down. A LCP photon couples to a transition between |+ 1
2
> and |+ 3

2
>, while a RCP

photons couples to a transition between | − 1
2
> and | − 3

2
>. The interaction Hamiltonian

is given by

HI = λLu(aLσu+ + a†Lσu−) + λRd(aRσd+ + a†Rσd−), (4.3)

where

λLu ∝< +
1

2
|x+ iy|+ 3

2
>,

λRd ∝< −
1

2
|x− iy| − 3

2
>,

σu+ = b†cubvu, σu− = σ†u+,

σd+ = b†cdbvd, σd− = σ†d+.

The full Hamiltonian of the entire system is given by

H = HP +He +HI

By applying the Wigner-Eckart theorem, it can be shown that the two coupling strengths

λLu and λRd must be equal (λLu=λRd≡λ). Based on the defining anticommutation relations,

it can be explicitly shown that σµz,σµ+ and σµ− have the following commutation relations:
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[σµ+, σν−] = δµνσµz,

[σµz, σν+] = 2δµνσµ+,

[σµz, σν−] = 2δµνσµ−.

These commutation relations for σµz,σµ+ and σµ− are formally identical to those for

the Pauli operators, even though they are actually products of fermionic creation and an-

nihilation operators. This feature makes it possible to find an analytic solution within the

Heisenberg picture [72]. In the limit λ�| ωP −ωe |, the approximate solution for the photon

operators is as follows:

a†L(t) = e−itΩσuza†L + g(t)(σu+ + ασuza
†
L), (4.4)

a†R(t) = e−itΩσdza†R + g(t)(σd+ + ασdza
†
R), (4.5)

where

α =
λ

ωP − ωe
,

Ω = λα,

g(t) = α(1− e−i(ωP−ωe)t).

This approximate solution is correct only when the coupling strength λ is much smaller

than ωe and ωP . In the section of RESULTS, one can see this criteria is satisfied in the sense

that the coupling strength of our sample is on the order of ∼ 109Hz, but the frequency of

the laser light and the characteristic frequency of the electron are on the order of ∼ 1015Hz.

This solution, therefore, is a very good approximation and, based on this, one can derive

Faraday rotation angle.
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Quantum Stokes operators can be used to describe Faraday rotation. They are the

quantum-mechanical analogue of classical Stokes parameters. Classical Stokes parameters

are defined as the following [33]:

S0 = E∗xEx + E∗yEy (4.6)

S1 = E∗xEx − E∗yEy (4.7)

S2 = E∗xEy + E∗yEx (4.8)

S3 = E∗xEy − E∗yEx. (4.9)

In electrodynamics, the polarization of light can be parameterized by two angles ϕ and

χ in the polarization ellipse. There is a one-to-one correspondence between the polarization-

ellipse representation and the Stokes representation (See Figure. 4.2).

Once the light field is known, the Stokes parameters can be computed. The physical

interpretation of S0 is the light intensity; hence, all parameters can be normalized to S0 (See

Figure 4.3).

Quantum Stokes operators are defined in the following way [73, 74]

S0 = a†LaL + a†RaR (4.10)

S1 = a†LaR + a†RaL (4.11)

S2 = i(a†LaR − a
†
RaL) (4.12)

S3 = a†RaR − a
†
LaL. (4.13)

Information about polarization is obtained by calculating the expectation values of these

operators. In a typical Faraday experiment, the probe light is linearly polarized at a 45◦

angle with respect to a final polarizing beam splitter. After the interaction between the probe

light and the electron, the polarization of the transmitted light will be rotated from its initial

position by an angle θF , known as the Faraday rotation angle. In the Stokes representation,

the initial polarization vector lies along the positive S2 axis. Faraday rotation will result in

a rotation of the vector within the S1 − S2 plane (See Figure 4.4). This vector P is confined
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Figure 4.2: The left figure shows the polarization ellipse in real space. The right figure is

the Stokes representation of the same polarization.
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Figure 4.3: (a)-(f)Different polarizations defined in terms of Stokes parameters. S1, S2 and

S3 have all been normalized to S0.
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to the plane as long as there is no circular dichroism that can lead to a non-zero expectation

value for S3.

In our calculations, we aim to reproduce the overall magnitude of the rotation angle that

has been reported in experimental work [55, 56, 57]. The experimentally observed rotation

angle is small: θF ∼ 10−5rad. Hence, it can be expressed as

θF =
1

2
tan−1(

< S1 >

< S2 >
) ≈ < S1 >

2 < S2 >
. (4.14)

4.3 RESULTS

In our calculation, a coherent state |νL, νR > is used for the light field, where |νL|2 and |νR|2

are the average number of left and right circularly polarized photons. These states satisfy

the canonical eigenvalue equations for the (non-Hermitian) photon annihilation operators:

aL|νL, νR >= νL|νL, νR >,

aR|νL, νR >= νR|νL, νR >,

Using the forms νL = NLe
iθL and νR = NRe

iθR , the expectation values of Stokes operators

for this coherent state can be found


< S0 >

< S1 >

< S2 >

< S3 >

 =


N2
L +N2

R

2NLNRcos(θL − θR)

2NLNRsin(θL − θR)

N2
R −N2

L

 . (4.15)

In order to start with +45◦ linearly polarized light, the following condition must be

satisfied

 N2
L = N2

R

θL − θR = π
2
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Figure 4.4: Definition of Faraday rotation angle. P indicates the polarization vector of the

light field.
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To describe the mixed state of an electron, a density matrix formula is employed:

ρe = τ |χ+ >< χ+|+ (1− τ)|χ− >< χ−|, (4.16)

where

|χ+ >= cos(χ)|+ 1

2
> − sin(χ)| − 1

2
>,

|χ− >= sin(χ)|+ 1

2
> + cos(χ)| − 1

2
> .

Here, τ is a parameter that varies between 0 and 1. Angle χ accounts for the precession

of electron spin in the nuclear field. For τ = 0 and τ = 1, one has a pure state, while

τ = 1/2 corresponds to a fully mixed (unpolarized) state. Because the electron Hamiltonian

is expressed in terms of creation and annihilation operators, caution must be taken when

applying those operators onto an electron state. When operators for spin-up electron are

applied to the spin-up state, one obtains

σuz|+
1

2
>= |+ 1

2
>,

σuz|+
3

2
>= −|+ 3

2
>,

and

σu+|+
1

2
>= 0,

σu+|+
3

2
>= |+ 1

2
>,

and

σu−|+
1

2
>= |+ 3

2
>,

σu−|+
3

2
>= 0.

Spin-down operators have the same rules when applied to the spin-down state. If a spin-up

operator operates on a spin-down state, however, one gets zero. For example,

73



σuz| −
1

2
>= (b†cubcu − b†vubvu)| −

1

2
>= 0.

The initial state of the whole system is then

ρ0(τ) = |νL, νR >< νL, νR| ⊗ ρe (4.17)

According to the solution Eq.(4.4) and Eq.(4.5), the analytical expression for S1 and S2

can be obtained and the expectation values calculated

< S1 >= Tr(S1(t)ρ0(τ)),

< S2 >= Tr(S1(t)ρ0(τ)).

The rotation angle is given by

θF (t, τ) =
Tr(S1(t)ρ0(τ))

2Tr(S2(t)ρ0(τ))
, (4.18)

After some algebra, one finds the following expression for the Faraday rotation:

θF (t, τ) = (2τ − 1)(
λ2

δ2
sin(δt)− sin(

λ2

δ
t)), (4.19)

where δ ≡ ωP−ωe. Notice that this equation is only valid for small t. For initial pure spin-up

state τ = 1, the rotation angle is

θ+ ≡ θF (t, 1) = (
λ2

δ2
sin(δt)− sin(

λ2

δ
t)). (4.20)

For initial pure spin-down state τ = 0, the rotation angle is

θ− ≡ θF (t, 0) = −(
λ2

δ2
sin(δt)− sin(

λ2

δ
t)). (4.21)

The fluctuation is given by

∆θF (t, τ) =

√
Tr(S2

1(t)ρ0(τ))− Tr(S1(t)ρ0(τ))2

2Tr(S2(t)ρ0(τ))
. (4.22)

74



Figure 4.5: (a), Faraday rotation as a function of time and parameter τ . (b), Faraday

rotation angle for two pure states. The red solid line corresponds to a spin-up state(τ = 1),

while the blue line corresponds to a spin-down state(τ = 0).
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From Eq.(4.19), Eq.(4.20) and Eq.(4.21), the following intuitive result can be proven

very easily:

θF (t, τ) = αθ+ + (1− α)θ−. (4.23)

where α = sin2(χ) + τ cos(2χ) and θ+ (θ−) is the Faraday rotation angle for an initial state

which is a pure spin-up (spin-down) state.

An analytical derivation shows that the fluctuation is a function of both photon number

N and the initial electron state.

∆θF (t, τ) =

√
1

4N
+ α(1− α)(θ+ − θ−)2, (4.24)

The second term under the square root is the so-called intrinsic noise term.

Numerical simulation is done so that we can compare our analytical calculation to recent

Kerr rotation experimental results on single electrons. From Berezosky et al. [55], one finds

from a PL plot that the energy for a neutral exciton is about 1.633 eV. That corresponds

to the band gap between the top of the valence band and the bottom of the conduction

band. From this number, the frequency ωe = E
h̄

= 2.48 × 1015Hz. Choosing probe light of

wavelength 760nm, which means the frequency is ωP = 2.47 × 1015Hz. From [75], one can

take the value of the coupling strength to be λ = 98GHz. In our experiment, the probe power

is about 1.57µW: the corresponding photon number is about 5× 105. In the simulation, the

interaction time between the spin and the photon is set to be 20ps. Because the time scale

of hyperfine interaction is ˜1-10 ns [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69], which is much

longer than the simulation time, χ is set to be zero in our numerical analysis. Notice that as

expected, if the initial electron state is a pure state, the rotation angle has opposite values

for the spin-up state and spin-down state, respectively (See Figure 4.5). For pure spin-up

states or spin-down states, the fluctuation (quantum noise) scales with photon number N as

N−1/2, as expected for shot noise. For mixed states or superposition states, the fluctuation

saturates even when the photon number approaches infinity (See Figure 4.6).

One scheme to measure τ is proposed here. Suppose the photon number is so large that

the shot noise term in Eq.(4.24) could be neglected. Notice that θ+ = θ− and when the

rotation angle is zero, according to Eq.(4.19) it means τ is 1
2
. If the value τ = 1

2
is used in
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Figure 4.6: (a), Fluctuation of Faraday rotation angle as a function of time and parameter

τ . (b), Shot noise and intrinsic noise as a function of photon number N. Shot noise (black

line) is from a pure spin-up (spin-down) state, while intrinsic noise (green line) is from a

maximally mixed state. In the simulation, the interaction time is chosen to be 20ps in order

to make the splitting more obvious, in which case the intrinsic noise saturates at about

∆θF0 = 20mrad.
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Eq.(4.24), one obtains ∆θF0 = θ+. This result implies that one can use the measured values

of Faraday angle fluctuation at an extreme value (∆θF ) and at a zero crossing (∆θF0) to

measure the purity of the spin state as quantified by τ :

τ =
1

2
(1±

√
∆θ2

F0 −∆θ2
F

∆θ2
F0 − 1

4N

). (4.25)

In the limit of a large number of photons (i.e., where shot noise can be neglected), the above

expression simplifies further

τ =
1

2
(1±

√
1− ∆θ2

F

∆θ2
F0

). (4.26)

The above analysis is based on the assumption that every device in the experiment is

perfect, and the noise is only introduced by the quantum state of the electron spin itself. This

is, however, not the case in the real experiment. Suppose the overall noise ∆θB is white noise

for the bandwidth in which the experiment is done. It serves as background noise and can

be measured by detuning the probe laser, for example. This background contribution can

be subtracted from the measured noise ∆θM and ∆θM0, where ∆θM indicates the measured

noise level at extreme points while ∆θM0 represents the measured noise at the zero-crossing

point. It makes sense to assume the fluctuation due to quantum states is not correlated with

the white noise in the device, therefore subtracting the background noise from the measured

noise gives the fluctuation due to quantum states

∆θ2
F = ∆θ2

M −∆θ2
B,

and

∆θ2
F0 = ∆θ2

M0 −∆θ2
B.

The Eq.(4.26) therefore becomes

τ =
1

2
(1±

√
1− ∆θ2

M −∆θ2
B

∆θ2
M0 −∆θ2

B

). (4.27)
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Notice that in the above equation, ∆θM is the real noise we see at the extreme points

of the rotation angle in the actual experiment. This noise has two sources: external noise,

which is ∆θB and intrinsic noise, which is ∆θF . In the actual experiment, ∆θM should be

larger than ∆θB due to the fact that the pump for the electron spin is not perfect, therefore

the spin that interacts with photons is in a mixed state. However, if ∆θM = ∆θB, that

means the intrinsic noise contribution is zero. From Eq.(4.24), one can see in the limit of

large photon number, ∆θF = 0 indicates that τ is either 0 or 1, which is consistent with the

result if one plugs ∆θM = ∆θB into Eq.(4.27). In other words, if in the real experiment, one

observes ∆θM = ∆θB, then the pumped spin is in either the pure spin-up or spin-down state

and one can also pin down the orientation of the spin by looking at the sign of the measured

rotation angle.

4.4 CONCLUSION

Using a quantum-mechanical model of Faraday rotation, we find that both the Faraday

rotation angle and the fluctuation are functions of the initial electron spin state. If the

electron spin is initially in a mixed state, intrinsic noise fluctuations will contain not only

shot noise but also intrinsic noise due to weak measurement of the electron’s spin state. The

reason that this intrinsic noise appears in this scheme is that the measurement done here

is non-destructive, and differs from a projective measurement, which causes the collapse of

the electron spin wave function to a certain spin direction. Analysis of the noise spectrum

should enable quantification of the purity of a given spin state.
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5.0 ULTRAFAST LASER CAVITY

As a coherent light source, a laser is the essential part for optical measurements. Generally,

the laser systems can be classified into two categories based on the temporal distribution

of the output power. If the power is constant in time, the laser is running in a continuous

wave mode (Figure 5.1(a)). If the output power is pulsed, the laser is running in a mode-

locked mode (Figure 5.1(b)). A mode-locked laser is a laser to which the technique of active

or passive mode locking is applied, so that a periodic train of ultrashort pulses is emitted.

Mode-locked laser can be applied to a variety of applications such as optical frequency comb

[76, 77], pump-probe spectroscopy [78, 79, 80], electro-optical sampling [81, 82, 83, 84] and

nonlinear frequency conversion [35, 85, 86].

Mode-locking can be achieved by active modulation of the cavity loss with acoustic-

optical modulators or electro-optical modulators [87, 88]. The modulation is performed in

such a way that lower laser power experiences more loss than the higher power (Figure 5.2).

In this way, a laser pulse with a certain duration can be achieved (usually on the order of

a picosecond). Passive mode-locking does not require the presence of an extra modulator

inside the cavity, but relies on nonlinear effects such as saturation absorption to realize the

modulation of the cavity loss [89, 90]. Since nonlinear effects are typically rapid in time,

passive mode-locking can result in much shorter pulse width. In this thesis, we study the

passive generation of ultrashort Ti:sapphire laser pulses, in which case the modulation of the

cavity loss is realized by the Kerr lensing effect that is produced by the Ti:sapphire crystal

[91].
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Figure 5.1: Continuous wave mode (a) and mode-locked mode (b) of output laser power.
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Figure 5.2: Temporal evolution of optical power and losses in an actively mode-locked laser.

The modulator causes increased losses for the pulse wings, effectively shortening the pulses.
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5.1 MODE-LOCKING

We assume a cavity that can support many frequencies. The central frequency is ωc, and

other frequencies are ωn = ωc+nδ, where δ is the frequency spacing and n = −N−1
2
,−N−1

2
+

1, · · · , 0, · · · , N−1
2
−1, N−1

2
. When all the frequency components oscillate in phase, the output

field will be a superposition of all fields En = E0e
−iωnt. For simplifying the calculation, the

amplitude is assumed to be the same and the relative phase is zero.

E(t) =

N−1
2∑

n=−N−1
2

E0e
−iωnt

= E0e
−iωct

N−1
2∑

n=−N−1
2

(cos(nδt) + isin(nδt))

= E0e
−iωct

N−1
2∑

n=−N−1
2

cos(nδt)

= E0e
−iωct(1 + 2

N−1
2∑

n=1

cos(nδt))

= E0e
−iωct sin(N

2
δt)

sin( δt
2

)
. (5.1)

This field has its maximum amplitude at t = 2π
δ

. The field amplitude |E(t)| and the width are

related to the number of modes that are oscillating in phase: The larger N is, the larger the

amplitude |E(t)| is and the smaller the width is (Figure 5.3). Note that the derivation shown

here is for a longitudinal mode of the electromagnetic field. Usually for a laser, the transverse

mode is desired to be TEM00 mode (Gaussian mode). Because in TEM00 mode, most of the

energy is confined in a single peak, it is the brightest compared to other higher order modes.

