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ABSTRACT 

 

 

STT-RAM technology is an emerging memory technology which is a future replacement for 

conventional memory technologies. STT-RAM promises fast read-write-access speeds, low 

power consumption, high density, non-volatility and very long life time. As with any emerging 

technology, however, STT-RAM has its own set of characteristic disadvantages which must first 

be overcome before it can be considered a viable replacement for existing solutions, an example 

of such being its asymmetric behavior during write operations. Currently, reverse connection of 

the MTJ device in STT-RAM cells is being proposed as a novel solution for compensating for 

this asymmetric write operation. In this work, two different MTJ devices are examined to 

determine which one is better suited for use with conventional connection method and which is 

more convenient to use with the proposed reverse connection method. Thereafter, the results of 

the study are applied to determine what properties of an MTJ device most heavily influence 

whether it is best utilized with a reverse connection versus a conventional connection. 
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1.0  INTRODUCTION 

Spin transfer torque magnetic memory (STT-RAM) is a newly developing technology which is 

showing strong promise as a future alternative for conventional memory technologies such as 

SRAM, DRAM and FLASH. These three existing types of memory each have their own unique 

advantages and disadvantages, lending them to be selectively utilized based on the desired 

application.  

 SRAM DRAM FLASH 

(NAND) 

STT-RAM 

Non-Volatile No No Yes Yes 

Cell Size (  ) 50-120 6-10 5 6-20 

Read Time (ns) 1-100 30 50 2-20 

Write/Erase 

Time (ns) 

1-100 15 1μs/0.1ms 2-20 

Endurance                    

Write Power Low Low Very High Low 

Other Power 

Consumption 

Leakage Refresh None None 

High Voltage 

Required 

No 3V 16-20V <1.5V 

 

               Figure 1. Advantages and disadvantages of different memory technologies [1].  

SRAM is described as static memory due to the fact that it requires only a very low amount 

power to retain data. SRAM is able to achieve very fast read-write speeds, but its large cell size 
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(with different designs, such as 4T, 6T, 8T, etc., each requiring different amount of transistors) 

limits the number of scenarios in which it can be effectively utilized. Because of this, SRAM is 

useful for performance or low power oriented applications such as caches or mobile devices. 

Despite its label, however, SRAM is in fact a volatile memory technology, and because of this 

will lose stored data if power is no longer supplied.  

Because of its relatively small cell size, DRAM technology is most useful in applications 

which stand to benefit from high density memory, such as the main memory in most modern 

computing systems. A single DRAM cell consists of one transistor and one capacitor, with the 

charge of the capacitor being used as the data storage mechanism for the device. As the charge 

stored by the tiny capacitor leaks quickly, the DRAM cells must be refreshed frequently in order 

to maintain data integrity. The requirement of this memory to be actively powered and refreshed 

is the reason that it is referred to as ‘dynamic,’ and causes high power consumption even when 

values in memory are not being actively read or modified.  

FLASH memory is quickly seeing adoption as the replacement for conventional mechanical 

hard disks when used as main storage in a system. Non-volatility, high density and low power 

consumption (no leakage or refreshing power consumption) make it particularly well suited for 

many mobile applications. Unfortunately, FLASH memory still has its disadvantages, such as 

very slow write speeds and, most importantly, very low durability. Most FLASH memory 

available today has only a 100,000 cycle wear-free lifetime. Beyond this point, memory wear 

begins to degrade performance and data integrity. The two main forms of FLASH memory are 

NAND or NOR, referred to as such because of the gates utilized in the memory’s cell connection 

scheme. 



 3 

Because of the unique characteristics of each type of memory, a system must selectively 

utilize some of each if it hopes to optimize performance, power consumption, and cost. One of 

the most exciting properties of STT-RAM is that it has all the advantages of SRAM, DRAM and 

FLASH combined [21]. This makes it a promising candidate to replace all of the conventional 

memory technologies, as the homogenization of memory architecture throughout the entire 

system would allow for both an increase in system performance and a reduction in power 

consumption and overall cost. 

STT-RAM consists of two parts; a magnetic tunneling junction and an access transistor. 

The magnetic tunneling junction (MTJ) has three basic layers, including two ferromagnetic 

layers and an insulation layer which is sandwiched between them. Electrons pass from one 

ferromagnetic layer to another by tunneling through the thin insulation layer. This phenomenon 

is called tunneling magneto resistance (TMR).  

The conductance of MTJ depends on the magnetization direction of its ferromagnetic layers. 

