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Accelerometry (the measurement of vibrations) and auscultation (the measurement of sounds)

are both noninvasive techniques that have been explored for detecting abnormalities in swal-

lowing. The differences between these techniques and the information they capture about

swallowing have not previously been explored in a direct comparison. In this study, we inves-

tigated the differences between dual-axis swallowing accelerometry and swallowing sounds by

recording data from adult participants and calculating a number of time and frequency do-

main features. During the experiment, 55 participants (ages 18-65) were asked to complete

five saliva swallows with a neutral head position and then five saliva swallows in a ’chin-

tuck’ position. The resulting data was processed by previously designed techniques utilizing

wavelet denoising, spline filtering, and fuzzy means segmentation. The pre-processed signals

were then used to calculate nine time, frequency, and time-frequency domain features for

each independent signal. In addition to finding a number of features that varied with the

participant’s age, sex, and head position, our statistical analysis determined that the major-

ity of our chosen features were significantly different for different transducers. We conclude

that swallowing accelerometry and swallowing sounds provide different information about

deglutition despite utilizing similar transduction methods.

Keywords: Swallowing accelerometry signals, swallowing sounds, saliva swallows, signal

characteristics.
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1.0 INTRODUCTION

1.1 MOTIVATION

1.1.1 Defining Dysphagia

Dysphagia is a term used to describe a multitude of abnormal swallowing disorders [5].

Typically it is divided into three categories: Ororpharyngeal dysphagia for causes that orig-

inate in or near the patient’s pharynx, Esophageal dysphagia for causes that originate in

the esophagus, and Functional dysphagia for those where no cause can be located [6]. All

forms of dysphagia have common symptoms which include difficulty controlling food within

the mouth, difficulty initiating a swallow, significant coughing after a swallow, or painful

swallowing, among others. These events are a sign that the muscles and structures in the

patient’s throat are not operating properly as the patient swallows [5]. Since the epiglottis

and other structures required to protect the airway are among them, this can result in food

being allowed to enter the trachea and possibly triggering an infection [6]. Even if this is

not the case, dysphagia causes eating to become problematic if not outright unpleasant, and

patients can become dehydrated or suffer from malnutrition as they attempt to avoid an

unpleasant activity [7], [8].

1.1.2 Incidence and Prevalence

It is estimated that ten million Americans are diagnosed with dysphagia every year [9].

Dysphagia can occur in people of any age, but the incidence increases with age [9], [10].

Studies estimate that the prevalence of dysphagia is nearly 10% in people over the age of

fifty, but that estimate only includes reported cases [9]. In addition to those who do not seek
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medical care for their condition, many patients suffer from ’silent aspirations’ or otherwise

are not properly diagnosed [11]. Therefore, the true prevalence of dysphagia may be over

20% in the elderly population [5], [9].

These estimates increase significantly in those who are hospitalized or otherwise admitted

to a medical care facility. It is estimated that over 25% of hospital patients demonstrate

signs of dysphagia while that statistic can be as high as 75% in acute trauma centers, nusing

homes, or other advanced care facilities [9]. The rate of ’silent aspirations’ in the hospitalized

population is similarly high, with as many as 80% of dysphagic patients in acute care centers

demonstrating signs of silent aspirations, and so exact statistics are difficult to estimate [12].

While it is far less common, dysphagia can still occur in children, particularly in infants.

A small amount of regurgitation or ”spitting up” is not uncommon, but this occurs often

enough to be classified as gastroesophageal reflux disease in approximately 8% of infants

[10]. Since they cannot provide the same level of feedback as an adult it is far more difficult

to assess dysphagia in this population [10]. Fortunately, the majority of these infant cases

of dysphagia fix themselves through the course of normal development and aging, but they

can still have lasting effects on the patient’s growth [9], [10].

1.1.3 Potential Benefits

The cost and availability of tests to diagnose dysphagia is one area that has potential for

improvement. Most physicians utilize expensive x-ray and endoscopy equipment which is

not easily afforded by smaller medical facilities [13], [14]. Even without that expense, all

currently accepted diagnostic methods require at least one specialist to directly administer

the examination and interpret the results. If such personel are not available on site then the

patient has no choice but to travel to a facility that does have one on staff. Depending on the

source of the patient’s dysphagia this could be incredibly difficult to accomplish without out-

side assistance. All of these things, purchasing and maintaining delicate equipment, hiring

and training diagnostic specialists, arranging travel to distant medical facilites, significantly

reduce the availability of diagnostic screening while increasing the cost to administer it.
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Developing a diagnostic method that uses simpler equipment which non-specialists can op-

erate would enable more, smaller facilities to offer dysphagia screenings at a significantly

reduced cost.

The costs associated with administering a test for dysphagia also impacts the health

of dysphagic patients. As it stands, only those who are showing clear outward signs of

swallowing difficulties are likely to be recommended to a specialist for screening. This means

that the estimated 30% of dysphagic patients who are not aware of their own condition

will not be tested or treated until it develops into a larger medical issue such as pneumonia

[11]. With more widely available and cheaper diagnostic methods those who exhibit silent

aspirations can obtain the medical care they need before it develops a more dangerous and

expensive medical issue. Furthermore, reducing the cost of administering the test would

ensure that the financial burden would not impact one’s ability to seek necessary medical

care. Medical costs for the elderly can reach well over $100,000 with little variation for their

percieved healthiness [15]. As they are typically on fixed incomes and are the most likely to

develop dysphagia, any potential reduction in health care expenses for the elderly would be

a great benefit.

The reliability of dysphagia screening is another potential area of improvement. The

most common and most widely approved methods of diagnosis rely on the analysis of at

least one trained specialist [13], [14]. While this method is clearly adequate, it is not perfect.

Swallowing is a complex biological process with many variations even between individual

swallows of a normal, healthy person. When you add in the human element to administering

the test and subsequently judging the results there is an unavoidable risk of error. If it were

possible to automate this diagnostic process then the sensitivity and specificity of dysphagia

screening could improve and ensure that medical care is given to those who need it.