Secondly, a laser beam in Gaussian mode has the smallest divergence, therefore it is the

easiest to be collimated [92]. In the above derivation, the phases of different longitudinal

modes are locked, and the laser system in this state is called a mode-locked laser. Theoretical

discussion about mode-locking can be found in Ref.??.
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Figure 5.3: Electric field of the mode-locked pulse. The simulation is done for the number

of modes N equal to 5, 10 and 20.
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The frequency range covered by the N modes is called gain bandwidth, which is deter-

mined by the gain medium in the laser. The HeNe laser output wavelength is about 632.8 nm,

and the gain bandwidth is around 1.5 GHz, which corresponds to a wavelength range about

0.002 nm. A Ti:Sapphire can have a gain bandwidth about 128 THz, which covers approxi-

mately 300 nm wavelength range (See, for example, the website http://micro.magnet.fsu.edu/primer/java/lasers/tsunami/).

Because of its high gain bandwidth, the Ti:Sapphire has been widely used to generate

ultrashort laser pulses, ranging from 5 fs to hundreds of fs [38]. In the following, the principle

of generating ultrafast pulse is briefly reviewed, based on the nonlinear optics discussed in

the previous chapters. A simple mathematical formula is introduced to calculate the cavity

stability so that we know how to design and build an ultrafast laser.

The electric field for a laser pulse can be generally expressed as following [36]:

E(x, y, z, t) =
1

2
u(x, y, z)E(t)ei(kz−ωt) + c.c. (5.2)

where u(x, y, z) and E(t) describe the spatial and temporal dependence of the electric field

respectively. When we want to design a cavity to support ultrashort pulse, we need under-

stand how u(x, y, z) and E(t) change as the pulse propagates. This problem can be studied

by wave propagation equation.

5.2 PULSE SHAPING

In order to achieve certain pulse duration, we need understand the effects that lead to pulse

broadening and the ones that shorten the pulse. In both active and passive mode-locking,

the most significant factor that limits the pulse width is the chromatic dispersion. To see

how dispersion affects the pulse, we can solve the wave equation by treating the nonlinear

polarization as a perturbation term. We first focus on the linear polarization PL = ε0χ
(1)E.

In this case the electric field can be solved analytically. Assuming that the electric field is

uniform in both x and y direction, the wave equation is then reduced to

∂2

∂z2
E(t, z) = µ0ε0(1 + χ(1))

∂2

∂t2
E(t, z). (5.3)
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This equation can be solved in the frequency domain by performing Fourier transforma-

tion on both sides to obtain

∂2

∂z2
E(ω, z) = −µ0ε0(1 + χ(1))ω2E(ω, z). (5.4)

It is easy to find the solution for the Fourier component E(ω, z):

E(ω, z) = E(ω, 0)e−ik(ω)z, (5.5)

where the parameter k(ω) = n(ω)ω
c
. The function k(ω) can be expanded as follows:

k(ω) = k(ωk) +
dk

dω
(ω − ωk) +

1

2

d2k

dω2
(ω − ωk)2 + · · ·

The first order derivative dk/dω is recognized as 1/vg, the inverse of the group velocity. The

second order derivative d2k/dω2 is the group velocity dispersion (GVD), and d3k/dω3 is the

third order dispersion (TOD), etc.

Sometimes it is useful to express these quantities in terms of refractive index and wave-

length. In vacuum, the wavelength λ = 2πc
ω

. The derivative

dω = −2πc

λ2
dλ

Therefore we can have

dk

dω
= −2πd(n/λ)

2πc/λ2dλ

= −λ
2

c
(
1

λ

dn

dλ
− n

λ2
)

=
1

c
(n− λdn

dλ
) (5.6)

d2k

dω2
= − λ2

2πc2

d

dλ
(n− λdn

dλ
)

=
λ3

2πc2

d2n

dλ2
(5.7)
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The group velocity is then

vg =
c

n− λdn
dλ

(5.8)

The GVD is

dvg
dλ

=
λv2

g

c

d2n

dλ2
(5.9)

We assume the temporal dependence of the electric field to be a Gaussian function

E(t) = Ae−t
2/τ2 , where the pulse duration is τp =

√
2ln2τ . Its Fourier transformation is

E(ω) =
A√
2π

∫
e−t

2/τ2e−iωtdt

=
A√
2π

∫
e−

1
τ2

(t− iωτ
2

)2e−
ω2τ2

4 dt

=
Aτ

2
√

2
e−

ω2τ2

4 . (5.10)

E(ω) is treated as the initial condition for Eq.5.5. Then the general solution for E(ω, z) is

E(ω, z) =
Aτ

2
√

2
e−

ω2τ2

4 e−ik(ω)z. (5.11)

In the time domain the solution is the inverse Fourier transformation

E(t, z) =
Aτ

2
√

2

∫
e−

ω2τ2

4 e−ik(ω)ze−iωtdω. (5.12)

If there is no dispersion, meaning dn/dλ = 0 (therefore dk/dω = 0), then Eq.(5.12) simply

gives the original pulse function. When there is dispersion but no GVD, which means

dn/dλ 6= 0 and d2n/dλ2 = 0, then Eq.(5.12) is

E(t, z) =
Aτ

2
√

2
e
i(ωk

z
vg
−k(ωk)z)

∫
e−

ω2τ2

4 e
−iω(t− z

vg
)
dω. (5.13)

It is not difficult to see that this integral still preserves the pulse width of the original one.

It only shifts the time reference by z/vg.
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However, when the GVD is present, the integral becomes

E(t, z) =
Aτ

2
√

2
e
i(ωk

z
vg
−k(ωk)z)

∫
e−

ω2τ2

4 e−i
1
2
d2k
dω2

(ω−ωk)2ze
−iω(t− z

vg
)
dω. (5.14)

In this case the pulse duration will be [36]

τ
′
= τ

√
1 + (

2 d
2k
dω2 z

τ
)2. (5.15)

Eq.(5.15) shows that GVD can lengthen the pulse duration in time.

Another important effect in terms of pulse shaping is self-phase modulation (SPM). As we

have seen in Chapter 3, SPM can broaden the spectral width by generating new frequencies.

SPM alone cannot alter the pulse duration; however, a shorter pulse can be generated as

follows from the Fourier transform of the wider spectral bandwidth. To exploit the broader

spectrum for the generation of a shorter pulse, the red and blue components in the temporal

wings of the pulse have to be temporarily delayed and advanced, respectively. This means

that the group velocity of the red components is slower than the group velocity of the blue

components, that is to say, the GVD is negative dvg/dλ < 0. Generally, the Ti:sapphire

crystal and other materials used for optics have positive GVD (See, for example, Table 7.2

in Ref.[36]). The negative GVD can be introduced by either prism pairs [93] or specially

designed mirrors [38, 94, 95]. When the effect of SPM is balanced by the GVD, the pulse

duration will be constant in time, which is referred to as a soliton [36, 96]. More advanced

techniques such as the spatial light modulator (or pulse shaper) has been invented to provide

more sophisticated control of the shape of laser pulses [97].

5.3 GAUSSIAN BEAM AND ABCD MATRIX FORMULA

Now that we have a general propagation equation for electric field, we can plug the field

E(x, y, z, t) into Eq.(1.8). After some algebra[36], we can have a special solution which is the
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Gaussian beam[36, 92]

E(x, y, z) =
E0√

1 + z2/ρ2
0

e−iΘ(z)e−(x2+y2)/w2(z)e−ik(x2+y2)/2R(z), (5.16)

where

ρ0 =
πw0

λ
(5.17)

Θ(z) = arctan(z/ρ0) (5.18)

w(z) = w0

√
1 + z2/ρ2

0 (5.19)

R(z) = z + ρ2
0/z. (5.20)

w0 is the waist of the beam which is defined at z = 0 position. The distance 2ρ0 is called the

Rayleigh range. R(z) is the curvature of the wavefront at position z. When z = 0, R(z) goes

to infinity which means the wavefront at z = 0 is a plane. A single parameter q is defined

to characterize the properties of a Gaussian beam

1

q(z)
=

1

R(z)
− iλ

πw2(z)
(5.21)

The propagation of a Gaussian beam can be mapped onto the transformation of the

parameter q(z) according to the ABCD matrix formalism [36, 98, 92].

In this formalism, the laser beam is modeled as a paraxial ray as shown in the . A paraxial

ray is characterized by two parameters: the distance between the ray and the optical axis y

and the slope of the ray θ. The optical system can be modeled by its principal planes Pp1

and Pp2. The distances between the principal planes and the input/output planes are x1 and

x2, respectively.

The parameters of the output ray depend on those of the input ray. This is conveniently

written in the matrix form y2

θ2

 =

A B

C D

y1

θ1

 (5.22)

The determinant of the transformation matrix is unity:
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Figure 5.4: Paraxial ray in an optical system
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AD −BC = 1.

The matrix elements are related to the focal length of the optical system and to the position

of the principal planes by

A = 1− x2

f

C = − 1

f

D = 1− x1

f
(5.23)

The ABCD matrix for elemental optical systems are summarized as follows:

By combining the results in Figure 5.5, one can compute the matrix for other optical

systems. For example, if a ray travels a distance of d in vacuum before it enters a positive

lens with a focal length f , then the output ray from the lens will have the its parameters

given by

y2

θ2

 =

 1 0

− 1
f

1

1 d

0 1

y1

θ1

 (5.24)

Pay attention to the order of the matrices in above equation. If the initial state of a Gaussian

beam is given by qi, then after the beam passes through an optical system described by a

ABCD matrix, the final state qf will be

qf =
qiA+B

qiC +D
.

It should be mentioned that for more careful study of the propagation of laser pulses, a

4 × 4 matrix is used to include not only the ray properties but also the dispersive effects.

Details about the generalized ABCD matrix formalism can be found in [36]. In the study

of this thesis, however, we used traditional 2 × 2 ABCD matrices because those dispersive

parameters are difficult to be determined by either experiments or theories. In the following

discussion, we will see that the calculation with 2 × 2 ABCD matrices can provide good

enough guidance for designing a cavity.
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Figure 5.5: ABCD matrix for elemental optical systems. (a), Uniform material with the

refractive index n. (b), Convex lens with a focal length f.
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5.4 MODELING OF A LASER CAVITY

In order to design a cavity that can be operated in mode-locked mode, ABCD formalism can

be exploited to compute the stability of the cavity1. Mode-locking can be achieved at the

boundary of the stable region. Generally the dynamics of the laser pulse are complicated,

and a numerical method is required to solve the equations. A laser cavity can be modeled

as the following:

The total cavity length L is determined by the repetition rate frep.

L =
c

2frep
. (5.25)

The time t = 2/frep is the time for a pulse to take a round-trip inside the cavity. The total

cavity length can be approximately divided into two parts: L1, which is the length of the

path f1−M2−M1 (See Figure 5.8), and L2, which is the length of the path f2−M3−M4−OC

(See Figure 5.8). The ratio between L1 and L2, however, is generally related to the focal

length of each focusing mirror [99]

f 2
1

f 2
2

L2 − f2

L1 − f1

= γ. (5.26)

In our case, both focusing mirrors have the same focal length, which means f1 = f2.

It is found that when the parameter γ is about γ ≈ 1.75, the cavity favors the mode-

locking state to the continuous wave mode [99]. Generally the distance between two focusing

mirrors is much smaller than the total length of the cavity. Therefore one approximately has

L ≈ L1 + L2. There are two equations for L1 and L2

L2 − f2

L1 − f1

= 1.75 (5.27)

L1 + L2 =
c

2frep
(5.28)

From Eq.(5.27)and Eq.(5.28), the length of each arm can be figured out.

1The Mathematica codes used for the calculation are listed in Appendix B.
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Astigmatism can cause instable cavity. Because it is the concave mirrors that we use to

focus the Ti:sapphire laser, generally when the incident light has a finite angle θ relative to

the optical axis of a concave mirror, the concave mirror will focus the light to two different

focal points:

ft =
1

2
Rcos(θ) (5.29)

fs =
1

2

R

cos(θ)
. (5.30)

ft is referred to as the tangential focus while fs is the sagittal focus. If the angle θ is too

large, then these two foci in the Ti:sapphire crystal will be so far away that the pumping

efficiency is too low. However, the effective thickness for a Ti:Sapphire crystal with thickness

of d in both tangential and sagittal plane is different as well [36].

dt = d

√
n2 + 1

n4
(5.31)

ds = d

√
n2 + 1

n2
. (5.32)

Therefore under certain conditions, the separation of ft and fs can be compensated. The

detailed discussion can be found in [100] and [36]. The compensation happens at the incident

angle θ

2d

R

√
n4 − 1

n4
=
sin2θ

cosθ
. (5.33)

Our simulation can be done in both tangential and sagittal plane, and the details are

symmetric except the focus is different. In the following, we will discuss the calculation

details for the tangential plane. In order to calculate the conditions for mode-locking to

happen, we follow the procedure presented in [101] and [102]. The cavity is divided into two

parts: The first part is from the left surface of the Kerr medium, which is Ti:Sapphire in

our case, to the end mirror EM1 then back to the left surface; the second part is from the

right surface to the end mirror EM2 then back to the right surface. We need to compute the

ABCD matrix corresponding to these two parts. The first one M1 is
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A1 B1

C1 D1

 =

1 z − x− dt
0 1

 1 0

− 1
ft

1

1 L1

0 1


1 0

0 1

1 L1

0 1

 1 0

− 1
ft

1

1 z − x− dt
0 1

 (5.34)

The second one M2 is

A2 B2

C2 D2

 =

1 x

0 1

 1 0

− 1
ft

1

1 L2

0 1


1 0

0 1

1 L2

0 1

 1 0

− 1
ft

1

1 x

0 1

 (5.35)

The identity matrix in the middle represents the reflection of a normally incident Gaus-

sian beam. M1 and M2 represent the propagation of Ti:sapphire beam outside the crystal.

According to the discussion in [101], we must calculate a third matrix M3 which represent

the propagation of the Ti:sapphire beam from EM1 to EM2

A3 B3

C3 D3

 =

1 L2

0 1

 1 0

− 1
ft

1

1 x

0 1


1 dt

0 1

1 z − x− dt
0 1

 1 0

− 1
ft

1

1 L1

0 1

 (5.36)

Two parameters are introduced to simplify the algebra

α1 = 2
B1D1

dt
− A1C1dt

2
(5.37)

α2 = 2
B2D2

dt
− A2C2dt

2
(5.38)

The stability of the cavity is described by the function S = S(x, z)

S(x, z) = A3D3 +B3C3. (5.39)
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When the value of S(x, z) is in the range −1 < S(x, z) < 1, then the cavity can provide

output as a stable CW laser [101]. The occurrence of mode-locking is given by the function

δ(x, z) =
1

w

dw

dp
,

where w is the width of Ti:sapphire laser beam and p is the Ti:sapphire laser power normal-

ized by the critical power Pc which is the power required for self-focusing to happen[103]

Pc =
cε0λ

2

2πn2

, (5.40)

where λ is the vacuum wavelength of the Ti:sapphire laser and n2 is the nonlinear refractive

index as discussed in the previous chapter. When mode-locking happens, it is required that

δ(x, z) < 0 which means that the larger the Ti:sapphire laser power is, the smaller the beam

width is, which is exactly the self-focusing effect.

In terms of the ABCD matrix elements, the function δ is written as [101]

δ(x, z) = −1

2

α1 + α2S(x, z)

α2
1 + α2

2 + 2α1α2S(x, z)
. (5.41)

By combining the conditions of −1 < S(x, z) < 1 and δ(x, z) < 0, we can compute the

phase diagram for S(x, z). In Figure 5.7, the two stable regions, where −1 < S(x, z) < 1,

are separated from each other. Mode-locking can be expected to happen at the boundaries

of these two regions [102].

Another question that needs to be addressed is how well the pump laser can spatially

overlap with the Ti:sapphire laser. The pumping laser is focused to the Kerr crystal, and its

beam waist is assumed to be at the center of the crystal. Ti:sapphire beam is also assumed

to have its beam waist at the center of the crystal. From Gaussian optics, we know that at

the beam waist, the parameter q should be imaginary [104]

q = −πw
2

iλ
, (5.42)

where w and λ are the width and the wavelength of the pumping beam respectively. For

an optimal mode matching, the beam waist of the pumping laser should be smaller than
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Figure 5.7: Stability of the cavity. The color scale indicates the value of S(x,z).
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the beam size of the cavity mode as discussed in [104] and [105]. The q parameter for the

pumping beam at the incident plane is

qp0 = −
πw2

p0

iλp
, (5.43)

where wp0 = 2 mm is the beam waist at the incident plane, and λp = 532 nm is the pumping

wavelength. The ABCD matrix for the pumping beam to go from f lens to the Kerr medium

is

A4 B4

C4 D4

 =

1 x+ dt
2

0 1

 1 0

1
ft

1

1 y

0 1

 1 0

− 1
f

1

 (5.44)

Note that now the focusing mirror f2 becomes a negative lens for the pumping light. The q

at the waist in the Kerr medium is then given by

qp =
qp0A4 +B4

qp0C4 +D4

. (5.45)

Since this is the waist of the focused pumping beam, qp should be imaginary, which requires

that

π2w4
p

λ2
p

A4C4 +B4D4 = 0. (5.46)

From Eq.(5.46), the relation between the distance y and x can be found, so we can express

y as a function y = y(x). This relation can be then plugged into Eq.(5.45) to solve for the

beam waist wp = wp(x).

