
Correlations of Behavioral Deficits with Brain Pathology
Assessed through Longitudinal MRI and Histopathology
in the R6/2 Mouse Model of HD
Ivan Rattray1, Edward Smith1,2, Richard Gale2, Kaoru Matsumoto1, Gillian P. Bates2, Michel Modo1,3*

1 King’s College London, Institute of Psychiatry, Department of Neuroscience, London, United Kingdom, 2 King’s College London, Department of Medical and Molecular

Genetics, London, United Kingdom, 3University of Pittsburgh, Department of Radiology, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United

States of America

Abstract

Huntington’s disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model
of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin
(HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model,
the association between the molecular and cellular neuropathology with brain atrophy, and with the development of
behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal
assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through
magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage
histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-
dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI
measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of
age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and
neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was
a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the
hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments
were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In
conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be
key to establishing which changes are causally related.

Citation: Rattray I, Smith E, Gale R, Matsumoto K, Bates GP, et al. (2013) Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal
MRI and Histopathology in the R6/2 Mouse Model of HD. PLoS ONE 8(4): e60012. doi:10.1371/journal.pone.0060012

Editor: Emmanuel Planel, Centre Hospitalier de l’Université Laval, Canada
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Introduction

Huntington’s disease (HD) is a devastating autosomal dominant

disorder, caused by a CAG/polyglutamine repeat expansion

(HDCRG, 1993). This unstable elongation leads to the aggrega-

tion of mutant huntingtin (mHTT), eventually resulting in

a substantial neurodegeneration and death. Even in premanifest

patients, recently subtle changes in brain structures were revealed

to be associated with disease burden [1,2,3]. Still, the causal

cascade between mHTT and the development of clinical signs

remains poorly understood. The variability in disease symptoms

and progression, as well as the unavailability of affected tissue

during the early stage of disease, impede efforts to link molecular

pathology to both brain atrophy and behavioral dysfunction.

To overcome these issues and improve our understanding of

disease progression, rodent models of HD have been developed.

Transgenic mouse models include the R6/2 [4] and N171Q82 [5]

lines that express N-terminal fragments of HTT and the YAC128

[6], and BACHD [7] lines that express a mutant version of the full-

length protein. The genetic basis of HD is more precisely

recapitulated by the knock-in models in which an expanded

CAG repeat has been inserted into mouse Htt and that develop

a more slowly progressing phenotype [8,9,10]. We have found

there to be numerous comparable late-stage phenotypes between

R6/2 mice at 12–14 weeks and HdhQ150 mice at 22 months of

age [11,12,13,14,15]. Consequently, we defined the N-terminal

mHTT fragments that are present in HdhQ150 brain tissue and

found that the smallest fragment is exon 1 protein [16]. We have

subsequently shown that this is generated through the mis-splicing

exon 1, indicating that the R6/2 mice are a model for the aberrant

splicing that occurs in HD (unpublished). This current study is part

of a continuing detailed comparison of the progressive pathologies

exhibited by the R6 and knock-in mouse models.

Due to its rapid and highly reproducible phenotype, the R6/2

line is the most common choice for preclinical HD studies. These

mice develop age-related deficits in motor coordination, locomotor

activity, anxiolytic behavior and impaired cognition [17,18,19,20].

A progressive regional brain atrophy is evident and can be assessed

non-invasively using magnetic resonance imaging (MRI)

[21,22,23,24,25,26]. Although individual features of the R6/2
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mouse model have been extensively characterized, a longitudinal

assessment of the emergence of behavioral dysfunction with

concomitant measurement of brain atrophy by MRI, along with

their correlation with cellular and molecular changes, is essential

to establish how these features are mechanistically connected. The

aim of the present study was therefore to probe the relationships

between emerging behavioral dysfunctions with biological changes

(molecular, cellular, regional atrophy) in male and female R6/2

mice.

Materials and Methods

Animals
All procedures were carried out according the Animals

(Scientific Procedures) Act 1986 and were approved by King’s

College London ethical review panel (Designation no PCD 70/

2901). Hemizygous R6/2 mice were bred by backcrossing R6/2

males to (CBA6C57BL/6) F1 females (B6CBAF1/OlaHsd,

Harlan Olac, Bicester, UK). Mice were genotyped and the CAG

repeat size was measured as described previously [14]. The CAG

repeat was 211.90966.123 (SD) for males and 209.363.592 for

females.

R6/2 and WT mice were housed under standard animal

laboratory conditions. Temperature was automatically regulated

at 21uC61uC. Animals were kept on a 12 h light:dark cycle. Mice

were group-housed dependent on gender, but genotypes were

mixed within the cages. All mice had access to standard cage

environmental enrichment (bedding and play tube). Mice were

maintained on a standard chow diet with tap water available ad

libitum. From 13 weeks of age, food was supplemented with a mash

diet on the floor of the cages. To ease access to drinking water,

elongated spouts were added to the water bottles. Body weight was

monitored weekly from 6 weeks of age.

All procedures reported here (behavioral, MRI and histological)

were conducted on the same cohort of animals. Littermates were

divided into four groups: male wild type (WT, n= 9), male R6/2

(n = 11), female WT (n= 10) and female R6/2 (n = 10). An equal

ratio between male:female was aimed for. For exact numbers of

subjects included at each stage of analysis see Table S1.

Behavioral Tests
Rotarod. The rotarod assesses motor ability and coordina-

tion. It is commonly used to chart the emergence and progression

of motor deficits in animal models of HD. Mice were tested on

a standard rotarod (Ugo Basile, Italy), with the modification of

a smooth rubber coating over the rotating rod to minimize the

mice from being able to cling to the beam. During each trial, mice

were acclimatized to the apparatus by being placed on the rod

rotating at the minimum speed of 4 rpm for 20 sec. Following

acclimatization, the trial was initiated and the rod progressively

accelerated from 4 rpm to 40 rpm over a period of 5 min. Latency

(measured in sec) for mice to fall from the rod was recorded. For

the first test session (acquired at 5 weeks of age), rotarod

performance was tested 3 times per day for 4 consecutive days,

but data for the first day was considered acclimatization to the test

and thus not included in the final analysis. For the other two

sessions (at 9 and 13 weeks of age), rotarod was performed over 3

consecutive days with 3 trials per day (data for the first

acclimatization day was, again, not included in the analysis).