1.1.4 Contributions of this Research Towards the Issues

This study attempts to investigate a possible method of diagnosing dysphagia which could

potentially be developed into a cheap, automated testing system. When compared to existing

methods of diagnosis, even high quality microphone and accelerometer equipment is cheap
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and easy to use. However, there has not been sufficient work done to characterize how these

signals behave in a clinical setting. This study intends to explore various time and frequency

domain features of these signals recorded from normal, healthy swallowing subjects. This

will enable us to determine how these two transduction methods differ and if they are worthy

of further investigation. It will also enable future studies to repeat the experimental methods

on dysphagic subjects and compare the results to our baseline recordings to determine their

viability as diagnostic tools for swallowing disorders. Knowledge from this experiment will

provide a foundation for the development of a cheap, automated diagnostic test for dysphagia.

1.2 VIBRATION TRANSDUCTION

1.2.1 Accelerometry

One model of accelerometer often used in scientific applications is the MEMS accelerometer.

Using microfabrication techniques, a capacitor is etched into a circuit board where one plate

is fixed while the other is suspended above it [16]. This second plate is free to move along

the axis perpendicular to the plate when subjected to forces in that direction [16]. The

magnitude of the applied force affects how far the mobile plate is displaced and in what

direction, which thereby changes the capacitance of the circuit and the subsequent output

voltage of the overall device [16]. Including multiple such capacitors oriented orthogonal to

one another will produce a single device that can detect vibrations along multiple axes [16].

A diagram of this system is shown in figure 1.

Typically, accelerometers are used to detect or quantify the motion of a larger object

[16]. However, with the proper bandwidth, they can record higher frequency signals such as

vibrations [16]. In doing so, an accelerometer can accurately record sounds and have been

proven to do so effectively in a number of swallowing-related studies among others [17], [18],

[19].
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Figure 1: Diagram of the key element of a MEMS accelerometer [1]

1.2.2 Microphones

A commonly found style of microphone used for scientific applications is the electret condeser

microphone. Unlike the standard condenser microphone, the electret condenser uses a per-

manently polarized film diaphragm in place of an externally charged capacitor diaphragm

[20]. When sound waves reach the film and cause it to move, the electic field within the

device changes and a signal is produced [20]. These microphones can have a wide array of

frequency responses which may include all or only part of the range of human hearing and

so are useful for a wide array of applications including swallowing studies [21], [22], [23].

In many situations, it is important to account for the polar pattern of a microphone.

Depending on the orientation of the polarized film and the existence of other structures, the

film may have a smaller or greater response to sounds of the same intensity originating from

different locations [24]. This could enhance the system’s noise rejection, but it might also

affect its ability to record the intended signal and may not be ideal for certain applications

[24]. One method used to counter this issue is to develop a contact microphone. This device

would not pick up ambient sounds and vibrations from the air since the recording diaphragm

is enclosed in a solid protective casing [20]. Instead, only sounds which originate from an
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object directly in contact with the case are converted to sound waves within the device

and are allowed to reach the diaphragm [20]. This modification to the standard electret

microphone design makes it easier to record signals from one specific source.

1.3 RESEARCH OBJECTIVES

This research has two key objectives. First, it seeks to demonstrate whether or not dual-axis

swallowing accelerometry signals and swallowing sounds are significantly different in healthy

subjects. Past research has looked at each transducer individually, but little work has been

done to compare the two, albeit similar, transduction methods. In addition to the basic size

differences these two transducers can have different temperature responses, sensistivities,

and polar patterns as well as having completely different responses to motion (e.g., [25],

[26]). Secondly, we will investigate a number of time and frequency domain features of

each swallowing signal to determine their values in normal, healthy adults as well as how

they change. We will specifically estimate their dependencies on the subject’s age, sex,

and head position while swallowing. We will accomplish this by first collecting sound and

accelerometry data from a number of healthy adult subjects while they make dry swallows.

We will then apply signal processing algorithms that have been proven adequate for such

studies in order to characterize various attributes of the signals. Finally, statistical analysis

techniques will be used to investigate which of these attributes vary with respect to each of

our variables.

Past studies have demonstrated that an accelerometer is capable of detecting a subject’s

cardiac dynamics, which is known to change with age [27], [28], whereas the acoustic prop-

erties of the neck would likely change as a person’s skin loses its elasticity in later years [29].

Meanwhile, there are some notable differences in the anatomy of the neck and throat be-

tween the sexes, particularly in the size of the laryngeal prominence, that could affect either

of these recordings and should be properly accounted for [30], [31]. Finally, it is known that

many physiological structures in the neck move when a swallow is occuring [32]. It is logical
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then, to assume that altering the head position, which will change the relative locations

of all of these structures, will affect their dynamics and the signals they produce [33]. The

widespread acceptace of the ’chin-tuck’ maneuver gives merit to this claim [34], [35].

1.4 OVERVIEW

Chapter 2 covers the relevant background topics for this research. It details the physiological

process of swallowing as well as a number of ways this process can be impeeded or disrupted,

resulting in dysphagia. It also provides a brief overview of the current methods used to

diagnose dysphagia.

Chapter 3 covers the methodology of the experiment. It details not only the experimental

setup, but the signal processing algorithms, extracted features, and statistical tests utilized

as well.

Chapter 4 lists the results of the experiment including both the average values of each

extracted feature and the output of the statistical analysis.

Chapter 5 attempts to explain the results presented in chapter 4 based on past research

and to draw conclusions based on the data. It ends with possible avenues for future research.
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2.0 BACKGROUND

2.1 STAGES OF DEGLUTITION

Figure 2: Lateral view of the human head and neck showing pharynx divisions [2]

A lateral cross-section of the human head and neck can be seen in figure 2. It clearly

shows the different sections of the throat that will be refered to later as well as several
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other notable structures. Meanwhile, figure 3 displays the major muscles and arteries that

influence swallowing activity.