One of the ferromagnetic layers is pinned, forcing it to maintain a constant magnetization 

direction, while the magnetization direction of the second ferromagnetic layer is adjustable. The 

parallel magnetization state is a low resistance state and denotes a logical ‘0’. The antiparallel 

state is a high resistance state and denotes a logical ‘1’. By utilizing the distinguishable 

properties of these two states, data is stored as different resistance states inside the MTJ. 

 During the 1990’s, the exploratory research into TMR in MTJ’s at room temperature 

sparked a large increase in interest in the area. In 1996, J. C. Slonczewski introduced the spin 

transfer torque effect in MTJ’s [2]. Before the usage of the STT effect, MRAM technology could 

not be reliably implemented with technology below the 90nm threshold due to its relatively high 

power requirements. After the application of Slonczewski’s discovery, STT-RAM can now be 
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successfully scaled to processes below 65nm [1]. STT-RAM technology offers features such as 

low access time (read-write), small cell size, high process compatibility and scalability, and the 

elimination of the need for standby power. 

One of the largest drawbacks of STT-RAM is the asymmetric nature of the current required 

to change the logical value stored in the MTJ. Switching the ferromagnetic layers from parallel 

state (low resistance) to anti parallel state (high resistance) requires more current than switching 

from anti-parallel state (low resistance) to parallel state (high resistance). This in and of itself is 

not an issue – however, when it is considered that the size of the access transistor is determined 

by the maximum amount of current it will need to pass, it becomes easy to see that the transistor 

is oversized for anti-parallel state to parallel state switching. This means that the STT-RAM cell 

is less dense, more power hungry and slower than it can be. In order to reduce the transistor size 

to alleviate some of these inefficiencies, a solution of connecting the magnetic tunneling junction 

(MTJ) reversely (free layer to access transistor and pinned layer to bit line) has been proposed. 

In this work, I delve into reverse connection usage in order to determine if there are any 

characteristic conditions in which the reverse connection method is superior to that of the 

conventional method. I examine the different source degeneration effects on access transistor for 

different MTJ connection schemes. I also observe the effects of the reverse connection on access 

transistor size and attempt to discover if reverse connections can in fact reduce the cell size. 

1.1 THESIS OUTLINE 

Part one (Introduction) discusses the motivation for STT-RAM and provides the reader with 

basic background knowledge. Part two (Background) contains three subsections, the first of 
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which reviews the fundamentals of spintronics, the technology’s history, and how it works. The 

second subsection covers the MTJ device specifically, in addition to its operating characteristics. 

The final subsection of part two discusses the role of the access transistor in STT-RAM. Part 

three (STT-RAM Cell Structures and Operation) talks about different cell structures and how 

STT-RAM operates. Part four (Model Creation and Testing) is about model creation and testing 

for reverse-conventional connections of the magnetic tunneling junction (MTJ). Finally, part five 

(Conclusions and Future Work) presents relevant findings discovered during the course of this 

work, as well as the prototypical situations in which reverse connections can be particularly 

useful. 
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2.0  BACKGROUND 

The background part concentrates on basics properties of MTJ devices and spintronics study 

field. Moreover, it states some historical achievements which led developments in this specific 

area. 

2.1 BASICS OF SPINTRONICS 

Spintronics which is a word derived from ‘spin’ and ‘electronics’ is seen as a strong replacement 

candidate for conventional charge based electronics [3]. Today’s commercialized electronic 

devices’ operations are based on controlling the flow of electric charge through silicon based 

semi-conductor devices. On the other hand, non-volatile storage devices such as hard disk drives 

depend on regulation of electrons’ spin polarization via ferromagnetic devices [3]. Spintronics 

focuses on integrating the methods used in storage devices and processing units with the usage of 

spin polarized current [3]. 

2.1.1 Development History 

In 1930s the discovery of inconsistent resistance behavior in ferromagnetic materials created a 

starting point for spintronics [3]. In 1970s research continued in this field and the first spin 
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filters, creation of spin polarized current and the effects of spin polarized currents on 

ferromagnetic devices was observed. Early experiments were conducted at very low 

temperatures because at that time room temperature magneto resistive effects weren’t discovered 

yet. With the exploration of room temperature magneto resistive effects in 1980s, radiation-hard 

(convenient to use in military applications such as satellites etc.) wire-plated resistive memories 

were replaced with anisotropic magneto resistive (AMR) memories [1]. In late 1980s another 

milestone was achieved by the discovery of giant magneto resistance (GMR) [4]. The newer 

GMR technology based devices replaced the AMR based technologies quickly. Electronic 

storage of information is based on spin polarization of electrons since the discovery of GMR. 