The apparatus was thoroughly cleaned with 70% industrial

methylated spirit (IMS) between testing each mouse.

Open field. Open field behaviors were tested at 5, 9 and 13

weeks of age. Mice were individually placed into a custom-built

100 cm diameter (35 cm deep) circular, white open field arena

(Engineering & Design Plastics Ltd., Cambridge, UK) for 5 min to

assess exploratory activity in a novel, unfamiliar environment.

Therefore no habituation was given on this test. All behavior was

recorded by a video camera positioned above the apparatus and

analyzed later. The open field arena was thoroughly cleaned using

70% IMS between animals. Activity was assessed using EthoVision

7XT software (Noldus, Netherlands); distance moved throughout

the trial was automatically traced and calculated. The open field

arena was divided into two zones by a circle drawn 4 cm from the

outer walls, thus creating an inner- and outer-zone. Thigmotaxis,

the time spent in the peripheral, outer-zone of an open field is

indicative of an anxiety-like behavior [27]. Thigmotaxis was

measured by calculating a percentage of total time spent in the

outer-zone over the entire trial. This measure was scored at least

twice by two investigators who were blind to the treatment groups

and until values were within $ 95% confidence.

Passive avoidance. It has been shown previously that R6/2

mice were deficient in memory performance at the passive

avoidance task from 6 weeks of age [19]. To capture this

potentially early behavior deficit, mice were assessed at 6 weeks of

age, using an adapted protocol [28]. A step-through box was used

with a light and dark compartment separated by an automated

guillotine door (Gemini Avoidance System, SD Instruments, San

Diego, USA). The paradigm was divided into two days: an initial

‘‘training’’ day followed 24 h later by the ‘‘testing’’ day. On the

training day, mice were individually held in the light compartment

with the connecting door in the open position. The time taken for

each mouse to move into the dark compartment was recorded to

determine any genotype-dependent differences in general motiva-

tion to explore this novel environment. Once the mouse entered

the dark compartment, the guillotine door closed automatically

and a single footshock (0.4 mA, 1 sec duration) was administered.

Mice were then kept in the dark chamber for 10 sec before being

removed and returned to the home cages. During the testing day

(24 h following training), memory retention, expressed as latency

to enter the dark chamber, was recorded. Mice were individually

placed into the light compartment and latency to cross into the

dark chamber was recorded out of a possible total of 5 min. If the

mouse entered the dark chamber during the test day, the guillotine

door closed and the trial was complete. If the mouse remained in

the light compartment for the full duration of the test, it was

removed after 5 min. No footshocks were administered during the

testing day of the paradigm. On both the training and testing days,

the passive avoidance equipment was thoroughly cleaned with

70% IMS between mice.

Magnetic Resonance Imaging
Mice were anaesthetized using 5% isoflurane along with

a combination of medical air (0.7 l/min) and oxygen (0.3 l/min).

Once fully anaesthetized, mice were positioned and fixed into

a plastic frame, where anesthetic was administered through

a facemask. Mice were maintained under anesthesia, typically

between 1–2% isoflurane for the duration of the scanning.

Temperature was maintained through a homeostatic heating

airflow system and breathing rate monitored through a respiration

balloon positioned under the thorax (Small Animal Instruments,

New York, USA). Post scanning, but prior to recovery, mice were

administered 0.1 ml saline i.p. to abate dehydration.

Images were acquired on a 7T horizontal bore Magnetic

Resonance Imaging (MRI) system (Varian, Paolo Alto, California,

USA), with a 100 Gauss gradient set insert and a 39 mm-bore

(transmission and receiver) radiofrequency coil (Rapid, Germany).

The scanner was controlled through VnmrJ software (Varion,

Paolo Alto, California, USA). Correct positioning of the mouse

Characterization of the R6/2 Mouse Model of HD
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within the RF coil was confirmed through a series of scouting

images. A Multi-Echo-Multi-Slice (MEMS) scan was then

acquired (TR=2500 msec, TE=10 msec, echo train= 8,

averages = 4, matrix = 1286128, FOV=20620 mm, 30 coronal

slices at 0.5 mm thickness, 21 min acquisition time). Coronal slices

were positioned based on a reproducible anatomical marker (the

most visibly posterior part of the cerebellum).

Post-acquisition image processing was conducted using VnmrJ

software prior to conversion to the ANALYZE 7.5 file format. All

eight echoes were summed into a single structural image set. These

images were used to manually delineate neuroanatomical

structures (Fig. S1) in JIM Ver. 5.0 (Xinapse Systems, Alwincle,

UK). Regions-of-interest (ROIs) consisted of: whole brain, cortex,

striatum, hippocampus, and corpus callosum. ROIs were de-

lineated by two investigators blinded to the experimental group-

ings with intra- and inter-rater reliability consistently $ 95%

confidence level. All information outside of the ROIs was

subsequently masked out, the ROIs were then individually saved

in NIFTI format. Volumetric data were calculated and processed

semi-automatically using Python Ver.2.6 (Python Software Foun-

dation). To measure changes in T2 relaxivity (reflective of tissue

composition), maps of T2 signal intensity were obtained through

a mono-exponential fit of the eight echoes. The NIFTI files,

created through delineating the ROIs onto the structural images,

were superimposed onto the maps of T2 signal intensity allowing

for the generation of mean T2 relaxation times within each ROI.

A small circular ROI was taken for cheek muscle tissue T2

relaxivity in order to act as an internal control measure.

Histology
Animals were sacrificed through terminal anesthesia with

Euthatal (Marial, Harlow, UK) administered immediately follow-

ing the final MR scan at 14 weeks of age. Brains were removed

and fixed in 4% Parafix (Pioneer Research Chemical Ltd., Essex,

UK) for 48 h. The brains were then rinsed in phosphate buffered

saline (PBS) and stored in 30% sucrose, and 0.05% sodium azide,

in PBS until sectioning. Coronal sections were taken serially at

50 mm thickness on a freezing microtome (HM430 Microm,

Thermo Scientific), and stored at 220uC in tissue cryoprotective

solution containing 0.05% sodium azide until staining.

