
 

UNPACKING COGNITIVE BENEFITS OF DISTRIBUTED COMPLEX VISUAL 
DISPLAYS FOR EXPERT AND NOVICE SCIENTISTS 

 
 
 
 
 
 
 
 

by 

Jooyoung Jang 

BA, Yonsei University, Seoul, 2005 

MA, Yonsei University, Seoul, 2007 
 

MS, University of Pittsburgh, 2009 

 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

the Dietrich School of Arts and Sciences in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2013 

 



 ii 

UNIVERSITY OF PITTSBURGH 

DEPARTMENT OF PSYCHOLOGY 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Jooyoung Jang 
 
 
 

It was defended on 

March 11, 2013 

and approved by 

Stephen C. Hirtle, School of Information Sciences, University of Pittsburgh 

Timothy J. Nokes-Malach, Department of Psychology, University of Pittsburgh 

J. Gregory Trafton, Intelligence Systems, Office of Naval Research 

Dissertation Advisor: Christian D. Schunn, Department of Psychology, University of 

Pittsburgh 

 

 



 iii 

Copyright © by Jooyoung Jang 

2013 



 iv 

 

The current research focuses on the advantages and disadvantages of two common types of 

spatially different organizations of information (i.e., spatially stacked vs. distributed) and their 

impact on science problem solving. The research is based on the premise that we must better 

understand the spatial organization of information from the perspective of cognitive performance 

and expertise theories to further our theoretical understanding and provide a practical guide for 

using and developing effective information visualizations. A new theoretical decomposition and 

matched analytic technique using eye-tracking is introduced, and is used to tease apart 

interactions with expertise. Seventy novice scientists and 38 experts participated in the study. 

They solved a data interpretation problem using either a distributed or a stacked display. Overall, 

novices took longer to solve the problem when they work with a distributed display than with a 

stacked display, and eye-tracking data suggests the effect is due to information overload and data 

management time. By contrast, experts showed a reverse trend (i.e., faster problem solving with 

distributed displays), being better able to manage complex information. As for the underlying 

mechanism, three factors  (i.e., information internalization, information access, and information 

externalization costs) were examined and found critical to explain the effect. Both groups 

showed trade offs among the three factors as an adaptive behavior for effectively balancing the 

information access costs. 
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1.0  INTRODUCTION 

Psychologists and human factors researchers have argued for the importance of visual display 

design alike. A vast number of studies found that different visual displays of the same 

information (i.e., informationally equivalent displays) can yield drastically different task 

performance because different visual displays are not computationally equivalent (Breslow, 

Trafton, & Ratwani, 2009; Carpenter & Shah, 1998; Gattis & Holyoak, 1996; Hegarty, Canham, 

& Fabrikant, 2010; Kroft & Wickens, 2002; Larkin & Simon, 1987; Novick & Catley, 2007; 

Ratwani, Trafton, & Boehm-Davis, 2008; Sanfey & Hastie, 1998; Shah & Carpenter, 1995; Yeh 

& Wickens, 2001; Zhang & Norman, 1994). For example, two sets of informationally equivalent 

graphs were found to be computationally different, and the computational advantages of a new 

representation could even outweigh the lack of familiarity issues (Peebles & Cheng, 2003). If 

visual display design has a significant impact for simple displays of small-scale data (e.g., a 

graph), then the impact should be even greater for complex displays of larger scale data. With 

technology-based change in visual presentation and complexity of tasks, research on the role of 

visual display design in complex tasks is essential, as recently noted by Hegarty (2011, p. 450): 

“developments in information technologies have led to new challenges of how to visualize large 

and complex data sets with researchers in scientific visualization focusing on displays of 

spatially distributed data (e.g., the development of a thunderstorm) and researchers in 
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information visualization focusing more on visualization of abstract information spaces (e.g., 

semantic relations between documents).”  

The current research focuses on the advantages and disadvantages of two types of spatial 

organization and their impact on novice and professional scientists. The research is based on the 

premise that we must better understand the spatial organization of information from the 

perspective of cognitive performance and expertise theories to provide a practical guide for using 

and developing effective information visualizations. Specifically, the research examines (1) the 

processing of complex visual information of (2) real scientists doing real-world tasks, and thus 

contributing (3) to extend the cognitive psychology of science and expertise. This study also 

generates specific implications for the design of hardware and software that scientists use. In 

short, this research utilizes and extends fundamental cognitive psychology of information 

processing to both understand and benefit the work of scientists and scientists-in-training.  

Many researchers have examined the ways in which users interact with large displays and 

what performance benefits they gain in using large rather than small displays for the completion 

of various tasks, such as spatial orientation, reading comprehension, and programming (Grudin, 

2001; Mynatt, Igarashi, Edwards, & LaMarca, 1999; Robertson et al., 2005; Tan, Gergle, 

Scupelli, & Pausch, 2003, 2004). These studies often find that large displays are better (for a 

review: Czerwinski et al., 2006). However, while many scientists have adopted dual or large 

screens, other scientists now spend less time using large monitors or have removed desktops 

entirely from their work and home, relying instead on the smaller screens found in high-powered 

ultra-light laptops, multi-touch display tablet computers, and Internet-enabled smartphones. Is 

this move to smaller screens detrimental to complex work like science?  
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Some research suggests that larger displays are not always beneficial to problem solving. 

In Kroft and Wickens (2002), pilots-in-training were significantly slower in answering questions 

exclusively relevant to just one map when using a large integrative display, but faster and more 

accurate in answering integrative questions (i.e., questions that must be answered by combining 

information from two maps). Critically, the pattern of results suggests that the issue is likely not 

the size per se but rather the spatial organization (see Figure 1)—the observed effects of raw size 

of display are likely caused by different organizations of information that different display sizes 

tend to require (Jang & Schunn, 2012; Jang, Schunn, & Nokes, 2011).  

 

  

Figure 1. Examples of display maps spatially integrated and separated. From Kroft, P. D., & Wickens, C. D. 

(2002). Displaying multi-domain graphical database information. Information Design Journal, 11(1), p48, 

Figure 2. Reprinted with kind permission from John Benjamins Publishing Company, 

Amsterdam/Piladelphia. www.benjamins.com. 

 

The importance of intelligent use of space, whether in 2D or 3D, was demonstrated in a 

variety of previous studies (Hollan, Hutchins, & Kirsh, 2000; Kirsh, 1995; Kirsh & Maglio, 

1994). Human as “spatially located creatures” are bound to space and effective use of space often 

reduces time and effort needed to complete a task (Hollan et al., 2000). Also, people often use 

space as a resource and manipulate spatial arrangements to simplify choice, perception, and 
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internal computation (Kirsh, 1995). Thus, it may be that what is important is not only what data 

is shown, but also how it is shown to assist timely perception, information integration, and 

comprehension.  

1.1 SPATIAL ORGANIZATION OF VISUALLY PRESENTED INFORMATION 

Traditionally, when talking about spatial organization of information displays, the focus of past 

research was on whether information is presented in an integrative or a separated manner. 

Integrative displays converge multiple sources of information into a single source (see Error! 

Reference source not found.). For example, when students study a worked example to learn 

geometry, text instruction can be placed inside the accompanying picture, thus removing the 

cognitive load required for mental integration. In contrast, separated displays (the middle 

column) provide to-be-integrated information in disparate spaces and effortful mental integration 

must precede any learning. Researchers in both education and human factors have argued for the 

benefits of integrative displays over separated displays for tasks that require information 

integration (Kroft & Wickens, 2002; Sweller, van Merriënboer, & Paas, 1998).  

Related to but importantly different from the distinction of integrated vs. distributed 

displays is another display organization contrast relevant to integrative tasks: spatially distributed 

displays (i.e., when information sources are presented side-by-side) versus stacked displays (i.e., 

when information sources are sitting on top of one another with only the top source fully visible). 

For example, when a meteorologist attempts to make a forecast by integrating information from 

a large number of maps (e.g., air pressure, wind speed, and cloud distribution maps by the unit 

time- and height-interval), a single integrative display is not a practical option because 



 5 

superimposing even three such information rich maps would be enough to make the display so 

cluttered that it would be hard to search and perceive critical information. Because there are so 

many different information views to examine, the viable options are then to stack the different 

displays within a small physical space or to distribute the displays across a large physical space. 

  

Table 1. Three types of display organization. The image of a stacked display here presents partially 

overlapped contents to reveal what was stacked but the two contents should be imagined as fully overlapped. 

Integrated  Separated 
  Distributed Stacked 

A

B CD

E

55°

45°

(1)
180° - 55° - 45°
= 80°

80°(2)

 

 

A

B CD

E

In the above Figure, find a value for Angle DBE.

Solution: 
Angle ABC = 180° - Angle BAC – Angle BCA

= 180° - 55° - 45°
= 80°

Angle DBE = Angle ABC
= 80°

55°

45°

 

In the above Figure, find a value for 
Angle DBE.

Solution: 
Angle ABC = 180° - Angle BAC – Angle 
BCA

= 180° - 55° - 45°
= 80°

Angle DBE = Angle ABC
= 80°

A

B CD

E

55°

45°

 

 

A number of prior studies on this contrast have consistently found large performance 

benefits of spatially distributed displays over stacked displays across studies in instruction 

designs and problem-solving domains (Jang & Schunn, 2012; Jang et al., 2011; Jang, Trickett, 

Schunn, & Trafton, 2012). For example (see Table 2), college students solved integrative 

problems almost two times faster without any loss of accuracy when information or learning 

instructions were provided in a distributed format (e.g., 20 information pages printed and pinned 

on a wall or 4 pages of instructions printed on 11”x17” paper); we have coined this phenomena 

the distributed display time advantage.  
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Table 2. Examples of display formats used in prior studies. 

Display 
Type 

Jang, Schunn, & 
Nokes (2011) Jang & Schunn (2012) Jang, Trickett, Schunn, & 

Trafton (2012) 

Spatially 
Distributed 

   

Spatially 
Stacked 

  
 

 

1.2 REAL SCIENTISTS DOING REAL-WORLD TASKS 

When considering how easy a transition from a stacked to a distributed display is, the time 

advantage is practically very important. For example, it is a simple matter to switch from one 

monitor to two, to adopt a large screen that affords viewing multiple windows, or simply to print 

documents and spread them out on a table. The magnitude of the effect may be even larger in a 

professional science setting. One study of weather forecasters-in-training (Jang et al., 2012) 

found a large difference concerning the time forecasters spent to complete a task on the computer 

(i.e., stacked displays) versus using a map wall (i.e., maps of meteorological information printed 

out and stuck on a 100” x 40” wall in a distributed display fashion). Even though students with 
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the map wall display could not use animations and map comparison/modeling tools commonly 

used to improve forecasting, they made predictions 40% faster (25 minutes) than those who used 

the single monitor computer display (40 minutes), with equal prediction accuracy. Given that 

rapid and accurate weather prediction is key for work and safety situations that depend upon 

weather forecasts, the difference is substantial. Interestingly, the study showed that the benefit of 

a sophisticated computer program based on years of research can be overcome by the 

consequence of moving to a smaller window size on how the information is spatially organized 

(distributed or stacked).  

The issue of distribution applies well beyond meteorology. In many sciences, a number 

of highly used statistics packages provide information primarily in a stacked display, which may 

broadly hinder work efficiency. For example, the Statistical Package for the Social Sciences 

(SPSS) is the most widely used program for statistical analysis in social science and beyond 

(e.g., market researchers, health researchers, survey companies, government, education 

researchers, marketing organizations and others). The original SPSS manual (Nie, Bent, & Hull, 

1970) has been described as one of "sociology's most influential books" (Wellman, 1998). Yet, 

the program provides data tables and graphs in a serial and stacked manner, and it is not hard to 

meet a researcher who complains about the layout of the output window of SPSS. In the current 

research, the focus is specifically on real world science problem solving of this type (i.e., data 

interpretation using statistical information) as a subject matter. 

In addition to the practical value, this endeavor is theoretically meaningful as well due to 

the sparseness of studies that examined the role of visual displays on complex tasks. Most 

previous studies have focused on simple and well-defined tasks such as extracting specific 

values, comparing values, or detecting expected trends as the whole task. Although the simple 



 8 

tasks have been very useful for cognitive scientists to characterize the cognitive processes of task 

performance with various visual displays and develop cognitive models (Carpenter & Shah, 

1998; Freedman & Shah, 2002; Shah & Freedman, 2011), as Thomas and Cook (2005) pointed 

out, these simple tasks are not the most interesting tasks in visual analytics. Real visual analytics 

work on ill-defined tasks that entail uncertainty and may require data exploration, or reasoning 

with thousands of data points scattered across multiple visualizations (Ratwani et al., 2008; 

Trafton et al., 2000; Trafton, Marshall, Mintz, & Trickett, 2002; Trickett, Trafton, Saner, & 

Schunn, 2007). 

Much of science is inherently a complex information integration task. Science work 

commonly consists of experimenting (whether via thought-experiment, simulation, or physical-

experiment), data gathering, analyzing, and interpreting. Due to the inter-dependency of these 

steps, integration across steps and data sources becomes a crucial and inherent part of science 

work. The design of an experiment changes the contents of the data that is gathered, and the way 

the data is analyzed influences data interpretation. Accurate interpretation requires information 

integration and comprehension across all the steps to draw a sound conclusion and plan a next 

meaningful experiment. When multiple experiments are examined (as is typically the case), 

detailed integration must take place across findings, but also to some extent across methods and 

measures. The step of data interpretation (within and across experiments), a crucial and highly 

integrative step in conducting science, was used as the focal task for the current research to 

examine the effect of displays in the context of science problem solving.  

Despite the integrative nature of science problem solving and the availability of large 

display technologies, many scientists often do not make full use of available screen space, and 

often still rely purely on small laptops that rarely are large enough to accommodate multiple 
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sources of data. For example, we observed this pattern of display use in an observational study 

(Jang & Schunn, 2008): Scientists from various disciplines were gathered to investigate the 

nature of water ice below the solid Martian northern arctic plain during the NASA Phoenix Mars 

’08 Mission. In this setting, all scientists were provided with a high-end computer with a large 

dual monitor set-up. However, these scientists used only one screen most of the time (63%), and 

81% of single-screen use involved a laptop. Here, factors other than display effectiveness likely 

drove screen use, and this observation argues for the importance of studying experts: are experts 

less subject to effects of information organization? 

To take up this issue of generality of effects across expertise levels, this research 

examined the effect of spatial organization of scientific information on professional scientists 

(i.e., experts rather than undergraduates). Many lab studies use simple tasks— easy enough that 

any untrained person could do—because it simplifies data collection (i.e., all possible individuals 

can participate and with little-to-no training time). Further, it is often assumed that samples of 

undergraduates are representative of humans more broadly. However, rather than typical, Jones 

(2010) characterized undergraduate samples that are usually studied as “WEIRDos”. That is, 

they are people from Western, Educated, Industrialized, Rich, and Democratic cultures,” and 

meta-analyses suggest that the findings from many psychology studies using only typical US 

undergraduates do not generalize to other populations. As a large segment of the US scientific 

workforce is not WEIRDos, this issue is particularly problematic for generalizing many existing 

lab studies on undergraduates to real-world science.  

A second generalization issue is the nature of the task. Many ‘science’ tasks used in 

psychology labs and science education research are far from what scientists actually do (Chinn & 

Malhotra, 2002), simply because the pool of undergraduates and young students available for 
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experimentation cannot do more typical science tasks. Further, undergraduates performing 

science tasks can be very different from scientists doing actual science tasks, just as beginning 

driver behaviors can be very different from racecar driver behaviors. As a result of these issues, 

the proposed research directly examines the effects of expertise.  

1.3 COGNITIVE PSYCHOLOGY OF INFORMATION PROCESSING AND 

EXPERTISE   

I consider three explanations for the distributed display time advantage: Do stacked displays 

make people into slow memorizers (information internalization cost), frequent page flippers 

(information access cost), or note-takers (information externalization cost)? Note that the effect 

of stacked displays is likely due to a combination of these three explanations. 

First, a stacked display may lead to getting lost, or at least more revisiting of information 

on the path to finding critical information. As demonstrated in Kroft and Wickens (2002), 

student pilots with the spatially stacked display produced significantly more toggles between the 

two information sources, compared to those that had integrative displays. Similarly, weather 

forecasters (Trafton, Trickett, Schunn, & Kirschenbaum, 2007) who worked with a 17-inch 

desktop revisited maps six times more often than those who had the map wall display (i.e., maps 

of meteorological information printed out and stuck on a 100” x 40” wall).  

