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JOINT MODELING OF TIME-TO-EVENT DATA WITH COMPETING

RISKS

Bo Fu, PhD

University of Pittsburgh, 2013

When analyzing time-to-event data, informative dropout due to competing risks is one prac-

tical aspect that researchers should take into account. If we fail to account for the association

between the event of interest and informative dropouts, unknown amplitude bias may be en-

countered when identifying the effects of potential risk factors related to time to the main

cause of failure. A joint modeling approach of time to the main event and time to the

competing events is proposed, to capture the dependence between the main event and the

informative dropout due to competing risks via a set of random terms. Two fundamental

likelihood functions with different structures of the random terms are provided, which may

be combined in practice. We used three methods to optimize the corresponding likelihood

functions in order to estimate the unknown covariate effects: Gaussian quadrature method,

Bayesian Markov Chain Monte Carlo method, and hierarchical likelihood method. Four bias

reduction correction methods for the h-likelihood estimation approach are explored. These

methods were aimed to improve the accuracy of parameter estimation. The performances of

the three methods were compared via simulations. We applied proposed methods to identify

risk factors for dementia.

Time-to-event data have been widely investigated from clinical trials and from obser-

vational studies. The proposed joint modeling method is significantly meaningful to public

health research because informative dropout commonly exists for the time-to-event data.

Methods that have been currently used either fail to adjust for the association between the

main event and the informative dropout due to competing events or the methods used to
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adjust for the association are not easy to implement. In this dissertation, we showed that

the proposed joint modeling approach provides less bias estimates on the effect of a risk

factor and has fairly straightforward implementation, which will lead to benefits for medical

research.
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1.0 INTRODUCTION

Competing risks data include multiple events due to different causes of failures. In practice,

unlike the random censoring, other causes of failure might be due to informative dropouts

which are associated with the event of interest. For example, in an observational study of

dementia among the elderly, the objective was to identify risk factors of the progression to

dementia. The event of interest was progression to dementia, and the time of progression

was recorded for each participant. There were non-negligible potential informative dropouts

because patients who were too sick to stay in the study or who died before progressing

to dementia. Those participants might have high counterfactual hazard of progression to

dementia if they stayed in the study.

In analyzing competing risks data with informative dropouts, three commonly used tech-

niques exists in the literature. The first method is the use of cause-specific hazards models,

such as the Cox proportional hazards model (Cox, 1972) or the accelerated failure time model

(Prentice and Kalbfleisch, 1980) for the event of interest. This model may conveniently be

used to determine the hazard ratios. However, one of the fundamental assumptions of these

models is independence among different events. The second method involves models for

the subdistribution or cumulative incidence function. Models based on this quantity in-

clude that the Fine and Gray’s proportional subdistribution hazards model (Fine and Gray,

1999), Klein and Andersen’s pseudo observation model (Klein and Andersen, 2005), and

the inverse-probability-weighted binomial model (Scheike et al., 2008). The subdistribution

framework assumes that if a patient experiences a competing event before the main event,

his or her time to the main event is infinity. This assumption implies a perfectly negative

correlation between the main and the competing events. The third method is the use of

copula in relating correlated different types of events. Archimedian copula models have been
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suggested in the literature to account for the flexible dependence structures in the absence of

prior knowledge about the association between the main and competing events (Escarela and

Carriere, 2003). However, the form of copula is mathematically complex, and the estimation

might be sensitive to the chosen copula.

To model the dependence between the main and competing events, and to avoid math-

ematical complexity, we propose to use the joint modeling technique to analyze data with

competing risks. The joint modeling technique was raised originally to handle the not miss-

ing at random (NMAR) mechanism of longitudinal covariate measured with error when the

time to dropouts were recorded (Wulfsohn and Tsiatis, 1997). In this setting, the informa-

tive dropouts are treated as NMAR and a functional structure of random effects is used to

link the two components–the event of interested and the informative dropouts– and the full

dependence between them is assumed to be captured by the random effects. By conditioning

on the random effects, the dropout mechanism due to competing risks is missing at random

(MAR) theoretically. Applying this idea to time-to-event data with competing risks, the

NMAR of time to the main event occurs when individuals fail because of the competing

risks. Therefore, we propose to jointly model the cause-specific hazards of time to the main

event and that of the competing risks, and use an appropriate random effects mechanism to

handle the dependence between different causes of failures. This assumes that the time to

the main event is independent with the time to informative dropouts conditional on random

effects. That is, the unobserved variation, which is assumed to contain all information of

association between the main event and informative dropouts, is treated as random effects

with specific distributions.

To apply the proposed model in identifying risk factors of dementia for the study de-

scribed above, we jointly model the time to progression of Alzheimer’s disease and the time

to informative dropouts because of death or being too sick. The dependence of these two

causes of failures is handled by functional structure of random terms. Two basic functional

forms of random terms will be discussed in detail with pros and cons in this study. Joint

modeling is advantageous in this scenario because we can account for informative dropout

due to death or being too sick and allows flexible dependence structure between time to

progression and the dropout process. In addition, the covariate structure for each failure
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type is allowed to be different because the marginal models are independent of each other

given the random effects. Under the joint modeling framework, the regression coefficients

and association parameters are estimated simultaneously.

To optimize the likelihood function and estimate the effects of covariates, one of the

computational challenges involves multidimensional integration with respect to the random

effects. Likelihood functions of time-to-event models usually do not belong to exponential

family and the integration may not be traceable, i.e., there may be no explicit mathematical

form to integrate the random terms out. One direct way to optimize it is to numerically inte-

grate out the random effects, using the gaussian quadrature method (Wulfsohn and Tsiatis,

1997). This method works even when the outcomes are non-gaussian type. Software package

is available (e.g. NLMIXED procedure in SAS). Using this method, the efficiency may be low

and convergence maybe an issue. Another approach is the Bayesian Markov Chain Monte

Carlo (MCMC) method (Guo and Carlin, 2004), which can bypass the integration by using

the MCMC sampling technique on the posterior function of each parameter. Priors must be

specified for all unknown parameters.

Lee and Nelder (1996) proposed the hierarchical likelihood (h-likelihood) approach, which

has been used for parameter estimation in frailty model (Ha et al., 2001; Ha and Lee, 2003),

and joint models of longitudinal and time-to-event data (Ha et al., 2003), this approach

has been reported to provide less bias results than the maximum likelihood (Nielsen et al.,

1992) or the penalized likelihood method (Ripatti and Palmgren, 2000). By applying the

h-likelihood approach on parameter estimation of our proposed model, the integrations of

the random effects are bypassed. The Newton-Raphson method will be used in the opti-

mization procedure, which converges quickly. Extra programming is needed because there

is no standard package can be applied directly.

The aims of the dissertation are:

1. to propose a joint model for data with competing risks, in order to reduce the estimation

bias caused by the dependence between the main event and the competing events, in the

presence of additional independent censoring;
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2. to apply the gaussian quadrature method, the Bayesian-MCMC method, and the h-

likelihood method on the proposed joint model, and show the performance of them

through simulation studies.

In the next chapter, we will give an overview of the three existing approaches to analyze

data with competing risks; review the joint modeling method in relation to the three types of

investigative problems. After which, the proposed joint model of time to the main event and

time to the competing event submodels along with the corresponding likelihood functions for

different functional form of random effects will be presented. The three likelihood function

optimization methods (the Gaussian quadrature method, the Bayesian-MCMC method and

the h-likelihood method) will be discussed. The performance of the 3 estimating methods

will be compared via simulations. Finally, we apply the proposed model to identify risk

factors of dementia among the elderly.
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2.0 METHODS FOR COMPETING RISKS

In this chapter, we discuss the preliminary concepts associated with the models we consider in

the dissertation. First, competing risks quantities (cause-specific hazard and subdistribution)

are defined and modeling approaches are introduced. Fundamental concepts on copula are

then presented for readers who are unfamiliar with the topic. Second, we introduce the

notion of joint modeling in the analysis of longitudinal data with informative dropout.

2.1 CAUSE-SPECIFIC HAZARDS FUNCTION

The cause-specific hazards model is used in a competing risks data, when investigators are

interested in the hazard rate, which is defined by

λk(t) = lim
dt→0

P (t ≤ T < t+ dt, ε = k|T ≥ t)

dt
,

where k = 1, · · · , K denotes the kth event, T = min(T1, · · · , TK) represents the survival

time, where Tk is the time to event k, ε tells which event had happened, that is ε = k if

T = Tk. λk(t) ≥ 0, and λk(t)dt describes the chance that an individual experiencing the

kth event within the time period [t, t + dt). Five widely used shapes of hazard functions

(decreasing hazard, increasing hazard, constant hazard, hump-shaped hazard, and bathtub-

shaped shaped hazard) are shown in Figure 1. By assuming mutually independence between

different causes of failure, the joint survival function is S(t1, · · · , tK) = P (T1 > t1, · · · , TK >

tK) =
∏K

k=1 Sk(tk), where the Sk(tk) is the kth marginal survival function, by taking tk′ =
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0,∀k′ 6= k, then the cause-specific hazards rate is given by

λk(t) = −∂S(t1, · · · , tK)/∂tk|t1=···=tK=t

ST (t)
, (2.1)

where ST (t) = S(T1 = t, · · · , TK = t). Whereas the marginal hazard rate is calculated as

λ̄k(t) = −∂Sk(tk)/∂tk
Sk(tk)

(2.2)

Notice that the calculation of the cause-specific hazard rate from the Equation 2.1 would

not be the same with the marginal hazard rate without the independence assumption. If

there is no independence assumption, Sk(t) is bounded by the (Peterson, 1976) that ST (t) ≤

Sk(t) ≤ 1− Fk(t), where Fk(t) = P [T ≤ t, ε = k].

Figure 1: Five different shapes of hazard functions.

To sum up, the cause-specific model assumes independence among different causes of

failure, that is, all events other than the interested one are treated as random censoring, bias

might be induced due to the existence of informative dropouts.
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2.2 SUBDISTRIBUTION HAZARDS MODEL

For competing risks data with covariates, the effect of a particular variate might be very

difference on the cause-specific hazard function from that on the corresponding cumulative

incidence function (Gray, 1988). So that it may be not possible to test for covariate effects

on subdistribution, when modeling the cause-specific hazard function directly. In situations

the covariate effects on the probability of different endpoints being observed is of interest,

investigators model the cumulative incidence function for failure from event of interest (k =

1). The subdistribution hazards function for the event of interest by Gray (Gray, 1988) is

defined by

λ̃1(t) = lim
dt→0

P{t ≤ T ≤ t+ dt, ε = 1|T ∧ C ≥ t ∪ (T ≤ t ∩ ε 6= 1 ∩ C ≥ t)}/dt

=
∂F1(t)/∂t

1− F1(t)

=− ∂ log{1− F1(t)}
∂t

,

(2.3)

where C is the random censoring time. From the expression of the subdistribution hazards

function (2.3), the risk set also includes participants failed due to events other than the

event of interest. That is, if an individual drops out because of competing risks, the event of

interest would never occur, which means that, the relationship between the event of interest

and the competing risks are perfect negative.