Immunohistochemistry. Sections were washed in PBS

prior to incubation for 30 min in 3% H2O2 in PBS to quench

endogenous peroxidase activity. Non-specific binding was blocked

with a 1 h incubation in 10% normal serum with 0.3% Triton X-

100 in PBS. Sections were then incubated overnight at 4uC in

primary antibodies against NeuN (1:500, Millipore, Watford, UK)

or S830 (1:2000), raised against exon 1 HTT with 53 glutamines

[29] prior to incubation in appropriate biotinylated secondary

antibody (Vector, Peterborough, UK) for 2 h at RT and followed

by 1 h incubation in an avidin-biotinylated-peroxide complex

(1:100, Vector, Northampton, UK). 3, 39-diaminobenzidine

(Sigma-Aldrich, Poole, UK) was used as the chromagen.

Cortical thickness. Assessment of regional cortical atrophy

was determined by thickness measurements of primary motor

cortex (M1) and primary sensory cortex (S1). In each region 10

vertical lines were drawn covering all layers from the most dorsal

horn of the corpus callosum to the pial surface. The mean length

taken was for 3 consecutive sections caudally from when the

corpus callosum bridges across the two hemispheres (approxi-

mately Bregma 1.10 mm).

Stereology of NeuN-stained sections. Unbiased stereolog-

ical estimates of volume and neuronal number were obtained

using StereoInvestigator software (Microbrightfield, Willston, VT).

All stereological measurements were performed with the observer

being blind to the animals’ condition. The Cavalieri method was

used to obtain unbiased estimates of striatal and M1 cortical

reference volumes [30]. ROIs were defined at61.6 by reference to

neuroanatomical landmarks. For both the striatum and M1 cortex,

equally spaced sections (50 mm thickness each, 450 mm gap) were

analyzed. As defined by Sadikot & Sasseville [31], sections

contained within the striatum were sampled anteriorly from the

first appearance of the genu of the corpus callosum (breg-

ma= 1.1 mm) to posteriorly the first evidence of a hippocampal

formation (bregma=20.94 mm). The dorsal and lateral bound-

aries consisted of the corpus callusum with the medial boundary

being the lateral ventricles/internal capsule. For sections rostral to

where the dorsal 3rd ventricle has joined the lateral ventricles,

ventral boundaries become lateral ventricles/globus pallidus. The

striatal volume was samples by 4–5 sections for both WT and R6/

2. M1 cortex was measured anteriorly from 1.1 mm bregma to

posteriorly 20.94 mm bregma from layers II to VI, as defined in

a stereotaxic atlas [32]. The absence of cortical layer IV (indicative

of the S1 cortex) defined the lateral boundaries of M1, whereas

medial boundaries consisted of the most dorsal part of the corpus

callosum. M1 was samples by 4–5 sections for both WT and R6/2.

To obtain unbiased estimates of neuronal numbers, the optical

fractionator was employed as a stereological probe (coefficient of

error ,0.1). Section thickness and neuronal counts were

performed under oil immersion with the x100 objective (Zeiss)

with a numerical aperture of 1.4. A sampling grid was applied

appropriate to the structure measured (cortex= 200 mm6200 mm,

striatum=400 mm6400 mm) with a counting frame of

65 mm635 mm with a mean thickness of 18 mm. Guard zones of

0.5 mm were applied at the top and the bottom of each frame with

a mean dissector height of 17 mm.

Quantitative analysis of S830. Evaluation of mHTT

immunoreactivity in different brain regions was performed using

an intensity-based measurement of S830 staining. Non-over-

lapping images (using fixed exposure and light intensities at 640)

were obtained from 3 consecutive sections expressing the striatum,

cortex or hippocampus. In total, 30 striatal, 60 cortical and 36

hippocampal images were taken. All images were captured in

RGB using a live video camera (JVC, 3CCD, KY-F55B), mounted

onto a Zeiss Axioplan microscope.

Staining intensity was quantified using threshold-based analysis

software (Image Pro Plus, Media Cybernetics, IL, USA) assessing

optical density of the immunoreactive product. Threshold levels

were chosen based on the minimum level of transmitted light

needed to detect the immunoreactive product on a scale of 0 (100%

transmitted light) and 255 (0% transmitted light) for each pixel.

Two levels were taken to measure dense, nuclear mHTT

inclusions (90), and total mHTT staining (nuclear and extra-

nuclear, 130); mean percentage immunoreactivity area per field of

view (FOV) was recorded.

Statistical Analysis
All data were screened for statistical outliers using Grubb’s Test

(GraphPad Software, California, USA). Due to animal loss,

occasional missing data samples or statistical outliers, the number

of animals varied for each test (Table S1). For data where repeated

measures have been taken, such as the longitudinal behavioral and

MRI data, these were analyzed using a two-way ANOVA with

Time and Group as between-subject factors. For tests with a single

time point of data acquired, either an unpaired t-test or two-way

ANOVA was used where appropriate. Bonferroni’s post-hoc

analysis was applied for multiple comparisons; main effects of

statistical analyses are quoted in Table S2. The Pearson

Correlation Coefficient was used for all correlative analyses. Due

Characterization of the R6/2 Mouse Model of HD
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to the absence of a mHTT stain in WT, this marker was not

included in the analysis. Statistical analyses were calculated using

SPSS Statistics Ver.20 (IBM, Portsmouth, UK). Graphs were

constructed using Prism Ver.5.0b (GraphPad Software, California,

USA).

Results

The four groups of mice (male WT, male R6/2, female WT,

female R6/2) underwent in vivo MRI scanning at 4, 8, 12 and 14

weeks of age (Fig. 1A). Rotarod performance and open field

behaviors were assessed at 5, 9 and 13 weeks of age. Cognitive

performance of mice in the passive avoidance test was assessed at 6

weeks of age only. After the final MRI session, animals were culled

for post-mortem immunohistochemical analyses of neuropatho-

logical markers.

Physiological Measures
A failure to gain weight and the development of muscle atrophy

is a classic feature of HD [33]. An interaction of time and the four

groups (F(Group6Time)24,310 = 7.175, p,.001) indicates that

body weight gain of the four groups of mice was different over

time. The weight of male R6/2 mice increased up to 9 weeks of

age before gradually decreasing. Male R6/2 mice were consis-

tently lighter compared to their WT littermates even at 6 weeks of

age (p,.001, Fig. 1B). In contrast, there was no significant

difference in body weight between WT and R6/2 female mice

until 14 weeks of age (p,.001, Fig. 1C). Importantly, both male

and female R6/2 did not differ in the number of CAG repeats.

