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FIXED POINTS OF NONEXPANSIVE MAPS ON CLOSED, BOUNDED,
CONVEX SETS IN /.

Thomas M. Everest, PhD

University of Pittsburgh, 2013

In 1965, W.A. Kirk proved that all reflexive Banach spaces (X, ||-||) with normal structure are
such that for all nonempty, closed, bounded, and convex subsets C' C X, every nonexpansive
map 7' : C'— C has a fixed point, i.e. (X, |-]|) has the fized point property for nonexpansive
mappings (FPP(n.e.)).

In 1979, K. Goebel and T. Kuczumow constructed “very irregular” closed, bounded,
convex, non-weak*-compact subsets K of ¢!, and showed that such K have the FPP(n.e.).
We show that we may perturb the sets of Goebel and Kuczumow to construct a new and
larger class of sets that have the FPP(n.e.).

Ultimately, we would like to answer the following: which isomorphic ¢!-basic sequences
(n)nen are such that their closed convex hulls have the FPP(n.e.)? Theorem 2.2.1, Theorem
2.3.15, and Theorem 2.3.18 give new and interesting isomorphic ¢'-basic sequences in (¢}, || -
||1) whose closed convex hulls have the FPP(n.e.).

In 2003, W. Kaczor and S. Prus showed that under a certain assumption, the sets con-
structed by Goebel and Kuczumow have the fixed point property for asymptotically nonex-
pansive mappings and that this is equivalent to the sets having the fixed point property for
mappings of asymptotically nonexpansive type.

In the second part of this thesis, we prove a theorem (Theorem 3.4.1) that provides an
estimate for the ¢!-distance of a point to a simplex. As a corollary, we prove an interesting
special case of the theorem of Kaczor and Prus.

We further calculate the best uniform-Lipschitz constant of the right shift R on one of
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the sets K of Goebel and Kuczumow.
We also consider another closed, bounded, convex, non-weak*-compact subset G of the
positive face of the usual unit sphere S in ¢*. We show that, in contrast to the sets K above,

G fails to have the fixed point property for asymptotically nonexpansive mappings.
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1.0 INTRODUCTION

We begin by giving a brief introduction to metric fixed point theory, and also to the work

of Goebel and Kuczumow that inspired much of the work in this thesis.

In 1912, L.E.J. Brouwer [3] determined that for n € N, for C' equal to the closed unit
ball of R", every norm-to-norm continuous map f : C' — C' has a fixed point. This result
was later extended to every compact convex subset of R™. In this form, the theorem was
extended by J. Schauder [14] in 1930 to every Banach space (X, | - ||). The class of norm
compact, convex sets is small. On the other hand, the class of continuous mappings involved

is large.

In 1922, S. Banach [1] introduced the Banach Contraction Mapping Theorem. If (X, d)
is a complete metric space, and f : X — X is a strict contraction, then f has a unique fixed
point in X. In terms of Banach spaces, it follows that for a nonempty, closed, bounded, and
convex subset C' of a Banach space (X, || -||), if T: C — C'is a strict contraction for the
metric d = d|.| generated by the norm, then 7" has a fixed point. Here the class of closed,
bounded, and convex sets is large. On the other hand, the class of continuous maps only

includes the strict contractions.

In terms of the sizes of the classes involved, F. Browder [4] provided a more balanced
theorem in 1965. It stated that for all nonempty, closed, bounded, and convex subsets C' of
a Hilbert space (H, (-,-)) with associated norm || - ||, every nonexpansive map 7 : C' — C

has a fixed point in C'. Here, T is nonexpansive means that ||Tx —Ty| < ||z —y||,Vz,y € C.

Later in 1965, Browder [5] and D. Goéhde [10] each generalized the previous theorem to
all uniformly convex Banach spaces. A Banach space (X, ||||) is said to be uniformly convex

if for each ¢ € (0, 2] there exists § > 0 such that for z,y € X,



o] <1

Iyl <1 =

|z =yl > €
An example of a uniformly convex Banach space is P, 1 < p < oo with the standard norm
-l

Even later still in 1965, W.A. Kirk [12] further generalized the theorem of Browder to
all reflexive Banach spaces (X, || - ||) with normal structure, i.e. those spaces such that all
non-singleton closed, bounded, and convex sets have a greater diameter than radius. Banach
spaces (X, || - ||) such that for all nonempty, closed, bounded, and convex subsets C' C X,
every nonexpansive map T : C' — (' has a fixed point, are called spaces with the fized point
property for nonexpansive mappings. We often abbreviate this and write FPP(n.e.). We also
note that the sequence spaces (co, || - ||) and (€%, | - ||1) are both nonreflexive and do not
have the FPP(n.e.).

For a long time, it was unclear whether or not all Banach spaces with the property
FPP(n.e.) were reflexive. In 2008, P.K. Lin [13] provided the first example of a nonreflexive
Banach space with the FPP(n.e.). Lin’s example is the space ¢! endowed with a norm that
is equivalent to the usual norm.

The primary motivation for our work occurred in 1979. K. Goebel and T. Kuczumow [9]
constructed “very irregular” closed, bounded, convex, non-weak*-compact subsets K of ¢!
(with its usual norm), and showed that such K have the FPP(n.e.): i.e., every nonexpansive
mapping T : K — K has a fixed point. In this thesis we show that we may perturb the
sets of Goebel and Kuczumow to construct a new and larger class of sets that have the
FPP(n.e.). Note that in Theorem 2.0.4, Goebel and Kuczumow use b; = 1 + a; > 0. Our
results in Theorem 2.3.1, Theorem 2.3.6, Theorem 2.3.11, Theorem 2.3.15, and Theorem
2.3.18 allow for each b; to be real-valued.

Ultimately, we would like to answer the following question. Precisely which isomorphic ¢!-
basic sequences (x,)nen (or asymptotically isometric £!-basic sequences (1, )nen) in (€4, |- ||1)
are such that their closed convex hulls have the FPP(n.e.)? Our theorems (Theorem 2.2.1,

Theorem 2.3.15, and Theorem 2.3.18) give new and interesting isomorphic £!-basic sequences



in (/1,]]-]|1) whose closed convex hulls have the FPP(n.e.); which is a step towards a solution
of this open problem.

In 2003, W. Kaczor and S. Prus [11] showed that under a certain assumption, the sets
constructed by Goebel and Kuczumow have the fixed point property for asymptotically
nonexpansive mappings and that this is equivalent to the sets having the fixed point property
for mappings of asymptotically nonexpansive type.

In the second part of this thesis, we prove a theorem (Theorem 3.4.1) that provides an
estimate for the ¢!-distance of a point to a simplex. As a corollary to Theorem 3.4.1 we
prove an interesting special case of the theorem of Kaczor and Prus. We remark that our
proof technique seems to be rather different to the method used in their paper.

We further calculate the best uniform-Lipschitz constant of the right shift R on one of
the sets K of Goebel and Kuczumow. Note that R is fixed point free on K, and so must fail
to be asymptotically nonexpansive.

We also consider another closed, bounded, convex, non-weak*-compact subset G of the
positive face of the usual unit sphere S in ¢'. Dowling, Lennard and Turett [7] recently
showed that G has the fixed point property for nonexpansive mappings. In this thesis we
show that, in contrast to the sets K above, G fails to have the fixed point property for

asymptotically nonexpansive mappings.

1.1 PRELIMINARIES AND OVERVIEW

We denote the set of all positive integers and the set of all real numbers by N and R,
respectively. We define the Banach space (¢, ] - [|1) by

"= {gg = (p)nen : €ach z,, € R and ||z||; := Z |n| < OO} :

n=1

For all n € N, let e,, = (e, x)ken be defined by setting e, ,, := 1 and e, ; := 0, for all k € N

with k& # n. Of course, each e, € (. We will often write || - [|; as || - ||.



Also, the Banach space (cq, || - ||s) is given by

co = {:p = (Tp)nen : each x, € R and lim =z, = O} :
where ||2]|oo 1= sSup,ey |Znl, for all z = (x,)nen € co. Of course, ' is the dual of ¢.

The subspace (coo, || - |loo) Of (o, || - ||oo) is defined as
Cop 1= {x = (2p)nen : each x,, € R and z,, = 0 for all but finitely many n € N} .

Definition 1.1.1. Let C' be a nonempty closed, bounded, convex subset of a Banach space
(X, || -1])- Let T': C' — C be a mapping.
(1) We say that T is nonexpansive if

IT(x) = T < [lz =yl , forall z,y € C".

(2) We say that T is asymptotically nonexpansive if there exists a sequence

(Am)men € R decreasing to 1, such that for all m € N,
[T (z) = T"(W)| < Amllz—yll, forallz,y € C .

(3) We say that T is uniformly Lipschitzian if there exists M € [1,00), such that for all
m e N
[T (z) = T™(y)| < M |l -yl , forall z,y € C.

We call M a uniform Lipschitz constant for T.
(4) We define T to be affine if

T(ozlxl + 0421’2) = ole(xl) + OéQT(ZEQ) s

for all x1, 29 € C' with ay, a9 > 0 and a3 + as = 1.
(5) We say that T" has an approzimate fized point sequence if there exists (z,)nen in C' such

that ||T(z,) — xn| — 0.

Clearly, [(1) = (2) = (3)]. Of course, the converses are not generally true. Some
of our examples below illustrate this. It is also well known that [(1) = (5)]. (See, for
example, [8].) We note that it is an open question as to whether [(2) = (5)]. It is also

well known that [(4) = (5)]. We include a proof, for the sake of completeness.



Lemma 1.1.2. Let (X, ||-||) be a Banach space and M C X be a nonempty, closed, bounded,
and convex set. Let T : M — M be an affine mapping. Then there exists an approximate

fized point sequence (x,,)nen for T in M.

Proof. Fix o € M. Define

<I+T+Jﬂ+~-+T”
Ty 1=

] )(;EO) , foralln e N.

Each x,, is in M, because M is convex. Let

d:=diam(M) := sup ||lu—v| € [0,00) .
u,veEM

Since T is affine, we have that

I+T+T*4 - +1" I+T4+T*4--- 41"
s~ = | e~ ( )i

n+1 n+1
- ni1H(T+T2+T3+"'T”“><fo> (I +T+T% 4 4 T")(x0)
= %HHT”“:EO — x
= njl— T 0
Therefore, (x,)nen is an approximate fixed point sequence for 7. n

We will sometimes use “c.b.c.” as an abbreviation for the phrase “closed, bounded and
convex”. Also for a given collection of mappings £ on a c.b.c. set C' in a Banach space
(X, ]| - ]|), we say that that C' has the fixed point property with respect to € (FPP(E)) if for
all T € £, T has a fixed point in C.

Definition 1.1.3. We say that a Banach space (X, | - ||) is asymptotically isometric to
(€% |l - |I) if there exists a sequence (x,)nen in X such that
X = linear span{z,, : n € N} and there exists a sequence of scalars (&,)nen in [0,1) such

that lim,,__. &, = 0 and Va € ¢,

i(l_gn)|an| S ianxn S i(1+5n)|an|
n=1 n=1 n=1




Note that

1) When each ¢, = 0, (X, || - ||) is an isometric copy of (¢}, ]| - ||1)-

(1)

(2) 1 —ep < ||zl < 1+4¢,,Vn €N.

(3) We may replace “Va € cop” by “Va € (1.7
(

4) Without loss of generality, each ||z,| = 1 and we replace the right hand inequality in
the definition by

00 00
D antnl| <3 lanl.
n=1 n=1



2.0 RESULTS FOR NONEXPANSIVE MAPPINGS

In 1979, Goebel and Kuczumow [9] proved the following theorem.

Theorem 2.0.4. Let (bj)jen be a bounded sequence of positive real numbers with I' :=
infjenb; > 0 and put f; = bje;. Let C be the non-weak-star compact, closed, bounded,

and convex set defined by

C

{x: thfj :each t; > 0 and th = 1}
j=1 j=1

Let Ny :={j € N:b; =T}. Then C has the FPP(n.e.) if and only if Ny is nonempty
and finite.

In Chapters 3 and 4, we aim to prove similar theorems for more general sets that can
be considered to be perturbed Goebel and Kuczumow sets. Two of our theorems, Theorem
2.3.15 and Theorem 2.3.18, will include Theorem 2.0.4 as a special case. We begin by
exploring some basic examples (Examples 2.1.1, 2.1.2, 2.1.3, and 2.1.4). All examples except
for Example 2.1.2 are new results. Example 2.1.2 is a special case of Theorem 2.0.4 (with
by = b, by =0, and b, = 1,¥n > 3) that we include for the purpose of comparison with our
three new examples. Example 2.1.4 includes Example 2.1.1, Example 2.1.2, and Example

2.1.3 as special cases.



2.1 EXAMPLES

Example 2.1.1. To begin, let b and ¢ be real numbers such that 0 < ¢ < b < 1 and b+c < 1.

Define f; := bey + ceg and f,, := e, Vn > 2, where {¢; : j € N} is the usual basis for ¢'.

Next, we define the following closed, bounded, and convex subset of ¢*.

Kb,c = {ZL’ = thfj : each tj Z 0 and th = ]_}
j=1 j=1

We will show that

Theorem The set Kj,. has the FPP(n.e.)

Proof. Note that for a = (a;)jen € £ and 2 = 377, a; fj,

|z||1 = |1 (bey + ces) + ases + ages + - - - |r

= ||azbe; + (e + ag)es + ages + ageq + - - -

= |loa|b + |one + as| + |as| + |ag| + - -

<laal(b+0)+ ) oyl

=2

<1V (b+c))z o).

Also,

[zl = [aa|b+ (o] — [arc) + || + o + - -
= |a1|(b—¢) + |aa| + |az| + |aa| + - -
>(1AD=c)D layl.

j=1
Hence,



b—c)> oyl <l < oyl
j=1

J=1

and so (fj)jen is an ¢'-basic sequence for ¢*. Note that, from above, (f;);en is also an

asymptotically isometric ¢*-basic sequence in £!.
Note that K. =co{f; : j € N}.
Let T : K. — K. be nonexpansive. Then there exists (2(™),en C Kj . such that

2™ — Tz™|, — 0.

Without loss of generality, passing to a subsequence if necessary, there exists z € ¢! such

that (™ — 2 weak-star. Hence we have that z € Wy, where
n

Wi := K_lww* _ {Z'yjfj :each v; > 0 and Z% < 1}.

j=1 j=1

We now show that 7" must have a fixed point in Kj .
Case 1: z € K.
Define

r(y) == limsup ||z™ — y||1, Vy € ¢

n—--auo0

In [9], Goebel and Kuczumow show that Vy € ¢*,

ry) =r() + 2=yl (k)

Then, by (%) we have that r(Tz) = r(z) + ||z — Tz||;. However,



r(Tz) = limsup || Tz — 2™

n—-—uoo

< limsup || Tz — Tx(”)”l + lim sup ||Tx(”) _ x(n)Hl

n—-auo0o n——eo0

r(z)+0
=r(z).

Therefore ||z — Tz|| < 0 and so Tz = .
Case 2: z € Wy, \ K ..

Then 2 is of the form z =} 72 | v, f;, such that > 72, v; < 1. Define

0 —1_2] 175-

Next we define hy := (7 + M) fi + (72 0)fa+ D521 v fi- We wish for hy to be

+(1=A)
in Ky, so we restrict values of A to be in [—3, 22 4 1].