On the other hand, the beam waist of the cavity mode in the Kerr medium can be

calculated by starting with constructing a ABCD matrix describing a complete cycle of the

cavity mode traveling from the center of the Kerr medium, getting reflected at both end

mirrors and coming back to the center:
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A5 B5

C5 D5

 =

1 dt
2

0 1

1 x

0 1

 1 0

− 1
ft

1

1 L2

0 1


1 0

0 1

1 L2

0 1

 1 0

− 1
ft

1

1 x

0 1

1 dt

0 1


1 z − x− dt

0 1

 1 0

− 1
ft

1

1 L1

0 1

1 0

0 1

1 L1

0 1


 1 0

− 1
ft

1

1 z − x− dt
0 1

1 dt
2

0 1.

 (5.47)

The q paramter for the cavity mode is

qc =
qcA5 +B5

qcC5 +D5

. (5.48)

Again qc should be imaginary at the waist. Generally, the real part of qc is a function of x

and z. From the phase diagram, we can look for the suitable range of x in the stable region

of z by solving the equation

Re(qc(x)) = 0

Once we have the range for x, we can solve for the beam waist of the cavity mode

wc(x) =

√
λc

πIm(qc(x))
(5.49)

By comparing wc(x) with wp(x), and taking into account the condition wp(x) < wc(x) for

the optimal mode matching, we can pin down the range of x that leads to the condition for

mode-locking to happen with the highest possibility. Once we have the solution for x, we

can also solve for y via Eq.(5.46).

In the above discussion, we outline how to calculate the orientation angle for a pair of

focusing mirrors in order to compensate the astigmatism. By using ABCD matrix formalism,

the distance between the focusing mirrors z, the distance between the Ti:sapphire crystal

(Kerr medium) and the focusing mirror x and the distance between the focusing mirror and
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the focusing lens for the pumping laser d can all be computed. So far all the calculations

are done in the tangential plane. In the sagittal plane, this process can be mirrored. The

value of each parameter in both planes shows a slight difference. Nevertheless, calculations

discussed here can serve as the guideline for cavity design.

5.5 CAVITY PERFORMANCE

In our customized cavity, the Ti:sapphire crystal is 2 mm thick (CrystalSystem), the focusing

mirrors have the radius of 75 mm (Layertec, product number 106234), the repetition rate is

designed to be 100 MHz. The cavity folding mirrors are specially designed to compensate the

GVD of one another so that each pair has a overall negative GVD (Layertec, product number

102225). In order to have a fine control of the cavity GVD, a pair of fused silica wedges

(FemtoLasers, product number OA124) are inserted into the beam path. The transmission

of the output coupler (OC) (Layertec, product number 101907) is 5%. The structure of the

cavity is shown in Figure 5.8.

Based on the parameters2 for the intracavity optics shown in Table 5.1, we can calculate

the configuration for the cavity (Table 5.2).

The initial configuration (Config. A) can output pulses with about 20 nm FWHM in

the spectrum (Figure 8.1(a)). By measuring the pulse duration with a BBO crystal or a

GaAsP detector, we find the pulse width is typically about 30 to 40 fs. By replacing folding

mirrors (102225 from Layertec) with the ones that have broader bandwidth (103366 from

Layertec)(Config. B), the output light can have broader pulse width, which is around 45 nm

(Figure 8.1(b)). Calculations based on uncertainty relation shows that the pulse width can

be expected to be as short as 15 fs.

2The refractive indices are from public resource refractiveindex.info
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Figure 5.8: Ti:sapphire laser cavity configuration.

Parameter Value

Crystal thickness t = 2 mm

Focusing mirror (f1, f2) radius R = 75 mm

Focal length of lens fp fp = 75 mm

Refractive index for Ti:sapphire n ≈ 1.76 (800 nm)

Refractive index for fused silica n ≈ 1.45 (800 nm)

Table 5.1: Parameters for intracavity optics.
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Parameter Value

1st Arm length (f1 to M1) L1 ≈ 944 mm

2nd Arm length (f2 to OC) L1 ≈ 556 mm

Folding angle θ1 = θ2 ≈ 12◦

Distance x x ≈ 37.5 - 38.3 mm

Distance z z ≈ 77.2 mm

Distance y y ≈ 56 mm

Brewster angle for Ti:sapphire θB ≈ 60◦

Brewster angle for fused silica θB ≈ 55◦

Table 5.2: Calculated cavity parameters.

814 nm 833 nm 798 nm 843 nm 

(a) (b) 

Figure 5.9: The spectrum of the home-built Ti:sapphire laser cavity. (a) The spectrum

corresponds to the Configuration A. (b) The spectrum is for Configuration B.
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Shape Intensity

Profile I(t)

Spectral

Profile S(Ω)

τp ∆ωp CB

Gauss e−2(t/τ)2 e−(Ωτ/2)2 1.177τ 2.355/τ 0.441

Sech sech2(t/τ) sech2(πΩτ/2) 1.763τ 1.122/τ 0.315

Lorentz [1 + (t/τ)2]−2 e−2|Ω|τ 1.287τ 0.693/τ 0.142

Asym.sech [et/τ + e−3t/τ ]−2 sech(πΩτ/2) 1.043τ 1.677/τ 0.278

Square 1 for |t/τ | ≤ 1

0 elsewhere

sinc2(Ωτ) τ 2.78/τ 0.443

Table 5.3: Examples of standard pulse profiles.

5.6 ULTRASHORT PULSE MEASUREMENT

Nowadays, the table-top ultrafast laser can output sub-100 fs pulses. In order to characterize

the pulse width, generally, we need something faster in order to sample the pulse. However,

this can be challenging practically. A usual way to measure the pulse width is optical

autocorrelation. In an autocorrelation measurement, one laser pulse is split into two identical

pulses, which interfere with one another in an interferometer. Because the temporal and

spectral characteristics of the field are related through Fourier transform, the bandwidth

∆ωp and the measured pulse FWHM τp cannot vary independently of each other. There is

a minimum bandwidth-duration product (uncertainty relation):

∆ωpτp = 2π∆fpτp ≥ 2πCB, (5.50)

where CB is a numerical constant on the order of 1, depending on the actual pulse profile

(Table 5.3). For example, Figure 5.12 shows the autocorrelation measurement for our cus-

tomized laser. The measured FWHM is about τp ≈ 53 fs, and the pulse profile is assumed

to be a Sech function. From Table 5.3, the pulse width is τ = τp/1.763 ≈ 30 fs.
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5.6.1 Field Autocorrelation

The field autocorrelation function is defined as

Af (τ) =

∫
E(t)E∗(t− τ)dt. (5.51)

The Fourier transform of Af (τ) gives the spectrum of E(t). To see that, we can define the

field of light as E(t) = E(t)e−iωt, where E(t) is the field envelop function discussed before.

Notice that this envelope function is symmetric in time, namely E(t) = E(−t). Therefore

E∗(t− τ) = E(t− τ)eiω(t−τ) = E(τ − t)e−iω(τ−t) = E(τ − t)

The field autocorrelation function is then

Af (τ) =

∫
E(t)E(τ − t)dt, (5.52)

which should be recognized as the convolution of E(t). The Fourier transform of Af (τ) is

F(Af (τ)) =

∫
eiΩτdτ

∫
E(t)E(τ − t)dt

=

∫
dtE(t)eiΩt

∫
dτE(τ − t)eiΩ(τ−t)

=

∫
dtE(t)eiΩt

∫
dt
′
E(t

′
)eiΩ(t

′
)

= |E(Ω)|2 (5.53)

Therefore, field autocorrelation provides information about the spectral amplitude of E(t),

while it doesn’t capture the information about spectral phase. This forms the basis of Fourier

transform spectroscopy [106]. Field autocorrelation can be readily realized in experiments

by using a Michelson or Mach-Zehnder interferometer3 with a linear photodetector which

3The difference between Michelson and Mach-Zehnder setup is that a Michelson interferometer uses only
one beam splitter to split and recombine pulses while a Mach-Zehnder uses two beam splitters: one for
splitting, the other for recombination.
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responds to the average intensity of light Iave =
∫
dtE(t)E∗(t). The measured signal on the

detector is then

Af (τ) =

∫
(E(t) + E(t− τ))(E(t) + E(t− τ))∗dt. (5.54)

We can expand this expression

Af (τ) =

∫
dt(E(t)E∗(t) + E(t− τ)E∗(t− τ))

+2

∫
dt(E(t)E∗(t− τ) (5.55)

When the time delay goes to infinity, we can expect the autocorrelation function to be zero,

which means there is no correlation between E(t) and E(t− τ) if they are separated too far

way in time

lim
τ→∞

Af (τ) = 2Iave. (5.56)

On the other hand, at zero delay τ = 0, we expect the correlation to be the strongest. The

peak value is

lim
τ→0

Af (τ) = 4Iave (5.57)

Therefore, we have the ratio

Af (0)

Af (∞)
= 2 : 1. (5.58)

This result can be seen in Figure 5.10(c). The field autocorrelation is sensitive to the chirp

in the pulse: If the instantaneous frequency of a laser pulse depends on time (Figure 5.10(b))

like in the example of self-phase modulation, this effect will be reflected in the field autocor-

relation measurement (Figure 5.10(d)).
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Figure 5.10: Field autocorrelation. (a) The electric field of a laser pulse. (b) The field

autocorrelation trace of the pulse in (a). (c) The electric field of a laser pulse of which the

instantaneous frequency depends on time. (d) The field autocorrelation trace of the pulse in

(c). (This figure is created by Pgabolde and released on the Wikipedia.)
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5.6.2 Interferometric Autocorrelation

If the photodetector used for an autocorrelation measurement is a nonlinear detector that can

respond to I2
pulse, then the interferometric autocorrelation can be carried out. Its functional

form is

Ai(τ) =

∫
((E(t) + E(t− τ))(E(t) + E(t− τ))∗)2dt. (5.59)

To expand the Aint(τ),

Ai(τ) =

∫
dt(E2(t)E∗2(t) + E2(t− τ)E∗2(t− τ))

+4

∫
dtE(t)E∗(t)E(t− τ)E∗(t− τ)

+

∫
dt(E2(t)E∗2(t− τ) + E2(t− τ)E∗2(t))

+2

∫
dtE(t)E∗(t)(E(t)E∗(t− τ) + E(t− τ)E∗(t))

+2

∫
dtE(t− τ)E∗(t− τ)(E(t)E∗(t− τ) + E(t− τ)E∗(t)) (5.60)

By following the same analysis, we can find

Ai(0)

Aint(∞)
= 8 : 1. (5.61)

In Eq.(5.60), it is not difficult to see there are terms describing fast oscillations: The

term E2(t)E∗2(t−τ)+E2(t−τ)E∗2(t) is proportional to cos(2ωτ); the term E(t)E∗(t−τ)+

E(t− τ)E∗(t) contains the oscillation cos(ωτ). That is the reason that there are oscillation

fringes showing up in the interferometric autocorrelation trace (Figure C1(b)). The chirp

present in a pulse can also be detected by the interferometric autocorrelation (Figure C1(d)).

Interferometric autocorrelation can be realized by either exploiting the SHG generated by

nonlinear optical crystals such as BBO or by measuring the photocurrent produced by two-

photon absorption materials such as a GaAsP detector (Hamamatsu, model number G1117).

Figure 5.12 shows the interferometric autocorrelation result for the home-built laser. The

pulse width is measured as 30 fs.
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Figure 5.11: Interferometric autocorrelation. (a) The electric field of a laser pulse. (b) The

interferometric autocorrelation trace of the pulse in (a). (c) The electric field of a laser pulse

in which a certain mount of chirp is present. (d) The interferometric autocorrelation trace

of the pulse in (c). (This figure is created by Pgabolde and released on the Wikipedia.)
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Figure 5.12: Pulse characterization with GaAsP.
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5.6.3 Intensity Autocorrelation

If we can somehow remove these oscillating terms in Eq.(C.1), for example, by making two

fields have perpendicular polarizations, the resulting autocorrelation function will be

ĀI(τ) =

∫
dt(E2(t)E∗2(t) + E2(t− τ)E∗2(t− τ))

+4

∫
dtE(t)E∗(t)E(t− τ)E∗(t− τ) (5.62)

Since it only contains the intensity terms, Āi(τ) is referred to as the intensity autocorrelation

function. It is easy to show that

ĀI(0)

ĀI(∞)
= 3 : 1. (5.63)

Unlike field autocorrelation and interferometric autocorrelation, intensity autocorrelation

is not sensitive to the chirp in the pulse (Figure 5.13(d)). Therefore among the three kinds

of autocorrelation measurement, interferometric autocorrelation provides the most complete

information regarding the characteristics of an optical pulse. In Chapter 7, we will discuss the

autocorrelation experiments for the photoconductive nanostructures created at the interface

of LaAlO3 and SrTiO3.

Characterization of ultrashort laser pulses is not an easy task. In Appendix C we will

discuss some experimental issues about interferometric autocorrelation measurement.
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Figure 5.13: Intensity autocorrelation. (a) The electric field of a laser pulse. (b) The

intensity autocorrelation trace of the pulse in (a). (c) The electric field of a laser pulse

whose instantaneous frequency depends on time. (d) The intensity autocorrelation trace of

the pulse in (c). (This figure is created by Pgabolde and released on the Wikipedia.)
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6.0 INTERFACE PHOTOCONDUCTIVITY

In this chapter, we will discuss the photoconductive nanostructures fabricated at the interface

of LAO/STO by c-AFM lithography1.

Nanophotonic devices are designed to generate, guide or detect light using structures

with nanoscale dimensions that are closely tied to their functionality [107, 108, 109, 110].

However, the integration of photonic nanostructures with electronic circuitry [111] remains

one of the most challenging aspects of device development. Here we report the development

of rewritable nanoscale photodetectors created at the interface between LaAlO3 and SrTiO3.

Nanowire junctions with characteristic dimensions of 23 nm are created using a reversible

conductive atomic force microscope writing technique [21, 22]. These nanoscale devices

exhibit remarkably high gain for their size, in part because of the large electric fields produced

in the gap region. The photoconductive response is electric field-tunable and spans the visible

to near-infrared regime. The ability to integrate rewritable nanoscale photodetectors with

nanowires and transistors in a single material platform foreshadows new families of integrated

optoelectronic devices and applications.

6.1 INTRODUCTION

The discovery of a quasi two-dimensional electron gas (q-2DEG) at the interface between

insulating oxides [13] has accelerated interest in oxide-based electronics9. The interface

between LaAlO3 and SrTiO3 undergoes an abrupt insulator-to-metal transition as a function

1P. Irvin, Y. Ma, D. Bogorin, C. Cen, C. W. Bark, C. M. Folkman, C. B. Eom and J. Levy, Nature
Photon. 4, 849-852 (2010)
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of the number of LaAlO3 layers [15]; for structures at or near the critical thicknesstc, which is

3 unit cell(u.c.), the conductance becomes highly sensitive to applied electric fields [15]. By

applying the electric field locally using a conductive atomic force microscope (c-AFM) probe,

one can control this metalinsulator transition with a resolution approaching 1 nm [21, 22].

Devices such as rectifying junctions [23] and transistors [22] can be created, modified and

erased with extreme nanoscale precision. Additionally, because LaAlO3 and SrTiO3 are both

wide-bandgap insulators, they are essentially transparent at visible wavelengths, making it

an interesting material system on which to search for photonic functionality.

6.2 EXPERIMENTAL METHODS

The samples used for experiments are grown by pulsed laser deposition (PLD) at temperature

T = 550 ◦C and oxygen pressure PO2 = 10−3 mbar. In order to probe the interface of

LaAlO3 and SrTiO3, low-resistance electrodes are contacted directly to the interfacial quasi-

two dimensional electron gas (q-2DEG). Argon ion beam etching is used to mill 25 nm deep

into the SrTiO3. Electrodes are then formed by first sputter-depositing a 2 nm Ti adhesion

layer followed by 23 nm of Au into the etched region.

Nanostructures are created at the LAO/STO interface by applying positive voltages

to the c-AFM tip. Nanoscale insulating gaps are formed by cutting these nanowires with a

negatively biased c-AFM tip that passes over the nanowire. Electronic nanostructures can be

created with a high degree of precision and, furthermore, are relocatable and reconfigurable.

The simplest nanophotonic device consists of a nanowire with a narrow gap or junction.

This device was created by first writing the wire with a c-AFM tip bias of Vtip = +10 V,

producing a nanowire with a width of ww = 2.5 nm (Figure 6.1). The junction was created

by crossing the wire with Vtip = −10 V, producing a gap with comparable width ww = 2.5

nm.