Second, in stacked displays, activities such as using notes to keep track of information 

within and across pages and going back to certain pages may act as additional secondary tasks, 

even when the task itself is not a dual-task problem. Note taking might be the most commonly 

used strategy that problem solvers use to avoid information overload and to promote accuracy. 
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Using notepads has been found to help people solve scientific reasoning problems more 

accurately and facilitate self-explanation when learning (Trafton & Trickett, 2001). Likewise, 

stacked display users may frequently take and refer to notes to keep important information 

externalized.   

Third, people may choose to slow down and memorize information to keep it available in 

their heads rather than keep checking back. Gray and Fu (2004) have shown that people easily 

become memorizers when the necessary information is even just a click away. Unlike the other 

two explanations, the slow memorizer explanation provides insights at the level of the underlying 

cognitive mechanism (i.e., strategy selection depending on the degree of information access cost 

that a display imposes) and systematically influences the other two explanations (i.e., 

memorizers should turn pages and get lost less often than verifiers). The next paragraph presents 

data that supports the slow memorizer explanation and how this single explanation can be 

consistently applied to different studies. 

1.3.1 Information Access Cost and Memorization 

A recent eye-tracking study suggested that problem-solvers adopt an information 

memorization strategy in stacked conditions, and this memorization time could account for the 

stacked display time disadvantage (Jang et al., 2012). Eye tracking involves measuring the point 

of a gaze (called a fixation) and the length of time the gaze remains fixed on a location (called a 

fixation duration). Participants in the stacked display condition fixated significantly longer on 

information pieces on each page throughout an integrative problem-solving task than those who 

solved the same problem using the distributed display (see Figure 2), as a (possibly unconscious) 

strategy to bypass the relatively higher information access cost in the stacked display. That is, the 
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stacked display produces a situation with high information access costs because information is a 

page-turn away, compared to the cost of an eye/head turn in the distributed display. 

Consequently, problem-solvers chose to memorize information (by staring at each piece of 

information a little longer) rather than repeatedly turn pages to look for information. 

 

 

Figure 2. Average first pass fixation duration on information presented in distributed vs. stacked formats 

 

When the cost of accessing external information increases, people tend to memorize 

information to make it readily accessible in the head (i.e., memorization strategy; stacked 

display). By contrast, when information access cost is low, people do not bother to memorize 

information and instead rely on external/in the world information (i.e., perceptual-motor strategy; 

distributed display). In terms of performance accuracy, the memory strategy selection can be 

construed as an adaptive choice balancing accuracy and effort, because information in the world 

is accurate but that in the head may not be. For example, participants made more errors in a 

given task when they adopted the memorization strategy, but with a reduction in task time (Gray 

& Fu, 2004). While in science we would prefer that scientists not trade accuracy for speed, there 

will also be some tradeoff because the set of possible analyses is infinite and time is finite.  
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One may argue that the slow memorizer explanation goes against the student weather 

forecasters study (Jang et al., 2012) where people in the stacked display condition revisited pages 

far more frequently, which should not have occurred if they had memorized information. In fact, 

the eye-tracking study and the student weather forecaster study together demonstrate the power 

of the adaptive choice theory underlying the slow memorizer explanation. The slow memorizer 

explanation suggests that differing information access costs associated with information layout 

affect the probabilities of adopting different information encoding strategies. The stacked view 

display makes it harder to access information that needs to be integrated; one can compensate 

either by slowing down and memorizing information as observed in the eye-tracking study or by 

frequently going back and forth as in the weather study. The choice of strategy likely can be 

explained by relative access costs: hovering vs. clicking. People in the weather interface likely 

became verifiers because the interface made flipping maps very easy through hovering (simply 

holding the mouse over different areas changes the animation content immediately). By contrast, 

people in the eye-tracking study became memorizers, as they had to click and wait hundreds of 

milliseconds to access a content page. However, regardless of which strategy was used, the 

stacked display costs users a substantial amount of total problem solving time that could have 

been saved by using a distributed display.  

1.3.2 Expertise Effects and Expertise Reversals 

It is unknown whether the distributed display advantage phenomenon and the slow 

memorizer explanation of it would hold up in the case of experts. They may hold up in the expert 

case because the information access cost is a basic factor that affects all human information 

perception (i.e., low-level cognition). With extensive training and a vast amount of knowledge, 
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however, experts may overcome the costs in ways that non-experts cannot, such as with unique 

memorization strategies, data monitoring techniques and information search strategies (i.e., high-

level cognition).  

Likewise, information display research has been focused more on novices such as student 

pilots, electrician apprentices and trainees, or middle school students. What aids novices may not 

generalize to experts or may even slow experts. Several studies investigating the relationship 

between the level of domain knowledge and instructional design (Kalyuga, Chandler, & Sweller, 

1998; McNamara, Kintsch, Songer, & Kintsch, 1996; Yeung, Jin, & Sweller, 1998) suggested a 

so-called expertise reversal effect. That is, advanced learners (i.e., intermediate electricians) 

learned less when information was provided in integrated texts and diagrams and learned more 

from a diagram-only format (Kalyuga et al., 1998).  Separated displays produce an additional 

step of mental integration of information pieces for novices and are thus harmful, but for 

advanced learners, integrated displays provide redundant, distracting information that cannot be 

ignored and thus hinders learning. A similar reversal of what is best for experts vs. novices was 

reported in medical diagnoses. While residents performed well with verbal descriptions of 

dermatology lesions and photographs, professional dermatologists performed worst with verbal 

descriptions and best with a photograph alone (Kulatanga-Moruzi, Brooks, & Norman, 2004).  

Although similar predictions are seemingly possible for the case of distributed vs. stacked 

displays, it is unclear whether the expertise reversal effect would be also observed in our case. 

Unlike integrated displays, distributed displays always keep the multiple sources of information 

as separate entities. Thus, even though the sources may be placed close to each other, each 

source can be considered as a chunk and more easily disregarded when necessary. By contrast, 

the inhibition of redundant and distracting information is only one of the several routes that 
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could cause an expertise reversal effect. For example, expert chess players can carry out several 

games simultaneously without the view of the board and the pieces in a game called blindfolded 

chess. They can monitor, update, remember, and reconstruct chessboards of more than 50 moves 

in their head with only a 10% or less error rate (Saariluoma & Kalakoski, 1997), and they are 

even able to generate best moves in given problem situations (Saariluoma & Kalakoski, 1998). 

These amazing abilities depend upon their eyes for search and predicting relevant moves and 

from abundant yet flexible scenarios established from their vast array of prior experiences.  

1.3.3 Summary 

To summarize, the three goals of the research were to: (1) examine the effect of 

information display (i.e., spatially distributed vs. stacked) in the context of a real science 

problem using data interpretation as a complex problem-solving task, (2) examine the effect of 

information display across populations differing in expertise, which would directly compare 

novices (i.e., undergrads) and experts (i.e., graduates and post-doctorates, and (3) build an 

empirically-based framework of the underlying cognitive mechanisms. 

To clarify how the multiple factors could operate together, I describe the underlying 

mechanisms in a diagram (see Figure 3) that is proposed in this study. In this framework, I 

examined the cognitive process of information integration in complex problem solving 

considering fundamental aspects of information processing that likely do not change with 

expertise and those more experience dependent aspects: how differing information access costs 

of the two information display formats affect the information encoding process (e.g., how 

experts’ performance is constrained by information displays) and how expertise affects 

information management strategies such as note-taking strategies in response to a given 



 16 

information display (e.g., how experts use their skill sets and knowledge to effectively overcome 

the constraints an information display imposes). 

 

 

Figure 3. A framework of underlying mechanisms 

 

There are three types of cognitive costs in relation to information access efforts: 

information internalization cost (i.e., memorizing measured by first time fixations), information 

access cost (i.e., revisiting measured by returning fixations), and information externalization 

costs (i.e., note taking measured by off screen gazes). Systematic research on the composite 

effect of these factors has not been previously done. I propose that these factors would together 

explain task performance well, and expertise would moderate the underlying cognitive processes.  
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2.0  EXPERIMENT: NOVICES VS. EXPERTS 

2.1 METHOD 

Scientists from two different points on the expertise continuum (i.e., psychology undergraduates 

vs. psychology graduate students and post-docs) were given a data interpretation task in two 

display formats (i.e., distributed vs. stacked) and their performance was compared to examine 

possible moderation of expertise on the effects of display format on performance. Eye-tracking 

data was used to examine possible underlying mechanisms.  

2.1.1 Participants 

The novice group consisted of 70 psychology undergraduate students (35 female; age 

range 18-25) at the University of Pittsburgh participating for course credit; the students were 

primarily 3rd and 4th year students who had taken a number of psychology content courses 

already and had some coursework in psychology research methods. The expert group consisted 

of 38 psychology graduate students and two post-docs (32 female; age range 23-48) at the 

University of Pittsburgh and Carnegie Mellon University participating for $25. 

To ensure that expert participants had relevant expertise in data analysis and 

interpretation, several expertise measures were examined. On average, expert participants were 

in their 4th year of a PhD program (SD = 2.2) and had 4.7 years of experience with behavioral 
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data (SD = 3.0) and 4.5 years of experience with ANOVA (SD = 2.9). Further, expert 

participants had a mean of 2.7 journal publications (SD = 3.9) and 2.8 additional non-journal 

publications (e.g., conference papers, SD = 3.0). Of these, a mean of 1.1 were first author 

publications (SD = 2.5), and 1.2 were papers published in the prior two years (SD = 1.2). That is, 

the participants typically had multiple years of successful research experience and were currently 

research active. 

Expert participants were randomly assigned to either display format, and there were no 

differences in the level of expertise between experts in each display condition (see Table 3). 

 

Table 3. Mean and SD of expertise measures within each display format condition 

 Stacked Distributed  

Measure M SD M SD p value 

Year in PhD program 4.2 2.4 3.9 2.2 .72 

Years of experience with Behavioral data 4.6 3.5 4.8 2.5 .79 

Years of experience with ANOVA 4.3 3.3 4.6 2.6 .75 

Number of journal publications 2.6 2.5 2.8 5.0 .87 

Number of non-journal publications 2.3 2.5 3.4 3.4 .26 

Number of first author publications 0.7 0.9 1.6 3.4 .28 

Number of publications in last 2 years 1.2 1.3 1.1 1.1 .79 

 

2.1.2 Design 

A 2x2 between-subject design was used. The independent variables were display format 

(distributed vs. stacked) and expertise level (novices vs. experts). In individual sessions, both the 

novices and experts solved a data interpretation problem using either a distributed or a stacked 
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display. The task was self-paced to measure efficiency as well as accuracy of problem solving 

using distributed vs. stacked displays. While novices and experts solve the task, problem solving 

time, page transition logs, and eye movements were recorded. A set of survey was collected at 

the end of the experiment. The dependent variables include problem-solving times (i.e., time on 

information window, time on question-answering, and total task time), task accuracy, number of 

page visits, and patterns of eye-movements. 

2.1.3 Materials 

2.1.3.1 Eye-tracker. 

Eye-movements were recorded with a Tobii 1750 remote eye-tracker. The 17” monitor’s 

screen resolution was 1280 x 1024. The system runs at a constant frame-rate of 50 Hz. The 

approximate distance between the screen and participant was 12”. 

2.1.3.2 Main task materials. 

The main task involved quantitative data interpretation, examining research hypotheses 

with quantitative data presented in tables and graphs, and drawing a plausible conclusion. The 

characteristic of quantitative data interpretation of particular relevance to manipulations of 

display format is its integrative nature. Data interpretation is an integrative task because it 

involves processing multiple pieces of information (e.g., dependent and independent variables; 

descriptive and inferential statistics) presented in various formats (e.g., text, tables, graphs, and 

diagrams) and combining the information into a single coherent story. It is also a complex task 

that requires critical thinking. For accurate data interpretation, one needs to understand how the 

research was conducted (e.g., knowing strengths and weaknesses of the design), examine 
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statistical information critically (e.g., thinking about which data support or contradict the tested 

hypotheses, which data are more convincing than others, and what additional analyses can be 

done), and make plausible inferences in relation to research hypotheses (e.g., drawing a 

conclusion regarding which hypothesis is supported based on available evidence and how other 

contradicting results can be explained in the frame of the chosen hypothesis).  

To avoid the complicating effects of domain specific knowledge across differing focal 

areas of expertise among the expert group (e.g., cognitive, developmental, clinical psychology, 

or neuroscience), the task materials were consist of phenomena that are understandable to a 

broad range of research psychologists (Schunn & Anderson, 1999). The topic and content of the 

data was selected from Psychological Science, a psychology journal that delivers brief research 

reports of broad interest, so as to make support comprehension and interest in the task in the 

novices. Real journal reports were used to maintain plausibility of the task for experts. The 

particular topic involved destination memory (e.g., remembering the person to whom one has 

given information) and source memory (e.g., remembering the person from whom one has 

received information), examining which memory is more fallible and why. The content of the 

task data was adapted from Gopie and MacLeod (2009), Koriat, Ben-Zur, and Druch (1991), and 

Marsh and Hicks (2002). 

The materials involved a brief description of the research topic, data from two studies 

that each provide evidence consistent with one hypothesis but contradict each other. A one-page 

paper handout motivated the general research questions and provided participants with 

definitions of key concepts such as destination and source memory. On the computer, 13 content 

pages were available: questions to be answered, study 1 intro, study 1 hypothesis, study 1 
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methods (1) and (2), study 1 results, study 2 intro, study 2 hypothesis, study 2 methods (1) and 

(2), study 2 results (1), (2), and (3).  

 

 

Figure 4. Layout of spatially distributed display in the current experiment 

 

In this study, the two formats of information displays were defined in the following 

manner. The distributed displays divided the 17-inch screen into four equal-sized spaces (see 

Figure 4). Each space had a drop-down menu with which participants could choose the 

information that was loaded into each space. This was the same set-up that was used in the prior 

eye-tracking study (Jang et al., 2012) except that this time, participants in the distributed display 

condition can manage each information window separately. Thus each participant determines 
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which information page to view in which space, resulting in unfixed and user-dependent sets of 

information page combinations. 

By contrast, the stacked displays present every information page in the top-left one-

quarter of the 17-inch screen space, leaving the other three spaces blank. Thus, only one 

information page could be examined at a time in the staked displays, and information shown 

previously was replaced by the next chosen display. The current set-up of stacked and distributed 

display simulates the use of small vs. large screens while keeping screen resolution per se 

constant. In both display format conditions, the screen was initially populated with blank pages.  

2.1.3.3 Practice materials. 

A short and simple practice was developed to familiarize participants with the general 

procedure of the task. The topic of the practice was learning with diagrams (why and when 

having a diagram improves learning) and seven pages of information were provided. The content 

of practice data was adapted from Willows (1978). 

2.1.3.4 Surveys. 

Three surveys were developed: strategy, cognitive load, and demographic surveys.  First, 

the strategy survey consisted of questions regarding perceived information availability and 

explicit use of a memorization strategy (i.e., whether they tried to memorize information), and 

other possible strategies they may have used to solve the task. Responses were made on a typical 

five-level Likert scale ranging from ‘Disagree’ to ‘Agree’.  

Second, the cognitive load survey asked participants to rate perceived difficulty and the 

amount of mental effort invested on 9-point scales, ranging from very, very easy (1) to very, very 

difficult (9) and from very, very low mental effort (1) to very, very high mental effort (9). This 
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subjective rating scale has well-documented validity and reliability (Paas & van Merriënboer, 

1994). It was expected to show the differential load participants perceived with the two display 

formats. In our previous study, a higher cognitive load was reported for stacked displays (Jang et 

al., 2011).  

Lastly, a demographic survey was employed to gather background information on age 

and gender. For the expert group, additional items were included: PhD program within 

psychology, year in the program, years of experience with behavioral data, and years of 

experience with ANOVA (the type of data analysis presented in the main task). 