A frequently cited subdistribution regression model is the Fine and Gray proportional

subdistribution hazards model (Fine and Gray, 1999). An increasing function g(·) is as-

sumed, and g{F1(t;Z)} = h0(t) + ZTβ, where h0(·) is a function that complete unspecified,

invertible, and monotone increasing, Z is bounded time-independent covariate vector, and

β is the parameter of Z. A suggested function of g = log{− log(1 − u)}, which links the

subdistribution cumulative incidence function to proportional hazards function. A weighted

partial likelihood score equation is used for parameters’ estimation

U(β) =
n∑
i=1

∫ τ

0

{
Zi −

∑
j ωj(t) exp(βTZj)Zj∑
j ωj(t) exp(βTZj)

}
ωi(t)dNi(t)

where ωi(t) = I(Ci ≥ Ti ∧ t) Ĝ(t)

Ĝ(Ti∧t)
Yi(t), Ĝ(t) is suggested to be the Kaplan-Meier estimator
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of the random censoring survival distribution, Yi(t) = I(Ti < t, εi 6= 1) + I(Ti ≥ t), τ =

sup{t : Pr(ω(t) ≥ ε > 0) > 0}, and Ni(t) = I(Ti ≤ t, εi = 1) is the counting process. From

the formula of getting the at risk indicator Yi(t), individuals failed not because of the event

of interest are counted in.

Recently, more methods were developed based on subdistribution mechanism, such as

modeling with pseudo-observations (Klein and Andersen, 2005), using of a parametric re-

gression on cumulative incidence function (Jeong and Fine, 2007),and inverse-probability-

weighted binomial model (Scheike et al., 2008).

2.3 COPULA METHOD

If the direction and amplitude of the dependence between the event of interest and the

competing risks is unknown, a copula method can be considered.

A copula function is defined as a binary function C : [0, 1]2 → [0, 1], which satisfies the

following properties:

1. ∀u, v ∈ [0, 1], C(u, 0) = 0 = C(0, v), C(u, 1) = u, and C(1, v) = v,

2. ∀0 ≤ u1 ≤ u2 ≤ 1 and ∀0 ≤ v1 ≤ v2 ≤ 1, C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) =

C([u1, v1]× [u2, v2]) ≥ 0.

The Sklar’s theorem (Sklar, 1959) proved that for a joint distribution H(x, y) with two

marginal distributions F (x) and G(y), there exists a copula C that ∀x, y ∈ R̄, H(x, y) =

C(F (x), G(y)). If F (x) and G(y) are continuous, then C is unique. The Sklar’s theorem

illustrates that copula plays a role of elucidating the relationship between a joint distribution

and its margins. This theory ensures that the uniqueness of copula C, to describe the

dependency of joint survival function and its margins, after a copula family is chosen.

Suppose there are one event of interest (T1) and one competing risk (T2), the bivariate

survival function can be written in copula format (Escarela and Carriere, 2003)

S(t1, t2) = C(S1(t1), S2(t2)) = ψθ[ψ
−1
θ {S1(t1)}+ ψ−1

θ {S2(t2)}],

8



where S(t1, t2) is the joint survival distribution of t1 and t2, S(t1) and S(t2) are marginal

survival functions of T1 and T2 respectively, ψθ : [0,∞] → [0, 1] is a generator function

of copula in the Archimidean family. ψθ satisfies ψθ(0) = 1, and twice differentiable with

ψ′θ, ψ
′′

θ < 0, and θ is she parameter of copula. By assuming the random censoring times are

independent with all other causes of failure, the likelihood is written as

L =
n∏
i=1

(
K∏
k=1

[λk(Xi)]
δik

)
[ST (Xi)]

1−δi· ,

where, i = 1, . . . , n are the n participants, Xi = Ti ∧ Ci denotes the observed time, δik =

I(Xi = Tik) denotes the indicator of the ith person experienced the kth event, δi· = I(Xi =

Ti) denotes the indicator of the ith person experienced an event. Once a type of copula

is assumed, the mathematical form of the likelihood function above could be derived. The

association can be captured by the parameter θ, which is related to Kendall’s τ or Spearman’s

ρ. The copula method is able to estimate coefficients effects under different association

structure between the different causes of failures. However, the chosen copula type the

Archimedean family is arbitrary, and the estimates of likelihood function might be sensitive

to the specific copula selected.

2.4 JOINT MODELING APPROACH

Suppose n individuals participated in a study in which a longitudinal variable Zij, i =

1, · · · , n, j = 1, · · · , ni were measured ni times for the ith person. Same as the previ-

ous section, assume Ti to be the time to dropouts and Ci be the time to random censoring,

and Xi = Ti ∧ Ci be the observed dropout time. Joint modeling method is mainly used to

deal with the following three scenarios

(1) interest is on the distribution function of survival time f(Xi|Zij) (Wulfsohn and Tsiatis,

1997), when the longitudinal variable Zij measured with error,

(2) interest is on the distribution function of longitudinal measurements f(Zij|Xi) (Little,

1993), when there are the presence of informative dropouts, or
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(3) interest is on both distribution functions of f(Zij) and f(Xi) (Henderson and Dobson,

2000), simultaneously.

The main challenge of the first scenario is that the Zij measured with error, so it would

be biased when exploring the effect of the Zij on the survival time Xi. Joint modeling

f(Xi|Zi,j)f(Zij) = f(Xi, Zij) is used for a purpose of removing the bias. By maximizing

the likelihood function of the joint model, more accurate effect of Zij can be calculated,

because the longitudinal covariate f(Zij) provided the true estimates of Zij at each survival

time. Random effects vi in the likelihood function of modeling Zij are used to capture the

unobserved variation of Zij, which are assumed to be normally distributed here.

Considering the scenario (ii), the informative dropouts lead the data to NMAR, which

violates the assumption of missing of mixed effects model. Jointly modeling Zij|Xi with

Xi as f(Zij|Xi)f(Xi) = f(Xi, Zij|) adds the information of informative dropouts into the

likelihood, and converts the NMAR to missing at random, by modeling the missing indicator

and time to dropouts simultaneously with the longitudinal model.

For the last scenario, statistical inference on the marginal properties f(Zij) and f(Xi)

can be obtained from modeling likelihood function
∫
vi
f(Zij|vi)f(Xi|vi)f(vi)dvi = f(Zij, Xi).

The association of those two marginals are assumed to be captured by the random effects v,

that is, Zij’s are independent with Xi, conditional on vi.

The question addressed by our proposed method is similar to scenario (1). But, the time

to the event of interest is focused on instead of the longitudinal measurements Z. The model

we proposed models the time to the main event, adjusting for informative dropout due to

competing risks.
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3.0 JOINT MODELING OF TIME-TO-EVENT DATA WITH COMPETING

RISKS

3.1 INTRODUCTION

For time-to-event analyses in clinical trials or observational studies, several methods have

been proposed to estimate the effect of a covariate on the main event of interest in the

presence of competing events. Among the most popular methods used are the cause-specific

hazards model, the subdistribution hazards model, and the copula model. When analysts

are interested in determining the hazards or hazard ratios, they generally use a cause-specific

hazards model such as the Cox proportional hazards model (Cox, 1972) or an accelerated

failure time model (Prentice and Kalbfleisch, 1980). Because competing events are treated

as censoring, one of the key assumptions of this type of model is that the main event is inde-

pendent of all other causes of failures. In situations in which covariate effects on the failure

probabilities are of interest, analysts often use a subdistribution (or cumulative incidence

function) hazards model such as the Fine and Gray model (Fine and Gray, 1999). This type

of model assumes that if a patient experiences a competing event before the main event, his

or her time to the main event is infinity, i.e., the patient will never experience the event of

interest. Therefore, this model assumes that the main event and the competing events are

perfectly negatively correlated. If dependence between the main event and the competing

events cannot be presumed, analysts usually use a model with an assumed Archimedean

copula (Escarela and Carriere, 2003). Although this model can allow for flexibility in the

dependence of the main event and the competing events, the exact form of the copula is

mathematically complex and the results might be sensitive to the chosen copula.
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In this chapter, we propose a method to estimate covariate effects on the main event by

treating the occurrence of the competing events as informative dropouts. This method will

result in a flexible but mathematically simpler form of dependence between the main and

competing events. The method entails jointly modeling the time to the main event and the

time to the competing events and linking the two submodels via unobserved random terms

to capture the association between different causes of failure. The joint model assumes that

conditional on the random effects, all event times are independent. In other words, the model

assumes that the unobserved random terms contain all the information about associations

between the main event and the competing events.

When we estimate unknown parameters of the joint model, our main challenge is to

optimize the likelihood function, which contains a multidimensional integration with respect

to all the random terms. The integration is often untraceable, which means that there may

be no explicit mathematical form to integrate the random terms out. To approximate the

integration and resolve the issue, we propose to use three different methods: the Gaussian

quadrature method, the Bayesian-Markov chain Monte Carlo (Bayesian-MCMC) method,

and the hierarchical likelihood (h-likelihood) method. We then use simulations to compare

the performance of these methods.

The proposed approach was motivated by the desire to identify risk factors of Alzheimer’s

disease and other forms of dementia among elderly individuals. The study population was

recruited from a U.S. community and was followed for about 20 years. Because the individ-

uals recruited were at least 65 years old, a nontrivial number of them died during the study

follow-up or felt too ill to continue participating in the study. We believe that those who

dropped out because of death or severe illness would have been at potentially higher risk

of developing dementia if they had continued in the study. For this reason, we believe that

using a cause-specific model or a subdistribution model may have led to a biased estimate of

covariate effects. We therefore analyzed the data using our proposed approach and compared

its results with those of a cause-specific model and a subdistribution model.

In subsequent sections of this article, we introduce notations and our proposed approach

with two correlation structures of likelihood functions (Section 3.2); we introduce the Gaus-

sian quadrature, Bayesian-MCMC, and h-likelihood methods for estimation (Section 3.3); we
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show the performance of each of the estimation methods via simulation studies (Section 5);

we present the results of our analyses of covariate effects on the risk of developing dementia

(Section 6); and we present our conclusions (Section 7).

3.2 NOTATIONS AND MODEL

Suppose that there are n independent patients enrolled in a study. Duration time to each

of the K types of events and censoring are recorded. Without lost of generality, let K = 2,

that k = 1 indicates the event of interest, and k = 2 indicates the competing event.. For

subject i (i = 1, · · · , n), let Tki = (Tεi|ε = k), k = 1, 2 be the failure time with respect to

event k, and C be the censoring time. The observed time for individual i is Xi = Ti ∧ Ci,

where Ti = T1i ∧ T2i. Therefore, for individual i, we observe Oi = {Xi, δki, Zki}, where

δki = I(Xi = Tki) are the event indicator; Z1i and Z2i are p-dim and q-dim vectors of

covariates related to the main event and competing event, respectively.