In order to locate the working area under an optical microscope, a confocal scanning

optical microscope (CSOM) is exploited. The working principle is shown in Figure 6.2.

Ideally, the pinhole passes the light reflected from the focal plane (for example, the plane
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Figure 6.1: Width of wire. Width of wire is determined by moving a reverse-biased tip across

the wire while monitoring the conductance G. The change in conductance is fitted to the

function G(x) = G0 +G1tanh(x/h). Also plotted is the deconvolved differential conductance

(dG/dx), from which we determine the width of the nanowire.
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Figure 6.2: Confocal scanning optical microscope (CSOM). (a) The working principle of

CSOM. (b) A typical setup of CSOM in experiments.

P in Figure 6.2(a)) but blocks scattering light from any other planes (for example, the plane

P
′
in Figure 6.2(a)). The spatial resolution can be enhanced in this way. Figure 6.2(b) shows

a typical setup for CSOM. The reflected light from the sample is collected by the objective,

and then coupled into a single mode fiber which has a core size about 8 µm and serves as a

pinhole. The light coming out from the fiber is then measured by a Si photodetector. The

light is modulated by a chopper and a lock-in amplifier is used to demodulate the output

from the Si photodetector. By performing this lock-in measurement, the signal to noise ratio

can be enhanced. Figure 6.3 shows a typical reflection image taken by CSOM with a HeNe

laser (λHeNe = 632.5 nm). The whole scanning area is 30 µm by 30 µm. The surrounding

electrodes, which have the width of 4 ∼ 5 µm, can be resolved. Since the gold has much

better reflectance than either LAO or STO2

Another technique is the scanning photocurrent microscope (SPCM)[112, 113, 114]. In

our experiments, the oxide nanostructures are biased with certain voltage. The laser beam

is focused onto the sample and raster-scanned over the sample, and the current is measured

2Both of them are actually transparent in this wavelength based on their bandgap as we discussed in the
Introduction chapter.
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Figure 6.3: Reflection image taken by CSOM with λ = 632.5 nm. The scanning range is 30

µm by 30 µm. The surrounding gold electrodes, which has a lateral size about 4 to 5 µm

are resolved in the image.
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as a function of the laser spot position. When the light overlaps with the device a sharp

increase in the photocurrent is observed (Figure 6.4). Photocurrent measurements have been

performed as long as nine days following c-AFM lithography.

6.3 CHARACTERIZATION OF PHOTOCONDUCTIVITY

The photosensitivity of the devices written at the LaAlO3/SrTiO3 interface is spatially lo-

calized near the gap regions (Figure 6.5). An SPCM image of the photocurrent between

two electrodes that do not have a device written between them shows a spatially diffuse

photocurrent of less than 2 pA (Figure 6.5(a)). The SPCM image shows a localized pho-

tocurrent in the region of the junction (Figure 6.5(b) and (c)). The devices are erasable and

reconfigurable. Furthermore, they are not damaged by illumination with I on the order of

KW · cm−2 intensity. After performing SPCM measurements on the device shown in Figure

6.5(b), the device was erased and a new device created farther from the electrodes (Figure

6.5(c)). The photosensitivity of these devices could be optically modulated at frequencies as

high as 3.5 KHz, and the response appeared to be limited by the RC time constant of the

device.

The functionality of these devices can be extended by adding an independent gate elec-

trode. Here, we adopt a geometry previously investigated as a nanoscale transistor, a

SketchFET[22]. The gate electrode is written perpendicular to the existing sourcedrain

nanowire (Figure 6.6).

A gate bias VGD can be used to modify the sourcedrain conductance, enabling conduction

between source and drain for positive VGD and inhibiting it for negative VGD. As for the

case of the two-terminal wire with junction, photocurrent that is spatially localized near

the junction is observed where the device was written (Figure 6.7(a)). A simultaneously

acquired laser reflectivity image (Figure 6.7(b)) does not show any observed signature of the

nanophotonic detector, such as changes in the absorption or scattering, which is also the

case for two-terminal devices.

SPCM images were acquired for an array of source and gate biases. To quantify the
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Figure 6.4: Sample photoresponse. Photocurrent collected from a drain electrode (D) versus

source bias (VSD applied to a source electrode (S)) when the laser is focused on the pho-

todetector (closed symbols) and 25 mm away (open symbols). Data points are derived from

a Gaussian fit to an SPCM image (See the following discussion). (Wavelength,λ = 633 nm;

laser intensity, I ∼ 20 W · cm−2 (numerical aperture, NA = 0.73); temperature, T = 80 K.).
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written at the LaAlO3/SrTiO3 interface. Images are 50 × 50 µm2. Dashed lines indicate

boundaries of areas where electrical contact is made to the LaAlO3/SrTiO3 interface; solid

lines indicate the locations of nanowires. (a) SPCM image of area before any nanostructures

are written. (b) SPCM image for a nanowire junction written close to a pair of electrodes.

(c) SPCM image formed after erasing the previous nanowire and writing a second nanowire

junction in a new location. (d) SPCM image for a set of seven parallel wires with adjacent

junctions of width wj = 2.5 nm; the separation between wires is ws = 2 mm. ((a) and (b),

I ∼ 20 KW · cm−2, VSD = 0.5 V; (c) and (d), I ∼ 30 KW · cm−2, VSD = 0.1 V. All panels:

NA = 0.73, T = 300 K.)
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Figure 6.6: Nanophotonic detector geometry. Typical geometry used for three-terminal

devices. The source-drain junction width wj is on the order of the size of the wire width, ww

= 2.5 nm. The gate electrode is positioned 50 nm from the source-drain wire. The T shape

helps ensure a uniform electric field from the gate at the site of the junction.
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Photocurrent as a function of VSD plotted for different values of VGD. (I ∼ 20 KW · cm−2,
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amplitude of the photocurrent response, a two-dimensional Gaussian function is fit to the

SPCM images was performed. The image is fit to a two-dimensional Gaussian function

f(x, y) = A0 + A1e
(x−x0)

2

2σ2x
+

(y−y0)
2

2σ2y (6.1)

where A0 is the image offset, A1 is the amplitude of the 2D peak, x0 and y0 are the

peak offsets, and σx and σy are the peak widths. We then define the photocurrent as

iPC = A1 − A0. The amplitude of the Gaussian fitting (photocurrent amplitude) measured

as a function of VSD and VGD (Figure 6.7(c)) exhibits a polarity that is always the same

sign as VSD, irrespective of VGD, indicating that there is negligible leakage current from

the gate to the drain. Furthermore, the photocurrent amplitude is suppressed when VSD is

positive while VGD is negative, demonstrating the ability of the gate electrode to tune the

photoconductivity in the sourcedrain channel (Figure 6.7(d)).

To investigate the wavelength dependence of these devices, a mode-locked Ti:sapphire

laser was focused into a photonic-crystal fibre, which induces very strong self-phase modula-

tion to the laser pulses, to provide tunable laser illumination over the continuous wavelength

range 600 − 1000 nm (ref.[115]). As the white light source power varies with wavelength,

the normalized responsivity of the device (ipc/P , where ipc is the photocurrent and P is

the laser power) is shown over this wavelength range (Figure 6.8). A reflecting objective

(Ealing 25-0506 15X reflecting objective) was used to maintain a constant illumination area

versus wavelength. Data points in the vicinity of the pulsed laser source (780 nm) are not

shown because of the high peak power and nonlinear effects in the sample (Figure 6.9). A

Stark-shifted spectral response is observed with changing VGD. At positive VSD, the pho-

todetector response redshifts as the gate bias is increased. A similar Stark shift is observed

when sweeping the source bias(Figure 6.10).

The tuning of the responsivity is enhanced for positive VSD, which is consistent with the

behavior demonstrated in Figure 6.7. This evidence of a Stark effect, together with finite-

element analysis showing that the electric field is predominantly confined to the gap region

(Figure 6.11), indicates that the photo-induced absorption is highly localized.

The intensity dependence of the photocurrent exhibits power-law behavior (Figure 6.9(b)).

The photocurrent is assumed to have the intensity dependence as ipc = AIm, where A is a
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ditions. (a) VSD = 3 V, VGD = -5 V and (b) VSD = 3 V, VGD = 5 V, assuming dielectric

constants εSTO = 300, εLAO = 24, εair = 1 and conductive region thickness of 2 nm.

proportionality constant, I is the laser intensity, and m ∼ 1.2 to 1.4. The super-linear scal-

ing with laser intensity is similar to other systems that are near a metalinsulator transition

[116, 117].

There are several possible mechanisms for the photoconductivity. The direct and indirect

bandgaps of SrTiO3 (Eg 3.75 eV and 3.25 eV, respectively [19]) are too large to explain the

visible to near-infrared photoresponse. Above-band photoexcitation of SrTiO3 can produce

excitonic luminescence at visible wavelengths, indicating the existence of mid-gap states

[118, 119, 120]. The most readily formed mid-gap states are associated with oxygen vacan-

cies, which are known to form during substrate preparation [121, 122, 123] and growth of

LAO/STO heterostructures [124, 125, 126]. Localized states just below the conduction band

have been probed via transport in SrTiO3-based field-effect devices [127]. Unintentional

doping of SrTiO3 substrates (such as Cr, Fe or Al) can also contribute states within the

bandgap [128].

Electrons occupying mid-gap states can be optically excited into the conduction band
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using sub-bandgap light. The photoexcited electrons are swept across the junction by the

large electric field(E = VSD/ww ∼ 100 MV ·cm−1), resulting in photocurrent. The spectral

sensitivity we observe(Figure 6.8 and Figure 6.9) is consistent with previous optical mea-

surements on oxygen vacancy-rich samples [122, 123, 125, 129]. Along the nanowire and

sufficiently far from the gap, photo-induced current is negligible because the electric field are

screened or otherwise sufficiently small.

6.4 CONCLUSION

The rewritable photodetectors presented here bring new functionality to oxide nanoelectron-

ics. For example, existing nanowire-based molecular sensors [130] rely on the ability to bring

an analyte into contact with the sensing area of the detector. Here the roles are reversed:

a nanoscale photodetector can be placed in intimate contact with an existing molecule or

biological agent. It may be possible to take advantage of the significant Stark-shifted pho-

toresponse to improve the spatial sensitivity well beyond the diffraction limit. The ability

to integrate optical and electrical components such as nanowires and transistors may lead to

devices that combine, in a single platform, subwavelength optical detection with higher-level

electronics-based information processing.
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7.0 BROADBAND TERAHERTZ GENERATION AND DETECTION AT

TEN NANOMETER SCALE

Terahertz (0.1 THz-30 THz) radiation reveals a wealth of information that is relevant for

material, biological, medical and pharmaceutical sciences, with applications that include

chemical sensing, homeland security and high-speed electronics. To date, there have been no

methods capable of controlling THz radiation at molecular scales. Here we report both gener-

ation and detection of broadband terahertz radiation from 10-nm-scale oxide nanojunctions.

Frequency components of ultrafast optical radiation are mixed at these junctions, producing

broadband THz radiation. These same devices can detect THz radiation with compara-

ble spatial resolution. This unprecedented control, on a scale of four orders of magnitude

smaller than the diffraction limit, creates a pathway toward ultra-high-resolution near-field

THz imaging, single-molecule fingerprinting, spectroscopic characterization of catalysts, and

other applications.

7.1 INTRODUCTION

Terahertz (THz) radiation, with photon energies ranging from a few meV to a hundred meV,

is relevant for a wide range of applications and investigations. Examples include chemical

sensing[131], far-infrared optical properties of biomolecules like DNA [132], quantification

of crystallinity and polymorphism for drugs [133], THz spectroscopy of catalysts [134], and

investigations of electron-hole plasmas in III-V semiconductors [135]. A variety of materials

have been investigated for generating broadband THz emission, including photoconductive

emitters[136, 137, 83, 138], crystals such as ZnTe [139, 82], GaSe [81], GaAs [140, 141, 142],
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CdTe[142], LiNbO3[143] and gases [144].

THz detection can be achieved by a complementary set of approaches, including pho-

toconductive dipole antenna fabricated on low-temperature grown GaAs (LT-GaAs) [131,

137, 145], electric-optic (EO) sampling with crystals like ZnTe [81, 82] and LiTaO3 [83, 84],

pyroelectric detectors [144], bolometers [146], Schottky barrier diodes [147], superconductor-

insulator-superconductor junctions [148], and a single-photon detector [149].

One important application of THz spectroscopy is in the area of high-resolution imag-

ing and sensing. Nanoscale THz sources [150] and submicron detectors [151] have been

experimentally realized. Terahertz near-field imaging can achieve sub-wavelength spatial

resolution with probes such as apertures [152], metal tips [153, 154] and near-field detectors

[155, 156, 157]. However to date, the technology for THz imaging and spectroscopy is unable

to provide the spatial resolution necessary for single-molecule studies.

Here we explore the creation of nanoscale THz sources and detectors formed at the

LaAlO3 / SrTiO3 (LAO/STO) interface [13, 158]. When the LAO layer is at or close

to a critical thickness of 3 unit cells (u.c.), the metal-insulator transition can be locally

and reversibly controlled using a conductive atomic force microscope (c-AFM) tip [21, 22].

A variety of nanoscale electronic [22, 23, 24] and photonic [25] devices have already been

demonstrated. Compared to many other materials, SrTiO3 has unusually large third-order

nonlinear optical susceptibility [37]. Therefore, LAO/STO can be an attractive potential

platform for optically generating and detecting THz at nanometer scale.

7.2 SAMPLE GROWTH AND DEVICE FABRICATION

LAO/STO heterostructures are grown by pulsed laser deposition (PLD). The PLD system is

equipped with high-pressure RHEED, which is used for precisely monitoring layer-by-layer

growth of thin films in-situ. Low miscut (∼ 0.05◦) (001) SrTiO3 substrates are treated by

buffered HF and annealed in oxygen at 1000 C for 2 to 12 hours to produce TiO2-terminated

and atomically smooth surface that has single unit cell height steps. A KrF excimer laser

(248 nm) with energy density of 2.0 ∼ 2.5 J/cm2 and repetition rate of 3 Hz is focused onto
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a LaAlO3 single crystal target. Thin layers of LaAlO3 (3.4 u.c.) are deposited on top of

TiO2-terminated SrTiO3 at a temperature of 550 C and oxygen pressure of 10−3 mbar. The

details of the growth and properties are reported elsewhere [159, 160].

Metallic electrodes are contacted directly with the interface of LaAlO3 and SrTiO3. The

deposition process involves two steps. In the first step, Ar+ milling etches 25 nm deep into

the SrTiO3 followed by backfilling of 4 nm Ti adhesion layer and 30 nm Au layer. In the

second step, 4 nm Ti layer and 50 nm Au layer is deposited on top of the first Ti-Au layer

(Figure 7.1(a)). The first deposition establishes ohmic contact with the interface while the

second layer is used for bonding Au wires to make external electric connections. Atomic

force microscope (AFM) topography images like Figure 7.1(b) are obtained to identify a

clean canvas that has no broken electrodes and regular terraces (Figure 7.1(c)).

Conductive atomic force microscopy (c-AFM) is used for creating the conducting nanos-

tructures. The ”writing” and ”erasing” processes operate in contact mode. A lock-in ampli-

fier (Signal Recovery 7270) is used to monitor the change of the interface conductance. In

Figure 7.2(a) and (b), a sinusoidal excitation voltage (frequency fexcit ∼ 26 Hz and ampli-

tude V = 100 mV) is sent to the Source (S) and the current from Drain (D) is detected by

a lock-in amplifier at the frequency of fexcit. During the device fabrication, AFM is kept in

the darkness to suppress any possible photo-doping process and the humidity is maintained

at the level of 30% to 35%. Positive voltage (the typical value is 8 V ∼ 10 V) is applied to

the AFM tip for creating a conducting channel (Figure 7.2(a)) whereas negative bias is used

for cutting the channel (Figure 7.2(b)). When a conducting channel is successfully formed

between them, the drain current will increase sharply. Four-terminal structures adopted for

experiments presented in this letter have typical dimensions as depicted in Figure 7.2(c).

7.3 CHARACTERIZATION OF NONLINEAR PROCESS

Figure 7.3(a) illustrates the basic experimental setup. A nanojunction, consisting of a 10

nm wide nanowire with a 10 nm insulating barrier, is fabricated at the LAO/STO interface

with c-AFM lithography. Ultrafast (∼ 30 fs) optical pulses from a Ti: Sapphire laser are
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Figure 7.1: Sample structure. (a) Side view of the sample layers. (b) A 35 µm by 35 µm

atomic force microscope (AFM) image shows the topography of the sample. The overlap of

the first and second Ti/Au layer can be seen in the image. (c) Close-up topography image

clearly shows the terraces.
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Figure 7.2: Device fabrication and typical dimensions. (a) Conducting channel is written

with a positive bias on the c-AFM tip. (b) A negative bias on the tip restores the interface

to its initial insulating state and therefore forms a gap in the middle of a conducting channel.