2.1.4 Procedure 

The experiment was done in individual sessions and the session consisted of three 

components: practice, task, and survey. Each participant was first seated at an eye-tracker (Tobii 

1750) with a chin rest. After a brief eye-calibration, participants performed a practice task in the 

stacked display format. Before the practice started, participants first read aloud a passage 

describing the topic of the practice problem and confirmed that they understood the topic (see 

Appendix A). Then they were given instructions on how to navigate information pages using a 

drop-down menu, what are the questions they need to solve, and that the information window 

will be available at all times. Also, they were instructed to let the experimenter know when they 

are done with information window and ready to compose the answer so that they can move to 

another workstation equipped with a keyboard. A blank letter-size paper was provided to each 

participant to take notes during the problem solving. Participants were asked to make sure that 

their chin is on the chin-rest while they examine information on the screen but were allowed to 

lean back while they take notes. After the instruction, participants were asked to try the practice 
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problem alone (see Appendix B). During the practice, they were allowed to ask questions either 

about the problem content and the procedure. For the practice task, participants were not actually 

asked to write their answers in order to keep the practice brief, but they were not given this 

instruction until they said they are done examining the information window. Once they notified 

the experimenter that they are ready to give their answers, they were guided to the task. 

The task (see Appendix D) was done in the same manner as the practice was conducted. 

Before the task, participants read aloud a passage describing the topic (see Appendix C) and then 

were informed that they would write the answers for real this time and the task would be harder 

than the practice. Those who participated in the distributed display condition were given 

additional instructions on how to use the distributed display; a sample distributed information 

window was shown to participants using the practice material. A new blank paper was provided 

for note taking. Unlike practice, participants were not allowed to ask questions about the task 

content. When they indicated that they are finished with information examination on the 

window, eye movement recording was stopped and saved. Then, on another workstation 

equipped with a keyboard, participants were provided with a new page that has two windows 

accessible via clicking tabs, one to type their answers under each question (see Appendix E) and 

the other to hold the information window. Also in a self-paced manner, participants composed 

their answers for each and every question. They were able to refer back to the information 

window and their notes as they write.  

The goal of the task was to compose short paragraphs for several key integrative 

questions: whether the hypothesis of the first study was confirmed and why, whether the 

hypothesis of the second study was confirmed and why, whether the two studies are congruent, 
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and how to reconcile the discrepancies if they are not congruent. The core process of problem 

solving for the data interpretation task is provided in Figure 5.  

 

 

Figure 5. A flow chart of problem solving process for the current data interpretation task. The IF-

THEN statements denote critical information that needs to be captured by problem solvers to achieve 

accurate data interpretation. This chart is provided solely for readers’ convenience; it was never shown to 

participants. 

 

After the task was done, participants completed the three surveys in the order of strategy 

(see Appendix F), cognitive load (see Appendix G), and demographic survey (see Appendix H). 

Expert participants were additionally asked to submit their curriculum vitae. Participants were 
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asked to use a given codename instead of a real name when completing task questions and 

surveys. 

2.2 RESULTS AND DISCUSSION 

Outliers were defined as instruction violation and total task time longer than two standard 

deviations from the mean, which could be signs of misunderstanding of the experiment, 

insufficient basic knowledge to solve the task, and very low task motivation. Six undergraduate 

participants in the novice group were excluded from analyses as outliers, which left 34 

participants in the distributed condition (24 females) and 30 in the stacked condition (19 

females). Due to eye-tracker malfunction, three additional undergraduates (two in distributed and 

one in stacked) were excluded from eye movement data analyses. There were two outliers in the 

expert group whose total task time was longer than two standard deviations from the mean, 

leaving 19 experts in each condition (15 females in each condition). 

2.2.1 Task Time and Accuracy 

Three time measures were available: time spent solving the practice problem (practice 

time), time spent processing information presented in a given window display (window time), 

and time spent composing answers while having the information window available on the second 

tab of a window (answering time). 

Expert participants in the two conditions did not differ in practice time, t (36) = 1.19, p =  

.24 but novice participants in the distributed condition took longer (M = 6.1 minutes, SD = 2.0) 
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to finish the practice task than participants in the stacked condition (M = 5.1 minutes, SD = 1.0), 

t (62) = -2.55, p < .01, Cohen’s d = 0.68. To control for general task speed differences across 

participants, 2x2 MANCOVA was used to test the effect of display format and expertise level on 

window time, answering time, and task accuracy, with practice time as a covariate. Descriptive 

statistics are presented in Table 4. More detailed statistics are presented in Appendix I. 

 

Table 4. Mean (and standard deviations) window time, answering time, and task accuracy by display format 

and expertise level 

 Display format 

Expertise level Stacked Distributed 

Window time (minutes) 

Novice 13.6 (4.0) 19.2 (8.2) 

Expert 20.1 (9.3) 15.7 (4.5) 

Answering time (minutes) 

Novice 12.1 (5.3) 11.5 (4.8) 

Expert 17.5 (8.6) 17.1 (6.4) 

Task accuracy (percentages) 

Novice 40.0 (26.7) 27.2 (22.5) 

Expert 44.7 (35.9) 56.6 (28.7) 

 

The window time was not different by the display formats, F (1, 97) = 0.01, MSE = 0.14, 

p = .95, nor by the expertise level, F (1, 97) = 0.65, MSE = 21.23, p = .42. More importantly, 

however, there was a significant interaction effect, F (1, 97) = 6.55, MSE = 212.69, p < .01, η2 = 

0.06. As shown in Figure 6 (left), the benefit of display formats was differed by expertise level. 

Experts who used distributed display tended to finish examining information faster than experts 

who used stacked display (t (36) = 1.87, p = .07). But for novices, the effect was the opposite; 
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novices finished examining information faster when they used the stacked display than when 

they used the distributed display  (t (62) = -3.43, p < .001, Cohen’s d = 0.92).  

 

Figure 6. Mean (with SE bars) window time (left) and task accuracy (right) by display format and expertise 

level. 

 

The answering time was different by expertise level (see Table 4), F (1, 97) = 18.74, MSE 

= 704.10, p < .001, η2 = 0.16. On average, experts spent 5.5 minutes more composing their 

answer than novices did, presumably, from engaging in more thinking and generated more 

complete and accurate answers; accuracy effects are explored below. This general expert-related 

slowing held regardless of condition: there was neither an effect of display format, F (1, 97) = 

0.17, MSE = 6.47, p =  .68, nor an interaction effect, F (1, 97) = 0.02, MSE = 0.80, p =  .88 for 

answering time.  

Accuracy was scored according to the grading rubric presented in Table 5. A point was 

given to each statement that is similar to the answer key and the aggregated points were used as 

task accuracy. Note that these answers can only be generated from inferential and integrative 

thinking by making comparisons across pages of hypotheses, methods, and results sections. 

Statistics for task accuracy are provided in percentages. 
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Table 5. Grading rubric for the data interpretation task.  

Questions Examples of key answers 
Question 1:  
Was the hypothesis of Study 1 confirmed? If so, 
what are the evidences? If not, what are the 
evidences? Be specific. 

 
• Destination memory was better than source 

memory (more correct identification) 
• Source memory was worse than target memory 

Question 2:  
Was the hypothesis of Study 2 confirmed? If so, 
what are the evidences? If not, what are the 
evidences? Be specific. 

 
• Destination memory was worse than source 

memory (low correct recognition) 
• Source memory was better than target memory 

Question 3:  
Are the results of Study 1 and 2 congruent? If so, in 
what ways and if not, in what ways? 

 
• In Study 1, source memory was worse than 

destination memory but in Study 2, destination 
memory was worse than source memory 

Question 4:  
If you've answered that there was an inconsistency 
in the findings of the two studies, how would you 
reconcile the findings? In other words, what do you 
think could account for these inconsistent results? 
Propose at least one hypothesis about the results. 

 
• In Study 1, the participant makes a decision 

regarding the destination of the information, 
while in Study 2 the participant does not; the self-
generated information/actions might make 
destination memory superior under certain 
circumstances 

 

As expected, experts were more accurate (M = 50.7, SD = 32.6) than novices (M = 33.2, 

SD = 25.2), F (1, 97) = 8.89, MSE = 6917.48, p < .01, η2 = 0.08, confirming that experts did have 

more knowledge and skills than novices for the given task. There was no main effect of display 

format on task accuracy, F (1, 97) = 0.01, MSE = 4.13, p = .94. But, interestingly, there was an 

interaction effect, F (1, 97) = 4.23, MSE = 3289.26, p < .05, η2 = 0.04. Experts in the distributed 

display condition tended to be more accurate than experts in the stacked display condition, but 

novices in the distributed display condition tended to be less accurate than novices in the stacked 

display condition (see Figure 6 right).  

One could argue that there can be a speed/accuracy trade off since experts spent more 

time on composing answers than novices. However, it is unlikely because of the following 

reasons. Experts in the stacked display condition scored considerably low in the stacked 

condition, thus even though experts spent more time answering questions (regardless of the 



 30 

display format) than novices, they did not necessarily score higher. In addition, experts in the 

distributed display condition scored higher than experts in the stacked display condition even 

though the two expert groups spent a similar amount of time answering questions.  

The observation that experts scored only slightly better than novices in the stacked 

display condition may bear two explanations. First, experts who participated in this study were 

graduate students in training, thus they may not necessarily possess far superior expertise than 

undergraduate majors. The finding that experts scored only about 50% on average in total across 

the display format conditions can also support this idea. Second, the stacked format might have 

limited the use of expertise by providing an overly simplified problem space. When considering 

how important it is to examine the big picture in scientific problem solving, compared to the 

distributed display format, the stacked display format may constrain even (near) experts in 

developing broad perspective.  

In sum, the results show very different effects of display format for experts than for 

novices: a complete expertise reversal for both time and accuracy. Specifically, a distributed 

display is beneficial for experts but a stacked display is beneficial for novices.   

In the following sections, three major contributing factors (i.e., internalization of 

information, external information access cost, and externalization of information) that might 

explain the differences in window time are analyzed. 

2.2.2 First Pass Fixation Durations: Internalization of information 

Generally, two eye movement measures (i.e., number of fixations and mean of fixation 

durations) are useful to test the memorization strategy hypothesis. The number of fixations 

directly shows how many times people fixated on information and the mean of fixations 
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demonstrates for how long people fixated on each information piece, thus the large number of 

fixations and the longer duration of mean fixations would mean more effortful encoding or 

memorization. Particularly, the mean of fixation durations was used in a previous study that 

successfully showed the memorization strategy effect in a stacked display format (Jang et al., 

2012). In the current study, however, the sum of fixation durations (i.e., a composite measure 

that reflects both the number of fixations and the average fixation durations; sum = number x 

average) was used because it was a measure at the appropriate level in order to effectively test 

the contributions across first pass fixations, return fixations, and off gaze durations.  

 To examine the possible role of a memorization strategy in producing the time 

differences between distributed vs. stacked displays, the sum of first pass fixation durations were 

computed by summing up the durations of fixations that laid upon each page during the first 

visit, excluding any regressions or returns. The sum of first pass fixation durations can be a direct 

measure of the memorization hypothesis, because each fixation duration serves as an on-line 

measure of information processing, similar to the eye-mind assumption and immediacy 

assumption used in eye-tracking studies of reading processes (Carpenter & Just, 1983). By 

examining the sum of first pass fixation durations, one can estimate to what extent a 

memorization strategy effect contributes to the total time differences observed on window time.  

Importantly, based on previous results using eye-tracking to study display format effects 

(Jang et al., 2012), longer first pass fixation durations in the stacked display condition were 

expected, which would be consistent with the adoption of a memorization strategy due to the 

relatively high information access cost of the stacked view display (i.e., having to search and 

click an index, which involves at least several hundred of milliseconds extra for each information 

page visit). That is, if problem solvers experience higher information access cost when using 
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stacked displays, they should try to overcome the cost by spending extra encoding time to 

facilitate later retrievals from memory (Morgan, Patrick, Waldron, King, & Patrick, 2009).  

Further, no interaction was expected between the display format and the expertise level 

under the assumption that the differential information access cost imposed by the display format 

is a physical constraint. The cost of information access was fixed by the display format (i.e., an 

eye or head turn away in distributed displays and a page-turn away in stacked displays) and thus 

cannot be modified through expertise, so stacked display users should choose an effortful 

information encoding strategy (i.e., memorization) to circumvent the extra access cost regardless 

of their expertise level.  

A 2x2 ANOVA was used to test the effect of the display format and the expertise level on 

the sum of first pass fixation durations. Detailed statistics are presented in Appendix J. As 

predicted, there was no main effect of expertise level, F (1, 95) = 1.03, MSE = 4.56, p = .31 and 

no interaction effect, F (1, 95) = 0.01, MSE = 0.04, p = .93. There was only a main effect of 

display format, F (1, 95) = 98.95, MSE = 438.97, p < .001, η2 = 0.51. Regardless of the expertise 

level, stacked display users more than tripled the time initially encoded information (M = 6.4 

minutes, SD = 2.5) than distributed display users did (M = 2.0 minutes, SD = 1.6), which 

supports the memorization strategy hypothesis. 

The memorization response to changing access costs should also be seen throughout the 

information pages of the task. To further whether the effect was throughout the task or localized 

to particular pages, the sum of first pass fixation durations was analyzed by information page 

(see Figure 7). As predicted by the memorization strategy hypothesis, both experts and novices 

in the stacked display condition showed much longer first pass fixation durations consistently 

across all 13 information pages.  
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Figure 7. Mean sum of first pass fixation durations by information page for each condition (with SE bars). 

 

To examine the relative extent to which the expertise and display formats might have 

affected the process, correlations of the profile across conditions were analyzed. By comparing 

the magnitudes of correlations between the same formats (stacked-stacked and distributed-

distributed) to those between the same expertise levels (novices-novices and experts-experts), 

one can infer whether or not information layout or background knowledge influences the 

performance profile more for novices and experts. The correlations of the profile across 

conditions showed a strong stacked-stacked correlation (r = .93, p < .001, n = 13) and a medium 

distributed-distributed correlation (r = .70, p < .01, n = 13), consistent with the interpretation that 

the stacked condition was more constraining on expertise effects. Interestingly, for novices, the 

effect was driven more by the display format than expertise (rather weak novice-novice 
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correlation compared to the strong stacked-stacked correlation: r = .75, p < .001, n = 13). But for 

experts, the effect was driven more by their knowledge-based reactions to the input than the 

display format (relatively strong expert-expert correlation compared to the medium distributed-

distributed correlation: r = .84, p < .001, n = 13). 

2.2.3 Return Fixation Durations: External information access cost 

The sum of return fixation durations was computed by subtracting the sum of first pass 

fixation durations from the sum of total fixation durations, which includes all regressions and 

returns. While measures of first pass fixations show how much time and effort problem solvers 

invested during the first time encoding in reaction to the relatively higher information access cost 

in the stacked display condition, return fixations provide an index of external information access 

cost. Note that total external information access cost involves planning returns, mouse 

movements, eye-saccades, in addition to the fixation duration of the return. Those other elements 

are harder to capturing from the eye data. Because those other elements are a multiple of the 

return fixations, I focus on the return fixations as the tip of the iceberg. In addition, from 

watching replays of the eye-data, it appears that the bulk of the time is spent on revisiting the 

information rather than getting back to the information (i.e., return fixations are the bulk of the 

external information access cost). 

If the distributed display produces relatively lower information access cost (i.e., an eye-

turn) than the stacked display, distributed display users should not bother to memorize 

information at first time encoding and therefore make more regressions and revisits. Thus, it was 

predicted that stacked display users would show shorter return fixation durations than distributed 

display users. Neither an effect of expertise level nor an interaction between the display format 
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and the expertise level were expected since the effect of return fixation durations relies on the 

physical constraint as the effect of first pass fixations does. 

A 2x2 ANOVA was used to test the effect of display format and expertise level on the 

sum of return fixation durations. Detailed statistics are presented in Appendix K. As predicted, 

there was no significant effect of expertise level on the sum of return fixation durations, F (1, 95) 

= 0.02, MSE = 0.15, p = .90 and no interaction effect, F (1, 95) = 1.41, MSE = 12.38, p = .24. 

There was only an effect of display format, F (1, 95) = 70.60, MSE = 620.04, p < .001, η2 = 0.43. 

Regardless of the expertise level, stacked display users re-accessed information for much less 

total time (M = 2.1 minutes, SD = 1.6) than distributed display users did (M = 7.4 minutes, SD = 

3.8), which is also consistent with a relatively higher information access cost in stacked display 

condition and further supports the memorization hypothesis as an explanation of the effects of 

display format.  