These results indicate that there are gender-dependent, as well as

genotype-specific effects that are reflected in the phenotype of

these animals. These effects were also evident in the development

and the progression of the performance of R6/2 mice on

behavioral measures compared to WT.

Onset of Behavioral Deficits in R6/2 Mice is Gender-
dependent
On the rotarod, male (Fig. 2A) and female R6/2 (Fig. 2B)

exhibited a significant linear decline in performance from 5 to 13

weeks of age (F(Group)3,102 = 18.794, p,.001). However, at 5

weeks of age, male R6/29s latency to fall was 26.01% longer than

that of the WT, indicating a better, albeit non-significant,

performance on this task at an early age. In comparison, female

R6/2 at 5 weeks of age already exhibited an emerging deficit.

Significant deficits were apparent from 9 weeks of age for female

R6/2 (p,.001), whereas male R6/2 were only significantly

impaired at 13 weeks of age (p,.001). Female R6/2 therefore

exhibited earlier evidence of impairments in sensorimotor co-

ordination compared to male R6/2. For both genders, perfor-

mance decreased by 73.72% compared to WT by 13 weeks of age.

However, this deficit cannot be explained by a change in overall

activity, as general exploration (in an open field, F(Group6

Figure 1. Experimental design and body weight of WT and R6/2 mice. (A) Experimental protocol. Mice were scanned for MRI measures at 4,
8, 12 and 14 weeks of age. The final MR scan was terminal, mice were culled and brains removed for histological analysis. Performance on a rotarod
(RR) and behaviors expressed within an open field (OF) were assessed at 5, 9 and 13 weeks of age. Cognitive performance at the passive avoidance
(PA) test was measured at 6 weeks of age only. (B & C) Assessment of body weight. Both male (B) and female (C) R6/2 mice exhibited progressive loss
in body weight. This was highly significant from 6 weeks of age for males, but only reached statistical significance at 14 weeks of age for the females.
Data presented as means 6 SEM; ***p,.001.
doi:10.1371/journal.pone.0060012.g001
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Time)6,103 = 2.439, p = .03) was reduced earlier in male R6/2 at 9

weeks of age (Fig. 2C, p,.001) compared to 13 weeks of age for

female R6/2 mice (Fig. 2D, p= .018). This emergence of

diminished exploratory behavior was not accompanied by anxiety

in these animals, as neither male, nor female, R6/2 exhibited

changes in thigmotaxis compared to WT (F(Group)3,101 = 2.274.

p = .085; Fig. 2E&F). R6/2 also did not enter the dark chamber on

passive avoidance training faster than controls at 6 weeks of age

(F(Genotype)1,34 = .818, p = .372; Fig. 2 G&H), further indicating

that there was no evidence of altered anxiety expressed at this age

that could account for the development of decreased exploratory

locomotor behavior. Despite an overall difference between

genotypes (F(Genotype)1,36 = 4.527, p = .04), memory perfor-

mance on the testing of passive avoidance was also comparable

to controls when corrected for multiple comparisons, hence

implying that these cognitive functions were not affected at 6

weeks of age (Fig. 2 I&J).

Although there was a gender-specific onset of deficits on the

rotarod and lower exploration in the open field for the R6/2 mice,

both measures were correlated (Table S3), potentially indicating

that performance on both tasks decreased following a similar

pattern (Fig. 3). Importantly though, as performance progressively

decreased on different tasks, a funnel effect occurs that gradually

shifts toward their origin (i.e. 0). This reduces variability in affected

tasks and is more likely to reflect a common cause than both tasks

influencing each other directly. Indeed, rotarod and exploration

were not correlated at 6 weeks of age (Table S4), but as both

deficits worsened, the relationship between both tasks increased

(Fig. S2). Rotarod and exploratory deficits therefore developed in

a genotype- and gender-specific pattern, but no significant deficits

in anxiety or memory were evident. Although there is an emerging

connection between rotarod and exploration, this link is likely due

to a common underlying cause, such as brain atrophy.

Atrophy and Changes in Tissue Characteristics in R6/2
Mouse Brain are Genotype- and Gender-dependent
Concomitant to behavioral assessments, longitudinal MRI was

used to non-invasively interrogate neuroanatomy (Fig. 4A). A

manual delineation of neuroanatomical structures (Fig. S1)

indicated that immediately post-weaning (4 weeks of age), there

were no genotype or gender differences in brain volumetry

(Fig. 5A). Nevertheless, by 8 weeks of age cortex (F(Group6
Time)9,137 = 7.345, p,.001) and hippocampus (F(Group6
Time)9,137 = 7.727, p,.001) were on average 10.22% smaller in

R6/2 than WT. Interestingly, only male R6/2 mice exhibited

smaller (p,.05) corpus callosum volumes (F(Group6
Time)9,134 = .896, p = .531). A decreased whole brain volume

(F(Group6Time)9,137 = 6.384, p,.001) also reflected these wide-

spread changes (data not shown). This trend continued with major

atrophy evident throughout the brain at 14 weeks of age. A

comparatively (20.47%) smaller volume of the female R6/2

striatum (F(Group)3,137 = 13.77, p,.001) was already apparent at

12 weeks of age (p = .003). Importantly though, neither striatal nor

hippocampal volume, in the R6/2 shrunk, but instead they

remained stable in size compared to an increase in volume in WT.

Interestingly, for male R6/2, cortical volume changes were

significantly correlated with changes in other brain regions,

whereas the striatum was not; a similar, but less robust effect,

was also observed in females (Table S5).

These structural effects were accompanied by changes in T2

relaxivity (Fig. 4B), which reflect alterations in tissue characteristics

(Fig. 5B). T2 relaxivity dropped by almost 7% on average between

4 and 8 weeks of age in all animals, indicating a general

maturation effect, all brain ROIs investigated exhibited a signifi-

cant (p,.05) Group6Time interaction (Fig. S2). At 12 weeks of

age, R6/2 males exhibited a more significant shortening of T2 in

the cortex (p = .001) and hippocampus (p,.001), suggesting an

interaction between genotype and gender. By 14 weeks, this T2

shortening was also apparent in female R6/2. All brain T2

relaxivity measures were correlated with each other and even

cheek-muscle, albeit to a lesser extent (Table S5). Unlike brain

region volumes, tissue T2 values were generally highly correlated

with each other from as early as 4 weeks of age (Table S6).