Physiologically, swallowing is divided into three separate phases as can be seen in figure

4. The first stage, the oral phase, consists entirely of voluntary activity [32]. It begins when

the mouth is opened to allow material to enter the oral cavity [32]. After the material is

masticated sufficiently and a bolus is formed, the tounge is then pressed against the hard

palate and the bolus is propelled posteriorly (figure 4 parts A and B) [32].

Figure 3: Gross muscle anatomy of the human neck [1].

The pharyngeal phase, whose activity is involunary but may be initiated conciously, is

the second stage of deglutition [32]. It begins once the bolus has passed the palatoglossal

arch and entered the oropharynx [36]. This phase involves temporarily sealing all unwanted
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bolus pathways including the nasopharynx by the soft palate, the oral cavity by the tounge,

and the larynx by the epiglottis (figure 4 part C) [36]. The adduction of the vocal folds

further helps to keep the bolus out of the larynx [37]. Because of these valves, all actions

such as breathing, coughing, and mastication are inhibited duing the pharyngeal phase [38].

The oropharynx and laryngopharynx, larynx, and hyoid structures are all then pulled in the

superior and anterior directions so as to accept the bolus and to further seal the larynx and

nasopharynx [36]. Peristalsis of the oropharynx and layngopharynx muscles then moves the

bolus down towards the upper esophageal sphincter (figure 4 part D) [36].

Figure 4: Stages of the healthy swallowing process [3]. A is the volunary oral stage, B

demonstrates the preparations before the pharyngeal stage, C, D, and E represent different

points in the pharyngeal stage, and F is the esophageal stage.

The third stage is the esophageal phase and is completely involuntary [32]. As the bolus

is traveling through the pharynx, the upper esophageal sphincter relaxes to allow the bolus

to enter the esophagus (figure 4 part E) [32]. Peristalsis of the the muscles surrounding the

pharynx and esophagus push the bolus downward until it passes through the lower esophageal
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sphincter and into the stomach (figure 4 part F) [38]. The pharynx, larynx, and hyoid all

relax and return to their initial positions after the bolus has passed into the esophagus [38].

The tounge, vocal cords, epiglottis, and soft palate likewise return to their resting positions

and non-swallowing activities can resume [38].

2.2 PATHOLOGY

2.2.1 Nervous Origins

Figure 5 displays the major motor nerves in the neck and their corresponding musculature.

On the other hand, figure 7 displays a number of muscles

The most common cause of dysphagia is some form of neurological damage or impairment,

with approximately 500,000 cases reported every year [9]. Specifically, abnormalities in the

cranial nerves, which control both the autonomic and voluntary portions of swallowing,

can interfere with or completely prevent the proper muscle activation sequence [7]. Stroke

patients have a particularly high incidence of dysphagia after the stroke event, most likely

due to the occulsion-induced cell death [7]. Similarly, severe head or neck trauma can be

sufficient to damage or dislodge these delicate nerve cells. Regardless of the exact cause, the

end result is that the muscles which control swallowing are no longer receiving input from

the brain, and are functionally useless. Without proper muscle activation it is no surprise

that a patient would have difficulty forcing a bolus of food through the esophagus, would

not be able to properly protect their larynx as they swallowed, or both [35].

However, completely deactivating these muscles is not the only neurological source of

dysphagia. Conditions such as Huntington’s Disease, Parkinson’s Disease, and multiple scle-

rosis are all characterized by the impaired motor and mental capabilities of the patient.

Often times, this impairment is extended to the muscles that control swallowing. The cra-

nial nerves are still functional, but the muscles they control are not activated correctly or

in the correct sequence [9]. This can lead to the larynx being unprotected at important times
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Figure 5: Major motor nerves in the neck [30].

in the swallowing process and subsequent aspiration [39]. Alternatively, it could result in

uncoordinated peristalsis of the pharynx or esophagus and prevent the bolus from travelling

where it is intended, causing discomfort or pain in the patient [39].

Figure 5 displays the major motor nerves in the neck and their corresponding muscu-

lature. Damage to or incorrect activation of any of these structures can have significant

repercussions on the subject’s ability to swallow safely.
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2.2.2 Esophageal Origins

While various nervous complications are more common, there are also a number of anatomical

causes of dysphagia. Conditions such as gastroesophageal reflux disease and eosinophilic

esophagitis tend to cause inflamation of the esophagus. Though the causes can vary from an

allergic reaction to a genetic predisposition, they both result in a narrow esophageal opening

and cause food to become ”stuck”, sometimes painfully, before continuing on to the stomach

[6]. Achalasia is similar to this situation, but the narrow esophagus is due to poor peristalsis

and incomplete muscle relaxation rather than simple inflamation of the tissues[6]. Of course,

not all of these conditions directly affect the esophageal stage of swallowing. Should the

pressure in the layngopharynx increase too much for some reason, such as a slow opening

of the upper esophageal sphincter, part of the pharyngeal wall will expand outward forming

a Zenker’s diverticulum[6]. This results in food remaining stuck in the pharynx during

swallowing and, in addition to being uncomfortable, can put the patient at risk of aspiration

or other negative outcomes.

2.2.3 Other Origins

Naturally, a patient’s ability to swallow correctly is affected by the biological structures

present in and around the throat. Therefore it is expected that cancer could potentially be

a cause of dysphagia, depending on the exact location of the tumor [3]. A growth could

apply pressure to the pharynx or esophagus, thereby narrowing the blous pathway or other-

wise forming an obstruction. This would obviously make it more difficult to pass the blous

towards the stomach or could modify the dynamics of its movement and allow the bolus to

travel down an unintended pathway. Extracting the tumor could potentially make this situ-

ation even worse. Much of the surrounding tissue includes muscles that control swallowing

movements and removing them can reduce the protection of the larynx or decrease the force

of peristalsis [3]. These complications are not unique to cancer, however. Tracheostomies,

swollen lymph nodes, vocal fold cysts, chondrolaryngoplasties, or any number of similar

conditions or surgical interventions near the gastrointestional tract could result in the same

obstructions or muscle damage mentioned previously [3].