(c) The typical dimensions for the devices described in the text.
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divided into ”pump” and ”probe” beams by a Mach-Zehnder interferometer. Photoconduc-

tive properties are measured using a four-terminal geometry in which a voltage is applied

between source (S) and drain (D) electrodes, and two voltage sensing electrodes, V+ and V−,

are used to measure the photo-induced differential voltage ∆Vph = V+−V−. All experiments

are performed at 80 K except where noted.

By measuring ∆Vph as a function of the (x,y) coordinate of the focused light spot [25, 114],

a photoconductive image is generated. In Figure 7.3(b), the diffraction-limited peak shows

where the nanojunction was created. By allowing both beams to illuminate the nanojunction

and scanning the optical delay line (ODL), dynamical information can be resolved. In Figure

7.3(c), when the chopper is off, interference fringes are observed which is attributed to field

autocorrelation. It is noticed that the lower envelope shows larger amplitude than the upper

one. By turning the chopper on, lock-in detection can filter away the fast oscillations,

leaving only the asymmetric envelope to be detected by averaging over a large number of

measurements(Figure 7.3(d)). The response exhibits a full width at half-maximum (FWHM)

of 31 fs.

The spatial and temporal response of the device can be measured by repeating the time-

resolved measurement at a regular two-dimensional array of locations. After the position of

the nanojunction is located by measuring the time-averaged image (Figure 7.3(b)), an array

of spatial positions (Figure 7.4) is chosen.

The microscope objective (100X, NA = 0.73) is fixed on a closed-loop 3-axis piezo stage

(Piezosystem Jena Tritor T-401-1) which can then be digitally controlled to move the ob-

jective and focus the light onto each spot at which the time-resolved measurement could be

performed. At each point, the time-resolved signal is measured for Vs set as -1 V, 0 V and +1

V. The time delay is calibrated by measuring the interference of a HeNe laser. By collecting

the data for all positions, the serial of time-space images could be formed (See Figure 7.5).

So far time-resolved measurements for the nanojunction have uncovered response which

is ultrafast in time, localized in space and tunable by external electric field. Several physical

mechanisms are considered to understand the origin of the LAO/STO nanojunction ultrafast

response. Processes involving resonant optical absorption and carrier relaxation can be ruled

out because the reported lifetime for photo-excited carriers in SrTiO3 is on the order of
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Figure 7.3: Time-resolved photoresponse measurement. (a) Representation of the experi-

mental setup. X and Y indicate the scanning axes. BS: ultrafast beam splitter. (b) ∆Vph

image with the color scale showing its amplitude. (Iave ≈ 10 kW/cm2 and Vs = −1 V.) (c)

Time-resolved measurement. Interference fringes are observed when the chopper is turned

off. (d) Time-resolved measurement with the chopper on. Offsets have been subtracted.

This is the average over 120 measurements. (Iave ≈ 50 kW/cm2 and Vs = −1 V.)
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Figure 7.4: Positions chosen for time-resolved measurement. In the time-averaged photo-

induced ∆Vph image (the background image), each cross indicates a position at which the

time-resolved experiment is carried out. Totally there are 11 by 11 points with 1 µm sepa-

ration between two adjacent points. The color bar shows the amplitude of ∆Vph.
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Figure 7.5: Tunable local ultrafast photoresponse. From top to bottom, the three rows

represent the measurement for Vs = -1 V, 0 V and +1 V, respectively. From left to right,

the three columns correspond to the experiment performed at time delay τ = -20 fs, 0 fs and

20 fs, respectively. (NA = 0.73, Iave ≈ 50 kW/cm2 for both pulses.)
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nanosecond [119, 161]. Nonlinear χ(2) or χ(3) processes, on the other hand, have a much

greater inherent bandwidth. SrTiO3 is a centrosymmetric crystal that should not exhibit a

bulk second-order nonlinear response. Because inversion symmetry is broken at the interface

of LAO/STO, χ(2) processes can exist [20]. However, the ultrafast response measured here is

highly localized at the junction and can be tuned by external electric field; hence, intrinsic

χ(2) processes are unlikely to play an important role. The electric field is strongly confined

around the nanojunction [25] and can be on the order of 106 V/cm. Therefore, it is believed

that the observed ultrafast response results from a χ(3) process involving one quasi-static

local field across the junction and two optical fields:

P i
NL(ω1 − ω2) = ε0χ

(3)
ijkl(ω1 − ω2, 0, ω1,−ω2)Ej

biasE
k
opt(ω1)El

opt(−ω2), (7.1)

where P i
NL is the nonlinear polarization, χ

(3)
ijkl is the third-order susceptibility at the nano-

junction, Ei
bias is the electric field across the nanojunction, and Ei(ω) is the optical field (i,

j, k, l = x, y, z).

The nonlinear polarization P i
NL combines the spatial resolution of the bias field and

temporal resolution of the optical field (Figure 7.6). In the experiments described here, the

optical fields Ek
opt are localized in time (∼ 30 fs duration), and confined to ∼ 1 µm in the

plane of the junction. The quasistatic field from the junction Ej
bias is localized within a

volume V ∼ (10 nm)3, defined by the spatial extent of the nanowire which is known from

prior investigations [15, 25]. A similarly high spatial and temporal resolution applies for

detection, as described in more detail below.

The nonlinear response is analogous to GaAs crystals excited by off-resonance irradiance

[140, 141]. For these oxide heterostructures, the incident light has a photon energy ∼ 1.48

eV, and SrTiO3 has a direct and indirect band gap of 3.75 eV and 3.25 eV, respectively [19];

hence, the interaction between non-resonant photons and valence electrons in SrTiO3 can be

described as a virtual absorption process [162, 163, 164]. Physically, the picture indicates

that, when valence electrons interact with non-resonant photons, the electrons remain bound

but are shifted from their equilibrium positions by the optical electric field, the result being

a transient dipole moment produced via a χ(3) process that reduces the static external field

(Figure 7.7(c)). Because this process involves no real absorption, a FWHM comparable to
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Figure 7.6: Spatiotemporal confinement of the nonlinear polarization. The DC bias field is

local in space, while the optical field is local in time. Consequently, the χ(3) polarization is

confined both spatially and temporally.
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that of the laser pulse is expected (for example, Figure 7.3(d)).

In order to characterize the χ(3) process, in all measurements for a single-junction struc-

ture, a 2 ps time-delay range is scanned. In addition to the ultrafast response, illumination

of these nanojunctions also produces a time-averaged (slow) response manifested as overall

offsets in the bias-dependent curves in Figure 7.8. This offset can be attributed to the ab-

sorption of photons by electrons occupying the in-gap states in SrTiO3 [120]. Experiments

[161, 119, 165]have shown that SrTiO3, especially when subjected to growth of LaAlO3,

can form deep traps from either oxygen vacancies [125] or unintentional doping of SrTiO3

substrate [128]. Prior investigations of the wavelength dependence of the photoconductive

response and the Stark shifting under electric fields [25] is in agreement with the picture

that incoming near-infrared photons can be absorbed by electrons residing in states within

the SrTiO3 band gap.

In all characterization measurements, each time-resolved curve is fit to a hyperbolic

secant function

f(t) = A0 + A1sech
2((t− t0)/tw) (7.2)

within a time window of 300 fs (black lines in Figure 7.8. Following the fitting process, the

amplitude A1 can be plotted as a function of source bias Vs (Figure 7.9(a)), average intensity

Iave (Figure 7.9(b)) and temperature (Figure 7.9(c)), respectively.

The model described above is consistent with the time-resolved signal dependence on

the strength of the applied static electric field across the nanojunction. According to Eq.

(7.1), the response should depend linearly on Ebias ≈ Vs/d, where d is the size of the gap.

In Figure 7.9(a), the amplitude of ultrafast response A1 is fit toA1 ∼ V a
s , where a = 0.97 for

Vs < 0 and a = 0.75 for Vs > 0.

The χ(3) process, described by Eq. (7.1), has a linear dependence on the light intensity

Iave = E(ω)E(−ω). Fig. 2 (b) shows that in the moderate intensity range, the measured

dependence is in good agreement with what is predicted by Eq. (7.1), although certain

variation between the two devices is also noticed.

In Figure 7.9(b), for Device #1, measurements in the range 10 ∼ 100 kW/cm2 (corre-

sponding intensity Iave ≈ 0.1 ∼ 1 mW) show a linear relation with the power law exponent
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Figure 7.7: Schematic band models for SrTiO3. (a) Energy band diagram showing the in-

gap states in SrTiO3. (b) External bias field can bend the bands and incident pulsed laser

initiates the interaction between photons and carriers. (c) Virtual absorption. Dashed gray

circles and dashed white circles are for virtual electrons and virtual holes respectively. (d)

Real absorption results in the photoconductive effect that contributes a finite offset in the

signal.
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+1 V 

-1 V 

0 V 

Figure 7.8: Fitting of ultrafast response. Slow offset shows up in the time-resolved measure-

ment. The black curves show the fitting results.
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(a) 

(b) 

(c) 

(d) (e) 

(f) (g) 

Figure 7.9: (a) Dependence on the strength of the static electric field. (Iave ≈ 50 kW/cm2).

(b) Intensity dependence. (Vs = -1 V) (c) Temperature dependence. (Vs = -1 V and Iave ≈ 50

kW/cm2).(d)-(g), Polarization dependence.
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A1 ∼ Iβave where β = 1.1. For Device #2, a wider intensity range is covered (10 µW to 3

mW). When the intensity is low, 960 W/cm2 < Iave < 3 kW/cm2, the amplitude increases

sharply, with a power law fitting parameter of β = 2.8. Saturation occurs above Iave ∼ 80

kW/cm2. In the moderate intensity range, 3 kW/cm2 < Iave < 80 kW/cm2, the power law

fitting gives β = 0.8.

The variation between these two measurements may result from certain unknown factors

in the experiment. As argued above, in-gap states are involved in the photoconductivity.

However, it is not clear whether or how those states might be modulated during the c-AFM

lithography. Another uncertainty is the relative importance of real and virtual absorption

processes (Figure 7.7(c) and (d)). It is likely that the number of photons involved in either

process has intensity dependence as well. This complexity is not reflected in Eq. (7.1).

Other nonlinear processes, such as two-photon absorption, might be initiated in SrTiO3

under certain intensity regimes as well. Nevertheless, based on the measurement in Figure

7.9(b) and taking into account those uncontrollable factors, the dependence of the ultrafast

response amplitude on the light intensity is in good agreement with what is predicted by Eq.

(7.1).

SrTiO3 undergoes several structural phase transitions [166], which influence the dielectric

permittivity and nonlinear optical properties [167, 168]. As the temperature decreased from

290 K to 30 K (Figure 7.9(c)), A1 is generally increasing. In Ref. [168] a minimum of χ(3)

is found around 30 K, however, this feature is only observed when the electric field across

the sample is lower than 1.5 kV/cm [168]. Across the junction, the electric field is several

orders of magnitude higher. It is possible that the abrupt change might be related to a

local electric-field-induced structural phase transition within the SrTiO3 from tetragonal to

orthorhombic [166]. Between 5 K and 20 K the signal decreases before somewhat recovering

around 5 K.

The polarization dependence is measured with Vs = −1 V and Iave ≈ 50 kW/cm2. Verti-

cal polarization of light is defined as the direction along the Y-axis and horizontal direction

is along the X-axis, as shown in in Figure 7.3(a). When the polarization of both beams

are parallel (Figure 7.9(d) and (f)), a strong time-resolved signal is detected. When their

polarizations are mutually perpendicular (Figure 7.9(e) and (g)), the signal is suppressed.
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This observation can be explained by the symmetry that SrTiO3 possesses: non-vanishing

χ(3) parameters put constraints on the polarization of light for generating nonzero PNL.

Since SrTiO3 belongs to m3m symmetry group[85], it has the following non-vanishing

χ(3) parameters:

χ(3)
xxxx = χ(3)

yyyy = χ(3)
zzzz (7.3)

χ(3)
xxyy = χ(3)

yyxx = χ(3)
xxzz = χ(3)

zzxx = χ(3)
yyzz = χ(3)

zzyy (7.4)

χ(3)
xyxy = χ(3)

yxyx = χ(3)
xzxz = χ(3)

zxzx = χ(3)
yzyz = χ(3)

zyzy (7.5)

χ(3)
xyyx = χ(3)

yxxy = χ(3)
xzzx = χ(3)

zxxz = χ(3)
yzzy = χ(3)

zyyz (7.6)

Because the incident light at the junction is normal to the sample, the electric field of the

light is transverse. Our samples are grown and processed in such a way that the in-plane

principal axes of SrTiO3 are along the X and Y directions in Figure 7.3(a). The polarization

dependence found in the experiment can then be explained as follows: The external bias field

is applied in the Y direction. The induced field, caused by the separation of virtual holes

and virtual electrons(Figure 7.7(c)), then has to be in -Y direction. This means only χ
(3)
yyyy

and χ
(3)
yyxx terms are relevant. However, both of them require the optical fields to be parallel

(either in the X or Y direction), otherwise the χ(3) coefficient will be zero and therefore no

virtual absorption can occur:

PNL
y ∼ χ(3)

yyyy(0, 0, ω,−ω)Ebias
y Ey(ω)Ey(−ω) (7.7)

PNL
y ∼ χ(3)

yyxx(0, 0, ω,−ω)Ebias
y Ex(ω)Ex(−ω) (7.8)

7.4 GENERATION AND DETECTION OF THZ

Motivated by the fact that rectified THz fields can be generated via χ(3) processes, the

experiments that we have shown so far demonstrate the feasibility of generating THz field

at 10 nm scale (Figure 7.6). To illustrate the THz field detection mechanism, an experiment
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is performed with two nanojunctions, separated by a distance ∆x (Figure 7.11(a)). Each

nanostructure is illuminated with a focused optical spot. The THz field ETHz produced at one

junction (source) interacts with the optical field Eopt around the other junction (detector).

The resulting polarization via the χ(3) process P i ∼ Ej
THzE

k
optE

l
opt acts on the detector as a

field offsetting the photoconductivity of the nanostructure. The spatial resolution is again

determined by the gap [25], while the temporal resolution is determined by the optical pulse

duration. Although the two-junction experiment does not directly demonstrate the spatial

resolution for THz near-field imaging, based on the above analysis and physical mechanism,

it is a reasonable conclusion that the scale of the nanojunction determines the resolution

in the near-field region. This field sensing mechanism is analogous to work described in

Refs.[155, 157]; however, our detection mechanism is fundamentally different in that the

field confinement required by near-field measurement is provided by the spatial confinement

of Ebias around the nanojunction. The results discussed here are for ∆x =12 m; similar

measurements with ∆x =6 m are shown later. The two junctions are electrically isolated

from one another, as confirmed by I-V measurements.

After the nanostructure is written at the interface, the sample is transferred immediately

to a cryostat with optical top access (Montana Instruments Cryostation). The chamber is

then pumped to vacuum and cooled to the desired operating temperature.

At T = 80 K, before the device is exposed to light, electric properties are first character-

ized. Figure 7.10(b) shows the DC IV measurement for the structure on the left in Figure

7.10(a). The red (green) line is the measurement when DC source bias (Vs) is applied onto

Electrode 1 (3) and drain current at Electrode 2 (4) is measured by a preamplifier (Stanford

Research Systems SR570). Both devices show ohmic response. The blue curve in Figure

7.10(b) shows the I-V response between Electrodes 1 and 4. Because of the potential bar-

rier at the junction, DC current is prevented from flowing between source to drain. Figure

7.10(c) shows the results for the other device (Electrodes 5-8).

In order to make sure there is no leakage from one device to the other, the conductance

between different pairs of electrodes is measured in Figure 7.10(d). In each pair, the source

electrode is from the left device while the drain electrode is from the right device. The results

indicate there is no DC coupling between two devices.
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Figure 7.10: (a) Schematic of the nanostructures written at the interface with c-AFM lithog-

raphy. (b) DC IV measurement for the device on the left in (a). (c) DC IV measurement for

the device on the right in (b). (d) DC IV measurement between electrodes from two devices.

No DC coupling is detected.
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(a) (b) 

(c) 

(d) (e) 

Δτ ~ 44 fs 

Figure 7.11: (a) Experimental setup for double-junction measurement. The ODL is stepped,

and no piezo shaker is used. (b) and (c), The ∆Vph image overlapped with the reflection

image. Relevant electrodes are labeled to match (a). The coordinates are extracted from

2D Gaussian function fitting (Iave ≈ 60 kW/cm2 and Vs = -1 V on both devices). (d)

Time-resolved signal measured from the two devices. Each waveform is an average over 100

measurements (Iave ≈ 70 kW/cm2 and Vs = -1 V for both devices). (f) FFT spectra of (d).
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The locations of the two junctions are confirmed by overlapping the ∆Vph image with a

simultaneously acquired confocal reflectivity image. In Figure 7.11(b) and (c), the surround-

ing electrodes are imaged via the sample reflectance; the red spot corresponds to the ∆Vph

image, indicating the location of the nanojunction. Each beam is focused on one nanojunc-

tion. Both are intensity modulated, but at different frequencies: the pump beam, focused

on Junction A (the device measured in Figure 7.11(b)), is modulated at frequency fA ≈ 380

Hz while the probe beam, focused on Junction B (the device measured in Figure 7.11(c)),

is modulated at frequency fA ≈ 460 Hz. During the scan of optical delay line, the ∆Vph in

Junction A is detected by a lock-in amplifier at frequency fB. Similarly, the ∆Vph in Junction

B is measured by a second lock-in amplifier at frequency fA. In this configuration, radiation

generated by one nanojunction can simultaneously be probed by the other. The ODL is

stepped and the piezo shaker used for the single junction characterizations (See the Methods

Summary) is turned off for this experiment, making it sensitive to any optical interference

effects. A time delay of approximately ∆τ ≈ 44 fs between the two peaks is found in Figure

7.11(d).