Relaxivity changes in R6/2 mice therefore might indicate a more

fundamental change in tissue characteristics. However, R6/2

cheek-muscle T2 values did not significantly differ between the

four groups over time (F(Group6Time)9,136 = .648, p= .754), or

when compared to controls at any time point studied. The largest

difference was observed at 14 weeks (WT=0.03160.002 msec

versus R6/2=0.02960.002). Interestingly, cortical volume was

associated with T2 changes in all brain regions, potentially

suggesting that cortical atrophy is linked to global changes in tissue

characteristics. Overall, these results demonstrate that, similar to

the behavioral phenotype, changes in brain atrophy and tissue

characteristics in R6/2 are generally progressive with subtle

gender differences.

Cortical Abnormalities are Associated with Motor Deficits
The neuroanatomical basis of behavioral impairments is

reflected in associations between these two outcome measures.

Both rotarod performance and exploratory activity were generally

more associated with T2 relaxivity than volumetry (Table S7).

Interestingly, striatal volume was not associated with behavioral

measures, whereas cortical atrophy and T2 relaxivity were

correlated with decreased performance in both rotarod and lower

levels of exploration in the open field. Neuroanatomical changes

were generally not associated with cognitive measures, such as

thigmotaxis. Indeed, only hippocampal volume (and whole brain

volume) in male R6/2 was related to thigmotaxis. Overall, the

stronger correlations between behavior and T2 relaxivity poten-

tially reflect the importance of tissue characteristics rather than

mere volume assessment. Importantly, behavioral deficits and

neuroanatomical changes started to emerge between 5 and 8

weeks of age and progressively declined thereafter. As neuroan-

atomical structures changed and T2 relaxivity decreased with

time, the associations with motor performance across both WT

and R6/2 mice generally increased (Table S8). This intensification

of associations may reflect the increasing downstream influence

the molecular pathology exerts on brain structure, as well as on

behavioral outcome measures.

Molecular Pathology in the Absence of Neuronal Loss
The deposition of mHTT is a neuropathological hallmark of

HD [34,35]. We used the S830 antibody to independently

visualize nuclear inclusions and other forms of aggregated mHTT

in both the nucleus and neuropil (referred to as total mHTT) in

the R6/2 mouse brain (Fig. 6A). Due to the limited variation in

CAG repeats, there was no correlation between CAG repeat size

and nuclear inclusions or total mHTT levels. As these mHTT

deposits were not observed in WT animals (WT cor-

tex = 0.34760.2% FOV immunoreactive; stria-

tum=0.09560.0382%, hippocampus = 0.55160.44%), this pa-

thology is specific to the R6/2 genotype. There was no gender-

dependent difference in either the nuclear inclusion or total

mHTT load (Fig. 6B&C). Levels of total mHTT were highly

correlated across brain regions (Table S9), with the exception of

total mHTT in the striatum of female R6/2 mice which did not

correlate with this measure in any other region. Nuclear inclusion
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levels in R6/2 males, but not in females, were also widely

correlated with total mHTT across brain regions. These findings

indicate a ubiquitous abundance of mHTT across various brain

regions. Importantly though, associations in female R6/2 in-

dicated a general lack of associations for nuclear inclusions

between different brain regions, as well as a specific lack of

correlations between total mHTT levels in the striatum with all

other regions.

A stereological analysis of sections, stained for the neuronal

marker NeuN (Fig. 7A), nevertheless, found that there was no

decrease in the number of neurons in the striatum (F(Geno-

type)1,30 = 1.119, p = .299; Fig. 7B) or motor (M1) cortex

(F(Genotype)1,27 = .204, p = .655; Fig. 7D). In the absence of

neuronal loss, tissue shrinkage (on average 18.12%) resulted in

a significant (p,.01) increase in neuronal density in both striatum

(F(Genotype)1,29 = 53.341, p,.001; Fig. 7C) and M1 cortex

(F(Genotype)1,27 = 27.784, p,.001; Fig. 7E). In the M1 cortex,

this increase in neuronal density was accompanied by a highly

significant thinning of both the M1 (F(Genotype)1,31 = 67.164,

p,.001; Fig. 7F) and somatosensory (S1) cortex (F(Geno-

type)1,30 = 41.368, p,.001). As expected, neuronal number and

density was highly correlated in both WT and R6/2 mice, but this

effect was greater in the striatum as compared to the M1 cortex

(Table S10). Interestingly, the number of neurons in the striatum

and cortex were linked to their respective volumes in male but not

female R6/2 mice. Histologically, there were very few associations

between neuronal number or density with mHTT levels within

any given brain region (correlations not shown). A higher level of

cortical nuclear inclusions related to higher neuronal density in the

M1 cortical subfield of female R6/2 (r = 0.94, p,.01) and to

higher M1 cortical neuronal number for both male and female

R6/2 s (r = 0.533, p,.05). Thus, R6/2 mice did not exhibit

neuronal loss and levels of mHTT in the R6/2 brain did not

appear to affect neuronal cell counts.

Molecular and Cellular Pathology Correlate with Changes
in Brain Structures
MRI detected substantial brain abnormalities in R6/2 mice.