To further examine the relative localization of this effect across the task, the sum of 

return fixation durations was analyzed by information page (see Figure 8). Note that for the 

stacked display condition, these return fixations are purely revisit fixations (i.e., a now hidden 

prior page must be found and re-displayed); these revisits therefore show the pages participants 

were willing to revisit in spite of the relatively high information access cost. The correlations of 

the profile across conditions showed a strong stacked-stacked correlation (r = .88, p < .001, n = 

13) and a weak distributed-distributed correlation (r = .44, p = .14, n = 13). It appears that for 

both novices and experts, the effect was driven more by the display format than expertise (rather 

weak novice-novice correlation compared to the strong stacked-stacked correlation: r = .69, p < 

.01, n = 13 and expert-expert correlation: r = .67, p < .01, n = 13).  
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Both novices and experts in the stacked display condition revisited and fixated longer on 

results, which seems plausible because results sections contain the most relevant information to 

evaluate whether the provided hypotheses were confirmed or not. Further, as expected in the 

previous section, the relatively longer return fixation durations in the distributed display 

condition were observed majorly in methods and results. Thus distributed display users 

examined critical information in methods and results sections by making returns but stacked 

display users did it by encoding well at first. 

 

 

Figure 8. Mean sum of return fixation durations by information page for each condition (with SE bars). 
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2.2.4 Off Screen Gaze Durations: Externalization of information  

Another large possible use of problem solving time involves note taking and note 

processing. Participants were able to take notes freely during the window examination phase and 

many of them (although not all of them) took notes and consult these notes while they composed 

answers. The regular use of notes implies a need for another form of (personally constructed) 

external storage for this complex task. In addition, since the action of note taking can entail 

multiple cognitive activities such as selecting information worthy of notes, summarizing, and 

sometimes writing elaborated ideas or inferences for later use, it can be a place for which 

expertise may play a particularly important role.  

The memorization strategy hypothesis predicts that stacked display users should have 

spent more time taking notes, essentially as an alternative form of (external) memorization. If 

people experience relatively higher information access cost when using stacked displays, they 

may take notes to reduce the need to revisit previous pages and thus to take advantage of 

cognitive offloading. However, note taking may be governed less by the physical constraints 

unlike first pass and return fixations because note taking happens at a relatively higher level of 

cognitive processing than basic information encoding and eye-movement programming. Experts 

who use distributed displays may make less use of notes because they can selectively and 

flexibly integrate and compare information across the four quadrants, but novices may feel that it 

is overwhelming to have information provided across the four spaces at once. Since novices are 

not skilled enough to manipulate technical and statistical information, too much information may 

hinder their understanding and the frustration may lead to use of notes as a way to externally 

reconstruct their own simplified problem space.  



 38 

To test patterns in note-taking time, off-screen gaze durations longer than 2,000 ms were 

collected and summed up as a proxy measure of the time spent on note taking (i.e., sum of the 

time spent on various activities beyond online visual information processing). In general, off-

screen gaze durations longer than the normal blink duration of 300-400 ms could have been used 

as an index of time users are engaged in other activitieswhich was most commonly note taking 

in this study. But a more conservative threshold of 2,000 ms was used to reduce the effect of 

activities other than note taking (e.g. looking at a computer clock to check the time, looks to the 

mouse after a hand was taken off of them, or head scratches).  I use the term note taking to refer 

to both the writing of new notes, and the mental processing of existing notes. 

A 2x2 ANOVA was used to test the effect of display format and expertise level on the 

sum of off-screen gaze durations longer than 2,000 milliseconds. Detailed statistics are presented 

in Appendix L. There was no main effect of expertise level, F (1, 95) = 1.20, MSE = 16.47, p = 

.28, or display format, F (1, 95) = 0.05, MSE = 0.63, p = .83 on the sum of off-screen gaze 

durations. Interestingly, there was a significant interaction effect, F (1, 95) = 12.59, MSE = 

173.38, p < .001, η2 = 0.12 (see Figure 9). Experts who used the stacked display spent twice as 

much time on note taking as those who used the distributed display (t (36) = 2.12, p < .05, 

Cohen’s d = 0.76), as the memorization hypothesis predicted. But novices showed a reverse 

pattern: novices who used the stacked display spent less one third the time on note taking than 

did those who used the distributed display (t (59) = -2.95, p < .01, Cohen’s d = 0.82).  
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Figure 9. Mean (with SE bars) off screen gaze durations (left) and amount of notes (right) by display format 

and expertise level. 

 

One may wonder whether it is plausible to consider the off-screen gaze durations longer 

than 2,000 ms a reliable estimate for the amount of notes taken. To test the idea, the amount of 

notes for each participant was coded on a four-point scale: little (only a couple of lines), light (5-

10 lines), medium (10-20 lines), and heavy notes. The Pearson correlation at the participant level 

between the total off-gaze durations and the amount of notes was r = .70, n = 99, p < .001. 

Further, the 2x2 ANOVA on the amount of notes showed exactly the same pattern that was 

observed in the off-screen gaze duration (see Figure 9). There was neither an effect of expertise, 

F (1, 95) = 1.64, MSE = 2.59, p = .20, nor an effect of display format, F (1, 95) = 0.14, MSE = 

0.22, p = .71, but the interaction was significant, F (1, 95) = 7.87, MSE = 12.43, p < .01, η2 = 

0.08.  

The results are consistent with the prediction that note taking time is a measure more 

heavily influenced by expertise than the two previous eye-tracking-based measures. It seems that 

experts in the stacked display took more notes as it was relatively harder to access information 

and they used notes to store necessary information in a readily available place, as the 

memorization strategy hypothesis would predict. However, novices in the distributed condition 
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took more notes even when multiple information pages were available at once. It may imply that 

the difficulties novices experienced with a potentially overwhelming amount of information and 

the lack of expertise might have overridden the effect of the display format.  

 

 

Figure 10. Mean off-screen gaze durations by information page in each condition. 

 

To investigate further on which page problem solvers spent more time engaging with 

notes, off-screen gaze durations were analyzed by information page (see Figure 10). Overall, 

participants seemed to spend more time on note taking while processing methods and results 

pages. Also, as the interaction effect between the display format and the expertise level predicts, 

experts took more notes when they were using the stacked display and the trend seems consistent 

across the pages, but novices took more notes when they were using the distributed display and 

the effect shows a couple of peaks on Questions, Study2 Hypotheses, and Study2 Methods (2). It 
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is rather odd to observe these peaks but it could have been caused by differences in expertise, 

because it might have been harder for novices to understand hypotheses, methods, and even the 

questions. 

The correlations of the profile across conditions showed a medium stacked-stacked 

correlation (r = .66, p < .01, n = 13) and a weak distributed-distributed correlation (r = .46, p = 

.11, n = 13). It appears that for both novices and experts, the effect was driven more by the 

display format than expertise (very weak novice-novice correlation: r = .33, p = .27, n = 13 and 

expert-expert correlation: r = .10, p = .76, n = 13). 

In addition, it seemed that the time effect mainly came from the quantity of notes rather 

than the quality. Two qualitative measures were analyzed to see if experts had written more 

integrative and goal-related notes. As for an integrative note taking, the number of connections 

made among information from different pages was counted. When contents from different pages 

were explicitly connected by arrows or written in close proximity, each instance was counted. In 

general, not so many connections were made. On average, novices made 0.17 (SD = 0.50) 

connections and experts made 0.53 (SD = 0.72) connections but there was a significant main 

effect of expertise (F (1, 76) = 7.42, MSE = 2.53, p < .01, η2 = 0.09). Experts seem to take a bit 

more integrative notes but the frequency was fairly low. Interestingly, there was a tendency that 

novices who used distributed display took more integrative notes (distributed: M = 0.22, SD = 

0.58, stacked: M = 0.10, SD = 0.30) while experts who used stacked display took more 

integrative note (distributed: M = 0.40, SD = 0.63, stacked: M = 0.65, SD = 0.79). However, the 

interaction effect was not significant, F (1, 76) = 1.95, MSE = 0.67, p = .17, η2 = 0.03. To 

measure goal-related note taking, the number of written inferences and conclusions was counted. 

Inferences and conclusions defined as comments that deliver problem solvers’ idea, opinion, 
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analyses, and attempt answers for the task questions. There was no effect either by expertise (F 

(1, 76) = 1.00, MSE = 3.81, p = .32) or display format (F (1, 76) = 0.76, MSE = 2.91, p = .39). 

Also, there was no interaction effect, F (1, 76) = 1.14, MSE = 4.33, p = .29. Detailed statistics are 

presented in Appendix M. 

2.2.5 Self-Reported Strategies and Cognitive Loads 

Strategy and cognitive load survey results showed several patterns that supports previous 

findings. Detailed statistics are presented in Appendix N. First, novices reported relatively lower 

expertise on the data interpretation task. In the strategy survey (see Figure 11), regardless of 

display format they used, novices felt more lost about where they were in the task (M = 1.8, SD = 

1.1) than experts reported (M = 1.4, SD = 0.9), F (1, 98) = 4.09, MSE = 4.32, p < .05, η2 = 0.04, 

which suggests their unfamiliarity to the data interpretation task and low expertise. It was also 

found that the invested mental effort (see Figure 12) in understanding theory was larger for 

novices than experts, F (1, 98) = 6.76, MSE = 17.34, p < .01, η2 = 0.07 and the perceived 

difficulty in understanding the results was higher for novices than experts, F (1, 98) = 8.17, MSE 

= 23.34, p < .01, η2 = 0.08. More specifically, novices reported lack of skills in integrating 

information. They not only reported higher perceived difficulty in integrating methods and 

results, F (1, 98) = 6.65, MSE = 18.91, p < .01, η2 = 0.06, but also reported that they invested 

more mental effort to integrate methods and results, F (1, 98) = 9.48, MSE = 28.84, p < .001, η2 

= 0.09. 
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Figure 11. Mean rating on the strategy survey by expertise 

 

 

Figure 12. Mean rating of perceived difficulty by expertise 
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Second, both experts and novices reported difficulty using the stacked display window, 

which supports the idea that people experience relatively higher information access cost in the 

stacked display, regardless of expertise. In the strategy survey (see Figure 13), for a question 

asking if they felt that all the information from different page blurred, stacked display users in 

both expertise group agreed significantly more than distributed display users did, F (1, 98) = 

4.51, MSE = 4.24, p < .05, η2 = 0.04, which may imply information overload in the head as a side 

effect of using memorization strategy. In the cognitive load survey (see Figure 14), both experts 

and novices who used the stacked display reported higher perceived difficulty in using the 

window design than those who used the distributed display, F (1, 98) = 23.11, MSE = 61.56, p < 

.001, η2 = 0.19, and reported that they invested more mental effort in using the stacked display, F 

(1, 98) = 18.22, MSE = 49.96, p < .001, η2 = 0.16.   

 

 

Figure 13. Mean rating on the strategy survey by display format 
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Figure 14. Mean rating of perceived difficulty by display format 

 

Finally, some measures showed interaction effects between display format and expertise 

that matched to the findings in the previous sections (see Figure 15). In the strategy survey, for a 

question asking to what degree they had trouble remembering information and had to look back, 

novices agreed with the statement more when they were using the distributed display, but experts 

agreed more when using the stacked display, F (1, 98) = 4.12, MSE = 4.23, p < .05, η2 = 0.04. 

Further, in the cognitive load survey, novices in the distributed display condition perceived the 

task more difficult than novices in the stacked display condition while experts perceived the task 

easier when the task was provided in the distributed display, F (1, 98) = 7.90, MSE = 16.35, p < 

.01, η2 = 0.08. And the same pattern was observed in the reported amount of mental effort they 

invested to solve the task, F (1, 98) = 14.91, MSE = 29.92, p < .001, η2 = 0.13.  
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Figure 15. Mean ratings by display format and expertise for a strategy survey question (left) asking how 

much people agree that they had trouble remembering information and had to look back, perceived difficulty 

of task itself (middle), and mental effort invested to solve the task (right). 

2.2.6 Integrating the Effects of the Three Main Time Elements 

The difference observed in the total window-examining time can be explained by the 

interplay of effects on the three different main times examined thus far: time spent on first pass 

fixations, time spent on return fixations, and time spent on note taking. There were no 

correlations above 0.14 between the three factors.  

 

 

Figure 16. First pass and return fixation durations and note taking time by display format for experts (left) 

and for novices (right) 
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First, as the memorization hypothesis predicted, problem solvers spent more time on first 

time encoding and less time on return fixations with stacked displays, and this pattern was found 

true regardless of expertise (see Figure 16). That is, the stacked display produced more 

information internalization due to its higher information access cost. Note that a similar pattern 

could be observed when analyzing the number of first pass and return fixations, rather than 

fixation durations. Across both levels of expertise, stacked display users made more first pass 

fixations and fewer return fixations while distributed display users showed exactly the reverse 

pattern (number of first pass fixations: F (1, 95) = 128.57, MSE = 22,835,437, p < .001, η2 = 0.58 

and number of return fixations: F (1, 95) = 85.94, MSE = 32,952,317, p < .001, η2 = 0.48). 

Similarly, analyses of page transition frequency (i.e., a fixation-based measure including page-

turning action: how many times participants moved their eyes to different pages) showed that 

both experts and novices in the stacked display condition made far fewer page transitions (M = 

22.3, SD = 6.2) than those in the distributed display condition (M = 153.3 SD = 70.6), F (1, 95) = 

148.75, MSE = 391,427, p < .001, η2 = 0.61. Detailed statistics are presented in Appendix O. 

Second, note taking was found to be interactively affected by display format and 

expertise. Unlike the first two factors that were directly governed by the physical constraint and 

thus showed the same pattern of effect across the two expertise level, the analyses of note taking 

time and amount showed that experts took more notes when they were using the stacked display 

but novices took more notes when using the distributed display. Given the knowledge and skills 

that experts have, it could have been beneficial for experts to have four pages of information laid 

side by side so that they can compare and integrate information across hypotheses, methods, and 

results. The stacked display, in contrast, might have hindered experts because the limited 

availability of information could not support the fast flow of thoughts. In a reaction to avoid 
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discrete information availability in the stacked display, experts seemed to take more notes so as 

to externalize the necessary information in a handy place. However, due to the lack of 

knowledge and experience, novices might have felt overwhelmed by having too much 

information available in the distributed display, not knowing where to focus. The larger amount 

of note taking observed in the distributed condition may be the result of this frustration and an 

effort to reorganize their thoughts by copying the information in a new format. Thus, it could 

have been actually easier for novices to have each information page displayed separately and 

digested in a more step-by-step manner.  

Finally, taken altogether, the overall difference observed in the window examining time 

can be explained by the combined contribution of the three factors (see Table 6). The time 

difference between stacked and distributed displays observed in each factor was computed and 

summed up, then compared to the time differences observed in the window time. For novices, 

the mean window time difference was 13.6 - 19.2 = -5.6 minutes, and the three factors explained 

70% of this time difference. For experts, the mean window time difference was 20.1 - 15.7 = 4.4 

minutes, and 64% of this time difference was explained by the three factors.  

 

Table 6. Mean time differences in first pass fixation durations, return fixation durations, and note taking time 

(in seconds). Sum of the effect of the three factors is computed for novices and experts. 

 Novice  Expert 

 Stacked Distributed 
Stacked – 

Distributed 
 Stacked Distributed 

Stacked – 
Distributed 

First pass 
fixations  

6.2 1.8 4.4  6.6 2.3 4.3 

Return 
fixations  

1.9 7.7 -5.8  2.5 6.9 -4.4 

Note taking  1.7 4.2 -2.5  5.2 2.3 2.9 
Sum 9.8 13.7 -3.9  14.3 11.5 2.8 
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About a minute and half was left unexplained in both groups. Given that the note taking 

time computed only by off screen gaze durations longer than 2,000 ms, the unexplained time 

may include time spent on multi-tasking other than note taking such as information tracking and 

even some eye blinking when people make fixation jumps within/between pages. In addition, 

information-loading time (i.e., time required to load and view an information page whenever a 

selection is made) was not accounted for the equation.  