Let λk, k = 1, 2 denote the cause-specific proportional hazards for event k with the form

λk(t) = lim
dt→0
{Pr(t ≤ T < t+ dt, ε = k|t ≤ T )/dt}

= λk0 exp(βTk Zk),

(3.1)

where λk0 represent the baseline hazards for event k; and βk is a vector of unknown regression

coefficients. We propose to jointly model these K cause-specific hazards, using random terms

to account for the dependence among the k events. The following assumptions are made

throughout this paper:

Assumption 1. Conditional on the random terms vi, time to the event of interest is

independent of the time to the competing event, i.e., T1i ⊥ T2i|vi, where vi is the random

effects for the ith subject.

Assumption 2. Censoring time is independent of the main and competing events, i.e.,

Tki ⊥ Ci.

Assumption 3. The probability density function of the censoring time is not identical to

that of the main event or competing event.
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Figure 2: Structure of shared random effects model

Therefore, the likelihood function can be written as

Li(Oi; Ω, Zi, vi) =
n∏
i=1

2∏
k=1

lk(Tki; Ω, Zki|vki)f(vi), (3.2)

where Ω = {βk, λk0, θ}; θ is a vector of parameters in the density function of the random

terms; f(vi) is the probability density function of the random terms vi, and lk denotes the

marginal likelihood function of event k with the following form

lk(t|vi) = {λki(t|vi)}δki exp

{
−
∫ t

0

(λki(t|vi)dt
}
. (3.3)

The marginal likelihood with respect to Oi conditional on Ω and Zi, can be obtained by

integrating the unobserved random terms out from (3.2). That is

L(Oi; Ω, Zi) =
n∏
i=1

∫
vi

2∏
k=1

lk(Tki|vki)f(vi)dvi. (3.4)

We propose two structures to link between the two time-to-event submodels: shared random

effects structure and correlated random effects structure. They are described in detail in

Sections (3.2.1), and (3.2.2).

3.2.1 Shared random effects structure

The model with shared random effects structure is depicted in Figure 3.2.1. The likelihood

function can be written as the form
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Figure 3: Structure of correlated random effects model

L =
n∏
i=1

∫
vi

{λ1i(t|vi)}δ1i e
{
−

∫Xi
0 λ1i(s|vi)ds

}
{λ2i(t|vi)}δ2i e

{
−

∫Xi
0 λ2i(s|vi)ds

}
f(vi)dvi, (3.5)

which contains three parts: the likelihood function of the main event, the likelihood function

of the competing event, and the density function of the random terms. We assume that λki

follow the proportional hazards setting, and vi ∼ N(0, σ2), i.e.,

λ1i(t) = λ10(t) exp(βT1 Z1i + vi)

λ2i(t) = λ20(t) exp(βT2 Z2i + φvi).

Based on this setting, parameters need to be estimated are Ω = {βk, λ0k, φ, σ}, k = 1, 2.

3.2.2 Correlated random effects structure

The model with correlated random effects structure is depicted in Figure 3.2.1. The likelihood

function can be written as the form

L =
n∏
i=1

∫
v1i,v2i

{λ1i(t|v1i)}δ1i e
{
−

∫Xi
0 λ1i(s|v1i)ds

}

{λ2i(t|v2i)}δ2i e
{
−

∫Xi
0 λ2i(s|v2i)ds

}
f(v1i, v2i)dv1idv2i.

(3.6)

Assume v1i, v2i follow a bivariate distribution with density function f . If f is a bivariate

normal density, (v1, v2)T ∼ N(0,Σ) and Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

, where ρ ∈ [−1, 1] is
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the correlation between v1i and v2i. The three parts of the likelihood function under the

proportional hazards assumption become

λki(t) = λk0(t) exp
(
βTk Z1i + vki

)
, k = 1, 2;

f(vi) =
1√

2π|Σ|
exp

(
−1

2
vTi Σ−1vi

)
.

Based on this setting, parameters need to be estimated are Ω = {βk, λ0k, σk, ρ}.

3.3 ESTIMATION METHODS

From the likelihood functions in (3.5) and (3.6), the main challenge of parameter estimation is

the multidimensional integration towards the random terms. To approximate the integration,

we propose to use three different optimization methods to solve the estimating equations.

The three methods are the Gaussian quadrature method, the Bayesian-MCMC method, and

the h-likelihood method.

The Gaussian quadrature method approximates an integral by a weighted sum over the

predefined abscissas for the random effects (Liu and Huang, 2008). Based on the Bayes rule,

the Bayesian-MCMC method estimates parameters by estimating the underlying posterior

distribution, and generates sequence of random samples from an arbitrary probability density

function (Iversen, 1984). The h-likelihood approach bypasses the integration of random

terms by treating the random terms as unknown parameters (Lee and Nelder, 1996). A

bias correction procedure was proposed to improve the estimation performance when a high

censoring rate was observed (Jeon and Hsu, 2011).

3.3.1 Gaussian quadrature method

If we rewrite the likelihood function (3.4) as the form

L =
n∏
i=1

Li =
n∏
i=1

∫
vi

exp
2∑

k=1

l̃k(Tki|vki)f(vi)dvi, (3.7)
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where l̃k(Tki|vki) = log(lk(Tki|vki)); and if function f(x) can be written into the form f(x) =

W (x)g(x), where g(x) is approximated by a polynomial of order (2Q−1), then the Gaussian

quadrature method can be used to approximate the integrand W (x)g(x)∫ b

a

f(x)dx =

∫ b

a

W (x)g(x)dx ≈
Q∑
i=0

wig(xi),

where xi’s are the nodes or augments, sampling from the domain of x; and wi’s are the

weights. For a chosen kernel W (x) and a fixed domain of x, xi and wi can be determined

uniquely (Pinheiro and Bates, 1995). If the random terms f(vi) follows a normal distribution,

likelihood function (3.7) can be approximated by

Li ≈
Q∑
q=1

exp

(
2∑

k=1

log(lk(Tki|uq))

)
f(uq)wq,

where q = 1, · · · , Q are the Q predetermined quadrature points with respect to the ran-

dom terms vi. Liu and Huang (2008) suggested to set uq =
√

2zq, wq =
√

2ηq exp(z2
q ) in a

frailty model with normal distributed frailty, where zq and ηq can be obtained from tables

in Abramowitz and Stegun (1972).

3.3.2 Bayesian-MCMC method

Bayesian method makes inference of the parameters of interest through the expectation of

posterior probability function. Based on the Bayes’ rule, we need first obtain the likelihood

of the observed data and assume prior distributions for all unknown parameters.

Based on the conditional independence assumption, the likelihood of observed informa-

tion for subject i given unknown parameters can be written as

Li(Xi, δki;Zki|β1, β2, θ, λ10, λ20, vi) = (λki(t|vi))δki exp

(
−
∫ t

0

(λki(t|vi))dvi
)
.

Denote Ω′ = {βT1 , βT2 , θT , λ10, λ20, vi}, θ is parameters of random term density; and denote

Ω′s, s = 1, · · · , S as the sth component of Ω′, where S is the length of vector Ω′. Then

Li(Xi, δki;Zki|βk, θ, λk0, vi) = Li(Oi|Ω′), where Oi = {Xi, δki, Zki} is defined in Section 3.2.

The next step of Bayesian procedure is to set up priors, π(Ω′), for each unknown pa-
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rameters in Ω′. Prior reflects the researcher’s acquaintance about parameters regardless the

information from data. For the coefficients of covariates βk in the proposed model, non-

informative normal distributed priors with small variance (e.g. 0.01) are assigned, so that

the priors will have minimal impact on the posterior distribution. For all other parameters,

conjugate priors are used.

The posterior density fΩ′|Oi
, which is the probability function of all parameters Ω′ con-

ditional on the observed data O, has the form

fΩ′s|Oi
(Ω′s|Oi) =

Li(Oi|Ω′s)π(Ω′s)∫
Ω′s
Li(Oi|Ω′s)π(Ω′s)dΩ′s

. (3.8)

Note that it is difficult to derive an explicit mathematical form for fΩ′s|Oi
(Ω′s|Oi) through

Equation (3.8). MCMC sampling technique is used to generate a Markov chain Ω̂
′(b)
s , b =

1, · · · , B from Equation (3.8). An example on how to accomplish this sampling procedure us-

ing the Metropolis-Hastings (MH) algorithm is given in Appendix A. Other MCMC sampling

techniques can also be used.

Parameter estimates will be obtained by calculating of the posterior mean as follows

Ê(Ω′s|Oi) =
1

B −B′
B∑

i=B′+1

Ω̂′(i)s ,

where B′ is the number of burn-in processes. The burn-in process ignores a certain number

of iterations in the initial portion in order to minimize the effect of starting values on the

estimation of posterior distributions.

Deviance information criterion (DIC) can be used for variable selection. Based on Spiegel-

halter et al. (2002), define the deviance as D(Ω′) = −2 log(l(O|Ω̄′))+2 log g(O), where g(O)

is some fully specified function of observed data only, which will be cancelled out for the

model comparison purpose. Define the effective dimension as pD = D̄(Ω′) − D(Ω̃′), where

D̄(Ω′) = −2E ′Ω{log f(O|Ω′)|O} + 2 log g(O) is the posterior mean deviance, Ω̃′ is usually

chosen as the posterior mean Ω̄′ = E(Ω′|O). Therefore, DIC is defined as

18



DIC =D̄(Ω′) + pD = 2D̄(Ω′)−D(Ω̃)

=− 4E ′Ω{log f(O|Ω′)|O}+ 2 log f(O|Ω̃′).

3.3.3 H-likelihood method

The h-likelihood approach bypasses the multidimension integration in the optimization pro-

cedure by treating the random effect terms as unknown parameters. The Newton-Raphson

procedure is then to be used to optimize the likelihood function.

From Section 3.2, the full likelihood of the proposed joint model with multivariate normal

shared structure has the form

Lfull =
n∏
i=1

2∏
k=1

fk(Tk|vi)f(vi)

=
n∏
i=1

[
2∏

k=1

{λ0k exp(ZT
kiβk + vki)}δki exp{−Λ0k(Xi) exp(ZT

kiβk + φI(k=2)vi)}

]
1√

2π|Σ|
exp

(
−vTi Σ−1vi

)
where Λ0k(t) =

∫ t
0
λ0k(s)d(s) is the cumulative baseline hazards for event k = 1, 2. I(k = 2)

is an indicator function of the competing event, that is, φI(k=2) = φ when k = 2. The

h-likelihood function is defined as

h = logL =
2∑

k=1

n∑
i=1

lki +
n∑
i=1

l3i,

where

lki = log
[
{λ0k(Xi) exp(ZT

kiβk + φI(k=2)vi)}δkie−Λ0k(Xi) exp(ZTkiβk+φI(k=2)vi)
]

=δki(log λ0k(Xi) + ZT
kiβk + φI(k=2)vi)− Λ0k(Xi) exp(ZT

kiβk + φI(k=2)vi); k = 1, 2

l3i =− 1

2
log(2π)− 1

2
log |Σ| − 1

2
vTi Σ−1vi.

