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Pulmonary Arterial Hypertension (PAH) is a progressive, potentially fatal disease that 

results in the remodeling of the pulmonary vasculature.  Currently the gold standard for 

diagnosis of pulmonary hypertension is through right heart catheterization, an invasive and 

costly procedure where pressure measurements are made directly within the affected vessels. 

Since PAH is associated with the remodeling of the pulmonary arteries, others have proposed 

quantifying the vessel geometry depicted in computed tomography (CT) images as a non-

invasive technique for diagnosis of PAH. The work presented here proposes a similar method of 

diagnosis by defining and incorporating techniques that are both manual in nature in reference to 

the segmentation process and automated with the modeling and anatomic measurement 

quantification steps. Data comprised of both normal and disease cases were gathered and the 

vessel geometry (specifically the pulmonary trunk, right main pulmonary artery and the left main 

pulmonary artery) were measured both manually and automatically. A comparison of the 

automated measurements of the vessel geometry to the manual measurements showed no 

significant difference between the means of the two groups. A significant difference was found 

between the cases and the controls leading to the possibility of classifying images based on the 

vessel geometry. Logistic regression and naïve Bayes models were constructed from the data for 

discriminating the cases from the controls. Overall, the Naïve Bayes model performed better 

with a higher sensitivity of 42.9% compared to 19% and a small decrease in specificity of 90.9% 
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from 96.6%, and the model is able to classify correctly more of the patients with disease. Due to 

the permanent nature of the disease a type I error is acceptable; we prefer to classify patients that 

do not have the disease as positives than vice versa. We found that the segmenting of additional 

branches of the pulmonary vasculature could provide additional information for the improvement 

of the models presented here. In conclusion, we were able to quantify the vessel geometry 

depicted in CT images as a non-invasive technique for diagnosing PAH and we have shown that 

the two classes of measurements are not significantly different.   
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1.0  INTRODUCTION 

This chapter summarizes the motivation and the main goals for this study. 

1.1 DESCRIPTION AND SIGNIFICANCE OF THE PROBLEM 

Pulmonary hypertension (PH) is a common condition that is often overlooked until late in 

its progression [1].  PH affects thousands of people each year in the United States and a prompt 

and accurate diagnosis is vital to improving patient outcome. In 2002 in the United States, 

15,668 people died and 260,000 were hospitalized for PH [2, 3]. The focus of this research is on 

a subset of PH specifically, pulmonary arterial hypertension (PAH).  Although PAH is a rare 

disease it is becoming more and more prevalent. A study published in 2011 by Frost et al. stated 

that the prevalence of category 1 PAH as defined by the world health organization is 10.6 

cases/million of adult inhabitants and incidence of 2.0 cases/million of adult inhabitants/year in 

the United States [4].  In 2010 a study by Bandesch et al. reported using information gathered 

from registries in France and the United States that the mean age at diagnosis is 50 years with the 

ratio of female to male of 3.9 [5]. Currently, the median interval from symptom onset to 

diagnosis is 1.1 years [5]; this has not changed since the 1980’s [6]. In 2007 it was reported that 

3-year survival has improved from 48% reported in 1991 [7] to 67% in the U.S [8].  

Diagnosis of PAH is currently obtained with pressure measurements acquired with right 
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heart catheterization, an invasive and costly procedure. However, since PAH results in a 

remodeling of the pulmonary vasculature, it is possible that non-invasive visualization of the 

pulmonary arteries (via magnetic resonance imaging (MRI) or computed tomography (CT)) may 

provide sufficient information for diagnosing PAH. It may be possible to identify the presence of 

disease from the vasculature remodeling prior to symptom onset and improve the time it takes 

for detection and diagnosis. The work described in this dissertation will establish the technical 

basis for semi-automated pulmonary vasculature quantification and demonstrate the feasibility of 

using this semi-automated quantification to diagnose PAH. In this work we use Computed 

Tomography Pulmonary Angiography (CTPA) examinations, since these examinations are 

readily available from the UPMC PACS (University of Pittsburgh Medical Center Picture 

Archiving and Communication Systems). However, in principle, the techniques we have 

developed here could also be applied to Magnetic Resonance Pulmonary Angiography. 

1.2 TWO HYPOTHESES 

Hypothesis 1: Accurate models of the pulmonary arterial tree can be generated semi-

automatically from CTPA images. (Specific Aims 1 and 2 below) 

To address the problem of finding a method of diagnosing PAH in a non-invasive 

manner, the first step is to establish the technical basis for pulmonary vasculature quantification; 

this is described in the first hypothesis. 

Hypothesis 2: Morphological measurements made from the semi-automatically generated 

models can accurately differentiate pulmonary hypertension cases from healthy control cases. 
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(Specific Aim 3 below) 

The second hypothesis will demonstrate the feasibility of using the methods derived in 

the first hypothesis for modeling the pulmonary vasculature for quantification of said vasculature 

in the diagnosis of PAH.  

To test and further define these hypotheses we performed the following specific aims: 

1.2.1 Specific Aims for Hypothesis 1 

Specific Aim 1: Create a repository of CTPA exams. The exams consisted of cases that are 

positive for PAH and controls that are negative for PAH. 

 To determine the ability of modeling the pulmonary vasculature data it is necessary to 

learn and improve the modeling process. Specific aim 1 is focused solely on gathering this data.  

 

Specific Aim 2: Create and validate PUMA, a PUlmonary Mapping and Analysis tool that semi-

automatically generates pulmonary vascular models.  

 In this aim we take the data identified in aim 1 and use it for generating vascular models 

for quantification. 
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1.2.2 Specific Aim for Hypothesis 2 

Specific Aim 3: Use PUMA to diagnose PAH. This was done by performing semi-automated 

measurements of vascular diameters and making comparisons to measurements from known 

normal cases. 

The final aim takes the output (models) generated in the first hypothesis, specifically aim 

2 and learns characteristic information of the vasculature along with quantifying the vasculature 

for the classification of disease. 

1.3 GLOSSARY OF TERMS 

This section summarizes and defines the key acronyms used throughout this dissertation. 

 

CT or CTPA (Computed Tomography or Computed Tomography Pulmonary 

Angiography) ~ an imaging modality that uses x-rays for gathering data on the pulmonary 

vasculature. 

LMPA ~ Left Main Pulmonary Artery 

MPAP or PAMP (Mean Pulmonary Artery Pressure) ~ Pressure measurement taken during 

the right heart catheterization procedure used in the diagnosis of disease. 

PH (Pulmonary Hypertension) ~ Disease associated with the atrophy of the pulmonary blood 

vessels. 

PAH (Pulmonary Arterial Hypertension) ~ Sub-category of etiologies that are known causes 

of pulmonary hypertension 
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PCWP (Pulmonary Capillary Wedge Pressure) ~ Pressure measurement taken during the 

right heart catheterization procedure used in the diagnosis of disease. 

PT ~ Pulmonary Trunk 

PVR (Pulmonary Vascular Resistance) ~ is the resulting measure of the TPG divided by the 

cardiac output. A value greater than 2.5-3 Woods units is indicative of disease. 

RMPA ~ Right Main Pulmonary Artery 

RV (Right Ventricle) ~ the anatomical location in the heart whose health is associated with 

determining stage of disease. 

TPG (Trans-pulmonary Gradient) ~ the difference between the MPAP and the PCWP, a value 

<15 mmHg indicates the presence of disease. 
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2.0  BACKGROUND 

This chapter is a review of background relevant to both the problem and the proposed 

solution. An overview is given of PAH, related diagnostic techniques including both imaging 

and non-imaging tests, and the basis of the algorithmic approaches for the vascular analysis. 

Figure 1. Diagram of the Heart and Lungs as a Reference Guide 

 

*This image is from http://www.bartleby.com/107/138.html and is in the public domain because 

its copyright has expired. 

http://www.bartleby.com/107/138.html
http://en.wikipedia.org/wiki/public_domain
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2.1 ANATOMY OF THE PULMONARY VASCULATURE 

A widely used nomenclature of the pulmonary arteries is as follows. The first order artery 

is the pulmonary trunk, which then bifurcates into the second order arteries, the left and right 

main pulmonary arteries (LMPA and RMPA respectively). The RMPA is longer than the left and 

travels down toward the right lung, passing beneath the aortic arch before bifurcating into the 

third order arteries or upper and lower trunks also known as lobar arteries. The LMPA is a 

continuation of the pulmonary trunk and travels over the left main bronchus before splitting into 

the lobar arteries. The fourth order arteries are the segmental arteries whose branching pattern 

follows that of the segmental bronchi, with a total of ten segmental arteries on the right and eight 

on the left. The fifth order arteries are the subsegmental arteries, which arise directly from the 

segmental arteries. The final order to be discussed is the sixth order which are the arteries that 

arise directly from the first divisions of the subsegmental arteries [9]. This research is focused on 

the first and second order arteries only due to the difficulties with the segmentation process that 

will be described in detail in following sections. Figure 2a is a screenshot of an examination used 

in this study with the pulmonary vasculature anatomy labeled as used in this research. Figure 2b 

is a drawing reproduced from “Gray’s Anatomy” showing the pulmonary anatomy. 
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*This image is from “Gray’s Anatomy” and is in the public domain because its copyright has 

expired. 

Figure 2a) Computed Tomography Exam with Labeled Pulmonary Vasculature, 2b) Drawing of 

the pulmonary arteries showing the branching of the arteries. 

http://upload.wikimedia.org/wikipedia/commons/e/e7/Gray503.png
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2.2 OVERVIEW OF PULMONARY ARTERIAL HYPERTENSION  

Pulmonary hypertension (PH) is a complex disorder with many etiologies which are 

divided into five main categories. Table 1 outlines these categories in the revised World Health 

Organization (WHO) classification of PH [10]. According to the current definitions the focus of 

the research presented here is on pulmonary arterial hypertension (PAH) (WHO Group 1 in 

Table 1.). 

In 1951 Dr. David Dresdale coined the phrases “primary” and “secondary” pulmonary 

hypertension.  These terms have since been replaced with pulmonary arterial hypertension (PAH, 

WHO Group 1) and PH resulting from other causes (WHO Groups 2-5), respectively 

(ACCF/AHA 2009).  

Pulmonary arterial hypertension (PAH) is defined as abnormal elevation of pressure in 

the mean pulmonary artery pressure (MPAP) > 25 mmHg at rest or > 30 mmHg during exercise 

[11] and pulmonary venous pressure (also defined as left atrial or left ventricular end-diastolic 

pressure) ≤ 15 mm Hg. It is, by definition, an abnormality of the pulmonary arterial vascular bed. 

In a healthy, normal patient, the pulmonary vascular bed can handle the volume of blood passed 

through the pulmonary arteries from the right ventricle at a normal resting flow of approximately 

5 L/min at rest and up to 30 L/min with exercise. There is low resistance to the blood flow, and 

when the volume of the blood increases, the vessels dilate in compensation. In patients with 

PAH, the vascular bed is deteriorated and the ability for the pulmonary vessels to compensate for 

increased flow or volume is impaired, resulting in an increase in the arterial pressure. In relation 

to the heart this means that when the pressure is elevated for a prolonged amount of time the 

right ventricle hypertrophies in order to compensate for the increased resistance. Over time the 

right ventricle will dilate and eventually fail [1]. 
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The prognosis of PAH is poor; there is a 15% mortality rate for the first year with modern 

therapies. Median survival without treatment is 2.8 years with 1-, 3-, and 5-year survival rates of 

68%, 48%, and 34%, respectively [7]. With continuous prostanoid treatment this has improved to 

be 87-88%, 63-71%, and 56%, respectively [12, 13].  Similar results have been seen with the oral 

endothelin receptor antagonist bosentan monotherapy (82-96%, 67-89% at 1 and 2 years) [14].  

Characteristics used in predicting a poor prognosis include advanced functional class, poor 

exercise capacity measured by the 6-minute walk test, high right atrial pressure, significant right 

ventricular dysfunction, evidence of RV failure, low cardiac index, elevated brain natriuretic 

peptide, and an underlying diagnosis of scleroderma spectrum of diseases (i.e. diseases that 

involve the fibrosis or hardening of the skin that can affect all areas of the body including the 

organs) [10, 15]. RV function in particular is a critical determinant of patient outcomes in PH, 

causing at least half of all PH deaths, and has recently been recognized as an important avenue 

for further research [7, 16]. However, current markers of RV failure that have been associated 

with poor outcomes only recognize end stage disease. Identifying which patients will progress to 

RV failure and at what time in the course of disease has been difficult.  
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Table 1. Revised WHO Classification of PH [10]. 

 

 

 

 

 

Main Categories Sub-Categories Specific Etiologies 

1. Pulmonary 

Arterial  

Hypertension 

(PAH) 

1.1.  Idiopathic (IPAH) 

 

1.2.  Familial (FPAH) 

 

1.3.  Associated with (APAH) 

 

1.4.  Associated with Significant 

venous or capillary involvement 

 

1.5.  Persistent pulmonary 

hypertension of the newborn 

1.3.1 APAH causes: 

Connective tissue disorder, Congenital 

systemic-pulmonary shunts, Portal 

hypertension, HIV infection, Drugs and 

toxins, Thyroid disorders, Glycogen 

storage disease, Gaucher’s disease 

Hereditary hemorrhagic telanglectasia, 

Hemoglobinopathies, Chronic 

myeloproliferative disorders, splenectomy 

1.4.1 Causes: 

Pulmonary veno-occlusive disease 

(PVOD), Pulmonary capillary 

hemangiomatosis (PCH) 

2. Pulmonary 

Hypertension 

with Left Heart 

Disease 

2.1 Left-sided atrial or ventricular 

heart disease 

 

2.2 Left-sided valvular heart disease 

 

3. Pulmonary 

Hypertension 

associated with 

lung diseases 

and/or 

hypoxemia 

3.1. Chronic Obstructive Pulmonary 

Disease  

 

3.2.  Interstitial Lung Disease 

3.3.  Sleep disordered breathing 

 

3.4.  Alveolar hypoventilation 

disorders 

 

3.5. Chronic Exposure to high 

altitude 

3.6.   Developmental Abnormalities 

 

4. Pulmonary 

Hypertension 

due to Chronic 

Thrombotic 

and/or embolic 

disease 

(CTEPH) 

4.1. Thromboembolic obstruction of 

proximal pulmonary arteries 

 

4.2. Thromboembolic obstruction of 

distal pulmonary arteries 

 

4.3.Nonthrombotic pulmonary 

embolism  

4.3.1 Causes: 

Tumor, parasites, foreign material 

5. Miscellaneous 

 Sarcoidosis, Histiocytosis X, 

Lymphangiomatosis, Compression of the 

pulmonary vessels (adenopathy, tumor, 

fibrosing meadiastinitis) 
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2.2.1 Diagnosing PAH 

Pressure values obtained from right-sided heart catheterization are the gold standard in 

PH diagnosis [1, 17-19]. Pressure measurements such as the mean pulmonary artery pressure 

(MPAP), pulmonary capillary wedge pressure (PCWP), trans-pulmonary gradient (TPG = MPAP 

- PCWP), and pulmonary vascular resistance (PVR = TPG / cardiac output) are how the disease 

is defined and diagnosed. A PCWP < 15 mmHg, a PVR value greater than 2.5-3 Woods units 

and a TPG > 10 mmHg are all indicative of PAH. Heart catheterization is an invasive procedure 

with known complications [17-19]. According to a study by Hoeper et. al., out of 7,218 right 

heart catheterization procedures there were 76 (1.1%) adverse events and four (0.055%) fatal 

events [20]. In regards to the study they report the more frequent complications were related to 

venous access and arrhythmias [20]. Other common complications include infection, bleeding 

and pain at the catheter insertion point [21]. Damage to the blood vessels can occur while the 

catheter is being threaded to the heart.  The catheter may cause a hole or scrape the vessel along 

the way. However, this is a rare event [21]. Other less common complications include 

arrhythmias, blood clots, low blood pressure, and a buildup of fluid in the pericardium from 

perforation of the heart, and pulmonary artery rupture [20, 21]. Incidence rates for these 

complications were not reported in the referenced studies; however, although they are “common” 

complications they are also rare events.  

In addition to the health related complications there is also the issue of expense. Heart 

catheterization is a costly procedure, reducing the need for this test would lower the expense 

involved in obtaining the diagnosis.  
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Studies have been done to identify less invasive procedures for the diagnosis of PH, in 

particular using computed tomography (CT) of the chest. One such study is by Grubstein et al. 

[22]. They wanted to "assesses the capability  of computed tomography angiography and high 

resolution CT to diagnose and estimate the severity of pulmonary hypertension as compared with 

standard means of right heart catheterization, echocardiography and pulmonary function tests" 

[22].  They measured the diameters of the ascending aorta, main pulmonary trunk and the right 

and left main arteries. They then compared their findings to their control group and concluded 

that the "size of the main pulmonary artery on CT angiography has a good predictive value 

regarding the severity of pulmonary hypertension."  It has also been reported by Grubstein et al. 

that there may be a "correlation between the ratio of the main pulmonary artery ascending aorta 

diameters and the pressure measurement by right heart catheterization [22]." A key component 

of this dissertation research is to understand the relationship of the sizes of these vessels and the 

physical changes they go through when affected by PH. Another group, Engelke et al., generated 

a review article "High-resolution CT and CT Angiography of Peripheral Pulmonary Vascular 

Disorders." In their review they reported that "the correlation between pulmonary artery dilation 

and the degree of pulmonary hypertension at CT angiography is nonlinear" [23]. It also mentions 

that for adult patients a diameter of 29 mm for the distal main pulmonary artery at its widest 

point has a positive predictive value of 95%, and if the width exceeds the diameter of the 

ascending aorta then it also has a positive predictive value of 95% [23]. Ng et al. performed a 

study to determine if the ratio of the main pulmonary artery diameter to the aortic diameter can 

be predictive of PH using CT exams [24]. They performed a series of analyses incorporating age 

as a variable in their analysis. They concluded that if the patient is younger than 50 years of age, 

there is a strong correlation between the pulmonary artery radius and the mean pulmonary artery 
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pressure in a heterogeneous study. They conclude that a ratio greater than 1 is indicative of PH 

[24].  Another group Edwards et al. report that patients with a main pulmonary artery diameter 

greater than 3.32 cm is indicative of PH [25].  

Up to this point all of the referenced studies have performed their analysis using manual 

measurements of the vasculature by experts. Our approach is a semi-automated method of 

measuring the necessary vasculature, using manual calculations as a way of checking the validity 

of our model. Devaraj et al. [26] performed a comparison of the CT measurements and the mean 

arterial pressure using linear regression, followed by a multivariate regression to establish a 

pressure index and lastly they ran a logistic regression and ROC analysis to test the diagnostic 

ability of the CT-echocardiography composite. They concluded that the combination of "CT and 

echocardiographic markers of PH is more closely related to the mean arterial pressure than either 

test" alone [26]. In this study we will be performing a similar regression-based analysis using 

CTPA images and pressure measurements gathered from right heart catheterization tests. The 

underlying goal of these studies is the same as ours: to find alternative, less invasive yet reliable 

methods for the diagnosis of PAH.  

Another related area of research focuses on the distensibility of the pulmonary artery. The 

difference in size of the pulmonary artery is measured between systole and diastole during the 

cardiac cycle. The group Abel et al. in a study titled “Pulmonary artery and right ventricle 

assessment in pulmonary hypertension: correlation between functional parameters of ECG-gated 

CT and right-side heart catheterization” reported that “Pulmonary artery distensibility was 

significantly correlated to mPAP” [27] or mean pulmonary artery pressure.  

While the studies listed here are not exhaustive, they provide a representative sample of 

the studies that have been reported.   
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For the detection of PH from visualization of the pulmonary arteries, most radiologists 

concentrate on the dilation of the main pulmonary artery both in absolute terms and in relation to 

the ascending aorta [23, 26]. Another sign of PH is the tapering of peripheral arteries [23]. It has 

been suggested that using computer aided detection (CAD) to assist radiologists may reduce the 

number of false negatives [28].  

 

2.3 IMAGING TECHNIQUES USED IN DIAGNOSING PH 

 This section provides a review of the imaging tools that are currently available. Although 

the focus of this dissertation is on the use of CT images all of the modalities discussed can be 

used in the detection of PH in some capacity and may have the potential for similar studies for 

the diagnosis of PH. The field of medical imaging is just over 100 years old, however, the 

concept has been around for centuries [29-33]. The purpose of the field is to allow the clinician 

to see inside in the patient to diagnose a condition by visualizing the data obtained directly from 

the patient. The main focus of medical imaging is to improve the quality of the images for 

radiologists to evaluate. A Czech mathematician, Johann Radon derived a transform for 

reconstructing cross sectional information from a series of planar projections from around an 

object, also known as a 3D image [30, 31]. Although these theories have been known for over 

fifty years, it was not until the 1970's when digital computing was finally powerful enough to 

create images from the data that cross sectional imaging became prevalent in medicine [31].  
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2.3.1 X-Ray 

Wilhelm Conrad Roentgen accidentally discovered x-rays in 1895 while experimenting 

with electron beams. While experimenting, he noticed a fluorescent screen in his lab began to 

glow when the beam was turned on. This was expected to occur when fluorescent materials were 

exposed to electromagnetic radiation. However, he attempted to block the radiation with 

cardboard and the glowing screen was not expected.  Roentgen experimented by placing a 

number of different objects between the tube and the screen in an attempt to prevent the screen 

from glowing. He then placed his hand between the two and the silhouette of the bones in his 

hand could be seen on the screen. Roentgen immediately recognized the value of using x-ray 

radiation for imaging and the positive effects it could have on the medical community [30, 31, 

33].  Six years after announcing his achievement he received the Nobel prize [30, 31]. X-rays 

were denoted as such by Roentgen because the type of radiation that was occurring was 

unknown [29, 32]. X-rays are a form of ionizing radiation and long term exposure can be 

detrimental to one's health. Health issues can arise if 1) the rays carry enough energy that when 

they collide with atoms within the patient's body they cause electrons to detach from those atoms 

resulting in free floating negatively charged electrons and or positively charged ions, and 2) the 

exposure to the rays is long enough [34]. The heart of an X-ray machine is an electrode pair 

made up of a cathode and an anode housed in a glass vacuum tube.  The cathode contains a 

filament that is heated by passing current through it.  The heat causes negatively charged 

electrons to be ejected from the filaments surface. The positively charged anode, composed of a 

flat tungsten disc, pulls the electrons through the tube. There is a large voltage difference 

between the cathode and anode causing the electrons to fly through the tube with a great deal of 

force. This process creates x-rays in two ways. The first is the photoelectric effect, which occurs 
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when the electrons collide with the tungsten atoms of the anode with such force that it kicks an 

electron off the lower orbital of the tungsten atom. To stabilize the tungsten an electron from the 

higher orbital must drop down to fill the place of the ejected electron. This drop from a high 

energy level to the low level causes a release in energy in the form of an x-ray photon. The 

second way is due to Compton's Scattering, which occurs when the tungsten atom's nucleus 

attracts the moving electron just enough to change its course. The electron slows down as it 

speeds past the nucleus to change direction. The action of slowing down causes the electron to 

emit energy in the form of an x-ray photon [34-36].  To combat the heat that these processes 

generate the machine contains a motor that rotates the anode to prevent it from melting and 

immerses the anode in an oil bath to diffuse the heat. The entire machine is surrounded by a thick 

lead shield to prevent the x-rays from escaping in all directions. A small window in the shield 

allows some of the x-ray photons to escape in a narrow beam. The beam then travels through a 

series of filters on its way to the patient. A detector placed on the opposite side of the patient 

records the pattern of x-ray light that passes all the way through the patient's body [34, 36].  

2.3.2 Computed Tomography (CT) 

Ronald Bracewell and William Oldendorf were the first two pioneers of CT imaging. 

They gathered their data and in 1955 Bracewell was able to reconstruct a two-dimensional map 

of a solar image using Fourier transforms. In 1960 Oldendorf lacked the computational tools to 

interpret the quantity of data he would need to generate the images but was able to demonstrate 

how to reconstruct a two-dimensional display of images and the beginnings of the CT machine 

[31]. The main goal of Oldendorf's work was to determine whether internal structures within 

dense structures could be identified by transmission measurements [37].  It was not until the 
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1970's when digital computing was finally powerful enough, to create images from the data [30].  

The CT scanner began as a crude instrument in 1971 in London by Godfrey Hounsfield [31, 38]. 

It was installed in Atkinson Morley Hospital[38]. However, three-dimensional imaging was not 

seen until 1972 when X-ray computed tomography (CT) was independently developed by 

Godfrey Hounsfield and Alan Cormack. For their discovery they shared the Nobel prize in 

medicine in 1979. Their primary contribution was the engineering aspect that proved what had 

previously been theorized on paper by the scientists that came before.  These systems where 

patented in 1975 and began being used shortly thereafter [30].  A CT scan is developed using x-

rays to generate tomographic images that “slice” through the body. (“Tomos” is Greek for slice 

or section.) In a typical CT, the technician first places the patient on the table and performs what 

is called a "scout view", a 2D image of the patient.  The goal is to learn anatomical landmarks 

and to determine the exact location and range of the CT scans. Once the scout scan is completed, 

the computer system sends instruction to the table, the x-ray tube and detector. The table travels 

horizontally at a constant speed while both the x-ray tube and detector remains stationary.  See 

Figure 3, the patient is lying on the table as it moves through the opening in the machine that 

houses the x-ray tube and detector. The high voltage generator achieves the desired voltage and 

keeps both the voltage and the current to the x-ray rotation tube at the predetermined level. The 

x-ray tube produces a fan shaped beam of x-rays directed at the patient and the resulting x-ray 

photons that exit the patient's body are picked up by the detectors. Occurring simultaneously, the 

data acquisition system is uniformly sampling the detectors outputs and converting the analog 

signals to digital signals. The data are then preprocessed and enhanced before viewing and 

storage [37, 39].   
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Figure 3. An Example of a patient undergoing a CT exam 

 

*This image is open source licensed under the Creative Commons Attribution 3.0 

Unported license 

CTA is when CT is used to specifically image the arteries. In conventional angiography, 

a catheter is threaded through the groin to the vascular structure to be imaged where a contrast 

media is directly injected. In CTA or CTPA (Computed Tomography Pulmonary Angiography) a 

catheter is inserted into a vein in the arm where the contrast media is injected. By using a venous 

injection, the cost and risks of the procedure are dramatically decreased. The contrast media, 

typically an iodinated material, has a high CT number, allowing the arteries to be well 

differentiated from any surrounding soft tissue [40].  