The number of physical page transitions (i.e., page-turning action only: how many times 

participants selected and changed information page to view using the drop down menu) showed 

that both experts and novices made more page transitions in the stacked display condition (M = 

22.8, SD = 6.5) than when they were in the distributed display condition (M = 19.7, SD = 6.4), F 

(1, 98) = 8.14, MSE = 323.02, p < .01, η2 = 0.08 and this tendency was stronger for experts 

(Stacked: M = 25.7, SD = 6.6 vs. Distributed: M = 19.4, SD = 5.7) than novices (Stacked: M = 

20.9, SD = 5.8 vs. Distributed: M = 19.9, SD = 6.9), F (1, 98) = 4.16, MSE = 164.98, p < .05, η2 

= 0.04. Presumably, people in the distributed display condition did not have to turn pages so 

frequently once they made available the four information pages they needed. They could simply 

move their eyes to access information presented in the four quadrants. People in the stacked 

condition, however, had to turn pages if they wanted to look at information in another page and 

they seemingly turned more pages than people in the distributed display condition, as the task 

requires deep thinking and integration. But they were reluctant enough not to turn the pages four 

times more than the number of page turned in the distributed display condition; in fact, much less.  

The relatively stronger tendency in experts may imply that experts were more prudent 

and made more page transitions to check information even if it was bothersome in the stacked 

display condition. More interestingly, experts in the stacked display condition might have made 
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more page transitions because they wanted to integrate information across pages and the only 

way that they can achieve the goal was to go back and forth even though it was cumbersome; 

likewise, the physical page transition time can explain a portion of the unexplained time for 

experts. For novices, whether having a distributed display or not may not matter much (or even 

worse to have a distributed display) since they are not sufficiently trained to readily make 

connections across information in different sections. But for experts, having a distributed display 

does matter because it helps them cross-examine and integrate information across pages, which 

is the most crucial part of the successful problem solving for a data interpretation task.  
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3.0  GENERAL DISCUSSION 

3.1 DISTRIBUTED VS. STACKED DISPLAYS 

Replicating a numbers of prior studies with artificial tasks (Jang & Schunn, 2012; Jang et al., 

2011) and a couple of studies with authentic tasks (Jang et al., 2012; Kroft & Wickens, 2002), 

the current work again finds that the organization dimension of distributed versus stacked 

displays can have a large effect on problem solving performance. The current study carefully 

controlled display content to manipulate display format per se, now establishing that even with 

careful controls, the dimension matters even with rich, diverse tasks and with participants who 

are well trained in the task. Thus, I have increased confidence that this dimension is important in 

applied settings. As a result, the trends towards using micro-displays for work applications 

(powerful ultra-light laptops and tablet computers) should be re-examined carefully with respect 

to impact on performance. Further, it is recommended for optimizing software to better enable 

information distribution on the screen. 

3.2 EFFECT REVERSAL AND EXPERTISE (DOUBLE) REVERSAL 

Prior research on the distributed vs. integrated spatial arrangement effect found an expertise 

reversals such that experts actually benefit more from what would be worse for novices 
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(Kalyuga, Ayres, Chandler, & Sweller, 2003). Studies on other factors impacting task 

performance (Cho, 2004; Yeung et al., 1998) also showed what is the best for experts may not do 

the same for novices. Therefore, a primary goal of the current study was to examine whether the 

benefit of distributed over stacked displays held for experts. Regarding this goal, the study did 

reveal a robust interaction between spatial arrangement and expertise. However, details of this 

expertise interaction were superficially quite surprising. Compared to previous studies (Jang & 

Schunn, 2012; Jang et al., 2011; Jang et al., 2012) that showed consistent task completion time 

benefits of distributed displays with relatively untrained participants, the current study actually 

found the opposite overall task completion time effect for novices. And then the display effect on 

task completion time for experts in this study did reverse what was found for novices on the 

same task, but back to what was previously found with novices on other tasks. 

The opposite task time effect can be explained by the differences in tasks. In previous lab 

tasks, individuals were able to be experts for the given tasks with a brief practice before the main 

task began because there was a relatively simple set of procedures and well-taught integration 

strategies to follow. Unlike previous lab tasks, this time novices working on an ill-defined 

problem that was quite difficult given their domain-specific and domain-general knowledge. 

Presumably, novices might have experienced two types of difficulty such that they do not know 

how to digest the content itself and how to integrate information across pages, if they even 

realized that integration is crucial to the problem solving.  

Further, the current stacked better than distributed effect on overall time with novices 

working scientific data analysis tasks does have some prior basis, albeit in preference rather than 

performance data. In a previous study of student format preferences (Jang & Schunn, 2011), 

psychology lab undergraduates were trained on statistical analysis procedures for a couple of 
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weeks and then asked to choose and use either distributed or stacked format of statistic 

instructions to analyze a data on their own. About 70% of students chose the stacked format of 

instruction, which was a surprising overall ratio given that the distributed format had previously 

produced more efficient problem solving and greater learning outcomes (Jang et al., 2011). 

However, the current study suggests that the preference for stacked format of instructions among 

undergraduates may have been an adaptive choice for their level of expertise. Even though 

students were trained on the domain knowledge for a few weeks, the time and experience might 

have been short for them to confidently choose and use distributed information.   

I argue that the reversed novice pattern and then double reversal for experts found in the 

current study is only superficially surprising. Using the theoretical decomposition of factors 

influenced by distributed versus stacked displays that was introduced in this paper, it is possible 

to show how the pattern of effects across past and current results can be understood. The eye-

tracking data provides more direct access to the multiple factors that are in play, and this new 

level of theoretical precision and methodology for tracking underlying factors should enable 

more robust theorizing and application in various other domains. In the next section, I unpack 

aspects of expertise that need to be considered in our theoretical account, and then I discuss the 

larger underlying theory in the section after that. 

3.3 UNPACKING EXPERTISE EFFECTS 

Several expertise characteristics are relevant to the current study. It is important to note that 

graduate students participated in the current study are perhaps best called near-experts. Although 

the psychology graduates had 5 years of experience on average and most of them had first-
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authored journal publications, which clearly distinguishes them from novices, they did not meet 

the commonly used 10-year rule (Hayes, 1985) definition of world-class expertise. But expertise 

is really a continuous dimension that just a binary expert/novice distinction (Schunn, Saner, 

Kirschenbaum, Trafton, & Littleton, 2007), and for practical applications, it is important to 

understand effects along the broader continuum, especially since more people sit in the middle 

than at the end points. At the same time, the literature on expertise has focused on end points, 

and here I discuss two relevant expert behaviors, specifically regarding information search 

strategy and information representation.  

First, experts selectively access relevant information. Expertise involves learning and 

developing an eye for information value and probability: where to look and where not to look 

(Chi, Feltovich, & Glaser, 1981; Hinsley, Hayes, & Simon, 1977; Patel & Groen, 1991; Spilich, 

Vesonder, Chiesi, & Voss, 1979). With the same basic limited cognitive capacity shared across 

all humans, experts become more efficient by attending to and consuming the types of 

information that provide high information value and are essential to problem solving. The 

graduate students in our study appeared better able than the undergraduates to manage and 

selectively view the information they needed to integrate among the multiple sources of 

information that consisted of graphs, tables and texts. Further, the trained graduate student eyes 

presumably focused less on tangential information within and across pages, thereby reducing 

cognitive load.  

Second, experts are often found to have functional, abstracted representations of 

presented information (Moss, Kotovsky, & Cagan, 2006). For example, expert physicists 

grouped physics problems according to which principles and equations are useful for solution, 

whereas novices grouped problems according to similarities in superficial features (Chi et al., 
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1981). Similarly, when asked to recall half-innings from a baseball game, ardent baseball fans 

structured the game by major goal-related sequences of the game, such as advancing runners, 

scoring runs, and preventing scoring, rather than the less essential components (e.g., weather or 

crowd mood) that novices often used in recall (Spilich et al., 1979). Based on these observations, 

the graduate students in the current study should have benefited from building a structured 

representation of the data interpretation problem, which in the current study can be indexed by 

note-taking behaviors⎯“task reflection as participants attend to problems” (Chi, 2006, p. 176). 

The content of the graduate students’ notes showed a tendency to be more integrative and goal-

related (e.g., writing key information, ideas instead of verbatim, new inferences, and connections 

among information from different pages with arrows or by writing them in close proximity), 

compared to a sequential list of exactly copied information that was shown often in the notes of 

novices. However, the expertise effect on note content was not large presumably because 

graduate students were not very far down the expertise continuum from the undergraduates. 

It may seem odd that the graduate students did not appear to benefit in this task from the well 

documented chunking benefits associated with expertise (Chase & Simon, 1973). However, it is 

important to note the current task was not only integrative but also relatively ill defined. 

Although the graduate students were trained on relevant analytic scenarios and schemata, ill-

defined tasks such as data interpretation of scientific studies in a new domain will have few 

familiar chunks to re-use. It is likely that analysis of data in their own focal areas of expertise 

would have presented the opportunity to use familiar chunks (Schunn & Anderson, 1999). 
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3.4 UNPACKING THE UNDERLYING MECHANISMS OF DISPLAY 

ORGANIZATION EFFECTS 

The overall task time effects of display organization needs to be understood as the summation of 

three different underlying factors that influence task time: information internalization time, 

information access time, and information externalization time (see Figure 3).  

Stacked displays lead to higher information internalization time. This effect is indexed by 

mean fixation times during first pass through content, and it appears to hold for both novices and 

experts. Other researchers (Gray & Fu, 2004; Gray, Sims, Fu, & Schoelles, 2006) have 

conceptualized this effect as a memorization micro-strategy that is automatically applied when 

there are relatively high external information access costs, like in the case of stacked displays.  

At the same time, in complementary fashion, stacked displays actually lead to lower 

information access times for both novices and experts, as indexed by shorter total return 

fixations. As a result of not having memorized the information, problem solvers using the 

distributed display must then more often search external for information to integrate, whereas the 

problem solvers using the stacked displays can rely on internally stored information, which will 

typically (although not always) be accessed more quickly than external information. It is 

important to note however, that the information internalization effect is larger than the 

information access effect, and thus, on the basis of just these two effects, there should generally 

be an overall time benefit of distributed displays over stacked displays. However, in the case of 

particularly complex integrative tasks that require constant revisiting, it could be that the stacked 

displays will be more beneficial because of the high frequency of revisiting previously 

memorized (or not) information. 
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The third effect, informational externalization time appears to be modulated by expertise 

level, but this is likely expertise level relative to the complexity of the task. In very simple tasks 

(such as what was studied previously), or for more expert problem solvers in more complex 

tasks, problem solvers take more notes with stacked displays, probably as an effort to manually 

make the information distributed and reduce the need to re-access information. In some ways, 

this effect could also be seen as an adaptive tradeoff between externalization time and 

information access time. By contrast, novices given a complex task took more notes in the 

distributed displays condition. These additional notes may have been taken to compensate for the 

cognitive overload from being presented so much difficult to integrate information: the 

additional notes constitute an attempt at creating a simplified information space. Novices in the 

distributed display condition did report higher cognitive load (perceived difficulty and mental 

effort). Alternatively, the novices may have taken fewer notes in the stacked display case 

because they saw less information that needed to be integrated; that is, they were less aware of 

the complexity of the integration task at hand. Indeed, other research has found that 

undergraduates often fail to even recognize the need for experimental data to be integrated with 

an overarching theory (Schunn & Anderson, 1999, 2001). 

3.5 IMPLICATIONS 

The research has several implications for the field of cognitive psychology, human factors, and 

education. This study examined an ill-defined task, which is much more common in the work 

place than studied by researchers. Further, it specifically examines a kind of task that is common 

across most domains of science. That is, the basic skill sets required for accurate quantitative 
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data interpretation are common to a range of social sciences and human science fields, such as 

medicine, public health, marketing, economics, political science, and sociology. Further, there 

are important commonalities to quantitative data analysis in the natural sciences and engineering. 

Also, this study is relatively rare in directly comparing (more) expert and (more) novice problem 

solvers, and it showed a clear expertise reversal effect that is important to consider in proscribing 

implications for visual display use and design, and for the development of educational materials 

and strategies. For more expert problem solvers, the overall trend toward using smaller displays 

appears to be counterproductive to problem solving performance, whereas for more novice 

learners working on complex material, their use of laptops and tablets that naturally limit the 

amount of information displayed may be adaptive. 

In terms of theoretical implications, the study generated an understanding of the complex 

relationships between cognitive load, reasoning processes, and problem-solving performance 

from students to professionals. The proposed tripartite framework regarding underlying 

mechanisms was found to be useful for explain the time differences and it is expected to be 

applicable to further unpack the effects of other display type comparisons (e.g., stacked vs. 

integrated displays or collaborative information sharing systems). The underlying framework 

includes factors at the lower, perceptual level, but also high-level cognitive processes, and the 

overall model considers the bi-directional interaction between the information presentation 

environment (e.g., innate high information access cost in stacked displays) and the human’s 

activities (e.g., strategic information encoding and note taking).  

The proposed research also leads to practical suggestions for improvements to statistical 

analysis and data visualization software tools. For example, data output displays typically used 

by scientists can be improved in a way that better supports users’ data comprehension and 
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interpretation. Many students and colleagues are dissatisfied with the data visualization of 

statistical analysis software, which tend to show tables and graphs in a sequential and stacked 

manner. Even when people try to print out data and set up their own versions of a distributed 

display (e.g., spread the pages out on a table), often the tables and graphs do not print correctly 

or take too many pages to be printed. Considering the large number of users of data analysis 

software, including students, businessmen, scientists, and policymakers, data visualizations that 

better facilitates comprehension and problem solving could have a broad overall impact. 

3.6 FUTURE DIRECTIONS 

This research suggests that spatially distributed information lead experts to more efficient and 

effective problem solving. For future studies, boundary conditions of the effect (e.g., expertise 

and distribution ratio) should be explored to deepen our understanding of cognitive mechanisms 

and to provide precise recommendations for designers. For example, is there a benefit of 

distributing information across two large monitors rather than just two large monitors? Or does 

the distributed benefit hold for 20-year experts working on data in their own focal area of 

expertise? At the other end of the expertise continuum, given that novices in this study could not 

benefit from distributed displays, a question is remaining on how much expertise is required to 

benefit from distributed displays. Relevant subquestions include whether it requires domain-

specific, domain-general knowledge or a combination of both and how individual differences in 

cognitive abilities and strategy adaptivity would affect the information encoding strategy. As 

Schunn and Reder (2001) found, some people are much less sensitive and slow to change their 

strategy choices. 
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APPENDIX A 

TOPIC PASSAGE FOR PRACTICE 
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PLEASE READ OUT LOUD ONCE, AND READ IT OVER UNTIL YOU CAN 
PARAPHRASE THE HYPOTHESIS IN YOUR OWN WORDS BECAUSE YOU WILL BE 
ASKED TO DO SO 

 

Effect of Diagram on Learning 

 

There is a Chinese saying that a picture is worth 10,000 words. Like many bits of 

common wisdom, it turns out this is sometimes true. The task for cognitive psychologists is to 

figure when it is true and when it is not true. 

 

A lot of that previous work has been done on the effect of having pictures and diagrams 

and found significant benefits. For example, college students were found to learn better when a 

science text is accompanied with a relevant diagram.  

 

Willows (2005) recently conducted two studies to examine the effect of diagram on 

children’s learning (i.e., information recall and speed and accuracy of reading).  

 

Hypotheses 

H1: Pictures would facilitate recall of information. 

H2: Pictures would improve the speed and accuracy of reading. 

 

 
 
 
 
 
 
 
YOU WILL BE PROVIDED WITH WILLOWS’S HYPOTHESES, METHODS, AND 
RESULTS. YOUR TASK IS TO INTERPRET THE RESULTS IN ORDER TO ANSWER 
GIVEN QUESTIONS. 
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APPENDIX B 

MATERIALS FOR PRACTICE 

 

Note: For readers’ convenience, page titles are placed at the top in bold and the end of each 

information page marked as “(Page Ends)” in bold. In the experiment, the titles were shown in a 

drop-down menu and “(Page Ends)” were not shown for participants. 
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Questions 

You will be asked to type your answers for these questions once you said you are done 

interpreting the results and ready to give your answers. You can refer back to your notes and task 

window while answering. 

1. Was the hypothesis of Study 1 confirmed? If so, what are the evidence? If not, what are 

the evidence? 

2. Was the hypothesis of Study 2 confirmed? If so, what are the evidence? If not, what are 

the evidence? 

3. Are results of Study 1 and 2 congruent? If so, in what ways and if not, in what ways? 

4. If you've answered that there was an inconsistency in the findings of the two studies, 

How would you reconcile the findings? 