Using a Weibull baseline hazards λ0k(t) = τkγt
τk−1 with a shape parameter τk and a scale

parameter γ. For simplicity, we set this parameter value equal to 1 subsequently. Therefore,
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the likelihood components can be rewritten as

lki =δki(log λ0k(Xi) + ZT
kiβk + vki)− Λ0k(Xi) exp(ZT

kiβk + φI(k=2)vi)

=δki log µki − µki + δki(log τk − log ti),

where µki represent the cumulative hazards function with the form

µki =

∫ Xi

0

λ0k(t) exp(ZT
kiβk + vki)dt = exp

(
τk log(Xi) + ZT

kiβk + φI(k=2)vi
)
.

The parameters need to be estimated in the likelihood are Ω = (α, vki, θ), where α =

{β1, β2, τ1, τ2, φ}, θ = {σ2}.

The h-likelihood estimation procedure is summarized as follows. Appendix B gives details

of the derivatives that will be used in the estimating equations with respect to the h-likelihood

function.

1. To estimate the parameters of interest, βk, k = 1, 2, and the nuisance parameters τk, φ, vi,

and θ, k = 1, 2; all parameters are split into three parts: {vki}, {α}, and {θ}. We

will then apply the Newton-Raphson procedures for the three estimating equations with

respect to these three sets of parameters that suggested in Ha et al. (2010). Initial values,

α(0) = {β̂(0)
1 , β̂

(0)
2 , τ̂

(0)
1 , τ̂

(0)
2 , φ̂(0)} can be obtained from the estimates of the cause-specific

models for the main event and competing event, separately. Initial values of θ can be set

to θ̂(0) = {σ̂(0) = 1}. Random terms, v̂
(0)
i s will be generated from N(0, σ̂2(0)).

2. For the mth iteration, the maximum h-likelihood estimators (MHLE) of v̂
(m)
i can be

obtained from the following equation

(
v̂(m)

)
(n×1)

=
(
v̂(m−1)

)
(n×1)

+

[
H−1

(n×n)

(
∂h

∂v

)
(n×1)

]∣∣∣∣∣
(v)=((̂v)(m−1))

, (3.9)

where v̂(m−1) denote the estimators of v at the (m− 1)th iteration; H = − ∂2h
∂vT ∂v

is the

hessian matrix, which is the negative second derivatives of h with respect to the random

terms v.

3. The following adjusted profile h-likelihood (APHL) is used to estimate the MHLE of

α̂(m) = {β̂(m)
1 , β̂

(m)
2 , τ̂

(m)
1 , τ̂

(m)
2 , φ̂(m)}, because the maximal profile likelihood estimator
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might have potential bias Lee and Nelder (1996).

hv = h|(v=v̂(m)) − log

∣∣∣∣H2π
∣∣∣∣∣∣∣∣

(v=v̂(m))

. (3.10)

4. The following APHL is used to estimate the MHLE of θ̂(m) = {σ̂2(m)},

hα,v = h|
(αk=α̂

(m)
k ;v=v̂(m))

− log

∣∣∣∣H2π
∣∣∣∣∣∣∣∣

(αk=α̂
(m)
k ;v=v̂(m))

. (3.11)

5. Iterate steps 2, 3, and 4 until it converges.

For the correlated random effects setting, the estimating procedure is similar with that

stated above except in the step 1. The format of that variance structure becomes Σ = σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

. And the three parts of the parameters become α = {β1, β2, τ1, τ2}, θ =

{σ2
1, σ

2
2, ρ}.
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4.0 BIAS REDUCTION FOR H-LIKELIHOOD METHOD

We identify three possible issues when applying h-likelihood method in estimating unknown

parameters in our proposed joint model. First, the h-likelihood method treats random terms

as unknown nuisance parameters. When the sample size increases, the number of nuisance

parameters increase as well. This might lead to non-negligible bias to the coefficient param-

eter estimation. The second potential issue of using h-likelihood estimator is that it could be

substantially biased under high censoring situation (Jeon and Hsu, 2011). For time-to-event

data with competing risks, censoring rate should include both noninformative and informa-

tive dropouts. Therefore, it is worth to explore appropriate bias reduction procedure when

applying h-likelihood approach to our proposed model. The third issue is related to the

binary outcome data. If we view time-to-event data as a series of binary outcomes over time,

bias correction might be necessary under our setting. Breslow and Lin (1995) indicated that

under bivariate binary outcomes, the estimation of the covariate coefficients could have a

negligible asymptotic bias if variance of the random terms were incorrectly specified.

In this study, we propose four different bias reduction methods that aim to improve the

estimation because of the three possible issues described above. The details of each of the

methods are summarized in Sections 4.1 − 4.4.

4.1 BIAS REDUCTION 1 – CORRECTION ON ESTIMATES OF

RANDOM EFFECTS

A bias correction procedure was introduced by Jeon and Hsu (2011) towards the h-likelihood

approach on the frailty models. The procedure showed benefits in the situation of data with
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high censoring rates. We expand the idea of this correction procedure to our proposed joint

model. H-likelihood method has a working assumption that v̂i|vi ∼ N(vi, γ
2
i ), where γ2

i is

the variance of v̂i obtained directly from H−1, the inverse hessian matrix in Equation (3.9).

Given vi ∼ N(0, σ2), (vi, v̂i) follows a bivariate normal distribution with the form

 vi

v̂i

 ∼ N

 0

0

 ,

 σ2 σ2

σ2 σ2 + γ2
i

 .

Therefore, the conditional distribution of vi|v̂i follows N(ξiv̂i, σ
2(1−ξi)), where ξi = σ2/(σ2+

γ2
i ). We can use this conditional distribution to calculate the conditional mean of vi, which

is the mean function of vi given the estimated v̂i.

For the shared random effects structure, the following two steps are implemented in the

h-likelihood procedure in Section (3.3.3) to reduce the bias of v̂i. In the mth step,

1. Calculate ξ
(m)
i = σ̂2(m−1)/(σ̂2(m−1) + γ̂

2(m)
i ), where σ̂2(m−1) is the variance estimate of

v
(m−1)
i , and γ̂

2(m)
i is the variance of v̂

(m)
i given vi.

2. Estimate parameters in Step 2 of Equation (4.3) and in Step 3 of Equation (3.11) of the h-

likelihood procedure by replacing v̂i with E[vi|v̂i] = ξiv̂i and exp(v̂i) with E[exp(vi)|v̂i] =

exp(ξiv̂i + σ2(1− ξi)/2).

The corresponding bias reduction procedure under the correlated random effects struc-

ture is provided in Appendix C.

4.2 BIAS REDUCTION 2 – CORRECTION FOR ZERO ESTIMATES OF

VARIANCE COMPONENT

The method based on optimizing adjusted profile h-likelihood function (3.11) might lead

to zero estimation for variance component σ2. The zero estimation may cause a problem

on constructing the confidence interval of vi. It will also influence the accuracy of the

estimators of other parameters, which may be a potential reason for nonconvergence in the

estimation procedure. Morris (2006) identified this problem and proposed an adjustment on
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the likelihood function under the linear mixed model context. Ha et al. (2013) expanded

this adjustment procedure to the estimation of the h-likelihood dispersion parameters. Their

idea is to add one extra term to the adjusted profile h-likelihood function for estimating σ2.

For our model, we let hα,v and h∗α,v be the profile h-likelihood and the adjusted profile

h-likelihood, respectively. Therefore,

h∗α,v = hβ,τ,v + log det(σ2), (4.1)

where σ2 = Σ for correlated random effects model, and Σ is a variance matrix for correlated

random effects model. The term log det(σ2) is asymptotically negligible (Ha et al., 2013;

Li and Lahiri, 2010). Therefore, the estimators from optimizing h∗β,τ,v is asymptotically

equivalent to the estimators from optimizing hβ,τ,v in 3.11. The adjusted profile h-likelihood

has the following property:

exp(h∗α,v) = exp(hα,v) det(Σ) ≥ 0.

Notice that exp(h∗α,v) = 0 only if det(Σ) = 0 (Appendix of Li and Lahiri (2010)). This

insures that the zero estimate of the dispersion parameter could be avoided.

4.3 BIAS REDUCTION 3 – MODIFICATION ON ADJUSTED PROFILE

H-LIKELIHOOD

Adjusted profile h-likelihood (APHL) in () and () has the same form with the adjusted profile

likelihood proposed by Cox and Reid (1987). As defined before, α contains parameters of

interest, and θ contains nuisance parameters. The modified profile likelihood hM(α) of

parameter α has the form

hM(α) = hp(α) +M(α).

Based on the original version of M(α) proposed by Barndorff-Nielsen (1980, 1983), Barndorff-

Nielsen (1980, 1983) proposed to use the following specification for the term M(α)
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M(α) = −1

2
log | − lθθ(α, θ̂α)|+D(α),

where θ̂α is the maximum likelihood estimate of θ given a fixed value of α, D(α) =
∣∣∣∂θ̂α
∂θ̂

∣∣∣,
θ̂ is the overall maximum likelihood estimate of θ, and lθθ = ∂2h(α, θ)/∂θ∂θT . In practice,

the correction term D(α) is difficult to compute. When α and θ are orthogonal, D(α) = 0.

Under this orthogonal parametrization assumption, M(α) has the same form as the APHL.

However, the orthogonal parametrization assumption between α and θ is often too strong.

To balance the computation complexity and assumption, Severini (1998) proposed an ap-

proximation that has the form

M(α) = −1

2
log | − lθθ(α, θ̂α)| − log |Iθθ(α̂, θ̂;α, θ̂α)|,

where Iθθ(α̂, θ̂;α, θ̂α) = Eα̂,θ̂{lθ(α̂, θ̂)lθα, θ̂α}, where lθ = ∂l(α, θ)/∂θ. For the competing risks

data, an empirical form of Iθθ(α̂, θ̂;α, θ̂α) can be expressed as

Îθθ(α̂, θ̂;α, θ̂α) =

{
∂ log h(T |Z, v;α, θ̂α)

∂θ

}T
∂ log h(T |Z, v;α, θ̂α)

∂θ
.

and hence,

M(α) = −1

2
log | − lθθ(α, θ̂α)| − Îθθ(α̂, θ̂;α, θ̂α).

Therefore, the modified APHL for α, and θ have form

hMα =h|(v=v̂) +M(α),

hMα =h|(α=α̂,v=v̂) +M(θ),
(4.2)

where h is the h-likelihood function defined in Section 3.3.3. Similar formula for modified

profile likelihood in Equation (4.2) has been proposed by Bartolucci et al. (2012) for models

with panel data with mutually independent subjects within the same panel.
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4.4 BIAS REDUCTION 4 – CONSIDERATION OF DEPENDENCE

BETWEEN RANDOM EFFECTS AND COEFFICIENT PARAMETERS

The derivatives of the random terms and other coefficients, (∂v̂/∂α, ∂v̂/∂θ), would be a

potential reason of bias in parameter estimation for data with binary outcomes (Lee, 2004).

As we mentioned earlier, time-to-event data with censoring (noninformative or informative

due to competing risks) can be viewed as a series binary outcomes over time; therefore,

we may have issue of biased estimation. It is worth noting that this type of bias will not

attenuate with sample size increasing. That is because the number of random terms increase

when sample size increases. To account for the dependence between the random terms v and

other parameters, we cannot ignore the derivatives ∂v̂/∂α and ∂v̂/∂θ in the APHL (Ha and

Lee (2003); Ha et al. (2011)).