Interpreting or processing CT scans can become difficult due to the presence of artifacts 

in the image. A CT artifact is any discrepancy between the reconstructed values in the image and 

the true attenuation coefficients of the patient, the value quantifying how easily the x-ray beam 

passes through the tissue. There are four major categories of artifacts: 1) streaking, appears as 

http://upload.wikimedia.org/wikipedia/commons/1/13/Rosies_ct_scan.jpg
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straight lines going across the image in some direction; 2) shading, appears as shadowing near 

objects of high contrast and can mimic pathology and lead to misdiagnosis; 3) rings and bands, 

appear as rings and bands that are superimposed on the original image structure; 4) 

miscellaneous, covers all of the other artifacts that are not as common. Artifacts can be a result 

of a failure in the system design, the x-ray tube, the detector or a problem related to the patient 

[37].   The artifacts of issue in relation to PH are when they appear as streaks through the image 

or vessel beading, or when there is beading in oblique vessels resulting from partial volume 

artifacts that appear more severe in peripheral vessels [23]. The presence of artifacts can disrupt 

the segmentation process. The segmentation algorithm may not be able to differentiate the 

artifact from the vasculature and mark it as a vessel or it may remove it all together resulting in 

an inaccurate segmentation and image that will be difficult to use in analysis.  

2.3.2.1 Artifacts Common to CT Images 

Artifacts Related to System Design 

Aliasing is a type of artifact that can occur due to sampling errors. Sampling is the first 

step when gathering the data to compile a CT image. The detectors sample the continuous wave 

of x-ray photons to gather signals that represent the current view for that slice. The sampling 

occurs in groups categorized by time to divide the views into slices. There are rules in place to 

prevent the production of artifacts, however, aliasing can occur when the data are not sampled at 

a rate that is twice as high as the highest spatial frequency within the dataset. Let us say Y is the 

spatial sampling distance that is equal to the detector channel spacing; the difference in 

frequency absorbed between adjacent detectors. The sampling is occurring at the rate of 1/Y. If 
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the fraction of the spatial sampling distance is too small, where sampling areas are overlapping 

then the signals will overlap as well causing the development of aliasing artifacts [37, 41]. 

Partial volume is another type of artifact that can occur; it happens when the object is 

partially protruded into the scanning plane. The thicker the slice the more likely partial volume 

will occur. Due to the way the x-ray beam diverges into the z-direction (the Cartesian coordinate 

in a three dimensional space). The effect of the partially protruded object is angular dependent. 

When the CT scanner rotates so that the patient is closer to the detector the x-ray beam profile is 

wide enough that the patient is within the field of view. However, when it rotates to the opposite 

side, part of the patient will be out of the beam path creating inconsistencies in the data resulting 

in shadowing and streak type artifacts [37]. 

Scatter is another cause of artifacts related to the effects of Compton’s scattering. Due to 

Compton scattering not all of the x-rays that reach the detector are primary photons. Depending 

on how the CT system is designed a portion of the detected signal can be generated from the 

scatter. The scattered photons cause the detected signals to deviate from the true measurements 

of the x-ray intensities and will result in shading, streaks or number shift type artifacts [37]. 

Noise induced streaks are artifacts that result from the amount of x-ray photons that are 

generated from the x-ray tube. Excessive photon noise will cause severe streaking in the 

resulting image [37]. The presence of high attenuation objects is often the culprit in this type of 

artifact.  Often the objects responsible are metal implants such as joint prosthesis, surgical clips 

and dental fillings [42]. This can also happen when the parameters are not properly selected. The 

main causes of these types of artifacts are due to the limitations of the CT system itself. For 

instance, if the patient is larger and not enough x-ray photons can be produced to generate a clear 
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image of the patient using thin slices. This is the limit of the scanner and can sometimes result in 

unusable images [37]. 

Artifacts Related to the X-ray Tube 

One cause is off-focal radiation, which is caused by secondary electrons and field 

emission electrons. When the high speed electron crashes into the target, electrons are emitted 

from the site of impact. Most of these electrons are high velocity and return to the target at a 

point outside of the focal point and produce x-ray photons at their point of impact. Therefore, the 

x-ray source will have a high intensity center spot surrounded by a low intensity halo. This halo 

area will cause degradation to areas that are of low contrast and shading artifacts will develop 

that can sometimes render the image useless or mimic pathology leading to a misdiagnosis [37]. 

Tube-arcing or tube split will occur if there are impurities in the tube resulting in a 

temporary short circuit. When this occurs there is a significant increase in current and decrease in 

voltage. The CT system has a mechanism built in to detect this type of phenomenon, when it is 

detected the power supply is turned off to prevent further arcing. After a period of time the x-ray 

tube returns to its normal functioning level. However, the time in between there is a noticeable 

decrease in the production of the x-ray photons. If this is an isolated event there are methods 

built into the data acquisition and reconstruction to handle this situation, but if this occurs again 

the scan will be stopped to prevent unnecessary exposure to the patient and generating a 

degraded, useless image [37]. 

Tube rotor wobble is another class of issues that can create artifacts related to the x-ray 

tube. This is a group of mechanical failures that can result from a lack of rigidity in the gantry, 

mechanical misalignment, or x-ray tube rotor wobble. All of these have the same effect resulting 

in streaking artifacts across the images. The cause for this event is when the x-ray beam position 
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deviates from the position assumed by the reconstruction algorithm. These effects result from the 

high rate of speed at which the rotor shaft spins. The rotor shaft spins to keep the amount of heat 

generated by the electron beam down, over time this system wears down and needs to be 

replaced or artifacts of this nature will be seen [37]. 

Detector-Induced Artifacts 

Offset, gain, nonlinearity and radiation damage all lead to ring artifacts. All of these 

issues are due to malfunctions with the detector.  Another issue deals with primary speed and 

afterglow. When we expose a patient to the x-ray beam once shut off there are still excited 

electrons that are passing through and the detector output will not reach zero right away. The 

amount of time taken for the detector to stop receiving a signal is the afterglow, while the 

amount of time it takes for the signal to decay with short time constants is the primary speed. 

The primary speed affects the spatial resolution of the images and the afterglow usually affects 

image artifacts. Finally there is the uniformity of the detectors response. We assume that the 

detectors response does not change with where the x-ray photon hits the detector. When this is 

not the case some of the detector responses are significantly different from that of their 

neighbors.  This can be caused by a change in the reflective material placed between the 

detectors, mechanical stress, radiation exposure, or age. 

Patient-Induced Artifacts 

When a patient moves either voluntarily or involuntarily during a scan artifacts can be 

created. The patient could move in and out of the scanning plane, or they could move within the 

scanning plane. Another occurrence that causes artifact generation is called beam hardening, 

which can be a result of the polychromatic x-ray beam spectrum and energy dependent 

attenuation coefficients. Low energy photons have high energy attenuation coefficients and high 
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energy photons have low energy attenuation coefficients. When the beam, which is a mix of 

these two classes of photons, is sent through soft tissue most of the low energy photons are 

absorbed leaving mostly high energy photons. Due to this phenomenon the issue has been coined 

“beam hardening”. These types of artifacts can be reduced through the use of adequate beam 

filtration. Another cause of artifacts is when the patient has metal object within their body. These 

types of artifacts will vary in size and shape significantly based on the type of object the patient 

has within their body. Finally the last cause for patient induced artifacts is incomplete projection 

which is simply when part of the image is not able to be reconstructed. This will occur when the 

patient is not entirely within the scan field of view. This happens more often than not because the 

opening of the gantry is much larger than the scan field of view. If the patient is not 

appropriately placed then the image will be truncated. The areas where truncation does occur 

near the edges there will be bright shading artifacts. 

The advantages of using CT scans are that they are fast and can scan bone and cartilage. 

They also improve contrast resolution and decrease structural noise. The disadvantages are that 

since CT scans also use x-rays they also have ionizing radiation, they have limited tissue 

definition and application and are expensive [31, 38].  

2.3.3 Lung Perfusion Ventilation Scan 

A lung perfusion ventilation scan or VQ scan, measures both the oxygen and blood flow 

in the lungs. This test involves two types of scans. The ventilation scan shows the air flow in the 

lungs and the perfusion scan shows the blood flow. Both the ventilation and the perfusion scans 

use radioactive isotopes, a type of nuclear medicine. The isotopes are either inhaled for the 
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ventilation scan, or injected into a vein in the arm for the perfusion scan. Changes in the flows 

may be a symptom of pulmonary hypertension[40]. 

2.3.4 Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) uses magnetic fields and radio waves to create images. 

Tools such as x-rays expose patients to ionizing radiation that can create free radicals or break 

chemical bonds. MRI employs a method that does not affect the patient's body chemistry but 

instead records information collected from the movement of the atoms deep in the nuclei of the 

cells[43]. MRI uses magnetic fields and radio waves to create images.  The first human MRI 

took 5 hours to generate and was performed on July 3, 1977. It took seven years for Drs. 

Raymond Damadian, Larry Minkoff, and Michael Goldsmith to reach the point of generating 

practical images. The main obstacle for MRI scanners was having the ability to generate a strong 

enough magnetic field to create the image. For this reason the maturity of the MRI remained 

stagnant until engineers were able to build super conducting magnets capable of creating an 

appropriate magnetic field [30, 31]. Patients are placed on the bore of the scanner and inserted 

into the magnetic field. To prevent interference from outside, the magnet is housed in large 

masses of iron surrounded by a Faraday cage. When the patient is exposed to a high magnetic 

field the hydrogen atoms within the patient have a strong tendency to line up with the direction 

of the field [30, 43, 44]. The hydrogen atoms are targeted because its nucleus has a single proton 

and a large magnetic moment. When subjected to the field, the hydrogen protons in the patient 

will line up in the direction of either the feet or the head. The majority of these protons will 

cancel each other out, for each one lined up toward the feet, one toward the head will cancel it 

out. Only a couple of protons out of every million will remain.  Once aligned a pulse of low-level 
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radio waves is directed through the patient. The pulse causes the protons in that area of the body 

to absorb the energy required to make them spin at a particular frequency, in a particular 

direction [30, 44]. The specific frequency of resonance is called the Larmor frequency and is 

calculated based on the particular nuclei being imaged and the strength of the main magnetic 

field. The goal is to spin more atoms in the opposite direction, which is the higher energy state, 

than the amount that remain in the low energy state. For this to occur the pulse must be in 

resonance with the Larmor frequency [44]. 

 The pulses are usually directed through the use of a coil which can be specific to a part of 

the body. There are three gradient magnets arranged inside the main magnet so that when they 

are turned on and off very rapidly in a specific manner, they alter the main magnetic field on a 

very local level. This gives the medical professionals the ability to choose exactly which area of 

the body to image. An MRI is able to generate a slice from any part of the body in any direction 

without moving the patient or machine [30, 44].  

 When the pulse is turned off, the hydrogen protons begin to return to their original 

alignments within the magnetic field and release their excess stored energy to return to that lower 

energy level. When this happens, they give off a signal based on their spin densities that the coil 

now picks up and sends to the computer system. What the system receives is mathematical data 

that is converted, through the use of Fourier transforms into an image. Image reconstruction uses 

Fourier transforms to convert the information gathered into image information that represents the 

two dimensional distribution of the spin densities [44].  

 The resulting MRI images can be used in the same manner as the CT images for detecting 

PH. In fact, the methods outlined and described in this dissertation can be directly applied to MR 

data, CT data was only used because of its availability.  
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2.3.5  Ultrasound 

Ultrasound is unlike any of the other imaging techniques previously discussed. It 

produces real time images, does not use ionizing radiation, and is fairly inexpensive. It utilizes a 

piezoelectric quartz crystal to create high frequency acoustic energy in the range of 3 to 10 

Megahertz. This energy is then reflected off the surfaces of the organs within the body.  The 

transducer is the same device used to create the signal and is also used to measure the returning 

echo information. Ultrasound machines typically contain a linear array of transducers and 

produce an image that is a pie shaped slice of the patient's body [30]. The problem with 

ultrasound in regards to identifying pulmonary disease is that the images retrieved are not clear 

in part due to respiration [31].  Ultrasound imaging relies on transmission of sound waves and 

therefore the signal is degraded when the beam has to travel through air (lungs) as compared to 

through solid tissue. Conditions of increased lung volumes (such as COPD) exacerbate this. 

In 1949 Douglas Howry built the first rudimentary ultrasound machine using Navy 

surplus SONAR equipment and bomber parts. Employing self-experimentation he focused the 

machine on his thigh and obtained an image of the tissue. He built a second machine that was 

more sophisticated than the first that he called a "somascope." It later evolved into B-mode 

imaging which is a way of obtaining two-dimensional images by recording sound echoes from 

tissue. By hand he measured the distances from the surface of the body to each organ and using 

these measurements constructed a compound picture from the cross-sectional images. He 

continued to refine his work along with other groups working in parallel over the years. When 

their techniques were merged with digital computers in the 1970's the ultrasound devices of 

today were created [31]. 
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Some advantages of ultrasound, as mentioned earlier, are that it is inexpensive, functions 

in real time, and is non-invasive. The drawbacks are that the image is not clear, is very operator 

dependent, and has difficulty imaging the areas around the lungs [31]. 

2.3.6 Nuclear Medicine 

Nuclear medicine uses radioactive solutions injected into the patient and images how the 

solution is distributed through the body using a detector array to catch and quantify the amount 

of radiation being emitted from the body. The main difference between this system and the CT 

scan is that the source of radiation for the CT is external and the distribution of it is known 

whereas, for nuclear medicine the source, which is the solution, is internalized and the 

distribution is not known [30].   

In 1952 the first positron scanner was used to image brain tumors in patients. In 1954 the 

"photoscan" was invented by David Kuhl, he created the first transmission image of the lungs of 

a naval student. However the connection between transmission and emission was not yet 

validated. Emission images began with the first SPECT machine by Kuhl in 1968. At the time it 

was the most inexpensive and convenient imaging technology available.  In 1973 Ter-Pogossian 

and his group created the first positron imaging device and nicknamed it the "lead chicken." In 

1983 radioactive tracers pioneered by George Hevesy were first used in PET scans to record and 

map the functioning of sight. Finally in the mid 1980's PET scanners and the 

radiopharmaceutical manufacturing reached the point where exploration stopped and 

simplification and fine tuning has begun [31]. 

The images generated in nuclear medicine are often hard to distinguish and have poor 

spatial recognition; they usually have low resolution and a high amount of noise. A benefit of 
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nuclear medicine is that it allows the physician to capture the physiological activity of the patient 

and not just the locations of the patient’s anatomy. The choice of the radioactive solution will 

affect the quality of the resulting image. Radioactive iodine is very good for generating images 

of the thyroid and parathyroid glands. Radioactive tracers can be attached to numerous different 

substances. The image quality is due to our inability to use high radiation doses because of the 

detrimental effects it will have on the patients [30].  

2.4 MEDICAL IMAGE PROCESSING 

Medical imaging systems are tools used by medical professionals to aid in diagnosis and 

care for a patient.  The data gathered by these systems are often in the form of 2D images, 

composed of data arrays that can be organized using two Cartesian dimensions.  This 

information must be preprocessed prior to reaching the clinician in order to make informed 

decisions. The process of diagnosing and treating a patient in regards to imaging occurs in three 

main steps. The data must be first preprocessed, meaning filtered, remove the noise and the 

features enhanced. Next the information is either given to the clinician where the condition or 

event can be detected or it is first identified by the machine and then passed on to the clinician.  

The final step is the quantitative analysis of the detected condition. There are three problems that 

are inherent to medical image processing. They are filtering, segmentation and registration [30]. 

Only an overview will be given of the processing techniques; they will not be discussed in detail. 
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2.4.1 Filtering   

This includes the procedures for preprocessing the data gathered by the medical imaging 

techniques previously described. This happens prior to when detection and analysis are 

performed. Filtering removes noise, enhances features and reduces any effects that occurred 

during image acquisition. Generally, a filter defines some neighborhood function. Median 

filtering for instance, used in this research, takes the 3x3x3 neighborhood of a point and replaces 

the point with the median value of the neighborhood [45]. Two more examples of filtering are 1) 

convolution which is a one dimensional operation that applies a filter kernel to an image to 

smooth it out and 2) Fourier transform which decomposes the image into component sinusoidal 

spatial functions for computational viewing and manipulation [30].  

2.4.2 Segmentation 

Segmentation is the process of breaking up the image or 2D array into regions that have 

cohesive properties. One example of segmentation is thresholding. It is a binary process where 

for each pixel a decision is made based on its intensity level independent of its neighbors. If the 

intensity is greater than some value the pixel is classified differently than if its value is below a 

certain level. For a CT image the intensity is reported in Hounsfield units and are calibrated to 

correspond to the attenuation of the X-rays measured within the tissue [30].  
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2.4.3 Registration 

Registration is the process of transforming multiple data streams into one coordinate 

system to create a more powerful diagnostic tool [30, 46]. Multiple images taken from different 

perspectives, at different times and recorded by different sensors are overlaid on one another to 

create one master dataset. Registration contains four key steps: 1) feature detection, 2) feature 

matching, 3) transform model estimation and 4) image resampling and transformation [46].  

 

2.5 EXTRACTING VASCULAR FEATURES 

2.5.1 Vascular Segmentation 

Studies have been done to find a solution to segmenting the pulmonary vasculature. The 

closeness of the vessel voxel signals between vessels and the tissue surrounding the lungs make 

thresholding difficult, as almost inevitably the vascular segmentation “bleeds” into these 

surrounding structures. Consequently, more involved segmentation techniques are needed. 

Masutani et al. developed a method for vasculature segmentation using 3D image analysis 

methods combined with anatomic knowledge [47]. They sequentially segment several anatomic 

structures using the properties of each structure for the next step in the segmentation and to 

validate intermediate results [47]. Masutani et al. were able to successfully segment the 

pulmonary vasculature however, they were not able to separate the pulmonary vessels from the 

heart and corresponding arteries [47].  Another group Zhou et al. developed a method of 
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segmentation for the identification of pulmonary embolisms. Zhou's group developed a multi-

scale Hessian matrix-based filter that incorporates expectation-maximization (EM) analysis [48]. 

The EM analysis is used to separate the vasculature from the rest of the anatomy [48]. They then 

apply a series of filters for vessel enhancement similar to the method presented in this research. 

The method I used combines a series of mathematical morphological filters for isolating the 

vasculature and for enhancement of the vessels described in more detail in Section 3.2.1. Zhou 

et. al. only had 2 cases for development and only segmented the peripheral pulmonary vessels 

due to the difficulty in segmenting the larger pulmonary vessels from the heart. The research 

being presented segments the main pulmonary arteries with a few branching levels eliminating 

all other competing structures. The goals of all the segmentation methods are the same, to isolate 

the vasculature less any of the surrounding anatomy. 

2.5.2 Mathematical Morphology 

Mathematical morphology is used often to simplify the image for easier analysis by 

reducing the noise or generating skeletons (i.e. medial lines). For our purposes we apply these 

different methods throughout this research from segmenting the image, to cleaning up the image, 

followed by preprocessing and simplification of the segmented image into the skeleton that 

represents the vessel paths. Finally, we will use them to model the shape of the vasculature in 3D 

form. A skeleton in our case is a one voxel thick line that is medially located in all of the vessels 

of the vasculature.  

Mathematical morphology includes opening and closing methods, such as the 

preprocessing methods used in Section 3.2.3. Opening and closing is also used for extracting 

information from the segmentation in the generation of the skeleton using the hit-or-miss filter or 
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parallel thinning algorithms discussed in Section 3.2.4.  The two main methods of mathematical 

morphology are erosion and dilation, demonstrated in Figures 4a-d. Figure 4a is an example of 

erosion where it is shown that only when the origin of b is completely contained inside a are the 

pixel values retained, else they are deleted or eroded. We are assuming the origin of b is at the 

center[49]. Figure 4b is a demonstration of dilation the second key method in mathematical 

morphology. It is a dual operation to erosion (4c). Dilation (4d) expands the image to include the 

portions of the structural element that match the image (based on erosion) [49].  

  

Figure 4a-d: An example of erosion and dilation:(a) is the original image data, (b) is the 

structural element, (c) is the eroded image and (d) is the dilated image. 

Opening and closing are the two secondary classes of methods. Opening is when an 

image is first eroded and then that resulting image is dilated. Closing is the opposite: dilation 

followed by erosion; closing typically smooth’s out corners and areas that are protruding into the 

image [49]. 

2.5.3 Machine Learning 

Machine learning is the use of computational methods and algorithms to learn patterns 

and derive mathematical models from a dataset.  .Machine learning is a powerful set of tools 

because it enables the algorithm being used to predict classifications for outputs for instances 
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that were not used for learning [50]. Author Tom Mitchell defines Machine Learning as “the 

study of computer algorithms that improve automatically through experience. Applications range 

from data-mining programs that discover general rules in large data sets, to information filtering 

systems that automatically learn users' interests. [51]”  

There are two common classes of machine learning methods: supervised and 

unsupervised learning. Supervised learning is when the training set is labeled with designated 

classifications. An example is the prediction of whether or not a patient has a specific disease 

based on a number of variables (e.g., blood pressure, hematocrit level and gender). The training 

set will have all the patients labeled as either positive for the presence of disease or negative for 

presence of the disease. This is different from unsupervised learning where there would be no 

designation of positive or negative for disease [50]. An example is the clustering of patients into 

similar groups. I used supervised learning methods in this research for addressing hypothesis 2. 

2.5.4 Algorithms 

There are two main classes of algorithms that can be applied, namely, classification and 

regression. Classification models group different data points into groups based on their attributes 

[50]. The underlying goal of all model building techniques is to find the best fitting and 

biologically reasonable model to describe the relationship between the outcome variable and the 

predictor variables [52]. In this section I give a brief overview of the four different classifiers 

used in this research. 

Logistic and Polynomial Regression 

A regression model fits a mathematical function describing some curve (e.g., logistic or 

polynomial) that passes as close as possible to all data points. This enables us to predict a target 
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variable y given some variable values x, even though x may not have been one of the instances 

used during the training of the data [50]. In logistic regression the outcome variable is binary, in 

contrast to linear regression where the outcome variable is continuous. In addition, the error 

distribution is not assumed to follow a normal distribution but instead is assumed to follow a 

binomial distribution.  

CART (Classification and Regression Tree) 

 CART is a nonparametric method that uses either classification methods if the target 

variable is categorical or regression trees if the target variable is continuous..  It was first 

introduced by a group of researchers from Stanford in 1984 that included Leo Breiman, Jerome 

Friedman, Richard Olshen and Charles Stone. They defined three key components for generating 

a decision tree. First rules are defined for splitting the data based on the value for a particular 

variable (or feature). Second a rule must be defined for determining when the tree is complete, a 

stopping rule. Finally, each terminal or leaf node should be assigned a prediction or outcome 

value. During the decision tree process the data are recursively thinned down into more 

homogenous groups. The paths from each node to each leaf node are the resulting rules for 

assigning the outcome values [53]. One benefit of utilizing CART is that although large sample 

sizes are always preferred, when using CART accurate findings can be learned with smaller 

sample sizes. Secondly, assumptions such as the data fitting a normal distribution, linear 

relationships between independent and dependent variables and the data having the same 

variance are also not necessary for obtaining accurate results [54].   

Naïve Bayes 

The origin of the Naïve Bayes classifier is debated. However; it is named after Reverend 

Thomas Bayes who studied how to compute the distribution for the probability parameter of a 
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binomial distribution during the 18
th

 century. He defines the fundamentals underlying a general 

Bayes classifier in the famous article “An Essay Towards Solving a Problem in the Doctrine of 

Chances” published in 1763. Bayes’ theorem shown below, defines the relationship between a 

hypothesis H and evidence E [55, 56].  

       
          

    
  

          

∑               
 

The sum in the denominator in the third installment is over all hypotheses    that are 

considered to have non-zero probability     . A Naïve Bayes classifier is a specialization of 

the above general equation. In particular, a Naïve Bayes assumes that each piece of evidence ei 

in E is independent of each other piece of evidence ej in E  given a hypothesis   or  . Thus, we 

have:  
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3.0  METHODS 

This chapter details the steps taken and methods used for completing the hypotheses 

described in section 1.2.   

3.1 SPECIFIC AIM 1: CREATION OF THE DATA REPOSITORY 

We collected 27 de-identified CTPA cases with PH state confirmed via right heart 

catheterization (22 positive and 5 control cases). The pressure data corresponding to these cases 

are summarized in Appendix A.  

In addition to these 27 cases, we have an additional 94 CTPA cases that have been 

determined by a radiologist to be negative for PH as well as for any gross abnormality. These 94 

cases resulted from a dataset that began with over 500 CTPA cases (de-identified dictated reports 

and DICOM images) that were ordered to rule out pulmonary embolism (PE). I reviewed the 

associated radiology reports for those 500 plus cases to ensure that there were no other gross 

vascular abnormalities, including PH. If cases were rejected based on the contents of the reports, 

then additional control cases were randomly selected from the database until 100 cases were 

collected that contained no gross vascular abnormalities. After the initial 100 was identified, one 

case was eliminated due to an incomplete CT exam, leaving 99 cases that we used for negative 
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PH cases or control cases. In the end we had a total of 22 positive cases and 99 control cases (5 

controls from the initial 27 and 94 identified from the PE dataset). 