The interpretation of this experimental result is as follows: The light pulse focused on one

junction produces THz radiation that subsequently propagates to the second junction. The

delay corresponds to the propagation time, which is close to that of free space (t = ∆x/c = 40

fs). The negative peaks are ascribed to the near-field component of the rectified THz field.

The spot size of both pump and probe light has been carefully measured to make sure

that there is no overlap between them. Behind the focusing objective (20X, NA = 0.53),

the size of the laser spot is measured by scanning the laser spot across the edge of a gold

electrode while the reflected light is detected in a confocal arrangement. The reflection signal

is plotted as a function of the position of laser spot in Figure 7.12. The sharpness of the edge

of the gold electrode is confirmed by AFM and assumed to be mathematically represented

by a Heaviside step function:

H(x) =


1 x > 0

1
2

x = 0

0 x < 0

(7.9)
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(a) (b) 

Figure 7.12: Laser spot size measurement behind the focusing objective. (a) The spot size in

the X direction. The fitting gives a diameter of 1 µm. (b) The spot size in the Y direction.

The fitting gives a diameter of 650 nm.

The laser spot is assumed to have a Gaussian profile. The data are fitted with the following

function:

R(x) =
a

2
erfc(

b− x
c

) + d, (7.10)

where a is the magnitude of the step, b is the center location of the step and d is the offset.

The function

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt

is called the complementary error function which is a convolution of the Heaviside step

function and Gaussian function. The spot size can be estimated from 2
√
ln2 × c where

2
√
ln2 is the deconvolution factor.

Depending on in which direction the line-scan is performed, the spot diameter in X

and/or Y direction could be measured (X and Y directions are defined in Figure 7.3(a)).

From the fitting, it is found that the diameter in the X direction is about 1 µm (uncertainty

σx ≈ 60 nm) (Figure 7.12(a)) whereas the diameter in the Y direction is about 650 nm
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(uncertainty σx ≈ 70 nm) (Figure 7.12(b)).

In our experiment, the sample stays in a fixed position while the objective stage is moved

to locate the area where nanostructures are present. After the location is found, it is possible

that the incident light may not exactly pass through the center of the objective. Therefore

the focal plane in the X direction may not spatially overlap with the one in the Y direction.

This can cause the slight elliptical shape observed in the measurement. However, from this

measurement, one should be able to tell that the laser spot size is by far smaller than the

distance between two junctions (either 6 µm or 12 µm).

Because the ∆Vph at Junction B is being measured at frequency fA (and vice-versa), the

detected signal must result from an interaction between the locally generated field and an

electric field Eemit(t), generated by the other remote junction. The field Eemit(t) cannot be

an optical field; otherwise one would observe interference fringes as shown in Figure 7.3(c);

such interference is not observed (Figure 7.11(d)). Instead, the measured signal should be

due to THz emission from one junction that is detected at the other one. A Fourier transform

(Figure 7.11(e)) reveals a spectral peak at 1 THz with a 3dB-bandwidth around 3 THz and

spectral content extending to 10 THz.

By comparing the measurement for the case of ∆x = 12 µm and ∆x = 6 µm (see the

following discussion), one sees that the finite time delay between the measurements for two

devices can be tuned by the distance between them. This is a signature of the propagation

of the electric field from one device to the other.

The measured rectified field Eemit(t) should have its wavelength on the order of ∼ 100

µm, which is one order of magnitude larger than the distance between two devices. This

implies that it is the near-field component that is measured in Figure 7.11(d). The emitted

field can be modeled using a Hertzian dipole radiation expression[137]. A Hertzian dipole

model for the radiation field due to a time-varying dipole moment p(t), at a distance r and

angle θ relative to the dipole axis, is given as follows:

Eemit(t) =
1

4πεrε0

(
PNL(t)

r3
+
nṖNL(t)

cr2
+
n2P̈NL(t)

c2r
)sin(θ) (7.11)

where εr is the relative permittivity, n is the refractive index and c is the speed of light. The

first term is the quasi-static field and the second and third term describes the near-field and
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far-field contributions.

For the nanostructures at the interface of LaAlO3/SrTiO3 , the dipole moment is pro-

posed to be determined by

p(t) =

∫
Veff

d3xP (~x, t),

where Veff , the effective volume, is defined as the spatial volume in which the electric field is

trapped. The Veff is supposed to be centered on the nanojunction around which the electric

field is strongly trapped as shown in the previous work (Ref.[25]). P (~x, t) is the polarization

density at the position ~x and time t. By integrating over the whole effective volume, the

dipole moment could be calculated.

Due to the small size of the nanojunction (10 nm 10 nm), it is assumed that P (~x, t) is

uniform in Veff . This assumption can simplify the calculation and enable a quick estimation

of the contribution from different terms. Now the dipole moment becomes

p(t) = VeffP (~x, t). (7.12)

Since it is the nonlinear process that we focus on, only χ(3) term is included in the

expression of polarization density. In frequency domain, it is

PNL = ε0χ
(3)(0, 0, ω,−ω)EbiasE(ω)E(−ω). (7.13)

In the time domain, it becomes

PNL = ε0

∫ t

t1

dt
′
∫ t1

t2

dt
′′
χ(3)(t− t′ , t′ − t′′)EbiasE(t

′
)E∗(t

′′
), (7.14)

where χ(3)(t − t′ , t′ − t′′) describes the temporal response of the material to external time-

varying electric field. Here we introduce a second assumption: the response of our system is

assumed to be instantaneous which results in

χ(3)(t− t′ , t′ − t′′) = χ(3)δ(t− t′)δ(t′ − t′′). (7.15)
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So now

PNL = ε0χ
(3)EbiasE(t)E∗(t). (7.16)

In our experiments, two nanojunctions are aligned along the X direction. The angle θ

therefore could be taken as 90◦.

Given that nonlinear parameters have been reported in the literature (Ref.[37]) can be

estimated as 3 × 10−16 cm2/V2(∼ 2 × 10−12 esu)1. The laser shape is assumed to resemble

the square of a hyperbolic secant, and the optical field then becomes

E(t) = E0sech(
t

τp
)eiωt, (7.17)

where E0 is the amplitude, which is about 440 KV/cm in the experiment. τp is the pulse

width which is measured to be 30 fs. The nonlinear polarization and its time derivatives are:

PNL(t) = ε0χ
(3)EbiasE

2
0sech

2(
t

τp
), (7.18)

ṖNL(t) = −ε0
2

τp
χ(3)EbiasE

2
0sech

2(
t

τp
)tanh(

t

τp
), (7.19)

P̈NL(t) = ε0
2

τ 2
p

χ(3)EbiasE
2
0sech

2(
t

τp
)(2− 3sech2(

t

τp
)), (7.20)

whereEbias is 1 MV/cm for 1 V on the source and 10 nm gap width. By fitting the data in

Figure 7.11(d) with the following function:

f(t) =a0 + a1t+ a2sech
2(
t− t0
τp

)

[1 +
a3

τp
tanh(

t− t0
τp

) +
a4

τ 2
p

(2− 3sech2(
t− t0
τp

))] (7.21)

where

1To convert the unit from m2/V2 to esu, one can refer to the book[169].
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a2 =
χ(3)EbiasE

2
0

4πεrr3
, (7.22)

a2a3

τp
= −2nχ(3)EbiasE

2
0

4πεrr2cτp
, (7.23)

a2a4

τ 2
p

=
2n2χ(3)EbiasE

2
0

4πεrrc2τ 2
p

, (7.24)

represent the magnitudes of the quasi-static field, near field and far field component respec-

tively.

It is found that in the 12 µm separation case, for the waveform measured by Device A

(Figure 7.13(a)), the fitting parameters give the result as

‖a2‖ = 27.5 µV · cm−4, (7.25)

‖a2a3

τp
‖ = 2.4 µV · cm−4, (7.26)

‖a2a4

τ 2
p

‖ = 0.14 µV · cm−4, (7.27)

For Device B (Figure 7.13(b)), they are

‖a2‖ = 38.7µ V · cm−4, (7.28)

‖a2a3

τp
‖ = 0.78 µV · cm−4, (7.29)

‖a2a4

τ 2
p

‖ = 0.75 µV · cm−4, (7.30)

This implies that the quasi-static field overwhelms the other two terms and dominates in the

observed response.

This THz radiation can propagate from one junction to the other via three different

media: vacuum, LAO and STO. Both LAO and STO show strong dispersion and have much

larger refractive index for THz frequencies[170, 171]. Therefore, one expects the propagation

time for Eemit(t) in both oxide layers to be much longer than 40 fs. The dominant response is

clearly coming from free-space propagation not strongly coupled to the LAO/STO interface.

Much weaker dispersive effects are observed in both the single-junction and double-junction
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(a) (b) 

Figure 7.13: Fitting the experimental data with Hertzian dipole model. (a) The measured

waveform by Device A that is defined in Figure 7.11 is fitted with Hertzian dipole model to

figure out the contribution from different fields. (b) The same analysis as (a) for the data

from Device B defined in Figure 7.11.
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experiments; an investigation of the self-interaction of THz radiation within the LAO/STO

system extends beyond the scope of this paper and will be discussed elsewhere.

The polarization dependence for the two-junction experiment (Figure 7.14) matches that

of the single junctions: a time-resolved signal is observed when both polarizations are parallel,

and the signal is suppressed when they are perpendicular to each other. The overall simi-

larity between one-junction and two-junction measurements implies that the same physical

process is involved in these two different experiments. It is noticed that different polarization

configurations lead to slightly different relative time delay (Figure 7.14(a) and (c)).

For the 12 µm separation geometry (Figure 7.11(a)), as discussed above, a cross detection

configuration is employed. However, for the 6 µm separation geometry, a different detection

scheme is exploited: the pump beam is focused on Device A
′

(Figure 7.15(a)) and the probe

beam is focused on Device B
′

(Figure 7.15(a)). The pump and probe beam are intensity

modulated at frequency fpump ≈ 400 Hz and fprobe ≈ 330 Hz, respectively. The photo-

induced differential voltage ∆Vph in both devices are simultaneously detected by two lock-in

amplifiers (Stanford Research System SR830 for Device A
′

and Signal Recover 7265 for

Device B
′
) at frequency ∆f = fpump − fprobe ≈ 70 Hz.

By fitting the two curves in Figure 7.15(b) with the Hertzian dipole model, one can find

that for Device A
′

(Figure 7.16(a)) there are

‖a2‖ = 17.1 µV · cm−4, (7.31)

‖a2a3

τp
‖ = 6.8 µV · cm−4, (7.32)

‖a2a4

τ 2
p

‖ = 4.6 µV · cm−4, (7.33)

and for Device B
′

(Figure 7.16(b)) there are

‖a2‖ = 17.9 µV · cm−4, (7.34)

‖a2a3

τp
‖ = 5.7 µV · cm−4, (7.35)

‖a2a4

τ 2
p

‖ = 1.4 µV · cm−4. (7.36)
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(a) (b) 

(c) (d) 

Figure 7.14: (a) The polarization of pump and probe are both in X direction. The relative

time delay ∆τ ≈ 50 fs. (b) The polarization of the pump is in the X direction while the

polarization of the probe is in the Y direction. (c) Both polarizations are in the Y direction.

The relative time delay ∆τ ≈ 57 fs. (d) The polarization of pump is in Y direction while

the polarization of probe is in X direction (T = 80 K, NA = 0.53, Iave ≈ 50 kW/cm2 and Vs

= -1 V on both devices ). In (b) and (d), curves are normalized by the values used in (a),

respectively. In all figures, each curve is an average over five measurements.
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Figure 7.15: (a) Schematic of the double-junction structure. (b) Time-resolved signal from

both devices. Each curve is an average of 100 measurements. The time difference between

them is about 12 fs (NA = 0.53, Iave ≈ 77 kW/cm2 and Vs = - 1 V on both devices). (c)

and (d), Time-averaged images overlapped with reflection images show the location of two

junctions. Both have the same false color scale and the same scan size of 32 µm by 32 µm.

The designed distance between two junctions is 6 µm, which is confirmed by experimental

data (NA = 0.53, Iave ≈ 10 kW/cm2 , Vs = - 0.1 V for both devices).
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(a) (b) 

Figure 7.16: Fitting the experimental data with Hertzian dipole model. (a) The measured

data for Device A
′

is fitted with Hertzian dipole model. (b) The fitting analysis for the data

from Device B
′
.

The fitting results indicate that in 6 µm case, the measured waveform has almost equal

contributions from the quasi-static field, the near-field and the far-field.

7.5 CONCLUSION

The χ(3) process discovered in the nanostructure at the interface of LAO/STO can give rise

to rectified THz fields which provides useful spectral information[131]. As a THz source and

sensor, the nanojunction structure offers several advantages: its dimension is comparable to

that of a single molecule; it is easy to fabricate, and the THz source and detector can be

easily integrated in a micron-scale area. These features allow this platform to be a promising

lab-on-chip device for THz near-field imaging of individual molecules.
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8.0 OUTLOOK

Chapter 6 and Chapter 7 both show that the oxide nanostructures provide great potential in

various photonic applications. The development of a nanoscale THz source and sensor that

is close to the size of a single molecule can potentially add new families of THz devices to

THz spectroscopy research [172].

When light interacts with nanostructures, it can couple to free-electron excitations at

the surface. The electromagnetic resonances associated with the surface plasmons form

quasi-particles called surface plasmon polaritons (SPP). They have become the focus of

intense research owing to their subwavelength confinement and potential ability to perform

ultrasensitive optical measurements [173, 174, 175]. In optical pump-probe experiments on

the nanodevices at the interface of LaAlO3/SrTiO3, strong oscillations are observed. One

possible origin is the excitation of SPP in the oxide heterostructure.

8.1 THZ SPECTROSCOPY FOR A SINGLE MOLECULE

At the time when this thesis is synthesized, THz spectroscopy has not been applied to a single

molecule yet because of the lack of enough sensitivity and sufficiently high spatial resolution.

One strength of the c-AFM lithography method is that it can fabricate devices that can be

as small as 2 nm. This dimension approaches the size of a single molecule. One possible

way to realize the imaging for a single molecule is to integrate our nanoscale THz emitter

and detector platform with an atomic force microscope (AFM). The AFM can be exploited

to locate the target of imaging. Afterwards, the same AFM can be used to create both the

emitter and detector in close proximity to the target (Figure 8.1). Another approach involves
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electrostatic trapping of single particles [176]. Polar particles can be attracted by the electric

field confined in the nanojunction. By measuring the transport properties, one can determine

whether the particle is trapped or not, and subsequently perform THz spectroscopy with and

without the particle or molecule.

8.2 NANOSCALE SURFACE PLASMON POLARITON

The oxide photonic nanostructures may also provide opportunities to explore surface plasmon

polaritons (SPP) in oxide heterostructures. A SPP is usually excited at the interface between

metal and dielectrics, and its basic properties can be understood by solving the Maxwell

equation.

∇ · ~D = ρf

∇× ~E = −∂
~B

∂t

∇ · ~B = 0

∇× ~H = ~Jf +
∂ ~D

∂t
(8.1)

8.2.1 Surface Plasmon Polariton

Because there are usually no free charges or currents in either metal or dielectrics, we can

set ρf = 0 and ~Jf = 0. Therefore, the Maxwell equations become:

∇ · ~D = 0

∇× ~E = −∂
~B

∂t

∇ · ~B = 0

∇× ~H =
∂ ~D

∂t
(8.2)
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Figure 8.1: Device geometry for THz spectroscopy for a single molecule.
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Suppose the incident electromagnetic wave is p-polarized (Figure 8.2), which means the

magnetic field ~H is in the y direction while the electric field ~E has both x and z component.