(Page Ends) 

 

Study 1: Intro & Hypothesis 

The purpose of Study 1 was to investigate the effect of pictures on the recall of expository prose 

by 1st graders.  

H1: Pictures would facilitate recall of information. 

(Page Ends) 

 

Study 1: Methods 

Thirty-three first graders were presented with information about unusual animals in one of two 

conditions.  

 Description condition: children listened to descriptions of the animals 
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Description plus picture condition: children listened to a description while they looked at a 

picture of the animal 

 Dependent variable: Cued recall test of information 

(Page Ends) 

 

Study 1: Results 

 

(Page Ends) 

 

Study 2: Intro & Hypothesis 

On the other hand, Opinions among educators and authors of children's beginning readers about 

the value of illustrations range from those who believe that pictures serve an essential function in 

the instructional process to those who believe that pictures serve no useful purpose and that they 

may interfere with children's learning to read (Aukerman, 1971; Chall, 1967).  

H2: Pictures would improve the speed and accuracy of reading. 

(Page Ends) 
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Study 2: Methods 

Thirty-two second graders were asked to read aloud a list of words by with either no pictures or 

associated pictures.  

In the control condition, the words were simply printed on the page in three rows of five.  

In the picture condition each of the 15 words was superimposed on a related picture, for example 

the word cat was superimposed on an outline of a dog. Subjects were asked to read the words on 

the page aloud as quickly as possible.  

Dependent variables: time and accuracy (# of errors) 

(Page Ends) 

 

Study 2: Results 

 

(Page Ends) 
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APPENDIX C 

TOPIC PASSAGE FOR TASK 
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PLEASE READ OUT LOUD ONCE, AND READ IT OVER UNTIL YOU CAN 
PARAPHRASE THE HYPOTHESIS IN YOUR OWN WORDS BECAUSE YOU WILL BE 
ASKED TO DO SO 

 

Destination Memory vs. Source Memory 

 

Everyone has recounted a story or joke to someone only to experience a nagging feeling 

that they may already have told this person this information. It is for this reason that people 

sometimes preface a story with ‘‘stop me if I’ve told you this before.’’ Remembering to whom 

one has told things not only can help one avoid social embarrassment, but also may be critical in 

some situations. For example, supervisors need to remember to whom they told specific 

information or delegated particular responsibilities so that they may assess progress and 

accurately gauge employees’ workloads, and liars need to keep track of the information that they 

have told to particular people to avoid getting caught telling incongruent stories. Remembering 

to whom one has told things also is necessary for facilitating everyday interactions, such as 

conversations with friends. People can assume a common ground and continue where they left 

off only if they remember what they told to different friends (cf. the given-new contract—

Haviland & Clark, 1974). Consequently, in daily interactions, people need to remember not only 

who told them things, or the source of information, but also to whom they told things, or the 

destination of information. 

The processes involved in remembering the source of information (e.g., in conversations, 

who told you something) have been comprehensively studied and are referred to as source 

memory (Johnson, Hashtroudi, & Lindsay, 1993; for a review, see, e.g., Mitchell & Johnson, 

2000). Studying source memory makes sense, given the importance attached to remembering 

sources. For example, remembering that information was obtained from CNN rather than MTV 

is likely to determine how that information is used. Yet the inverse situation—remembering the 

people one has told something to—is often important as well. Thus, it is surprising that 

researchers know very little about the processes involved in remembering the destination of 

information that people output. We refer to these processes, by analogy, as destination memory. 

Gopie (2009) recently conducted two studies to examine which memory is more fallible 

and why.  
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Hypotheses 

H1: Source memory is more fallible because self-generated information is 

usually better remembered  

H2: Destination memory is more fallible because outgoing information is 

not as well integrated with its context (i.e., the person whom one tells a fact) 

 

YOU WILL BE PROVIDED WITH GOPIE’S HYPOTHESES, METHODS, AND RESULTS. 
YOUR TASK IS TO INTERPRET THE RESULTS IN ORDER TO ANSWER GIVEN 
QUESTIONS. 
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APPENDIX D 

MATERIALS FOR TASK 
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Questions 

You will be asked to type your answers for these questions once you said you are done 

interpreting the results and ready to give your answers. You can refer back to your notes and task 

window while answering. 

1. Was the hypothesis of Study 1 confirmed? If so, what are the evidence? If not, what are the 

evidence? 

2. Was the hypothesis of Study 2 confirmed? If so, what are the evidence? If not, what are the 

evidence? 

3. Are results of Study 1 and 2 congruent? If so, in what ways and if not, in what ways? 

4. If you've answered that there was inconsistency in the findings of the two studies, how would 

you reconcile the findings? In other words, what do you think could account for these 

inconsistent results? Propose at least one hypothesis about the results. 

(Page Ends) 

 

Study 1: Intro 

Self-generated information is usually better remembered than other-generated information 

(Slamecka & Graf, 1978). Therefore, memory to whom something was delivered might also be 

better than memory from whom it was received, all other factors being equal. At this juncture it 

remains an open empirical question of whether source memory or target memory differ from one 

another because they have never been directly compared. In addition, if they do differ, then no 

existing theory specifies whether memory might favor source versus target information. 

Gopie conducted a direct comparison of source memory (i.e., information input) to target 

memory (i.e., information output) holding all other experimental variables constant. His 
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hypothesis was that input and output are differentially remembered only when a decision 

component is involved.  

(Page Ends) 

 

Study 1: Hypothesis 

The purpose of Study 1 was to test conditions in which participants received and gave away 

equal numbers of objects from two fictitious people. The use of male versus female sources has a 

long tradition in the source-monitoring literature (e.g. Ferguson et al. , 1992; Johnson et al. , 

1995). Consequently, Gopie decided to use fictitious male and female names as the sources and 

targets in this experiment.  

H1: Source memory is more fallible because self-generated information is usually better 

remembered. Specifically, memory for giving someone an object should be better than memory 

for receiving an object because giving an object involves a decision. 

(Page Ends) 

 

Study 1: Methods (1) 

Within-subject design and 18 undergraduates participated. 

Source monitoring condition: 60 objects (e.g., book, telephone) were presented with half of the 

items randomly assigned to each of the two female sources (from Sally or from Mary) 

 Target monitoring condition: an object label appeared in the center of the screen and participants 

had been instructed to press a key to give away the object to either of the two male sources (to 

Derek or to Robby); participants were instructed not to use any special strategy such as assigning 

all of the objects from one of the females to one of the males (Page Ends) 
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Study 1: Methods (2) 

Memory test: 30 new items were intermingled with the old items as distractors; an object label 

was presented and the query ‘From Sally or Mary?’ appeared beneath it. Participants pressed one 

of three keys to indicate from whom they thought they had received the object (or was new). 

Then the query ‘To Derek or Robby?’ appeared for participants to respond. 

Independent Variables: source and target monitoring 

Dependent Variables: proportions of correct identifications and confusions 

(Page Ends) 

 

Study 2: Results 

 

(Page Ends) 

 

Study 2: Intro 

On the other hand, previous research demonstrated that encoding of the external environment is 

disrupted when actions are performed by oneself rather than by someone else. For example, 

Koriat et al. found that when participants performed, as opposed to watched, such as raising their 
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hands or stirring water in a cup, their memory for the context (i.e., the room in which the task 

was performed) was worse for self-performed tasks than for other-performed tasks. On this basis, 

Koriat et al. proposed that output events are not as well integrated with their environmental 

context as are input events. In the case of incoming information, rich associative links are formed 

between an event and its environment. In contrast, output events are less strongly  integrated 

with their context because people perceive their own behavior as belonging more to themselves 

than to their environment. Consequently, for output events, people associate their behavior with 

their internal mental processes rather than with the environment. 

(Page Ends) 

 

Study 2: Hypothesis 

The goal of Study 2 was to investigate which memory (destination memory or source memory) is 

more error prone than source memory. Gopie accomplished this by having participants either tell 

facts to pictures of famous people (destination memory episodes ) or learn facts from pictures of 

famous people (source memory episodes). Subsequent recognition tests assessed memory for 

individual components of these episodes and for destination memory or source memory. 

H2: Destination memory is more fallible because outgoing information is not as well integrated 

with its context (i.e., the person to whom one tells a fact) as is incoming information (i.e., the 

person from whom one learns a fact). 

(Page Ends) 

 

Study 2: Methods (1) 

Sixty undergraduates participated. Half was randomly assigned to each condition. 
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Destination condition: participants were instructed to tell the facts to the faces. After a fixation 

cross, a fact was presented. After reading the fact silently, the participant pressed a key, which 

resulted in a blank screen, followed by a color picture of a famous person. The participant was to 

tell the famous person the fact that he or she had just read. This procedure repeated until the 

participant had told each of the 50 facts to a different face. 

Source condition: participants were instructed that facts would be told to them by famous people. 

After a fixation cross, a famous person’s face appeared. After viewing the famous face, a key 

press resulted in a blank screen, and then a fact. The participant read the fact that the depicted 

famous person was ‘‘telling’’ him or her. This procedure repeated until the participant was told 

each of the 50 facts by a different face 

(Page Ends) 

 

Study 2: Methods (2) 

Item memory test: 20 facts and 20 faces (half of which participants had studied, and half of 

which they had not studied) were randomly ordered and individually presented. The participant 

responded yes or no whether that item had appeared during the study phase.  

Associative memory test: 40 face-fact pairs were shown in random order: Twenty pairs had been 

presented during the study phase, and the other 20 were random re-pairings. Participants reported 

whether they had  previously told that fact to that face (destination condition) or whether that 

face had told them that fact (source condition).  

Independent Variables: condition (destination or source) and item type (face, fact, and face-fact 

pair) 
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Dependent Variables: hits (rate of correct yes), false alarms (rate of incorrect yes), and correct 

recognition (proportion of hits minus proportion of false alarms) 

(Page Ends) 

 

Study 2: Results (1) 

 

(Page Ends) 

 

Study 2: Results (2) 

 

(Page Ends) 
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Study 2: Results (3) 

There were significant main effects of study condition, F (1, 58) = 12.02, p = .001, η2=.17, and 

of item type, F (2, 116) = 122.65, p < .001, η2 = .68, as well as a significant interaction of study 

condition with item type, F (2, 116) =  9.77, p < .001, η2 = .14. 

(Page Ends) 
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APPENDIX E 

TASK QUESTION ANSWER WINDOW 
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APPENDIX F 

STRATEGY SURVEY 
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APPENDIX G 

COGNITIVE LOAD SURVEY 
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APPENDIX H 

DEMOGRAPHIC SURVEY 
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APPENDIX I 

DESCRIPTIVE STATISTICS FOR TIME AND ACCURACY 
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Table 7. Descriptive statistics for time and accuracy 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Practice time (minutes) 

Novice 30 5.1 1.0 0.2 34 6.1 2.0 0.3 

Expert 19 6.1 1.4 0.3 19 5.6 1.1 0.3 

 Window time (minutes) 

Novice 30 13.6 4.0 0.7 34 19.2 8.2 1.4 

Expert 19 20.1 9.3 2.1 19 15.7 4.5 1.0 

 Answering time (minutes) 

Novice 30 12.1 5.3 1.0 34 11.5 4.8 0.8 

Expert 19 17.5 8.6 2.0 19 17.1 6.4 1.5 

 Total time (minutes) = Window time + Answering time 

Novice 30 25.7 8.1 1.5 34 30.7 10.2 1.7 

Expert 19 37.6 14.6 3.4 19 32.8 8.8 2.0 

 Total task accuracy (percentages) 

Novice 30 40.0 26.7 5.2 34 27.2 22.5 4.9 

Expert 19 44.7 35.9 6.4 19 56.6 28.7 6.4 
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APPENDIX J 

DESCRIPTIVE STATISTICS FOR FIRST PASS FIXATION MEASURES 
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J.1 COUNT OF FIRST PASS FIXATIONS BY PAGE 

Table 8. Descriptive statistics for first pass fixation measures: Count 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Total fixation count 

Novice 29 1410.7 479.2 89.0 32 441.1 414.4 73.3 

Expert 19 1560.2 487.8 111.9 19 553.7 215.6 49.5 

 Fixation count: Questions 

Novice 29 62.4 45.0 8.4 32 25.2 36.5 6.4 

Expert 19 62.1 23.9 5.5 19 21.7 24.5 5.6 

 Fixation count: Study 1 Introduction 

Novice 29 156.7 72.8 13.5 32 44.2 69.9 12.4 

Expert 19 157.4 55.6 12.7 19 70.4 74.2 17.0 

 Fixation count: Study 1 Hypothesis 

Novice 29 96.6 47.8 8.9 32 26.1 41.0 7.2 

Expert 19 130.6 83.3 19.1 19 53.7 54.6 12.5 

 Fixation count: Study 1 Methods (1) 

Novice 29 127.1 62.2 11.6 32 52.1 75.1 13.3 

Expert 19 171.3 70.2 16.1 19 46.7 52.5 12.0 

 Fixation count: Study 1 Methods (2) 

Novice 29 78.6 31.6 5.9 32 24.1 37.7 6.7 

Expert 19 80.8 25.8 5.9 19 22.6 32.2 7.4 

 Fixation count: Study 1 Results 

Novice 29 116.8 63.2 11.7 32 32.9 43.6 7.7 

Expert 19 143.2 111.9 25.7 19 62.9 57.8 13.3 

 Fixation count: Study 2 Introduction 

Novice 29 134.1 102.3 19.0 32 54.8 67.2 11.9 

Expert 19 150.6 91.0 20.9 19 75.0 91.4 21.0 
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 Fixation count: Study 2 Hypothesis 

Novice 29 125.3 78.0 14.5 32 38.0 59.9 10.6 

Expert 19 115.6 59.1 13.6 19 37.9 55.5 12.7 

 Fixation count: Study 2 Methods (1) 

Novice 29 140.6 68.6 12.7 32 42.8 65.3 11.5 

Expert 19 161.6 67.6 15.5 19 33.5 52.2 12.0 

 Fixation count: Study 2 Methods (2) 

Novice 29 154.5 58.3 10.8 32 34.8 71.2 12.6 

Expert 19 151.2 96.4 22.1 19 56.9 60.3 13.8 

 Fixation count: Study 2 Results (1) 

Novice 29 99.2 45.8 8.5 32 26.7 38.3 6.8 

Expert 19 107.4 77.3 17.7 19 35.4 37.4 8.6 

 Fixation count: Study 2 Results (2) 

Novice 29 60.4 35.9 6.7 32 17.0 15.6 2.8 

Expert 19 64.5 32.0 7.3 19 13.7 17.0 3.9 

 Fixation count: Study 2 Results (3) 

Novice 29 58.4 35.1 6.5 32 22.4 18.3 3.2 

Expert 19 63.9 38.2 8.8 19 23.3 19.8 4.5 
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J.2 AVERAGE OF FIRST PASS FIXATIONS BY PAGE 

Table 9. Descriptive statistics for first pass fixation measures: Average 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Total average fixation  

Novice 29 264.8 47.2 8.8 32 238.4 46.3 8.2 

Expert 19 251.1 45.6 10.5 19 243.2 44.9 10.3 

 Average fixation duration (ms): Questions 

Novice 24 233.1 37.7 7.7 29 206.7 56.8 10.5 

Expert 19 226.7 42.0 9.6 15 213.9 54.3 14.0 

 Average fixation duration (ms): Study 1 Introduction 

Novice 29 252.4 49.7 9.2 31 270.6 153.0 27.5 

Expert 19 248.8 47.4 10.9 19 270.2 144.6 33.2 

 Average fixation duration (ms): Study 1 Hypothesis 

Novice 28 254.2 51.3 9.7 30 266.5 103.5 18.9 

Expert 18 240.1 49.0 11.5 17 261.6 95.4 23.1 

 Average fixation duration (ms): Study 1 Methods (1) 

Novice 29 252.7 51.7 9.6 32 227.5 78.3 13.8 

Expert 19 246.1 43.1 9.9 19 283.1 274.7 63.0 

 Average fixation duration (ms): Study 1 Methods (2) 

Novice 29 260.7 54.2 10.1 29 250.6 121.8 22.6 

Expert 19 246.6 50.5 11.6 18 216.8 66.5 15.7 

 Average fixation duration (ms): Study 1 Results 

Novice 29 288.9 54.9 10.2 31 250.5 66.2 11.9 

Expert 19 272.6 62.5 14.3 19 269.0 78.4 18.0 

 Average fixation duration (ms): Study 2 Introduction 

Novice 28 281.7 79.7 15.1 30 253.2 147.7 27.0 

Expert 19 240.7 56.3 12.9 19 232.4 63.6 14.6 
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 Average fixation duration (ms): Study 2 Hypothesis 