3.1.1 Power Calculations 

Power is defined as the probability of correctly rejecting the null hypothesis when it is 

false. We have 99 controls and 22 cases for all of the methods that do not involve the use of the 

pressure data. For methods involving the predictions using the pulmonary pressures we only 

have 22 cases and 5 controls to make up the dataset. For this power analysis the null hypothesis 

is that the mean pulmonary pressures of the disease versus control groups are equal. Our desired 

power is a minimum of 80%. To determine the power of the pressure dataset we chose the mean 

arterial pressure as the variable for calculation.  

In a second power analysis, the null hypothesis is that the mean diameters of the right 

main pulmonary artery for the disease versus control groups are equal. This analysis is being 

performed because one of the prediction models focuses on whether or not we can classify 

patients by disease state. I chose the RMPA values over the pulmonary trunk and the LMPA 

because of the positioning in the pulmonary tree, the RMPA is deeper than the trunk and the 

automated measurements are better matched to the manual measurements when compared to the 

LMPA values. 

I used an online power calculator (http://www.statisticalsolutions.net/pss_calc.php.) for 

determining the sample size needed for the experiments and, the results are provided in Section 

4.1.   
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3.2  SPECIFIC AIM 2: CREATE AND VALIDATE PUMA  

Now I will detail the methods and steps taken in the creation of PUMA (PUlmonary 

Mapping and Analysis tool), the tool we built for semi-automatically generating pulmonary 

vascular models that will be quantified in specific aim 3 for the diagnosis of disease.  

We built PUMA primarily using Python and leveraging a variety of existing tools 

including: 

 Insight Toolkit (ITK), an open source image analysis toolkit developed by the NLM 

[57] using WrapITK, or more recently SimpleITK, to create Python wrappers. 

 Visualization Toolkit (VTK), an open source visualization toolkit developed by GE, the 

NLM and others [58]. 

 NetworkX, an open source graph analysis toolkit developed at Los Alamos National 

Laboratory [59].  

 Mayavi, a 3D visualization toolkit written in Python that incorporates VTK 

http://mayavi.sourceforge.net/index.html 

3.2.1 Pulmonary Vascular and Aorta Segmentations 

Originally it was proposed that I would incorporate an existing automated algorithm to 

extract the pulmonary vasculature segmentation. However, due to the dissolution of a joint 

project I no longer had access to the existing algorithm. Instead I performed segmentations down 

to the segmental branches using a semi-automated approach on all the exams. Due to incomplete 

image files an additional three control cases were eliminated from the segmentation dataset. For 

each of the remaining 118 exams there were two segmentations one for the aorta and one for the 
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pulmonary vasculature, totaling 236 segmentations. I used ITK-SNAP [60] to generate the 

segmentations. ITK-SNAP is a software application based on the Insight Tool Kit [57], that is 

used for either manual or semi-automated segmenting structures in 3D medical images. Semi-

automatic segmentation of the images is based on active contour methods[60]. Because the 

active contour segmentation requires the user to  provide seed points and either intensity or 

gradient mappings, PUMA is now a semi-automated modeling method, although I believe that 

these semi-automated segmentations can form the basis for shape-based automated segmentation 

techniques. I segmented the aorta for each case because the measurement of the ascending aorta 

is used for normalization of the pulmonary vasculature measurements across patients using the 

same method as described in some of the studies in Section 2.2.1. [22-26]  
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     (a)                                                                    (b) 

   

(c)                                                                         (d) 

Figures 5a-d. Screenshots taken during the use of ITK-SNAP for the segmentation process. a) 

The initial screen once the image has been loaded. b) Setting the sampling region for the 

segmentation. c) Choosing the intensity values to differentiate between the vasculature to be 

segmented and the surrounding tissues. d) Seed placement to begin the segmentation. 

After the initial segmentations were generated, they were then “cleaned”. Cleaning 

consisted of manually parsing each of the segmentations slice by slice eliminating all areas 

where bleeding occurred.  I define image bleeding as the areas where the image intensities are 
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very similar to that of the vasculature we are trying to segment so that the segmentation crosses 

over and begin to include the surrounding tissue; an example is shown in Figure 6a. In the figure 

the segmentation bleeds from the pulmonary trunk into the aorta. Figure 6b is the same example 

after it has been cleaned and is considered a completed segmentation. The segmentation 

parameters used to generate each of the segmentations such as the intensity values shown in 5c, 

are included in Appendix B.   

  

Figure 6a-b. a) Example of segmentation with bleeding b) Example of a cleaned segmentation. 

 Overall, this entire segmentation process from the development of the initial 

segmentations to the final clean version took the better part of six months to generate for all the 

images. 

3.2.2 Overview of Modeling Steps 

Segmentations are first generated as described in Section 3.2.1. Next, the skeletons are 

extracted from the segmentation. The skeleton is the backbone of the segmentation comprised of 

a single-voxel wide collection of the medial most voxels that stretch the length of each vessel 
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within the segmentation and is described in detail in Section 3.2.4. From the skeleton the graphs 

are then extracted. The graphs represent the structure of the vasculature and consist of 

bifurcation and termination nodes connected by vascular segment centerlines. The graphs are 

described in detail in Section 3.2.5.  Even with the tedious cleaning of the segmentations, 

imperfections still remain and lead to faults in these graphs. To address these faults we explore 

methods of preprocessing the segmentations described in Section 3.2.3. 

3.2.3 Preprocessing of the Segmentations 

The remaining segmentation errors primarily consist of small holes in the segmentation 

(areas within the vascular lumen that the active contour did not “flow” into) and surface 

irregularities due to partial volume artifacts. These segmentation errors create numerous spurious 

segments in the skeleton. Before we continue with the modeling of the vasculature we first need 

to reduce these segmentation errors by preprocessing. We applied four different preprocessing 

methods and then evaluated the refined segmentation based on the number of edges within the 

graph. A graph edge corresponds to a single segment of the skeleton.  We first calculated the 

number of edges within the graph generated from the “raw” (not processed) segmentation. We 

did this on a training set of 27 control cases and ten PH cases.  

The preprocessing was performed with a script called PreprocessSegmentation.py 

developed in house with the goal to reduce the number of edges by smoothing out the 

segmentation. The script can be found in Appendix C. Smoothing was obtained with 

combinations of median filtering and morphological closing, where the kernel sizes of these 

steps were varied. We evaluated the segmentation smoothing and its impact on the generated 

vascular models. Our outcome measure was the number of edges in the graph of the model.  We 
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used median filtering and morphological closing both alone and in combination and then 

compared them to the original segmentation with no preprocessing. These findings are 

summarized in the results Section 4.2.  

3.2.4 Vascular Skeleton Generation 

At this point we have the finished preprocessed segmentation. The next step is to 

generate the skeletons (or medial lines). The skeleton is composed of one-voxel thick lines that 

are at the center of the vessels. To generate the skeleton we used an existing ITK-based parallel 

thinning algorithm. A segmentation example and the corresponding skeleton are shown in Figure 

7. 

 

Figure 7). Visualization of the pulmonary vasculature model in ITK-SNAP. (Left) Surface 

rendering of the segmentation obtained with ITK-Snap. (Right) Illustration of the skeleton 

achieved from the segmentation using parallel thinning 

The parallel thinning algorithm is a mathematical morphological tool we have examined 

as an approach for extracting a skeleton from the data in a discrete space. The purpose of the 
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thinning algorithm is to iteratively remove the object's surface until only the centerlines remain. 

The goal is to preferentially remove large amounts of data such that only the skeleton remains 

[49, 61, 62]. Erosion, as discussed in Section 2.5.2, must be performed symmetrically from each 

side to ensure the centerline is preserved. There are two possible approaches to thinning an 

image: 1) use a kernel-based filter and 2) use decision trees.  In kernel-based filters the kernel is 

the defined structural element that is applied to the image. The method presented here is a 

decision tree based method for the thinning of a 3D image and was used to generate the skeletons 

in this research[61] .  

A key component of thinning is to be sure that the centerline is at the medial-most 

position of the vessel within a 3D image. To be sure this is the case, the algorithm performs a 

series of tests for each pixel to determine if it can be eroded from the image, this process repeats 

until no more pixels are removed. There is also a topological requirement of the thinning 

algorithm: the algorithm must preserve the number of connected objects, cavities and holes in the 

original shape. To ensure this is done the Euler characteristic and the connectivity are preserved 

to guarantee the invariance of the topology [62]. The Euler characteristic is a value used to 

describe the shape and structure in a particular space [63].  S is a subset of the data consisting of 

all ones. The complement of S is s and it contains all zeros. When s is completely surrounded by 

S, there is a cavity [62]. In a 3D image the only difference between a hole and a cavity is that the 

hole is not completely surrounded by S. In the algorithm pixels are deleted based on four 

characteristics: 1) The pixel is a surface or border pixel; the algorithm checks one of the six 

directions at a time to make sure the centerline is not shifted to one side of the vessel. 2) The 

pixel is not at the end of a line. 3) No holes are created when the pixel is removed. 4) The final 

test, and the most computationally expensive one, looks to see if the current pixel is a simple 
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pixel whose deletion will have no effect on the number of connected segments, not interrupting 

the path [62]. The tests are performed in parallel on all the voxels in the 3D image. The final step 

is to double check that the connectivity of the skeleton has been preserved[62].  

We generate the skeleton from the smoothed segmentation using the BinaryThinning3D 

executable, a compiled C++ program unmodified from the code acquired from the Insight 

Journal website that defines the algorithm [61].  

Figures 8a and b are examples of the resulting skeletons for the aorta and pulmonary 

vasculature for one case. 
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               (a)                                                                    (b) 

 

                                       (c)                                                                    (d) 

Figures 8a-d) Skeleton comparison before and after preprocessing, a) An example skeleton of an 

aorta b) An example skeleton of the pulmonary vasculature, c) An example of the skeleton of an 

unprocessed segmentation and d) a skeleton after the preprocessing occurs. 

3.2.5 Vascular Graph (Model) Generation (based on NetworkX [59] )  

The skeleton is simply an image of unordered voxels. In order to make our 

measurements, we must first transform these unordered voxels into a structure that represents the 
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underlying anatomy. We did this by creating vascular graphs comprised of three classes of 

nodes: degree one nodes are either endpoint or terminal voxels. Degree two nodes are centerline 

voxels and degree three nodes are the bifurcation voxels. This is a multi-step process that we 

now describe.   

First, we created an undirected graph with every voxel in the skeleton being a node in the 

graph. Edges were added between any nodes coexisting within a 3x3x3 (3-dimensional) 

neighborhood of voxels. From this, undirected graph bifurcations and endpoints were recognized 

by the node degree. This is illustrated in Figure 9. 

 

Second, a directed graph was generated from the undirected graph. A root node was 

required for the directed graph and we selected the undirected graph node with the highest 

distance from edge (DFE) value as the root. The DFE was calculated using the city distance 

transform. Expanding out from the root, all bifurcation and endpoint nodes in the undirected 

graph were added as nodes in the directed graph with the collection of degree-two nodes 

(centerlines) forming the directed edge between the nodes. Each node is labeled with the (i, j, k) 

coordinate of the skeletal image voxel from which the node was obtained.  The algorithm 

Figure 9) Example of an undirected 

graph generated from a skeleton 

image. Here blue nodes are 

bifurcations, green nodes are 

centerlines, and red nodes are 

endpoints. 
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identifies all termination voxels and bifurcations in the undirected graph. The paths between the 

termination points and the seed node are then traced out using a bidirectional Dijkstra algorithm.  

The algorithm is used to identify the minimum cost path between the seed node and each 

endpoint in the undirected graph. The path is split into segments defined by the endpoints and 

bifurcations along the path. The endpoint and bifurcation nodes are then added as nodes in the 

directed graph with a directed edge, while the connecting centerline node paths are added as 

attributes of the corresponding edges  

Third, because of imperfections that remain in the segmentation, the resulting directed 

graph still has edges leading to false endpoint nodes. To further clean the graph we deleted any 

edge that was shorter than five voxels, because the edges of interest are the three largest edges in 

the vasculature representing the pulmonary trunk, the right and the left main pulmonary arteries, 

all of which are larger in length than 5 voxels. This naïve rule was proven inadequate, so we 

manually deleted extraneous edges as well. We experimented with machine learning techniques 

to create more comprehensive pruning rules; this is described in the next section. Finally, the 

edges of the pruned graph were fit with a least-squares cubic spline. The spline fit provides a 

smooth function that will later be used to capture vascular features from the segmented image. 

An example of a fitted graph is shown in Figure 10.    

 

Figure 10) An example of a 

directed graph that has had the 

centerlines fit with a least-

squared cubic spline. The root 

of the graph is highlighted in 

red. Note that in this case the 

selected root corresponds to the 

bifurcation of the pulmonary 

trunk into the left and right 

pulmonary arteries. 
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An in-house script was written using NetworkX [59] called GenerateGraph.py for the 

graph generation and is in Appendix C.  

One problem encountered with the graph involved the placement of the root node as seen 

in Figure 10. Figures 11a-c visually steps through the graph development and refinement process 

(the root node is highlighted in red). In the original segmentation shown in Figure 11a, the root 

node is not correctly identified. Figure 11b shows the graph after preprocessing. A script was 

developed to correct the placement of the root node called rerootGraph.py and is in Appendix C. 

Figure 11c shows the graph after this script is applied and the root node is now properly placed. 
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                  (a)                                                                     (b)             

 

(c) 

Figures 11a-c) Stepwise visual representation of graph development 

3.2.6 Vascular Graph Pruning and Rule Development 

The basis for all of our analysis is an accurate graph representation of the vasculature. 

Unfortunately, the graph generation described above results in a graph with a number of errors, 

most notably a large number of false centerline segments due to imperfections in the surfaces of 



 52 

the segmentations. Figure 12 below shows an example cartoon demonstrating what happens 

when there are small divots and bumps in the segmentation causing extra lines to be drawn 

distorting the skeleton and subsequently the graph.  

 

 

Thus it is of fundamental importance to be able to delete false segments while preserving 

true vascular segments. An important element of these algorithms is to be able to delete false 

nodes/edges. Initially the graph is automatically cleaned by deleting edges with lengths shorter 

than a specified threshold currently set at five voxels. The appropriate threshold is dependent on 

the nature of the segmented vasculature. The pulmonary vasculature segmentations are 

particularly challenging because of the wide range of vascular diameters present and the short 

segments (with respect to diameter) in the tree.   

A script called editGraph.py (Appendix C) was developed that allows manual editing of 

the graphs by giving the user the ability to visualize the graph and remove additional false 

centerlines. We did this for 15 PH cases and 69 control cases. The program stores the 

Figure 12. Example of extraneous 

lines in the skeleton. 

 

The arrows in the figure highlight 

the addition of unwanted center 

lines because of inconsistencies in 

the segmentation.  
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information of the original graph as well as the edited graph and we are able to identify features 

by looking at the positive edges that were kept and the negative edges that were removed. During 

the editing process there were a few cases that had unusual discrepancies in the centerline that 

needed to be addressed on an individual basis and will be described in detail later. Figures 13a 

and b are such examples. Figure 13a shows how the pulmonary trunk is separated into two edges 

when it should all be one. This seems to be an issue with a few of the cases where a segment is 

separated when it clearly should not be. Figure 13b shows an odd edge in the aorta (highlighted 

in yellow). 

                   

                                  (a)                                                                       (b) 

Figure 13a and b) Edge discrepancies a) Pulmonary vasculature example, b) Aorta example. 
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(a)                                                                             (b)  

Figures 14a and b. Examples of what the graphs should resemble if no editing is required or after 

editing has occurred. a) the aorta and b) the pulmonary vasculature.                 

The complete tables of the edge data from the unedited and edited graphs for this process 

can be found in Appendix E and the summary results are listed in Section 4.3.  

3.2.7 Summary of Steps 

This section summarizes in Table 2, the overall steps taken during the creation of PUMA. 

It also clarifies the steps that were performed manually from those that were done in an 

automated capacity. 
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Table 2. Overall Summary of Steps. 

Segmentation 

Initial Segmentation 

Generation 

A combination of manual input in choosing the 

threshold values for ITK-SNAP to implement in the 

automatic generation of the initial segmentation.  

Cleaning 

Manually edited the segmentations slice by slice 

eliminating bleeds. 

Preprocessing 

Automatic step using the PreprocessSegmentation.py 

script 

Skeleton Generate Skeleton Automatic step using BinaryThinning3D executable 

Graph 

Generate Initial Graph Automatic step using GenerateGraph.py script 

Clean Graph 

Manually deleted additional unwanted edges using 

editGraph.py 

 

3.2.8 Prediction Model Development for Pruning Edges 

This section describes how the prediction models were generated for classifying correct 

and incorrect edges for fine tuning and pruning the vascular graphs. The purpose of the model is 

to be able to eliminate the manual pruning step using editGraph.py described in the previous 

section.   

Gathering Feature Data 

We decided to use the open source machine learning software package Weka [64] for 

generating the Simple Cart decision tree classifier and to generate the logistic regression model 

for classifying the edges that should remain or be deleted from the graph to eliminate the manual 
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editing step previously discussed. We first had to generate the distance from edge (DFE) values 

for each voxel within a given edge. The distance from edge is the value assigned to the distance 

between a voxel in the segmentation and the nearest voxel not in the segmentation. By 

calculating the DFE value for each voxel along each of the edges within the skeleton we can 

calculate different features of the vessels that can be used in the classifier. We calculated seven 

features for each of the edges within the segmentations. The features are as follows: 1) the 

pathlength, defined as the total number of voxels along a given edge; 2) The value associated 

with the shape of the edge; 3) The volume of the edge; 4) the ratio of length relative to depth 

calculated as the minimum DFE value over the maximum DFE value; 5) the difference between 

the minimum and maximum DFE value or average mean distance to the surface of the edge; 6) 

the minimum DFE value for each edge; and 7) the maximum DFE value for each edge. There are 

three scripts used for gathering this data. The first is getDFE.py the initial script for calculating 

the DFE’s across the images. The scripts Extract_DFE_Values.py and ExtractShapeVolume.py 

were used for calculating the specific features. All of these scripts are located in Appendix C. 

These seven features were gathered for the dataset comprised of 122 images (99 control and 22 

disease cases), a total of 1,546 edges each with seven attributes. It is important to note that the 

edges that were not manually deleted when using editGraph.py (found in Appendix C) were 

labeled as positive edges to represent the edges that should remain. The edges that were deleted 

were labeled as negative edges. Due to the size of this dataset it is not included in the appendices. 

However, it is available upon request. 

Prediction Model Development 

As stated earlier, we decided to use Weka [64] to generate a Simple CART decision tree 

for classifying edges. We also used logistic regression to build a classifier for comparison. The 
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entire dataset containing 1,546 edges was used and 10 fold cross validation was applied for 

evaluating the model. This model was generated twice: the first with the original data and the 

second time with normalized data. We normalized each of the attributes using min-max 

normalization with the exception of the shape and volume. These values were already on a 

normalized scale from 0 to 1. The normalized values are simply the values divided by the 

difference of the minimum and the maximum values. The results from this process can be found 

in results Section 4.4 and the actual output from the model is located in Appendix F.  

Weka [64] was also used to generate the logistic regression model again for both the 

normalized and non-normalized data. The results are summarized in Section 4.4. Due to the 

length of the output only summary data has been included in this document; however, the entire 

output for each model is available upon request. 

3.3 SPECIFIC AIM 3 

Use PUMA to diagnose PH. This will be done by performing a semi-automated 

measurement of vascular diameters and making comparisons to manual measurements of the 

same cases. 

3.3.1 Generating Measurements 

We randomly selected 100 normal CT pulmonary angiography (CTPA) exams from our 

data bank. The exams were determined to be negative with respective to both pulmonary 

embolism (the indication for the exams) and PH by examining the accompanying dictated 

radiology reports. From a separate databank of images, we selected 24 CTPA exams where the 
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patient was diagnosed with PH via right heart catheterization. For each case, human observers 

manually quantified the vascular geometry. Independent of these measurements, the models of 

the pulmonary arterial vasculature and the aorta generated in Specific Aim 2 were used to 

automatically quantify the vascular geometry in the same cases.  

3.3.2 Step 1: Make manual measurements of the vasculature and aorta. 

In order to determine how well the automated measurements were performing, we first 

needed to generate a baseline for comparison. We did this by first going though each of the 124 

exams (normal cases plus the PH cases) and identifying the slices on which to measure the 

diameters of the ascending aorta, the pulmonary trunk and the right and left main pulmonary 

arteries (reviewer 0). Upon review of the images four of the control cases and one disease case 

were eliminated due to incomplete image files. The remaining 96 control cases and 23 disease 

cases were used for manual measurement. The slice data is reported in in Appendix G. A Python 

(www.python.org) script was written in house that was used to isolate these slices for manual 

quantification. Manual quantification was done by me and three independent reviewers (all 

graduate students) using OsiriX (http://www.osirix-viewer.com/). For the identified slice, each 

reviewer used a line ROI (region of interest) tool to measure the diameter of each vessel. Each 

observer was blind to both the other reviewers’ results and the quantification from the vascular 

models. The actual written instructions provided to the viewer can be found in Appendix H. 

Figures 15a-c show one of the normal cases where the measurements were made using OsiriX. 

http://www.python.org/
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Figures 15a-c) Example of manual the measurements made in OsiriX. a) Aorta and pulmonary 

trunk, b) right main pulmonary artery and c) left main pulmonary artery. 

Statistics defined in the following sections were calculated for each reviewer’s 

measurements for comparisons between reviewers to determine agreement as well as for 

comparisons between disease and control cases. Then the average of the reviewer’s 

measurements for each case was taken for comparison to the automated measurements.   For 

instance, each case has four measurements associated with each vessel. The average of those four 

measurements was taken for each vessel to give one value to use for comparison. These average 

values can be found in Appendix I. The original reviewer measurements can be found in 

Appendix J. 

3.3.3 Step 2: Making automated measurements for comparison. 

A Python script called AutomatedMeasurements4.py is in Appendix C. It was generated in 

house for identifying the segments of interest and calculating the necessary measurements. We 

first identified the median or mean location of the aorta centerlines. The ascending aorta is 

defined as the centerline points with x values less than the median (mean). Then from those 

centerlines satisfying the criteria we selected the midpoint measurement as simply the point 

closest to the median z value for these points. 
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The pulmonary trunk segment is defined as the edge between the root and the bifurcation 

node in the direction of the greatest number of descendants. The left and right main pulmonary 

artery segments were identified as the edges that followed directly from the root-identified 

bifurcation. A local coordinate system was defined at each point along the spline-fitted 

centerline. This local coordinate system was then used to define orthogonal planes at each point; 

the surface points (points with a distance-from-edge value of zero) for that vascular segment 

were mapped to orthogonal planes corresponding to each point on the fitted centerline. We 

estimated the vessel radius at each point along the fitted centerline as the average distance 

between the centerline point and the surface points mapped to the corresponding orthogonal 

plane. We computed the radius at the midpoint of each vessel centerline. A full table of these 

resulting automated measurements along with the average of the manual measurements can be 

found in Appendix I.  

In order to make automated measurements from an ordered graph, we must first match the 

graph to the anatomy of interest. Although originally motivated by the need to recognize the 

pulmonary trunk, our heuristic of setting the root node to be the node with the maximum distance 

from edge was not sufficiently accurate, since, as illustrated with Figure 9, the root node was 

placed at the bifurcation rather than in the trunk (other incorrect locations were also observed).  

 The identification of the root node in the pulmonary trunk in the segmentation is difficult 

particularly in creating a method that is robust in the presence of segmentation imperfections. 

We explored a median (mean) x measure as well as the root mean square (RMS) algorithm. We 

found the best performance using a heuristic that assumes the terminus of the pulmonary trunk 

lies near the center in the left-right direction, near the back in the posterior-anterior direction, and 

near the top in the inferior-superior direction. Finding the degree-one node with the minimum 
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root mean square distance from the coordinate (DIM_X/2, 0, max (Z)) correctly identifies the 

root node location in the 118 cases examined. This heuristic works because our segmentation is 

not extending deeply into the vascular tree. The re-rooted graph from Figure 10 is shown in 

Figure 16. The pulmonary trunk is defined as the edge between the root node and its child 

bifurcation. The left and right pulmonary arteries are the edges exiting this child bifurcation. The 

rerootGraph.py script discussed above can be seen in Appendix C. 

With the graph matched to anatomy, we went back to the original segmentation and 

matched each surface voxel to the nearest edge. Finally, the spline-fit to each edge was used to 

define a plane at each point along the centerline that was orthogonal to the local direction of the 

centerline. The mapped surface points for each edge were then mapped to one of these 

orthogonal planes. These steps are illustrated in Figure 16. The average distance between 

centerline and surface points in the orthogonal plane then define a local radius measure. 

          . 

Figure 16) (Left) Graph from Figure 9 with surface points matched to each edge. (Right) Surface 

points mapped to the plane orthogonal to the midpoint of the centerline.  

When generating the automated measurements, out of the 118 cases nine were eliminated 

due to the inability to generate the automated measurement. The remaining 109 (21 disease cases 

and 88 control cases) were used for comparisons. The nine cases that were eliminated returned 

the same error relating to the plane points and the measurements were unable to be obtained. The 
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exact cause of the error is unclear. At each point along the edge there is a plane of points that 

expands in the x, y and z directions. I believe there may be a gap in these points due to an 

imperfection in the segmentation making a measurement impossible because the points cannot be 

traversed to the surface of the vessel. An error in these points could be caused by an error in the 

graph generation from a faulty segmentation. Further scrutiny will be required to address this 

flaw in the program. 

3.3.4 Statistics for Comparison between Measurements 

This section describes the methods for the analysis of the measurement data. The 

following sections include comparisons within the manual measurements only, the automated 

measurements only, and then a comparison between the two classes of measurements as well. t-

tests were used for determining statistical significance between the classes of measurements and 

the FDA’s method of equivalence analysis was applied to test the agreement between reviewers. 

3.3.5 Determining Agreement between Reviewers of Manual Measurements 

A series of comparisons were performed to determine if the measurements generated by 

the different reviewers met the assumption of no significant difference between the reviewer’s 

measurement values. If there is a large variation in the measurements across reviewers then the 

comparison to the automated measurements will not be informative. We chose to use the FDA’s 

method of equivalence analysis that is used when comparing an original drug to the generic 

version. In this situation the null hypothesis (H0) is the means between the two groups are 

significantly different, the alternative hypothesis (HA) is the means are not significantly different.  