Note that, for A € R,

||h>\ — Z||1 = ||)\b(§€1 + [Aéc—l— (1 — )\)5]62“1
= |A|bd + |Adc+ (1 — N)J|
= [A|b0 + 5]Ac + (1 — N

(

d(—=(b—c)—1DA+9, ifXA<O0;

=90((b+c)—DA+46  Hf0< A< =

S((b—c)+DA—45  if L <A

\

Since 0 <c<b<1land b+ c <1, |hy— 2| is minimized when \ = —. However, we

must consider two cases; When - < 72 + 1 and When - > 72 + 1.

Sub-Case (a): 7 < 2 + 1.

10



|y — 2|1 is minimized when A = X\g = ;. Note that

PR

1)
hy, = (71+—1 )f1+ (72—
—c

and ||hy, — 2|1 = 0%,

co >
1__C)jb%gé;3ﬁfh

Next, fix y € K. of the form y = 3%, ¢;f;. Observe that

oo
ly = zlh = 1t = b+ 1t = y)e+ (2 =)l + D It; =
j=3

b -
=t —mlb+ E\(h —m)e+ (t2 — )| + I—_CZW =]

=3
b b\ <«
(1= —=)|(t =)+ (ta— )| + [ 1— > It =l
Let
b b\«
Q= 1—: |(t1 — 1)+ (ta — 72)| + 1_1—c Z’tj_’m'
=3
Then,

b -
ly = 2[[i = [t1 = b+ E|(t1 —m)c+ (t2 — )| + :Z It — vl + @
j=3

b b
Z |t = )b+ — {(tl —m)e+ (t2 — 72)} + 1——cZ;(tj — )|+ @
j:
B b b
= 1_C(t1—71)+1_0(752—72)4-1—_6;(%’—%) +Q
b oo oo
7j=1 7j=1
LA PR
Cl-c
b
=0 t¢
>0 b
— 1l-c

11



with equality in the last inequality if and only if () = 0.
Note that in the case of () = 0 we must have that both ¢; = v;, Vj > 3 and

|(t1 — 11 )e+ (t2 —12)| = 0. However,

(B =m)e+ (2 =) = 0= (t = m)c+ (t2 —72) = 0.

Now, since t; = v;, Vj > 3, Z;’il t; =1, and Z;’;l v; = 1 — 0, some simple calculations

show that

t1+t2:’}/1+’}/2+5 (21)
Ctl + t2 =N + Y2 (22)
Solving these equations gives
1=+ 0 (2.3)
1=MN 1_¢ .
co
ty =72 — = (2.4)

Hence ) = 0 if and only if y = h),.
Therefore,
sy = =l = min 1y = =]

and this minimizer hy, is unique.

Let h = hy,. From above, r(Th) = r(z) + ||z — Th|;. Also,

12



r(Th) = limsup ||2™ — Th|;

n—-—aoo

<limsup |[|z™ — T2™|, + |Tz™ — Th||;

n—:a~o0

< 0+ limsup | Tz™ — Thl;

n—-auoo

< limsup ||z™ — Al

n—=aoQ

= r(h)

=7(2) + |z = Al

This implies that ||z — Th|; < ||z — h/:-

Hence, since Th € Ky,

0b 0b
— < -T < — = —.
T Slle=Thll < fle=hllh = —

Therefore, since the minimizer is unique, Th = h.

(

S(=(b—c) = DA+46, if A <D0

lox = 2lli = 4 6((b+e) = DA+ i 0< N < 74

S((b—c)+DA—6  if L <A

\

we have that

min s = 2l = I = s =8| 0+ ) = (1= (b ) 2

Define T" := 6[(1) +c)—(1—(b+ c))%?] . Note that

13



ob

—<I'<

T < <do(b+c)
and since § > 0,

T
—<b 1.
1—c<5_ +c <

Next, fix a general y € K. of the form y = > % ¢ f;, where each t; > 0 and 3 7% t; = 1.
Then

0<

ly =zl = [ts = lb + [(ts — 1)+ (B2 = w2)| + D It — ]
7=3

Sub-Case (b)(i): Both t; > v, and ty > 7.

Then we have

ly = zll = (1 = 3)b+ (b — M)+ (b = 72) + > [t — ]
=3

= (t1—7)(b+c) + (t2 —72) + Z It — vl

=t —m)b+c) {5(1)2 C)] + (=) +c) {1 - 5(1;2 c)]

+ (f2 = 72) {g} + (t2 = 72) [1 - g}
<[5t 5] 2

(752—72)[g]'+22\t1—%\+62
7=3

- ‘(tl —m)(b+0) {5(62 C)] ‘ ’

where

Q:(tl—%)(bntc){l—ﬁ} +(t2—72){1—g} + [1—g}g\tj—mzo.

Then

14



(=040 s | + (= + D5 =)

ly — 2]l > +Q

I

Il
—

(t; =) +@Q

(o)

J

+Q

—

Hence ||y — z||; > I" with equality if and only if @) = 0. However,

Q=0<=1t;=7;,,Yj€N

and Z;; t; = 1, whereas Z;’il 7; < 1. Therefore in the case that both t; > v, and t3 > 79,

we have that ||y — 2[|; > T.

Sub-Case (b)(i7): t; < 71.

Then

ly = zlh = (1 = 80)b+ (= )e + (b2 = 72) [ + Y [t =7l

J=3
o]

> (1 —t)b+ (t —y)e+ (fa —y2) + > (t; —)
=3

=(m—t)b—0c)+ > (t; =)

=(n—t)b—c)+1—t1)+ (0 —1+m)
>0

> T

Hence, in the case where t; < v, ||y — z[[1 > T.

Sub-Case (b)(7i1): t1 > 71, ta < Yo, and t; — 1 < 6 + 7o.

15



In this case,

ly = 2l = (1 = y0)b+ (1 — 1)e + (b2 — )| + D It — 7l
=3

> (tr =) (b+c) + (ta — 72) +ZO_O: It — vl
— (0= W0+ 5555 | =W+ 1- 5]
#ita =[5 | + 2= 1= 3]

+ [g}i\%—%H {1—£]§:\Q—%

HH -] [i] 2w

L o

S R ol

J

where

o=t-moro-F tmw[i- 5]+ -5 S

Hence,

[e.9]

Iy =+l = |5 -+

J=1

=T+Q

Hence ||y — z||; > T with equality if and only if Q = 0.
Note that
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Let Q" = (t1 —m) {(b +c) — 1] + 0 —T. Then

Q>0 (L —)|b+c)=1]>T =0

— )< o0-T
T ST "1 o)
Also,
o—-T
S
—btro 0T
and so,

Q>0+t -7 <0+
Therefore Q =0 = Q' =0 = t; = 9 + 72 + . In this case,
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r r ' —
QZ(72+5)[5+C—5} + [1—3](—72)+ [1—3];|tj—%|
=yb+c—1+0(b+c)—T+ {1_§]Z|tﬂ'—%|
j=3
F o0
=T -T+ {1—5};!%’—%!

F o0
= {1—5} > It =l
=3

> 0.
Hence,
F o0
Q=0=|1-= D =yl =0
j=3
:>t]:’)/],VJ23
Then,

t2:1—t1—zt]’
7=3
:1—(71—1-72‘1‘5)—2%'
7=3

=1-0->
j=1

—1-6—(1-0)
=0

Therefore, in summary, we have that ||y — z||; > I' with equality when

y=Mm+r+i)fi+0-fot Z;ig%‘fj, i.e. when y = hy,.

Sub-Case (b)(iv): t1 > 71, ta < Y2, and t; — vy > + Jo.
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Observe here that

ly =2l > (=) (b+¢) +ta =22+ D [t; =]
=3
>0 +7)b+c) =+ Y It — 7l
j=3
=5(b+c) = (1= (b+ )+ > [t =l

=3
=T+ |t =l
j=3

>1T1.

Therefore, due to the strict inequality in this calculation, ||y — z||; > T.

Now, having covered all of the cases in 2(b), we see that h = h), is the unique minimizer
of {|ly — z|l1 : y € Kp.}. Therefore, just as in case 2(a), we see that Th = h.

Hence, K . has the Fixed Point Property for nonexpansive maps, as desired. O

Example 2.1.2. Let 0 < b < 1 and define f; := bey, fo := bes, and f, :=¢e,, Vn > 3.

Next, define the closed, bounded, and convex subset of ¢*,

Ky = {x:thfj:each t; > 0 and th = 1}.

j=1 j=1

We will show that

Theorem [Goebel and Kuczumow]| The set K, has the FPP(n.e.)
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Proof. Note that for a = (o) en € /M and x = Zj‘;l a; fj,

H«THI = ||Oé1b€1 + OéQbeg + agzes + - - - ||1

= [ou|b + [azlb + |as| + o] + -
<Y oyl
j=1

Also,

HZIZ’Hl 2 ‘Ozﬂb—%— |062‘b+ ’ag‘b‘i‘ ’@4|b+ te
00
=0 ayl.
j=1

In summary,

o0 o0
b oyl < flall < layl-
j=1 j=1

Note that (f;);en is an isomorphic ¢*-basic sequence for ¢!, and
K, = co{f; : j € N}. Note that, from above, (f;);en is also an asymptotically isomorphic
¢-basic sequence in /.

Let T : K, — K} be nonexpansive. Then there exists (x(”))neN C K, such that

2™ — T2, — 0.

Without loss of generality, passing to a subsequence if necessary, there exists z € ¢! such

that 2" — 2 weak-star. Hence we have that z € W;, where
n

W, = Ew* = {Z'yjfj each v, > 0 and Z'Yj < 1}-
j=1

J=1

We now show that 7" must have a fixed point in K.

Case 1: z € K.
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Note that the proof of Case 1 in Example 2.1.1 also demonstrates that 7" has a fixed

point in this case as well.
Case 2: z € W)\ K,
In this case, z = 377 | 7; fj such that each v; > 0and 3777 75 < 1. Let 6 := 1-3 7% | 75 €

(0,1].
Note that for an arbitrary y € K, of the form Z;; tifj

1

ly — 2]l = H(’fl —1)fi+ (2 =) fa+ Z(tj =) f;
=3

= H(tl —y)ber + (ty — Y2)bea + Y (t; — 7)€

j=3 1

= blty — 1| + blta — 72l + ) _It; — yl-

=3

For A\ € [—76—1,%+1],deﬁne

hy = (m+A0)fi+ (2 + (1= A)d)fa+ Z’ijj-
=3

Then,

A — z[li = [[ASf1 + (1 = A)d fallx
— A6 + |1 — AJbo

;

— 206\ + bS ﬁAe{—%ﬁ)

=L ﬁAe[Qq;

25N — bs ﬁAe(L%+1}

Hence, ||hy — 2|1 is minimized for X € [0, 1], in which case ||hy — z||; = bd.

Note that
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ly — zllv = blts — m| + blt2 — 72| + Z It; =l
j=3

= bty — 1| + bt — 7ol + 0D [t =l + (1 =) > |t; — ]
j=3

Z(tj — %)

o0
]:1 =3

=00+ (1=0) ) |t; =l
7=3

>b

It; — vl

+(1-0b)

> bo

with equality in the last inequality if and only if (1 —b) 374 |t; — 75| = 0. Since b € (0,1),
this occurs if and only if ¢; = 7;,Vj > 3. Therefore, ||y — z||; = b6 if and only if y = h), for
some A € [0,1].

Let A :={hy: X €]0,1]} C K;. Note that A is compact as it is the continuous image of
a compact set. It is also easy to check that A is convex.

Note that for A € A,

r(Th) = limsup [|2™ — Th|;

n—:aoo

= limsup ||z — Tz™ + Tz™ — Th||;

n—-:aoo

< limsup ||z — Tz™||; + limsup || T=™ — Th||;

n—-auoo n—auoo

< limsup ||2™ — Tz™|; 4 limsup [|™ — A

n—auoo n—-aoo

= 0 + limsup ||z™ — Al

n——:o0

=r(h).

Also, 7(Th) = z + ||z — Thljy and r(h) = z + ||z — h||;. Hence,

22



Iz = Thlly <[z = hllh = |z = ThlL = ||z = Allx

= Th € A.

Therefore, T(A) C A, and since T is continuous, Brouwer’s Fixed Point Theorem tells
us that T has a fixed point.

Hence, K; has the Fixed Point Property for nonexpansive maps, as desired. O

Example 2.1.3. Let 0 < ¢ < b < 1 with b+ ¢ < 1. Let f; := bey + ces, fo := besy, and
fn=en, Vj > 3.
Let

Ky := {thfj :each t; > 0 and th = 1}.
Jj=1 j=1
and

Whe = K_lww* _ {Zyjfj :each v; > 0 and Zyj < 1}.
j=1

j=1
Note that for @ = () jen € ' and z = Z;)il @ fj,

|z||1 = [|lon(bey + ces) + agbes 4+ ases + - - ||y
= |a1]b + |agb + ayc| + |as| + |ag] + -+

< |aa|(b+c) + |aalb + [as| + |ag| + -
<D layl.
j=1

Also,

2]y = e |(b = ¢) + |aalb + |as| + |aa] + - -

= (b= ol
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In summary,

o o0
(b=l <zl < ) layl.
j=1 j=1

Note that (f;);en is an isomorphic ¢!-basic sequence for ¢!, and
K, = co{f; : j € N}. Note that, from above, (f;) ey is also an asymptotically isomorphic
¢'-basic sequence in (.

We will show that

Theorem The set K. has the FPP(n.e.)

Proof. Let T : K;,. — Ky, be nonexpansive. Then there exists (™), ey C Kj,. such that

2™ — Tz™|, — 0.

Without loss of generality, passing to a subsequence if necessary, there exists z € W,

such that 2" — 2z weak-star. We will now show that 7" has a fixed point in K.

Case 1: z € K.
This case proceeds in exactly the same manner as in Examples 2.1.1 and 2.1.2.
Case 2: z € Wy, \ K.

Then 2z has the form z = > 7% v;f; such that each v; > 0 and > 77, 7; < 1. Let
0:=1- Z]O; ReE
For \ € {—77;1,%2%—1}, define

ha = (1 + A0 fr + (2 + (1= N)o) fa+ D73y

Jj=3

Then,
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[hx = z[ly = [[Adf1 + (1 = A)d fallx
= ||Ad(bey + cea) + (1 — N)bdes||:
= ||Abde; + (Adc+ (1 — A)bd))esl)r
=0|[Ab+ [Ac+ (1 - )\)b\}

/

—6(2b— A+ b if A€ {-Vg,o);

= {Seh + bo me{o,ﬁ;

5(2b—c)A—bs  if A€ (ﬁ,%ﬂ].

\

Hence ||hy — z||1 is minimized when A = 0, in which case [|hy — z||; = bd.

Note that for an arbitrary y € K of the form > 72, ¢; f;,

ly = zll = [ts = [b+ [(t2 = 12)b + (1 — )l + D [t; —
=3

C C
= (1= )t = o (§ )l =l I =22+ (1 = )

+0) =yl + (=0 Y It =l
=3 =3

2> ’(b_c)(tl_71>+(t2_72)b+(t1_71)C+b2‘tj_7j|
=3
c oo
# (5= lo+ =031 =

=3
b3 (1 — )|+ (|t1—w|c+<1—b>2|tj—m)
j=1 Jj=3

Let Q := [t — mle+ (1 =) > 24t — ;|- Then

ly —z||y > b6+ Q > bd

with equality in the last inequality if and only if ) = 0. Let us examine this case.
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Note that if ¢ = 0, then our current example is the same as Example 2.1.2, so let us

assume that ¢ > 0. Then

Q:O:>t1:’71 and tJ:’}/j,VJZ?)