Correlating these results with neuropathological markers may

reveal how system changes in brain structures provide a connection

Figure 2. Behavioral characterization of WT and R6/2 mice. (A & B) R6/2s exhibited a decline in latency to fall from the rotarod beam with age,
reaching statistical significance from 9 weeks of age for the female mice, but only at 13 weeks of age for the males. (C – F) R6/2 also developed age-
related diminished exploration in an open field, detectable from 9 weeks for the males, but at 13 weeks only for the females, however, there were no
changes in time spent in the periphery of the arena (thigmotaxis). (G – J) There was no difference in passive avoidance training or memory in 6 week
old R6/2 mice. Data presented as means 6 SEM; *p,.05, ***p,.001.
doi:10.1371/journal.pone.0060012.g002

Figure 3. Progressive rotarod deficits developed simultaneously to a lowering of exploratory activity in R6/2 mice. Latency to fall
from an accelerating rotarod against exploratory activity measured in an open field for all R6/2 mice; data points were separated into the three ages
investigated, at 5, 9 and 13 weeks of age. Positive correlations were detected between these two tasks over time due to the simultaneous
development of deficits in both male (r = 0.507, **p,.01) and female (r = 0.5, **p,.01) R6/2.
doi:10.1371/journal.pone.0060012.g003
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Figure 4. In vivo MRI sample images. (A) Sample T2-weighted images for structural volumetry assessments. Images are from scans taken at 4, 8,
12 and 14 weeks of age at anatomically matching slices. (B) Hot/cold scaled maps of T2 relaxation times for the study of T2 relaxivity, these are
represented on anatomically identical images to those in (A). Bg = bregma.
doi:10.1371/journal.pone.0060012.g004
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Figure 5. MRI assessment of brain volumetry and T2 relaxivity in WT and R6/2. (A) Regional brain volumes assessed through MRI
(volumetry) became progressively smaller in both male and female R6/2 mice versus WT, with the exception of the female R6/2 corpus callosum,
which did not differ as compared to WT at any age. (B) T2 relaxation times (T2 relaxivity) progressively shortened for both WT and R6/2 with age, but
this was significantly exacerbated in the R6/2 in all regions of interest investigated. Data presented as means 6 SEM; males: *p,.05, **p,.01,
***p,.001, females: #p,.05, ##p,.01, ###p,.001.
doi:10.1371/journal.pone.0060012.g005
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between molecular and cellular changes with the emergence of

behavioral abnormalities. In R6/2 females, there appeared to be

non-significant correlations between mHTT levels in the striatum

and age-matched T2 relaxivity measures in the different brain

regions (Table S11). In contrast, in male R6/2 only, a smaller

cortical volume was associated with higher levels of nuclear

inclusions and to a lesser degree with total mHTT (non-

significant). A distinction between nuclear inclusions and total

mHTT therefore provided a gender-specific association of

molecular pathology with changes in brain structures. Stereolog-

ical measurements of cellular and volumetry changes indicated

a connection between brain-specific T2 relaxation values in female

R6/2 with M1 cortical volume (Table S12). Across WT and R6/2

mice, MRI brain volumes were associated with neuronal density;

neuronal density is therefore associated with changes in regional

brain volumes assessed by MRI, but there is no correlation with

total number of neurons within these regions.

Associations of Molecular and Cellular Pathology with
Behavioral Deficits
Combining assessments of histopathological burden and end-

stage behavioral performance will provide information as to the

association of the molecular and cellular pathology with behav-

ioral abnormalities. However, there were few associations between

the presence of mHTT and the extent of end-stage behavioral

abnormalities exhibited by the R6/2 (correlations not shown);

indeed, the only significant correlations were detected for female

R6/2, where a poorer rotarod performance was associated with

lower total mHTT levels in the hippocampal CA3 (r = 0.845,

p,.05), and higher levels of nuclear inclusions were related to

more exploratory behavior in the open field (r = -0.891, p,.05).

There were, however, comparably more associations between

stereological measures and behavioral performance (Table S13).

Unexpectedly, for male R6/2, a worse performance on the

rotarod was associated with higher neuronal number, density and

volume of the striatum. No such effects were detected in the M1

cortex. These results imply a complicated relationship between

molecular and cellular pathology with behavioral changes.

Discussion

Establishing how molecular pathology in Huntington’s disease

(HD) leads to structural brain changes and the emergence of

behavioral abnormalities remains a major challenge. Here, we

describe how a longitudinal assessment of behavioral performance

and regional brain changes, as well as molecular and cellular

pathological markers can inform on how these distinct measures

are associated with each other. The principal findings were that (1)

R6/2 developed progressive behavioral impairments that were

influenced by gender and associated with changes in brain

structures as measured by longitudinal MRI; (2) despite dramatic

brain shrinkage and widespread deposition of mHTT, there was

no neuronal loss in the regions investigated; (3) MRI detected

regional brain abnormalities were associated with molecular and

cellular pathology, as well as behavioral deficits. Regional brain

changes hence provide an intermediary non-invasive biological

measure that putatively can be used to predict changes in

molecular/cellular pathology and its potential impact on impair-

ments.

Gender-dependent Differences in R6/2 Phenotype
We have detected a gender-dependent temporal presentation of

various pathological phenotypes that could not be ascribed to

differences in CAG repeat length, which was well-matched

between R6/2 males and females. Gender effects in unconditioned

behaviors (e.g. climbing, rearing, walking) in R6/2 and the

HdhQ140 knock-in mice have been previously noted, but these

phenomena did not extend to rotarod performance [36,37,38].

Although we identified a gender-effect on rotarod performance in

this study, this is not consistent with our previous observations and

may be a reflection of a generally lower male WT performance.

However, exploratory activity did appear to decline earlier in male

R6/2, which was a reflection of age of onset and progression, as

ultimately all animals exhibit a similarly stable, substantial deficit

at 13 weeks of age. Behavioral analysis of a rat transgenic model of

HD found that although both sexes expressed certain aspects of

disease-like phenotypes, only males developed a robust motor

coordination deficit [39]. The motor deficits exhibited by male

HD rats were associated with a loss and atrophy of striatal medium

spiny neurons (MSNs) and with lower 17beta-estradiol plasma

levels. Given that MSNs expressed both alpha- and beta-estrogen

receptors, this could account for the gender differences that were

noted. However, overall, evidence for gender effects in HD is

sparse both in preclinical models and in the presentation of HD in

the clinic.

R6/2 Exhibit Molecular Pathology without Neuronal Loss
As expected, the deposition of mHTT was ubiquitous through-

out the R6/2 brain and was not influenced by gender suggesting

that any potential gender-effects on phenotype onset and pro-

gression are likely to occur downstream of mHTT pathology.

Given that the CAG repeat size was highly comparable between

the R6/2 mice used in this study, it was not possible to resolve any

potential correlation between CAG repeat size and mHTT

accumulation in the brain regions studied.