 63 

Six comparisons were generated reviewer 0 vs. 1, 0 vs. 2, 0 vs. 3, 1 vs. 2, 1 vs. 3, and 2 vs. 3.  

The means ( ̅), were calculated for each group. 

The following are the specific steps taken for the generation of this data as reported and 

used by the FDA [65].  

H0: μT / μR ≤ θ1 or μT / μR ≥ θ2 versus HA : θ1 < μT / μR < θ2, where θ1 = 0.80 and θ2 = 1.25. 

Where μT = mean of the first comparison group, and μR = mean of the second comparison 

group. Typically, the H0 is rejected with a type I error α = 0.05 (two 1-sided tests), if the 90% 

confidence interval for the ratio of means between the two groups (μT / μR) is contained within 

the interval [θ1, θ2]. Rejection of the null hypothesis H0 supports the conclusion of equivalence of 

the two products.   In summary, the ratio of the means, 90%, 95% and 99% confidence interval 

was calculated for each comparison and then compared to the specified interval.              

These findings are found in the results Section 4.5.1. 

3.3.6 Manual Measurements of the Negative Cases Compared to the Disease Cases 

We wanted to be sure that the measurements of the control cases were significantly 

different from the disease cases. First, using the manual measurements only, a comparison was 

performed between the control cases and the disease cases. This comparison was done for the 

aorta, pulmonary trunk, right main pulmonary artery and the left main pulmonary artery.  The 

error mean difference and the unpaired t-test were used as measures of significance. The online 

software package GraphPad was used to perform these calculations    

(http://www.graphpad.com/quickcalcs/ttest1/?Format=C). The specific calculations are detailed 

in Appendix D and the findings are outlined in the results Section 4.5.2. 

http://www.graphpad.com/quickcalcs/ttest1/?Format=C
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The same calculations were used for the comparison within the automated measurements 

as well, for the aorta, pulmonary trunk, right main pulmonary artery and the left main pulmonary 

artery.  The findings for the automated comparisons for the three major pulmonary vessels and 

the aorta can be found in Section 4.5.3. 

3.3.7 Comparison between the Manual Measurements and the Automated Measurements 

We wanted to determine if there was a statistically significant difference between the 

manual and the automated measurements. We calculated the mean ( ̅), variance (S
2
) and 

standard deviation (S) for each group for each vessel. We then applied the paired t-test using the 

same online software package as in the comparison between disease and controls (GraphPad, 

(http://www.graphpad.com/quickcalcs/ttest1/?Format=C). . 

When determining statistical significance, if the calculated t value was less than the 

critical t-value, there was no difference found between the means of the automated and manual 

measurements. If the calculated t value was greater than the critical -value, then the two means 

were significantly different, and the null was rejected [66]. In addition to the t-test further 

evaluation was performed using Equivalence Analysis as described in Section 3.3.5. In our null 

hypothesis we are making the assumption that there is a difference between the manual and the 

automated measurements. These results as well as the paired t-test values can be found in Section 

4.5.4. 

http://www.graphpad.com/quickcalcs/ttest1/?Format=C
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3.3.8  Predicting the Presence of Pulmonary Hypertension 

The next step was to determine if we can accurately classify patients based on the 

vasculature measurements as having pulmonary hypertension or not. To answer this question we 

built a logistic regression model using Weka.  The model was given all four of the automated 

measurement variables (the Aorta, PT, RMPA and LMPA) as predictors and the label of disease 

versus control as the target to be predicted for each of the 109 images. 10-fold cross validation 

was used for evaluating the model. We then repeated the experiment using normalized data. We 

normalized each of the four measurements using min-max normalization. The normalized values 

are the values divided by the difference of the minimum and the maximum values. For 

comparison and to rule out any uncertainty surrounding the automated measurements, the same 

models were generated using the manual measurements.  

Table 3). Ranges of Measurements 

 Automated Manual 

Vessel/Class Minimum Maximum Minimum Maximum 

PT Disease 1.29 3.98 2.81 4.23 

RMPA Disease 1.83 3.04 1.70 3.63 

LMPA Disease 1.82 3.09 1.97 3.53 

PT Control 1.08 4.46 1.93 3.90 

RMPA Control 1.1 `3.67 1.48 3.36 

LMPA Control 1.28 3.68 1.32 3.18 

 

An ROC (Receiver Operating Characteristic) analysis was performed. This includes 

calculations of the sensitivity or true positive rate and specificity or true negative rate of the 

model. Sensitivity is calculated as the number of true positives (TP) over the sum of the TP and 

the false negatives (FN). Specificity is calculated as the true negatives (TN) over the sum of the 

false positives (FP) and the TN.  The TP’s are the patients that have PH and were predicted as 
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such. The TN’s are the patients that do not have PH and are predicted as such. The FP’s are those 

predicted to have PH but in reality do not and finally, the FN’s are those that have the disease 

and are classified as negative for the presence of disease. The classification accuracy of the 

model was assessed with the area under the ROC curve (AUC).  

In addition to the logistic regression model a Naïve Bayes model was also generated for 

comparison. The data and methods are the same only the classifying algorithm was changed. The 

findings for both sets of models (one set for the automated measurement data and one set for the 

manually measured data) are detailed in the results Section 4.5.5 and the output is shown in 

Appendix K. 

3.3.9 Generating a Polynomial Regression Model for Predicting Pressure 

This section is focused on the relationship between the measurements and the pressure 

values. Can we predict the arterial pressure based on the diameter measurements gathered? We 

model this relationship by generating a polynomial regression model in SPSS [67]. Polynomial 

regression determines the polynomial equation to predict a response of dependent variables (Y) 

based on a predictor (X) the independent variable. The order of the polynomial determines the 

number of possible inflections on the curvi-linear fitted line. The results from this model are 

summarized in Section 4.5.6 and can be seen in their entirety in Appendix L. 

There are four measurements that were included 1) aorta, used for normalizing across 

patients, 2) pulmonary trunk, 3) right main pulmonary artery and 4) the left main pulmonary 

artery. Additional variables gathered are the mean pulmonary arterial pressure (MPAP), vascular 

pulmonary resistance (VPR), trans-pulmonary gradient (TPG), PA (pulmonary artery) systolic 

and PA diastolic pressures. The MPAP was chosen as the dependent variable because it is 
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measured directly through right heart catheterization where the majority of the other pressures 

are calculated based on other values. The measurement data that are included is dependent on the 

pressure. As the pressure increases the vessel dilates to accommodate; the longer the pressure 

persists the weaker the vessel becomes until it atrophies and begins to deteriorate. For these 

reasons, MPAP was named the dependent variable. The model was generated for both the 

pressure values in combination with the manual measurements and then the automated 

measurements. 
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4.0  RESULTS 

This section summarizes the data gathered and reports the findings in response to the 

methods previously detailed. 

4.1 POWER CALCULATIONS 

I used an online power calculator (http://www.statistical solutions.net/pss calc.php) to 

determine the power of the pressure dataset for either accepting or rejecting the null hypothesis 

with 95% confidence in reference to the pressure data (27 cases). We are testing the null 

hypothesis that the mean pulmonary arterial pressure (MPAP) in the presence of pulmonary 

hypertension (PH) is equal to the MPAP in the absence of PH. We chose a one sided test because 

the only acceptable alternative hypothesis is that the mean pulmonary arterial pressure (MPAP) 

in the presence of pulmonary hypertension (PH) is greater than the MPAP in the absence of PH. 

The mean of the MPAP for the disease cases is 46.5; the mean for the normal cases is 18 and the 

standard deviation of the group is 17.63. According to the online calculator the power for the 

pressure dataset of 27 cases is 1.0.  

I repeated these steps a second time calculating the power based on the automated right 

main pulmonary artery measurements. In this case we are testing the null hypothesis that the 

mean diameter of the right main pulmonary artery (RMPA) in the presence of PH is equal to the 
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mean diameter of the RMPA in the absence of PH. Again I used a one sided test because the only 

viable alternative hypothesis is that the mean diameter of the RMPA in the presence of PH is 

greater than the mean diameter of the RMPA in the absence of PH. The mean of the diameter of 

the RMPA for the disease cases is 2.46; the mean for the normal cases is 2.21 and the standard 

deviation of the group is 0.4. According to the online calculator the power is also 1.0. 

4.2 PREPROCESSING OF THE SEGMENTATIONS 

We found that each of the preprocessing methods reduced the number of edges in the 

original segmentation by about 50%.  Increasing the kernel size had no effect on edge reduction. 

However, using both median filtering and morphological closing resulted in a reduction in the 

number of edges by half compared to using either method alone. I chose to use the method that 

utilized both smoothing methods in combination with an increase in the kernel size giving the 

lowest average number of edges for either segmentation (Column 6).  

Tables 4 and 5 below are the summarized preprocessing results. The full tables of edge 

values for each case in the training set can be found in Appendix E. 

Table 4). Preprocessing of the Aorta Segmentation Data 

 

No 

Preprocessing 

median 

only 

close 

only 

median 

& close 

median & close with a 

kernel size of (2,2,2) 

Total Number of 

Edges 
1510 373 303 228 214 

Average Number 

of Edges per case 
40.81 10.08 8.19 6.16 5.78 
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Table 5). Preprocessing of the Pulmonary Vascular Segmentation Data 

  
No 

Preprocessing 

median 

only 

close 

only 

median 

& close 

median & close with a 

kernel size of (2,2,2) 

Total Number of 

Edges 
1927 678 671 757 626 

Average Number 

of Edges per case 
52.08 18.32 18.14 20.46 16.92 

4.3 EDGE DATA 

In summary, out of the 15 disease cases, 12 (80%) of the aorta segmentations and eight or 

53.3% of the pulmonary vasculature segmentations required editing. For the 70 control cases 34 

aortas (48.57%) required editing and 20 (28.57%) of the pulmonary vasculature segmentations 

required editing. Complete tables of the edge data can be found in Appendix E. 

4.4 PRUNING PREDICTION MODEL FINDINGS 

Appendix F shows the summary statistics from the output of the two models that were 

built for classifying the edges into positives (the edges that should remain) and the negatives (the 

edges that should be removed). When looking at the results there is not much difference between 

the two types of models built whether it is the Simple CART decision tree or the logistic 

regression model. Normalization did not affect the model results. 

Looking at the summary statistics in Table 6 the Simple CART model has a sensitivity or 

true positive rate of 82.4%. The specificity is 96.3%.  The logistic regression model gave a 

sensitivity of 78.7% and a specificity of 87%.  In comparing the two classifiers the Cart model 
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appears to perform slightly better with an ROC area of 89.3% versus the logistic regression at 

84.8%.The actual output generated by Weka for the logistic regression model is also located in 

Appendix F. Due to the size of the output generated by Weka the entire output is available upon 

request but only the summary of the models can be found in Appendix F.  

Table 6 lists the summary statistics for these models. For reference, a perfect model 

would give an ROC area of 1.0.  

Table 6. Summary of model statistics.  

Models Sensitivity Specificity AUC Mean Absolute Error 

CART  82.4% 96.3% 89.3 % 0.0899 

Logistic Regression  78.7% 87 84.8 0.1551 

4.5 MANUAL MEASUREMENTS VS AUTOMATED MEASUREMENTS 

4.5.1 Determining Agreement between Reviewers 

We first analyze the variability between the manual measurements among the different 

reviewers.  

Tables 7a-b) Summary Statistics of the manual measurements for user agreement comparisons 

(n=119 for each reviewer)  
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Table 7a. 

Vessel Aorta Pulmonary Trunk 

Reviewer 0 1 2 3 0 1 2 3 

Mean 3.194 3.284 3.114 3.021 2.826 2.864 2.832 2.733 

Variance 0.343 0.401 0.342 0.383 0.374 0.420 0.402 0.394 

Standard Deviation 0.586 0.633 0.585 0.619 0.612 0.648 0.634 0.628 

SEM 0.054 0.058 0.054 0.057 0.056 0.059 0.058 0.058 

 

Table 7b. 

 

        Vessel RMPA LMPA 

Reviewer 0 1 2 3 0 1 2 3 

Mean 2.284 2.279 2.223 2.197 2.249 2.213 2.209 2.175 

Variance 0.331 0.351 0.346 0.333 0.326 0.297 0.319 0.340 

Standard Deviation 0.575 0.592 0.588 0.577 0.571 0.545 0.565 0.583 

SEM 0.053 0.054 0.054 0.053 0.052 0.05 0.052 0.053 

 

Table 8a) Aorta 

 

Comparison 0 and 1 0 and 2 0 and 3 

Ratio of Means 0.9726 1.0257 1.0573 

Confidence Intervals Lower Upper Lower Upper Lower Upper 

90% CI 0.9342 1.0126 0.9857 1.0673 1.0142 1.1023 

95% CI 0.927 1.0206 0.9782 1.0756 1.0061 1.1113 

99% CI 0.9129 1.0364 0.9635 1.092 0.9904 1.1291 

 

Table 8b). Aorta 

 

Comparison 1 and 2 1 and 3 2 and 3 

Ratio of Means 1.0546 1.08717 1.0308 

Confidence Intervals Lower Upper Lower Upper Lower Upper 

90% CI 1.0125 1.0984 1.0418 1.1344 0.9884 1.0752 

95% CI 1.0045 1.1071 1.0333 1.1438 0.9804 1.084 

99% CI 0.989 1.1244 1.0167 1.1626 0.9649 1.1016 
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Table 9a). Pulmonary Trunk 

 

Comparison 0 and 1 0 and 2 0 and 3 

Ratio of Means 0.9867 0.9979 1.034 

Confidence Intervals Lower Upper Lower Upper Lower Upper 

90% CI 0.9411 1.0347 0.9519 1.0461 0.9858 1.0848 

95% CI 0.9325 1.0443 0.9433 1.0557 0.9768 1.0949 

99% CI 0.9159 1.0633 0.9266 1.0749 0.9592 1.115 

 

Table 9b). Pulmonary Trunk 

 

Comparison 1 and 2 1 and 3 2 and 3 

Ratio of Means 1.0113 1.0479 1.0362 

Confidence Intervals Lower Upper Lower Upper Lower Upper 

90% CI 0.9637 1.0612 0.998 1.1004 0.9871 1.0878 

95% CI 0.9548 1.0712 0.9886 1.1108 0.9779 1.0981 

99% CI 0.9374 1.091 0.9704 1.1317 0.96 1.1186 

 

Table 10a). RMPA 

 

Comparison 0 and 1 0 and 2 0 and 3 

Ratio of Means 1.0022 1.0274 1.0396 

Confidence Intervals Lower Upper Lower Upper Lower Upper 

90% CI 0.9488 1.0587 0.9722 1.086 0.9839 1.0986 

95% CI 0.9388 1.07 0.9619 1.0877 0.9375 1.1104 

99% CI 0.9195 1.0923 0.9419 1.1211 0.9534 1.134 

 

Table 10b). RMPA 

 

Comparison 1 and 2 1 and 3 2 and 3 

Ratio of Means 1.0118 1.0373 0.9754 

Confidence Intervals Lower Upper Lower Upper Lower Upper 

90% CI 0.9221 1.0317 0.9809 1.097 0.9563 1.0706 

95% CI 0.9122 1.043 0.9703 1.109 0.9459 1.0823 

99% CI 0.8928 1.0655 0.9499 1.1329 0.9258 1.1059 
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Table 11a). LMPA 

 

Comparison 0 and 1 0 and 2 0 and 3 

Ratio of Means 1.0163 1.0181 1.034 

Confidence Intervals Lower Upper Lower Upper Lower Upper 

90% CI 0.9632 1.0722 0.964 1.0752 0.9779 1.0936 

95% CI 0.9533 1.0833 0.9539 1.0867 0.9674 1.1055 

99% CI 0.934 1.1056 0.9343 1.1095 0.9471 1.1294 

 

Table 11b). LMPA 

Comparison 1 and 2 1 and 3 2 and 3 

Ratio of Means 0.9982 1.0175 1.0156 

Confidence Intervals Lower Upper Lower Upper Lower Upper 

90% CI 0.9459 1.0533 0.963 1.0753 0.9603 1.0743 

95% CI 0.9361 1.0643 0.9529 1.0869 0.9499 1.0861 

99% CI 0.917 1.0862 0.9332 1.1101 0.9299 1.1096 

 

For each comparison all of the ratio values along with the calculated confidence interval 

values fall within the designated threshold of 0.80 (θ1) and 1.25 (θ2) therefore we reject the null 

and find that the measurements are effectively equivalent. We will now take the average across 

reviewers for each vessel for each case for comparison to the automated values. 

4.5.2 Summary Statistics from Manual Measurements Only: a Comparison between Case 

and Control 

For comparison purposes we need to test whether the manual measurements between the 

disease cases and the control cases are overall significantly different. Since agreement has been 

determined in the previous section, the average across reviewers for each vessel for each case 

was taken.  
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A comparison of the average manual measurements was performed between the control 

cases (n=96) and the disease cases (n=23) for each the Aorta, Pulmonary Trunk (PT), Right Main 

Pulmonary Artery (RMPA) and the Left Main Pulmonary Artery (LMPA). These findings are 

detailed in Tables 12 and 13. When looking at the comparisons of the aortas, the difference in 

means (control versus disease) is less than the error mean difference (EMD) and therefore, the 

controls are not significantly different from the cases. In addition, the p-value is greater than 0.05 

also implying no significant difference. The results are as expected, the aorta was used for 

normalization and is not affected by pulmonary hypertension, and there should not be a 

difference between cases versus controls. On the other hand we expected to find a difference 

between the cases and controls when looking at the comparisons between the different 

pulmonary vessels.  In each of these comparisons (the pulmonary trunk, RMPA and LPMA) the 

difference in means is greater than the EMD and therefore, the controls are significantly different 

from the cases.  We found when comparing the t values to the t critical value (t .05,22 = 1.717) for 

these vessels the t critical is much less than the calculated t therefore, the null of equal means is 

rejected and the control cases are significantly different from the disease cases. For the aorta we 

accept the null of equal means.  
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Table 12. Average manual measurements for comparison between control and disease cases for 

the Pulmonary Trunk and the RMPA. 

Vessel Pulmonary Trunk RMPA 

Label Control Disease Control Disease 

Mean 2.83 3.31 2.18 2.52 

Standard Deviation 0.4313 0.451 0.378 0.438 

N 96 23 96 23 

95% Confidence Interval -0.687 to -0.287 -0.524 to -0.165 

Difference in Means 0.484 0.34 

Standard Error of the 

Mean 
0.044 0.094 0.039 0.091 

Error Mean Difference 0.101 0.09 

t-value 4.8169 3.8079 

p-value < 0.0001 < 0.0002 

 

Table 13. Average manual measurements for comparison between control and disease cases  for 

the LMPA and the Aorta. 

Vessel LMPA Aorta 

Label Control Disease Control Disease 

Mean 2.13 2.57 3.15 3.16 

Standard Deviation 0.3478 0.327 0.455 0.427 

N 96 23 96 23 

95% Confidence Interval -.6056 to -0.2893 -0.2149 to 0.1986 

Difference in Means 0.44 0.01 

Standard Error of the 

Mean 
0.036 0.068 0.0464 0.0891 

Error Mean Difference 0.08 0.104 

t-value 5.604 0.781 

p-value < 0.0001 0.9379 
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4.5.3 Summary Statistics from Automated Measurements Only: a Comparison between 

Case and Control 

Tables 14 and 15 contain the summary statistics for the automated measurement 

comparisons.  

For each comparison, with the exception of the aorta, all the calculated t-values are 

greater than the critical t.05,20 =1.725. Therefore the null hypotheses that the means in each of the 

three main pulmonary vessel comparisons (Pulmonary Trunk, RMPA and LPMA) are equal are 

rejected. The means are significantly different, which was expected as with the findings in the 

comparisons within the manual measurements. Similarly, according to the p value of 0.1844 

there was no difference found for the values of the Aorta and again as in the manual 

measurements the null of equal means is accepted.  

Table 14). Comparisons between the Disease Cases (n=21) and the Control Cases (n=88) within 

the Automated Measurements for the Pulmonary Trunk and RMPA. 

Vessel Pulmonary Trunk RMPA 

Label Control Disease Control Disease 

Mean 2.74 3.12 2.21 2.46 

Standard Deviation 0.513 0.568 0.436 0.38 

N 88 21 88 21 

95% Confidence Interval -.06330 to -0.1288 -0.4561 to -0.0457 

Difference in Means 0.3809 0.2509 

Standard Error of the 

Mean 
0.055 0.124 0.047 0.083 

Error Mean Difference 0.127 0.104 

t-value 2.9951 2.4241 

p-value 0.0034 0.017 
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Table 15). Comparisons between the Disease Cases (n=21) and the Control Cases (n=88) within 

the Automated Measurements for the LMPA and Aorta. 

 

Vessel LMPA Aorta 

Label Control Disease Control Disease 

Mean 2.2 2.53 3.14 3.32 

Standard Deviation 0.383 0.381 0.576 0.475 

N 88 21 88 21 

95% Confidence Interval -0.5112 to -0.1430 -0.4503 to 0.0877 

Difference in Means 0.3271 0.18 

Standard Error of the 

Mean 
0.041 0.083 0.061 0.104 

Error Mean Difference 0.093 0.136 

t-value 3.5227 1.3359 

p-value 0.0006 0.1844 

 

4.5.4 Automated versus Manual Measurement Comparison 

Now that we have discussed the results for the comparisons for each class of 

measurements individually, we will now discuss the comparison of the automated to the manual 

measurements. According to the following Tables 16 and 17, the manual measurements were 

found to be significantly different in reference to the pulmonary trunk and the RMPA. However, 

when looking at the values in Table 17 for the LMPA and the aorta there was no significant 

difference found between the measurements. There are a number of reasons to cause these 

findings and are described at length in the discussion.  
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Table 16). Paired t-test results for the comparison between the automated and manual 

measurements (n=109) for the pulmonary trunk and the RMPA. 

Vessel Pulmonary Trunk RMPA 

Label Manual Automated Manual Automated 

Mean 2.93 2.81 2.179 2.025 

Standard Deviation 0.464 0.543 0.378 0.742 

N 109 109 

95% Confidence Interval 0.037 to 0.198 0.0085 to 0.2988 

Difference in Means 0.12 0.1536 

Standard Error of the 

Mean 0.0444 0.052 0.0385 0.0757 

Error Mean Difference 0.041 0.073 

t-value 2.892 2.102 

p-value 0.0046 0.0382 

 

Table 17). Paired t-test results for the comparison between the automated and manual 

measurements (n=109) for the LMPA and the Aorta. 

Vessel LMPA Aorta 

Label Manual Automated Manual Automated 

Mean 2.215 2.263 3.151 3.175 

Standard Deviation 0.373 0.402 0.445 0.561 

N 109 109 

95% Confidence Interval -0.1021 to 0.0066 -0.0973 to 0.050 

Difference in Means 0.0477 0.024 

Standard Error of the 

Mean 0.0357 0.0385 0.0426 0.561 

Error Mean Difference 0.027 0.037 

t-value 1.74 0.6354 

p-value 0.0847 0.5265 

 

The following Table 18 summarizes the results from the equivalence analysis. Each of 

the ratio values fall within the specified threshold of 0.80 and 1.25. Therefore, we reject the null 

hypothesis of the two groups having significantly different means and instead accept the 
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alternative that the two groups are not significantly different. These findings further support that 

our automated measurements are comparable to the manual measurements.  

Table 18). Equivalence analysis results for the comparison between the automated and manual 

measurements (n=109) for each of the vessels. 

 

Pulmonary 

Trunk RMPA LMPA Aorta 

Ratio of Means 1.0427 1.0765 0.9823 0.9906 

Confidence 

Intervals Lower Upper Lower Upper Lower Upper Lower Upper 

90% CI 1.002 1.085 1.011 1.149 0.945 1.021 0.956 1.027 

95% CI 0.9949 1.0933 0.999 1.165 0.938 1.029 0.949 1.034 

99% CI 0.9802 1.1101 0.976 1.195 0.924 1.044 0.937 1.048 

 

The following four plots Figures 17-20 are scatterplots of the comparison between the 

automated and manual measurements for each vessel. The automated values are along the x-axis 

and the manual measurements are plotted along the y-axis. 
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Figure 17) Measurement Comparisons for the Pulmonary Trunk 
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Figure 18) Measurement Comparisons for the RMPA 
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Figure 19) Measurement Comparisons for the LMPA 
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4.5.5 Models for Predicting Disease State with Automated versus Manual Measurements 

The first set of models generated used the automated measurement data and they include 

a logistic regression model followed by a naïve Bayes that according to Weka literature follows a 

Gaussian distribution and the default classification cutoff threshold value of 0.5 was used. The 

complete output for both of these models using both the original and the normalized data for both 

measurement types can be found in  Appendix K. According to the output generated by Weka, 

there was no difference between the use of the normalized data or the original data for either the 

automated or manual measurement datasets. The models developed using the automated 

measurements are discussed first. The logistic regression model performed slightly better than 

the Naïve Bayes model For the logistic regression model, out of the 88 control cases it classified 
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 83 

85 of them correctly; unfortunately, it only classified 4 out of 21 of the disease cases correctly; 

giving a specificity of 96.6% but a sensitivity of 19%. The naïve Bayes model performed better: 

it classified 80 of the controls correctly and 9 of the disease cases correctly, giving a specificity 

of 90.9% and a sensitivity of 42.9%. The sensitivity and specificity values are shown in the 

output, but were also calculated based on the information shown in the confusion matrix.  

The findings for the models built using the manually measured data appear to be quite 

similar. This was expected because as we have previously shown in Section 4.5.4, the automated 

measurements are not significantly different from the manual measurements. 