The fields in the metal are

~Em = (Emx, 0, Emz)e
i(kmxx−kmzz)e−iωt (8.3)

~Hm = (0, Hmy, 0)ei(kmxx−kmzz)e−iωt (8.4)

The fields in the dielectrics are

~Ed = (Edx, 0, Edz)e
i(kdxx+kdzz)e−iωt (8.5)

~Hd = (0, Hdy, 0)ei(kdxx+kdzz)e−iωt (8.6)

At the boundary, the normal components of ~D and ~B must be continuous and the

tangential components of ~E and ~H must be continuous. Since we have

~D = ε0εr ~E

~B = µ0µr ~H

and we can assume that µr ≈ 1. The boundary conditions are

εrmEmz = εrdEdz (8.7)

Emx = Edx (8.8)

Hmy = Hdy (8.9)

In the metal, the relation between ~H field and ~E field is

−∂Hmy

∂z
= ε0εrm

∂Emx
∂t

(8.10)

∂Hmy

∂x
= ε0εrm

∂Emz
∂t

(8.11)
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Figure 8.2: Surface plasmon polaritons at the metal-dielectrics interface.
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which leads to

kmzHmy = −ε0εrmωEmx (8.12)

kmxHmy = −ε0εrmωEmz (8.13)

Similarly, in the dielectric we have

kdzHdy = ε0εrdωEdx (8.14)

kdxHdy = −ε0εrdωEdz (8.15)

From Eq.(8.13) and Eq.(8.15), we can derive that

kmx = kdx. (8.16)

From Eq.(8.12) and Eq.(8.14), we have

kmz
kdz

= −εrm
εrd

. (8.17)

From the wave equation in metal and dielectrics, we can have

k2
mx + k2

mz =
εrm
c2
ω2 (8.18)

k2
dx + k2

dz =
εrd
c2
ω2 (8.19)

Since kmx = kdx, it is readily to have

k2
mz − k2

dz =
εrm − εrd

c2
ω2 (8.20)

From Eq.(8.17) and Eq.(8.20), we can solve for kmz and kdz

k2
mz =

ω2

c2

ε2
rm

εrm + εrd
(8.21)

k2
dz =

ω2

c2

ε2
rd

εrm + εrd
(8.22)
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and kmx (or kdx) is found to be

k2
mx = k2

dx =
ω2

c2

εrmεrd
εrm + εrd

(8.23)

For kmx (and kdx) to be real, we must have Re(εrm) < 0 and |εrm| > εrd. Under this

condition, both kmz and kdz are imaginary. This solution describes a situation that the

electromagnetic field can propagate alone the x direction at the interface between metal and

dielectric, but the field decays inside both metal and dielectrics.

We assume that the incident wave is s-polarized, which means the electric field is in the

y direction while the magnetic field has both x and z components. In metal, the fields are

~Em = (0, Emy, 0)ei(kmxx−kmzz)e−iωt (8.24)

~Hm = (Hmx, 0, Hmz)e
i(kmxx−kmzz)e−iωt (8.25)

In the dielectrics, the fields are

~Ed = (0, Edy, 0)ei(kdxx+kdzz)e−iωt (8.26)

~Hd = (Hdx, 0, Hdz)e
i(kdxx+kdzz)e−iωt (8.27)

The boundary conditions now are

Hmz = Hdz (8.28)

Emy = Edy (8.29)

Hmx = Hdx (8.30)

In the metal, the relation between the ~H field and ~E field can be found to be

−∂Emy
∂z

= µ0
∂Hmx

∂t
(8.31)

∂Emy
∂x

= µ0
∂Hmz

∂t
(8.32)
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which leads to

kmzEmy = −µ0ωHmx (8.33)

kmxEmy = −µ0ωHmz (8.34)

Similarly in dielectrics we have

kdzEdy = µ0ωHdx (8.35)

kdxEdy = −µ0ωHdz (8.36)

From Eq.(8.33) and Eq.(8.35), we have

(kmz + kdz)Emy = 0. (8.37)

If Emy 6= 0, then we have

kmz = −kdz. (8.38)

From Eq.(8.34) and Eq.(8.36) we also have

kmx = kdx. (8.39)

Then from the dispersion relation, we can reach the result that k2
mx + k2

mz = k2
dx + k2

dz which

means

εrm = εrd (8.40)

which is not possible. Therefore we have to require that Emy = 0. Therefore s-polarized

surface plasmon cannot exist.

Different schemes that are used to excite the surface plasmon polariton (SPP) are sum-

marized in Figure 8.3.
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θSP

θSP

θSP1θSP2

n > nprism L

(a) (b) (c)

(d) (e) (f)

Figure 8.3: SPP excitation configuration. (a) Kretschmann geometry. (b) Two-layer

Kretschmann geometry. (c) Otto geometry. (d) Excitation with a scanning near-field opti-

cal microscope probe. (e) Diffraction on a grating. (f) Diffraction on surface features.(This

figure is from Ref. [177].)
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8.2.2 Preliminary Results

For the sketched nanostructures at the interface of LAO/STO, we also observe strong oscil-

lations in the time-resolved experiments. The nanostructure has the configuration shown in

Figure 8.4.

The setup of the time-resolved experiments is basically the same as shown in Chapter 7.

When both pump and probe are focused onto the junction, the ultrafast response discussed in

Chapter 7 is discovered. However, at certain spots other than the nanojunction, we observe

fast oscillations (Figure 8.5(e) and (f)) with frequencies about 78 THz(Figure 8.6(a) and

(b)), although the physical origin of these strong oscillations requires further study.
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1 

2 

3 

4 

Figure 8.4: The configuration of the nanodevice. The backgroud is the topography image

obtained by AFM. The green funnels indicate the area where the scanning is performed

with positive voltages on the AFM tip. The black lines indicate the positions of nanowires

created by applying positive voltages onto the tip. The short horizontal line that crosses the

nanowire between Electrode 1 and 2 indicate the trajectory scanned with negative voltage

on the AFM probe. Electrode 1 and 2 are used as source and drain. Electrode 3 and 4 are

for sensing the voltage cross the junction.
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(a) (b) 

FWHM ~ 31 fs 

A 

B 

C 

(c) 

(e) 

(d) 

(f) 

Loc. C 

Loc. A Loc. B 

At the nanojunction 

Figure 8.5: Possible plasmonic effect observed in the oxide nanostructures at the interface of

LaAlO3/SrTiO3 . (a) Experimental setup for time-resolved measurements. S and D stand

for the source and drain terminal. V+ and V− are sensing the voltage ∆V cross the gap. X

and Y indicate the scanning directions. (b) Scanning photoconductivity image. The color

scale shows the magnitude of ∆V . The diffraction-limited peak shows the location of the

nanojunction. Location A and B indicate the positions at which the oscillations are observed.

Location C is a reference point at which no oscillation is observed. (NA = 0.73, Iave = 10

kW/cm2, Vs = -1 V) (c) Temporal response when both pump and probe are focused onto

the nanojunction. (NA = 0.73, Iave = 50 kW/cm2.) (d-f), Temporal response when both

beams are focused onto Location C (d), A (e) and B (f), respectively. Each waveform is an

average of 120 measurements. (NA = 0.73, Iave = 50 kW/cm2.)
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τ = -20 fs 

VS = -1 V 

τ = 20 fs 

VS = -1 V 

Vs = 1 V 

𝒇 ≈60 THz 

Vs = 1 V 

𝒇 ≈78 THz 

Vs = 1 V 

𝒇 ≈96 THz 

τ = 0 fs 

VS = -1 V 
(c) 

(d) 

Loc. A Loc. B 

(a) (b) 

A 

B 

Figure 8.6: Temporal-spatial and frequency-spatial images. (a) Fourier transform of the

temporal response in Figure 8.5(e). (b) Fourier transform of the temporal response in Figure

8.5(f). (c), Temporal-spatial images show that the ultrafast response is localized around the

nanojunction. (NA = 0.73, Iave = 50 kW/cm2.) (d), Frequency-spatial images show that

the 78 THz oscillation is near the conductive nanowires. (NA = 0.73, Iave = 50 kW/cm2.)
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APPENDIX A

DOUBLE-PULSE PHENOMENON

During the characterization of our customized Ti:sapphire laser, we notice sometimes that

the spectrum shows oscillation patterns like in Figure A1. This is the signature of double

pulses1.

One way to detect double pulses is to use a fast photodetector and an oscilloscope. Figure

A2 shows such a measurement. In Figure A2(a), no double pulses occur. However, in Figure

A2(b), when an oscillation pattern shows up in the spectrum, two pulses close to each other

are detected.

The reason for the occurrence of the double pulsing phenomenon is believed to have to

do with both the pumping power and the intracavity dispersion [99]. In practice, it is found

that an easy way to solve the problem is to decrease the pumping power until the oscillation

patterns in the spectrum go away. However, this method is not always applicable because the

pumping power cannot be decreased below the threshold value required for mode-locking to

occur. Therefore, the fused silica wedge pair in the cavity should be adjusted to change the

intracavity dispersion. Double pulsing may be eliminated under certain dispersion condition.

For our home-built Ti:sapphire laser, the pumping power is usually set at 4 ∼ 4.2 W. The

output power of the mode-locking mode is about 170 mW. Higher output power may result

in double pulses.

1An online article describing double pulses can be found here.
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(a) (b) 

Figure A1: The spectrum of the mode-locked laser shows oscillations when double pulsing

occurs.
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(a) (b) 

(a) (b) 

Figure A2: (a) The normal mode-locking mode outputs pulses with designed repetition rate.

(b) When double pulsing occurs, the laser can output two pulses that are close to one another

like the ones in the red circle. They are seperated by ≈ 2.5 ns. The measured repetition

rate is roughly doubled as well.
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APPENDIX B

MATHEMATICA CODE FOR CALCULATION OF A LASER CAVITY

In this chapter, the Mathematica code for calculating the mode-locking conditions for our

customized Ti:sapphire laser is presented with comments explaining what each command

does.

All quantities are expressed in the unit of millimeters(mm). The following codes are used

in Mathematica 7. First of all, we need to define several parameters:

d = 2 * The thickness of the crystal. *

R = 75 * The radius of the focusing mirror. *

n = 1.76 * The refractive index of the crystal at 800 nm. *

f = 75 * The focal length of the convex lens for the pumping light. *

We then solve for the folding angle of two focusing mirrors

sol = Solve[
Sin[x]Sin[x]

Cos[x]
==

d

R

√
n4 − 1

√
n2 − 1

n4
, x]

theta = x/.sol[[2]]

foldingangle = 2 ∗ theta ∗ 180/π

The focus and effective thickness in the tangential plane are defined as
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fa = RCos[theta]/2

dea =
d
√

n2 + 1

n4

The focus and effective thickness in the sagittal plane are

fb = R/2Cos[theta]

deb =
d
√

n2 + 1

n2

From now on, the following codes are written for the tangential plane. Calculations in the

sagittal plane can be done by replacing the quantity fa and dea with fb and deb, respectively.

Now we can calculate the length of two arms L1 and L2

arm = Solve[{d1 + d2 == 1500,
d2− fa

d1− fa
== 1.75}, d1, d2]

L1 = d1/.arm[[1]][[1]]

L2 = d2/.arm[[1]][[2]]

Before we can calculate the function S(x, z) and δ(x, z), we need compute several matrices

as described in Chapter 5

Aa =

1 z-x-dea

0 1

 ·
 1 0

− 1
fa

1

 ·
1 L1

0 1

 ·
1 0

0 1

 ·
1 L1

0 1

 ·
 1 0

− 1
fa

1

 ·
1 z-x-dea

0 1



Ba =

1 x

0 1

 ·
 1 0

− 1
fa

1

 ·
1 L2

0 1

 ·
1 0

0 1

 ·
1 L2

0 1

 ·
 1 0

− 1
fa

1

 ·
1 x

0 1



Ma =

1 L2

0 1

 ·
 1 0

− 1
fa

1

 ·
1 x

0 1

 ·
1 dea

0 1

 ·
1 z-x-dea

0 1

 ·
 1 0

− 1
fa

1

 ·
1 L1

0 1


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Two functions can be defined in Mathematica

a1a[x ,z ] :=
2Aa[[1]][[2]]Aa[[2]][[2]]

dea
− Aa[[1]][[1]]Aa[[2]][[1]]dea

2

a2a[x ,z ] :=
2Ba[[1]][[2]]Ba[[2]][[2]]

dea
− Ba[[1]][[1]]Ba[[2]][[1]]dea

2

The stability function S(x, z) is given by

Sa[x ,z ] := Ma[[1]][[1]]Ma[[2]][[2]] + Ma[[1]][[2]]Ma[[2]][[1]]

The function δ(x, z) is

deltaa[x ,z ] :=
a1a[x,z] + a2a[x,z]Sa[x,z]

2(a1a[x, z]2 + a2a[x, z]2 + 2a1a[x, z]a2a[x, z]Sa[x, z])

We can plot S(x, z) out

Plot3D[Sa[x,z], {x, 25, 45}, {z, 74, 81},

RegionFunction→ Function[{x, z, y},−1 < Sa[x,z] < 1]]

The parameter range for mode-locking to occur can be computed by calculating S(x, z)

under the condition of δ(x, z) < 0

DensityPlot[Sa[x,z], {x, 25, 45}, {z, 74, 81},

RegionFunction→ Function[{x, z, y},−1 < Sa[x,z] < 1&&deltaa[x,z] < 0]]

The following codes describe the calculation for mode matching. We first compute the

following matrix
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Matrixa =

1 dea
2

0 1

 ·
1 x

0 1

 ·
 1 0

− 1
fa

1

 ·
1 L2

0 1

 ·
1 0

0 1

 ·
1 L2

0 1

 ·
 1 0

− 1
fa

1


·

1 x

0 1

 ·
1 dea

0 1

 ·
1 z-x-dea

0 1

 ·
 1 0

− 1
fa

1

 ·
1 L1

0 1

 ·
1 0

0 1


·

1 L1

0 1

 ·
 1 0

− 1
fa

1

 ·
1 z-x-dea

0 1

1 dea
2

0 1


Then we can solve for the beam waist of the cavity mode at the center of Ti:sapphire

crystal by calculating the q parameter

qsolution = Solve[q ==
qMatrixa[[1]][[1]] + Matrixa[[1]][[2]]

qMatrixa[[2]][[1]] + Matrixa[[2]][[2]]
, q]

The first element in the solution list given by the above calculation can be defined as a

function qfunctiona[x ,z ]. The center wavelength of the cavity mode is

Lambdac = 830 ∗ 10−6

The beam waist function is

wca[x ,z ] :=

√
Lambdac

πIm[ 1
qfunctiona[x ,z ]

]

The beam waist as a function of x can be plotted out by running the following Mathe-

matica commands

array3a ={};

Do[a = {x/.FindRoot[Re[
1

qfunctiona[x,z]
], x, 25, 45],

wca[x,z]/.FindRoot[Re[
1

qfunctiona[x,z]
], x, 25, 45]};

AppendTo[array3a,a],z, 77.3, 78.8, 0.1];
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We also need compute the beam waist of the pumping light at the center of the crystal.

In order to do that, we calculate the following matrix first

M1a =

1 x + dea
2

0 1

 ·
 1 0

− 1
fa

1

 ·
1 d2

0 1

 ·
 1 0

−1
f

1


where d2 is the distance between the focusing lens for the pumping light and the focusing

mirror for the cavity mode. The parameters for the pumping light are

wp = 2 * input beam radius. *

Lambdap = 533 ∗ 10−6 * pumping wavelength *

c = 3.142 ∗ wp4/Lambdap2 * a constant *

q1 =
πwp2

iLambdap
* The initial q parameter for the pumping light *

The q parameter of the pumping light at the center of the crystal is found by the following

computation

q2solution = Solve[q2 ==
q1M1a[[1]][[1]] + M1a[[1]][[2]]

q1M1a[[2]][[1]] + M1a[[2]][[2]]
, q2]

The first element of the solution array is defined as a function q2functiona[x ]. The beam

waist is

wpa[x ] :=

√
Lambdap

πIm[ 1
q2functiona[x ]

]

We can make a plot of wpa[x]

d2solutiona = Solve[cM1a[[1]][[1]]M1a[[2]][[1]] + M1a[[1]][[2]]M1a[[2]][[2]] == 0, d2]

array5a ={};
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Do[m = {x,wpa[x]/.d2solutiona[[2]]; AppendTo[array5a,m],x, 37.1521, 38.6278, 0.1];

By comparing array3a with array5a, the suitable values of x can be located at where the

beam waist of the cavity mode is greater than the one of the pumping mode. The distance

d2 can also be plotted as a function of x

array6a ={};

Do[m = {x, d2/.d2solutiona[[2]]; AppendTo[array6a,m],x, 37.1521, 38.6278, 0.1];

Once the x is found, d2 can be fixed. The identical calculation can be repeated for the

sagittal plane with fa and dea replaced with fb and deb, respectively. The results from both

planes do not show much discrepancy.
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APPENDIX C

INTERFEROMETRIC AUTOCORRELATION

Although sophisticated methods, such as FROG [178] and SPIDER [179], have been de-

veloped for characterizing the qualities of ultrashort pulses simultaneously, they are not

straightforward to use, given that they are heavily equipment- or software-oriented. As a

consequence, interferometric autocorrelation (IA) is the most widely used technique due to

its effectiveness and accessibility, because only a nonlinear crystal, some mirrors and a pho-

todetector are required . A two-photon absorption detector, like GaAsP in our case, can

simplify the setup even further.