Novice 28 250.6 48.4 9.1 30 263.1 125.9 23.0 

Expert 18 250.1 53.1 12.5 17 238.7 144.7 35.1 

 Average fixation duration (ms): Study 2 Methods (1) 

Novice 28 259.7 69.0 13.0 31 203.3 62.2 11.2 

Expert 19 245.4 55.1 12.6 18 253.9 82.1 19.4 

 Average fixation duration (ms): Study 2 Methods (2) 

Novice 29 261.9 45.4 8.4 32 235.8 110.4 19.5 

Expert 19 258.1 77.6 17.8 19 233.4 53.9 12.4 

 Average fixation duration (ms): Study 2 Results (1) 

Novice 29 271.4 53.7 10.0 32 205.4 55.8 9.9 

Expert 19 259.1 44.4 10.2 19 234.6 51.9 11.9 

 Average fixation duration (ms): Study 2 Results (2) 

Novice 29 276.0 47.2 8.8 32 232.4 89.9 15.9 

Expert 19 253.6 49.7 11.4 19 210.9 61.2 14.0 

 Average fixation duration (ms): Study 2 Results (3) 

Novice 29 289.4 59.5 11.1 32 240.3 61.6 10.9 

Expert 19 274.4 55.4 12.7 19 232.9 61.2 14.0 
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J.3 SUM OF FIRST PASS FIXATIONS BY PAGE 

Table 10. Descriptive statistics for first pass fixation measures: Sum 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Total sum of fixation duration (minutes) 

Novice 29 6.2 2.4 0.4 32 1.8 1.8 0.3 

Expert 19 6.6 2.7 0.6 19 2.3 1.0 0.2 

 Sum of fixation duration (seconds): Questions 

Novice 29 15.1 12.0 2.2 32 6.0 9.0 1.6 

Expert 19 14.7 7.1 1.6 19 5.1 6.5 1.5 

 Sum of fixation duration (seconds):  Study 1 Introduction 

Novice 29 39.9 20.5 3.8 32 11.3 19.0 3.4 

Expert 19 39.3 16.0 3.7 19 16.6 17.8 4.1 

 Sum of fixation duration (seconds): Study 1 Hypothesis 

Novice 29 24.7 13.6 2.5 32 6.5 10.8 1.9 

Expert 19 32.3 24.8 5.7 19 12.0 12.3 2.8 

 Sum of fixation duration (seconds): Study 1 Methods (1) 

Novice 29 32.6 16.7 3.1 32 13.1 20.0 3.5 

Expert 19 42.1 18.1 4.2 19 11.5 13.9 3.2 

 Sum of fixation duration (seconds): Study 1 Methods (2) 

Novice 29 20.8 9.8 1.8 32 5.7 9.2 1.6 

Expert 19 20.2 8.4 1.9 19 5.4 8.0 1.8 

 Sum of fixation duration (seconds): Study 1 Results 

Novice 29 34.8 22.4 4.2 32 8.8 12.8 2.3 

Expert 19 40.0 33.5 7.7 19 18.7 18.8 4.3 

 Sum of fixation duration (seconds): Study 2 Introduction 

Novice 29 34.7 25.7 4.8 32 13.9 17.8 3.2 
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Expert 19 38.5 25.5 5.9 19 18.4 22.7 5.2 

 Sum of fixation duration (seconds): Study 2 Hypothesis 

Novice 29 32.0 22.2 4.1 32 10.0 16.3 2.9 

Expert 19 29.4 16.9 3.9 19 9.4 14.9 3.4 

 Sum of fixation duration (seconds): Study 2 Methods (1) 

Novice 29 36.2 21.3 4.0 32 10.3 17.4 3.1 

Expert 19 40.1 18.9 4.3 19 9.3 16.9 3.9 

 Sum of fixation duration (seconds): Study 2 Methods (2) 

Novice 29 41.0 17.7 3.3 32 8.1 17.1 3.0 

Expert 19 38.1 25.4 5.8 19 14.8 16.9 3.9 

 Sum of fixation duration (seconds): Study 2 Results (1) 

Novice 29 27.2 14.4 2.7 32 6.7 10.3 1.8 

Expert 19 28.9 23.8 5.5 19 8.9 10.2 2.3 

 Sum of fixation duration (seconds): Study 2 Results (2) 

Novice 29 16.4 10.2 1.9 32 4.4 4.6 0.8 

Expert 19 16.7 10.7 2.5 19 3.4 4.9 1.1 

 Sum of fixation duration (seconds): Study 2 Results (3) 

Novice 29 17.3 11.9 2.2 32 5.7 4.7 0.8 

Expert 19 16.7 9.5 2.2 19 5.7 4.9 1.1 
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DESCRIPTIVE STATISTICS FOR RETURN FIXATION MEASURES 
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K.1 COUNT OF RETURN FIXATIONS BY PAGE 

Table 11. Descriptive statistics for return fixation measures: Count 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Total fixation count 

Novice 29 419.9 338.6 62.9 32 1720.1 903.2 159.7 

Expert 19 581.6 330.7 75.9 19 1655.2 575.4 132.0 

 Fixation count: Questions 

Novice 29 19.2 37.9 7.0 32 121.9 103.0 18.2 

Expert 19 46.2 62.8 14.4 19 96.4 93.9 21.5 

 Fixation count: Study 1 Introduction 

Novice 29 6.6 21.8 4.0 32 124.3 103.5 18.3 

Expert 19 9.2 28.0 6.4 19 99.8 97.2 22.3 

 Fixation count: Study 1 Hypothesis 

Novice 29 22.9 52.3 9.7 32 149.8 144.9 25.6 

Expert 19 32.8 53.7 12.3 19 97.1 74.5 17.1 

 Fixation count: Study 1 Methods (1) 

Novice 29 15.2 37.3 6.9 32 154.6 117.4 20.7 

Expert 19 41.1 53.1 12.2 19 151.2 81.3 18.6 

 Fixation count: Study 1 Methods (2) 

Novice 29 35.8 54.8 10.2 32 110.9 94.4 16.7 

Expert 19 34.4 35.5 8.1 19 94.2 37.2 8.5 

 Fixation count: Study 1 Results 

Novice 29 129.4 129.4 24.0 32 230.3 192.7 34.1 

Expert 19 123.5 111.1 25.5 19 160.5 99.1 22.7 

 Fixation count: Study 2 Introduction 

Novice 29 14.3 57.5 10.7 32 124.4 123.2 21.8 

Expert 19 23.8 55.5 12.7 19 101.5 95.9 22.0 
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 Fixation count: Study 2 Hypothesis 

Novice 29 13.5 23.9 4.4 32 139.1 125.9 22.3 

Expert 19 15.7 27.1 6.2 19 128.4 78.0 17.9 

 Fixation count: Study 2 Methods (1) 

Novice 29 21.1 40.1 7.4 32 139.0 100.4 17.8 

Expert 19 29.3 61.8 14.2 19 144.9 95.0 21.8 

 Fixation count: Study 2 Methods (2) 

Novice 29 46.4 84.4 15.7 32 176.7 119.2 21.1 

Expert 19 70.7 86.1 19.8 19 183.4 123.0 28.2 

 Fixation count: Study 2 Results (1) 

Novice 29 47.1 61.2 11.4 32 121.6 98.7 17.5 

Expert 19 46.5 52.8 12.1 19 162.1 72.3 16.6 

 Fixation count: Study 2 Results (2) 

Novice 29 33.8 41.5 7.7 32 77.8 51.4 9.1 

Expert 19 88.3 76.9 17.6 19 173.2 110.5 25.3 

 Fixation count: Study 2 Results (3) 

Novice 29 14.6 24.8 4.6 32 49.8 60.4 10.7 

Expert 19 20.2 31.7 7.3 19 62.5 39.7 9.1 

 

 



 102 

K.2 AVERAGE OF RETURN FIXATIONS BY PAGE 

Table 12. Descriptive statistics for return fixation measures: Average 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Total average fixation  

Novice 25 262.2 50.0 10.0 32 268.1 52.7 9.3 

Expert 19 256.1 48.8 11.2 19 263.1 45.4 10.4 

 Average fixation duration (ms): Questions 

Novice 9 244.5 31.5 10.5 27 262.4 103.1 19.8 

Expert 13 239.1 59.5 16.5 15 259.8 64.9 16.7 

 Average fixation duration (ms): Study 1 Introduction 

Novice 3 252.1 27.3 15.8 30 288.7 79.1 14.4 

Expert 3 240.2 96.3 55.6 19 321.2 120.2 27.6 

 Average fixation duration (ms): Study 1 Hypothesis 

Novice 10 248.5 31.0 9.8 27 268.3 51.9 10.0 

Expert 9 248.6 66.7 22.2 17 278.1 133.0 32.3 

 Average fixation duration (ms): Study 1 Methods (1) 

Novice 7 243.6 67.2 25.4 31 250.9 56.1 10.1 

Expert 10 228.9 49.4 15.6 19 239.4 44.1 10.1 

 Average fixation duration (ms): Study 1 Methods (2) 

Novice 15 243.5 54.3 14.0 28 252.3 62.8 11.9 

Expert 15 242.8 58.9 15.2 18 245.3 49.4 11.6 

 Average fixation duration (ms): Study 1 Results 

Novice 22 278.4 74.5 15.9 31 287.0 59.1 10.6 

Expert 17 281.0 66.3 16.1 19 280.2 74.3 17.0 

 Average fixation duration (ms): Study 2 Introduction 

Novice 3 257.2 25.5 14.7 29 311.3 114.3 21.2 

Expert 4 183.7 41.5 20.7 19 304.7 84.1 19.3 
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 Average fixation duration (ms): Study 2 Hypothesis 

Novice 10 268.8 59.4 18.8 30 269.0 49.4 9.0 

Expert 6 225.2 55.9 22.8 17 245.8 45.1 10.9 

 Average fixation duration (ms): Study 2 Methods (1) 

Novice 12 274.5 68.4 19.8 31 268.5 81.7 14.7 

Expert 9 238.1 61.6 20.5 18 237.9 39.4 9.3 

 Average fixation duration (ms): Study 2 Methods (2) 

Novice 14 259.2 70.5 18.8 32 235.3 63.8 11.3 

Expert 13 235.1 51.6 14.3 19 239.6 48.3 11.1 

 Average fixation duration (ms): Study 2 Results (1) 

Novice 14 277.1 52.4 14.0 31 258.7 45.0 8.1 

Expert 13 250.3 49.5 13.7 19 252.4 45.8 10.5 

 Average fixation duration (ms): Study 2 Results (2) 

Novice 16 258.7 40.1 10.0 32 257.2 49.6 8.8 

Expert 16 278.7 73.0 18.2 19 254.7 44.8 10.3 

 Average fixation duration (ms): Study 2 Results (3) 

Novice 11 308.9 61.6 18.6 29 284.2 94.5 17.6 

Expert 9 279.6 37.3 12.4 18 242.4 38.4 9.0 
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K.3 SUM OF RETURN FIXATIONS BY PAGE 

Table 13. Descriptive statistics for return fixation measures: Sum 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Total sum of fixation duration (minutes) 

Novice 29 1.9 1.6 0.3 32 7.7 4.3 0.8 

Expert 19 2.5 1.6 0.4 19 6.9 2.8 0.6 

 Sum of fixation duration (seconds): Questions 

Novice 29 4.8 9.8 1.8 32 30.0 26.3 4.7 

Expert 19 11.4 15.3 3.5 19 23.8 24.5 5.6 

 Sum of fixation duration (seconds): Study 1 Introduction 

Novice 29 1.6 5.5 1.0 32 35.9 29.0 5.1 

Expert 19 2.6 7.6 1.8 19 26.9 25.0 5.7 

 Sum of fixation duration (seconds): Study 1 Hypothesis 

Novice 29 5.7 13.2 2.5 32 41.6 41.9 7.4 

Expert 19 8.9 15.6 3.6 19 23.1 17.4 4.0 

 Sum of fixation duration (seconds): Study 1 Methods (1) 

Novice 29 3.9 10.6 2.0 32 40.4 31.5 5.6 

Expert 19 9.8 14.1 3.2 19 35.8 20.8 4.8 

 Sum of fixation duration (seconds): Study 1 Methods (2) 

Novice 29 9.1 16.0 3.0 32 29.5 27.3 4.8 

Expert 19 8.4 8.4 1.9 19 23.6 11.2 2.6 

 Sum of fixation duration (seconds): Study 1 Results 

Novice 29 34.8 38.6 7.2 32 68.1 60.5 10.7 

Expert 19 34.8 33.8 7.8 19 42.4 27.8 6.4 

 Sum of fixation duration (seconds): Study 2 Introduction 

Novice 29 3.8 15.8 2.9 32 33.7 31.8 5.6 
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Expert 19 4.8 11.4 2.6 19 27.3 26.1 6.0 

 Sum of fixation duration (seconds): Study 2 Hypothesis 

Novice 29 3.6 6.2 1.2 32 37.0 33.0 5.8 

Expert 19 3.9 7.4 1.7 19 31.4 20.5 4.7 

 Sum of fixation duration (seconds): Study 2 Methods (1) 

Novice 29 6.3 12.9 2.4 32 37.3 31.1 5.5 

Expert 19 8.2 18.7 4.3 19 35.6 27.4 6.3 

 Sum of fixation duration (seconds): Study 2 Methods (2) 

Novice 29 11.6 21.3 4.0 32 45.0 34.0 6.0 

Expert 19 16.8 21.2 4.9 19 43.5 29.3 6.7 

 Sum of fixation duration (seconds): Study 2 Results (1) 

Novice 29 12.8 17.1 3.2 32 32.1 27.3 4.8 

Expert 19 11.8 13.2 3.0 19 41.2 20.5 4.7 

 Sum of fixation duration (seconds): Study 2 Results (2) 

Novice 29 9.0 11.4 2.1 32 20.0 13.5 2.4 

Expert 19 23.6 21.0 4.8 19 45.1 31.3 7.2 

 Sum of fixation duration (seconds): Study 2 Results (3) 

Novice 29 4.4 7.2 1.3 32 13.4 16.5 2.9 

Expert 19 5.6 9.1 2.1 19 16.0 12.1 2.8 
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APPENDIX L 

DESCRIPTIVE STATISTICS FOR OFF SCREEN GAZE MEASURES 
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L.1 COUNT OF OFF SCREEN GAZE 

Table 14. Descriptive statistics for off screen gaze measures: Count 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Off screen gaze duration total 

Novice 29 280.8 150.1 27.9 32 469.0 419.6 74.2 

Expert 19 475.4 330.3 75.8 19 334.9 184.6 42.3 

 Off screen gaze duration longer than 500ms 

Novice 29 30.1 26.1 4.9 32 68.6 78.0 13.8 

Expert 19 78.7 85.9 19.7 19 43.5 47.1 10.8 

 Off screen gaze duration longer than 2000ms 

Novice 29 14.2 15.5 2.9 32 33.7 32.9 5.8 

Expert 19 41.2 43.8 10.1 19 21.9 24.1 5.5 

L.2 AVERAGE OF OFF SCREEN GAZE DURATION 

Table 15. Descriptive statistics for off screen gaze measures: Average 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Off screen gaze duration total (ms) 

Novice 29 553.7 516.0 95.8 32 763.5 720.2 127.3 

Expert 19 957.8 791.8 181.6 19 723.2 783.7 179.8 

 Off screen gaze duration longer than 500ms (seconds) 

Novice 29 3.7 2.6 0.5 32 4.3 3.0 0.5 

Expert 19 5.5 5.7 1.3 19 4.0 3.1 0.7 
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 Off screen gaze duration longer than 2000ms (seconds) 

Novice 26 7.0 4.2 0.8 26 8.3 6.0 1.2 

Expert 19 7.4 6.2 1.4 19 6.2 4.0 0.9 

L.3 SUM OF OFF SCREEN GAZE DURATION 

Table 16. Descriptive statistics for off screen gaze measures: Sum 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Off screen gaze duration total (minutes) 