Table 19). Summary of ROC Characteristics 

 Logistic Regression Naïve Bayes 

 Manual Automated Manual Automated 

 Original Normal Original Normal Original Normal Original Normal 

Accuracy 83.4% 83.7% 79.82% 79.82% 81.2% 84% 77.98% 77.98% 

SN 28.6% 28.6% 19% 19% 47.6% 52.4% 42.9% 42.9% 

SP 94.3% 93.2% 96.6% 96.6% 92% 85.2% 90.9% 90.9% 

Mean 

Absolute 

Error 

0.2281 0.2286 0.2811 0.2812 0.2096 0.2047 0.2687 0.2696 

ROC Area 83.7% 83.7% 69.4% 69.5% 81.2% 84% 68.1% 68.2% 

4.5.6 Polynomial Regression Model for Predicting Pressure 

Table 20 gives the R (column 2) and adjusted R
2 

(column 3) statistics. These values 

summarize the goodness of the polynomial fit to the observations. The closer the values are to 1 

the better the fit, with a value of 1 indicating a perfect fit. The adjusted R
2
 is similar to R

2
 except 

it accounts for the number of predictors in the model allowing adjusted R
2
 (column 4) statistics 

from models with a different number of predictors to be compared, where R
2 

values cannot.  In 

reference to the table, each of the pressure variables (PA-systolic, PA-diastolic, TPG, and VPR) 

showed adjusted R
2 

and R
2 

values close to 1. The aorta measurement variable gave the poorest 
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values which were expected since the aorta should not be affected by PAH, it is used for 

normalization across patients. The standard error of the estimate is a measure of accuracy of the 

predictions; the smaller the value, the more accurate. In this case the measurements appear to 

have the lower error rate and seem to be better predictors when it comes to the pressure. 

In addition to the R statistics, analysis of variance was also used to test the hypothesis 

that the polynomial fit is a better fit than the mean. The total variance, the variance of the 

predictor fitted to just the mean, is partitioned into variance explained by the polynomial 

regression model and residual variance (the difference from the fitted line to the observations).  

An F- test then compares the variances to determine if they are significantly different. The F 

statistic shows the ratio of the variances (column 6 in Table 20), and the p- value (column 7) the 

probability that the polynomial fit is no better than fitting to the mean. If the p- value is 

significant then polynomial fit is better than the mean [68].   

The complete output from SPSS for the model is found in Appendix L. 

Table 20). Output from the polynomial regression model for both sets of measurements 

Variable R R
2
 Adjusted R

2
 Std. Error of the 

Estimate 

F-value p-value 

Automated Measures 

Aorta .412 .170 .062 .385 1.572 0.223 

PT .619 .383 .302 .497 4.756 0.10 

RMPA .712 .507 .443 .312 7.895 0.001 

LMPA .758 .575 .519 .309 10.362 0.000 

Manual Measures 

Aorta .485 .236 .136 .352 2.364 .097 

PT .753 .568 .511 .380 10.066 .000 

RMPA .656 .431 .356 .392 5.801 .004 

LMPA .778 .605 .553 .276 11.734 .000 
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Table 21. Output from the polynomial regression model for the pressure measurements. 

Variable R R
2
 Adjusted R

2
 Std. Error of the 

Estimate 

F-value p-value 

TPG .973 .946 .939 4.702 135.303 0.000 

VPR .933 .871 .854 2.679 51.631 0.000 

PA_Systolic .981 .962 .958 6.107 196.412 0.000 

PA_Diastolic .920 .846 .826 5.317 42.057 0.000 

 

 The results in Table 20 are comparable across the different sources of measurements. The 

results for the PT, RMPA and LMPA are all larger or closer to 1 than the aorta values.Since the 

aorta is not affected by disease we would expect these values to be close to zero. The manual 

aorta measurements did not give  R
2
 values as close to zero as the automated aorta giving values 

of 0.236 and 0.170 respectively. The corresponding p-values were 0.223 amd 0.97 both greater 

than 0.05 and therefore the aorta measurement is not a predictor of pulmonary artery mean 

pressure.  This will be disussed at length in the discussion in section 5.2.1. It has been stated that 

disgnosis of pulmonary hypertension is done via these specific pressure values. The results 

shown in Table 21 were as expected, the pressure values seem to give the best fit for the model 

with the R
2 

values closest to 1 and p-values less than 0.05. 

Figure 21 shows the model plots for each variable as generated in SPSS.  
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Figure 21. Model plots by measurement variable.  

 

                                (a)       (b) 

 

 

                               (c)       (d) 

* For each plot the x axis is the pulmonary artery mean pressure (PAMP) measured by 

catheterization in mmHg units. For plots a-d, the y-axes are the different automated vessel 

diameter measurements in cm. 
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Figure 22. Model plots by pressure variables. 

 

                              (a)              (b) 

 

                                (c)                                                                         (d) 

* For each plot the x axis is the pulmonary artery mean pressure (PAMP) measured by 

catheterization in mmHg units. Plot a plots the trans-pulmonary gradient (TPG) also in mmHg 

units along the y axis and plot b shows the vascular pulmonary resistance (VPR) in Woods units. 
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Plots c and d have along the y axis the systolic and diastolic pressures by catheterization in 

mmHg units. 

 Referring to the plots specific to the measurements plots a-d in Figure 21, there appears 

to be a functional relationship between the pulmonary artery mean pressure and the RMPA and 

LMPA measurements in the 2.5 cm region. A functional relationship means that when the 

vessels are at a particular size there is a particular range of pressures associated with them.  

The plots are generated using the automated data; the manual measurements would have 

shown a stronger relationship according to the values in Table 19. The aorta measurements as 

expected are scattered and no direct relationship can be seen. For the PT measurements in plot b, 

there are a few outliers that may be skewing the data and will be discussed in Section 5.2.1. The 

question we are asking is can we predict the pulmonary artery mean pressure from the vessel 

diameters?  Since we can as previously reported diagnose disease state and now we have 

identified a functional relationship between the vessel diameters and the pressure, the future step 

would be to use the combination of the vessel diameters to classify pressure based on the 

polynomial regression model.  
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5.0  DISCUSSION 

5.1 HYPOTHESIS 1 

The primary goal of this research was to be able to accurately model and obtain 

vasculature measurements of the three primary arteries of the pulmonary vasculature anatomy 

that in turn could be used for the disease classification and pressure prediction of PAH. If such 

classification and prediction could be done well, it has the potential to aid in the early diagnosis 

and characterization of PAH without the need for invasive catheterization. The gold standard for 

diagnosis of PAH is through right heart catheterization (RHC), an invasive and costly procedure, 

where pressure measurements are made directly within the affected vessels. During RHC a 

catheter is passed in to the right side of the heart through the ventricle to the pulmonary trunk to 

monitor the blood flow as it is being pumped to the lungs as well as cardiac output, the hearts 

function. The fact that PAH is associated with the remodeling of the pulmonary arteries, raises 

the possibility of quantifying the vessel geometry depicted in CT images as an alternative, non-

invasive technique for diagnosing PAH.  
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5.1.1 Specific Aim 1: Create a repository of CTPA exams. The exams will consist of cases 

that are both positive for PAH and are negative for PAH 

Specific aim 1 is self-explanatory, however, the problem encountered during data 

gathering is not. As shown there was plenty of data to perform all of the tasks outlined in this 

research with exception of the pressure data. Although the pressure data does not come into play 

until the end of the second hypothesis, I would like to discuss it now while on the subject of the 

data.  Due to the low prevalence of PAH, it takes years to gather cases. We ended up with 22 

PAH cases that were positive for disease with accompanying CT images. The problem lies with 

the acquisition of the control cases because the majority of people that undergo the right heart 

catheterization procedure do so because elevated pressures are expected, resulting in a low 

number of normal cases partnered with CT exams. Due to the risk of the procedure, it is rarely 

done unless warranted based on an underlying disease involving the heart or the lungs and in 

most cases a normal pressure is a rare event.  Although the normal cases with corresponding 

pressure are limited, it did not affect the outcomes presented in this work. According to the 

power calculation results shown in Section 4.1 both the pressure dataset and the measurement 

dataset gave a power of 1.0. 

5.1.2 Specific Aim 2: Create and validate PUMA, a PUlmonary Mapping and Analysis 

tool that semi-automatically generates pulmonary vascular models.  

To achieve the end result of a semi-automated model, numerous steps had to be taken. 

One of the more difficult steps was in the development of the segmentations. The vasculature 

was segmented as described in the methods in Section 3.2.1. The main problem with this process 
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was choosing an intensity value that would reduce the amount of “bleeding” into the surrounding 

anatomy. The intensity values of the pulmonary vasculature are almost the same as the 

surrounding tissues, making it extremely difficult to segment out the entire vessel of interest and 

not include portions of the heart or the venous system, a problem encountered with the studies 

discussed in Section 2.2.1. Due to this complexity, we were not able to fully automate this 

process as we had originally proposed. Instead we took on the painstakingly tedious job of 

manually segmenting the pulmonary vasculature as described in Section 3.2.1. Having a 

successful automated segmentation method for separating the pulmonary vasculature is a popular 

problem and unfortunately like other researchers we had limited success in finding a solution due 

to the complexity of the vasculature and the low variability in the image intensities of the various 

tissues in the thoracic cavity.  

The next step was to extract the skeletons from the segmentations. Here we encountered 

our next set of problems. The resulting segmentation had holes and errors within the 

segmentation that developed during the skeleton generation process. Three rounds of cleaning 

and inspection reduced these imperfections but did not eliminate them entirely. To try and 

eliminate these imperfections we applied a variety of preprocessing methods to help smooth out 

the segmentation and get a more accurate depiction of the vasculature’s backbone as detailed in 

Section 3.2.3.   

We found that a combined method of median filtering and morphological closing reduced 

the number of the unwanted edges the most. Although the preprocessing greatly reduced these 

unwanted edges, additional methods were needed. After the graphs were generated, we manually 

deleted the extra unwanted edges that remained after preprocessing, as described in Section 
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3.2.6. We then used this data to develop a classifier that separates the edges into those that 

should remain (positive) and those that should be deleted (negative).   

According to the results shown in Table 6 in Section 4.4, the ROC area for the CART 

model is 89.3% and the logistic regression model gave 84.8%.  An online calculator developed at 

Vassar College (http://www.vassarstats.net/roc_comp.html) was used to test whether these ROC 

areas are statistically significantly different. According to the calculator these areas are 

statistically different giving p-values less than 0.05 at 0.04. 

Seven features proved to be strong enough for classifying edges. The features used in the 

development of the pruning model were reasonably discriminatory. However, future automated 

pruning algorithms could consider the anatomic locations (depth in the vascular tree) of the 

edges. Had we incorporated this feature, it would have been much easier to identify the vessels 

we wanted to keep simply by counting down the branches and referring to the three dimensional 

coordinate locations.  

 A possible problem with the pruning data may be the editing of the graph edges. Due to 

human error it is possible that edges remained in the dataset that should have been eliminated 

that were missed, resulting in edges predicted to be negative edges that were labeled as positive , 

and vice versa. An additional problem that led to the retention of unwanted edges occurred 

during the manual editing process; some edges that should have been eliminated were not 

visualized and led to retaining some unwanted edges. Specifically, there were a number of times 

that an edge with the path length of zero was listed and kept in the edited graph because it was 

not visualized to be removed during the manual editing process. Why these zero path length 

edges are listed is not clear. This is an area for further exploration. A more detailed analysis of 

the individual edges, perhaps with the addition of more descriptive features, such as proximity to 

http://www.vassarstats.net/roc_comp.html
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the larger vessels, as well as branching depths, would help construct a more accurate predictive 

model. This is an area of the research that needs further exploration to find a less tedious method 

of pruning the unwanted edges.  

Future exploration would be to take these classifiers and apply them to the original un-

cleaned graphs to see how well they can classify the wanted from unwanted edges, and how 

successful they are in pruning the graphs. 

At the completion of hypothesis 1, although the model of the vasculature is imperfect, it 

is a semi-automated model that depicts the three major vessels of interest allowing us to proceed 

with the second hypothesis and final aim. 

5.2 HYPOTHESIS 2 

5.2.1 Specific Aim 3: Use PUMA to diagnose PAH. This will be done by performing a 

semi-automated measurement of vascular diameters and making comparisons to 

measurements from known normal cases. 

The main goal of this research is to answer the question can we predict the presence of 

pulmonary hypertension based on CT images of the pulmonary vasculature.  

When looking at the measurements, specifically Table 3 in Section 3.3.8, we would 

expect the overall minimum and the overall maximum measurement values to be greater for the 

disease cases than the normal cases. This is in fact what is shown. The effect of pulmonary 

hypertension on the vessels is similar to the effects of stretching a steel spring. As the spring 

stretches past its plastic deformation limit, it does not return to its original size.  This is what is 
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happening in the vessels. The increase in the pressure distends the vessels and prolonged 

exposure reduces the chances that the vessel will begin to lose its elasticity and start to atrophy. 

An area of future research related to this was touched upon in the background. It would be 

interesting to look at the difference in the diameter of the vessels across the cardiac cycle. One 

measurement would be taken during systole and one during diastole. The difference between 

these two measurements would be taken and used for study. Just like the balloon example the 

difference is expected to be greater for control patients or patients with mild hypertension 

compared to those with more advanced disease. One possible avenue for future work would be to 

add more vessel measurements to the model. If we were to proceed deeper into the vasculature 

and obtain measurements at deeper branching depths and include those values in the 

development of the prediction model, it may improve the accuracy of the model.  In particular, 

due to the nature of the disease the deeper vessels will show the effects of disease if pulmonary 

hypertension is present making it easier to classify disease from controls. Signs of pulmonary 

hypertension are first seen in the most distal vessels or deepest branches and travels up the tree 

until it begins to affect the elasticity of the pulmonary trunk [1]. Obtaining information from 

deeper branching depths would be expected to also improve the model when predicting pressure 

based on the measurements because it would give a more complete picture of the effects of the 

remodeling and the severity of the disease. Incorporating this additional information into the 

regression model would allow the comparison of more severe changes in the vasculature sizes to 

be compared to the pressure changes, it seems plausible that there would be a larger difference 

between the normal cases and the disease cases. This would not only improve the classification 

of the model but it would open up the possibility of classifying the degree of severity of the 

disease by tracking the progression as we travel along the branches of the pulmonary tree.  Of 
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course, the problem with doing this task would be the segmenting out of those additional levels. I 

have shown that it can be done manually, but not easily or quickly.  

When comparing disease and control cases for each of the vessels, we expected to see 

that they are significantly different with the exception of the aorta comparisons. This was the 

case when analyzing the manual measurement data: there is a difference between the control and 

the disease cases shown in Tables 12 and 13 in Section 4.5.2. The same conclusions are made 

when looking at the automated measurements in Tables 14 and 15 in Section 4.5.3.  Each of the 

vessels, excluding the aorta, showed a significant difference between the disease and control 

cases. The p-values are all less than 0.05. For both the manual and automated measurements the 

aorta showed no significant difference between disease cases and control cases.   When 

comparing the manual measurements to the automated measurements there are variations in the 

measurements.  In Table 16 in Section 4.5.4, we report that there is no significant difference 

between the two types of measurements in regards to the pulmonary trunk and the right main 

pulmonary artery. In Table 17 we show the findings for the comparison for left main pulmonary 

artery and the aorta; here there is a significant difference found with respect to the p-values, both 

are greater than 0.05. The equivalence analysis performed for these comparisons reported in 

Table 18 in the same section show that the measurements are comparable and fall within the 

designated threshold across all confidence intervals. The causes for possible differences between 

the measurements may have to do with the location of where the measurement is being made 

within the vessel. Future work to address this problem may be to have the automated 

measurement made at the same location in the vessel that corresponds to the slice where the 

manual measurement is made. This would eliminate the possible variable of measurement 

location affecting the results. Figures 17-20 are scatterplots of the manual measurements on the 
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y-axis and the automated measurements along the x-axis. These plots show the variation in 

values. Specifically Figures 19 and 20, the outliers are easily identified where the automated 

measurements are much greater than the manual measurements. Consistent anatomic location for 

measurement may be able to reduce this variation and help reduce the measurement error. 

We investigated disease classification using machine learning. Two different methods of 

classification, logistic regression and naïve Bayes were applied. Due to the variation between the 

two types of measurement as previously discussed we developed models for both the manual and 

automated measurements. We found that for both classifiers (using normalized data) the manual 

measurements classified more cases correctly with an ROC area of 83.7% for the logistic 

regression model and 84% for the naïve Bayes. . The automated measurements resulted in a 

ROC area for the logistic regression model of 69.5% and 68.2% for the naïve Bayes model. 

These results are encouraging. If improvements are made to this process such as the segmenting 

of additional branches, this may further improve classification. It is very possible that some of 

the disease cases are in the beginning stages and segmenting out the higher order vessels alone 

may not show enough difference from the normal cases to diagnose disease. The model may only 

be classifying the more severe cases, since we do not have a severity of disease attribute and 

there is no way of knowing for sure if this is the case; only future research will resolve this issue.  

Trying to predict a relationship between pressure and size proved difficult. It is plausible 

that the inclusion of gender, weight and height data would have improved the relationship by 

helping to define the baseline size of the pulmonary vessels; however, this data was not available 

to us. The polynomial regression model indicated that pressure was a good classifier of disease. 

However, the measurements were not nearly as strong and this was the case for both types of 

measurements (manual and automated). An important limitation is that we only had five normal 
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cases with pressures and measurements and 27 disease cases with pressures. Depending on the 

severity of disease, it is possible that the three vessels we measured were not yet affected enough 

by disease to reveal the disease reliably. When looking at the output from Table 23 in Section 

4.5.6 for the measurements, as the vessels decrease in size with depth in the pulmonary branches 

the R
2 

values increase. 

 Section 2.2.1 described a study by Devaraj et. al.. They manually measured the segmental 

and subsegmental arteries, which are branches deeper than those presented here. Then using 

linear regression they assessed the relationship of the measurements with the mean pulmonary 

artery pressure. Their main focus was determining the ratio of the main pulmonary artery and the 

ascending aorta because it is a strong indicator of the presence of pulmonary hypertension in 

patients with pulmonary fibrosis. We did not specifically look at this ratio but it would be an area 

for future exploration with this dataset. Our primary focus was to measure the change in vessel 

diameter based on branching depth and the difference between normal and disease cases based 

on vessel diameters at the different branching levels. The majority of their findings are not 

comparable directly because of the stated differences, however, they did report that the 

correlation between the segmental artery and the mean pulmonary artery pressure was found to 

have an R
2
 = 0.19, p-value = 0.001 in 56% of their patients. They found no correlation for the 

subsegmental arteries [26]. According to our results shown in Table 23, we found a relationship 

between the mean pulmonary artery pressure and the PT, RMPA, and LMPA with the exception 

of the automated PT measurement.  These arteries are higher in the pulmonary tree and would be 

less affected by disease than the deeper branches. The exception of the PT value may have to do 

with the potential for extreme outliers because of the method of measurement. Looking at the 

following Figure 23, the same plot found in Section 4.5.6, we can see that at around 60 mmHG 
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there are two extreme PT measurements: one very small around 1.5 cm and one very large 

around 4.0 cm. Since these measurements are automated it is possible that there are errors in the 

anatomic location of the measurements in some of the cases resulting in erratic measurements. 

This is an area for additional research in the future as discussed earlier. 

Figure 23 Plot of PT versus mean pulmonary artery pressure. 

 

 Another study mentioned in Section 2.2.1 was Grubstein et al..  This group measured the 

same vessels as we did and reported a correlation between the pulmonary arteries and pressure 

but not as significant a correlation as were the pressures measured by echocardiography.  
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6.0 CONCLUSION 

In conclusion, PAH is a progressive and potentially fatal disease. PAH causes the 

remodeling of the pulmonary vasculature and because of this we were able to quantify the vessel 

geometry depicted in CT images as a non-invasive technique for diagnosing PAH. The research 

presented in this work provides the foundation for future work of the fully automated 

measurements of the major vessels for diagnosis of disease. We have shown that using 

measurements of the blood vessels are strong indicators for presence of disease, and we are one 

step closer to eliminating the need for the invasive and costly right heart catheterization 

procedure. Even with the limitations of this research we were able to classify just under 75% of 

the patients correctly when using the automated measured data as to whether or not the disease is 

present. If we build upon this work we should include travelling deeper into the vasculature and 

gathering data on deeper branches. For the disease cases, the deeper branches may better reveal 

the effects of the disease and therefore, be better indicators for and improve the classification of 

PAH cases. Of course, gathering additional data, specifically pressures from normal cases, would 

be optimal. Although we have shown there is a relationship between the vessel size and the mean 

pulmonary artery pressure, the increase in branching depth along with more data would vastly 

improve this relationship due to the nature of the disease. The deeper vessels will show the 

effects of the disease before the higher level branches that were segmented in this research. It is 

entirely possible that incorporating this information would give us the ability to predict the 
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pressure accurately within a specified range, thus removing the necessity for RHC. This work 

lays a useful foundation for future work, but improvements need to be made to the generation of 

the automated measurements, specifically consistency needs to be maintained in regards to 

anatomic location to make the values comparable to manual measurements to make this a fully 

automated process.  
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APPENDIX A 

Table 22).  Pressure data for the 27 specified cases 

Image 
Catheter 

Date 

PA Systolic 

Pressure 

PA Diastolic 

Pressure 
PAMP TPG 

1 2/25/2005 73 30 42 38 

3 5/16/2005 125 52 79 70 

5 5/26/2005 45 18 31 23 

6 6/1/2005 83 42 58 48 

8 6/27/2005 40 16 26 19 

9 7/7/2005 33 17 21 7 

10 7/11/2005 111 51 70 63 

11 8/11/2005 27 13 20 7 

13 9/22/2005 100 20 57 50 

15 10/11/2005 28 12 19 10 

19 11/17/2005 75 33 50 39 

20 12/15/2005 74 34 50 34 

23 1/10/2006 40 16 26 10 

24 3/2/2006 24 9 17 5 

25 3/22/2006 112 54 75 69 

27 12/27/2006 75 31 51 37 

28 5/2/2007 59 21 35 24 

29 5/17/2007 19 8 13 6 

32 1/15/2008 44 17 28 17 

33 10/1/2009 80 32 51 41 

34 10/16/2009 83 27 46 36 

35 11/17/2009 66 26 43 30 

36 1/26/2010 108 22 59 38 

37 5/4/2010 52 17 30 18 

38 5/7/2010 67 30 39 14 

40 6/23/2010 50 16 31 13 

41 6/25/2010 87 22 46 31 

*PAMP ~ Pulmonary Artery Mean Pressure, TPG ~ Trans-pulmonary Gradient 
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Table 23). Additional Pressure Data collected for the 27 cases. 

Image PVR 
Days between RHC 

and CT 
CT Date Case Label 

1 8.84 -2 2/23/2005 PH 

3 23.26 +3 5/19/2005 PH 

5 4.41 +12 6/8/2005 PH 

6 15.26 -32 4/30/2005 PH 

8 2.6 +2 6/29/2005 PH 

9 0.84 0 7/7/2005 Normal 

10 24.9 +3 7/14/2005 PH 

11 1.35 -8 8/3/2005 Normal 

13 15.43 0 9/22/2005 PH 

15 2 -12 9/29/2005 Normal 

19 10.54 +8 11/25/2005 PH 

20 8.26 +1 12/16/2005 PH 

23 2.13 +30 2/9/2006 PH 

24 0.57 0 3/2/2006 Normal 

25 21.9 -1 3/21/2006 PH 

27 8.53 +1 12/28/2006 PH 

28 4.94 +1 5/3/2007 PH 

29 0.91 +1 5/18/2007 Normal 

32 3.51 0 1/15/2008 PH 

33 7.41 +1 10/2/2009 PH 

34 11.84 -1 10/15/2009 PH 

35 7.32 0 11/17/2009 PH 

36 5.51 0 1/26/2010 PH 

37 4.44 0 5/4/2010 PH 

38 1.51 0 5/7/2010 PH 

40 2.31 0 6/23/2010 PH 

41 7.36 0 6/25/2010 PH 

*PVR~ Pulmonary Vascular Resistance, RHC ~ Right Heart Catheterization 
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APPENDIX B 

This Section lists the parameters used to generate each of the segmentations for both the 

pulmonary vasculature and the aorta described in Section 3.2.1.  The ROI value or region of 

interest is the value associated with the placement of the red box as demonstrated in Figure 4b. 

The lower and upper are the bounds for the intensity value used for differentiating between the 

vasculature to be segmented out and the surrounding tissues. The curvature value refers to the 

smoothness of the expansion of the bubbles that are placed as seed points to begin the 

segmentation. We found the closer to 1 the value the more smooth, which proved to result in 

cleaner segmentations. 