The materials which can provide higher TMR ratios (at room temperature) in MTJ devices 

were discovered in early 1990s [1]. As a result devices with very high TMR ratios (%200) have 

been developed. Today many spintronics based devices are commercialized and spintronics 

based memories are gradually becoming a very big industry. 

2.1.2 How It Works 

The spin polarization of electrons is not fixed and can be altered. We can change the polarization 

direction for the electrons if we make the electrons pass through a magnetic field. There are two 

possible conditions for the relationship between electron’s spin polarization and the magnetic 

field: parallel polarization to the magnetic field or anti parallel [1].  The spin polarizer works in 

regard to this phenomenon. We can use a ferromagnetic layer (Figure 2) which has the desired 

magnetization direction to create spin polarized current from un-spin polarized current [4]. 

Furthermore, polarized current only can pass through a ferromagnetic layer if it has parallel spin 

polarization to the magnetization direction of the ferromagnetic layer. Antiparallel polarized 
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current cannot pass through a ferromagnetic layer. Spin valves were developed based on this 

mechanism. A spin valve consists of a spin polarizer (Figure 2) which makes the current spin 

polarized in the desired direction and a spin filter (Figure 3-4) which lets the current pass if only 

it has the same polarization direction as its magnetization [3]. With the variable direction of the 

spin filter’s magnetization we can control the current flow on the spin valve. MTJs are basically 

spin valves which have two states: high resistance which denotes logic ‘1’ and low resistance 

which denotes logic ‘0’ [1]. 

 

Figure 2. Spin polarizer operation.  

 

Figure 3. Spin filter operation. 
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Figure 4. Spin filter operation.  

2.2 MAGNETIC TUNNELING JUNCTION 

Spin transfer torque random access memory cell (STT-RAM) consists of two parts; magnetic 

tunneling junction (MTJ) and access transistor. This part focuses on MTJ device, its principles 

and characteristics. 

2.2.1 Hysteresis 

Resistance hysteresis which MTJ devices have makes the MTJ device has two distinct resistance 

states. Controllability of switching between these two stages makes MTJ device a very 

convenient storage element. MTJ’s resistance hysteresis is a result of spin valve structure [3]. As 

stated before MTJ device has three layers; an insulation barrier which is sandwiched between 

two ferromagnetic layers. One of the ferromagnetic layers has a constant magnetization direction 

while other has an alterable magnetization direction. Pinned layer is used as a spin polarizer and 

the free layer used as spin filter. This type of structure allows two states for the MTJ: parallel 
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state which both layers has same magnetization direction and anti-parallel state which two layers 

have opposite magnetization direction. For the parallel state when we apply a current through 

device spin polarizer creates a spin polarized current. Since the two layers have same 

magnetization direction current can pass through device without disturbance. For the anti-parallel 

state the spin polarized current which is created by spin polarizer has opposite polarization 

direction with the spin filter. As a result current cannot pass through the device freely. MTJ 

device’s resistance has two stages based on whether FL’s and PL’s magnetization direction is 

parallel or anti-parallel as stated above. As illustrated in Figure 5 MTJ is in high resistance state 

when MDs are anti-parallel and low resistance state when MDs are parallel. Low resistance 

denotes logic ‘0’ and high resistance denotes logic ‘1’. 

 

Figure 5. Resistance states of MTJ.  

 

The difference between the resistance states defined as Tunneling Magneto Resistance 

(TMR). TMR ratio shows the efficiency of spin valve structure of MTJ device. TMR formulated 

as: 

     
      

  
 [8] 
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2.2.2 Critical Switching Current of MTJ 

2.2.2.1 Asymmetry of Critical Switching Current 

 

In order to switch the magnetization direction of free layer we need to apply a certain amount of 

current. We call this current the critical switching current. Critical switching current  for anti-

parallel state to parallel state switching is less than parallel state to anti-parallel state switching 

(  (P to AP) >   (AP to P)) [6]. Switching current asymmetry is related with TMR ratio and 

according to some papers increases linearly with it [7]. The MTJ switching current asymmetry of 

two directions, which are AP to P and P to AP, is a result of different spin-transfer efficiency η 

[7]. For instance, when MTJ works at thermally activated switching time region (>10ns), critical 

switching current density can be calculated as: 

    (
  

 
)   

 

 
                      [7] (1) 

In equation 1,     is the minimal current density need for switching the stare of MTJ device 

when there is no external magnetic field at 0K.   is electron charge.   is damping constant.    is 

magnetization saturation.    is free layer thickness. ћ is reduced planck’s constant.    is 

effective anisotropy.      is external magnetic field. The spin transfer efficiency   depends on 

the magnetization directions of the FL and PL: 

   
 

 
            [7] (2) 

In equation 2,   is the tunneling spin polarization and   is the angle between free layer’s and 

pinned layer’s magnetization directions. When we combine equation 1 and equation 2 we get: 

   
   

   
    

    

    
  [7] (3) 
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As we can see in equation 3, switching from parallel to anti parallel state (   
   ) requires 

more current density than switching from anti parallel to parallel state (   
   ) [7]. 