13



2.3 ASSESSMENT OF PATHOLOGICAL CONDITIONS

2.3.1 Videofluoroscopy

Videofluoroscopy, sometimes refered to as a modified barium swallow, has been the chief

method for diagnosing swallowing disorders for many years [5], [40]. The patient, while

either sitting or standing, swallows small amounts of food or liquid that has been coated

with a small amount of barium sulfate [39], [40]. This compund is used because in addition

to being a reasonable x-ray contrast agent it has a low water solubility and is generally

not absorbed by the gastrointestional tract. A fluoroscopic camera is set up to capture

pictures in the sagital plane and aligned so as to display the oropharynx, pharynx, and

upper esophagus. In this position it is possible to see the action of all major structures

involved in swallowing [40]. While the camera is active a radiologist and a logopedist or

other language correction specialist observe the movement of key anatomical structures as

well as the timing and duration of each swallowing stage [40]. This process is repeated while

video is collected in the coronal plane to check the symmetry of bolus movement and muscle

activity [40]. The specialists then check the results for any signs of aspiration or incorrect

muscle activity and determine whether or not the activity constitutes a medical condition.

Despite the cost and logistics associated with this method, it has been shown to be a very

reliable assessment of dysphagia in most people [5]. Figure 6 displays example images from

this test for both a normal swallow and a swallow that resulted in aspiration.

2.3.2 Gastroesophageal Endoscopy and Biopsy

Unlike videofluoroscopy, which indirectly assesses the activity of physiological structures

based on the movement of a bolus, gastroesophageal endoscopy directly observes that activity

[41]. The patient is asked to lie on their side and a topical anasthetic is applied to the upper

sections of the pharynx [41]. An endoscope is then inserted either through the nasopharynx

or oral cavity and into the oropharynx [41]. As the tool is guided further down, as far as

the duodenum if needed, the examiner observes the surrounding tissue for any abnormal

structures or discoloration [41]. In some situations the patient may be asked to make dry
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Figure 6: Videofluoroscopic image of a) a normal swallow and b) a swallow that caused

aspiration [4].

swallows or to comsume small amounts of liquid so that the examiner can directly observe

the dynamics of various key structures in the pharynx when not at rest [41]. Furthermore,

during the examination the examiner may choose to take a biopsy sample for later histological

analysis. While the endoscopic evaluation can determine any physcial abnormalities the

biopsy can determine immunological or genetic causes of the disorder [41]. Even though

this technique is as effective when observing all but the smallest structural details, it is

typically only used to confirm the results of a videofluoroscopic examination [14]. Due to

the device limitations only a small part of the patient’s physiology can be observed during

an individual swallow which makes the examination process far more time consuming than

videofluoroscopy [14].

2.3.3 Cervical Auscultation

One technique for diagnosing swallowing disorders that has received some recognition is

cervical auscultation. Unlike videofluoroscopy or endoscopy, cervical auscultation can be

performed quickly and easily at the patient’s bedside [42]. A sound recording device, typically

a stethescope, is placed over the thoratic cartilage and the examiner listens as the patient

makes a swallow [13]. A normal patient will produce a distinct series of sounds which

are either out of order or missing in a dysphagic patient, and the examiner bases their
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diagnosis on this information [13]. While this technique is simple to perform, its effectiveness,

reproducibility, and reliability have all been questioned and so has not gained widespread

acceptance in the field [42]. Lately, there have been efforts to automate this process and

improve its viability as a diagnositic method with varying degrees of signal processing [17],

[18], [19], [21], [22], [23].

2.3.4 Electrophysiology

Yet another method that exists for diagnosis swallowing disorders utilizes EMG recordings

[43]. Swallowing activity is controlled by well over a dozen different muscles and each one

produces an electric signal [30]. Figure 7 shows a number of these unique and independently

operated muscles that contract in a relatively small portion of the neck. By placing conduct-

ing electrodes onto the surface of the skin the activity of those muscles can be monitored

and the subsequent EMG waveforms or muscle recruitment patterns can be analyzed [43].

Even though this is an interesting avenue of investigation, its use is entirely experimental

and still requires a great deal of research before any practical applications are seen [43].
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Figure 7: Drawing showing the number of muscles operating on a small portion of the throat

[30].
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3.0 METHODOLOGY

3.1 DATA COLLECTION

Our recording equipment consisted of a dual-axis accelerometer and a contact microphone

attached to the participant’s neck with double-sided tape. The accelerometer (ADXL 322,

Analog Devices, Norwood, Massachusetts) was mounted in a custom plastic case, and affixed

over the cricoid cartilage in order to provide the highest signal quality [44]. We aligned the

x-axis of the accelerometer in the anterior-posterior direction while the y-axis of the ac-

celerometer was aligned in the superior-inferior direction. It was powered by a power supply

(model 1504, BK Precision, Yorba Linda, California) with a 3V output, and the resulting

signals were bandpass filtered from 0.1 to 3000 Hz with ten times amplification (model P55,

Grass Technologies, Warwick, Rhode Island). Both voltage signals were fed into a National

Instruments 6210 DAQ and recorded at 40 kHz by the LabView program Signal Express

(National Instruments, Austin, Texas). This setup is sufficient to accurately record the full

range of swallowing vibrations and has been proven to be effective at detecting swallowing

activity in previous studies [17], [45]. The microphone (model 411L, AKG, Vienna, Austria)

was placed below the accelerometer and slightly towards the right lateral side of the tra-

chea so as to avoid most contact between the two devices without greatly impacting signal

quality. Overlap with the sternocleidomastoid muscle was minimized to avoid unnecessary

signal attenuation. It was powered by a power supply (model B29L, AKG, Vienna, Austria)

set to ’line’ impedance with a volume of ’9’ and the resulting voltage signal was sent to the

previously mentioned DAQ. Again, the signal was sampled by Signal Express at 40 kHz.