Table 24. Segmentation Parameters 

Image ROI 
Pulmonary Vasculature Aorta 

Lower Upper Curvature Lower Upper Curvature 

3 0.814453 -161.37 1364.73 1 70.87 468.98 1 

9 0.582031 69.34 577.08 1 69.34 577.08 1 

34 0.53125 101.11 859.26 1 58.99 859.26 1 

39 0.564453 -43.99 937.87 1 -83.27 1252.07 1 

46 0.523438 46.1 715.14 1 46.10 715.14 1 

57 0.650391 120.38 966.61 0.92 819.20 505.03 0.98 

105 0.714844 186.12 577.47 1 55.67 512.25 1 

109 0.796875 20.01 668.23 0.97 60.83 587.79 0.97 

111 0.568359 148 601 0.96 146.15 435.82 0.98 

119 0.976562 128.97 444.61 1 160.54 318.35 1 

127 0.857422 60.69 718.66 1 60.69 796.07 1 

136 0.78125 54.55 558.53 1 121.75 457.73 1 

142 0.537109 252.94 1115.42 0.95 6.52 417.23 0.98 

146 0.486328 321.31 903 1 94.18 903 1 

148 0.859375 48.17 664.09 0.96 23.70 556.01 0.97 
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Image ROI 
Pulmonary Vasculature Aorta 

Lower Upper Curvature Lower Upper Curvature 

156 0.585938 175.75 793.18 0.92 11.10 875.5 0.96 

169 0.734375 17.55 551.32 1 89.20 658.07 1 

184 0.708984 111.51 967.21 1 111.51 967.21 1 

196 0.511719 269.2 816.66 1 184.97 732.44 1 

201 0.703125 89.9 533.28 1 9.16 775.18 1 

202 0.613281 56.13 765.42 1 91.59 800.89 1 

207 0.625 95.89 547.49 1 50.62 660.32 1 

209 0.703125 -12.39 546.13 1 -12.39 865.29 1 

218 0.576172 133.84 833.35 1 92.69 874.5 1 

225 0.662109 224.62 561.59 1 71.45 500.32 1 

228 0.78125 78.93 1380.18 0.99 43.76 817.48 0.98 

231 0.511719 100.73 431 1 11.00 1153 1 

239 0.626953 30.08 730.41 1 30.08 730.41 1 

253 0.703125 -13.42 918.63 1 -225.25 1172.83 1 

259 0.802734 101.93 327.11 1 69.76 455.79 1 

278 0.523438 164.46 717.33 0.99 206.99 674.8 0.98 

282 0.585938 -25.23 635.74 0.95 52.54 557.98 0.97 

288 0.78125 290.26 427.25 0.98 85.28 358.86 0.99 

294 0.613281 94.64 850.51 1 -31.34 1228.45 1 

322 0.724609 27.68 973.38 1 64.05 718.77 1 

328 0.714844 155.11 535.31 0.99 171.67 297.95 0.98 

353 0.703125 87.43 491.46 0.98 53.78 188.44 0.99 

367 0.78125 -128.85 341.26 1 51.96 811.37 1 

369 0.630859 173.68 523.61 1 138.68 978.51 1 

378 0.558594 167.39 1615.27 1 -2.94 1189.42 1 

381 0.601562 101.74 1074.75 1 61.20 628.79 1 

392 0.625 64.75 622.68 1 64.51 478.83 1 

393 0.619141 64.51 622.68 1 64.51 478.83 1 

410 0.564453 301.77 1009.72 1 78.20 1046.98 1 

441 0.617188 112.6 663.08 1 112.6 663.08 1 

453 0.503906 19.63 989.68 0.96 146.15 567 0.98 

455 0.533203 216.82 845.65 1 216.82 845.65 1 

460 0.533203 166.24 576.1 1 43.28 699.06 1 

462 0.535156 193.39 753.49 0.92 153.39 553.46 0.98 

471 0.912109 187.14 737.92 1 125.94 309.54 1 

473 0.78125 17.85 725.53 1 55.09 837.27 1 

482 0.12891 91.8 1093.73 1 -68.51 652.88 1 

499 0.585938 -21.73 35.39 0.96 176.83 653.37 0.96 

502 0.533203 79.36 1151.05 1 117.63 768.3 1 
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Image ROI 
Pulmonary Vasculature Aorta 

Lower Upper Curvature Lower Upper Curvature 

518 0.703125 235.17 513.2 1 26.65 443.69 1 

522 0.6875 210.35 1019.59 1 -87.79 295.54 1 

527 0.708984 86.69 536.61 1 -25.79 911.54 1 

542 0.654297 81.96 644.32 0.91 38.55 363.14 0.98 

547 0.712891 300.91 1209.54 1 82.84 700.7 1 

550 0.847656 126.87 400.45 1 -9.92 1084.39 1 

555 0.556641 155.34 889.45 0.95 155.34 673.54 0.96 

564 0.642578 191.08 585.31 0.92 -6.03 322.49 0.96 

569 0.578125 293.96 962.8 1 43.14 461.17 1 

572 0.599609 284.89 951.14 0.96 76.68 618.01 0.98 

588 0.701172 33.72 677.58 1 67.61 642.03 1 

593 0.654297 17.9 734.3 1 -24.24 355.03 1 

611 0.650391 178.58 896.17 1 -20.75 497.51 1 

612 0.566406 67.58 737.25 1 -44.04 774.46 1 

624 0.603516 189.06 708.14 0.91 -90.45 268.92 0.96 

626 0.652344 97.45 922.24 0.96 14.97 757.28 0.99 

628 0.607422 175.27 1139.65 1 7.55 552.63 1 

629 0.748047 68.35 925.02 1 31.11 403.57 1 

637 0.625 58.51 656.44 1 25.3 1121.5 1 

650 0.642578 96.42 353.75 1 59.66 464.03 1 

671 0.529297 67.77 546.59 1 27.87 626.39 1 

672 0.632812 169.17 371.39 1 -100.48 843.25 1 

679 0.517578 418.54 1087.15 1 84.23 794.63 1 

680 0.642578 114.27 821.59 1 -3.62 978.77 1 

686 0.966797 99.62 333.53 0.98 118.49 660.69 0.99 

690 0.78125 64.17 805.58 1 -9.97 768.51 1 

816 0.78125 109 659 0.91 67.00 532 0.98 

818 0.507812 284.85 928.11 0.92 124.03 606.48 0.98 

820 0.78125 41.7 1152.69 1 80.01 846.21 1 

821 0.564453 396.94 926.48 0.92 152.00 926 0.96 

825 0.632812 201 609 0.9 37.54 323.65 0.98 

829 0.976562 -3.06 184.31 1 104.01 425.22 1 

838 0.78125 50.99 527.23 0.92 50.00 527 0.99 

878 0.828125 -31.14 263.32 0.96 99.73 328.76 0.98 

896 0.660156 179.9 736.73 0.96 60.68 657.2 0.98 

916 0.548828 167.08 710.13 0.92 125.28 668.35 0.96 

919 0.683594 181.94 524.32 0.91 105.86 600.41 0.98 

RV01 0.632812 220.35 566.21 0.98 143.49 912.08 0.97 

RV03 0.587891 151.92 764.52 0.92 229.07 730.58 0.96 
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Image ROI 
Pulmonary Vasculature Aorta 

Lower Upper Curvature Lower Upper Curvature 

RV05 0.578125 200.42 438.17 0.97 200.42 540.08 0.96 

RV06 0.625 90.83 873.23 0.92 59.54 560.27 0.96 

RV08 0.621094 162.68 484.09 1 122.51 684.97 0.99 

RV09 0.658203 121.03 337.83 1 229.43 410.1 1 

RV10 0.695312 192.94 810.86 0.95 192.94 772 0.9 

RV11 0.777344 80.89 552.94 1 80.89 485.51 1 

RV13 0.541016 242.3 890.93 1 204.14 738.31 1 

RV15 0.591797 151.79 1226.31 1 82.46 394.42 1 

RV19 0.488281 276.9 756.44 0.9 92.46 387.56 0.9 

RV20 0.703125 184.41 481.93 0.9 110.03 333.17 0.92 

RV23 0.525391 164.23 566.27 1 3.42 1410.56 1 

RV24 0.488281 210.18 511.14 1 172.56 661.62 1 

RV25 0.619141 208.71 856.66 0.92 208.00 856 0.92 

RV27 0.617188 156.7 437 0.92 611.90 53.42 0.92 

RV28 0.541016 150.54 368.21 1 107.00 803.56 1 

RV29 0.501953 428.45 1183.49 1 145.31 711.59 1 

RV32 0.578125 190.17 867.7 1 99.28 641.86 1 

RV33 0.333984 136.38 459.27 1 182.51 874.41 1 

RV34 0.384766 217.37 821.2 0.92 217.00 670.24 0.96 

RV35 0.609375 258.84 636.5 1 371.93 560.91 1 

RV36 0.330078 247.44 617.51 1 136.42 1838.74 1 

RV37 0.488281 475.95 1108.81 1 249.93 701.97 1 

RV38 0.753906 161.68 578.72 0.96 161.00 578 0.96 

RV40 0.726562 235.96 844.75 0.92 45.71 502.3 0.92 

RV41 0.662109 316.7 1139.52 1 171.49 849.11 1 
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APPENDIX C 

This Section contains all of the PUMA scripts referenced throughout this work. 

PreprocessSegmentation.py (referenced in Section 3.2.3) 
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GenerateGraph.py (referenced in Section 3.2.5) 
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rerootGraph.py (referenced in Section 3.2.5) 

 



 111 
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editGraph.py (referenced in Section 3.2.6)  
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getDFEModified.py (referenced in Section 3.2.8.1) 
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grabVolumes.py (referenced in Section 3.2.8.1) 
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Extract_DFE_Values.py (referenced in Section 3.2.8.1) 
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ExtractShapeVolume.py (referenced in Section 3.2.8.1) 
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AutomatedMeasurements4.py (referenced in Section 3.4.2) 
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APPENDIX D 

The specific steps for the calculation of the statistical measures for comparison. 

• Calculate the mean  ̅, variance (S
2
) and standard deviation(S) for the   

  two groups (with and without PH). 

   ̅     ∑     
    

       
∑        ̅  

   

 
   

          

• Calculate the difference in means. 

• Calculate the Pooled Standard Deviation: This will provide insight into how much 

variance exists between the groups. 

        √[
[          

 ] [           
 ]

        
]   

                                                                 

                                                                    

• Calculate the Error in the Standard Deviation of the Mean Difference: 

                                                 

                       (
 

  
 

 

   
)                                  



 131 

     is the t value associated with 95% confidence with degrees of    

   freedom of          . 

•  Calculate the t-statistic and compare it to the critical value and determine         

  whether to accept or reject the null of equal means. 

                       

Determining statistical significance: if the difference in means is greater than the Error 

mean difference then the two means are statistically different at the 95% confidence level. This 

means that we are 95% confident that the difference in means is not due to random error.  
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APPENDIX E 

This section contains the complete tables of the resulting edge counts for the different 

preprocessing methods, one for the pulmonary vasculature and one for the aorta as discussed in 

Section 3.2.3 and 4.2. The Tables 25 and 26 contain the edge counts that resulted from the use of 

the editgraph.py script as discussed in Section 3.2.6. on both the pulmonary vasculature and the 

aorta for each case. Table 27 reports the values for the 69 control cases in the training set, and 

Table 28 contains the edge totals for the 15 disease cases. 

Table 25. Pulmonary Vasculature Preprocessing Edge Data 

Image 
Without 

Preprocessing 

median 

only 

close 

only 

median 

& close 

median & close with a 

kernel size of (2,2,2) 

57 13 9 9 11 10 

109 97 13 13 15 9 

111 21 16 16 16 16 

142 81 29 30 33 30 

148 7 5 5 7 7 

156 23 23 24 17 15 

228 92 13 15 24 11 

278 25 17 15 15 21 

282 17 11 9 9 9 

288 28 20 14 27 17 

353 9 7 5 10 7 

453 25 23 23 39 21 

462 29 25 27 25 21 

499 86 13 19 19 9 

542 75 51 48 50 47 

555 272 31 31 34 29 

564 19 16 18 19 16 
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572 9 7 7 7 7 

624 114 18 13 13 15 

626 38 7 7 9 7 

818 14 13 13 15 11 

821 18 19 17 18 18 

825 13 11 13 11 11 

838 56 12 13 11 11 

896 12 7 7 12 9 

916 193 30 30 36 27 

919 126 20 19 19 19 

RV03 27 15 13 23 14 

RV06 126 12 12 20 10 

RV10 13 13 13 13 13 

RV19 69 71 67 67 67 

RV20 9 9 11 11 7 

RV25 13 13 13 11 11 

RV27 25 23 26 29 16 

RV34 86 9 11 19 13 

RV38 31 31 29 29 29 

RV40 16 16 16 14 16 

 

Table 26. Aorta Preprocessing Edge Data 

Image 
Without 

Preprocessing 

median 

only 

close 

only 

median 

& close 

median & close with a 

kernel size of (2,2,2) 

57 3 3 4 3 3 

109 1 2 1 2 2 

111 67 20 14 9 9 

142 16 11 14 6 6 

148 2 ERROR 1 1 1 

156 13 8 13 8 9 

228 7 7 7 7 7 

278 7 7 7 7 7 

282 150 4 3 4 2 

288 40 6 10 5 5 

353 12 7 9 7 7 

453 19 7 9 7 7 

462 4 5 4 5 6 

499 6 6 5 5 1 

542 100 11 11 10 10 
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555 78 12 10 7 11 

564 4 2 6 2 2 

572 5 2 5 2 1 

624 387 13 18 9 10 

626 3 1 3 1 1 

818 62 15 19 13 9 

821 16 10 12 12 10 

825 111 9 14 13 9 

838 7 7 8 7 5 

896 2 2 2 2 2 

916 16 122 14 7 5 

919 8 7 8 7 7 

RV03 3 2 3 2 2 

RV06 77 9 14 4 4 

RV10 5 5 5 3 1 

RV19 9 7 8 7 7 

RV20 7 7 5 7 5 

RV25 7 7 7 7 7 

RV27 234 8 9 8 12 

RV34 8 8 9 8 8 

RV38 5 5 5 5 5 

RV40 9 9 7 9 9 

 

Table 27. The Edge counts for the control cases in the training dataset 

 

Aorta Pulmonary Vasculature 

Image Unedited Edited Unedited Edited 

3 3 NA 7 NA 

9 3 2 3 NA 

39 2 NA 23 NA 

46 9 1 35 20 

57 4 2 10 NA 

105 1 NA 10 8 

109 2 NA 5 NA 

111 2 NA 12 NA 

119 2 NA 5 NA 

142 9 3 5 4 

148 1 NA 5 NA 

156 9 2 3 NA 

201 2 NA 7 NA 
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202 2 NA 3 NA 

207 3 2 11 9 

209 1 NA 8 NA 

223 7 2 8 NA 

228 7 2 11 NA 

231 4 2 5 4 

239 3 NA 5 NA 

253 4 2 13 NA 

278 5 1 11 9 

282 1 NA 3 NA 

322 2 1 9 NA 

328 3 NA 5 NA 

353 7 2 4 3 

369 8 3 14 12 

378 4 2 19 17 

392 2 NA 15 NA 

410 3 2 22 NA 

453 5 2 11 NA 

455 2 NA 40 37 

462 1 NA 14 NA 

471 4 2 17 15 

473 4 2 9 NA 

482 2 NA 15 NA 

499 2 NA 11 NA 

518 5 2 11 NA 

522 2 NA 11 NA 

542 2 NA 8 NA 

547 3 NA 7 NA 

564 3 NA 15 13 

569 6 3 10 NA 

572 2 1 7 NA 

588 1 NA 11 NA 

593 8 2 22 NA 

612 4 2 12 NA 

626 1 NA 9 NA 

628 3 NA 14 13 

629 7 2 11 NA 

650 9 1 19 11 

679 4 2 19 15 
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680 1 NA 23 NA 

686 3 NA 9 NA 

690 2 NA 5 NA 

818 8 1 13 NA 

820 5 2 6 5 

829 2 NA 9 NA 

838 5 2 10 9 

849 9 2 19 NA 

878 7 2 11 NA 

896 2 NA 9 NA 

900 2 NA 9 NA 

916 5 2 7 NA 

919 2 NA 7 NA 

RV09 3 NA 9 NA 

RV11 2 NA 5 4 

RV15 2 NA 12 9 

RV24 3 2 13 NA 

RV29 2 NA 10 9 

 

Table 28. The Edge counts for the disease cases in the training dataset 

 

Aorta Pulmonary Vasculature 

Image Unedited Edited Unedited Edited 

1 5 3 8 7 

3 5 2 9 7 

6 3 NA 12 9 

10 3 NA 11 9 

19 6 2 67 NA 

20 9 2 7 NA 

23 4 3 20 19 

25 9 2 11 NA 

27 5 2 7 NA 

32 5 2 15 NA 

34 8 2 13 9 

35 3 NA 11 NA 

38 7 3 19 17 

40 7 2 9 8 

41 9 3 21 NA 

*Unedited refers to the edge counts after preprocessing with additional edges that needed to be 

manually removed. Edited contains the edge counts after the use of editGraph.py. 
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APPENDIX F 

This section contains the limited output for the classification models for pruning edges 

referred to in 3.8.2 and Section 4.4. Due to length the entire output is available upon request. 

The output from Weka for the Simple CART model  

=== Run information === 

 

Scheme:weka.classifiers.trees.SimpleCart -S 1 -M 2.0 -N 5 -C 1.0 

Relation:     FeatureDataSetNormalizedCompleteRev 

Instances:    1750 

Attributes:   8 

              PathLength 

              MinMaxDiff 

              Min 

              Max 

              Ratio to depth 

              Shape 

              Volume 

              Label 

Test mode:10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

CART Decision Tree 

 

Volume=(0.263247598)|(0.338448776)|(0.155548493)|(0.228946966)|(0.20561028

1)|(0.211827489)|(0.401991288)|(0.262370062)|(0.374797407)|(0.307465205)|(

0.287486218)|(0.432587859)|(0.21388567)|(0.191460935)|(0.160623093)|(0…… 

Number of Leaf Nodes: 8 

 

Size of the Tree: 15 

 

Time taken to build model: 1851.4 seconds 

 

=== Stratified cross-validation === 

=== Summary === 
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Correctly Classified Instances        1628               93.0286 % 

Incorrectly Classified Instances       122                6.9714 % 

Kappa statistic                          0.8013 

Mean absolute error                      0.0899 

Root mean squared error                  0.2676 

Relative absolute error                 25.1294 % 

Root relative squared error             63.2978 % 

Total Number of Instances             1750      

 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC 

Area  Class 

                 0.824     0.037      0.87      0.824     0.846      0.893    

positve 

                 0.963     0.176      0.947     0.963     0.955      0.893    

negative 

Weighted Avg.    0.93      0.144      0.929     0.93      0.93       0.893 

 

=== Confusion Matrix === 

 

    a    b   <-- classified as 

  336   72 |    a = positve 

   50 1292 |    b = negative 

 

The output from Weka for the Logistic Regression model  

Time taken to build model: 1013.41 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances        1489               85.0857 % 

Incorrectly Classified Instances       261               14.9143 % 

Kappa statistic                          0.6117 

Mean absolute error                      0.1551 

Root mean squared error                  0.3734 

Relative absolute error                 43.3628 % 

Root relative squared error             88.2984 % 

Total Number of Instances             1750      

 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.787     0.13       0.648     0.787     0.711      0.848    positve 

                 0.87      0.213      0.931     0.87      0.899      0.848    negative 

Weighted Avg.    0.851     0.194      0.865     0.851     0.856      0.848 

 

=== Confusion Matrix === 
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    a    b   <-- classified as 

  321   87 |    a = positve 

  174 1168 |    b = negative 
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The output 

from Weka for the Simple Cart model using the normalized dataset 
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APPENDIX G 

The following table contains the slice data, the levels at which the manual measurements 

were made for each image along with the series from which the measurements were made. 

Table 29. Slice Data 

Cases Aorta PT RMPA LMPA Image Series 

3 131 131 127 138 4 

9 129 129 130 137 6 

34 104 104 105 109 6 

39 142 142 140 147 5 

46 101 101 95 110 5 

57 141 141 139 143 5 

105 178 178 180 198 4 

109 138 138 134 150 5 

111 98 98 96 107 5 

119 29 29 28 37 6 

127 105 105 106 97 4 

136 92 92 94 81 3 

142 111 111 112 123 5 

146 109 109 118 135 5 

148 77 77 86 77 3 

156 105 105 110 121 5 

169 121 121 120 129 5 

184 99 99 98 105 6 

196 104 104 102 118 5 

201 128 128 131 144 5 

202 129 129 131 138 5 

207 149 149 153 161 5 

209 65 65 62 64 5 

218 115 115 112 124 5 

223 37 37 38 52 4 

225 37 37 43 52 5 
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228 94 94 89 85 3 

231 122 122 123 132 5 

239 74 74 82 89 5 

253 111 111 112 107 6 

259 57 57 58 61 104 

278 102 102 112 120 5 

282 109 109 106 115 5 

288 96 96 90 85 3 

294 93 93 94 98 5 

322 122 122 125 134 5 

328 119 119 118 123 5 

353 98 98 95 114 4 

367 94 94 93 84 3 

369 106 106 111 119 5 

378 104 104 103 116 5 

392 133 133 139 149 4 

393 93 93 92 102 5 

410 120 120 118 137 5 

441 117 117 120 133 5 

453 124 124 127 131 5 

455 111 111 117 132 5 

460 125 125 120 148 5 

462 130 130 129 134 5 

471 254 254 238 241 4 

473 92 92 95 87 3 

482 158 158 154 169 5 

499 102 102 105 93 4 

502 96 96 99 106 1 

518 76 76 80 93 5 

522 132 132 133 144 5 

527 29 29 27 31 6 

542 133 133 129 136 7 

547 136 136 139 146 5 

550 83 83 84 79 3 

555 125 125 123 131 5 

564 64 64 63 68 4 

569 125 125 127 146 5 

572 281 281 260 290 5 

588 122 122 117 125 6 
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593 103 103 108 120 5 

611 119 119 117 127 5 

612 110 110 109 118 5 

624 127 127 125 140 5 

626 109 109 116 113 5 

628 116 116 117 130 5 

629 118 118 129 130 5 

637 126 126 125 134 5 

650 122 122 125 121 5 

671 105 105 112 125 5 

672 90 90 84 81 3 

679 174 174 168 193 5 

680 114 114 116 129 5 

686 66 66 73 68 2 

690 70 70 75 60 3 

816 105 105 107 99 2 

818 140 140 139 145 5 

820 79 79 85 74 3 

821 83 83 87 101 5 

825 125 125 126 135 5 

829 119 119 120 98 3 

838 84 84 93 87 3 

878 121 121 124 130 5 

896 127 127 122 135 5 

916 117 117 113 124 5 

919 153 153 155 164 5 

RV09 116 116 115 124 N/A 

RV11 128 128 126 139 N/A 

RV15 79 79 78 70 N/A 

RV24 208 208 212 227 N/A 

RV29 118 118 127 135 N/A 
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APPENDIX H 

Familiarizing Yourself with Osirix 

- These are your mouse controls:   

- The only two buttons you will be using will be the magnifying glass if you choose to 

zoom in and out (when going from left to right it is the fourth button over) and the 

measuring tool the last button (green line). 

- To zoom in and out you select the magnifying glass and then click on the image and hold 

the button down as you zoom in and out 

- To make a measurement you select the measurement tool and then click the spot where 

you want the line to begin and draw over and click where it will end. If you want to erase 

a measurement just click on the measurement and hit delete, to move just again select the 

measurement and drag to where you would like to have it. 

- If the images have not already been imported, you must select the import tab at the top of 

the frame and go to the folder where the data is stored and it will import the folder. When 

starting in Osirix it will look like this after the data is imported:  
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Then just double click on the first series and a new window will open where you can begin 

making your measurements as described below. 

Making the Requested Measurements 

Step1) Select an image. Each image will contain 4 series, shown in the left-hand column.
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Step 2) The first series is the aorta. It is marked as such. In this slice you make a diameter 

measurement of the aorta and a diameter measurement of the pulmonary trunk at the midpoint as 

in the example below. 

 

Step 3) The second series is labeled as the trunk. On this slice you are to make a measurement at 

the bifurcation point between the pulmonary trunk and where the split occurs between the right 

and left pulmonary arteries. As shown below.  
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Step 4) Make a measurements of the right main pulmonary artery.  

 

Step 5) Make a measurement of the left main pulmonary artery. 

 

 

Once finished with a case just close out the window that popped up, not out of Osirix 

completely, click on this red x button above the left hand column that shows the 4 slices and 

below the database button. This will put you back to the initial screen and you can select the next 
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case.  Once finished do not close Osirix I will take over from there. Thank you!
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APPENDIX I 

This is a table containing the averages of the manual measurements partnered with the 

corresponding automated measurements. The third column under each major vessel is the 

difference between the two measurements. 

Table 30. Comparison table of manual and automated measurements 

Aorta PT RMPA LMPA 

Cases Man. Auto. Diff. Man. Auto. Diff. Man. Auto. Diff. Man. Auto. Diff. 