2.2.2.2 MTJ switching Types 

 

There are three different types of MTJ switching; precessional switching, dynamic switching and 

thermally activated switching [8]. Precessional switching occurs in very short time (less than 

3ns). In order to accomplish precessional switching we need to apply a current density which  

 

Figure 6. Different switching regimes [8]. 

 

should be many times larger than critical switching current density [8]. Dynamic switching 

occurs in 3ns to 10ns time interval. It needs medium level current density. Dynamic switching is 

like a mix of precessional and thermally activated switching. Because of its complicated process 
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it is hard to explain it with a mathematical formula. Dynamic switching corresponds to MTJ 

device’s normal working condition. Final switching type is thermally activated switching. This 

switching occurs beyond 10ns time scale. The thermal activated switching depends on the 

current pulse width. 

2.2.2.3 Thermally Varying Switching 

 

Thermal disturbance makes the magnetization directions of ferromagnetic layers continuously 

changing [9]. The critical switching current becomes time-varying because of changing thermal 

effect [10]. It is possible to obtain a controlled switching current curve with using a probabilistic 

distribution [11].  

2.2.3 Temperature Effect on MTJ 

The Julliere conductance model describes the thermal effect on TMR at zero bias voltage [12]. 

According to the Julliere model MTJ conductance has two parts;   , as a result of tunneling, and 

   , as a result of defects in insulation barrier. The total conductance ( ) can be expressed as a 

function of Ɵ: 

       {            }      [21] 

          are tunneling spin polarization,   is angle between magnetization directions of 

ferromagnetic layers ( =   for parallel state,  =     for anti-parallel state). The temperature 

dependence of tunneling spin polarization is: 

              
 

   [21] 
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Variations in    due to temperature effect are almost zero [21]. However, theoretical and 

experimental results show that      is proportional to  
 

  [13]. 

Basically speaking as the temperature gets high resistance of anti-parallel state degrades 

significantly. The resistance of parallel state is not affected from temperature change as much as 

anti-parallel state. The asymmetric changes of the resistances for different states cause the 

degradation of      
      

  
. Lower TMR means more difficult sensing. Moreover, high 

temperature reduces the critical switching current and magnetic stability energy. As a result 

variation of switching time increases and switching process of MTJ device becomes more 

unreliable. 

2.2.4 Effect of Bias Voltage on TMR 

The Julliere conductance model can only predict TMR ratio at zero bias voltage [14]. However, 

there is an anomaly in TMR ratio which is called zero bias anomaly [15]. What causes the bias 

voltage dependent anomaly in TMR ratio cannot be fully discovered [16]. Anyhow, elastic 

currents are considered as an effector at low voltages [17] and redistribution of density of states 

is considered as an effector at high voltages [16]. 

2.3 ACCESS TRANSISTOR 

The access transistor is second part of a STT-RAM cell. The access transistors driving ability is 

important because it determines the current which the access transistor can provide to the MTJ 

device. This current used as switching current and switching time depends on it. If we need faster 



 15 

switching time, we need to use larger transistor. Increasing the transistor width increases the 

transistors driving ability but it also increases the cell size. Thus transistor size needs to be 

selected in regard to balance between cell size and speed. 

2.3.1 Source Degeneration 

In a STT-RAM cell, access transistor can provide different amount of current for different 

switching schemes. This problem is a result of source degeneration effect on access transistor. If 

there is a resistor between access’ transistor’s source and the ground, the transistor has a 

reduced    . This is called source degeneration and causes a lower transistor driving ability [23]. 

You can see the source degeneration effect in Figure 7. 

 

Figure7. Source degeneration.              

2.3.2 Temperature Effect on NMOS 

Since the NMOS and MTJ device placed in the same cell the temperature change at MTJ cell 

also affects the NMOS. As temperature gets high the driving ability of the NMOS reduces. We 

can explain this via the formulas below. 
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      (
 

  
)
      

             

 

 
      

In the equation above   denotes the temperature. As we can see from the equation   reduces 

while   increases. 