The protocol for the study was approved by the Institutional Review Board at the Uni-

versity of Pittsburgh. 56 participants were recruited from the neighborhoods surrounding
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the University of Pittsburgh campus. All participants confirmed that they had no history of

swallowing abnormalities and were divided into four age ranges for later statistical analysis:

18 to 29, 30 to 41, 42 to 53, and 54 to 65. One participant’s data was eliminated from our

calculations due to mistakes made during recording. Table 1 shows the composition of each

age category at the conclusion of the experiment. All testing was performed in the iMED

laboratory facilities at the University of Pittsburgh.

Table 1: Composition of participant population.

Age Range Males Females Age

18-29 11 6 22.6± 2.8

30-41 8 7 33.2± 2.8

42-53 3 5 46.0± 3.0

54-65 6 9 59.2± 3.6

Total 28 27 38.9± 14.9

With their head in the neutral position, each participant was asked to make five saliva

swallows with a few seconds between each swallow to allow for saliva accumulation. This

process was repeated once, but with the head in the chin-tuck position when the swallow

occurred. Each unique task was recorded as a separate text file by the Signal Express

software and imported into MATLAB (Mathworks, Natick, Massachusetts).

3.2 DATA PRE-PROCESSING

The dual-axis accelerometer signal was first down sampled to 10 kHz in order to utilize pre-

viously developed algorithms for pre-processing dual-axis swallowing accelerometry signals

(e.g., [46], [47], [48]). At an earlier date, the device’s baseline output was recorded and mod-

ified covariance auto-regressive modeling was used to characterize the device noise [27], [49].

The order of the model was determined by minimizing the Bayesian Information Criterion

[27]. These autoregressive coefficients were then used to create a finite impulse response filter
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Figure 8: Raw output from accelerometer recording system.

and remove the recording device noise from our signal [27]. Afterwards, motion artifacts and

other low frequency noise was removed from the signal through the use of least-square splines.

Specifically, we used fourth-order splines with a number of knots equal to
Nfl
fs

, where N is

the number of data points in the sample, fs is the original 10 kHz sampling frequency of our

data, and fl is equal to either 3.77 or 1.67 Hz for the superior-inferior or anterior-posterior

direction, respectively. The values for fl were calculated and optimized in previous studies

[48]. After subtracting this low frequency motion from the signal we denoised the remaining

data by using tenth-order Meyer wavelets with soft thresholding [46]. The optimal value of

the threshold was determined through previous research to be σ
√

2 logN , where N is the

number of samples in the data set and σ, the estimated standard deviation of the noise,

is defined as the median of the down-sampled wavelet coefficients divided by 0.6745 [46].

Previous research by Wang and Willett demonstrated a useful method for segmenting data

sets into two distinct categories based on local variances [50]. For this study, we applied a

modified version of their method and used a proven two-class fuzzy c-means segmentation
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Figure 9: Accelerometer signal after device noise is removed.

technique to determine which parts of a given data stream contained swallowing activity [47].

Lastly, the anterior-posterior accelerometer data was imported into WavePad Sound Editor

(NCH Software, Greenwood Village, Colorado) for manual acoustic analysis and elimination

of false positives.

Figures 8 through 11 demonstrate this process one on set of data. Figure 8 is the signal

recorded by Signal Express from the output of our accelerometer’s amplifier with no digital

processing applied. Figure 9 shows this same signal after the FIR filter has been applied to

remove the device noise from the signal. Note how the signs of colored noise around the 35

and 60 second marks have been eliminated in favor of constant white noise across the signal.

Similarly, figure 10 shows the signal after removing the low frequency head movements. Our

wavelet denoising algorithm finishes the processing by removing the majority of white noise

in the signal and is shown in figure 11. Compared to figure 8, figure 11 shows much clearer

divisions between individual swallows with only a minimum amount of noise.

The device noise filtering algorithm was recalculated with respect to the microphone

system and an FIR filter was applied to the swallowing sound signal to eliminate device noise
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Figure 10: Accelerometer signal after device noise and head movements are removed.

from that signal just like with the accelerometer. We also applied the same 10 level wavelet

denoising process to further refine the data. No splines or other low-frequency removal

techniques were applied to the swallowing sounds because we had not investigated if such

frequencies contained important sound information. We did not develop new segmentation

algorithms to extract the five individual swallows from the microphone signal, but instead

simply used the time points given by the accelerometer segmentation process.

3.3 FEATURE EXTRACTION

3.3.1 Time Domain

Our next step involved extracting a number of signal features from dual-axis swallowing

accelerometry signals and swallowing sounds. In the time domain, the skewness and kurtosis

22



0 20 40 60 80 100 120 140
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

time (s)

V
o
lt
a
g
e
 (

V
)

Figure 11: Device noise after device noise and head movements are removed and wavelet

denoising is applied.

were calculated by using the standard formulas [19], [51]:

y1 =

1

n

n∑
i=1

(xi − µ)3(
1

n

n∑
i=1

(xi − µ)2
)3/2

(3.1)

y2 =

1

n

n∑
i=1

(xi − µ)4(
1

n

n∑
i=1

(xi − µ)2
)2 (3.2)

where µ is the mean of the signal, y1 is the skewness, y2 is the kurtosis, and n is the length

of the signal x. Finding the swallow duration only required converting the MATLAB indices

given in the segmentation step into proper time units.
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3.3.2 Information-Theoretic Features

To calculate the information-theoretic features we followed the procedures outlined in pre-

vious publications (e.g., [17], [19]). The signals were normilized to zero mean and unit

variance, then divided into ten equally spaced levels, ranging from zero to nine, that con-

tained all recorded signal values. We then calculated the entropy rate feature of the signals.