3 2.90 2.22 0.68 3.01 3.25 0.24 2.33 2.67 0.33 2.43 2.44 0.02 

9 2.85 2.46 0.39 2.79 2.84 0.04 2.08 2.08 0.00 1.89 2.01 0.12 

34 2.96 2.53 0.43 2.28 2.58 0.30 1.74 1.78 0.04 1.84 2.06 0.22 

39 3.65 3.72 0.07 3.16 2.47 0.69 3.03 2.20 0.83 2.59 2.31 0.28 

46 3.30 3.49 0.19 3.26 3.61 0.35 2.87 2.90 0.03 2.85 3.04 0.19 

57 3.31 4.77 1.46 2.39 2.74 0.35 1.99 2.59 0.60 2.01 2.59 0.58 

105 2.50 2.52 0.02 2.67 2.56 0.11 1.80 1.65 0.15 1.65 1.77 0.12 

111 2.34 1.78 0.56 2.18 2.44 0.25 2.20 2.06 0.14 1.91 2.51 0.61 

119 2.60 22.44 0.15 3.07 3.05 0.02 2.16 2.18 0.02 1.88 1.81 0.06 

127 2.68 2.78 0.10 2.64 2.54 0.10 1.99 2.31 0.32 1.90 1.96 0.06 

136 2.49 2.41 0.08 2.33 2.90 0.57 2.10 2.26 0.16 2.12 2.44 0.32 

142 2.95 2.69 0.26 2.23 2.16 0.07 2.45 2.23 0.22 2.22 2.23 0.01 

146 3.05 3.34 0.29 2.08 2.17 0.09 2.38 1.88 0.50 2.28 2.37 0.09 

148 3.15 2.86 0.30 3.13 3.04 0.08 2.16 2.36 0.20 2.61 2.38 0.23 

156 2.09 2.16 0.07 1.78 2.06 0.28 1.53 1.22 0.30 1.32 1.41 0.08 

169 2.87 3.04 0.17 2.86 3.01 0.15 2.24 2.18 0.06 2.33 2.15 0.19 

184 3.49 3.32 0.17 2.61 2.76 0.15 2.11 2.37 0.27 2.33 2.31 0.02 

196 3.33 3.21 0.12 2.67 2.47 0.20 2.21 2.72 0.52 2.32 2.46 0.15 

201 3.84 3.36 0.48 3.45 3.62 0.17 2.35 2.41 0.06 2.01 2.19 0.18 

202 2.72 2.52 0.20 2.24 2.59 0.34 1.70 1.58 0.12 1.77 1.89 0.12 

207 2.93 2.78 0.15 2.67 3.68 1.01 2.25 2.63 0.39 2.31 2.72 0.41 

218 3.37 3.87 0.50 2.40 1.08 1.33 2.09 1.10 1.00 2.13 1.28 0.85 
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225 2.78 2.43 0.35 3.24 3.30 0.06 2.13 2.79 0.66 2.52 2.37 0.15 

228 3.28 3.23 0.05 3.12 2.90 0.22 2.02 2.33 0.31 1.95 2.89 0.94 

231 3.17 3.31 0.14 2.51 2.12 0.39 1.70 2.29 0.60 1.93 2.29 0.37 

239 3.04 2.75 0.29 3.12 2.88 0.23 1.55 2.18 0.63 2.21 2.30 0.09 

253 3.56 4.43 0.87 3.42 3.05 0.37 2.11 2.38 0.27 2.15 2.17 0.02 

259 2.73 2.55 0.18 2.84 3.03 0.19 2.39 1.61 0.78 2.05 1.84 0.21 

278 2.93 3.01 0.08 3.07 2.62 0.45 2.46 2.71 0.24 2.53 2.69 0.16 

282 3.30 2.98 0.32 2.96 2.96 0.01 2.80 2.70 0.10 2.34 2.73 0.39 

294 4.91 5.21 0.30 2.52 3.18 0.66 2.36 2.39 0.03 2.15 2.25 0.10 

322 2.73 2.62 0.11 2.53 2.77 0.24 2.78 2.86 0.07 2.18 2.21 0.03 

328 3.16 3.09 0.07 3.27 3.11 0.16 2.21 2.45 0.24 2.31 2.12 0.19 

353 3.14 2.97 0.17 2.58 2.63 0.06 1.90 2.17 0.27 1.71 1.72 0.01 

367 2.97 2.58 0.39 2.74 2.92 0.18 2.35 2.64 0.29 2.21 2.24 0.03 

369 3.57 3.20 0.37 2.16 2.50 0.34 1.78 1.85 0.06 1.74 2.09 0.35 

378 3.63 3.78 0.15 2.97 2.83 0.14 2.35 2.21 0.14 2.32 2.50 0.18 

392 3.16 3.26 0.10 2.92 2.74 0.18 1.48 1.82 0.34 2.00 1.89 0.11 

393 2.50 2.60 0.10 2.25 2.68 0.43 1.76 1.95 0.19 1.84 1.89 0.05 

410 3.07 3.01 0.06 2.49 2.70 0.21 2.31 2.56 0.26 2.16 2.07 0.09 

441 3.56 3.85 0.29 2.48 2.44 0.04 2.33 2.43 0.10 2.94 2.39 0.54 

453 2.72 2.79 0.07 2.45 2.70 0.25 2.20 2.54 0.33 1.98 2.09 0.11 

455 2.99 2.34 0.65 2.52 2.52 0.00 2.38 2.10 0.28 2.06 2.22 0.16 

460 3.29 3.46 0.17 2.96 3.14 0.18 2.57 2.95 0.38 2.41 2.52 0.11 

462 3.19 3.02 0.17 2.60 2.59 0.01 2.55 2.29 0.26 2.11 2.31 0.20 

471 3.40 3.24 0.16 3.25 1.38 1.87 2.65 2.02 0.64 2.34 2.73 0.38 

473 2.92 2.81 0.11 3.12 4.46 1.35 2.26 3.01 0.74 2.34 3.21 0.87 

482 3.72 3.60 0.12 2.88 3.04 0.16 2.35 2.26 0.08 2.18 2.55 0.37 

499 3.01 3.12 0.11 2.35 1.57 0.78 2.72 1.77 0.95 1.47 2.76 1.29 

502 2.68 2.78 0.10 2.49 2.67 0.18 1.87 1.78 0.09 1.68 1.60 0.08 

518 3.16 3.26 0.10 2.97 1.99 0.98 2.09 2.51 0.42 2.16 2.15 0.01 

522 3.75 4.02 0.27 2.17 2.21 0.04 1.83 1.80 0.03 2.04 1.91 0.13 

527 3.13 2.82 0.31 2.48 2.49 0.00 2.36 2.11 0.24 2.13 1.91 0.22 

542 
3.41 3.27 0.14 2.87 3.40 0.53 2.38 2.36 0.01 2.06 2.43 0.37 

547 3.21 3.49 0.28 2.96 2.69 0.27 1.94 1.77 0.18 2.11 2.13 0.03 

550 2.92 3.15 0.23 3.10 2.84 0.26 2.32 1.88 0.44 2.39 2.04 0.35 

555 
3.07 3.01 0.06 2.10 2.33 0.22 1.98 2.13 0.15 1.63 2.30 0.67 

564 2.61 2.85 0.24 2.40 2.16 0.23 1.52 1.49 0.02 1.51 1.65 0.14 

569 
2.90 2.84 0.06 2.21 2.19 0.02 1.90 1.60 0.31 1.78 1.79 0.01 

572 2.36 2.47 0.11 2.08 2.39 0.31 1.92 1.80 0.11 1.95 1.80 0.15 

588 4.03 4.42 0.39 3.20 2.99 0.21 2.62 2.69 0.07 2.44 2.23 0.21 
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593 
3.40 3.26 0.14 3.67 4.00 0.33 3.36 3.67 0.31 3.18 3.68 0.51 

611 3.43 3.57 0.14 2.76 2.88 0.12 2.04 1.97 0.07 2.20 2.03 0.17 

612 2.86 2.95 0.09 2.66 2.72 0.06 1.67 2.22 0.55 1.69 2.10 0.41 

624 
3.47 3.56 0.09 2.99 3.00 0.01 2.22 1.95 0.27 2.53 2.45 0.08 

626 3.51 3.52 0.01 2.53 2.54 0.01 1.87 2.24 0.37 2.22 2.23 0.01 

628 
3.63 3.21 0.42 2.82 2.60 0.22 2.16 2.12 0.04 2.24 2.27 0.03 

629 4.24 3.98 0.26 3.15 3.03 0.12 2.45 2.85 0.40 2.30 2.27 0.03 

637 
3.27 3.46 0.19 3.14 2.70 0.44 1.56 1.96 0.40 1.95 1.87 0.08 

650 3.14 2.97 0.17 3.40 3.06 0.34 2.46 2.11 0.36 2.46 2.17 0.29 

671 3.10 3.16 0.06 2.29 2.32 0.03 1.94 1.89 0.06 1.92 1.77 0.15 

672 
3.08 3.21 0.13 3.05 2.88 0.16 2.24 2.24 0.00 2.44 2.57 0.12 

679 3.16 3.06 0.10 3.36 3.24 0.12 2.48 2.89 0.41 2.50 2.48 0.02 

680 
3.84 3.72 0.12 2.65 2.61 0.05 2.87 2.98 0.11 2.47 2.35 0.12 

690 3.27 3.36 0.09 3.04 3.21 0.18 2.43 2.37 0.06 1.93 1.95 0.02 

816 3.02 2.84 0.18 3.07 3.08 0.01 2.20 1.67 0.53 1.79 2.06 0.27 

820 
2.96 2.81 0.15 2.80 2.80 0.01 2.07 1.77 0.30 2.05 1.84 0.21 

821 3.33 3.52 0.19 2.47 2.50 0.03 2.21 2.00 0.21 1.91 2.02 0.11 

825 
3.68 3.79 0.11 2.48 2.47 0.01 2.35 2.01 0.34 1.89 1.96 0.06 

829 3.67 3.51 0.16 3.29 3.51 0.22 2.25 2.90 0.65 2.61 2.73 0.12 

838 
2.73 2.77 0.04 3.05 2.87 0.18 1.99 2.23 0.24 1.98 2.12 0.14 

878 3.04 3.82 0.78 2.86 3.07 0.20 2.11 2.05 0.06 2.20 2.31 0.11 

896 4.18 4.03 0.15 3.32 3.33 0.00 2.59 2.47 0.12 2.34 2.11 0.23 

916 
2.45 2.49 0.04 1.99 2.06 0.06 1.53 1.61 0.08 1.74 1.72 0.02 

919 2.65 2.98 0.33 2.53 2.34 0.20 1.94 1.80 0.14 1.82 1.80 0.02 

RV09 
3.14 3.11 .03 3.07 2.39 0.68 2.19 2.13 0.06 2.27 1.88 0.39 

RV11 2.99 3.05 .06 2.82 2.93 0.11 2.04 1.96 0.07 2.06 1.94 0.12 

RV29 2.65 2.69 0.04 1.99 1.96 0.03 1.64 1.80 0.17 1.62 1.61 0.01 

RV03 2.99 3.06 0.07 2.89 3.32 0.43 2.75 2.78 0.03 2.68 2.59 0.09 

RV05 3.18 3.11 0.07 3.18 2.84 0.34 2.37 2.10 0.27 2.30 2.14 0.17 

RV06 3.82 4.11 0.30 3.59 3.63 0.05 2.74 2.86 0.12 2.96 2.83 0.13 

RV08 2.90 3.05 0.15 2.66 2.65 0.01 2.35 2.19 0.16 2.53 2.57 0.05 

RV10 3.96 4.08 0.12 3.67 3.42 0.25 2.51 2.61 0.10 2.52 2.72 0.20 

RV13 3.90 3.87 0.03 3.62 3.98 0.36 3.07 2.84 0.23 2.92 2.82 0.11 

RV19 3.38 3.26 0.12 3.33 3.53 0.20 3.03 3.04 0.01 3.08 3.09 0.01 

RV20 4.15 4.19 0.04 3.77 3.62 0.15 2.96 3.01 0.05 2.61 2.62 0.01 

RV23 2.92 2.85 0.07 2.86 2.90 0.03 2.30 2.30 0.00 2.46 2.26 0.21 

RV25 3.22 3.01 0.21 3.16 3.03 0.13 2.54 2.39 0.15 2.53 2.40 0.12 

RV27 3.86 3.76 0.10 3.61 3.83 0.22 2.62 3.03 0.41 2.65 3.06 0.40 

RV28 2.99 3.01 0.02 2.80 3.06 0.26 1.71 2.22 0.52 2.33 2.09 0.24 
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RV32 2.83 2.96 0.13 2.49 2.66 0.17 1.70 1.83 0.13 1.97 1.82 0.15 

RV33 3.41 3.21 0.20 3.33 3.31 0.02 2.35 2.30 0.06 2.50 2.36 0.14 

RV34 2.85 2.80 0.05 2.62 3.06 0.44 2.05 2.11 0.06 2.68 2.37 0.30 

RV35 3.48 3.68 0.20 3.38 3.41 0.03 2.64 2.48 0.16 2.52 2.50 0.01 

RV36 2.93 3.15 0.22 2.69 1.29 1.40 2.31 1.84 0.47 2.34 2.17 0.17 

RV37 3.02 3.09 0.07 2.92 2.89 0.03 2.02 1.99 0.03 2.24 2.14 0.10 

RV38 4.23 4.29 0.06 3.91 3.05 0.85 3.63 2.60 1.04 3.53 3.41 0.12 

RV40 2.81 2.7 0.11 2.52 2.63 0.11 2.73 2.48 0.25 2.41 2.44 0.03 

RV41 3.14 2.98 0.16 3.06 3.36 0.30 2.62 2.66 0.03 2.69 2.67 0.02 
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APPENDIX J 

This section contains the tables of the four reviewer’s original measurements and 

summary data. 

Table 31. Reviewer 0’s measurements for the Control Cases 

 

  Aorta PT RMPA LMPA 

3 3.007 3.027 2.352 2.453 

9 2.907 2.794 2.046 1.941 

34 2.95 2.250 1.742 1.835 

39 3.656 3.329 2.826 2.541 

46 3.332 3.795 3.097 2.818 

57 3.389 2.522 2.207 1.840 

105 2.563 2.663 1.793 1.731 

109 3.401 2.899 2.614 2.662 

111 2.478 2.178 2.226 2.038 

119 2.865 3.183 2.253 1.880 

127 2.674 2.338 2.034 1.977 

136 2.791 2.204 2.160 2.204 

142 3.066 2.266 2.390 2.179 

146 3.118 2.104 2.327 2.237 

148 3.263 3.037 2.174 3.263 

156 2.072 2.143 1.533 1.412 

169 2.976 2.858 2.259 2.440 

184 3.548 2.598 2.127 2.372 

196 3.453 2.898 2.260 2.253 

201 3.927 3.418 2.622 2.038 

202 2.735 2.181 1.964 1.910 

207 2.928 2.621 2.529 2.428 

209 3.264 4.040 2.907 3.023 

218 3.402 2.456 2.122 2.246 
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223 4.106 2.997 2.483 2.687 

225 2.878 3.241 2.573 2.502 

228 3.321 3.161 2.098 2.086 

231 3.183 2.636 1.731 1.977 

239 3.073 3.098 1.740 2.240 

253 3.678 3.413 2.159 2.127 

259 2.812 2.910 2.165 1.977 

278 3.047 3.073 2.574 2.646 

282 3.392 3.152 3.066 2.111 

288 2.565 2.170 2.092 1.817 

294 4.971 2.559 2.327 2.271 

322 2.761 2.577 2.763 2.103 

328 3.176 3.369 2.320 2.338 

353 3.112 2.444 1.732 1.444 

367 3.012 2.830 2.272 2.305 

369 3.778 2.234 1.819 1.867 

378 3.619 3.036 2.246 2.362 

392 3.303 2.855 1.505 1.926 

393 2.622 2.233 1.763 1.954 

410 3.071 2.526 2.399 2.307 

441 3.604 2.555 2.491 2.622 

453 2.778 2.476 2.214 1.909 

455 3.078 2.677 2.278 2.294 

460 3.336 3.320 2.878 2.591 

462 3.049 2.499 2.585 1.957 

471 3.398 3.034 2.532 2.481 

473 2.84 3.009 2.258 2.317 

482 3.77 2.741 2.415 2.079 

499 3.172 2.390 2.728 1.613 

502 2.791 2.452 1.953 1.694 

518 3.264 3.104 2.047 2.126 

522 3.758 2.169 1.881 2.112 

527 3.078 2.383 2.232 2.095 

542 3.477 2.622 2.321 1.912 

547 3.105 2.989 2.098 2.167 

550 2.972 2.876 2.183 2.561 

555 3.04 2.125 1.986 1.381 

564 2.705 2.467 1.538 1.565 

569 2.843 2.153 1.893 1.861 
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572 2.335 2.185 1.922 1.974 

588 3.864 3.023 2.686 2.664 

593 3.308 3.662 3.430 3.139 

611 3.58 2.783 2.120 2.148 

612 2.864 2.960 1.585 1.753 

624 3.485 2.804 2.240 2.563 

626 3.407 2.517 1.718 2.231 

628 3.678 2.912 2.253 2.381 

629 4.136 3.139 2.644 2.366 

637 3.297 3.318 1.666 2.077 

650 2.889 3.393 2.249 2.396 

671 3.201 2.492 2.088 1.981 

672 3.08 2.815 2.208 2.555 

679 3.214 3.397 2.598 2.676 

680 3.94 2.723 3.083 2.431 

686 3.424 2.952 2.702 2.714 

690 3.309 3.321 2.537 1.918 

816 3.162 2.936 2.130 1.730 

818 2.501 2.031 1.346 1.405 

820 3.173 2.840 1.859 2.091 

821 3.325 2.551 2.094 1.910 

825 3.613 2.221 2.272 1.983 

829 3.694 3.340 2.411 2.667 

838 2.814 2.771 1.946 2.153 

878 3.17 2.894 2.089 2.086 

896 4.3 3.354 2.638 2.394 

916 2.471 1.952 1.518 1.655 

919 2.849 2.415 1.902 1.845 

RV09 3.012 2.840 2.156 2.180 

RV11 2.969 2.724 1.978 1.839 

RV15 3.472 2.126 2.112 1.978 

RV24 2.989 2.221 1.530 1.659 

RV29 2.61 2.124 1.690 1.678 
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Table 32). Reviewer 0’s measurements for the Disease Cases 

Cases Aorta PT RMPA LMPA 

RV01DW 2.589 2.951 2.768 2.735 

RV03CH 3.001 2.978 2.778 2.774 

RV05TH 3.048 3.143 2.387 2.193 

RV06AP 3.646 3.609 2.822 3.051 

RV08JR 3.312 2.633 2.32 2.652 

RV10JB 2.5 3.749 2.67 2.537 

RV12DC 2.579 3.147 2.549 2.294 

RV13CB 3.706 3.669 3.041 2.959 

RV19RD 3.368 3.308 3.09 3.107 

RV20CT 3.305 3.709 2.895 2.557 

RV23RB 3.415 2.997 2.086 2.479 

RV25KN 2.929 3.035 2.609 2.488 

RV27TH 4.087 3.819 2.768 2.928 

RV28TB 3.892 2.747 2.086 2.479 

RV32ST 2.837 2.477 1.742 2.036 

RV33TM 3.128 3.302 2.396 2.452 

RV34VS 3.077 2.727 2.065 2.751 

RV35RH 3.614 3.301 2.539 2.57 

RV36LH 2.686 2.676 2.31 2.232 

RV37MW 3.101 3.037 2.172 2.32 

RV38JM 3.207 3.739 3.813 3.532 

RV40RS 2.939 2.514 2.743 2.329 

RV41CB 3.658 2.906 2.807 2.844 
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Table 33) Reviewer 1’s measurements for the Control Cases 

 
Aorta  PT RMPA LMPA 

3 2.8540 3.0830 2.4240 2.5000 

9 2.9410 2.9180 2.1900 1.8620 

34 3.0300 2.2850 1.7530 1.9920 

39 3.6750 3.2150 3.0110 2.6060 

46 3.1590 3.6370 2.7780 2.8430 

57 3.5540 2.2510 1.8300 1.9760 

105 2.4380 2.4820 1.7400 1.7460 

109 3.3530 2.8430 2.7470 2.5910 

111 2.5460 2.1340 2.1120 1.8150 

119 2.7390 2.9050 2.0980 1.8750 

127 2.7170 3.0430 1.9570 2.1000 

136 2.7550 2.3260 2.0600 2.1570 

142 2.7880 2.2910 2.5050 2.1160 

146 3.1930 2.1510 2.5650 2.4490 

148 3.5170 3.1770 2.2720 2.4600 

156 2.2600 1.7060 1.4650 1.4110 

169 2.8880 3.2310 2.2760 2.1970 

184 3.5950 2.7390 2.2420 2.2700 

196 3.5020 2.4950 2.4110 2.4480 

201 4.0110 3.5560 2.3930 2.0350 

202 2.7490 2.2750 1.7050 1.7850 

207 2.8950 2.7170 2.2210 2.1320 

209 3.9590 3.4310 2.7640 2.7640 

218 3.5360 2.4570 2.1220 2.0830 

223 3.9840 2.7510 2.2180 2.6870 

225 2.9160 3.2620 2.0280 2.5190 

228 3.3390 3.0010 1.9210 1.9280 

231 3.2600 2.5610 1.7880 1.9670 

239 3.2400 3.0530 1.4790 2.2320 

253 3.7350 3.6370 2.1680 2.3250 

259 2.6250 3.0420 2.1010 2.0570 

278 2.9440 3.2890 2.7900 2.1390 

282 3.4100 2.9310 2.9000 2.5140 

288 2.7710 2.5090 2.3100 1.5640 

294 5.2250 2.5610 2.4800 2.1390 

322 2.8490 2.3960 2.9560 2.3780 



 159 

328 3.4000 3.2730 2.3710 2.4100 

353 3.5960 2.5990 2.0300 1.9170 

367 3.2000 3.0110 2.4730 2.2150 

369 3.6500 2.2150 1.6860 1.8360 

378 4.0380 2.9450 2.4620 2.4080 

392 3.2090 3.2730 1.5560 1.9610 

393 2.6370 2.2890 1.7420 1.8100 

410 3.0210 2.3980 2.5110 1.9190 

441 3.6920 2.5730 2.3430 2.8780 

453 2.8330 2.3290 2.1970 1.9680 

455 2.9650 2.5230 2.4400 1.8960 

460 3.5120 3.2280 2.8510 2.5420 

462 3.2830 2.5480 2.5870 1.9790 

471 3.5870 3.0850 2.7990 2.3850 

473 2.9600 3.0130 2.4380 2.3300 

482 3.8210 2.4730 2.3480 2.1110 

499 3.1610 2.2510 2.7840 1.4700 

502 2.8670 2.5000 1.9330 1.7670 

518 3.2190 3.2460 1.9160 2.2730 

522 4.1720 2.0390 1.7710 2.1150 

527 3.4680 2.5620 2.3950 2.1990 

542 3.3780 3.0900 2.4750 2.1470 

547 3.2560 3.0460 1.9690 2.1420 

550 3.0700 3.1020 2.3850 2.3670 

555 3.0230 2.0770 2.0090 1.6290 

564 2.5770 2.3380 1.7870 1.6440 

569 2.9640 2.2810 1.8760 1.9330 

572 2.5110 2.0010 1.9610 1.8720 

588 4.3970 3.2520 2.6860 2.5210 

593 3.8110 3.5730 3.5070 3.1570 

611 3.6680 2.7940 2.1810 2.3190 

612 2.9860 2.6800 1.6930 1.5760 

624 3.7020 3.3750 2.2310 2.4430 

626 3.6720 2.5400 1.9740 2.2930 

628 3.7790 2.8820 2.3300 2.3880 

629 4.5820 3.2310 2.4360 2.4970 

637 3.4430 3.4200 1.4660 2.0960 

650 3.3140 3.5970 2.5850 2.7290 

671 3.4340 2.3170 2.0140 1.8400 
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672 3.1610 3.2320 2.2640 2.3940 

679 3.5730 3.4970 2.5540 2.2860 

680 3.9720 2.5290 2.8320 2.4160 

686 4.2510 3.1180 3.0130 2.2680 

690 3.6300 3.4410 2.4580 2.2160 

816 3.2650 3.5720 2.2270 2.0060 

818 2.4770 1.9110 1.1790 1.4990 

820 3.4590 2.9600 1.5110 2.1140 

821 3.3810 2.5310 2.2080 1.9210 

825 3.7190 2.4370 2.5200 1.9060 

829 3.7370 3.4150 2.2420 2.4770 

838 2.5200 3.3840 2.1000 2.0870 

878 3.0170 2.7630 2.1680 2.2870 

896 4.3790 3.1690 2.5650 2.3540 

916 2.5020 1.9440 1.5500 1.7710 

919 2.8420 2.6150 1.9480 1.6870 

RV09 3.2870 3.5750 2.2070 2.3710 

RV11 3.1790 2.8220 2.1920 1.9430 

RV15 3.4940 2.1880 2.1360 1.7130 

RV24 3.0720 2.2450 1.4620 1.5820 

RV29 2.5960 2.0140 1.6730 1.5230 
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Table 34) Reviewer 1’s measurements for the Disease Cases 

 

Aorta  PT RMPA LMPA 

RV01DW 2.462 3.1 2.753 2.364 

RV03CH 2.985 2.92 2.816 2.633 

RV05TH 2.961 3.183 2.379 2.213 

RV06AP 3.692 3.625 2.757 2.994 

RV08JR 3.469 2.736 2.419 2.413 

RV10JB 2.516 3.738 2.727 2.568 

RV12DC 3.179 2.822 2.192 1.943 

RV13CB 3.623 3.753 3.296 3.001 

RV19RD 3.48 3.159 2.976 3.073 

RV20CT 3.601 4.096 3.017 2.504 

RV23RB 3.501 3.1 2.397 2.614 

RV25KN 2.996 3.313 2.625 2.585 

RV27TH 3.962 3.501 2.439 2.151 

RV28TB 3.75 2.828 1.489 2.247 

RV32ST 2.832 2.466 1.728 1.942 

RV33TM 3.155 3.364 2.449 2.586 

RV34VS 3.121 2.672 1.914 2.609 

RV35RH 3.693 3.414 2.599 2.474 

RV36LH 2.648 2.694 2.372 2.312 

RV37MW 3.095 2.898 2.005 2.228 

RV38JM 3.287 3.872 3.691 3.409 

RV40RS 2.897 2.634 2.43 2.46 

RV41CB 3.599 3.282 2.694 2.519 
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Table 35). Reviewer 2’s measurements for the Control Cases 