Let α and θ be the coefficients and dispersion parameters defined in Section 3.3.3. Given

g(αs) = ∂h/∂v|v=v̂ = 0, we can calculate ∂v̂/∂αs, where s = 1, , 2, · · · , the length of α , as

∂2g(αs)

∂αs
=

∂2h

∂v∂αs

∣∣∣∣
v=v̂

+

(
∂2h

∂v2

∣∣∣∣
v=v̂

)(
∂v̂

∂αs

)
= 0,

⇒ ∂v̂

∂αs
= −

(
− ∂2h

∂v∂vT

)−1 (
− ∂2h

∂v∂αs

)∣∣∣∣
v=v̂

. (4.3)

Similarly, ∂v̂/∂θ can be derived in the same way as

∂v̂

∂θ
= −

(
− ∂2h

∂v∂vT

)−1 (
− ∂2h

∂v∂θ

)∣∣∣∣
α=α̂,v=v̂

. (4.4)

We will then substitute ∂v̂/∂α and ∂v̂/∂θ to the adjusted profile h-likelihood equation. The

details can be found in Appendix B.

Of the four proposed bias reduction methods, the first one make correction on the esti-

mate variances, weighting them by the dispersion parameters. The second method corrects

the zero estimation of dispersion terms, by adding a term on the likelihood function; The

third method corrects the dependence between the random terms and other parameters of

coefficients; The fourth method does modification on the APHL.
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5.0 SIMULATION

5.1 JOINT MODELING APPROACH FOR COMPETING RISKS DATA

5.1.1 Data generation

In this section, we compare the performance of the proposed model and the three optimiza-

tion methods that we used to estimate the covariate effects. The data were generated based

on assuming cause-specific hazards settings for each type of event. Two types of events were

generated, the main event of interest and the dependent competing event.

We generated the time to the event of interest (T1) and the time to a competing event

(T2), respectively. An identifiable dependence between the main event and competing event

were represented by shared or correlated random effects struture. All three dependent scenar-

ios (positive, negative, and independent) were considered. For each scenario, we generated

a dataset consisting of n = 400 independent samples. We assumed a following standard

exponential distributions for T1 and T2. For the shared random effects setting, the hazards

function for T1 and T2 were λ1i = exp(βT1 Zi + vi) and λ2i = exp(βT2 Zi + φvi), respec-

tively, where the random terms, vi were generated from a standard normal distribution

parameter φ = 1,−1, or 0 represents a positive, a negative, or an independent associa-

tion. For the correlated random effects setting, the hazards function for T1 and T2 λ1i =

exp(βT1 Zi + v1i) and λ2i = exp(βT2 Zi + v2i), respectively, where (v1i, v2i)
T ∼ N((0, 0)T ,Σ),

and Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 =

 1 ρ

ρ 1

. Parameter ρ = 0.3(−0.3, 0) represents a pos-

itive, a negative, or an independent association. The censoring times, Ci, were generated

from an exponential distribution with parameters set to achieve an approximate 15% right
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censoring rate. We then obtained the observed times X from the minimm of T1, T2 and C

(i.e. X = T1 ∧ T2 ∧ C). We used 500 Monte Carlo replications for each scenario considered.

5.1.2 Results

Tables 1, 2, 3, and 4 summarize the results related to the parameter estimates, including

bias, average of the estimated standard errors, empirical Monte Carlo standard errors, and

empirical 95% coverage probabilities.

Table 1 shows the estimates of covariate effects of Z on Tk, (k = 1, 2), βk under the

shared random effects setting. Specifically, Tables 1(a), 1(b), and 1(c) summarize the values

of βk that correspond to the positive association (φ = 1), negative association (φ = −1), and

independence (φ = 0) between T1 and T2, respectively. From the results, the coverage rates

for the Gaussian quadrature method and the Bayesian-MCMC method were reasonable, and

both methods yielded small biases for the estimates of βk. However, the Gaussian quadrature

method performed the best in the scenarios of the positive association and independence,

whereas the Bayesian-MCMC method performed the best in the scenario of negative asso-

ciation. Although the h-likelihood method yielded a bias that was slightly larger than that

of the other two methods, the application of a bias correction procedure reduced the bias of

the h-likelihood method adequately and produced coverage rates closer to the nominal level.

Table 2 shows the estimates of all other nuisance parameters. The Gaussian quadra-

ture method performed the best in terms of bias and coverage rates. The Bayesian-MCMC

method did not perform as well as the Gaussian quadrature method but performed better

than the h-likelihood method, which tended to underestimate the frailty standard deviations.

When we applied a bias correction procedure for the h-likelihood method, the performance

improved slightly but was still inferior to the other methods. Because the bias correction

procedure that we used was designed to reduce the bias of the estimates of βk by improving

the estimate of σ, we did not expect it to yield good estimates for the nuisance parameters.

Table 3 shows the estimates of covariate effects of Z on Tk, (k = 1, 2), βk under the

correlated random effects setting. Specifically, Tables 3(a), 3(b), and 3(c) summarize the
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values of βk that correspond to the positive association (ρ = 0.3), negative association

(ρ = −0.3), and independence (ρ = 0) between T1 and T2, respectively. From the results,

the coverage rates for the Gaussian quadrature method and the Bayesian-MCMC method

were reasonable, and both methods yielded small biases for the estimates of βk. However, the

Gaussian quadrature method performed the best in the scenarios of the positive association

and independence, whereas the Bayesian-MCMC method performed the best in the scenario

of the negative association. The h-likelihood method yielded a bias that was initially a bit

larger than that of the other two methods.

Table 4 shows the estimates of all other nuisance parameters. The Gaussian quadrature

method performed the best in terms of bias and coverage rates, and its results were in the

reasonable range. The Bayesian-MCMC method did not perform as well as the Gaussian

quadrature method but performed better than the h-likelihood method, which tended to

underestimate the standard deviations.

5.2 BIAS REDUCTION ON H-LIKELIHOOD

Two bias reduction methods introduced in Chapter 4 were implemented in the simulations.

The bias reduction proposed by Jeon and Hsu (2011) described in Section 4.1, and the

method to adjust zero estimate of dispersion parameters described in Section 4.2. Although

we also conducted simulations for the bias reduction method of Ha et al. (2011) in Section

4.3, and the modification of profile likelihood in Section 4.4, convergence issue occurred.

This indicates that theoretical considerations need to be further studied for applying these

methods to our proposed models.

To show the performance of these bias reduction methods, the shared random effects

model was used in this set of simulations. We used the same generated data as described

in Section 5.1.1. Associations considered between the main event of interest T1 and the

competing risks T2 are positive, negative, and independent.
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Table 1: Estimates of the main parameters of interest from the simulated joint model with

shared random effects structure. Total 500 replicates with a sample size of 400 in each

replicate. The true parameter values are β1 = 0.5 and β2 = 0.25. Censoring rate = 15%.

Estimation methods used were the Gaussian quadrature method (GQ), the Bayesian-MCMC

method, the h-likelihood method (HL), the cause-specific Cox PH model with a normal frailty

(Cox frailty), and the cause-specific Cox PH model (Cox).

(a) Simulation results for φ = 1

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ β1 0.0044 0.0979 0.1022 0.942
β2 0.0020 0.0987 0.1027 0.946

Bayesian β1 -0.0054 0.0957 0.0931 0.952
β2 -0.0085 0.0985 0.1016 0.944

HL β1 0.0143 0.0741 0.0791 0.902
β2 0.0176 0.0750 0.0802 0.906

Cox frailty β1 0.0775 0.0857 0.0926 0.782
Cox β1 0.1096 0.0799 0.0841 0.754

(b) Simulation results for φ = −1

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ β1 0.0024 0.0986 0.0978 0.940
β2 -0.0021 0.0988 0.1017 0.946

Bayesian β1 0.0008 0.0955 0.0981 0.952
β2 0.0006 0.0995 0.0950 0.956

HL β1 0.0298 0.0742 0.0774 0.910
β2 0.0171 0.0749 0.0873 0.892

Cox frailty β1 -0.0471 0.0827 0.0874 0.872
Cox β1 0.0746 0.0780 0.789 0.834

(c) Simulation results for φ = 0

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ β1 -0.0015 0.0982 0.1017 0.950
β2 0.0023 0.0780 0.0748 0.962

Bayesian β1 -0.0039 0.0909 0.0966 0.936
β2 0.0021 0.0790 0.0843 0.942

HL β1 0.0182 0.0728 0.0807 0.902
β2 0.0184 0.0756 0.0792 0.906

Cox frailty β1 0.0085 0.083 0.089 0.926
Cox β1 0.027 0.0773 0.0789 0.908
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Table 2: Estimates of the nuisance parameters from the simulated joint model with shared

random effects structure. Total 500 replicates with a sample size of 400 in each replicate.

The true parameter values are σ1 = 1 and σ2 = 1. Censoring rate = 15%. Estimation

methods used were the Gaussian quadrature method (GQ), the Bayesian-MCMC method,

the h-likelihood method (HL).

(a) Simulation results for φ = 1

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ σ 0.0052 0.1387 0.1298 0.967
φ 0.0312 0.2145 0.2107 0.965

Bayesian σ -0.0644 0.1419 0.1527 0.914
φ -0.1649 0.2936 0.3322 0.967

HL σ -0.6931 0.2642 0.4209 0.548
φ 0.3272 0.0533 0.2564 0.616

(b) Simulation results for φ = −1

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ σ 0.0294 0.1580 0.1566 0.958
φ -0.0033 0.2423 0.2467 0.934

Bayesian σ 0.1336 0.1890 0.2039 0.896
φ 0.3140 0.5643 0.6312 0.988

HL σ -0.7012 0.1807 0.4213 0.560
φ 0.0308 0.1185 0.2416 0.624

(c) Simulation results for φ = 0

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ σ -0.0064 0.1680 0.1763 0.952
φ -0.1767 0.1594 0.1230 0.954

Bayesian σ 0.3127 0.2381 0.2895 0.836
φ 0.1522 0.9761 0.4468 0.980

HL σ -0.6616 0.1571 0.5027 0.616
φ -0.2084 0.0664 0.1696 0.662
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Table 3: Estimates of coefficients of covariates from simulation of correlated random effects

model. Totally 500 runs with sample size 400 each, and the setting values are β1 = 0.5,

β2 = 0.25, censoring rate is 15%. GQ: Gaussian quadrature method; the Bayesian-MCMC

method, the h-likelihood method (HL), the cause-specific Cox PH model with a normal

frailty (Cox frailty), and the cause-specific Cox PH model (Cox).