Novice 29 2.3 2.0 0.4 32 5.5 5.5 1.0 

Expert 19 6.5 6.2 1.4 19 3.2 2.5 0.6 

 Off screen gaze duration longer than 500ms (minutes) 

Novice 29 1.9 2.0 0.4 32 4.8 4.9 0.9 

Expert 19 5.9 6.2 1.4 19 2.7 2.5 0.6 

 Off screen gaze duration longer than 2000ms (minutes) 

Novice 29 1.7 1.9 0.4 32 4.2 4.3 0.8 

Expert 19 5.2 5.6 1.3 19 2.3 2.1 0.5 

L.4 SUM OF OFF SCREEN GAZE DURATION LONGER THAN 2000MS BY PAGE 

Table 17. Descriptive statistics for off screen gaze measures: Sum longer than 2000ms 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Sum of fixation duration (seconds): Questions 

Novice 29 6.3 17.4 3.2 32 32.6 77.9 13.8 
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Expert 19 26.6 52.9 12.1 19 4.3 7.2 1.7 

 Sum of fixation duration (seconds): Study 1 Introduction 

Novice 29 5.1 10.7 2.0 32 7.5 24.7 4.4 

Expert 19 15.8 25.0 5.7 19 4.0 11.2 2.6 

 Sum of fixation duration (seconds): Study 1 Hypothesis 

Novice 29 9.7 12.6 2.3 32 18.5 30.4 5.4 

Expert 19 28.5 32.2 7.4 19 8.6 17.4 4.0 

 Sum of fixation duration (seconds): Study 1 Methods (1) 

Novice 29 4.5 11.2 2.1 32 17.5 38.1 6.7 

Expert 19 12.4 16.5 3.8 19 11.2 17.0 3.9 

 Sum of fixation duration (seconds): Study 1 Methods (2) 

Novice 29 4.9 11.4 2.1 32 19.2 38.7 6.8 

Expert 19 15.5 20.8 4.8 19 10.6 16.8 3.8 

 Sum of fixation duration (seconds): Study 1 Results 

Novice 29 20.8 29.7 5.5 32 31.6 40.3 7.1 

Expert 19 45.1 64.2 14.7 19 22.2 36.1 8.3 

 Sum of fixation duration (seconds): Study 2 Introduction 

Novice 29 5.3 10.7 2.0 32 8.2 21.7 3.8 

Expert 19 29.8 35.5 8.2 19 3.5 10.7 2.5 

 Sum of fixation duration (seconds): Study 2 Hypothesis 

Novice 29 12.9 17.0 3.1 32 32.5 74.1 13.1 

Expert 19 18.0 34.1 7.8 19 10.5 20.5 4.7 

 Sum of fixation duration (seconds): Study 2 Methods (1) 

Novice 29 3.8 10.2 1.9 32 8.3 17.9 3.2 

Expert 19 19.3 24.9 5.7 19 5.4 12.6 2.9 

 Sum of fixation duration (seconds): Study 2 Methods (2) 

Novice 29 3.9 10.9 2.0 32 36.9 63.6 11.2 

Expert 19 32.0 50.6 11.6 19 18.6 42.4 9.7 

 Sum of fixation duration (seconds): Study 2 Results (1) 

Novice 29 12.9 19.3 3.6 32 11.3 23.3 4.1 

Expert 19 26.4 32.5 7.5 19 8.2 13.1 3.0 
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 Sum of fixation duration (seconds): Study 2 Results (2) 

Novice 29 8.5 17.6 3.3 32 12.3 25.4 4.5 

Expert 19 34.9 50.1 11.5 19 9.3 13.5 3.1 

 Sum of fixation duration (seconds): Study 2 Results (3) 

Novice 29 0.9 2.2 0.4 32 16.6 38.0 6.7 

Expert 19 9.0 14.1 3.2 19 24.9 26.9 6.3 
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Table 18. Note content analyses 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Total note amount (1: little, 2: light, 3: medium, 4: heavy) 

Novice 29 1.5 1.3 0.2 32 2.3 1.3 0.2 

Expert 19 2.6 1.2 0.3 19 1.9 1.2 0.3 

 Note amount: Questions 

Novice 21 0.4 1.1 0.2 27 0.1 0.6 0.1 

Expert 17 0.2 0.8 0.2 15 0.1 0.3 0.1 

 Note amount: Study 1 Introduction 

Novice 21 0.4 0.6 0.1 27 0.3 0.8 0.2 

Expert 17 0.7 0.8 0.2 15 0.3 0.6 0.2 

 Note amount: Study 1 Hypothesis 

Novice 21 1.1 1.0 0.2 27 0.9 0.7 0.1 

Expert 17 1.4 0.9 0.2 15 1.0 0.9 0.2 

 Note amount: Study 1 Methods (1) 

Novice 21 0.2 0.4 0.1 27 0.7 1.1 0.2 

Expert 17 0.8 0.8 0.2 15 0.8 0.8 0.2 

 Note amount: Study 1 Methods (2) 

Novice 21 0.3 0.8 0.2 27 0.7 1.1 0.2 

Expert 17 1.1 1.2 0.3 15 0.5 0.9 0.2 

 Note amount: Study 1 Results 

Novice 21 1.0 1.1 0.2 27 0.9 1.1 0.2 

Expert 17 1.7 1.2 0.3 15 1.9 1.0 0.2 

 Note amount: Study 2 Introduction 

Novice 21 0.2 0.7 0.2 27 0.5 0.9 0.2 

Expert 17 0.6 1.1 0.3 15 0.3 0.6 0.2 

 Note amount: Study 2 Hypothesis 

Novice 21 1.0 0.9 0.2 27 1.0 0.9 0.2 

Expert 17 1.1 0.9 0.2 15 0.8 0.9 0.2 
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 Note amount: Study 2 Methods (1) 

Novice 21 0.2 0.6 0.1 27 0.6 0.8 0.2 

Expert 17 0.9 0.9 0.2 15 0.5 0.9 0.2 

 Note amount: Study 2 Methods (2) 

Novice 21 0.2 0.6 0.1 27 1.0 1.4 0.3 

Expert 17 1.7 1.4 0.3 15 0.8 1.1 0.3 

 Note amount: Study 2 Results (1) 

Novice 21 0.6 1.1 0.2 27 0.7 1.1 0.2 

Expert 17 1.1 1.1 0.3 15 1.0 0.9 0.2 

 Note amount: Study 2 Results (2) 

Novice 21 0.6 0.8 0.2 27 0.7 1.1 0.2 

Expert 17 0.8 1.0 0.3 15 0.7 0.9 0.2 

 Note amount: Study 2 Results (3) 

Novice 21 0.2 0.5 0.1 27 0.6 1.0 0.2 

Expert 17 0.6 0.9 0.2 15 1.0 1.0 0.3 

 Number of integrative notes 

Novice 21 0.1 0.3 0.1 27 0.2 0.6 0.1 

Expert 17 0.6 0.8 0.2 15 0.4 0.6 0.2 

 Number of inferences written 

Novice 21 1.4 1.6 0.3 27 2.3 2.1 0.4 

Expert 17 2.4 2.4 0.6 15 2.3 1.5 0.4 
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N.1 STRATEGY SURVEY 

Table 19. Descriptive statistics for surveys: Strategy survey 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Had trouble remembering info & had to look back 

Novice 30 3.7 0.9 0.2 34 3.9 0.9 0.2 

Expert 19 3.8 0.9 0.2 19 3.2 1.3 0.3 

 Relied on information on the screen instead of remembering 

Novice 30 3.1 1.2 0.2 34 3.8 0.9 0.2 

Expert 19 3.4 1.2 0.3 19 3.2 1.3 0.3 

 Had trouble finding the information I need 

Novice 30 1.9 1.1 0.2 34 1.8 1.2 0.2 

Expert 19 1.9 1.2 0.3 19 1.3 0.6 0.1 

 All the information from different page blurred 

Novice 30 2.0 1.1 0.2 34 1.7 0.9 0.2 

Expert 19 1.9 1.1 0.2 19 1.4 0.7 0.2 

 Had trouble remembering hypotheses 

Novice 30 2.5 1.4 0.3 34 2.5 1.3 0.2 

Expert 19 2.5 1.5 0.3 19 2.0 1.0 0.2 

 Purposely tried to keep numbers in my head 

Novice 30 1.7 0.9 0.2 34 1.6 1.0 0.2 

Expert 19 1.5 0.9 0.2 19 1.8 1.1 0.3 

 Information from one page confused with another 

Novice 30 1.8 0.9 0.2 34 2.1 1.1 0.2 

Expert 19 2.1 1.1 0.2 19 1.5 0.7 0.2 

 Got lost where I was in the task 

Novice 30 1.9 1.0 0.2 34 1.8 1.1 0.2 

Expert 19 1.4 0.9 0.2 19 1.4 0.9 0.2 
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 Trying to get it done: 1 = quickly, 3 = neutral, 5 = correctly 

Novice 30 3.9 1.1 0.2 34 4.3 0.8 0.1 

Expert 19 4.4 0.6 0.1 19 4.5 0.7 0.2 
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N.2 COGNITIVE LOAD SURVEY 

Table 20. Descriptive statistics for surveys: Cognitive load survey 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Task overall: How easy or difficult 

Novice 30 4.0 1.2 0.2 34 5.0 1.7 0.3 

Expert 19 4.7 1.6 0.4 19 4.4 1.6 0.4 

 Task overall: How much mental effort 

Novice 30 5.2 1.5 0.3 34 5.9 1.4 0.2 

Expert 19 5.6 1.6 0.4 19 5.1 1.7 0.4 

 Task itself: How easy or difficult 

Novice 30 4.4 1.4 0.2 34 4.8 1.5 0.3 

Expert 19 5.1 1.4 0.3 19 3.8 1.5 0.3 

 Task itself: How much mental effort 

Novice 30 4.7 1.3 0.2 34 5.8 1.5 0.3 

Expert 19 5.3 1.4 0.3 19 4.1 1.4 0.3 

 Window design: How easy or difficult 

Novice 30 3.5 2.1 0.4 34 2.3 1.6 0.3 

Expert 19 4.0 1.5 0.3 19 2.1 0.9 0.2 

 Window design: How much mental effort 

Novice 30 3.9 1.9 0.4 34 2.7 1.7 0.3 

Expert 19 3.6 1.6 0.4 19 1.9 0.8 0.2 

 Understanding theory: How easy or difficult 

Novice 30 2.9 1.0 0.2 34 3.6 1.8 0.3 

Expert 19 2.4 1.0 0.2 19 3.1 1.4 0.3 

 Understanding theory: How much mental effort 
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Novice 30 3.6 1.4 0.2 34 4.3 1.9 0.3 

Expert 19 2.8 1.2 0.3 19 3.4 1.8 0.4 

 Understanding methods: How easy or difficult 

Novice 30 3.3 1.6 0.3 34 4.1 1.7 0.3 

Expert 19 3.3 1.4 0.3 19 2.8 1.5 0.4 

 Understanding methods: How much mental effort 

Novice 30 3.8 1.4 0.3 34 4.6 1.8 0.3 

Expert 19 3.7 1.5 0.3 19 3.2 1.8 0.4 

 Understanding results: How easy or difficult 

Novice 30 4.8 1.4 0.3 34 5.1 2.0 0.3 

Expert 19 4.5 1.5 0.3 19 3.5 1.8 0.4 

 Understanding results: How much mental effort 

Novice 30 5.0 1.4 0.3 34 5.6 2.0 0.4 

Expert 19 5.2 1.6 0.4 19 3.8 1.6 0.4 

 Integrating theory and methods: How easy or difficult 

Novice 30 3.7 1.3 0.2 34 4.2 1.9 0.3 

Expert 19 3.4 1.3 0.3 19 3.5 1.6 0.4 

 Integrating theory and methods: How much mental effort 

Novice 30 3.9 1.4 0.3 34 4.6 1.9 0.3 

Expert 19 3.8 1.5 0.3 19 3.9 1.6 0.4 

 Integrating methods and results: How easy or difficult 

Novice 30 4.5 1.5 0.3 34 4.6 2.0 0.3 

Expert 19 3.8 1.5 0.3 19 3.5 1.5 0.3 

 Integrating methods and results: How much mental effort 

Novice 30 5.1 1.5 0.3 34 5.0 2.1 0.4 

Expert 19 4.1 1.4 0.3 19 3.8 1.7 0.4 

 Integrating results and results: How easy or difficult 

Novice 30 4.2 1.9 0.3 34 4.7 1.8 0.3 

Expert 19 4.2 1.7 0.4 19 3.3 1.8 0.4 

 Integrating results and results: How much mental effort 

Novice 30 4.5 1.5 0.3 34 5.0 1.9 0.3 
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Expert 19 4.5 1.9 0.4 19 3.6 1.5 0.3 

 Total cognitive load: Perceived difficulty 

Novice 30 3.9 0.9 0.2 34 4.3 1.3 0.2 

Expert 19 3.9 0.9 0.2 19 3.3 1.0 0.2 

 Total cognitive load: Mental effort 

Novice 30 4.4 1.0 0.2 34 4.8 1.3 0.2 

Expert 19 4.3 1.0 0.2 19 3.6 1.1 0.3 

 Total cognitive load 

Novice 30 4.2 0.9 0.2 34 4.6 1.3 0.2 

Expert 19 4.1 0.9 0.2 19 3.5 1.0 0.2 
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DESCRIPTIVE STATISTICS FOR PAGE VISITS 
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Table 21. Descriptive Statistics for page visits 

 Display format 
 Stacked Distributed 

Expertise level N M SD SE N M SD SE 

 Total number of visits 

Novice 29 20.6 5.8 1.1 32 156.8 84.3 14.9 

Expert 19 24.9 6.0 1.4 19 147.4 39.7 9.1 

 Number of visits: Questions 

Novice 29 1.3 1.0 0.2 32 16.8 14.9 2.6 

Expert 19 2.3 1.2 0.3 19 11.8 10.1 2.3 

 Number of visits: Study 1 Introduction 

Novice 29 1.1 0.3 0.1 32 8.5 6.8 1.2 

Expert 19 1.2 0.4 0.1 19 6.5 2.8 0.7 

 Number of visits: Study 1 Hypothesis 

Novice 29 1.4 0.8 0.1 32 13.4 12.0 2.1 

Expert 19 1.6 1.1 0.2 19 9.9 6.5 1.5 

 Number of visits: Study 1 Methods (1) 

Novice 29 1.3 0.7 0.1 32 13.5 10.2 1.8 

Expert 19 1.8 1.0 0.2 19 11.1 4.8 1.1 

 Number of visits: Study 1 Methods (2) 

Novice 29 1.9 1.2 0.2 32 11.7 8.6 1.5 

Expert 19 2.2 1.0 0.2 19 9.7 4.9 1.1 

 Number of visits: Study 1 Results 

Novice 29 2.7 1.5 0.3 32 18.3 14.9 2.6 

Expert 19 2.4 0.8 0.2 19 11.2 7.3 1.7 

 Number of visits: Study 2 Introduction 

Novice 29 1.1 0.4 0.1 32 6.9 5.6 1.0 

Expert 19 1.2 0.4 0.1 19 6.3 2.5 0.6 

 Number of visits: Study 2 Hypothesis 

Novice 29 1.4 0.7 0.1 32 10.4 9.4 1.7 

Expert 19 1.4 0.8 0.2 19 9.0 4.1 0.9 
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 Number of visits: Study 2 Methods (1) 

Novice 29 1.4 0.7 0.1 32 8.1 6.3 1.1 

Expert 19 1.7 0.9 0.2 19 9.2 5.4 1.3 

 Number of visits: Study 2 Methods (2) 

Novice 29 1.7 0.9 0.2 32 12.4 7.9 1.4 

Expert 19 2.1 1.1 0.3 19 13.9 9.2 2.1 

 Number of visits: Study 2 Results (1) 

Novice 29 2.0 1.2 0.2 32 16.1 15.3 2.7 

Expert 19 2.2 1.3 0.3 19 18.3 9.2 2.1 

 Number of visits: Study 2 Results (2) 

Novice 29 1.8 0.8 0.2 32 13.8 9.4 1.7 

Expert 19 3.1 1.7 0.4 19 20.7 13.5 3.1 

 Number of visits: Study 2 Results (3) 

Novice 29 1.4 0.6 0.1 32 7.1 6.6 1.2 

Expert 19 1.7 1.0 0.2 19 9.7 5.5 1.3 
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