   
   (       )  

 
    

 

  
 

     
   

      

In the equation above we can see that the current   increases with  . We can clearly see from 

both equations when the temperature gets higher the current transistor can provide gets lower. 
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3.0  STT-RAM CELL STRUCTURES AND OPERATION 

3.1 CELL STRUCTURES 

3.1.1 1T1J Cell Structure 

1T1J structure is the basic cell structure of STT-RAM memories. It basically means one 

transistor and one MTJ device. 

The transistor is used as an access transistor and it is the main component which determines 

the cell size. The access transistor has to provide certain amount of current to the MTJ device in 

order to make it switch between low and high resistance stages. The switching current 

determines the write speed of the memory cell. Therefore the transistor has to be properly sized 

in order to provide necessary current. Thus it is usually bigger than the MTJ device itself. 

MTJ device has to have elongated cell shape in order to keep thermal stability. MTJ devices’ 

and transistor’s channel length is equal (in regard to used technology like 45nm etc.). But the 

width of the devices may differ. We usually use wider transistor to provide appropriate current to 

the MTJ. 

There are two most common cell architectures for 1T1J type STT-RAM cells, the 

conventional connected MTJ and the reverse connected MTJ. In the conventional connection the 

free layer of the MTJ device is connected to bit line and the pinned layer is connected to source 
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line (Figure 8). In order to produce a good pinned layer, pinned layer has to have a smooth 

deposition surface. Because of the surface imperfections which are the result of deposition 

procedure, depositing the fixed layer on top of the free layer is less efficient. This is the reason 

why free layer is on top structure called conventional and commonly used [19].  

 

Figure 8. Conventionally connected 1T1J memory cell. 

 

In the reverse connection fixed layer is on top of the free layer and connected to bit line 

(Figure 9). Free layer is connected source line via access transistor. Reverse connection is 

proposed for reducing the write operation asymmetry of STT-RAM cell [7]. 
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Figure 9. Reverse connected 1T1J memory cell. 

Sub-arraying is applied in most memory architectures in order to maintain the balance 

between minimum area, high speed and power need. Single partition large memory cells require 

longer and complex access lines which mean additional buffering and slow access time. 

Therefore, memory cells can be divided into smaller sub-arrays and can be faster. Similarly, 

1T1J cell memories divided in to sub arrays. Single bit line is usually used for up to 256 1T1J 

cells. 

3.1.2 Shared Structure 

In shared architecture access transistor is connected to more than one MTJ device [21]. Each 

MTJ device is connected to separate bit lines in order to provide single MTJ access. This 

architecture allows sizing up the access transistor to provide more current. Also even if we use  



 20 

 

Figure 10. Shared architecture with n MTJs. 

bigger transistor size because of we connect the transistor more than one MTJ device we can get 

the same or better density. The drawback of shared architecture is that when we try to write one 

of the n cells, current may go through different paths and causes unwanted switching or failure of 

other than desired cells. 

3.1.3 Stacked Structure 

Stacking is another cell structure for STT-RAM memories. In stacking architecture, multiple 

MTJ cells are connect to single access transistor as series [21]. This architecture is like multi cell 

Flash memory architecture. This architecture also can provide high density. 
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Figure 11. Stacked architecture with n MTJs. 

When designing stacked memory, the resistances and critical switching current densities of 

each MTJ should be different and appropriately selected in order to create a properly functioning 

device. Reading from a certain MTJ device in the stack takes more than one cycle. 

3.2 OPERATION 

3.2.1 1T1J Cell 

1T1J cell consists of a transistor and MTJ device. MTJ device also consists of two ferromagnetic 

layers and an insulation barrier, which is sandwiched between ferromagnetic layers. MTJ device 

is basically a spin valve. One of the ferromagnetic layers stands a spin polarizer while the other 

one stands a spin filter. One of the ferromagnetic layers has fixed magnetization direction and 

other one has an interchangeable magnetization direction. The magnetization direction of the free 

layer can be changed by applying a polarized current. 

For the conventional connection as you can see from Figure 12 switching from low resistance 

state (logic‘0’) to high resistance state (logic‘1’) can be achieved by applying a current from 

source line (SL) to bit line (BL). In this case electrons pass through the free layer to fixed layer. 

Fixed layer does not let the electrons which are opposite polarized to its magnetization direction 
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pass. As a result the returning electrons scatter in the free layer and change its magnetization 

direction to opposite of fixed layer’s magnetization direction. At the end of this process high 

resistance is achieved. 