(a) Simulation results for ρ = 0.3

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ β1 0.0084 0.1001 0.1024 0.942
β2 0.0081 0.1008 0.1023 0.944

Bayesian β1 -0.0165 0.1116 0.1010 0.966
β2 0.0273 0.1114 0.1043 0.952

HL β1 0.0178 0.0746 0.0834 0.918
β2 0.0143 0.0734 0.0824 0.912

Cox frailty β1 -0.0886 0.0876 0.0912 0.852
SEP β1 0.0934 0.0857 0.0918 0.748

(b) Simulation results for ρ = −0.3

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ β1 0.0038 0.1017 0.1060 0.944
β2 0.0001 0.1018 0.1037 0.952

Bayesian β1 -0.0153 0.1118 0.1055 0.958
β2 0.0212 0.1118 0.1003 0.962

HL β1 0.0184 0.0758 0.0892 0.916
β2 0.0182 0.0739 0.0838 0.896

Cox frailty β1 -0.0676 0.0766 0.0819 0.830
SEP β1 0.0751 0.0864 0.0928 0.827

(c) Simulation results for ρ = 0

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ β1 0.0035 0.1010 0.0097 0.960
β2 0.0039 0.1012 0.1023 0.942

Bayesian β1 -0.0098 0.1115 0.0980 0.958
β2 0.0174 0.1117 0.1003 0.962

HL β1 0.0176 0.7547 0.8226 0.908
β2 0.0199 0.7304 0.7958 0.910

Cox frailty β1 0.0032 0.0968 0.1028 0.927
SEP β1 0.0034 0.1009 0.0968 0.974
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Table 4: Estimates of parameters in variance matrix of random terms from simulation of

correlated random effects model. Totally 500 runs with sample size 400 each, and the setting

values are σ1 = 1, σ2 = 1, censoring rate is 15%. GQ: Gaussian quadrature method; Bayesian:

Bayesian-MCMC method; HL: H-likelihood method.

(a) Simulation results for ρ = 0.3

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ σ1 0.0169 0.1737 0.1691 0.968
σ2 -0.0063 0.1759 0.1667 0.962
ρ -0.0068 0.3004 0.2748 0.912

Bayesian σ1 0.5082 0.0678 0.0432 0.000
σ2 0.5084 0.0678 0.0405 0.000
ρ 0.2848 0.0468 0.0240 0.000

HL σ1 0.2977 0.0624 0.2209 0.290
σ2 -0.2650 0.0574 0.3046 0.172
ρ 0.3079 0.0627 0.218 0.294

(b) Simulation results for ρ = −0.3

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ σ1 0.0190 0.1748 0.1744 0.972
σ2 0.0180 0.1745 0.1742 0.972
ρ 0.0070 0.2525 0.2480 0.948

Bayesian σ1 0.4742 0.0722 0.0428 0.000
σ2 0.4795 0.0716 0.0407 0.000
ρ -0.3857 0.0503 0.0216 0.000

HL σ1 0.4098 0.0619 0.1851 0.2361
σ2 -0.4862 0.0622 0.1809 0.2602
ρ 0.4194 0.0330 0.0821 0.1030

(c) Simulation results for ρ = 0

Estimation Parameter Bias SD-EST SD-EMP CR
method

GQ σ1 0.0055 0.1733 0.1769 0.966
σ2 0.0041 0.1749 0.1712 0.964
ρ 0.0150 0.2711 0.2805 0.958

Bayesian σ1 0.4935 0.0697 0.0414 0.000
σ2 0.4958 0.0696 0.0386 0.000
ρ -0.0496 0.0482 0.0221 0.970

HL σ1 0.3887 0.0634 0.2024 0.294
σ2 -0.3293 0.0630 0.2103 0.296
ρ 0.3773 0.0448 0.1711 0.106
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Table 5 and Table 6 show the simulation results for evaluating two bias reduction methods

of h-likelihood method. HL-BD1 referred to the method described in Section 4.1 and HL-

DB2 referred to the method described in Section 4.2. Simulation results of the h-likelihood

method were also included in these tables for the comparison purpose. Tables 5(a), 5(b), and

5(c) show the results corresponding to the positive association (φ = 1), negative association

(φ = −1), and independence (φ = 0) between T1 and T2, respectively. When the association

between the event of interest and the competing event was positive, the bias were slightly

improved by using the method of Jeon and Hsu (2011), and the corresponding coverage

rates became much more reasonable. For the method in which one term with dispersion

parameter is added (HL-BD2), the bias of one coefficient were smaller, and the coverage

rates were better than that without this bias reduction method. Moreover, by using HL-

BD2, there was hardly any convergence issue. For the situations of negative relation, and

independence between the main event of interest and the competing event, similar results

can be drawn as that of the positive association. Although the bias reduction methods were

implemented, the estimate of dispersion parameters are still not satisfactory (Table 6).
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Table 5: Estimates of the main parameters of interest from the simulated joint model with

shared random effects structure. Total number of replicates is 500 with a sample size of 400

in each replicate. The true parameter values are β1 = 0.5 and β2 = 0.25. Censoring rate =

15%. Estimation methods used were the h-likelihood method (HL), the h-likelihood method

with bias reduction procedures (HL-BR1, HL-BR2).

(a) Simulation results for φ = 1

Estimation Parameter Bias SD-EST SD-EMP CR

method

HL β1 0.0143 0.0741 0.0791 0.902

β2 0.0176 0.0750 0.0802 0.906

HL-BR1 β1 0.0110 0.0737 0.0736 0.952

β2 0.0160 0.0756 0.0758 0.934

HL-BR2 β1 -0.0151 0.0749 0.0937 0.917

β2 -0.0017 0.0759 0.0960 0.928

(b) Simulation results for φ = −1

Estimation Parameter Bias SD-EST SD-EMP CR

method

HL β1 0.0298 0.0742 0.0774 0.910

β2 0.0171 0.0749 0.0873 0.892

HL-BR1 β1 -0.0104 0.0813 0.0817 0.940

β2 0.0174 0.1133 0.1145 0.966

HL-BR2 β1 -0.0275 0.0698 0.0907 0.908

β2 0.0030 0.0727 0.0775 0.922

(c) Simulation results for φ = 0

Estimation Parameter Bias SD-EST SD-EMP CR

method

HL β1 0.0182 0.0728 0.0807 0.902

β2 0.0184 0.0756 0.0792 0.906

HL-BR1 β1 -0.0097 0.0797 0.0879 0.944

β2 0.0109 0.1175 0.1206 0.960

HL-BR2 β1 -0.0134 0.0638 0.0826 0.922

β2 -0.0022 0.0660 0.0680 0.946
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Table 6: Estimates of the nuisance parameters from the simulated joint model with shared

random effects structure. Total 500 replicates with a sample size of 400 in each replicate.

The true parameter values are σ1 = 1 and σ2 = 1. Censoring rate = 15%. Estimation meth-

ods used were the h-likelihood method (HL), the h-likelihood method with bias reduction

procedures (HL-BR1, HL-BR2).

(a) Simulation results for φ = 1

Estimation Parameter Bias SD-EST SD-EMP CR

method

HL σ -0.6931 0.2642 0.4209 0.548

φ 0.3272 0.0533 0.2564 0.416

HL-BR1 σ 0.0010 0.0002 0.0004 0.630

φ 0.2007 2.0614 0.0349 1.000

HL-BR2 σ -0.0310 0.0885 0.2227 0.550

φ 0.2171 0.1120 0.3930 0.427

(b) Simulation results for φ = −1

Estimation Parameter Bias SD-EST SD-EMP CR

method

HL σ -0.7012 0.1807 0.4213 0.560

φ 0.0308 0.1185 0.2416 0.624

HL-BR1 σ 0.0003 0.0004 0.0003 0.613

φ - 0.2194 2.8772 0.0337 1.000

HL-BR2 σ -0.6510 0.2772 0.1737 0.000

φ 0.3445 0.0520 0.0560 0.010

(c) Simulation results for φ = 0

Estimation Parameter Bias SD-EST SD-EMP CR

method

HL σ -0.6616 0.1571 0.5027 0.616

φ -0.2084 0.0664 0.1696 0.662

HL-BR1 σ -0.0002 0.0005 0.0016 0.643

φ 0.2060 2.0071 0.0363 1.000

HL-BR2 σ 0.3049 0.1461 0.1729 0.396

φ -0.1984 0.0576 0.1615 0.408
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6.0 APPLICATION

We analyzed data from a prospective cohort study of the Monongahela Valley Independent

Elders Survey (MoVIES). One of the objectives of the MoVIES study was to identify risk

factors associated with Alzheimers disease and other forms of dementia. The original cohort

of the study was assembled between 1987 and 1989 and included 1,681 individuals aged 65

years or older. Until 2002, members of the cohort were screened once every 2 years for

cognitive function and risk factors.

There were 1,204 individuals who had information on the risk factors of interest. Among

these, 151 developed dementia, 506 dropped out because of death or severe illness, and the

remaining 547 were lost to follow-up or were censored at the end of the study, as shown in

Table 7. People who died or were too sick to continue participating in the study might be

likely to develop dementia, therefore, the 506 dropouts might have had a greater chance of

developing dementia if they had continued in the study. Hence, we considered them to be

informative dropouts in our analysis.

Previous studies showed that several factors are potentially associated with the progres-

sion of dementia. Ganguli et al. (2005, 2013) showed that drinking alcohol lead to slower

decline of several cognitive composite domain scores, and has protective effect on incidence

mild cognitive impairment (MCI). Chang et al. (2012) identified that smoking is a risk factor

for Alzheimer’s disease (AD) by considering the age-specific mortality rates and adjusting for

competing risks. Depression associates with cognitive impairment cross-sectionally (Ganguli

et al., 2006). Dodge et al. (2011) indicated that the risk of AD could be reduced by 9.1% for

non-apolipoprotein E (APOE) *4 carriers, by calculating the population-attributable risk

percent.
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Table 7: Descriptive statistics of potential risk factors for dementia stratified by participants

who progressed to dementia, had informative dropouts because of death or too sick, and

were censoring. For categorical variables, frequencies (%) are shown; and for continuous

variables, mean (standard deviation [SD]).

Progressed Death/too sick Censoring

Total 151 506 547

Age (mean/SD) 77.67/5.24 76.20/5.60 72.30/3.84

Female (n/%) 104/68.19 267/68.87 373/52.77

Medications ≥ 3 (n/%) 54/20.47 219/35.76 112/43.28

Smoking (n/%) 19/12.79 60/5.96 45/12.45

Depression (n/%) 9/8.29 63/12.58 70/11.95

Greater than high school (n/%) 81/53.64 274/54.15 377/68.92

APOE 4 (n/%) 30/27.52 44/20.47 102/19.92

LIPID use (n/%) 4/2.65 12/2.37 16/2.93

NASID use (n/%) 111/73.51 345/68.18 381/69.65

Poor health status (n/%) 1/0.66 17/3.36 6/1.10

Drinking (n/%) 68/45.03 242/47.92 344/62.89
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For this study, variables considered were age (in years), gender, smoking status (yes /

no), education level (greater than high school or not), alcohol consumption (yes/no), pres-

ence of depression measured by the modified Center for Epidemiological Studies-Depression

(mCESD) score ( < 5 or ≥ 5 ), APOE *4 carrier (yes/no), number of prescription med-

ications (< 3 or ≥ 3), lipid use, non-steroidal anti-inflammatory drug (NSAID) use, and

whether having a poor general health status. During this period, most of the missing data

related to alcohol consumption and APOE*4. Wave 2 of the MoVIES is the baseline of

the current study. Several risk factors were not measured until wave 2. The frequencies

and percentages for categorical variables, and means and standard deviations for continuous

variables are provided in Table 7.