It is found by subtracting the minimum value of the normalized entropy rate of the signal

from 1 to produce a value that ranges from zero, for a completely random signal, to one, for

a completely regular signal [17]. The normalized entropy rate is calculated as

NER(L) =
SE(L)− SE(L− 1) + SE(1) ∗ perc(L)

SE(1)
(3.3)

where perc is the percent of unique entires in the given sequence L [17]. SE is the Shannon

entropy of the sequence and is calculated as

SE(L) = −
10L−1∑
j=0

ρ(j) ln(ρ(j)) (3.4)

where ρ(j) is the probability mass function of the given sequence. Lastly the original signal

was quantized again, but this time into 100 discrete levels. This allowed us to calculate the

Lempel-Ziv complexity as

C =
k log100 n

n
(3.5)

where k is the number of unique sequences in the decomposed signal and n is the pattern

length [52].

3.3.3 Frequency Domain

Next, in the frequency domain, we determined the bandwidth of the signals along with

the center and peak frequencies. The center frequency was simply calculated by taking

the Fourier transform of the signal and finding the weighted average of all the positive

frequency components. Similarly, the peak frequency was found to be the Fourier frequency

component with the greatest magnitude. We defined the bandwidth of the signal as the

standard deviation of its Fourier transform [17].
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3.3.4 Time-Frequency Domain

We also calculated a number of signal features in the time-frequency domain by utilizing a

ten-level discrete Meyer wavelet decomposition. The energy in a given decomposition level

was defined as

Ex = ||x||2 (3.6)

where x represents a vector of the approximation coefficients or one of the vectors represent-

ing the detail coefficients. || ∗ || denotes the Euclidean norm [17]. The total energy of the

signal is simply the sum of the energy at each decomposition level. From there, we could

calculate the wavelet entropy as the Shannon entropy of the wavelet transform. Applying

equation 3.4 we produce the following expression:

WE = −Era10
100

log2

Era10
100

−
10∑
k=1

Erdk
100

log2

Erdk
100

(3.7)

where Er is the relative contribution of a given decomposition level to the total energy in

the signal and is given as [17]

Erx =
Ex

Etotal

∗ 100% (3.8)

3.4 STATISTICAL ANALYSIS

Our statistical analysis involved transfering the processed features from Matlab to the SPSS

(IBM, Armonk, New York) statistical analysis software. There we ran 25 mixed ANOVA’s,

one for each extracted feature for all signals plus one for the duration, with the participant’s

head position as the within-subjects factor and the participant’s age and gender as between-

subjects factors. Even though the test is robust against violations of assumptions due to our

sample size all data was reciprocol transformed to improve the data normality and homo-

geneity of variance. A p-value of less than 0.05 was required for significance after applying

the Holm-Bonferroni method to correct for family-wise false positive errors. Afterwards, we

ran 32 Wilcoxon signed-rank tests (8 attributes compared across 2 signal pairs and 2 head

positions) to determine which attributes of the swallowing sounds were significantly different
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from the swallowing accelerometry signals. Here, data was divided only by the participant’s

head position and a p-value of less than 0.001 was required for significance after applying

the Bonferoni correction.
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4.0 RESULTS

4.1 AGE, SEX, AND HEAD POSITION

Tables 2-5 and Figures 12-14 summarize the results of our analysis. Presented data was

divided by head position only for convenience and readability. In the anterior-posterior

direction, we found a number of attributes that varied significantly with respect to the

subject’s swallowing position. The anterior-posterior skewness (p = 0.025), kurtosis (p =

0.014), center frequency (p = 0.004), and peak frequency (p = 0.001) all varied significantly

between the neutral and chin-tuck swallowing positions. The significance of the kurtosis

Table 2: Time domain features in the neutral head position

A-P S-I Sounds

Skewness -0.221 ± 1.694 0.083 ± 2.141 0.268 ± 3.147

Kurtosis 16.82 ± 61.47 20.40 ± 51.71 38.98 ± 317.3

Entropy Rate 0.989 ± 0.012 0.990 ± 0.008 0.987 ± 0.018

L-Z Complexity 0.060 ± 0.030 0.071 ± 0.026 0.080 ± 0.063

Duration (s) 2.505 ± 1.428

and center frequency also carried some dependence on age (p = 0.006 and p = 0.013). On

the other hand, only the superior-inferior kurtosis (p = 0.027) and Lempel-Ziv complexity

(p = 0.029) varied significantly with the swallowing position. In this case, the Lempel-Ziv

complexity significance also showed dependence on the participant’s age (p = 0.016), but the

kurtosis significance depended on the subject’s gender (p = 0.003). The swallowing sounds’

kurtosis (p = 0.035), and wavelet entropy (p = 0.036) also showed statistically significant
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Table 3: Time domain features in the chin-tuck position

A-P S-I Sounds

Skewness -0.504 ± 2.098 -0.523 ± 5.111 0.262 ± 4.330

Kurtosis 41.66 ± 175.9 89.92 ± 337.5 146.7 ± 682.5

Entropy Rate 0.990 ± 0.007 0.991 ± 0.006 0.988 ± 0.013

L-Z Complexity 0.060 ± 0.025 0.067 ± 0.027 0.072 ± 0.050

Duration (s) 2.441 ± 1.207

dependence on the swallowing position. The later attribute’s significance showed dependence

on age (p = 0.048) as well as the combined interaction of age and gender (p = 0.023).

Only the entropy rate (p = 0.004) showed any significant variation due to the partici-

pant’s age in the superior-inferior direction, which demonstrated some dependence on the

subject’s gender (p = 0.009). However, in the anterior-posterior direction, participant age

significantly affected the center frequency (p = 0.001), Lempel-Ziv complexity (p = 0.032),

entropy rate (p = 0.044), and peak frequency (p = 0.025). The significance on the last three

attributes showed some dependence on gender (p = 0.015, p = 0.003, p = 0.024). The peak

frequency (p = 0.004) was the only swallowing sound features to show age dependence.