Hence ||y — z||1 > b0 with equality if and only if y = v f1 + (72 +9)fo + Z;’ig v;fj, 1e.
if and only if y = hy.
Therefore, in this case there is a unique minimizer, and so just as in case 2 in Example

2.1.1, T has a fixed point.

Hence, K} has the Fixed Point Property for nonexpansive maps, as desired. O

Example 2.1.4. To begin, let b, by, and ¢ be real numbers such that 0 < ¢ < b < by <1
and b+ c < 1. Define f; := bey + cea, fo := boey, and f, := e, Vn > 3, where {e; : j € N} is

the usual basis for ¢!.

Next, we define the following closed, bounded, and convex subset of /.

Ky = {x = thfj :each t; > 0 and th = 1}
Jj=1 j=1

We will show that

Theorem The set K, . has the FPP(n.e.)

Proof. Note that for a = (a;)jen € ¢! and 2 = 3777, a; f;,
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||I||1 = ||O_/1(b61 + C@Q) + aigbyey + azes + - - ||1

= |Jazbe; + (1¢ + agbs)es + azes + aueq + - - -

= o |b + |one + aoba| + |as| + |au] + - -

< aa|(b+ ) + |aalby Y oyl

=3
o0

<> ayl.
j=1

Also,

[zlls > faa|b+ (Jaz|by — [aile) + |as| + |o| + - -
= |ou|(b — ¢) + [az[by + [as| + |aa| + - -
>(b—c)) oyl

j=1
Hence,

[e.e] e}
(b=c) Y ol < el <) layl
j=1 j=1

and so (f;)jen is an (*-basic sequence for *. Note that, from above, (f;);en is also an

asymptotically isometric £!-basic sequence in £1.

Note that K}, =co{f; : j € N}. We will show that K, . has the fixed point property for

nonexpansive maps.

Let T': K. — K3 . be nonexpansive. Then there exists (m(”))neN C K, such that

|2 — Tz™|, — 0.

Without loss of generality, passing to a subsequence if necessary, there exists z € ¢! such

that (™ — 2 weak-star. Hence we have that z € Wh.e, where
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Whe = K_lww* _ {Z'yjfj :each vy, > 0 and Z’yj < 1}.

j=1 j=1
We now show that 7" must have a fixed point in Kj .

Case 1: z € K.

This case proceeds in exactly the same manner as in the previous examples.
Case 2: z € Wy, \ K.

Then 2 is of the form 2 =} 7% | v, f;, such that > 72, 7; < 1. Define
0:=1- Z;; i
Next we define hy := (y1 + A0) fi + (v2 + (1 = A)d) f2 + D72, v f5. We want hy to be in

Ky, so we restrict values of A to be in [— L2+ 1] .

Note that, for A € R,

||h)\ — Z||1 = 5||)\b€1 + [/\C+ (1 — )\)bg]egul

— 5{|/\|b +[Ae+ (1 — >\)52|}

(

O=(ba +b—c)N+bs], if A <O;

= 8[(b+c—b)A+by), HO<A<

ba .
ba—c’

S[(bs +b— )X —bs], if B < A
\

ba—c
Sub-Case (a): by < b+ c.
Then,

min ||h)\—ZH1 :(Sbg,

e [—T},?ﬂ
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which occurs when A = 0 if by < b+ ¢, and for all A € {O,min {&, 2+ 1}1 if by =0+ c.

Note that, for y € K of the form y =37, ¢, f;,

ly = zlls = lts = 7alb + [t — y1)e + (b2 — 72)ba| + D It; — 7]

=3
by — ¢ S

— ( 2b )|t1—71|b+|(t1—71)C+(t2_72>b2|+b2z|tj_7j‘
=3

by —c -
o e [EE R S) e

b ,
7j=3

= (by = O)fts — | + (1 — y)e + (B2 — 72)ba| + b2 > |t; —

=3

+(b+c—ba)ltr — il + (1= b2) Y |t; — 7l

J=3

where @ == (b+c = by)[ty — 1| + (1 = b2) D725 [t; — ;| > 0 since 0 < e < 1.
Note that we have equality in the last inequality if and only if ) = 0. In this case, we

have to consider two possibilities.

Sub-Case (a)(i): by < b+ c and by < 1.

Then @) = 0 implies that ¢; = v, and ¢; = «; for all 7 > 3. Hence
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t2 == 1 —it] —tl
j=3
o)
=1 —Z’Vj -
j=3
= <1 —Z%‘) + 72
J=1

=0+

Hence |ly — 2|, = dbs if and only if y = ho = 1 fi + (v2 +0) fa + D723 75 fi-
Let h = hg. From above, r(Th) = r(z) + ||z — Th||;. Also,

r(Th) = limsup ||z — Thl|;,

n—-aoo

< limsup | [|z™ — Tz™ |, + |Tz™ — Th|;

n——a~oQ0

< 0+ limsup || Tz™ — Thl|

n—:uoo

< limsup |[|z™ — Al

=r(h)

=r(2) + [z = Al

This implies that ||z — Th|; < ||z — h:-

Hence, since Th € Ky,

and so

|z = Thlly = | — hlls = db.

Therefore, since the minimizer is unique, Th = h.
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Sub-Case (a)(ii): by = b+ c and by < 1.

In this case () = 0 implies that ¢; = v; for all 7 > 3. Then

ttt=1-) t
=3

=1—§:%
j=3

=0+7 + .

Hence ||y — z||; = by if and only if y = h) for A € {O,min {bzbic, L2+ 1}]

Let A := {h,\ A E [O,min {&, 2+ 1}1 } C K,. Note that A is compact as it is the

continuous image of a compact set. It is also easy to check that A is convex.

Note that for h € A,

r(Th) = limsup ||z — Th||,

n—-:aoo

= limsup ||z™ — Tz™ + T2™ — Th||;

n—-:uoo

< limsup ||2™ — T2™|; 4 limsup || T2™ — Th||;

n—-a;o n—-aoo

< limsup ||z — T2™||; + limsup [|2™ — A,

n—-mauoo n—aoo

=0+ limsup [|Jz™ — A

n—auo0o

=r(h).
Also, r(Th) = z+ ||z — Thl|; and r(h) = z + ||z — h||;. Hence,
Iz = Thlly <[z = hllh == |z = ThlL = ||z = Al
—TheA
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Therefore, T(A) C A, and since T is continuous, Brouwer’s Fixed Point Theorem tells

us that 7" has a fixed point.

Sub-Case (b): b+ ¢ < by.

Then,

220, if g <241
min Ny —z|i=14 7 2
(b+c—bo)(y2+0) +bad, if 241 < .

J1 02
Ae |-, 241

Sub-Case (b)(i): ;2= < 2 4+ 1.

bo—c —

Note that, for y € K3 of the form y = Zj‘;l tifj,

ly = zlly = [tr = nlb+ [(tr = n)e+ (t2 = 72)bo| + Z lt; — 7l

=3
b bob | —
= [ti —mlb+ (m)wl —m)c+ (t2 = 2)bo| + <b2 —c) ;’tj =%
b bab \ —
+ (1 ~ _C)|(t1 —m)c+ (t2 — 72)ba| + <1 " _C> ]z:;“j =7l
bob | &
= Z(tj—%')
7=1
b bab \ —
+ (1 - _C)|(t1 —y1)c+ (t2 — 72)ba| + (1 o _C) ;m — 4]
baob
= 2 54+Q
bg—C
bob
> b
- bg—C

where Q) := <1 — b;’_c) |(t1 — )+ (ta — y2)bo| + (1 — bzz_bc) > ies |ty =1 = 0.
Note that we have equality in the last inequality if and only if ) = 0. Since both

b ¢ (0,1) and 2% € (0,1), we must have

bo—c ba—c
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(t1 —m)e+ (t2 —72)ba =0 (2.5)

tj =7 for all j Z 3 (26)

Since t; =v;, Vj >3, > 72 t; =1, and } 77| 7; = 1 — 4 this last system is equivalent to

tlc + thQ = 7€ + ’}/ng (27)
th+ta=7+7+0 (2.8)
Solving these equations gives
0by
t, = 2.9
1=m+ by — ¢ (2.9)
oc
to = y9 — 2.10
2 =72 by — ¢ ( )
Hence, ||y — z||1 = bgribcé if and only if y = hy for A\ = beic'

Therefore, since the minimizer is unique, just as in Sub-Case (A)(i), Thy = hy.

Sub-Case (b)(ii): 2 +1 < ;2

by—c”

For simplicity, let I" := (b + ¢ — b2) (72 + J) + b20, i.e.

= min Ilha — 2|1

J102
Ae |-, 241

Also, define \g = % + 1.

Notethat0<%<1,0<ﬁ<l,and0<%<l.
Fix a general y € K, of the form y = 3% ¢;f;, where each ¢; > 0 and > 2 ¢; = 1.

Then
ly = 2l = [ts = b+ [(tr = M)+ (2 — 12)ba| + Z It —
7=3
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Sub-Case (b)(ii)(«): Both t; > 71 and to > 7.

Then we have

ly = 2l > (b+ )t — 1) + (t2 = v2)b2 + Y It —
7=3

= ((S(bi C)> b+t —m) + (5%2) (ta — 72)b2 + (g) gﬂj — 7l

= 5(br+ c))(b+ Ot — 1) + (1 - 5£b2>(t2 )b

(-
+(1—E>Z|tj—7j|

> gjf;@ W)+ (1 s )0+ =
—T+Q
>T
where
Q= (15 )0+t =+ (1= 1)t =l (1-5) Sl =l

Jj=3

Hence ||y — z||; > I" with equality if and only if () = 0. However,

Q:O<:>tj:")/j,Vj€N

and Zj’;l t; = 1, whereas Z;’il 7; < 1. Therefore in the case that both ¢; > v, and £ > 79,

we have that ||y — z[[; > T

Sub-Case (b)(i3)(8): t1 < 7.

In this case
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ly = zlls = (m = t)b+ |(ty — M)e+ (2 — 2)bal + D 1t; — vl

> (71— t1)b+ (t — y)e+ (t2 — 72)ba + by Z(tj — %)
= —t)(b—c)+ b Z(t]‘ =)

= (1 —t)(b—c) +ba(1 —t1) +bo(0 — 14 71)
=(n—t1)(b—c+by)+ b6
> byd

> T

Hence, in the case where t; <y, ||y — 2|y > T.

Sub-Case (b)(11)(7y): t1 > 71, ta < 2, and t; — 1 < § + Yo.

Then as in Sub-Case (b)(i7)(«),

ly—z2[ >T+Q

>T

where

Q= (1= 550 ) 0ot =+ (1- 3 )=t (1-5) gm .

Hence ||y — z||; > I" with equality if and only if @ = 0.
Note that
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Q> (t —71){(b+0) - %} + (t2 —72){52 - g} + [b2 - g} i(tj —= %)

= (t —’)/1)[(54-0) _ﬂ N {62_2] - =
+ [52—gl[u—tl—@)_<1_5_%_%)]
Rl A B O S | R

— (t — ) {(H ¢) — bQ} +6by — T

Let Q" = (t1 —m) {(b +c) — b2:| + 0by — I'. Then

Q/ZO@(tl—’}/l)[(b—l—C)—bg] >T1 — by

0by — T
= (th —m) < 2

L Il NN
St T

Therefore Q = 0= Q' =0 = t; =9 + 2 + J. In this case,

T r 1
0=QZ(72+5){6+0—5}+[bz—g}(—wﬂ{l—g} ]§3|tj—7j|
F o
:72[b+c—b2]+5(b+c)—1“+{1_E]Z|tj_%,|
Jj=3
F o
=0-T+ |1~ jgzgltj—%‘l

F o0
= {1—5] > It =l
=3

> 0.

Hence,
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F o0
Q=0= {1—5}2\%—%\:0
j=3
:>t]:’}/],VJ23

Then,

b=1—t =) t;
j=3
=1-(m+7+d)-> %
=3

=1-6-) v
j=1

—1—5—(1-9)

=0

Therefore, in summary, we have that ||y — z||; > ' with equality when

y=Mm-+r+0)fi+0-fo+ Z;’;:g’yjfj, i.e. when y = hy,.

Sub-Case (b)(11)(0): t1 > 71, ta < y2, and t; — v1 > 0 + Yo.

Observe here that

ly =2l = (tr =) (b +¢) + (t2 = 12)b2 + Z It; =l
7=3

> (y2+0)(b+¢) — y2b2 + Z lt; — 75l
j=3

=0+ |t; =l
j=3

> T
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Therefore, due to the strict inequality in this calculation, in this case,

ly = z[h > T

Now, having covered all of the sub-cases, we see that h = h,, is the unique minimizer of

{lly — z|l1 : y € Kp}. Therefore, as in Sub-Case (a)(i), we see that Th = h.

Hence, K, has the FPP(n.e.), as desired. O

2.2 FIRST THEOREM

We now prove a theorem that generalizes the perturbation idea in Example 2.1.1 to an

arbitrary finite number of coordinates. We begin with the necessary definitions.

Fix n € N and let b,c € R such that 0 < ¢ < b < 1 and b+ ¢ < 1. Define f; :=
bey + cext1,Vk € {1,...,n} and f; = e, Vk > n, where (as usual) {e; : j € N} is the

standard basis for ¢!.

Next, we define the following closed, bounded, and convex subset of /1.

Ky = {x = thfj :each t; > 0 and th = 1}
J=1 j=1

Note that for @ = () jen € ' and z = Zjil @ [,
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|z||l1 = ||a1(ber + ceg) + -+ - + an_1(be,—1 + cey,) + an(be, + ceniq)
+ pg1€ng1 + Appoenio + oo |11
= |larbe; + (arc + agb)es + - - - + (n_1¢ + ayb)e,

+ (e + pg1)ent1 + Qnionio + - |11

= |a1|b+ |arc + agb| + - - - + |1 + @b + |ae + | + Z ||

j*n+2
<laal(b+ ) +aa(b+ )+ + |1 (b+c) + |an|(b+ ¢) + Z ;]
j=n+1
< Z\Ofﬂ
j=1
Also,
z]ly = laa|(b =€) + |ea|(b—¢) + - - |an|(b—c) + Z ||
j=n+1
>(b—c) Y lol.
j=1
Hence,

o oo
(b=0) > oy < llzfl <D oy
P =1

and so (f;)jen is an isomorphic ¢'-basic sequence for ¢'. Indeed, from above, (f;);en is
also an asymptotically isometric £*-basic sequence in ¢*.

Note that K. =co{f; : j € N}.

Theorem 2.2.1. The set K. has the FPP(n.e.).
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Proof. Let T' : K, ., — K, be nonexpansive. Then there exists (x(”))neN C K such that

|2 — T2z™ ||, — 0.

Without loss of generality, passing to a subsequence if necessary, there exists z € ¢! such

that (™ — 2 weak-star. Hence we have that z € Wh.e, where
n

W, = K_b,cw* _ {Z'yjfj :each y; > 0 and Z’yj < 1}.

=1 j=1
Case 1: z € K.

Note that the proof of Case 1 in Example 2.1.1 works here without any changes to show
that Tz = z.

Case 2: z € Wy, \ K.