Despite the widespread distribution of mHTT in the brain, we

found no evidence of neuronal loss in either the striatum or M1

cortex. This is in contrast to a previous report of a reduction of

25% of striatal neurons at 13 weeks of age [40,41], possibly

a reflection of the difference in CAG repeat size between the two

R6/2 colonies. However, this could also be a reflection of

differences in strain background, housing conditions and the

protocols used for data collection. The extent of neuronal cell

death in the striatum, when detectable, is still considerably lower

than that which occurs in the human disease, which may be

attributable to the comparably short life span of these mouse

models. However, there was a clear increase in neuronal density

accompanied by T2 shortening, indicating that alterations in tissue

characteristics occur potentially prior to any neuronal loss.

Changes in neuronal morphology [42], as well as non-neuronal

cellular changes in the R6/2, such as an age-related decrease in

Figure 6. Quantification of mHTT accumulation. (A) Representative coronal sections from 14 weeks old WT and R6/2 mouse brains stained with
the S830 antibody for the detection of mHTT. Levels were quantified within seven brain regions using an intensity threshold-based image analysis
tool optimized for the detection of nuclear inclusions, or total levels of mHTT (neuropil aggregates and diffuse nuclear accumulation, highlighted in
blue); scale bar 50 mm. Percentage of sampled field of views (FOVs) positive for S830 stain of nuclear inclusions (B), and percentage of FOV positive
for total mHTT (C); there were no significant differences between male and female R6/2 for either assessments. Regional differences in mHTT reflect
cellular density. STR= striatum, CTX= cortex, HIPP =hippocampus, DG=dentate gyrus, CA1=hippocampal CA1 subfield, CA2= hippocampal CA2
subfield, CA3= hippocampal CA3 subfield. Data presented as means 6 SEM.
doi:10.1371/journal.pone.0060012.g006
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Figure 7. Histological characterization of R6/2 neuropathology on NeuN stained sections. (A) Representative coronal sections taken from
14 weeks old WT and R6/2 brains stained for NeuN; scale bar 50 mm. A stereological analysis revealed there were no differences in neuronal number
in either the striatum or primary motor (M1) cortex (B & D), but there were increases in neuronal density in both these areas (C & E). There was
a dramatic reduction in both the M1 and somatosensory (S1) cortical thickness in the R6/2 s (F). Data presented as means 6 SEM; **p,.01,
***p,.001.
doi:10.1371/journal.pone.0060012.g007
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microglia [43] and extracellular matrix molecules [44] could

account for tissue atrophy prior to neuronal loss. The development

of motor deficits in R6/2 mice reported here is therefore not

a consequence of neuronal loss in the striatum or M1 cortex.

Indeed, it is likely that such behavioral dysfunction is a conse-

quence of abnormal activity observed in the neuronal circuitry of

R6/2 mice [34,41].

Establishing an Association between Molecular
Pathology and the Emergence of Behavioral Deficits
A correlation analysis between behavioral and biological

measures can provide insights as the extent to which certain

markers, and their development, are associated. For instance,

motor onset in HD can be predicted by striatal volume [45]

indicating that changes in striatal atrophy are related to motor

symptoms. Despite a small striatum in R6/2 animals, there was no

progressive atrophy that correlated with the onset or progression

of motor deficits. In contrast, as previously reported [26], cortical

and whole brain volume changes correlated with changes in motor

performance. Longitudinal changes in cortical volume precede

structural differences in striatum in R6/2, consistent with previous

reports [25,26]. These early cortical changes can potentially be

explained by neuronal aggregates that appear first and accumulate

faster in cortical regions as compared to the striatum of R6/2 mice

[32,46]. This deposition of mHTT has occurred prior to 4 weeks,

an age at which we were unable to detect any structural

abnormalities, indicating a delay in the appearance of volumetric

changes.

Changes in tissue characteristics, as measured by MR relaxivity,

indicated a shortening of brain T2 values that was evident by 8

weeks of age for both WT and R6/2 mice. This is may reflect

ongoing tissue maturation, such as myelination [47], although

a similar pattern of change was detected in muscle. Interestingly,

in comparison to WT, T2 values for male R6/2 in the striatum

exhibited the earliest changes (8 weeks) in the absence of

a significant difference in volume. In contrast, atrophy in the

cortex preceded T2 changes. Shortening of grey matter T2 values

has also been described in HD patients [48] and correlated with

symptom intensity [49]. These T2 relaxation changes may be

attributable to the known increase in brain iron levels in HD

patients [50,51,52,53,54] and R6/2 mice [55]. As suggested by the

temporal dynamics, T2 changes were not directly correlated with

neuronal density or mHTT aggregation. Indeed, it is likely that

mHTT accumulation precedes increases in transition metal

deposits [54]. However, it remains unclear how T2 values relate

to these molecular and cellular abnormalities.

Previous evidence of a direct connection between mHTT

deposition and the extent of disease phenotype in R6/2 mice is

based on temporally matched abnormalities in neuronal/synaptic

function [32,56] and the development of behavioral defects [46].

However, a direct correlation or causal association between

biological markers and behavioral phenotypes remain poorly

documented. We have here demonstrated that longitudinal MRI

measurements together with behavioral assessments have the

potential to provide novel insights as to how these relate to each

other in animal models of HD. Applying this methodology to the

R6/2 mouse is challenging, given the very rapidly developing and

widespread pathology throughout the brain. We expect that it will

be more informative when applied to HD mouse models in which

the disease phenotypes progress more slowly. Analysis of the pre-

manifest and early stages of the disease will be key to establish

which changes are causally related, as during the final stage of the

disease all measures are intertwined. Still, more extensive

longitudinal, as well as cross-sectional, studies would be required

to provide a thorough understanding of how mHTT leads

ultimately to behavioral dysfunction.

Supporting Information

Figure S1 Region of interest delineation criteria used
for MRI analysis. (A) Definition of criteria by which regions of

interest were delineated onto structural MR images; quoted

Bregma reference marks are typically 60.25 mm as a result of the

inconsistency of slice positional matching upon image acquisition.

(B) Sample regions of interest delineated onto a 14 week WT

mouse brain.

(TIF)

Figure S2 Age related separation of rotarod perfor-
mance and exploratory activity for WT and R6/2 mice.
Latency to fall from a rotarod versus exploration in an open field

for both WT and R6/2 at the three behavioral time points, 5, 9

and 13 weeks of age. As the R6/2 s developed age-related deficits

at both tasks, the WT and R6/2 data points separated creating

significant, positive correlations for both genders when considering

all animals together. *p,.05.