Table 4: A summary of frequency domain features in the neutral head position

A-P S-I Sounds

Peak Frequency (Hz) 3.175 ± 11.10 8.841 ± 45.84 38.90 ± 282.3

Center Frequency (Hz) 25.23 ± 48.50 28.61 ± 71.48 198.6 ± 477.4

Bandwidth (Hz) 54.60 ± 95.83 37.93 ± 77.19 433.9 ± 665.6

Wavelet Entropy 1.404 ± 0.595 1.680 ± 0.576 1.295 ± 0.682

The Lempel-Ziv complexity (p = 0.002), center frequency (p = 0.004), and peak fre-

quency (p = 0.023) in the superior-inferior direction all demonstrated a dependence on the

subject’s gender whereas only the Lempel-Ziv complexity (p = 0.002) did so in the anterior-

28



Table 5: A summary of frequency domain features in the chin-tuck position

A-P S-I Sounds

Peak Frequency (Hz) 2.672 ± 2.775 6.278 ± 7.615 31.42 ± 304.6

Center Frequency (Hz) 45.54 ± 134.1 77.94 ± 187.3 438.9 ± 1236

Bandwidth (Hz) 89.18 ± 180.5 109.7 ± 192.6 656.9 ± 1052

Wavelet Entropy 1.570 ± 0.633 1.771 ± 0.688 1.337 ± 0.664

posterior direction. The swallowing sound also showed gender dependence in its bandwidth

(p = 0.001) and center frequency (p = 0.006). The swallowing duration showed significant

changes due to the combined interaction of age and gender only (p = 0.005), where older

males had longer durations than younger females. All other attributes and interactions that

were not listed here were non-significant.

Figures 12-14 show the average energy distribution of the wavelet coefficients of all three

signals where d1 contains the highest detail frequencies, d10 contains the lowest, and a10

contains all unsorted approximation frequencies. They all show that the vast majority of

swallowing energy is contained in the lowest frequency components, though a small amount of

that energy shifts to the higher frequencies when the participant is in the chin-tuck position.

We clearly see that over seventy percent of the swallowing sound energy remains below 39

Hz (a10, Figure 14), while over eighty percent of both accelerometer signals remain below

the same level (a10 + d10 + d9, Figures 12 and 13).

4.2 SOUND AND ACCELEROMETRY CONTRASTS

Our contrast tests found a number of significant differences between the swallowing sounds

and swallowing accelerometry signals. When compared to the anterior-posterior signal, we

found that only the kurtosis (p = 0.018), entropy rate (p = 0.001), and wavelet entropy

(p = 0.006) of the swallowing sounds were not significant in the neutral position while only
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Figure 12: Wavelet energy composition of S-I swallowing accelerometry signals

the skewness (p = 0.009) and kurtosis (p = 0.162) were not sigificantly different in the chin

tuck position. All other anterior-posterior signals did vary significantly from the swallowing

sound counterparts (p = 0.000 for all). On the other hand, the superior-inferior skewness

and L-Z complexity did not vary significantly in either the neutral (p = 0.255 and p = 0.069)

or chin-tuck (p = 0.437 and p = 0.868) position. Again, all other superior-inferior attributes

were significantly different from the microphone features (p = 0.000 for all).
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Figure 13: Wavelet energy composition of A-P swallowing accelerometry signals
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Figure 14: Wavelet energy composition of swallowing sounds
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5.0 DISCUSSION

5.1 DEMOGRAPHIC AND POSTURE EFFECTS ON SWALLOWING

SOUNDS AND ACCELEROMETRY SIGNALS

In this study, we found that both the peak and center frequencies of the A-P accelerometer

signal as well as the peak frequency of the swallowing varied with age, i.e., these values

decrease as the participant’s age increases. In a previous study, we found that our recording

setup contains noise due to vasomotion and cardiac dynamics [27]. One part of this trend is

likely a product of the changes in cardiac dynamics with age [28]. The other could be due to

the loss of skin elasticity with age, where the low-pass nature of the tissue is enhanced and

more high frequency vibrations are removed from the signal [29]. Since this age dependence

was not seen in the S-I accelerometer signal, the cardiac dynamics, which would chiefly apply

forces in the A-P direction due to major arteries and veins running in the superior-inferior

direction, are the more likely cause of this age dependence [30].

With these age differences accounted for, our statistical tests still showed a significant

interaction between the A-P center and peak frequencies and the subject’s swallowing posi-

tion. The kurtosis of all three signals also varied with swallowing position and was generally

larger for chin-tuck recordings. Similarly the skewness of the A-P recording tended to have

a larger negative magnitude for chin-tuck swallows when compared to the neutral position.

Unfortunately we cannot determine with certainty what physiological changes correspond

to these recordings [8]. We do know that entering the chin tuck position moves the tongue

towards the posterior wall of the pharynx, increases the vallecular space, and narrows the

diameter of the airway entrance by moving the epiglottis posteriorly [33]. Since the hyola-

ryngeal excursion is one of the largest components of the accelerometry signal, it is possible
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that these physiological changes are a sign that this structure operates differently during

chin-tuck swallows [53]. We also know that the pressures applied by the upper esophageal

sphincter and the pharynx are not significantly different in chin-tuck swallows [54]. We con-

clude that the difference in these attributes during chin tuck swallowing are most likely due

either to modified temporal muscle activity or modified saliva fluid dynamics in the throat

due to the mentioned physiological changes.

On a related note, we also found significant interactions between the center and peak

frequencies of the A-P accelerometer signal as well as the swallowing sound’s center frequency

and gender. Specifically, all of these signals tend to be higher in males than in females.

Furthermore, the bandwidth of the swallowing sounds was generally greater in males than

in females. We suspect that these differences are due to the gender based variations of the

laryngeal prominence, since our recording devices were placed just below this structure [30].

This structure tends to protrude further in males, yet undergoes the same motion during a

swallow as females [31], [55]. This could produce higher frequency vibrations in male subjects

as tissues are displaced faster to accommodate the larger moving structure.