 

Figure 12. Parallel to anti-parallel switching. 

For switching from high resistance state (logic‘1’) to low resistance state (logic’0’), we 

should apply a current from bit line (BL) to source line (SL). In this case electrons pass through 

the fixed layer first (Figure 13). Fixed layer again does not let the electrons which are opposite 

polarized to its magnetization direction pass. As a result the current passes through the free layer 

becomes spin polarized. The polarization direction is same as the fixed layer’s magnetization 

direction. These electrons change the free layers magnetization direction parallel to fixed layer’s 

magnetization direction. In the end both layers has the same magnetization direction which 

creates low resistance. 
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Figure 13. Anti-parallel to parallel switching.  

3.3 STT-RAM WRITE OPERATION ASYMMETRY 

Write operation in STT-RAM cell is not symmetrical. There are two main reasons for the 

asymmetric switching; MTJ device characteristics and driving ability change of access transistor 

due to source degradation. 

As a result of MTJ device characteristics switching from parallel to anti-parallel state 

requires larger current than switching anti-parallel to parallel state (  (P to AP) >   (AP to P)) 

[6]. The critical switching current asymmetry is a result of the spin-transfer efficiency η change 

for different resistance states. 



 24 

 

Figure 14. Write operation asymmetry.  

 

The access transistor of STT-RAM cell has different driving ability for different switching 

types of MTJ. Source degeneration, which degrades the current applied to MTJ, is the reason of 

access transistor driving ability asymmetry. When switching ‘1’ to ‘0’ (parallel to anti-parallel 

state) word line (WL) and bit line (BL) is connected to     and source line (SL) is connected to 

   . In this case     (gate voltage) is equal to    . When switching ‘0’ to ‘1’ (anti-parallel to 

parallel state) word line (WL) and source line (SL) is connected to     and bit line (BL) is 

connected to    . In this case      (gate voltage) is equal to             . In this case we 

have lower gate voltage which causes a reduced transistor driving ability. 
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4.0  MODEL CREATION AND TESTING 

For this work I choose two MTJ devices from previous works and use their data (switching times 

for different switching currents). One of the MTJ devices is more convenient to use with 

conventional connection while the other one is more convenient to use with reverse connection. 

With comparing these devices I tried to find out which property of the MTJ device determines 

that the device is eligible to use with reverse connection. After finding this property I tried to 

examine equilibrium point for required access transistor size between conventional and reverse 

connection schemes. 

 

Figure 15. 1T1J memory cell model for simulation 

As you can see in Figure 15 we can model a 1T1J memory cell with a resistance and a 

transistor. Resistor denotes the MTJ device and the transistor stands as access transistor. This is a 

basic model for simulation purposes. I created different models for different cases such as 
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reverse connection AP to P switching, reverse connection P to AP switching, conventional 

connection AP to P switching and conventional connection P to AP switching. 

4.1 CONVENTIONAL CONNECTION COMPATIBLE DEVICE 

4.1.1 Model Creation 

First device I inspected is convenient to use with conventional connection. I started with creating 

models for different switching schemes. I used LTspice for my simulations. I used       , 

1kΩ for low resistance state and 2kΩ for high resistance state [22]. I used PTM 45nm library for 

the transistor because MTJ is 45nm. 

First I created models for conventional connection. For the AP to P switching resistance is 

2kΩ.      is connected to bit line and ground connected to source line. Word line is connected to 

a pulse type voltage source. You can see the AP to P conventional connection switching model 

in Figure 16. For the P to AP switching resistance is 1kΩ.     is connected to source line and 

ground connected to bit line. Word line is again connected to a pulse type voltage source. You 

can see the P to AP conventional connection switching model in Figure 17. 
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Figure 16. AP to P switching for conventional connection. 

 

Figure 17.  P to AP switching for conventional connection. 

 

After I created models for conventional connection I created the models for reverse 

connection using same method. At this time     is connected to source line and ground 

connected to bit line for AP to P switching. Word line is connected to a pulse type voltage 

source. AP to P switching resistance is 2kΩ. You can see the AP to P reverse connection 

switching model in Figure 18. For the P to AP switching     is connected to bit line and ground 

connected to source line. Word line is again connected to a pulse type voltage source. P to AP 
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switching resistance is 1kΩ.  You can see the P to AP conventional connection switching model 

in Figure 19. 

 

Figure 18. AP to P switching for reverse connection.  