Three models were applied to the data, and the estimation results are shown in Table 8.

The three models are: (1) the proposed joint modeling method with shared random effects

structure, and Weibull baseline hazards function, (2) the cause-specific Cox proportional

hazards (PH) model, and (3) the Fine and Gray proportional subdistribution hazards func-

tion model. As shown in Table 8, age, APOE*4 gene, and depression were identified as risk

factors for dementia by all 3 methods. In particular, the estimated hazards ratios of older age

were 2.13, 2.10, and 1.9 from the joint model, Cox PH model, and Fine and Gray model, re-

spectively. The joint model estimates that presence of APOE*4 gene and depression increase

the risk of dementia by 1.67 and 1.89 times, respectively. The Cox PH model (APOE*4’s

HR=1.68; depression’s HR=1.95) and Fine and Gray (APOE*4’s HR=1.67; depression’s

HR=1.85) yielded comparable estimates.

In summary, the joint model captured same significant risk factors as did the other two

models, which may because that the estimated correlation parameter φ (p = 0.60) and the

standard deviation of the random effects σ (p = 0.62) were not significantly different from

0. Therefore, there was no significant association between the development of dementia and

dropping out of the study because of death or being too sick.
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Table 8: Estimated hazard ratio (HR) or subdistribution hazard ratio (SHR) of the risk

factors for developing dementia. Three fitted models were the proposed joint model with

shared random effects structure and Weibull baseline hazards function, a cause-specific Cox

proportional hazards model, and the Fine and Gray proportional subdistribution hazards

model.

Joint Model Cox Fine & Gray

Variable HR SE P value HR SE P value HR SE P value

Model for the main event

Smoke 0.559 0.466 0.212 0.586 0.467 0.253 0.549 0.458 0.190

Age 2.126 0.103 <0.001 2.100 0.103 <0.001 1.897 0.108 <0.0001

Female 1.067 0.228 0.776 1.039 0.233 0.870 1.073 0.232 0.760

>=high school 1.050 0.207 0.813 1.065 0.203 0.754 1.028 0.206 0.900

APOE 4 1.671 0.220 0.020 1.675 0.220 0.019 1.672 0.225 0.022

≥ 3 Meds 0.945 0.225 0.800 0.955 0.222 0.836 0.879 0.233 0.580

LIPID use 1.959 0.559 0.230 1.791 0.560 0.298 1.878 0.519 0.220

NSAID use 1.361 0.237 0.193 1.394 0.238 0.163 1.334 0.248 0.250

Depression 1.894 0.297 0.0322 1.947 0.295 0.024 1.847 0.304 0.043

Poor general health 0.657 1.027 0.683 0.715 1.024 0.743 0.673 0.160 0.730

Drinking 0.731 0.202 0.122 0.763 0.144 0.060 0.776 0.144 0.077

Model for the informative dropouts

Smoke 1.636 0.253 0.052

Age 2.105 0.140 <0.001

Female 0.496 0.194 <0.001

>=high school 0.902 0.171 0.546

APOE 4 1.130 0.203 0.547

≥ 3 Meds 1.882 0.194 0.001

LIPID use 1.207 0.468 0.687

NSAID use 1.297 0.185 0.159

Depression 0.915 0.309 0.775

Poor general healthy 1.511 0.798 0.605

Drinking 0.780 0.171 0.146

Other parameters

τ1 1.608 0.149 <0.001

τ2 6.856 0.631 <0.001

φ -4.344 9.896 0.596

σ 0.163 0.390 0.616
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7.0 DISCUSSION

The presence of competing risks introduces challenges to the analysis of time-to-event data

in medical research. The currently used methods: cause-specific hazards models and sub-

distribution models do not allow for a flexible association between the main event and the

competing events. On the other hand, copula models are mathematically complex and may

be sensitive to the chosen form of the dependence structure. To deal with these challenges,

we developed an approach that treats competing risks as informative dropouts, jointly mod-

els the time to the event of interest and the time to the competing events, and uses random

terms to capture the dependence of the events. Our model assumes that conditional on the

random terms, the main event and competing events are independent. The advantages of

this conditional independence assumption are that it can handle a flexible association and

lend ease of interpretation. In practice, we can fit separate cause-specific hazards models for

each cause of failure, and then include the resulting covariates in submodels of the final joint

model.

In our model, we provide two sturctures of fundamental likelihood function. The first is

the shared random effects structure, and the second is the correlated random effects structure.

The random effects in the first structure have a simpler distribution than those in the second

structure. The first structure requires less unknown parameters and is easier to be extended if

more competing risks are present. For example, in the shared random effects structure, if one

more competing event is added, then the analyst needs to add only one more cause-specific

frailty submodel with a random effect of φK+1vi to the existing likelihood function. This

is because the shared random effects structure assumes a proportional dependence between

the main event and the competing event via parameter φ. Unfortunately, this assumption

may not hold in practice. In contrast, in the correlated random effects structure, if one
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more competing event is added, the dimensions of the variance-covariance matrix Σ would

increase. This greatly enlarges the burden of computations but at the same time allows for a

flexible dependence of unobserved variations. Even though both structures can indicate the

direction of association between the main event and the competing events, the correlated

random effects structure can better define the dependence. In practice, whether to use one

structure or the other or to combine the structures will depend on the purpose of the study.

To estimate unknown parameters, we provide three likelihood optimization methods: the

Gaussian quadrature method, the Bayesian-MCMC method, and the h-likelihood method.

All three can approximate multidimensional integration of the random terms. The Gaus-

sian quadrature method performs the best in terms of bias and coverage rates. If the SAS

procedure NLMIXED is used for the Gaussian quadrature method, it is necessary to spec-

ify a parametric form of the likelihood function. The Bayesian-MCMC method produces

reasonable estimates in our simulation studies and can be implemented with a standard

software package (e.g., winBUGs), but it requires analysts to specify prior distributions for

all parameters. The h-likelihood method is expected to be computationally efficient because

it uses the Newton-Raphson approach. Simulations show that it performs well after a bias

correction procedure is applied and that it can deal with both parametric and semipara-

metric likelihood functions. In practice, if nuisance parameters are of interest, we do not

recommend this method because simulations show that the bias is large and the coverage

rate is incorrect for estimating these parameters. Moreover, the method requires special

programming, which we have developed and is available upon request from the study au-

thors. A potential limitation of the proposed method is that it assumes the submodel of the

informative dropouts is correct. In the other words, all covariates related to the informative

dropouts are included, or captured by the random effects. In the future, we will study the

impact of model misspecification on the estimation.

Although we prefer the Gaussian quadrature method, we recognize that convergence

might be a problem with some initial values that are chosen. If convergence cannot be

reached, analysts can first use the Bayesian-MCMC or h-likelihood method to find appropri-

ate initial values and then incorporate these values into the Gaussian quadrature method.

For the h-likelihood, we considered bias reduction methods for the parameter estimation, es-
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pecially for the nuisance parameters. However, the bias reduction methods used still failed to

meet expected improvement in estimation. Future development on bias reduction techniques

are still needed.

Another future work with respect to the proposed model is to further explore and study

the performance of the proposed model under varying sample sizes and independent censoring

rates. In addition, we plan to expand the likelihood function of the proposed joint models

to work under a semiparametric framework, that is, the use of an arbitrary baseline hazards

function rather than a specific parametric distribution.
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APPENDIX A

AN EXAMPLE OF THE MCMC SAMPLING ALGORITHM

The following steps describes the Metropolis-Hastings algorithm of sampling random num-

bers Ω
′(b)
s , b = 1, · · · , B from the posterior distribution (3.8).

(1) Give an initial value, Ω
′(0)
s of Ω′s. one might want to try different initial values for a

robust Bayesian inference.

(2) Generate a random number Ω̃, from the assigned prior distribution with density function

π(Ω′s). Generate a random number, ν from a standard uniform distribution U(0, 1).

(3) Therefore, the bth sampling iteration of Ω′s is obtained from

Ω′(b+1)
s =

 Ω̃ if ν ≤ min
(

1, Li(Oi|Ω̃)π(Ω̃)

Li(Oi|Ω
′(b)
s )π(Ω

′(b)
s )

)
Ω
′(b)
s otherwise

.

(4) Iterate steps (2) and (3) B times to obtain a chain of random numbers {Ω′(b)s , b =

1, · · · , B}.
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APPENDIX B

DERIVATIVES OF THE H-LIKELIHOOD

In estimating vi (step 2 in section 3.3.3), the gradient ∂h
∂v

and the hessian matrix H are

needed in the Newton-Raphson procedure, which can be calculated as following,

∂h

∂vi
=(δ1i − µ1i) + φ(δ2i − µ2i) +

∂l3i
∂vki

− ∂2h

∂vi′∂vi
=µ1i + φ2µ2i +

∂2l3i
∂vki′∂vki′′

,

where

∂l3i
∂vki′

=− vi
σ2

∂2l3i
∂vi′∂vi′′

=

 1
σ2 if i = i′ = i′′

0 otherwise
.

Therefore, the hessian matrix H has the form

H = diag
{

(µ1 + φ2µ2)
}

+ 1/σ2In = ITWI +m,

where In denotes the n × n identity matrix, I =

 1n×1 0

0 φ1n×1

, m = 1/σ2In, and

W = diag{(µT1 , µT2 )T}.

After estimating random effects v̂, Ha et al. (2007) proposed to use the restricted max-

imum likelihood (REML) estimators of α = {β1, β2, τ1, τ2, φ} and θ = {φ}, respectively,
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as in steps 3 and 4 in Section 3.3.3. In order to estimate α and θ, we will need the

first and second derivatives of hv with respect to α, and h(α,v) with respect to θ. Let

ĥv = h|(v=v̂), Ĥ = H|(v=v̂), ĥα,v = h|(α=α̂,v=v̂), Ĥα,v = H|(α=α̂;v=v̂), where ĥv and Ĥ de-

note the profile likelihood and the observed information matrix evaluated at the current

estimates of v̂, respectively; ĥα,v and Ĥα,v denote the profile likelihood and the observed

information matrix evaluated at the current estimates of (α̂, v̂), respectively. Separate

the constant term 2π out of H and Ĥα,v, equations (4.3) and (3.11) can be rewritten as

hv = ĥv − log |Ĥ|+n log(2π), h(α,v) = ĥα,v − log |Ĥα,v|+ (n+ p) log(2π), respectively. There-

fore, the estimators of α̂k and θ̂ can be obtained by solving the following equations iteratively:

∂hv
∂α

= 0 and
∂h(α,v)
∂θ

= 0.

To estimate βk, we express the first and the second derivatives of hv with respect to α as

∂hv
∂αs

=
∂ĥv
∂αs
− 1

2
tr

(
Ĥ−1 ∂Ĥ

∂αs

)
(A.1)

− ∂2hv
∂α′sαs

=− ∂2ĥv
∂α′sαs

+ tr

(
−Ĥ−1 ∂Ĥ

∂αs′
Ĥ−1 ∂Ĥ

∂αs
+ Ĥ−1 ∂2Ĥ

∂αs′∂αs

)
, (A.2)

where αs, α
′
s; s, s

′ = 1, 2, · · · , S are the sth and s′th components of α, S is the length of α,

and tr(A) is the trace of matrix A.