Then z = > 72 v;f; such that each ; > 0 and » 372, v; < 1. Let
=1-%2 € 01)

Sub-Case 2(a): ;= < I 41,

Lemma 2.2.2. (Q) Let T := 2. For all y = > tifi € Ky,

ly =zl =T+ 0= (b+e) > Ity =l
j=n+2
Proof.

ly—zlh =U+ (1= (b+e) > [t;—

j=n+2
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where

U=1[tr—mlb+ D [t — 1)+ (=)0

Jj=2

+ (b = )e + (bost — Yosr) |+ (0+0) D |t — -

j=n+2
We must show that U > T'.
Let g1, 42, ..., q, be defined as follows.
b—qic+qic® .
w=1land q_; = ——2—2—Vjc{2 ...,n}.
q and ¢; i {2,...,n}

mmm2234*gpwjeu,”mh%e{ﬁaq.

Proof of Claim (%1). By induction (counting down), when j = n,

When j =n—1,

Cb—c+c?
dn—1 = b(l—c)

Hence,

g1 <1le=b—c+c*<b(l—c)
= b<bl—c)+c(l—c)=0b+c)(1—c)

<b+c

<
1—c ™

Note that this last inequality is indeed true. Also,

b
Qn—lzl—_c<:>b—6—|-622()2
= b—c>b—-c=b+c)(b—c)

<—1>b+c
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This last inequality is also true. Hence, ¢,_1 € [&, 1] )

%c, 1] for j € {v,...,n} (v > 2). To finish the proof of the

Now assume that ¢; € [1

claim, we show that this implies that ¢, € {&, 1] .
Note that

_b—qc+ g
Q-1 = b(l — C)

Then,

Qo1 <1l<=b—qc+qc®<b—bc

< be < qc(1 =)

= <gq

1—c ="

and this last inequality is true by our inductive hypothesis.

Also,

b
qv—1 Z 1 — b_QVC+QV02 Z b2
— C

(z)b—q,,csz—q,,CQ
< b—q,c> (b—q,c)c— bc+ b

< (b—qyc)(1 —c) > b(b—c)

<:>b—qyc> b
b—c ~ 1-—c¢

However, since ¢, < 1 by assumption,

Hence, q,_1 € [%, 1}. ]

Claim 2.2.4. (*2) FOT’j € {17 N 1}7 bQJ + C4j+1 = ﬁ
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Proof of Claim (%2). Fix j € {1,...,n—1}.

b— gj1¢+ g

b = )
QJ + Cg]+1 b(l _ C) + CQJJrl
b—gjpic+ g | (1 —c)egip
= +
1—c¢ 1—c¢
_b—gjnct qj+1¢° + @j1€ = g1
1—c¢
b
C1-—c¢c

Then, using these claims, we have that

U > |t —nlbg+ Y (t1 = v-1)e + (5 — 3)blg;

j=2
b b =
+ |(tn — Yn)c+ (tn—H - 'Yn—i—l)l 1 +t{7— Z ‘tj - PVJ"
—c 1—c) .
Jj=n+2
n—1 b
> 3000+ e+ 00 (0 )
b [o.¢]
1 Z (tj — )
c) .
Jj=n+1
b o
T 1_¢ Z(tj )
j=1
~bo
Cl-—c¢
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Note also that

h=yfi+vfo+ -+ m-1fn

) co d
+ (% + 1—_C>fn + (%+1 — :)fnﬂ + Z Vi fi € Ky

Jj=n+2

and

|h—z|1 =T.

Let Q := {y € Kpe:|ly—z[1 < F}. Note that h € @ and so @ # ¢. Note also that @

is closed, bounded, and convex, as well as T-invariant. By Lemma (Q), for all y € @,

L+ (L=(+e) > lty—wl<ly—zL <T,

j=n+2

which implies that ¢; = v;, Vj > n + 2. Hence,

QC {y:thfj EKb,citj=717V12”+2}

j=1

which is a norm compact set. Therefore () is norm compact, and so by Brouwer’s Fixed

Point Theorem, 7" has a fixed point in Q) C Kj .

Sub-Case 2(b): 2 +1 < 7.

Lemma 2.2.5. () Let T := (b+¢)d — (1 — (b + ¢))yng1. For all
y = Z;.il t]f] € Kbvc7

ly—zlh =T+ 1= 0+c) > Ity =l
j=n+2
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Proof.

n

@%J_YFQC+@j_7ﬂ4>

)

@jl_YjﬂC+@j_70#)

ly = 2l = [t — b+ (
j=2
X

j=n—+2

ti =

+ ‘(tn - 'Vn)c + (tn—H - ’7n+1)

n

22’t1—-7ﬂ6'+ (:E:

Jj=2

n \(tn e+ (st — )

rora( 3 Jou]) ra-era( 3 u-u)

Let

l]Z::|t1'—'71“)%-j£:

=2

(tjo1 —yj—1)e+ (t — %‘)b' + ‘(tn — M)+ (tns1 — Ynt1)

[e.o]

+(b+¢) Z

Jj=n+2

ti =

If we can show that U > " then we are done.
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U= ‘tl _71‘b+z
j=2

+ ‘(tn —Yn)C+ (tng1 — Ynt1)

(tj—1 — 1)+ (t — %’)b‘

+(b+c¢) Z

Jj=n+2

> (ti—m b+z< -1~ Yi-)e+ (b —%)b>
+( — )+ (tapr — %H0+®+d§§(%—ﬁ>

ti =

b—l— C (tn—i-]. - 'Vn-i-l) + (b + C) Z (tj - 7]’)
=+ {Z(tj =)+ 0= 0 Dt = )
= (b4 )0+ (L = (b+ ) (tnt1 — Vn1)

I
=2

I
=2

_l’_
+ (1= 0+ )yt + (1= (b+0)(tnt1 — Ynt1)
+ (1= (b+e))tnsr

vV
zj

Note here that

h=yfi+yfot+ - +Tm1fna

+ (711 + Yne1 + 5)fn + Ofn—H + Z ’}/jfj < Kb,c
j=n+2

and
Ih =2l =T
Let Q := {y € Kpe:|ly—2z[1 < f}. Note that h € @ and so Q) # ¢. Note also that @

is closed, bounded, and convex, as well as T-invariant. By Lemma (), for all y € @,

Pt@-(b+e) Y Ity -l <ly—zlh<F,

j=n+2
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which implies that t; = v;, Vj > n + 2. Hence,
Q< {y: D tifi € Kooty =;,V) > n+2}
j=1
which is a norm compact set. Therefore () is norm compact, and so by Brouwer’s Fixed

Point Theorem, 7" has a fixed point in Q C Kj . O]

2.3 A NEW APPROACH TO EXTENDING THE THEOREMS OF
GOEBEL AND KUCZUMOW TO A LARGER CLASS OF SUBSETS
OF /.

In Theorem 2.0.4, Goebel and Kuczumow showed that C' has the FPP(n.e.) precisely when
Ny is finite and nonempty. In our examples and in Theorem 2.2.1 in Chapter 3, we assumed
without loss of generality that Ny = {1,2,...,n} for some n € N. Note that these examples,
and this theorem allowed for perturbations of one “Ny-coordinate” (namely, n) with an
“N\ Np-coordinate” (n + 1).

In this chapter we will prove two theorems (Theorem 2.3.15 and Theorem 2.3.18) that
generalize Theorem 2.0.4 but do not include the examples of Chapter 3, nor Theorem 2.2.1
as special cases. This is because, in contrast to the material in Chapter 3, “Ny-coordinates”
are perturbed strictly amongst themselves. Also, in the following theorems, we are again
assuming that Ny is finite and nonempty, and we typically assume, without loss of generality,

that No ={1,2,...,v,v + 1} for some v € N.

To begin, fix v € N. Let by,by,...,b,41 € (—=1,1) and ¢1,¢9,...,¢,41 € (—1,1). Also
assume that Vj € {1,2,..., v+ 1},

|61 +[e;1 € (0, 1)

05| = lej| >0
Let
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fj = bjej + Cj€j+1,Vj € {1, 2,... ,V}
for1 = bupiepq1 + Cprren

szej,Vj ZV+2

Note that for all x = ZjEN @ fj,

llz]|1 = ||ea(brer + crea) + - - - + a(bye, + cveni) + a1 (byyienin + coyrer)

oo
+ > el

j=v+2

= |[(a1by + apqi1cu41)er + (aobs + aicy)es + (asbs + agca)es + - - -

00
+ (Oél,by + Ozl,_lcl,_l)el, + (Oél,+1bl,+1 + OéyCl,)€V+1 + Z ozjej||1
Jj=v+2

= lonby + ap16u11| + |abs + req| + -+ + |as1bu1 + ey

+ > oyl

Jj=v+2

Then

min (b = lex) D lay| < flall < ) ey

ke{l,..,v+1} P =

Note that (f;);en is an £*-basic sequence.

Let C C ¢! be defined by

C::@{fj:jeN}:{thfj:eachthOand th:l}
j=1 =1

Theorem 2.3.1. The set C' has the FPP(n.e.).
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Proof. Fix a nonexpansive map T : C' — C. Let (I(k))keN be an approximate fixed point
sequence for T, i.e., |Tz® — z®)||; —0.

Let W be the weak* = o (¢!, ¢y) - closure of C in ¢!. Then,

W:{Zﬁjfj:eachﬁjZOand Zﬁjgl}.
j=1 j=1

Note that By is weak*-sequentially compact. Hence, there exists a subsequence (z(*s )) jEN
of (z™")ey and z € W such that 29 — 2 weak*. Without loss of generality, 2(*) o

J
weak™*.

Case 1: z € C\
The same method used in Chapter 3 shows that 7z = z. (See Example 2.1.1).

Case 2: z € W\C.

In this case, z = » 72, v; f;, where each ; > 0 and » 72, v; < 1. Let
S 1=, € (0,1]

For all X = (A1, A2, ..., Apqq) with each Aj e Rand A+ Ao+ + A =1 (ie = A),
define

hs = (0 +M0) 1+ (2 + Xa0) fo+ -+ (W + M) fo + (ot + Xor1d) forr + D %k

j=v+2

>\

Let H := {h
Let

:XEA}.

Q::HHC:{hX:XEAand’yj+)\j620,Vj€{1,2,...,1/+1}}.
Clearly, Q D {hx:XEAand each \; zo} £ 9.
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Claim 2.3.2.

Q= {p =s1fi+safot -+ sufu+supifo + Z v f; : each s; >0

j=v+2
v+1 00
and Zsj+ Z fyjzl} =P
Jj=1 Jj=v+2

Proof. Q) C P is clear.
To show P C Q, let p € P. Define X = (A1, A2, o5 Augr) € RYT implicitly via:

’}/j+)\j528j,Vj6{1,2,...,V—|—1}.

So, each \; := 2= € R.

Note that
v+1 1 v+1 v+1
o= 5(Le- L)
j=1 j=1
1 v+1
5(1 - Z ¥ — Z%)
J=v+2
1 [e.e]
=5\ Z’Yj
7=1
1
4]
=1
Hence, p € Q.

Let y € C be arbitrary, i.e., y = Z;’il t;fj, where each t; > 0 and Z]Oil t; = 1. Then,
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ly =zl = || D tifi = > ki
X =1 1

= Z — ;) (bje; + cjejir) + (tug1 — Yog1) (bur€v1 + Cogren)

—i—Zt—%

Jj=v+2
v+1
= Z( —7;)bje; + [Z —95)¢i€j41 + (tug1 — Yog1)Cor1€1
= -1
) ot
Jj=v+2
v+1 v+1
=1t —v)bje; + > (tho1 — Yr—1)korx + Cop1(turr — Yor1)en
jfl k=2
5
j=v+2
v+1
=1> {(tj —75)b; + (tj-1 — %‘1)%‘1} ¢
j=2
+ {(tl = )b+ (tog1 — %+1)0u+1] et Y (t—)e
j=v+2 1
Hence,
v+1
ly = zlls = > (85 = )bj + (i1 — ¥-1)¢j1
j=2

e

+ ’(tl —71)b1 + (to41 — Yos1)Cot1
j=v+2

Claim 2.3.3. Suppose that theres exists j > v + 2 such that t, > ~y,. Then there exists
we C, e, w=3" 0;f; such that each 0; > 0 and Y72, 0; = 1, for which o; < v, for

allj >v+2, and ||lw—z|1 < |ly — 2|

o1



Proof. Let

A:{kzy+2tk>’)/k}

Note that A # ¢ since p € A.

Let 7:= 3 ca(te — %) > 0, and let

(Uj)jEN = <t1 + 7, t27 cee 7tuatu+17 Op4+2,0p43, - )7

where for all k € A, oy, := 7, and for all k € B := F\A, oy := t, where F':={v+2, v+
3,...}.

Note that for all k € B, t;, < .. So, for all k > v+ 2, 0, < .. Also, for all j € N,
oj > 0. Further,

v+1

Za]—tl—i—T—i-Zt + Z Ok

k>v+2
v+1

:T—I—Zt +Zak+20k
keA keB
v+1

= > (b — ) +Zt Y WYt
keA keA keB
v+1

= > it )t
k>u+2 j=1

— th
j=1

= 1.
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|w—zlly = [(t1 +7 = 71)b1 + (tor1 — Yor1)Cos1]

+ |(t2 — ’}/2)172 + (tl + 7 — ’yl)Cl|

v+1
+Z| = 3)b; + (-1 = Yj-1)cj-1]
+ Z |0 = 51

Jj=v+2

Note that Y372 ., o — vl = Y iep 1t — il
Then,

|w — 2|1 < [(tr —71)b1 + (tug1 — Vog1)Cogr| + TI01] 4 (T2 — 72)b2 + (t1 — 71)ea| + Ted |
v+1

+Z| — )b + (tim1 — vi-1)ci- 1|+Z|t =l
J=v+2
—Z|tj—7j|-

jEA

So,

Jw=z[li < |ly = 2[li + 7([b1] + |en]) — Z(tj =)

JjEA
= lly =zl + (o] + [er| = D)7

<y ==l

]

Claim 2.3.4. Suppose that [t; < v;,Vj > v+ 2](*) and that there exists j > v+ 2 such that
ty < Yu. Then there exists p € () such that

lp = 2l < lly = 2l
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Proof. Let E := {k > v+2:t, <w}. Note E # ¢sincepp € E. Let 7:= >, p(ve—1tx) > 0.
Note that an arbitrary p € ) has the form p = Z;’;l n;f; such that each n; > 0,
doomy =1, and m; =, Vi > v +2.
Define

(n])jGN = (t1<]- - 5)7{:2(]— - 6)7 s 7t1/(1 - 6)7tu+1(1 - 8)7ryl/+27711—|—37 s Yy e e ')7

where ¢ € [0, 1) is fixed (to be chosen later).
Note that for all j € N, n; > 0.
Further,

o) v+1 o)
Yo=Y t(l—e)+ >
j=1 j=1 =42

v+1 oo
=(1—e)) ti+ > v
j=1 J=v+2

We want 37 m; = 1. This is true if and only if

(1—5)(1— i tj)+ i v =1

Jj=v+2 Jj=v+2
1-3% ;
1— £ = Zgu+2 7]
1 - Zj:u—i—Q t]
Note that
1= ) 4=21=> 3=0>0
j=v+2 7=1
Also,

j=v+2 Jj=v+2
PRI
j=v+2 j=v+2



By hypothesis (%), statement (1) is true. Therefore,

0<d<1-— i%g— itj

j=v+2 J=v+2
is a true statement.
Consequently, 1 — ¢ above is well-defined and 1 — ¢ € (0, 1].