 

Figure 19. P to AP switching for reverse connection. 
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4.1.2 Simulation Results 

For the simulations I gradually increased the transistor width and check the current on the 

resistor which stands as MTJ device. In this way I can see how much current access transistor 

can provide to MTJ. 

First thing that I realized after simulations is that the reverse connection increases STT-RAM 

write operation. For the conventional connection source degeneration affects the P to AP 

switching. In this case MTJ is in low resistance state so the source degeneration is low. The 

purpose of using reverse connection is matching the source degeneration effect with AP to P 

switching which requires less current. As a result of having low resistance without source 

degeneration at P to AP switching, MTJ gets much higher current than conventional connection 

scheme. In the same way having high resistance with source degeneration at AP to P switching, 

causes having lower current than conventional connection scheme. You can clearly see the 

increased asymmetry in Figure 20. 

 

Figure 20. Switching current asymmetry change.  
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P to AP switching is bottle neck for the conventional connection because this switching 

scheme suffers from source degeneration. P to AP switching requires 201.8743uA current for 

10ns switching time (Figure 21). We have to use 292nm transistor width in order to provide 

necessary current for 10ns switching time conventional connection. 

 

Figure 21. Switching time and switching current for P to AP switching. 

For the reverse connection AP to P switching becomes the bottle neck since it matches with 

source degeneration. AP to P switching requires 108.8228uA for 100ns switching time (Figure 

22). We have to use 335nm transistor width in order to provide necessary current for 10ns 

switching time. 

 

Figure 22. Switching time and switching current for AP to P switching.  
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When we compare the simulation results for reverse and conventional connection we can see 

that reverse connection requires larger transistor width. In this case the device has % 100 TMR 

and  
       

       
     . 

4.2 REVERSE CONNECTION COMPATIBLE DEVICE 

4.2.1 Model Creation 

The second device I inspected is convenient to use with reverse connection. For second devices 

simulation         , low resistance is 2062.5Ω state and high resistance is 4331.25Ω [18]. 

Again I used PTM 45nm library for the transistor (channel length is 40nm) MTJ length is 40nm 

[18]. 

For the AP to P switching resistance is 4331.25Ω. At this time     is connected to source 

line and ground connected to bit line. Word line is connected to a pulse type voltage source. You 

can see the AP to P reverse connection switching model in Figure 23. For the P to AP switching 

resistance is 2062.5Ω.     is connected to bit line and ground connected to source line. Word 

line is again connected to a pulse type voltage source. You can see the P to AP reverse 

connection switching model in Figure 24. 
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Figure 23. AP to P switching for reverse connection.  

 

Figure 24. P to AP switching for reverse connection.  

After creating models for reverse connection I created the models for conventional 

connection using same method. At this time     is connected to source line and ground 

connected to bit line for AP to P switching. Word line is connected to a pulse type voltage 

source. AP to P switching resistance is 4331.25Ω. You can see the AP to P conventional 

connection switching model in Figure 25. For the P to AP switching     is connected to bit line 

and ground connected to source line. Word line is again connected to a pulse type voltage source. 
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P to AP switching resistance is 2062.5Ω.  You can see the P to AP conventional connection 

switching model in Figure 26. 

 

Figure 25. AP to P switching for conventional connection.  

 

Figure 26. P to AP switching for conventional connection. 

4.2.2 Simulation Results 

I used the same method for the simulations as the first device. I changed the transistor width and 

check the current on the resistor in model circuit. 
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Figure 27. Switching current asymmetry change. 

In Figure 27 we can see again that the reverse connection of the MTJ device increased the 

write operation asymmetry in STT-RAM cell. 

P to AP switching is bottle neck for the conventional connection because this switching 

scheme suffers from source degeneration. P to AP switching requires 242.42uA current for 

100ns switching time (Figure 28) [18]. When we use 270nm transistor MTJ device gets 

192.065uA current. In this case 100ns switching time cannot be reached with conventional 

connection. 100ns switching time requires 555nm transistor width for conventional connection. 

 

Figure 28. Switching time and switching current for P to AP switching 
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For the reverse connection AP to P switching becomes the bottle neck since it matches with 

source degeneration. AP to P switching requires 115.44uA for 100ns switching time (Figure 29). 

When we use 270nm transistor width MTJ device gets 155.688uA. As a result of supplied 

current 100ns switching time is possible in reverse connection. 

 

Figure 29. Switching time and switching current for AP to P switching. 

In this case the device has %110 TMR and  
       

       
     [18]. For this device as we can 

understand from simulation results reverse connection scheme provides successful switching 

with smaller transistor width [18]. 