Our finding that the swallow duration does not significantly vary with regards to sex

or demonstrate any notable trends with regard to age runs counter to past research on

this subject [56]. Our results are similar to a previous study that used the same automated

segmentation algorithms, and so we can exclude recording errors as the source of the discrep-

ancy [47]. Meanwhile, other studies which reported sex differences on swallowing duration

utilized visual inspection of the videofluoroscopic images or sound spectrum ([57] and [56]

respectively), and reported much shorter durations. We assume, then, that our loss of sex

dependence on swallowing duration is a result of processing and segmentation differences

between this and past studies. The lack of age dependence in our swallowing duration data

is most likely due to our small sample size and imperfect population sampling. Our previ-

ous study, which did report significant effects of age, utilized a sample size that was orders

of magnitude larger than this study and so had more statistical power to detect what is

presumably minor influences [47].
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5.2 COMPARING SWALLOWING SOUNDS AND SWALLOWING

ACCELEROMETRY SIGNALS

5.2.1 Time Domain

Our time domain contrasts found a few significant differences between swallowing vibrations

and sounds. We noticed that the in the neutral position the anterior-posterior accelerom-

eter signal skewness has a significantly lower value. In fact, while swallowing sounds can

have either positive or negative skewness, the A-P accelerometer signal had typically nega-

tive skewness. This means that in the neutral position swallows produce vibrations in the

anterior-posterior direction that slowly increase in intensity before decreasing much quicker,

whereas swallowing sounds do not follow such a consistent pattern [51]. The superior-inferior

skewness in the chin-tuck position followed the same statistically significant pattern.

In addition to the skewness, we also found that the anterior-posterior accelerometer

signal had a significantly lower Lempel-Ziv complexity in both the neutral and chin-tuck

positions when compared to the swallowing sounds. While the complexity of both signals is

already quite low, this indicates that our discretized A-P accelerometer data can generally

be compressed further without losing information about the signal [58]. Neither of these

attributes can tell us much about the physiology of swallowing, but they could no doubt be

important considerations when designing future studies.

The last significant time domain comparison we found was the entropy rate, which was

lower in both accelerometer signals than in swallowing sounds in the neutral position. Only

the anterior-posterior accelerometer signal was significantly lower in the chin-tuck position.

However, all three signals were close to 1 in all situations with only a single mean having a

value below 0.99, indicating that all of our discretized signals were highly predictable. While

the exact level of regularity varies with each signal, our study shows that both dry swallowing

sounds and accelerometry follow a predictable pattern when the data is discretized to ten

levels.
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5.2.2 Frequency Domain

Our frequency feature contrasts are particularly interesting. First, they show that the swal-

lowing sounds contain significantly higher frequency components when compared to either

accelerometer direction in either head position. This demonstrates the existence of higher-

frequency features which only one transduction method detected. Second, our results demon-

strate peak and center frequencies that are much lower than those reported in many other

studies [23], [44], [45]. Even though we cannot exclude the possibility that our recording

technique is the source of the discrepancy, it is more likely due to our use of different experi-

mental setups. Several of these past studies utilized recording devices which could generally

not detect sounds below 50 Hz and so would not be able to detect as much low frequency in-

formation as our microphone which could detect sounds as low as 10 Hz [23], [59], [60]. This

difference could be amplified by the manual auditory or spectrogram based segmentation of

other studies [23], [45]. In addition to possible human error, these studies do not take into

account the non-linear nature of human hearing, which generally does not extend below 20

Hz, and may have excluded valuable data from their analysis which we were able to reliably

examine [61]. Finally, one also cannot ignore the different hardware and transduction meth-

ods used by the recording devices in these studies, which would invariably affect the data

recording and analysis [23], [59].

5.2.3 Time-Frequency Domain

The wavelet energy plots (Figures 12-14) are distributed as one would expect, in a rough

exponentially decaying pattern as frequency increases. Clearly, they show that the over-

whelming majority of the signal’s energy is contained in the lowest frequency components

for either head position, particularly for the anterior-posterior direction of the accelerom-

eter signal. This is logical, considering the timescale that swallowing operates on and the

temporal dynamics of swallowing [62]. They also further support our findings that swal-

lowing sounds contain more higher frequency components than vibrations by showing that

the accelerometer signals hold approximately 10% more of their energy at or below 40 Hz.

However, these plots also reveal that, when compared to the neutral position, swallows made
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in the chin-tuck position contain more energy at the higher frequencies. This suggests that

either the chin-tuck position changes the acoustic properties of the throat towards more

high-pass behavior, or that the modified physiology produces more, higher frequency, detail

components in the recorded signal.
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6.0 FINAL REMARKS

6.1 CONCLUSIONS

In this study we recorded data from healthy adult subjects making dry swallows with both

a dual-axis accelerometer and a contact microphone. The nine different time and frequency

domain features demonstrated varying degrees of significance with respect to the subject’s

head position, age, gender, or combination thereof. When comparing the swallowing sound

features to the accelerometer signals, we found that most of the features were significantly

different. We conclude that despite their similarities, these two methods of transducing swal-

lowing vibrations provide distinct information about the underlying physiological processes.

6.2 FUTURE WORK

There are a number of different ways to follow up the results presented in this paper. As

stated previously, we sought to provide exactly that opportunity.

Repeating this same experiment with infants or children as the subjects would be one

option. Dysphagia can still occur in the pediatric population and diagnosis can be difficult, as

they cannot always express their symptoms adequately. Since our results cannot necessarily

be applied to these subjects, gathering the same data would allow for further research into

developing a child-oriented diagnostic method alongside the adult focused system.

As mentioned earlier, we would like to repeat our data collection and analysis on subjects

that have been positively diagnosed with dysphagia. Naturally, to develop a diagnostic

method, we must investigate how the recording method functions with the target population
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as well as how the processing algorithms perform with the new data. We would then compare

those results with what we discovered in this experiment and investigate if there are any

consistent differences between the healthy and pathological populations.

Finally, it would be useful to pair our sound and vibration recording method with a

videofluoroscopic or other recording method that can observe the subject’s anatomy during

a swallow. One of the main shortcomings of this experiment was that we could determine

what differences existed in the signals as we varied age, sex, and head position, but we could

not reliably determine what physiological or anatomical changes occured alongside those

variables. Such information could greatly enhance our ability to determine the strengths

and weaknesses of our recording methodology and provide further insight into the dynamics

of swallowing.
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