The first and the second derivatives of hv and the hessian matrix Ĥ with respect to αk

in equations (A.1) and (A.2) are

∂ĥv
∂βk

=
∂hv
∂βk

∣∣∣∣
v=v̂

+
∂h

∂v

∂v̂

∂βk

∣∣∣∣
v=v̂

=
∑
i

ZT
i (δki − µki)

∂ĥv
∂τk

=
∂hv
∂τk

∣∣∣∣
v=v̂

+
∂h

∂v

∂v̂

∂τk

∣∣∣∣
v=v̂

=
∑
i

log(Xi)(δki − µki) + τ−1
k

∑
i

δki

∂ĥv
∂φ

=
∂hv
∂φ

∣∣∣∣
v=v̂

+
∂h

∂v

∂v̂

∂φ

∣∣∣∣
v=v̂

=
∑
i

vi(δ2i − µ2i).
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Note that ∂h/∂v|v=v̂ = 0 in above equations, because v̂ is obtained from solving ∂h/∂v|v=v̂ =

0. And,

− ∂2ĥv
∂αs′∂αs

= − ∂2hv
∂α′s∂αs

∣∣∣∣
v=v̂

+
−∂2hv
∂αs′∂v

(
∂v̂

∂αs

)∣∣∣∣
v=v̂

,

where

− ∂2hv
∂α′s∂αs

=−


∂2ĥv
∂βT ∂β

∂2ĥv
∂τT ∂β

∂2ĥv
∂φ∂β

∂2ĥv
∂βT ∂τ

∂2ĥv
∂τT ∂τ

∂2ĥv
∂φ∂τ

∂2ĥv
∂βT ∂φ

∂2ĥv
∂τT ∂φ

∂2ĥv
∂φ2



=


ZTWZ ZTWX Z∗TWV

X TWZ X TWX +M X ∗TWV

V TWZ∗ V TWX ∗ V TWV

 ,

where Z, X , Z∗, X ∗, V and M are block diagonal matrices, defined as

Z =

 Z1 0

0 Z2

 ,X =

 logX 0

0 logX

 , Z∗ =

 0dim(Z1) 0

0 Z2

 ,

X ∗ =

 0n×1 0

0 logX

 , and M =

 M1 0

0 M2

 ,

where Mk = (1/σ2)
∑n

i δki.
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Then, the calculation of −∂2hv/∂αs′∂v is provided as,

−∂2hv
∂β1∂v

=Z1µ1

−∂2hv
∂β2∂v

=φZ2µ2

−∂2hv
∂τ1∂v

= logXµ1

−∂2hv
∂τ2∂v

=φ logXµ2

−∂2hv
∂φ∂v

=δ2 − µ2.

(A.3)

Since v̂(α) may be function of α (Section 4.3), it is necessary to derive the derivative of v̂

on α. From the Equation 4.4, the derivative ∂v̂/∂αs is

∂v̂

∂αs
= −

(
− ∂2h

∂v∂vT

)−1 (
− ∂2h

∂v∂αs

)∣∣∣∣
v=v̂

(A.4)

where
(
− ∂2h
∂v∂vT

)
= H, and −∂2h/∂v∂αs is derived in Equation (A.3).

The next term need to be derived in Equation (A.1) is ∂Ĥ/∂αs, which has form

∂Ĥ

∂αs
=

(
∂H

∂αs
+
∂H

∂v

∂v̂

∂αs

)∣∣∣∣
v=v̂

, (A.5)

Because H = ITWI +m and m is not a function of α or v, to calculate ∂Ĥ
∂βs

and ∂2Ĥ
∂α′s∂αs

, we

only need to calculate ∂W
∂αk

and ∂2W
∂α′k∂αk

via the forms:

∂Ĥ

∂αq
= IT

(
∂W

∂αq
+
∂W

∂v

∂v̂

∂αq

)
I
∣∣∣∣
v=v̂

,

48



where

∂W/∂β1 =diag[{(Z1µ1)T , 01×n}T ]

∂W/∂β2 =diag[{01×n, (Z2µ2)T}T ]

∂W/∂τ1 =diag[{(logXµ1)T , 01×n}T ]

∂W/∂τ2 =diag[{01×n, (logXµ2)T}T ]

∂W/∂φ =diag[{01×n, (vµ2)T}T ]

∂W/∂v =W.

After obtaining all terms in Equation (A.1), we need to derive all derivatives in the Equation

(A.2). The second derivative ∂2Ĥ/∂αs′∂αs is derived as

− ∂2Ĥ

∂αs′∂αs
=I
{

∂2W

∂αs′∂αs
+

∂2W

∂v∂αs

(
∂v̂

∂αs′

)
+

∂2W

∂αs′∂v

(
∂v̂

∂αs

)
+
∂W

∂v

(
∂2v̂

∂αs′∂αs

)
+

∂v̂

∂αs′

∂2W

∂vT∂v

∂v̂

∂αs

}
I,

(A.6)

where
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∂2W

∂βk′∂βk
=


diag[{(Z2

1µ1)T , 01×n}T ] k = k′ = 1

diag[{01×n, (Z
2
2µ2)T}T ] k = k′ = 2

02n×2n k 6= k′

∂2W

∂τk′∂τk
=


diag([{(logX)2µ1}T , 01×n]T ) k = k′ = 1

diag([01×n, {(logX)2µ2}T ]T ) k = k′ = 2

02n×2n k 6= k′

∂2W

∂φ2
=diag([01×n, ({logX)vµ2}T ]T )

∂2W

∂τk′∂βk
=


diag[{(Z1µ1 logX)T , 01×n}T ] k = k′ = 1

diag[{01×n, (Z2µ2 logX)T}T ] k = k′ = 2

02n×2n k 6= k′

∂2W

∂φ∂βk
=

 diag[{01×n, (Z2µ2v)T}T ] k = 2

02n×2n otherwise

∂2W

∂φ∂τk
=

 diag[{01×n, (logXµ2v)T}T ] k = 2

02n×2n otherwise

And ∂2v/∂αs′∂αs is derived as

∂2v

∂αs′∂αs
= −(ITWI +m)−1IT

(
∂Ŵ

∂αs′

)(
A+ I ∂v̂

∂αs′

)
,

where A =


Zk if αs = βk

logX if αs = τk

v if αs = φ

. Once all the explicit equations described above are pro-

vided, the estimates of α can be obtained iteratively.

The first and second derivatives of the adjusted profile h-likelihood h(β,v) with respect to

θ = σ2 can be expressed as

∂h(α,v)

∂θ
=
∂ĥα,v
∂θ
− 1

2
tr

(
Ĥ−1
α,v

∂Ĥα,v

∂θ

)
(A.7)
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−
∂2h(α,v)

∂θ2
= −∂

2ĥα,v
∂θ2

+
1

2
tr

(
−Ĥ−1

α,v

∂Ĥα,v

∂θ
Ĥ−1
α,v

∂Ĥα,v

∂θ
+
∂2Ĥα,v

∂θ2

)
(A.8)

where all terms in Equation (A.7) are derived as

∂ĥα,v
∂θ

=
∂h

∂θ

∣∣∣∣
α=α̂,v=v̂

+
∂h

∂v

∂v̂

∂θ

∣∣∣∣
α=α̂,v=v̂

=− n

2σ2
+

vTv

2(σ2)2
.

∂v̂

∂θ
=−

(
− ∂2h

∂v∂vT

)−1 (
− ∂2h

∂v∂θ

)∣∣∣∣
α=α̂,v=v̂

= (ITWI +m)(−1)

(
v

(σ2)2

)∣∣∣∣
α=α̂,v=v̂

∂Ĥα,v

∂θ
= I

{
∂W

∂θ
+
∂W

∂v

(
∂v̂

∂θ

)}
I
∣∣∣∣
α=α̂,v=v̂

= I
{
∂W

∂v

(
∂v̂

∂θ

)}
I
∣∣∣∣
α=α̂,v=v̂

,

where ∂W∂v = W .

Underived derivatives in Equation (A.8) other than those above in Equation (A.7) are

−∂
2ĥα,v
∂θ2

= −∂
2h

∂θ2

∣∣∣∣
α=α̂,v=v̂

− ∂2h

∂v∂θ

(
∂v̂

∂θ

)∣∣∣∣
α=α̂,v=v̂

=− n

2(σ2)2
+

vTv

4(σ2)3

∣∣∣∣
v=v̂

− 1

(σ2)4
vT (ITWI +m)−1v

∣∣∣∣
α=α̂,v=v̂

∂2Ĥα,v

∂θ2
= I

{
∂2W

∂θ∂v

(
∂v̂

∂θ

)
+

∂2W

∂vT∂v

(
∂v̂

∂θ

)2

+
∂W

∂v

(
∂2v̂

∂θ2

)}
I

∣∣∣∣∣
α=α̂,v=v̂

= I

{
∂2W

∂vT∂v

(
∂v̂

∂θ

)2

+
∂W

∂v

(
∂2v̂

∂θ2

)}
I

∣∣∣∣∣
α=α̂,v=v̂

,

where

∂2v̂

∂θ2
= −(ITWI +m)−1

{
2v

(σ2)3
− 2

(σ2)4
(ITWI +m)−1v

}∣∣∣∣
α=α̂,v=v̂
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APPENDIX C

BIAS REDUCTION METHOD 1 OF H-LIKELIHOOD APPROACH FOR

THE CORRECTED RANDOM EFFECTS MODEL

For the correlated random effects structure, the mth iteration of the bias reduction procedure

can follow the following steps:

1. Estimate α̂
(m)
k and v̂(m) from equations (3.9) and (4.3), and update the hessian matrix

from Ĥ(m−1) and D̂(m−1) to Ĥ(m) and D̂(m).

2. Calculate the covariance matrix of v̂i
(m) from

Ξ̂
(m)
i =

 (Ĥ(m))−1(2i− 1, 2i− 1) (Ĥ(m))−1(2i− 1, 2i)

(Ĥ(m))−1(2i, 2i− 1) (Ĥ(m))−1(2i, 2i)

 ,

3. Calculate E[vi|v̂(t)
i ] = Σ(Σ + Ξi)

−1v̂i, and E[evi |v̂(t)
i ] = exp{Σ(Σ + Ξi)

−1v̂i + 1
2
diag(Σ −

Σ(Σ + Ξi)
−1Σ)}, where (̂Σ)(m−1) is the variance estimate of vi at the (m− 1)th iteration.

4. Estimate Σ̂(m) from equation (3.11) in Step 4 of the h-likelihood approach.

5. Update hv and hα,v in the step 2 and step 3 of h-likelihood method procedure, by sub-

stituting vi by E[vi|v̂(t)
i ] and e(vi) by E[evi |v̂(t)

i ].

6. Iterate Steps 1 to 5 until converge.
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