(TIF)

Table S1 Number of animals used. All tests were conducted on

the same cohort of animals. However, there was a variable

number of animals for the analysis of each test due to either death

during the study, to the occasional missing data sample or to the

exclusion of statistical outliers. RR= rotarod, EXP= exploratory

activity, THG= thigmotaxis, PA (d1,d2) = passive avoidance (day

1, day 2), STR= striatum, CTX=cortex, HIPP=hippocampus,

CC= corpus callosum, WB=whole brain, MUSC=muscle,

DG=dentate gyrus, CA1=hippocampal CA1 subfield, CA2= -

hippocampal CA2 subfield, CA3=hippocampal CA3 subfield,

No. = neuronal number, Dens. = neuronal density, Vol. = volume

assessed through stereology, M1 CTX/M1=M1 cortex, S1= S1

cortex.

(XLSX)

Table S2 Main effects derived from statistical analyses. Main

effects derived from two-way ANOVAs. Time= repeated time of

testing, Group=different experimental groups, G’type = geno-

type, Sex= gender. RR= rotarod, EXP= exploratory activity,

THG= thigmotaxis, PA (d1,d2) = passive avoidance (day 1, day

2), STR= striatum, CTX= cortex, HIPP=hippocampus,

CC= corpus callosum, WB=whole brain, MUSC=muscle, M1

CTX/M1=M1 cortex, S1= S1 cortex.

(XLSX)

Table S3 Correlation of behavioral measures over time.

Correlations of performance at behavioral tasks, presented as

Pearson r values. RR= rotarod, EXP= exploratory activity in an

open field, THG= thigmotaxis in an open field. *p,.05, **p,.01.

(XLSX)

Table S4 Correlation of behavioral measures across the three

time points investigated. Performance at longitudinal behavioral

tasks correlated across the three ages investigated, 5, 9 and 13

weeks, presented as Pearson r values. RR= rotarod, EXP= ex-

ploratory activity in an open field, THIG= thigmotaxis. *p,.05.

(XLSX)

Table S5 Correlations of MRI measures of brain abnormalities

over time. Correlation of all volumetry and T2 relaxivity measures

across the regions of interest studied, presented as Pearson r

values. STR= striatum, CTX=cortex, HIPP=hippocampus,

CC= corpus callosum, WB=whole brain, MUSC=muscle.

*p,.05, **p,.01.
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(XLSX)

Table S6 Correlation of MR measures of brain abnormalities

across the four time points investigated. Correlation of assessments

of volumetry and T2 relaxivity in the regions of interest across the

four ages investigated, 4, 8, 12 and 14 weeks, presented as Pearson

r values. STR= striatum, CTX= cortex, HIPP=hippocampus,

CC= corpus callosum, WB=whole brain, MUSC=muscle.

*p,.05, **p,.01.

(XLSX)

Table S7 Correlation of behavioral decline versus MRI

measures of brain abnormalities over time. Correlation of

behavioral abnormalities and regional brain abnormalities de-

termined through MRI, presented as Pearson r values. RR= ro-

tarod, EXP= exploratory activity in an open field, THG= thig-

motaxis in an open field, STR= striatum, CTX= cortex,

HIPP=hippocampus, CC= corpus callosum, WB=whole brain,

MUSC=muscle. *p,.05, **p,.01.

(XLSX)

Table S8 Correlation of behavioral performance against MR

measures of pathology at three time points. Correlation of

behavioral performance with age-matched assessment of brain

abnormalities through MRI; 4 week MRI versus 5 week behavior,

8 week MRI versus 9 week behavior, 12 and 14 week MRI versus

13 week behavior. Presented as Pearson r values. RR= rotarod,

EXP= exploratory activity in an open field, THIG= thigmotaxis,

STR= striatum, CTX= cortex, HIPP=hippocampus, CC= cor-

pus callosum, WB=whole brain, MUSC=muscle. *p,.05,

**p,.01.

(XLSX)

Table S9 Correlation of regional levels of R6/2 brain mHTT.

Correlation of regional levels of both total mHTT and nuclear

inclusions across different brain regions in the R6/2, presented as

Pearson r values. Tot mHTT= total mHTT, Nuc mHTT=nuc-

lear mHTT inclusions, STR= striatum, CTX=cortex, HIP-

P=hippocampus, DG=dentate gyrus, CA1=hippocampal CA1

subfield, CA2=hippocampal CA2 subfield, CA3=hippocampal

CA3 subfield. *p,.05, **p,.01.

(XLSX)

Table S10 Correlation of measures of neuronal characteristics

assessed through stereology. Correlation of stereological measures

taken from NeuN-stained sections, presented as Pearson r values.

STR= striatum, M1 CTX=M1 cortex, Neur no. = neuronal

number, Neur dens. = neuronal density. *p,.05, **p,.01.

(XLSX)

Table S11 Correlation of mHTT levels against MRI measures

of R6/2 brain pathology. Correlation of MRI measures of brain

abnormalities taken at 14 weeks against mHTT abundance in R6/

2 only, presented as Pearson r values. Tot mHTT= total mHTT,

Nuc mHTT=nuclear mHTT inclusions, STR= striatum,

CTX= cortex, HIPP=hippocampus, CC= corpus callosum,

WB=whole brain, MUSC=muscle. *p,.05.

(XLSX)

Table S12 Correlation of neuronal characteristics versus MRI

measures of brain abnormalities. Correlation of brain abnormal-

ities at 14 weeks assessed through MRI against stereological

analyses of NeuN-stained sections, presented as Pearson r values.

STR= striatum, M1 CTX=M1 cortex, Neur no. = neuronal

number, Neur dens. = neuronal density, CTX= cortex, HIP-

P= hippocampus, CC= corpus callosum, WB=whole brain,

MUSC=muscle. *p,.05, **p,.01.

(XLSX)

Table S13 Correlation of behavioral measures against stereo-

logical assessments of neuronal characteristics. Correlation of

behavioral performance at 13 weeks of age against stereological

measures of neuronal characteristics on NeuN-stained sections,

presented as Pearson r values. RR= rotarod, EXP= exploratory

activity in an open field, THG= thigmotaxis in an open field,

Neur no. = neuronal number, Neur dens. = neuronal density.

*p,.05, **p,.01.

(XLSX)
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