Hence ¢ € [0,1) and

e=1-— (1_2?;/“%)

1- Zj:y+2 tj
_ 2 )
- Z_Cj)o:y—i-Q t]

Hence,

e — ZkeE(%ﬂ - tk)
- v+1
Zj;rl tj

I
Z]V; t

and so € € (0,1).
Then,
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[P =2l =[(t1(1 = &) = )br + (tos1(1 =€) = Y1) Cu]
v+1

+ Z [(t;(1 — &) — ;)b; + (tj_1(1 — &) — vj_1)ci_1]

+ Z v =l

j=v+2

<|(t1 —71)b1 + (tu1 — Yor1) o] + tig|by| + turielcva]

v+l v+1
+Z| —)bj + (tj—1 — vj-1)cj- 1|+Zt5|b|
j=2
v+1

+ th,1€‘6j,1‘
j=2
v+1 v+1
Cy—ch— 3 I —%|+e[2t rb\+2tk|ck@

Jj=v+2
v+1

= lly =2l =7 +e X t;(Ib5] + leg)

j=1
v+1

-
<y =zl —7+ Z;,Tt 1<m31§r1(‘bj’ + lejl) j;tj

= lly =zl + r(max{[b| + led, s [boa] + feval} = 1)

<ly = =

Claim 2.3.5.

Jo = inf ||y — > inf ||p — =:J
¢ = inf lly =2l 2 inf fIp — 2l = Jo

and

lyo — z|ly = inf |ly —clli = yo € Q[ (1).
yeC
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Proof. First note that by Claim 2.3.3 and Claim 2.3.4,

lyo — 2|1 = inf |ly — cli = yo € Q.
yeC

To show that Jo > Jg, fix y € C. If y € Q, then ||y — z|[1 > ||y — z||1. So suppose that
y ¢ Q). Then there exists p > v + 2 such that ¢, # ,.

Case 1: There exists > v + 2 such that ¢, > ~,.
By Claim 2.3.3, there exists w € 3 °° | 0;f; € C such that

loj <7,V5 =2 v+2]and |ly — z[ly > [lw — 2.

If 0; = ~; for all j > v+ 2 then w € Q. Otherwise, there exists ¥ > v + 2 such that

by < Yy-
By Claim 2.3.4, there exists p € () such that

[w—z[[1 > [[p = 2|1
= |ly =2l > [lp — 21
Case 2: For all p > v +2,t, <,.
By Case 1, there exists ¢ € () such that

ly = 2l = [lg = [l

In all cases, Yy € C, there exists p € ) such that

ly =zl = llp = 2l

Hence, Jo > Jg. O
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However, @) is a nonempty, norm compact (convex) subset of ¢!. Thus, there exists

po € Q C C such that

ly — zll1 > |lpo — 2|1, Vy € C.

Let

Q:={yeC:ly—=z<llpo—zl}.

Then by (1) in Claim 2.3.5, Q C Q C C.
Note that @ is a closed, bounded, and convex set in ¢' that is nonempty and norm

compact. However, since

r(y) =r(2) +ly — zll1, vy € €',

we have that r(Ty) < r(y), Yy € C. Therefore, y € Q = Ty € Q.
Thus 7 maps Q into @ and so by Brouwer’s (or Schauder’s) Fixed Point Theorem, there
exists v € Q C @ C C such that Tv = v. O]

In our next theorem, we show that we can remove the restriction that
Let (bj)jen be a bounded sequence of real numbers. Assume that there exists F¥ C N

that is finite and nonempty such that

J

where (¢;);er is a sequence of real numbers such that

b~ les| > 0.Yj € .

For what follows, we may assume without loss of generality, that
F={1,2,...,v+ 1} for some v € N.
Let
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fj = bjej + Cj€j+1,Vj € {1, 2,... ,V}
for1 = bupiepq1 + Cprren

fj = bj@ﬁVj Z V+ 2

Note that for all x = ZjEN @ fj,

llz]|1 = || (brer + crea) + - - -+ a(bye, + cveni) + a1 (byyienin + coyrer)

+ > abeslh

j=v+2

= |[(a1by + apqi1cuy1)er + (aobs + aicy)es + (asbs + agca)es + - - -

+ (Oél,by + Ozl,_lcl,_l)el, + (Oél,+1bl,+1 + OéyCl,)€V+1 + Z ozjbjej||1
Jj=v+2

= lonby + ap16u11| + |aobs + req| + -+ + |aws1bur1 + ey

+ ) oyl

j=v+2

Then

min bl — |c ol <zl < suplb o
ke{l,...,u+1}<| k= | k|)j€ZN| il <zl < keg| k|j€ZN| il

and so (fj);en is an £'-basic sequence.

Let C C ¢! be defined by

C:=co{fj:jeN} = {thfj:eachtj >0 and thzl}.
j=1 j=1

Theorem 2.3.6. The set C' has the FPP(n.e.).
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Proof. Fix a nonexpansive map T : C' — C. Let (I(k))keN be an approximate fixed point
sequence for T, i.e., |Tz® — z®)||; —0.

Let W be the weak* = o(¢*, ¢p) - closure of C' in ¢'. Then,

W = {Zﬁjfj :each 3; > 0 and Zﬁj < 1}.
j=1 Jj=1

Note that By is weak*-sequentially compact. Hence, there exists a subsequence (z(*)) jeN

of (z)en and z € W such that *) — 2 weak*. Without loss of generality, 2(*) 0
j

weak™*.

Case 1: z € C.

Then as before, Tz = z.
Case 2: z € W\C.

In this case, z = Y % v; f;, where each ; > 0 and } 7%, v; < 1. Let

5= 1- 52,7 € (0,1]
For all X = (A1, A2, ..., Auqq) with each Aj e Rand A+ Ao+ -+ A =1 (ie = A),
define

hy = (n+X0)fi+ 2+ ) fot -+ (w+ N + (Vo1 + Aog1d) frgr + Z Yl

Jj=v+2

Let H := {hX D= A}.
Let

Q::HOC’:{hX:XEAand’yj—l—)\j(SZO,VjE{1,2,...,V+1}}.

Clearly, @ 2 {hX : X € A and each Aj > O} # .

As in the previous section,
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Q

v+1

and Z 55 +
j=1

Let y € C be arbitrary, i.e., y = >, t;f;, where each t; > 0 and 3 77,

ly = 2llx

+ i(tj

Jj=v+2
v+1

j=1

£3 0
Jj=v+2
v+1

j*l

N0
j=v+2
v+1

2

j—2

0

Jj=v+2

Hence,

{p =511+ safa +

Z tif; — Z%‘fj
j=1 j=1 1

Z(tj -
2
>t

>

R Syfz/ + Sy+1fy+1 -+ Z "}/jfj : each Sj > 0

Jj=v+2

Y =1

j=v+2

t; = 1. Then,

1

¥4) fi
) — Yo41) (byg1€v41 + Cogrer)

i — ) be; + ¢iejn) + (foa

—7;)bj€;

1

v

>t

J=1

—;)bse; + { = )it (torr = Yoar)eien

—7;)bje;

1
v+1

—;)bje; + Z(tk—l — Yi—1)Ch—1€k + Cog1(tur1 — Yog1)e1
k=2

—; be]

1

[(tj —)bj + (tj-1 — %’—1)%’—1} ej + [(tl —Y1)b1 + (tys1 — Yor1)Cos1 | €1

— bej

1
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v+1

ly = 2l =D |t = 73)bs + (8521 = v-1)eia| + (= 7)b1 + (fss — Yos1) i
=2
+ > 1t = )bl
Jj=v+2

Claim 2.3.7. Suppose that theres exists j > v + 2 such that t,, > ~y,. Then there exists
w e C,ie, w=73" 0;f; such that each o; > 0 and » 2 0; = 1, for which o; < ;, for

all j > v+2, and |lw— =z <y — 2.
Proof. Let

A:{kzy+2tk>’}/k}

Note that A # ¢ since u € A.

Let 7:= 3 ca(te — %) > 0, and let

(O-j)jeN = (tl + T, t27 s 7tV7tV—i—1a Opy4+2,0p43, ... )7

where for all k € A, oy := v, and for all k € B := F\A, oy := t, where F':={v+2,v+
3,...}.
Note that for all k € B, t;, < ;. So, for all k > v+ 2, 0, < .. Also, for all j € N|

oj > 0. Further,
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v+1

Zaj_t1+7+2t + > o

k>v+2
v+1
—T+Zt +) on+ Y on
keA keB
v+1
= "t — ) +Zt Y >t
keA keA keB
v+1
= >ttt
k>v+2 Jj=1
:th
j=1

=1.

|lw—zll1 = |(t1 +7 —71)b1 + (tor1 — Vos1)Co1]

+|(ta — y2)ba + (t1 + 7 — )
v+1
+Z| —Y)bj + (tj—1 — Vj—1)¢j1]

+ Z (o

j=v+2

Note that > 72, [(0; — v)bjl = > _icp |t — 75)bsl-
Then,

lw = 2|y < |(tr = 71)b1 + (tug1 — Yos1)Corr| + TIb1] 4 [(T2 = 72)b2 + (11 — 71)c]

v+1
+T|01!+Z! —)bj + (tj—1 — v-1)¢5- 1!+Z|t — 411651
Jj=v+2
= It = llbsl-

jeEA

So,
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lw = 2ll < [y = 2l + 7 (o] + lea) = Yt = 7:)by]

JEA

=y =zl + D> (&5 =) (bu] + lea] = [b51)

JEA

<y = =l

]

Claim 2.3.8. Suppose that [t; < v;,Vj > v+ 2|(*) and that there exists jp > v+ 2 such that

t, < vu. Then there exists p € QQ such that

lp =zl < lly = 2]l

Proof. Let E:={k >v+2:t, <} Note E # ¢ since p € E. Let
T = ZkeE(fYk - tk) > 0.
Note that an arbitrary p € @ has the form p = Zj‘;l n;f; such that each n; > 0,

domi =1 and n; =;,Vj > v +2.
Define

(nj)jEN = (tl(l — E),tg(]_ — 6), Ce ,t,/(l — 8),t,/+1(1 — 6)7’}/V+2,’7,,+3, ey Yy o - .),

where € € [0, 1) is fixed (to be chosen later).
Note that for all j € N, n; > 0.
Further,

] v+1 [e'9)
o= t(l—+ >
J=1 j=1 j=v+2
v+1
(1—¢) Zt + Z Vj
j=v+2

We want » 72, n; = 1. This is true if and only if

64



(1—5)(1— i tj)+ i =1

j=v+2 J=v+2
1->77 ;
l—¢= Zgu+2 "YJ
1- Zj:y—i—? t]
Note that
j=v+2 j=1
Also,

D S I

j=v+2 Jj=v+2
=] > 4= afm
j=v+2 Jj=v+2

By hypothesis (%), statement (t) is true. Therefore,

]:y+2 J:V—"-Q

is a true statement.
Consequently, 1 — e above is well-defined and 1 — ¢ € (0, 1].

Hence € € [0, 1) and

e—1— (1_Z;.iy+27j>

- Zj:u+2 t]
D ).
1 - Z;.;V—FQ tj

Hence,
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B ZkeE(% — 1)
- v+1
Zjil tj

T
o v+1
Zjil t
and so € € (0,1).
Then,

[p—2[li = |[(t:(1 — &) = 71)b1 + (tos1(1 — €) = Yop1)Co1]
v+1
+ Z (£ (1 = &) = 9)bj + (tj—1(1 — &) = 7j-1)¢51]

+ Z (75

Jj=v+2

<|(t1 —y1)b1 + (tu1 — Yor1)cvqa| + tig|by| + tusielcoa]|

v+1 v+1
+Z| —)bj + (tj—1 — vi—1)¢j- 1‘+Zt€‘b|
7j=2

V—',—l

+ Y tiaelei |
=2

[e'e) v+1 v+1
- 3 |<tj—wbﬂ+e[2tj|bj\+2tk|ck@
Jj=v+2 Jj=1 k=1
v+1
= lly =2l =D (v — te)lbel + 2 > t5(1b] + ;1)
kEE j=1
v+1
< _ — _ .
<y - 2l k;(% tk>|bk|+zmt Jnax ([b] + ) ;t

~ = <l = X 0x = el + 7 e (1 + 1))

keFE
:uy—zerm—m( max <\bj|+|cj|>—rbkr)

1<j<v+1
keE

<ly = =
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Claim 2.3.9-
= 1 - > ] - =

and

lyo — z|ly = inf |ly —clli = yo € Q| (1).
yeC

Proof. First note that by Claim 2.3.7 and Claim 2.3.8,

lyo — 2[[1 = inf |ly — cllh = yo € Q.
yeC

To show that Jo > Jg, fix y € C. If y € Q, then ||y — 2|1 > ||y — z||1. So suppose that
y ¢ Q. Then there exists ;1 > v + 2 such that ¢, # ,,.

Case 1: There exists 4 > v + 2 such that ¢, > ~,.
By Claim 2.3.7, there exists w € 3 77, 0;f; € C such that

loj <75,V 2 v+ 2] and |ly = z[ly > [Jw — 2|
If 0; =, for all j > v+ 2 then w € (. Otherwise, there exists 1) > v + 2 such that

tw < Vap-
By Claim 2.3.8, there exists p € @) such that

lw =2l > {lp = z]h

= lly =zl > [lp = [l

Case 2: For all p > v +2,t, <7,.

By Case 1, there exists ¢ € () such that

ly = 2l = [lg = =l
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In all cases, Vy € C, there exists p € () such that

ly =zl = llp — 2l
Hence, Jo > Jg. O

However, @) is a nonempty, norm compact (convex) subset of ¢!. Thus, there exists

po € Q C C such that

ly — 2lli = [lpo — 2ll1, Vy € C.

Let

Q:={yeC:ly—=zi<llpo— =}

Then by (1) in Claim 2.3.9, Q C Q C C.
Note that Q is a closed, bounded, and convex set in ¢! that is nonempty and norm

compact. However, since

r(y) =r(2) +lly — zll1, vy € ¢,

we have that r(Ty) < r(y), Vy € C. Therefore, y € Q = Ty € Q.
Thus 7 maps Q into Q and so by Brouwer’s (or Schauder’s) Fixed Point Theorem, there
exists v € @ C @ C C such that Tv = v. O]

Now we give an example to demonstrate that the class of sets we have considered in

Theorem 2.3.1 and Theorem 2.3.6 is different from the class of sets in Theorem 2.0.4.

Example 2.3.10. Let (b;);en be a bounded sequence of positive numbers and (¢;)jeq1,....v4+1}

be such that for all j € {1,..., v+ 1},

bj‘F’Cj’ <1

bj — |Cj| > 0.
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Define f; = bjej +cjejq for j € {1,...,v}, fus1 = buy1€p41 +Corre1, and f; = e, for all

J > v+ 2. We have seen previously that (f;);en is an ¢*-basic sequence. As before we define

C = {thfj :each t; > 0 and th = 1}.
j=1 j=1

Also, recall that Goebel and Kuczumow sets in Theorem 2.0.4 have the following form.

For (di)ren such that 0 < dj, < 1 for all k € {1,...,v + 1}, define

gkzdk6k7 Vke{l,,l/—f‘l}

g =€, Vk>v+2.

Then

D= {Zskgk:each s, > 0 and Zsk=1}.

k=1 k=1

We wish to show that there are examples of sets C' that are not equal to some Goebel

and Kuczumow set D.