The specific measured waveform in an IA experiment is sensitive to the spectral phase

of a pulse, the pulse shape and intensity ratio between two interfered pulses [180, 181,

182]. Systematic errors like too low sampling rate can distort the final measurement as well

[183]. The purpose of this appendix is to summarize various situations in interferometric

autocorrelation measurement that have been or possibly will come across during experiments

so that one can avoid some of the errors or at least be cautious of them.

C.1 TWO-PHOTON ABSORPTION DETECTOR

GaAsP1 is a two-photon absorption (TPA) detector used for IA measurements. There is dis-

cussion about the competition between TPA and SHG in GaAsP [184]. These two processes

1This item is from Hamamatsu, model number G1117.
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may lead to different waveforms in IA measurements. In our experiments, we also notice

that GaAsP will be overloaded if the input power is too high. The signature of overloading

in GaAsP is that the envelope of the IA waveform is up-side down, meaning that the lower

envelope shows larger amplitude than the upper envelope. To avoid this error, an iris can

be put in front of the GaAsP detector. By adjusting the size of the opening, one can control

how much power is incident onto the detector. The GaAsP detector should be placed at

the focus of the focusing element, either a lens or an objective. We usually use the same

objectives for the GaAsP detector as for the samples so that the pulse which hits the GaAsP

travels through the same optics as the one which hits the sample. By monitoring the pulse

quality with GaAsP, we can determine how well the pulse is preserved before it hits the

sample.

Another important factor is the orientation of the GaAsP relative to the incident beam.

The angle should be adjusted in order to have an optimal signal. If the detector is off too

much, then waveforms shown in Figure C6 may possibly show up.

C.2 PULSE SHAPE

The shape of the laser pulse intensity is a dominant factor in determining the shape of the IA

waveform, which is closely related to the spectrum by the Fourier transform. For example,

the spectrum shown in Figure 8.1(a) gives a sech2 intensity profile; while the spectrum

shown in the case of 8.1(b), the intensity is assumed to have the functional form of ( sin(x)
x

)2

[185, 186].

Figure C1, from Ref. [186], summarizes the simulated possible IA results for various

pulse shapes. The left column gives the IA measurement with insets showing the intensity

I(t), spectral phase Φ(t) and instantaneous frequency ω(t) as a function of time t respec-

tively. The right column gives the spectrum (or power spectral distribution (PSD)) of the

corresponding pulse. Different situations included in Figure C1 are:

(a) Bandwidth-limited Gaussian laser pulse of 10 fs duration.

(b) Bandwidth-limited Gaussian laser pulse of 10 fs duration shifted in time to -20 fs.
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(c) Symmetrical broadened Gaussian laser pulse due to 200 fs2 GVD.

(d) Gaussian laser pulse with the third order dispersion is 1000 fs3.

(e) Combined action of all spectral phase coefficients from (a) to (d).

(f) π step at the central frequency.

(g) π step displaced from the central frequency.

(h) Sine modulation at central frequency with Π(ω) = sin(20fs(ω − ω0)).

(i) Cosine modulation at central frequency with Π(ω) = cos(20fs(ω − ω0)).

(j) Sine modulation at central frequency with Π(ω) = sin(30fs(ω − ω0)).

(k) Symmetrical clipping of spectrum.

(l) Blocking of central frequency components.

(m) Off center absorption.

(n) Self-phase modulation. Note the spectral broadening.

(o) Double pulses (See Appendix A) with pulse-to-pulse delay of 60 fs.

The pulse shape is determined by the spectrum. Generally it can not be varied by

simply tuning the mirrors. It has to do with the quality of intracavity optics. When the

pulse width τ is in the range of 20 fs < τ < 100 fs, the pulse shape is typically assumed to

be sech2 function. When the pulse is sub-20 fs, the typical pulse shape is typically sin(x)/x

[180]. By comparing our results (See Figure C2) with the ones listed in Figure C1 and the

characterization in Ref. [185], we believe that our home-built laser generates pulses in the

shape of sin(x)/x.

C.3 FINITE CHIRP

In Chapter 3, we see SPM can introduce chirp into the laser pulses. In Chapter 5 we know

that in order to get transform-limited pulse width, the chirp present in the pulse must be

balanced. Unbalanced chirp can be reflected in the IA measurement (Figure C3(b)). The

dependence of the IA waveform on various chirp values is shown in Figure C3.The detail

calculation can be found in Ref. [36].
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Figure C1: Interferometric autocorrelation for various pulse shapes (See Ref. [186]).
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798 nm 843 nm 

(a) (b) 

Figure C2: (a) The spectrum of the laser pulse. (b) The IA measurement for the pulse.

There are several optics that can be adjusted to balance the chirp in the pulse. The first

one is the compression mirror pair at the output of the laser cavity. By changing the number

of times that the laser beam bounces back and forth on the pair of mirrors, one can control

how much negative GVD is introduced to the pulse. This should coarsely compensate the

positive GVD introduced by all the following optics. After this mirror pair is set, one can

adjust the extracavity fused silica wedge pair2, which provides finer control of the amount

of negative GVD in the pulse. If no improvement is achieved by adjusting the extracavity

pair, then one can turn to the intracavity pair. However, be cautious about the intracavity

one because when the intracavity wedge pair is being tuned, it is possible that one can lose

the mode-lock at a certain point.

2If one wants to shorten the pulse duration, CaF2 wedge pairs could be tried. They are available from
Venteon.
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(a) (b) 

(c) 

Figure C3: Interferometric autocorrelation for the laser pulse from the same laser with the

chirp (a) balanced and (b) unbalanced. (c) Interferometric autocorrelation for various chirp

values.(This figure is from Ref. [36].)
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C.4 UNEVEN INTERFERENCE ARMS

If the intensities of two interfered pulses are not exactly identical, then the ratio 8:1 in the

IA measurement may not be reached. To see that, we can do a simple calculation by defining

E1(t) = aE2(t), where the proportional factor a is in the range 0 ≤ a ≤ 1. The IA function

becomes

Ai(τ) =

∫
dt(E2(t)E∗2(t) + a2E2(t− τ)E∗2(t− τ))

+4a2

∫
dtE(t)E∗(t)E(t− τ)E∗(t− τ)

+a2

∫
dt(E2(t)E∗2(t− τ) + E2(t− τ)E∗2(t))

+2a

∫
dtE(t)E∗(t)(E(t)E∗(t− τ) + E(t− τ)E∗(t))

+2a2

∫
dtE(t− τ)E∗(t− τ)(E(t)E∗(t− τ) + E(t− τ)E∗(t)) (C.1)

Then the ratio between Ai(0) and Ai(∞) is

Ai(0)

Ai(∞)
=

1 + 4a+ 7a2 + 4a3

1 + a
. (C.2)

Therefore in the experiment, if these two pulses are not exactly identical, one may not be

able to see the ratio of 8:1 (Figure C4). Other factors like the pulse front tilt can also result

in a ratio less than 8:1 [182].

Once the optics is set up, the ratio of the powers for the two arms is fixed. During the

experiment, we do see that they are not exactly identical. However, as long as we use a 50%

ultrafast beam splitter3, the ratio is very close to 1.

3This item is from Layertec, model number 104040.
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Figure C4: The ratio between Ai(0) and Ai(∞) as a function of the relative amplitude of

two pulses.

C.5 ASYMMETRIC IA MEASUREMENT

Sometimes, the waveform from an IA measurement can be asymmetric in time (See Figure

C5). This could result from either (1) asymmetric motion of the optical delay line (ODL).

When the ODL is moved back and forth, its trajectory of motion in one direction does not

overlap with the one in the other direction or (2) the pulse is made asymmetric for one beam

but not the other. For example, if the dispersion conditions in both beam paths are different,

then the pulse in one beam may be stretched or compressed while the pulse in the other is

unchanged.

C.6 RANDOM PHASE NOISE

Air turbulence and mechanical instability can introduce fluctuation in the optical path

length, which manifests itself as phase noise in the laser pulse [183]. This random phase
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Figure C5: Asymmetric interferometric autocorrelation (Ref. [36]).
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Figure C6: Random phase noise in interferometric autocorrelation measurement.(This figure

is from Ref. [183].)

noise can lead to the IA measurement shown in Figure C6.

What we found in the experiments is that when waveforms like the one in Figure C6 is

observed, one should check the optics for both arms to make sure that the spatial overlap

between the two beams is as good as possible. As mentioned above, the orientation and the

position of GaAsP detector can also be adjusted. The third factor is the ODL. One can try

different waveforms used to drive the motion of the ODL, such as sine and triangular wave.

C.7 SUMMARY

Since the IA is sensitive to various parameters, measuring the pulse duration based on IA

can be tricky. One example is that in IA measurement, one always assume that the pulse

shape is already known, which enables the extraction of the pulse width from experimental

results. However, different pulse shapes correspond to different deconvolution factors. In

most cases, a sech(2) profile is assumed. In certain cases, this assumption must be modified
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[180]. A better way to make use of IA is to combine the spectral and temporal measurement.

As described in Ref. [187], one can measure the power spectrum S(ω) of a laser pulse. The

pulse intensity is fount to be I(t) = F2(
√
S(ω)), where F denotes the Fourier transform.

Once the intensity I(t) is known, the IA function can be theoretically derived or numerically

calculated, which acts as a reference in comparison with the experimentally measured IA

trace.
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APPENDIX D

CAVITY ALIGNMENT

In this appendix, we will discuss how to align the intracavity optics in order to achieve the

optimal mode-locking state. First of all, the height of the Ti:Sapphire crystal determines

the height of all optics in the cavity. In order to measure the height of both the cavity mode

and pump mode beam, we can set up an iris for which the height is set to be the same as

the Ti:Sapphire crystal. The output power of the pump laser can be set to be as low as 10

mW for aligning the cavity.

1. Before we insert the waveplate and focusing lens for the pump beam, we should check its

height by placing the iris at Position 1, which is close to the cavity input, and Position

2, which is close to the focusing mirror f2 (See Figure D1). Once the height of the pump

beam is correctly set, it should pass the center of f1 and f2. Green light can transmit the

focusing mirror, therefore one should see some residual pump light after f1. The incident

angle of the pump beam on the Ti:Sapphire crystal should be the Brewster angle. The

angle of the two focusing mirrors, f1 and f2, and the distance between them, should be

close to the calculated values discussed in Chapter 5.

2. Next we can insert the waveplate and focusing lens fp. Make sure the pump beam passes

through the center of both of them. One should see divergent green light coming out

from f1. A laser blocker can be set after f1 to stop it. The waveplate should be set so

that the transmitted green light is horizontally polarized. Once the polarization of the

pump beam is rotated to be horizontal, the reflected green light from the crystal, which
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Figure D1: Pump beam alignment.

can be stopped with a laser blocker, should have the minimal intensity. The distance

between fp and f2 should be about the same as calculated in Chapter 5.

3. Now we can move on to set up the mirror M1 and M2. Make sure the length of the path

f1−M2−M1 is close to the calculated value (L1) in Chapter 5. The same iris should be

used to check the height of the beam between f1−M2 and M2−M1. The reflected green

light from f1 should be strong enough to be seen by eyes; however, the luminescence from

the Ti:Sapphire crystal, which looks red, is very dim. The trick to adjust the height is to

use the green light as the guidance. One should make sure that the green beam passes

through the center of the iris for all the positions shown in Figure D2. One now may

notice the appearance of a second green beam after f1. That is the reflected light from

M1.

4. Next we can set up the other path f2−M3−M4−OC. We need make sure that the path

length is about the value of L2 given in Chapter 5. The alignment for this path is a little

tricky since this path is shorter and optics are placed in a more compact configuration,

there is no room for the iris to be inserted. First of all, we must adjust the mirrors to

land the cavity mode at the center of M3, M4 and OC (See Figure D3). This may be

difficult since the reflected green light from f2 is too weak to be seen. Therefore, one can

only rely on the luminescence from the Ti:Sapphire crystal. To see the luminescence,

one can wear laser goggles or use an infrared viewer.

5. Now we need to make sure that the cavity mode in both paths L1 and L2 overlaps.

We can insert a laser blocker between M1 and M2 to block the reflected beam from the
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Figure D2: Cavity mode alignment (Part I).
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Figure D3: Cavity mode alignment (Part II).
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ending mirror M1 (See Figure D4). Now the luminescence we observe at Position 1 and

2 includes two parts (1) the luminescence reflected by f1 (2) the light reflected by the

output coupler and passing through M4, M3, f2, Ti:Sapphire and f1, successively. As

long as we can overlap the light from these two paths at both Position 1 and 2, we can

be sure that the cavity mode in path L1 and L2 overlaps with each other. To do that,

we can adjust the OC to overlap the beams at Position 1 and M3 at Position 2. Keep

adjusting these two until the light overlaps well at both positions.

6. Now we are ready to try to get the cavity to lase. We can increase the pump power to

5 W (The maximum power of the Verdi-V5.). If the cavity starts to lase, one should see

a bright spot after the output coupler. If the cavity does not lase, then one can try the

beam walking by adjusting the ending mirror M1 and OC. Before walking the beam, a

power meter can be used to collect the output light from the cavity. To walk the beam,

one can start with the X axis of M1 by slowly turning the knob counterclockwise (or

clockwise) a little bit. Then the X axis knob of OC should be adjusted slowly. If the

output power increases, one can go to M1 and keep turning the X knob in the same

counterclockwise direction (or clockwise), then go back to adjust the X knob of OC. If

the output power decreases, one should go to M1 and turn the X knob in an opposite

way such as clockwise (or counterclockwise), then adjust OC to see if the power can be

increased. This adjustment should be repeated until the power is maximized. After the

X axis is done, one should go through the same process for the Y axis. One ought to

repeat the iterative alignment for both directions to optimize the output power. If one

has trouble in getting the cavity to lase by adjusting the output coupler and M1, one

should try to move f1 a little.

7. After the cavity starts to lase, the fused silica wedge pair can be installed. The angle

should be the Brewster angle.

8. After the installation of the wedge pair, the cavity may stop lasing. One need to do beam

walking to bring the cavity back to the lasing state. The power is not the only parameter

one should optimize for CW mode. The output laser mode and the spectral line width

are important as well. The mode should be Gaussian. The narrower the spectral line

width is, the better. By combining the beam walking process with M1 and the output
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Figure D4: Overlap of the cavity mode in the two arms.
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coupler with the adjustment of f1, one should achieve a state in which all parameters are

optimized.

9. Once the CW mode is optimal, we can try mode-locking. In order to initiate the mode-

locking, the cavity must be disturbed. One can do that by pushing f1 a little then release

it. It can take some time to tune the alignment so that the mode-locking can occur. One

can start with f1 by moving it a little bit then shake it. If mode-locking does not occur,

keep moving f1. Both our experience and theories indicate that mode-locking is more

sensitive to the position of f2 than the position of f1. Therefore, if one has trouble in

getting laser mode-locked by adjusting f1, one can try to move f2.

10. Once the mode-locking is achieved, one can play with the wedge pair to optimize the

intracavity GVD conditions so that the output laser pulse has the minimal duration.

11. In order to measure the pulse width with autocorrelation, one may need to adjust the

extracavity GVD control optics as well. That includes a pair of compression mirrors

which has negative GVD and a pair of fused silica wedge pair.
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tosecond Response of a Free-standing LT-GaAs Photoconductive Switch, Appl. Opt.
42(9), 1726 (2003).

[84] U. Keil and D. Dykaar, Ultrafast pulse generation in photoconductive switches, Quan-
tum Electronics, IEEE Journal of 32(9), 1664 (1996).

[85] R. L. Sutherland, D. G. McLean, and K. S., Handbook of Nonlinear Optics (Marcel
Dekker, 2003).

[86] G. D. Boyd and D. A. Kleinman, Parametric Interaction of Focused Gaussian Light
Beams , Journal of Applied Physics 39(8), 3597 (1968).

[87] L. E. Hargrove, R. L. Fork, and M. A. Pollack, LOCKING OF He[Single Bond]Ne
LASER MODES INDUCED BY SYNCHRONOUS INTRACAVITY MODULATION ,
Applied Physics Letters 5(1), 4 (1964).

[88] D. Kuizenga and A. Siegman, FM and AM mode locking of the homogeneous laser -
Part I: Theory, Quantum Electronics, IEEE Journal of 6(11), 694 (1970).

[89] H. W. Mocker and R. J. Collins, MODE COMPETITION AND SELF-LOCKING
EFFECTS IN A Q-SWITCHED RUBY LASER, Applied Physics Letters 7(10), 270
(1965).

[90] E. Ippen, Principles of passive mode locking , Applied Physics B 58, 159 (1994).

[91] T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, Kerr lens mode locking , Opt.
Lett. 17(18), 1292 (1992).

[92] A. E. Siegman, Lasers (University Science Books, 1986).

[93] R. L. Fork, O. E. Martinez, and J. P. Gordon, Negative dispersion using pairs of prisms ,
Opt. Lett. 9(5), 150 (1984).

[94] A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, and R. Szipöcs, Sub-10-fs mirror-
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