4.3 CONCLUSION 

When I compared two devices I see that the main feature that determines which MTJ connection 

scheme is more convenient may be the ratio between P to AP and AP to P switching. I made 

simulations in order to find out what is the 
       

       
 value when reverse and conventional 

connection schemes require same transistor width. 
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For the first MTJ device which is conventional connection compatible I reduced the AP to P 

critical switching current while keeping P to AP critical switching current constant. I calculated 

the 
       

       
 value as 1.41 as you can see in the Figure 30. 

 

Figure 30. Transistor width vs.  
       

       
 

For the second MTJ device which is reverse connection compatible I reduced the P to AP 

critical switching current while keeping AP to P critical switching current constant. I calculated 

the 
       

       
 value as 1.66 as you can see in the Figure 31. 

 

Figure 31. Transistor width vs.  
       

       
. 
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5.0  CONCLUSION AND FUTURE WORK 

In the beginning of this work the simulations were conducted to determine if transistor driving 

ability satisfied only P to AP switching (which requires higher current than AP to P switching). 

This approach was taken as many previous researchers had utilized the same method. As a result, 

when I checked the data regarding a reverse connection for the first MTJ device, I discovered 

that a transistor width of 900nm was required for proper switching. After this ridiculously large 

result, I realized I had to simulate both AP to P critical switching current and P to AP critical 

switching current. When the simulations were repeated again, this time considering AP to P 

critical switching current, I found that better and more reliable results could be achieved. 

A reliable result of this research is that the reverse connected MTJ device increases the 

asymmetry of write operation of the STT-RAM cells as we can see in the Figure 20 and Figure 

27. 

For the first MTJ device, at least, as I understand from the simulation, results beyond a 1.41 

       

       
 ratio the reverse connection provides smaller transistor size. For the second MTJ device I 

calculate 
       

       
 ratio as 1.66. Since I don’t have the same ratio for both MTJ devices, I realize 

that there are some other properties also have effect. First I check the TMR. I reduce the TMR of 

the second device to 100%, which is the same TMR as first MTJ, causing the equilibrium point 

to reduce to 1.61. After that I check the resistance level. I reduce the resistances of the second 

MTJ device as the same level as those in the first MTJ device, causing the equilibrium point to 
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reduce to 1.22. As you can see from the ratios, both TMR and resistance level effect the 

transistor size for different MTJ connection schemes. 

I have different but similar ratios for different scenarios.  
       

       
 is 1.41 for the first MTJ and 

1.66 for the second MTJ. Moreover, altering TMR and resistance changed the ratio, but the new 

ratios are not so dissimilar from the original ratios. Thus, I can say the break-even 
       

       
 for the 

access transistor size of reverse and conventional connected MTJ is around    .  

5.1 FUTURE WORK 

In my future work I will create a dynamic MTJ model and make more precise simulations with 

differing transistor technologies, MTJ dynamics, TMR, and resistances to determine a more 

reliable relationship between the reverse connection usage and 
       

       
 ratios. In this way an 

optimization method can be found for MTJ devices to make them more convenient to use with 

either conventional or reverse connections. This would enable us to create devices like the 

sample design below (Figure 32), which can be useful in increasing the reliability of STT-RAM. 

 

Figure 32. Sample STT-RAM cell design. 
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In this design I have two STT-RAM cells: one of them has a reverse connected MTJ device 

and the other has a conventionally connected MTJ device. Both cells share the same source line, 

but have different word and bit lines. As for first alternative usage, we can use this device for 

storing single bit. When we write ‘1’ to the conventionally connected MTJ, we can write ‘0’ to 

the reverse connected cell at the same time by setting the WL and WL’ lines to the same value. 

We can use the BL’ line for increasing the sensing ability. Moreover, when we apply read 

current from bit lines to the source line it is not possible to switch the MTJs value mistakenly if 

the conventionally connected cell’s value is ‘0’ and reverse connected cell’s value is ‘1’. Thus, 

we can reduce the read disturbance possibility in one direction. As for second alternative usage, 

we can program the MTJ cells separately to store two bits since we have two separate word lines. 

With this kind of usage we can reduce the read disturbance detection into one condition. As you 

can see in Figure 33 below we can read 4 possible combinations from BL and BL’. We may only 

have read disturbance when BL=0 and BL’=1. 

 

Figure 33. Read disturbance possibilities. 

The observations above have not been verified by simulations yet. Thus, this work is stated 

as a future work. 
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