Assuming that v = 1, fix a set C' as above. If C' = D for some set D as above, then

C C D. Therefore we have
fi=> sug.
k=1
This implies that by = s1dy, ¢1 = Sads, and s, = 0 for all £ > 3. Therefore,
bhoa_y
di  d
Similarly,

fo =" urgr.
k=1

which implies that by = usds, co = u1dy, and ug = 0 for all £ > 3. Hence
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e by
dy  dy
Let ¢y = d;! and ¢; = d;*. Then we have the following system.

by +cige =1

coqq + baga = 1.

The solution of this system should be such that 0 < dy,ds < 1, i.e. q1,q2 > 1. From

linear algebra, the solution is

q1 1 by — ¢

q2 biby = c1c2 |, — ¢

(Note that biby — c1c0 > 0).
However, by making a choice of by, bs, ¢q, co such that ¢; < by < ¢y < by we see that this
forces ¢ > 0 and ¢» < 0, a contradiction. Therefore such a set C' cannot be written as a

Goebel and Kuczumow set D.

Next fix a Goebel and Kuczumow set D. Suppose that D C C' for some C' as above.
Then

g1 =diey =t fi+tafo+tsfs+---

= t1(bieg + c1ea) + ta(boeg + coe1) + tzez + - - .

Also,

g2 = daey = wy fi1 + wafo +wsfs+ -

= U)1<b1€1 + 0162) + ’wg(bgeg -+ 6261) + wses 4+ e
Hence t; = w; = 0 for all j > 3, and
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dy = t1by + taco
0 =ticy + taby
do = wycy + wabsy
0 = wiby + wacs.

However, if for example by, by, ¢, co > 0, this implies that ¢t; =t = 0 and wy; = wy = 0,

a contradiction.

Therefore, there are examples of sets C' that are not subsets of any Goebel and Kuczumow

set D, and also examples of sets D that cannot be subsets of a set that has the form C.

Next we further generalize Theorem 2.3.6.

Let (b;)jen and (c;);en be bounded sequences of real numbers such that

bi] = lej] > 0, € .

Assume that there exists F' C N that is finite and nonempty such that

0 < T = max(|bj] + [e;]) < [bx] = lex], ¥k € N\F
J

b — les| > 0.) € F.

For what follows, we may assume without loss of generality, that
F={1,2,...,v+ 1} for some v € N.
Let

fj = bjej + Cj€j+1,Vj € {1, 2,... ,V}
for1 = bupiepq1 + Ccprren

fj = bjej + cjejH,Vj 2 1% + 2
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Note that for all x = ZjeN @ fj,

|zl = [Jaa(brer + crea) + - - - + an(bye, + cepi1) + apir(byrren1 + Coprer)

+ > aj(bje; + i)l

Jj=v+2

= |[(a1b1 + apr1cu41)er + (aabs + aycy)es + (agbs + aaca)es + - -

+ (auby + au—lcu—l)ey + (au+1b1/+1 + aycy)ey+1 + (au+2bu+2)ey+2

+ > (azb; + ajoaci1)elh

j=v+3
v+1
= |a1by + appiC| + Z lajbj + oj1¢j—1| + |y y2byio]
j=2
oo
+ Z ’Oéjbj +&j,10j,1’
j=v+3

Then

min (Ibs] = jexl) D layl < llzly < sup (x| + lexl) D lay|

ke{l,...,v+ - X
{ JEN JEN

and so (fj);en is an £'-basic sequence.

Let C C ¢! be defined by

C:=co{fj:jeN} = {thfj:each t; > 0 and thzl}.
=1 =1

Theorem 2.3.11. Suppose that
(®)VEk > v+ 2, b1 > 0 and ¢, < 0] or [ber1 < 0 and ¢ > 0]

If T : C — C s a nonexpansive map, then T has a fixed point in C.
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Proof. Fix a nonexpansive map T : C' — C. Let (I(k))keN be an approximate fixed point
sequence for T, i.e., |Tz® — z®)||; —0.

Let W be the weak* = o(¢*, ¢y) - closure of C' in ¢'. Then,

W—{Zﬂjfj:eachﬁjEOand Zﬁjgl}.
j=1 j=1

Note that By is weak*-sequentially compact. Hence, there exists a subsequence (z(*)) jEN

of (2)en and z € W such that ) — 2 weak*. Without loss of generality, 2(*) 0
J

weak™*.

Note that if z € C, then as we have seen previously, Tz = z. Assume that z =

> vifi € WAC.

For all X = (A, A2y ooy Apqr) witheach A; e Rand A\ + Ao+ -+ A1 =1 (e = A),
define

hy=m+M0)fi+ e+ ) fot -+ 0w+ N0 + (Vo1 + Ag1d) forn + Z Vit

j=v+2

Let H := {hX Y= A}.
Let

Q::HHC’:{hX:XGAandvj—l—)\j(SZO,Vje{1,2,...,1/+1}}.

As we have shown previously,

Q: {p:81f1+82f2+"'+Syfy+8y+1fy+1+ Z ’ijj : each S >0

j=v+2
v+1 00
and Zsj—i— Z v = 1}
j=1 j=v+2

Let y = > 2, t;f; € C be arbitrary. Note that
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v+1

ly = 2l = |(ts = 1)b1 + (b1 — Yorr) | + D [t — )b + (21 — vj-1)ej—1]
=2

+ (e = Yos2)boral + Y [t =73 + (-1 = 35151
Jj=v+3

Claim 2.3.12. Suppose that theres exists p > v + 2 such that t, > v,. Then there exists
we O, de, w=3" 0;f; such that each o; > 0 and 3 2 0; = 1, for which o; < ~;, for

all j >v+2, and ||lw—z||; < |ly — 2|

Proof. Let

A= {kZV+2tk>’}/k}
Note that A # ¢ since u € A.
Let 7:= 3, ca(te — %) > 0, and let

(Uj)jEN = (tl + T, t27 G 7tl/7tV+1’ Ov4+2, 0043, -+ )7
where for all k£ € A, oy := v, and for all k € B := F\A, oy := ty, where F:={v+2,v+
3,...}.

Note that for all k € B, t;, < 4. So, for all k > v + 2, o, < .. Also, for all j € N|
oj > 0. Further,

v+1
Zaj —t1+T+Zt + Z Ok
k>v+2
v+1
—T—I—Zt +Zak+20k
k€A keB
v+1
= > (b — ) +Zt Y WYt
k€A keA keB
v+1
S tet )t
kE>v+2 j=1
tj
1

Il
<.
[

Il
—_
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Let w =37, o;f;. Then,

lw— =zl =|(ti + 7 —7)bi + (tvs1 — Yosr1)cvsa| + [(E2 — 2)b2 + (81 + 7 — 1) |

v+1
+ Z (85 = 7)bs + (L1 — V-1l + [(0v12 = Yws2)bosa|
+ Z (05 — )b + (-1 — Yj—1)¢j—1]

j=v+3

Using the triangle inequality along with the definition of o; for j € A versus j € B,

lw— 2|1 < [(t1 —71)b1 + (tos1 — Yor1)Cos1| + | (E2 — ¥2)b2 + (81 — 1)

v+1
+ Z (8 = 73)bj + (t-1 — vj-1)¢j—1] + [(Gur2 = Yor2)bia]
+ Z = %)bj + (tj-1 — Vj-1)¢j1]
j=v+3
J,j—1eB
+ > G =l + D =)
j=v+3 Jj=v+3
JjEB,j—1€A jEAj—1€B
+ 7(b1| + |ea])

Hence, if () = ||y — 2]l — [w — =]}, then
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() = =7([ba] + |ea])

+ | (tva2 — Yor2)bug2| = [(Tvr2 — Yot2) bt

+Z‘ —)bj + (tj—1 — vj-1)cj-1]
Jj=v+3
— > = )b+ (1 = v1)eil
Jj=v+3
jj—1€B
— >t — )bl
Jj=v+3
jeB,j—1€A
D D (R 7y ]
j=v+3
jEAj—1€B
v+2
—7(|ba + lea) + Y 1t —7)bs
Jj=v+2
JjEA
+ Z —7)bj + (tj—1 — vj-1)¢j-1|
Jj=v+3
Jj—1€A
+ > |1 = )b+ (o — o)l — (5 — %‘)qu
j=v+3 -
JEB,j—1€A
+ | = b+ (=0l = (o - %’—1)01‘—1|]
j=v+3 -
jeEAj—1€B

Now since b; and c¢;_; have opposite signs for each j, we can evaluate the absolute values

in each of the last two sums. Doing so, we obtain the following.
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v+2

ly = zlls = llw = 2l = =7(ba] + ler)) + > 1t — )b
Jj=v+2
jeEA

+ Y 1t = )b+t — v-1)eil
j=v+3
j,j—1eA

+ > o1 = Y-l

j=v+3
jEB,j—1€A

+ >t — )bl
j=v+3
jeAj—1€B

Using the reverse triangle inequality,

v+2

ly = 2l = llw = 2l = =7(lbu] + leal) + Y 1t = 73)bsl
Jj=v+2
jEA

+ > = bil = D (o1 — 1)l

]:y+3 j:l/+3
j,j—1€eA j,j—1l€A

+ >t —v-)el

Jj=v+3
jEB,j—1€A

+ )t = )bl

Jj=v+3
jeA,j—1€B

Noting that

oo

> (o = vi-1)ej—a] = 0

j=v+3
jEB,j—1€A

and
oo

> At =gl < Y |t —v-1)e]

j:y+3 j=l/+3
ji—1€A j—1€A

and combining
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St — b+ > 1t — )bl

]:1/—‘,—3 ]:V+3
7,J—1€A jEA,j—1€B

we observe that

ly =zl = lw = 2]y = =7(|b1] + [er])

v+2 o)
+ 31t = b+ D It — )bl
j=v+2 j=v+3
jeA jeA
+0— D |t = v-1)¢i]
j=v+3
j—1eA

Hence,
= 2l = oo = ll = = ( 3 =3 ) Gl + e
keA
+ >t = bil = Y 1tk — el
]:1/—‘,—2 k=v+2
jeA keA
> Z(tk — k) {|bk| — el — f]
keA
>0
Therefore, ||y — z[|1 > ||w — z||1, as desired. O

Claim 2.3.13. Suppose that [t; < v;,Vj > v+ 2|(x) and that there exists jp > v + 2 such
that t, < v,. Then there exists p € () such that

lp = 2l < lly = 2l
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Proof. Let E = {k >v+4+2 .t < Pyk}. Note that E # ¢ since p € E. Let 7 :=
> rep(ys —tr) > 0. Note that an arbitrary p € @ has the form p = 377, 7, f; such that
each n; > 0 and 7% n; = 1, and 1y = v, Vj > v + 2,

Define

Ob)jGN = (tl(l —-€>,t2(1 —-8),...,ty(1 —'8),ty+1(1 —»6),7@+2,7p+3,...,7%,...)

where ¢ € (0,1) is fixed, and to be chosen later.

Note that Vj € N,n; > 0. Also

0 v+1
IS SRR ot
j=1 j=v+2
v+1
) 3R o
j=v+2
We want » 7%, n; = 1. This is true if and only if

1-a(1- 2 4)+ ¥ -t

Jj=v+2 j=v+2
1 P 1 _>§:j V+276
1 _-23] V+2t
Note that
1— Z v >1— Z%_5>0
Jj=v+2
Also,

1-— j{: Vi f;l - j{: tj

j=v+2 Jj=v+2
R PIED IR
Jj=v+2 j=v+2

By hypothesis (), statement (f) is true. Further, 3p > v + 2 such that ¢, < ~,.

Therefore,
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0 <:5j§ 1-— ﬁii v < 1-— j;i tj

Jj=v+2 Jj=v+2

is a true statement.
Consequently, 1 — ¢ above is well-defined and 1 — ¢ € (0, 1).
Hence € € (0,1) and

e=1-— (1_2;.1”“%)

1 - Z;iu+2 t
(1)
B 1 - Z;.;quQ tj
_ T
B 1 - Z;o:u+2 tj
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Hence, p € Q). Also,

lp—zlli = [(t1(1 — &) —71)b1 + (L1 (1 =€) — Yor1)Cvral
v+1
+ Z |(t(1 = &) = 9)bj + (tj—1(1 — &) = 7j-1)¢j-1]

+ 1% -
(o2 = Yor2)buszl + D (1 = 1)b; + (v-1 = Yi-1)j1l
Jj=v+3

= ’(tl(l - 5) - 71)b1 + (tl/-i-l(l - 5) - ’7V+1)CV+1|
v+1

i Z [(t;(1 — &) — ;)b; + (tj_1(1 — &) — vj_1)c;_1]

< _
<|(t1 —71)b1 + (tut1 — Yor1) o] + tig|by| + turielcu]|

v+1
v+1
_l’_
Z| — )b + (i1 — vi-1)ci- 1|+Zt5|b|
v+1 ~

+ th_16|6j_1|
j=2
= ||y - Z||1 - |(tu+2 - ’Vu+2)bu+2|

- Z (8 = 5)bj + (-1 — j-1)¢5-1]

J=v+3
v+1 v+1
+€[th!bj\ + Ztklck@
Jj=1 k=1
< ly = 2[l1 = [(to42 — Yor2)bosa|

- (jif—g D(tj = 7i)bsl = [(tj-1 — W_l)Cj_l'D

+e> (Ibjl + Ie; Dt
=1
<lly—zlh— D It —13)b;

Jj=v+2
+ > [t — )]
k=v+2
+ T |: I/Jr].
S, ze{gluiitl}('bl' - |Cl|)} th
j=1
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Hence,

[e.e]

lp—zllh < ly — 2] — Z (Ve — tr) (0] — [ckl)
k=v+2
£ )l
keFE
=y —zllh = > (v — te) (1bel = lexl) + D> (9 — )T
kel keE
el — e~ ) [|bk| el - r]
keE
<|ly — 2|l
O
Claim 2.3.14.
= inf — > inf — =:
Jo ;gCHy 2|l > It lp = 2l =: Jg
and

lyo — 2|y = inf |ly —c|li = yo € Q| (1).
yelC

Proof. First note that by Claim 2.3.12 and Claim 2.3.13,

lyo — 2[[1 = inf |ly — cllh = yo € Q.
yeC

To show that Jo > Jg, fix y € C. If y € Q, then ||y — 2|1 > ||y — z||1. So suppose that
y ¢ Q. Then there exists ;1 > v + 2 such that ¢, # ~,,.

Case 1: There exists y > v + 2 such that ¢, > 7,.
By Claim 2.3.12, there exists w € 7%, 0;f; € C such that

loj <75,V =2 v+2]and |ly — z[ly > [Jw — 2|
If 0j =, for all j > v+ 2 then w € (. Otherwise, there exists 1) > v + 2 such that

tw < Vap-
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By Claim 2.3.13, there exists p € () such that

lw = 2lls > [lp = zlh

= lly = 2l > [lp = =[x

Case 2: For all p > v +2,t, <,.

By Case 1, there exists g € () such that

ly =zl = llg = =l

In all cases, Vy € C, there exists p € () such that

ly —zlli > llp — 2|
Hence, Jo > Jg. ]

However, @) is a nonempty, norm compact (convex) subset of ¢!. Thus, there exists

po € Q C C such that

|y =zl = [lpo — z[[1, Yy € C.
Let
Q:={yeC:lly—=zlh <lpo— 2}
Then by (1) in Claim 2.3.14, Q C Q C C.