 
Aorta  PT RMPA LMPA 

3 3.079 2.932 2.37 2.319 

9 2.95 2.639 2.139 1.863 

34 2.889 2.405 1.885 1.969 

39 3.756 3.139 3.099 2.695 

46 3.8 3.053 2.902 2.998 

57 3.391 2.322 2.077 1.871 

105 2.566 3.029 1.824 1.532 

109 3.407 3.031 2.532 2.641 

111 2.2 2.09 2.125 1.866 

119 2.837 3.181 2.242 1.954 

127 2.693 3.122 2.041 1.699 

136 2.222 2.421 2.08 2.009 

142 3.029 2.264 2.485 2.315 

146 2.93 2.098 2.346 2.277 

148 2.965 3.053 2.063 2.477 

156 2.109 1.677 1.545 1.32 

169 3.058 3.086 2.27 2.219 

184 3.521 2.609 2.021 2.323 

196 3.253 2.844 1.808 2.294 

201 3.74 3.343 2.099 2.087 

202 2.811 2.281 1.533 1.815 

207 3.145 2.58 2.262 2.32 

209 3.269 3.904 3.193 3.144 

218 3.291 2.234 2.153 2.21 

223 3.666 2.637 2.25 2.592 

225 2.819 3.225 2.034 2.5 

228 3.308 3.112 2.048 1.801 

231 3.146 2.492 1.708 1.793 

239 3.029 3.222 1.51 2.177 

253 3.362 3.069 2.127 2.152 

259 2.867 3.005 3.427 2.245 

278 3.038 3.261 2.114 2.519 

282 3.197 2.96 2.984 2.457 

288 2.618 2.235 1.958 1.421 

294 4.657 2.472 2.547 2.075 

322 2.712 2.36 2.795 2.156 



 163 

328 3.078 3.215 2.077 2.306 

353 2.744 2.47 1.868 1.636 

367 3.041 2.942 2.349 2.219 

369 3.552 2.159 1.849 1.661 

378 3.503 3.201 2.483 2.352 

392 3.234 3.055 1.572 2.053 

393 2.175 2.084 1.711 1.894 

410 3.158 2.495 2.271 2.309 

441 3.518 2.529 2.253 3.188 

453 2.749 2.463 2.21 2.144 

455 3.012 2.504 2.475 2.244 

460 3.051 2.615 2.114 1.875 

462 3.393 2.972 2.506 2.545 

471 3.198 3.639 2.624 2.382 

473 2.91 3.512 2.017 2.356 

482 3.745 3.606 2.274 2.381 

499 2.859 2.335 2.703 1.428 

502 2.463 2.751 1.809 1.702 

518 3.039 3.007 2.044 2.152 

522 3.631 2.116 1.796 2.073 

527 3.033 2.243 2.432 2.259 

542 3.358 3.032 2.438 2.064 

547 3.153 2.865 1.851 2.083 

550 2.891 3.558 2.281 2.236 

555 3.084 2.096 1.932 1.77 

564 2.871 2.374 1.284 1.487 

569 2.906 2.354 1.882 1.758 

572 2.348 2.178 1.938 1.997 

588 3.97 3.413 2.487 2.531 

593 3.335 3.573 3.373 3.206 

611 3.067 2.706 1.819 2.15 

612 2.652 2.876 1.618 1.662 

624 3.101 3.24 2.294 2.739 

626 3.395 2.466 1.914 2.181 

628 3.648 2.84 2.182 2.184 

629 3.992 3.037 2.58 2.191 

637 3.239 3.169 1.419 1.923 

650 3.674 3.311 2.736 2.614 

671 2.542 2.305 1.87 2.014 
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672 2.841 3.355 2.24 2.477 

679 2.864 3.364 2.331 2.655 

680 3.69 2.577 2.752 2.653 

686 3.267 2.994 2.677 2.315 

690 3.221 2.803 2.224 1.98 

816 3.084 2.946 2.488 1.685 

818 2.39 1.883 1.109 1.401 

820 2.749 2.888 1.493 1.98 

821 3.343 2.542 2.204 1.841 

825 3.555 2.439 2.284 1.848 

829 3.644 3.292 2.076 2.494 

838 2.71 3.24 1.815 1.8 

878 3.087 2.735 2.132 2.173 

896 3.95 3.477 2.456 2.352 

916 2.466 1.973 1.528 1.682 

919 2.494 2.288 1.988 1.859 

RV09 3.147 3.364 2.084 2.335 

RV11 2.989 2.706 2.165 1.819 

RV15 3.454 2.117 2.103 1.817 

RV24 2.995 2.149 1.494 1.626 

RV29 2.603 1.99 1.597 1.639 
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Table 36). Reviewer 2’s measurements for the Disease Cases 

 

Aorta  PT RMPA LMPA 

RV01DW 2.585 2.948 2.733 2.412 

RV03CH 2.829 2.786 2.577 2.666 

RV05TH 2.819 3.066 2.343 2.334 

RV06AP 3.598 3.52 2.54 2.916 

RV08JR 3.228 2.643 2.289 2.69 

RV10JB 2.576 3.653 2.508 2.488 

RV12DC 2.534 3.007 2.323 2.192 

RV13CB 3.492 3.559 2.946 2.71 

RV19RD 3.435 3.48 2.988 3.004 

RV20CT 3.546 3.676 2.766 2.617 

RV23RB 3.42 2.879 2.301 2.575 

RV25KN 2.84 3.17 2.519 2.427 

RV27TH 3.885 3.615 2.892 2.607 

RV28TB 3.724 2.839 1.635 2.378 

RV32ST 2.825 2.501 1.685 1.993 

RV33TM 3.111 3.315 2.411 2.47 

RV34VS 3.029 2.674 1.947 2.614 

RV35RH 3.549 3.312 2.632 2.48 

RV36LH 2.597 2.765 2.355 2.325 

RV37MW 3.072 2.903 2.054 2.196 

RV38JM 3.25 3.702 3.567 3.409 

RV40RS 2.954 2.4 2.7 2.329 

RV41CB 3.531 2.839 2.61 2.563 
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Table 37). Reviewer 3’s measurements for the Control Cases 

  Aorta PT RMPA LMPA 

3 2.67 3.009 2.189 2.435 

9 2.616 2.826 1.947 1.912 

34 2.985 2.183 1.591 1.561 

39 3.507 2.942 3.166 2.524 

46 2.924 2.542 2.715 2.742 

57 2.91 2.46 1.849 2.365 

105 2.418 2.49 1.856 1.592 

109 3.156 3.336 2.573 2.573 

111 2.131 2.335 2.335 1.906 

119 1.945 3.004 2.045 1.793 

127 2.651 2.041 1.929 1.812 

136 2.206 2.352 2.116 2.09 

142 2.925 2.105 2.4 2.274 

146 2.969 1.954 2.288 2.138 

148 2.868 3.234 2.137 2.25 

156 1.91 1.589 1.559 1.145 

169 2.552 2.255 2.171 2.48 

184 3.282 2.506 2.035 2.353 

196 3.105 2.451 2.342 2.278 

201 3.67 3.502 2.291 1.888 

202 2.574 2.242 1.617 1.553 

207 2.751 2.774 1.969 2.36 

209 2.71 4.016 2.845 2.934 

218 3.254 2.465 1.969 1.996 

223 3.643 2.738 2.329 2.542 

225 2.514 3.212 1.878 2.564 

228 3.133 3.207 2.021 1.983 

231 3.078 2.336 1.566 1.98 

239 2.835 3.095 1.46 2.208 

253 3.463 3.567 1.995 1.995 

259 2.598 2.393 1.855 1.926 

278 2.687 2.67 2.37 2.832 

282 3.199 2.785 2.262 2.289 

288 2.313 2.446 2.016 1.54 

294 4.806 2.49 2.092 2.103 

322 2.615 2.778 2.622 2.102 

328 2.968 3.217 2.089 2.182 
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353 3.102 2.803 1.982 1.838 

367 2.639 2.193 2.301 2.114 

369 3.302 2.036 1.783 1.595 

378 3.346 2.71 2.206 2.146 

392 2.901 2.492 1.293 2.051 

393 2.57 2.41 1.808 1.701 

410 3.027 2.534 2.044 2.109 

441 3.432 2.263 2.238 3.055 

453 2.511 2.517 2.198 1.894 

455 2.913 2.364 2.334 1.815 

460 3.271 2.666 2.443 2.636 

462 3.039 2.372 2.519 1.946 

471 3.399 3.241 2.662 2.129 

473 2.96 2.94 2.336 2.371 

482 3.543 2.683 2.343 2.142 

499 2.842 2.422 2.682 1.37 

502 2.58 2.245 1.792 1.572 

518 3.137 2.533 2.349 2.079 

522 3.441 2.35 1.886 1.874 

527 2.96 2.746 2.369 1.971 

542 3.41 2.718 2.279 2.122 

547 3.338 2.943 1.857 2.032 

550 2.762 2.872 2.445 2.387 

555 3.113 2.116 1.994 1.751 

564 2.274 2.403 1.459 1.346 

569 2.9 2.056 1.967 1.576 

572 2.257 1.969 1.839 1.97 

588 3.892 3.108 2.617 2.046 

593 3.141 3.88 3.125 3.199 

611 3.39 2.774 2.036 2.181 

612 2.957 2.118 1.779 1.774 

624 3.58 2.552 2.108 2.385 

626 3.564 2.598 1.865 2.155 

628 3.408 2.65 1.866 1.996 

629 4.238 3.197 2.125 2.132 

637 3.1 2.671 1.67 1.704 

650 2.681 3.281 2.282 2.096 

671 3.221 2.05 1.804 1.834 

672 3.224 2.7782 2.257 2.34 
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679 2.994 3.172 2.436 2.365 

680 3.774 2.785 2.829 2.368 

686 3.607 2.89 2.047 1.839 

690 2.904 2.581 2.502 1.608 

816 2.587 2.832 1.963 1.738 

818 2.677 1.87 1.125 1.152 

820 2.467 2.52 3.413 2.006 

821 3.285 2.255 2.344 1.971 

825 3.829 2.819 2.333 1.83 

829 3.59 3.109 2.266 2.814 

838 2.864 2.798 2.1 1.876 

878 2.872 3.062 2.07 2.258 

896 4.077 3.289 2.7 2.254 

916 2.345 2.105 1.533 1.857 

919 2.426 2.821 1.921 1.902 

RV09 3.101 2.504 2.293 2.211 

RV11 2.818 3.04 1.805 2.645 

RV15 3.314 2.062 1.982 1.964 

RV24 3.15 2.058 1.567 1.803 

RV29 2.772 1.835 1.58 1.623 
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Table 38). Reviewer 3’s measurements for the Disease Cases 

 
Aorta  PT RMPA LMPA 

RV01DW 2.363 3.087 2.565 2.586 

RV03CH 2.683 2.874 2.812 2.633 

RV05TH 2.873 3.324 2.387 2.475 

RV06AP 3.638 3.591 2.836 2.863 

RV08JR 3.327 2.631 2.382 2.35 

RV10JB 2.299 3.542 2.15 2.496 

RV12DC 2.262 3.289 2.21 2.328 

RV13CB 3.538 3.498 3.007 3.029 

RV19RD 3.422 3.38 3.048 3.137 

RV20CT 3.267 3.615 3.169 2.742 

RV23RB 3.199 2.481 2.421 2.19 

RV25KN 2.651 3.114 2.419 2.616 

RV27TH 4.121 3.5 2.384 2.93 

RV28TB 3.756 2.798 1.62 2.206 

RV32ST 2.631 2.502 1.648 1.919 

RV33TM 2.92 3.325 2.15 2.504 

RV34VS 2.816 2.421 2.26 2.745 

RV35RH 3.372 3.488 2.805 2.544 

RV36LH 2.576 2.632 2.219 2.497 

RV37MW 2.775 2.85 1.855 2.233 

RV38JM 3.038 4.312 3.454 3.777 

RV40RS 3.093 2.536 3.042 2.505 

RV41CB 3.541 3.219 2.372 2.823 
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APPENDIX K 

This section contains the output from the disease classification model in its entirety.  

LOGISTIC REGRESSION MODEL OUTPUT WITH ORIGINAL DATA 
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NAÏVE BAYES MODEL OUTPUT WITH ORIGINAL DATA 
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NAÏVE BAYES MODEL OUTPUT WITH NORMALIZED DATA 
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LOGISTIC REGRESSION MODEL OUTPUT WITH NORMALIZED DATA 
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LOGISTIC REGRESSION MODEL NORMALIZED MANUAL DATA 
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LOGISTIC REGRESSION MODEL NORMALIZED DATA MANUAL DATASE
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NAÏVE BAYES MODEL WITH ORIGINAL DATA ON MANUAL DATASET 
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NAÏVE BAYES MODEL WITH NORMALIZED DATA AND MANUAL DATASET 
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APPENDIX L 

The output from the polynomial regression model for predicting pressure. 

 

Curve Fit 

Notes 

Output Created 24-OCT-2012 20:17:55 
Comments  

Input 

Data 
C:\Users\dave\Documents\My 
Dropbox\Data\Prediction_Models\Pressure
Data.sav 

Active Dataset DataSet2 
Filter <none> 
Weight <none> 
Split File <none> 
N of Rows in Working Data File 27 

Missin
g Value 
Handling 

Definition of Missing 
User-defined missing values are treated as 
missing. 

Cases Used 
Cases with a missing value in any variable 
are not used in the analysis. 

Syntax 

CURVEFIT /VARIABLES= Aorta PT RMPA 
LMPA TPG VPR PA_Systolic PA_Diastolic 
WITH PAMP 
 /CONSTANT 

  /MODEL=CUBIC 
 /PRINT ANOVA 

  /PLOT NONE 
  /ID=Disease_State. 

Resou
rces 

Processor Time 00:00:00.06 
Elapsed Time 00:00:00.09 

Use 
From First observation 
To Last observation 

Predict 
From First Observation following the use period 
To Last observation 

Time 
Series Settings 
(TSET) 

Amount of Output PRINT = DEFAULT 

Saving New Variables NEWVAR = NONE 

Maximum Number of Lags in 
Autocorrelation or    

Partial Autocorrelation Plots 
MXAUTO = 16 

Maximum Number of Lags Per Cross-Correlation 
Plots 

MXCROSS = 7 

Maximum Number of New Variables Generated Per 
Procedure 

MXNEWVAR = 60 
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Maximum Number of New Cases Per Procedure MXPREDICT = 1000 

Treatment of User-Missing Values MISSING = EXCLUDE 

Confidence Interval Percentage Value CIN = 95 

Tolerance for Entering Variables in 
Regression Equations 

TOLER = .0001 

Maximum Iterative Parameter Change CNVERGE = .001 

Method of Calculating Std. Errors for 
Autocorrelations 

ACFSE = IND 

Length of Seasonal Period Unspecified 

Variable Whose Values Label Observations in Plots Unspecified 

Equations Include CONSTANT 

Model Description 

Model Name MOD_1 

Dependent Variable 

1 Aorta 

2 PT 

3 RMPA 

4 LMPA 

5 TPG 

6 VPR 

7 PA_Systolic 

8 PA_Diastolic 

Equation 1 Cubic 

Independent Variable PAMP 

Constant Included 

Variable Whose Values Label Observations in Plots Disease_State 

Tolerance for Entering Terms in Equations .0001 

Case Processing Summary 

 N 

Total Cases 27 
Excluded Cases

a
 0 

Forecasted Cases 0 
Newly Created Cases 0 

a. Cases with a missing value in any variable are excluded from the analysis. 
Variable Processing Summary 

 Variables 

Dependent Independent 

Aorta PT RMPA LMPA TPG VPR PA_Systolic PA_Diastolic PAMP 

Number of Positive Values 27 27 27 27 27 27 27 27 27 

Number of Zeros 0 0 0 0 0 0 0 0 0 

Number of Negative Values 0 0 0 0 0 0 0 0 0 

Number of 
Missing Values 

User 0 0 0 0 0 0 0 0 0 

System 0 0 0 0 0 0 0 0 0 

Aorta/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.412 .170 .062 .385 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression .700 3 .233 1.572 .223 

Residual 3.416 23 .149   
Total 4.117 26    

The independent variable is PAMP. 
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Coefficients 

 Unstandardized Coefficients Standardized 
Coefficients 

T Sig. 

B Std. Error Beta 

PAMP .067 .077 3.020 .868 .394 
PAMP ** 2 -.001 .002 -4.815 -.642 .527 
PAMP ** 3 5.228E-006 .000 1.689 .400 .693 

(Constant) 2.140 .966  2.214 .037 

PT/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.619 .383 .302 .497 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 3.524 3 1.175 4.756 .010 

Residual 5.681 23 .247   
Total 9.204 26    

The independent variable is PAMP. 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP .117 .099 3.547 1.182 .249 
PAMP ** 2 -.002 .002 -4.772 -.738 .468 
PAMP ** 3 8.066E-006 .000 1.743 .479 .637 

(Constant) .732 1.246  .587 .563 

RMPA/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.712 .507 .443 .312 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 2.307 3 .769 7.895 .001 

Residual 2.240 23 .097   
Total 4.547 26    

The independent variable is PAMP. 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP .054 .062 2.304 .859 .399 
PAMP ** 2 .000 .001 -1.801 -.312 .758 
PAMP ** 3 2.720E-007 .000 .084 .026 .980 

(Constant) 1.049 .783  1.340 .193 

LMPA/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.758 .575 .519 .309 

The independent variable is PAMP. 



 189 

 
 
 
 
 
ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 2.970 3 .990 10.362 .000 

Residual 2.198 23 .096   
Total 5.168 26    

The independent variable is PAMP. 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP .086 .062 3.461 1.389 .178 
PAMP ** 2 -.001 .001 -3.803 -.709 .486 
PAMP ** 3 3.219E-006 .000 .928 .307 .761 

(Constant) .578 .775  .745 .464 

TPG/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.973 .946 .939 4.702 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 8974.234 3 2991.411 135.303 .000 

Residual 508.507 23 22.109   
Total 9482.741 26    

The independent variable is PAMP. 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP .323 .940 .304 .344 .734 
PAMP ** 2 .012 022 1.016 .533 .599 
PAMP ** 3 5.247E-005 .000 -.353 -.329 .745 

(Constant) -1.826 11.790  -.155 .878 

VPR/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.933 .871 .854 2.679 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 1111.886 3 370.629 51.631 .000 

Residual 165.103 23 7.178   
Total 1276.989 26    

The independent variable is PAMP. 
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Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP -.083 .536 -.212 .155 .878 
PAMP ** 2 .005 .013 1.233 .417 .681 
PAMP ** 3 5.154E-006 .000 -.095 -.057 .955 

(Constant 1.067 6.718  .159 .875 

PA_Systolic/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.981 .962 .958 6.107 

The independent variable is PAMP. 
 
ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 21979.926 3 7326.642 196.419 .000 

Residual 857.925 23 37.301   
Total 22837.852 26    

The independent variable is PAMP. 
 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP 2.081 1.222 1.261 1.703 .102 
PAMP ** 2 -.005 .029 -.260 -.163 .872 
PAMP ** 3 7.021E-006 .000 -.030 -.034 .973 

(Constant) -9.607 15.315  -.627 .537 

PA_Diastolic/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.920 .846 .826 5.317 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 3566.390 3 1188.797 42.057 .000 

Residual 650.129 23 28.266   
Total 4216.519 26    
The independent variable is PAMP. 

Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP 1.507 1.063 2.126 1.417 .170 
PAMP ** 2 -.026 .025 -3.320 -1.027 .315 
PAMP ** 3 .000 .000 2.186 1.201 .242 

(Constant) -8.713 13.332  -.654 .520 

 



 191 

Output from the polynomial regression model using the manual measurements with the pressure 

data. 
* Curve Estimation. 

TSET NEWVAR=NONE. 

CURVEFIT 

  /VARIABLES=PA_Systolic PA_Diastolic TPG PVR PT RMPA LMPA Aorta WITH 

PAMP 

  /CONSTANT 

  /MODEL=CUBIC 

  /PRINT ANOVA 

  /PLOT FIT 

  /ID=label. 

Curve Fit 
Notes 

Output Created 01-NOV-2012 16:36:34 

Comments  

Input 

Active Dataset DataSet0 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 
File 

27 

Missing Value Handling 

Definition of Missing User-defined missing values are treated as missing. 

Cases Used 
Cases with a missing value in any variable are not used in 
the analysis. 

Syntax 

CURVEFIT 
  /VARIABLES=PA_Systolic PA_Diastolic TPG PVR PT 
RMPA LMPA Aorta WITH PAMP 

  /CONSTANT  /MODEL=CUBIC 
 /PRINT ANOVA 
  /PLOT FIT 
  /ID=label. 

Resources 
Processor Time 00:00:03.84 

Elapsed Time 00:00:04.04 

Use 
From First observation 

To Last observation 

Predict 
From First Observation following the use period 

To Last observation 

Time Series Settings 
(TSET) 

Amount of Output PRINT = DEFAULT 

Saving New Variables NEWVAR = NONE 

Maximum Number of Lags in 
Autocorrelation or Partial 
Autocorrelation Plots 

MXAUTO = 16 

Maximum Number of Lags 
Per Cross-Correlation Plots 

MXCROSS = 7 

Maximum Number of New 
Variables Generated Per 
Procedure 

MXNEWVAR = 60 

Maximum Number of New 
Cases Per Procedure 

MXPREDICT = 1000 

Treatment of User-Missing 
Values 

MISSING = EXCLUDE 

Confidence Interval 
Percentage Value 

CIN = 95 

Tolerance for Entering 
Variables in Regression 
Equations 

TOLER = .0001 

Maximum Iterative Parameter 
Change 

CNVERGE = .001 
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Method of Calculating Std. 
Errors for Autocorrelations 

ACFSE = IND 

Length of Seasonal Period Unspecified 

Variable Whose Values Label 
Observations in Plots 

Unspecified 

Equations Include CONSTANT 

[DataSet0]  

Model Description 

Model Name MOD_2 

Dependent Variable 

1 PA_Systolic 
2 PA_Diastolic 
3 TPG 
4 PVR 
5 PT 
6 RMPA 
7 LMPA 
8 Aorta 

Equation 1 Cubic 
Independent Variable PAMP 
Constant Included 
Variable Whose Values Label Observations in Plots label 
Tolerance for Entering Terms in Equations .0001 

Case Processing Summary 

 N 

Total Cases 27 
Excluded Cases

a
 0 

Forecasted Cases 0 
Newly Created Cases 0 

a. Cases with a missing value 
in any variable are excluded from the 
analysis. 

Variable Processing Summary 

 Variables 

Dependent Indepen
dent 

PA_Sy
stolic 

PA_Di
astolic 

TPG PVR PT RMPA LMP
A 

Aorta PAMP 

Number of Positive Values 27 27 27 27 27 27 27 27 27 
Number of Zeros 0 0 0 0 0 0 0 0 0 
Number of Negative Values 0 0 0 0 0 0 0 0 0 

Number of Missing Values 

User-
Missing 

0 0 0 0 0 0 0 0 0 

System-
Missing 

0 0 0 0 0 0 0 0 0 

PA_Systolic/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.981 .962 .958 6.107 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares Df Mean Square F Sig. 

Regression 21979.926 3 7326.642 196.419 .000 

Residual 857.925 23 37.301   
Total 22837.852 26    

The independent variable is PAMP. 
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Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAM
P 

2.081 1.222 1.261 
1.70

3 
.102 

PAM
P ** 2 

-.005 .029 -.260 
-

.163 
.872 

PAM
P ** 3 

-
7.021E-006 

.000 -.030 
-

.034 
.973 

(Con
stant) 

-9.607 15.315  -
.627 

.537 

 

 
PA_Diastolic/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.920 .846 .826 5.317 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares Df Mean Square F Sig. 

Regression 3566.390 3 1188.797 42.057 .000 

Residual 650.129 23 28.266   
Total 4216.519 26    

The independent variable is PAMP. 

 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. 
Error 

Beta 

PAMP 1.507 1.063 2.126 1.417 .170 
PAMP ** 2 -.026 .025 -3.320 -1.027 .315 
PAMP ** 3 .000 .000 2.186 1.201 .242 

(Constant) -8.713 13.332  -.654 .520 
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TPG/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.973 .946 .939 4.702 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares Df Mean Square F Sig. 

Regression 8974.234 3 2991.411 135.303 .000 

Residual 508.507 23 22.109   
Total 9482.741 26    

The independent variable is PAMP. 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP .323 .940 .304 
.

344 
.734 

PAMP ** 2 .012 .022 1.016 
.

533 
.599 

PAMP ** 3 -5.247E-005 .000 -.353 
-

.329 
.745 

(Constant) -1.826 11.790  -
.155 

.878 

 

 
PVR/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.933 .871 .854 2.679 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares Df Mean Square F Sig. 

Regression 1111.886 3 370.629 51.631 .000 

Residual 165.103 23 7.178   
Total 1276.989 26    

The independent variable is PAMP. 
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Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP -.083 .536 -.212 -.155 .878 
PAMP ** 2 .005 .013 1.233 .417 .681 
PAMP ** 3 -5.154E-006 .000 -.095 -.057 .955 

(Constant) 1.067 6.718  .159 .875 

 

PT/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.753 .568 .511 .380 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares Df Mean Square F Sig. 

Regression 4.363 3 1.454 10.066 .000 

Residual 3.323 23 .144   
Total 7.686 26    

The independent variable is PAMP. 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. 
Error 

Beta 

PAMP .054 .076 1.793 .714 .482 
PAMP ** 2 -2.644E-005 .002 -.080 -.015 .988 
PAMP ** 3 -5.148E-006 .000 -1.217 -.400 .693 

(Constant) 1.559 .953  1.636 .116 
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RMPA/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.656 .431 .356 .392 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares Df Mean Square F Sig. 

Regression 2.669 3 .890 5.801 .004 

Residual 3.527 23 .153   
Total 6.196 26    

The independent variable is PAMP. 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP .095 .078 3.483 
1

.208 
.239 

PAMP ** 2 -.001 .002 -4.523 
-

.728 
.474 

PAMP ** 3 6.077E-006 .000 1.601 
.

458 
.651 

(Constant) .553 .982  .
563 

.579 

 

LMPA/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.778 .605 .553 .276 

The independent variable is PAMP. 
 
 
ANOVA 

 Sum of Squares Df Mean Square F Sig. 

Regression 2.688 3 .896 11.734 .000 

Residual 1.756 23 .076   
Total 4.444 26    

The independent variable is PAMP. 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. 
Error 

Beta 

PAMP .119 .055 5.182 2.158 .042 
PAMP ** 2 -.002 .001 -7.465 -1.443 .163 
PAMP ** 3 9.382E-006 .000 2.918 1.002 .327 

(Constant) .300 .693  .433 .669 
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Aorta/Cubic 
Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.485 .236 .136 .352 

The independent variable is PAMP. 
ANOVA 

 Sum of Squares Df Mean Square F Sig. 

Regression .877 3 .292 2.364 .097 

Residual 2.845 23 .124   
Total 3.722 26    

The independent variable is PAMP. 
Coefficients 

 Unstandardized Coefficients Standardized Coefficients t Sig. 

B Std. Error Beta 

PAMP .079 .070 3.774 1.130 .270 
PAMP ** 2 -.001 .002 -6.098 -.847 .405 
PAMP ** 3 6.547E-006 .000 2.225 .549 .588 

(Constant 1.976 .882  2.241 .035 
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