Note that Q is a closed, bounded, and convex set in ¢* that is nonempty and norm

compact. However, since

r(y) =r(z) +lly — zll, vy € €'

we have that r(Ty) < r(y), Yy € C. Therefore, y € Q = Ty € Q.
Thus 7' maps Q into Q and so by Brouwer’s (or Schauder’s) Fixed Point Theorem, there
exists v € Q C @ C C such that Tv = v. O
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Note that in Theorem 2.3.11 we need special assumptions about the signs of each b; and
c;. We now show that we may remove those restrictions.
As in Theorem 2.3.11, let (b;),en and (¢;);en be bounded sequences of real numbers such

that

byl = le;| > 0,¥j € N.

Assume that there exists F' C N that is finite and nonempty such that

0< f = IIléig(ﬂb]’ + ’Cj’) < |bk| — |Ck|,Vk € N\F
J

b — les| > 0.) € .

For what follows, we may assume without loss of generality, that
F=1{1,2,...,v+ 1} for some v € N.
Let

fj = bjej + Cj6j+1,Vj S {1, 2,... ,V}
for1 =bupi€41 + Cpren

fj = bjej + Cj€j+1,Vj Z v+ 2.

Note that as before, Vo = ZjeN a;f;,

min (|be] = lex) Y lay] < flaflr < ilelg(lbkl +lex) D layl

ke{l,...v+1 A }
{ } jEN jeN

and so (f;);en is an *-basic sequence.

Let C C ¢! be defined by

C:=co{fj:jeN} = {thfj:each t; > 0 and thzl}.
j=1 j=1

Theorem 2.3.15. The set C' has the FPP(n.e.).
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Proof. Fix a nonexpansive map T : C' — C. Let (I(k))keN be an approximate fixed point
sequence for T, i.e., |Tz® — z®)||; —0.

Let W be the weak* = o (¢!, ¢y) - closure of C in ¢!. Then,

W:{Zﬁjfj:eachﬁjEOand Zﬂjgl}.
=1 j=1

Note that By is weak*-sequentially compact. Hence, there exists a subsequence (z(*s ) jeN

of (x®))en and z € W such that 29 — 2 weak*. Without loss of generality, z*) o
j

weak™*.

Note that if z € C, then as we have seen previously, Tz = z. Assume that z =

Z;il V5f5 € WAC.

For all X = (A, A2y oo, Apgr) witheach A; e Rand A+ Ao+ -+ A1 =1 (e = A),
define

h;\‘ = ('71 + /\15)f1 + (72 + )\25>f2 + T + (’YV + AV(s)fy + (7V+1 + Al/-‘rl(;)fl/-f—l + Z ’YJf]

j=v+2

Let H := {hX D= A}.
Let

Q::HOC:{hX:XEAand’yj—l—)\j(SZO,VjE{1,2,...,V+1}}.

As we have shown previously,

Q = {p: 81f1 +82f2 + - +3yfy+31/+1fu+1 + Z ’7jfj - each Sj >0

j=v+2
v+1 [e'e)
wt 3ne 35 1)
j=1 j=v+2

Fix y € C of the form y = >~ | t; f. Note that
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v+1

ly = 2l = |(ts = 1)1 + (b1 — Yorr)wr| + D [t = 9)bj + (o1 — vj-1)ej—1]
=2

+ {(tre = Yor2)boral + Y [t =730 + (-1 = 35151
Jj=v+3

Claim 2.3.16. Suppose that t, # v, for at least one p > v + 2. Then Ip € Q) such that

lp— 2zl < lly — 2|l

Proof. Let
A::{k2V+2:tk>'yk}

and

Bi={v+2,v+3,.. NA={k>v+2:t, <3}

Define 7:= 3%, _,(tx — vx). Note that 7> 0 and 7 = 0 <= A = ¢.
Let w = ¢(y) == >_72, 0;f;, where (0;) en is defined as follows.

(Uj)jEN = (tl + T, t2, e ,tl,,tl,+1, 0'1,+2, O'V+3, .. )

where Vk € A, 04 := v, and Vk € B, oy, 1= 1.
Note that o; < v;,Vj > v + 2.
Define £ := {k > v+2: 0, < 3} and & := >, p( — ox). Note that £ > 0 and
§=0<= FE = ¢. Alsonote that £ C Bandso & =), sz(vk — k) = > rep(ve — i)
Note that, by hypothesis, either 7 > 0 or £ > 0
Next, let p = y(w) = (Y0 ¢)(y) := D72, n;fj, where (1;)jen is defined as follows.

(nj)jen == (01(L —¢€),09(L —€),...,00(L —€),0041(1 — €), Vo2, Yotds- -y V- -)

where
(i — o) ¢
- v+1 - v+1
Zj; o; Zjil tj+7

It is easily checked that e € [0,1) and > 2 n; = 1,i.e. p€ Q.
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Then, we have that

lp— 2|l = [(m = 71)b1 + (M1 — Vog1)Copa]
v+1

+Z| + (Mj-1 — Vj-1)¢j-1]

+ [ (Mg2 — Yot2)bus2]

+ Z [(nj — )b + (Mj—1 — Yj-1)¢j1]

j=v+3

= [(m — y1)b1 + (Mg1 — Yor1)Cor1]
v+1

+ Z’ + (Mj—1 — j-1)¢j-1]
= |((t1 +7)(L =€) =7)b1 + (to1 (L — &) — Y1)

+[(t2(1 =€) —72)ba + ((t1 + 7)(1 — &) —7)ci

+Z| (1= &) = 3;)b; + (-1 (1 — &) — vj-1)¢]

Therefore,

Ip— zlli < 7(1—¢€)|br] + taelbi] + toq1€]cy ]
+ |(t1 = 71)b1 + (tog1 — Yog1)Cog1]

+ t26|b2| + 7'(1 — 6)|01’ + t1€|61| + |(t2 — ’}/ng + (tl — ’}/1)01’

v+1 v+1

—I—Zt€|b|+zt] 1€]cj- 1|+Z| = Y)bj + (tj—1 = Vj-1)¢j-1]
= lly = zlls = [(fos2 — W+2)bus2]

( D1t = )by + (- Vj—l)cj—1|)

Jj=v+3
v+1

+€th(|bj| +lel) +7(1 = &)([ba] + [en])

Hence,

87



lp—zlh < lly—zllh— D (& —w)bil+ D 1tk — w)exl
j=v+2 k=v+2
v+1

: {
+ = max (|| + [al)| Dt
Z tj+ 71 [1si<vH e
+7(1—¢)l

=y =2l = >t — el (1Bl = lexl)

k=v+2

v+1 v+1
TR (th+r—75(Zt+7))
ST\ S

= lly =zl = Z [tk = el ([bk] = [ex])

k=v+2

v+1 v+1
+Z"+1t +T(§—|—T Zt —T&Zt +7%—7 5)

= lly =zl — Z [tk = el (o] = lexl)

k=v+2
v+1 v+1
—l—ZVH (£+T {Zt —1—7} E—i—TT—T&‘Zt + 72 —7'5)
- =

= lly =zl - Z [tk = el (1bk] = lex])

k=v+2
f v+1 v+1
+V+1—((€—|—7')[th+7} —ST—TEZt]- —725>
Zj:l tj +7 j=1 j=1

<lly =zl = D 1tk =l (Bl = lex])

k=v+2

+ny1] ((e+n [Zt =

= [ly =zl — Z [t — el (a] = lexl) + T(E +7)

k=v+2

Note that
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E+T=) (m—te)+ > (e — W)

keB keA

= > lte =l

k=v+2

Hence,

[ee) oo
lp—zlh < lly =2l = Y b=l (1ol = lexl) + T > [t =l

k=v+2 k=v+2
- 3 |tk—%|[<|bk|—|ck|>—r}
k=v+2

Note that since, by hypothesis, 3 > v 4 2 with ¢, # v,

D 1t =l [(|bk| — lex]) — F} >0

k=v+2

and hence ||p — z|[y < ||y — z||1, as desired. O

Claim 2.3.17.
Jo = inf ||y — > inf ||p — =:J
¢ = inf lly =zl 2 inf fIp — 2l = Jo

and

lyo — z|ly = inf |ly —clli = yo € Q| (1).
yeC

Proof. First note that by Claim 2.3.16,

lyo — 2][1 = inf |ly — c[h = wo € Q.
yeC

To show that Jo > Jg, fix y € C. If y € Q, then ||y — 2|1 > ||y — z||1. So suppose that
y ¢ Q. Then there exists ;1 > v + 2 such that ¢, # ~,,.
Again, by Claim 2.3.16, there exists p € ) such that
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ly = zlh > [lp = =[x
Hence, JC > JQ. O

However, @) is a nonempty, norm compact (convex) subset of ¢!. Thus, there exists

po € Q C C such that

ly — 2|l > |lpo — 2|l Vy € C.
Let
Q:={yeC:|ly—=zh<lpo—zlh}

Then by (1) in Claim 2.3.17, Q C Q C C.
Note that @ is a closed, bounded, and convex set in ¢' that is nonempty and norm

compact. However, since

r(y) =r(z) +ly — zll1, vy € ¢,

we have that r(Ty) < r(y), Vy € C. Therefore, y € Q= Tyeq.
Thus T maps Q into Q and so by Brouwer’s (or Schauder’s) Fixed Point Theorem, there
exists v € Q C Q C C such that Tv = v. O

In Theorem 2.2.1, Theorem 2.3.1, Theorem 2.3.6, Theorem 2.3.11, and Theorem 2.3.15,
the perturbations involved only two coordinates at a time. In Theorem 2.3.18, we construct a
set C'in a similar way to Theorem 2.3.15, but we allow for “Ny-coordinates” to be arbitrarily

perturbed amongst themselves.

Define for all j € N

fi= bjex
k=1
Assume that there exists F' C N that is finite and nonempty such that
Vj e F,[bjr =0,Vk ¢ F|. In other words, Vj € F,
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fg = Z bj ke

keF

Without loss of generality, we may assume that F' = {1,2,... v,v+ 1}, for some v € N.
le VjeF,

v+1

fi= Z bj ek
k=1
Assume that

0<I:= max (Z\w) < bmanl = D |bmal, ¥m € N\F
k=1

1<j<v+1
kEN\{m}

Note that
v+1
.= b;
1<r§133§r1 <Z b k’)
Also assume

bl = D |bms >0, Vm e F
kEN\{m}

which implies that 31" > 0 such that |by,m| — Y gen fmy bkl = T, ¥Vm € N.

There exists constants U and V such that

0<U < |bpm| <V <o00,¥m eN

Each f; € *. Let o = () en € (1.

I Z%fylll = Zzbg rgeklls

7j=1 k=1
E:bjkaj

Vilalh

k=1

Also,
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IIZajfjlll —Z

bk,kak%— Z bj7k04j

k=1 JeN\{k}
Z(wkknam ijkncm)
k=1
J#k’
= lbisllan] - ZZVMH@H
k=1 k=1 j=1
Jj#k
=5 el - Z(Zrb]kr)\a]\
Jj=1 =
k#j

o0

|bm,m||am|—2( 3 |bm,k|)|am|

m=1 > keN\{m}

(|bm,m| S |bm,k|)|am|

e 102 10 10

keN\{m}
> T|ovy|
m=1
= I'fefly
Hence, (f;);en spans an isomorphic copy of ¢! inside of (€', - ||1).

Let C' C /' be defined by

C::@{fj:jEN}:{thfj:eachtjz()and thzl}.

j=1 j=1

Note that C' is a closed, bounded, and convex subset of (.

Theorem 2.3.18. The set C' has the FPP(n.e.).

Proof. Fix a nonexpansive map T': ¢ — C. Let (z*))en be an approximate fixed point
sequence for T, i.e., |T2® — z®)||; — 0.

Let W be the weak* = o (¢!, ¢y) - closure of C in ¢!. Then,

:{iﬁjfj:eachﬁjZOand iﬁjgl}.

J=1 J=1
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Note that By is weak*-sequentially compact. Hence, there exists a subsequence (z()) jEN

of (2)en and z € W such that *) — 2 weak*. Without loss of generality, 2(*) 0
J

weak™*.

Note that if z € C, then as we have seen previously, Tz = 2. Assume that z =

Z]O'il V;f; € WAC.

For all X = (A, Aa, ..., Apyr) with each A; € R and Ay + A+ -+ Apq = 1 (ie. X € A),
define

hX = ('71 + /\15)f1 + (72 + )\25)f2 + e+ (’71/ + /\V(S)fl/ + (VV—H + /\V+15)fv+1 + Z ’ijj-

Jj=v+2

Let H := {hX D= A}.
Let

Q::HHC’:{hX:XGAand7j+>\j620,Vj€{1,2,...,1/+1}}.

As we have shown previously,

Q= {p: sifi+safo+ -+ s, fu+sufopn + Z v;f; :each s; >0

Jj=v+2
v+1 00
WSS s
j=1 j=v+2

Fix y € C of the form y = >".° , t; fi. Note that

o0
ly =zl = || D
j=1 1
[o@) (o @)
k=

ijkt — )

Jj=1

=2

1

Claim 2.3.19. Suppose that t, # v, for at least one p > v + 2. Then Ip € Q) such that

lp = 2l <lly = =l
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Proof. Let

A={k>v+2:ty > W%}

and

B={v+2,v+3,.. NA={k>v+2:t <%}

Define 7:= 3%, _,(tx — vx). Note that 7> 0 and 7 =0 <= A = ¢.

Let w = ¢(y) := Z]Oil o;f;, where (0;),en is defined as follows.

(Uj)jGN = (tl + 7, t27 ce 7t1/7t1/+1a Op42,0043, - )

where Vk € A, 04 := v, and Vk € B, oy, := 1.
Note that o; <;,Vj > v+ 2.
Define E := {k > v+2: 0, < 3} and & := >, (7 — o). Note that £ > 0 and
{=0<+= E=¢. Alsonote that EC Bandso &=, s —0r) = > 4cp( — tk).
Note that, by hypothesis, either 7 > 0 or £ > 0
Next, let p = (w) = (Y0 ¢)(y) := D72, n;fj, where (1;)jen is defined as follows.

(nj)jEN = (0—1(1 - 5)702(1 - 5)7 e ,O'V(l - 5)70V+1(1 - 5)7%/—&—27’71/%—37 e Yy e s )

where
Dievr2(Vi— o) 3
v - v+1
Zji_ll gj Zjil i+

It is easily checked that e € [0,1) and > 2 n; = 1,i.e. p€ Q.
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Then, we have that

lp =zl =) | > b
k=1 j=1

v+1

E bk (n;
—
v+1

bir((ti+7)(1—€) —m +Zb]k: (1—e)—)

[
Mg

=
Il
—

[
WK

k=1

o] oo wv+1
<Y r(l-e) \blk!+Z|b1k|t1\g+ZZ]bjk|tg
k=1 k=1 j=2

v+1

bik(ts —m) +ijk

+Z

oo v+1

1—5Z]b1k\+€ZZ!b =)
k=1 j5=1
Hence,
Ip— 2l < IIy—ZHl— j,k(tj
1/+1
+7 1—5F+PsZt+Z Z — )
7=1
v+1 oo 00
= [ly — 2]l — Z ij,k(tj - Z ij,k(tj
k=11 j=1 k=v42 ! j=1
v+1 v+1 | v+1
(L= +Te i+ > | bilt;
j=1 k=11 j=1
0o v+1
+ D | 2 ikt
k=v+2 ! j=1
Therefore,
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o0

lp =zl <lly =2l = )

bk (te — Vi) + Z bk (t;

k=v+2 JEN\{k}
v+1 o0
Y LY bty — )|+ (1 =)
k=1"j=v4+2
0o v+1 v+1
S SUTUEERIFS 5 i
k=v+2' j=1 j=1

SHy—zm—-{E:\%MHw~m%—§: T mkmf—w@

k=42 k=v+2 jeN\{k}
v+l oo oo v+l
+ Z Z bkt — vl + Z Z 1bj,l[t; —
k=1 j=v+2 k=v+2 j=1
v+1
+7(1 —5)f+f52tj
7j=1

Let
= > > |bxllt; =il
K=vr2 jEN (k)
v+1 [e’s)
Q=" > |bullt; —
k=1 j=v+2
00 v+1
Z:=> " |bixllt; —;
k=v+2 j=1
Then,
|@—zmsuy—ah—[§j|%Mm—vu—@]
k=v+2
v+1
+Q+Z+7(Ll—e)l+Te) ¢t
j=1
Note that
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fo'e) v+1

0= Z Z|bj,k||tj—7j|+ Z Z 1bjxllt; —

k=v+2 j=1 k=v+2 j=v+2
J#k
00 00
=Z+ > > bl =
J=v+2 k=v+2
k#j

Recall that Vj € {1,2,...,v 4+ 1}, [bj, = 0,Vk > v + 2]. Hence Z =0, and

- ( 3 o 1ty =

Jj=v+2 Nk=v+2

ki
Also,
v+1
= > (Xl )i
Jj=v+2
and so
o — 2l < lly — 2l — [ S Pl — 7l — (24 )
m=v—+2
v+1
+T(1—€)F+F<€th
j=1
Note that
[e%e) v+1
Q+e= ) (Z|bmk|>|t Yon
m=v—+2
12D S (D SR} [
m=v—+2 k=v+2
k#m
= 3 (2
m=v—+2
k#m
Hence,
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o=zl <lly—2lh— Y

[e.9]

m=v-+2

v+1
+fl€2tj + (1 — 7'5)1
=1

Call

Note that

Thus,

| |
>

v+1 v+1

v+1
§—|—T (Zt —I—T)

5
_ lz [ +I€GZA|tk —%I}

e[S
{”Z“t ]
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[ b — Zlbmki]

k#m

S

_—:ﬁuiithr(T—Tg)(VithrT)]
(€ +7) Zt —TEZt 0 ‘”}

v+1

E+m)T—TE) i+ -7

7=1
v+1

— &1 —T¢ E tj—725
=1

|

|



oo

=2l < Iy =2l = 3 [1omnl - Z\bmk@ ol

m=v—+2
k#m
+f‘ Z |tm_
m=v+2
.S ([ b~ Dbmk]—r)
m=v-+2 i

Note that since, by hypothesis, 3 > v 4 2 with ¢, # 7,,

5 ([t = X toal] = )t =l >0
m=v+2 k=1
k#m
Hence, ||p — 2|1 < |ly — 2|1, as desired. O
Claim 2.3.20.
Jo = inf [ly — 2l = inf [lp — 2]l = Jo
and

lyo — 2l = inf |ly — clli = vo € Q| (D).
yeC

Proof. First note that by Claim 2.3.19,

lyo — 2[[1 = inf |ly — cllh = yo € Q.
yeC

To show that Jo > Jg, fix y € C. If y € Q, then ||y — 2|1 > ||y — z||1. So suppose that

y ¢ Q. Then there exists ;1 > v + 2 such that ¢, # ~,,.
Again, by Claim 2.3.19, there exists p € () such that

ly =zl > llp — 2l
Hence, Jo > Jg.
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However, @) is a nonempty, norm compact (convex) subset of ¢!. Thus, there exists

po € Q C C such that

lly — 2|1 > |lpo — 2|1, Vy € C.
Let
Q:={yeC:lly—=h <lpo— 2L}

Then by (1) in Claim 2.3.20, Q € Q C C.
Note that @ is a closed, bounded, and convex set in ¢' that is nonempty and norm

compact. However, since

r(y) =r(2) +lly — zll1, vy € ¢,

we have that r(Ty) < r(y), Yy € C. Therefore, y € Q = Ty € Q.
Thus T maps Q into @ and so by Brouwer’s (or Schauder’s) Fixed Point Theorem, there
exists v € Q C Q C C such that Tv = v. O
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3.0 RESULTS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

3.1 A C.B.C. NON-WEAK*-COMPACT SUBSET OF ¢! THAT HAS THE
FIXED POINT PROPERTY FOR CERTAIN ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS

Fix b € (0,1) and define f; := bey, and f, := e, for all n > 2. We also, define the closed,
bounded, convex subset K of (61, I| - Hl) by

K = {thfj:thzlandeach thO} .
j=1 j=1

In 1979 Goebel and Kuczumow [9] proved that for all mappings 7" : K — K that are

|| - [[1-nonexpansive, T" has a fixed point. Our first result is an extension of this theorem.

Theorem 3.1.1. Let K be as defined as above. Let T : K — K be a mapping that is
asymptotically nonexpansive and has an approximate fived point sequence. Then T has a
fixed point.

In particular, all asymptotically nonexpansive, affine mappings T : K — K have a fized

point.

Proof. Consider the weak* = o (¢*, ¢p) topology on ¢'. Recall that on bounded subsets of ¢!,
such as K, this topology is equivalent to the topology of coordinate-wise convergence. Also,
co is separable. Consequently, applying the Banach-Alaoglu theorem, we see that the closed
unit ball By is weak*-sequentially compact.
We define W := the weak*-closure of K. It is straightforward to check that
W:{Zﬁjfj : Zﬁjglandeach ﬁjZO}.
J=1 J

—
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Let (z,,)nen be an approximate fixed point sequence for 7" in K. By passing to a subsequence

if necessary, we may assume that there exists an o € W such that z,, — zy weak®.
n

Case 1: 25 € K.

We define r(z), the asymptotic radius about z with respect to (x,)nen, by
r(z) = limsup |z, — 2| , for all z € ¢* .
neN

Goebel and Kuczumow [9], Lemma 3, proved that
r(2) = r(wo) + ||z — x|, forall z€ £ . (1)

Since T is asymptotically nonexpansive, there exists a sequence (A, )men in [1, 00), decreasing
to 1, such that

IT"u —T™0|| < A Ju — ||, for all u,v € K .

Fix m € N. For all n € N we have that

m m
7700 =l < 3 T2 = Tl < s = ] (o) — 0,

J=1 Jj=1

as n — 00. Next, fix 2 € K and m € N. Then,

r(T"z) = limesl\?p Tz — x|

< lim sup <|]Tmz — Ty || + | T, — an)

neN

< limsup [|[T™z — T™ || + limsup | Tz, — 2,||
neN neN

< A Timsup |12 —
neN

Thus,
r(T"z) < Apr(z), forall z€ K and for allm e N . (1)

From () and(}) we have that
r(zo) + ||T"xo — wol| = r(T"x0) < A7 (0) ;
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and hence,
[T xo — o < (A — 1)r(@0) -
Since \,, — 1 as m — oo, we see that

| T 2g — 20| — 0
m

and

||Tm+1$0 — TJIQH S )\1||me0 — l’o” 7 0 .

Consequently, by uniqueness of limits, Tzy = xy.

Case 2: zy ¢ K.

The limit xyp € W, and so we may write o = Z]Oil B; f;, where each 8; > 0 and

Z;il ﬁj < 1. We define 6 :=1 — Zjil ﬁj S (0, 1] Let Yo = (ﬁl +(5> f1 + Zji2 ﬁj fj € K.
Fix an arbitrary y := > | a; f; € K, so that each a; > 0 and » 72| o = 1. Then,

ly = zoll = || D _(an = Ba) fu|| = laa = Bulll full + D lew = Ball ful
n=1 n=2

= blar — | +Z|Oén—5n‘
n=2

:b<|a1—51|+2|%_5"|> +(1=0) Y _lan = Bl
n=2 n=2
Zan_Zﬁn
n=1 n=1

= bJ1— (1= )+ (1= 8) 3l — Gl =06+ (1) 3l — 5]

n=2 n=2

>b

+(1_b) Z‘an_ﬁn’
n=2

> b0 ;

with equality if and only if «,, = 3, for all n > 2. Equality implies that

@1:1—§:an:1—§:ﬁn
n=2 n=2
=146 =) Bu=1+p—(1-9)
n=1

=0 +0.
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Hence we have that for all y € K, ||y — xol| > ||yo — %ol|, with equality if and only if
y = yo. It follows that

(o) = llyo — woll +r(w0) , by (1) ;
< [IT™yo — woll + (o)
= T(Tmyo)

< Am7(Wo) , by (1) .
But A,, — 1. Therefore,
IT™yo — wol| +7(z0) — llyo — ol +7(20) ;

and so
| T™yo — ol| — [lyo — xol|-
m

In this situation, we claim that the previous statement implies
1T yo — ol — 0. (%)
Suppose we have shown (¥ ). It follows that

1 Tyo — voll = [|Tyo — T™yo + T™yo — yol|
<|Tyo = T"yoll + | T™ 10 — yo|

< Mllyo = T yoll + IT™y0 — wol| — 0

and hence Ty, = yo.
[t remains to show that (3 ). We will do this by establishing the following two facts.

1. For all € > 0, there exists y(g) > 0 such that for all y € K,

Iy — zoll — lyo — zoll| <7 = lly—woll <<

2. For all sequences (2, )men in K such that ||z, — zo|| — ||yo — x0l|, it follows that
m

| 2m — yol| — 0.
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Note that (2) follows immediately from (1), and our desired conclusion follows from (2) with

(2m)men defined by

Zm = T™y , forallm e N .

We will now prove (1). Fix ¢ > 0 and recall that 0 < b < 1. Choose

_ (-0

v(e) = (1+b)€ € (0,00) .

Fixy =7, a; f; € K such that |||y — ol = [lyo — zoll| = Ily — zoll — lyo — woll <. Then,
ly = woll = Zajfj—(ﬂl‘Hs)fl—Zﬁjfj
j=1 Jj=2
= lon = B = 8|b+ ) loy — By -
=2
Note that
lag = B — 6| = 041—51—< —Zﬁj)'z 041—14‘25;‘
j=1 =2
= Zﬂj ZO‘J Z|O‘J Bil -
7j=2 j=2
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Therefore,
ly —yoll < b Z la; — B;] + Z laj — B

(14 b) Zyaj @'—E (1-0) Zlaj Bl

= Eizi _b\l—(1—6)|+(1—b)j22|aj—6j\—bé}
(1+0) [

DI EEU) SINEEIRT
p =2
bZ|aj—ﬁj|+<1—b>Daj—m—ba]

|:b’061 ﬂﬂ‘FZ’O@ ﬁJ’—b5:|

—~ ~~
— =
+ |
> o

N~— N~—

IN
—_
|
=

~—~~
—
_I_
=
~— =

—~~
—_ =

_I_
@‘0‘
— =

[ Iy = woll = [lyo — ol ]

A
/N
— =
+
o> o
S— ~—r

Yy
—_
|
S
N—
2

|
™

This proves (1); and therefore the proof of Theorem 3.1.1 is complete. O

We thank Paddy Dowling for pointing out to us that the proof of Case 1 above generalizes,

essentially without change, to prove the following corollary.

Corollary 3.1.2. Let C be any nonempty, weak*-compact, convex subset of {*. Let T :
C — C be a mapping that is asymptotically nonexpansive and has an approximate fized
point sequence. Then T has a fixed point.

In particular, all asymptotically nonexpansive affine mappings T : C — C' have a fized

point.
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3.2 THE RIGHT SHIFT R ON THE C.B.C. SET K

Let b € (0,1). Let K = K, be the set defined in the previous section. Consider the right
shift map R : K — K defined by

R(z) ::Ztnfnﬂ , forallx:ZtnfneK.
n=1 n=1

Note that R is affine and fixed point free. Fix . =Y ° ¢, f, andy = >~ s, f, in K.
Then

|z =yl =blt1 — 5] —l—Z [t — Snl -

n=2

Further, for all m € N it is easy to check that
[R™(@) = R )]l = [t = s1] + 3 [tw = sl
n=2
Fix m € N. Then

IR (2) = R™"W)h = |t —s1|+ Y |tn— sal
n=2

A RS

[eS)
2 It = sl
n=2

[e.9]

= Z(tk—sk) —i—i [tn — Sn
k=2 n=2

< 2 i [tp — $n] < 2 b|t1—81\—|—i |tn—sn|)
n=2 n=2

Y-

Further,
B @)~ B W) = s+ 3 [ sl
n=2

1 o
— E(b|t1—sl|+b;|tn—sn|>
< 1 b N
< E |t1—$1’+;|tn_sn‘

1H |
= —llx— )
b Yl
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Therefore,

i 1
1)~ 8 < min {25 bl ol

Consider this uniform Lipschitz constant M, := min {2, 1/b}. Note that for b € [1/2,1),
M,=1/be (1,2]. E.g., if b =2/3, then M, = 3/2. Also, for b € (0,1/2], M, = 2.
An initial question is: “Is M, best (i.e., smallest) possible?” The answer is “No”, as we

will see below.

Theorem 3.2.1. Let b € (0,1). Let f1 :=bey, and f, := e, for alln > 2. Define

K:: Kb = {Zt]f] . th =1 and GCLCh tj 20} .

J=1 Jj=1

Consider the right shift map R : K — K defined by
R(z) ::itnfnﬂ , forallx:itnfnel(.
n=1 n=1
Let Wy :=2/(1+b). Then, for allm € N, for every x,y € K,
[R™ () = B™ ()]s < Wi [lz =yl -

Moreover, Wy, is the smallest possible uniform Lipschitz constant for R.

Proof. Fix m € N. Let ¢ = >  t, fpand y = > ", s, fn in K. Further, let 7 € [0, 1].
We have that

IR (2) = R™"W)r = = sil+ D |tn — sl
n=2
= rlh—si|+ 0 =7t —si[+ D [ta — sl
n=2
= Tlh—slH Q=)D =Y s+ Y [t — sl
k=2 k=2 n=2
< Tlh=si+Q2=7) ) [te — sal
n=2
T 2—7T)b &
— (bt — - tn — Sn
S (IRIEE =D D)

(kk) (2—7) <ﬁ It — 51 +§; It — sn|) .
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In order to use (%) above to gain a uniform Lipschitz estimate for R, we require

2—7)b 2b
—( ") <1l <<= 2b—7b<7 <= —<71.
T 1+0b

Now, to minimize 7/b, we minimize 7; i.e., let

2b
=27 0.1
T 1+b€<’ ) =

2

140

S

On the other hand, in order to use (Jk %) above to get a uniform Lipschitz estimate for
R, we require

2b
<bh «<—= 7<2b—b7 —= < —.
2—171 1406

So, to minimize 2 — 7, we maximize 7; i.e., let

2b 2
=—c(0,1) = 2—7T=——.
T 1+b€(’) T 1+0

We see that both () and (%) lead to our desired uniform Lipschitz constant for R;
ie, W, :=2/(1+b). To see that W, is best possible, consider z := f; and y := f, € K.
Then ||fi — f2lli = ||ber — e2||s = b+ 1. Further, for all m € N,

IR™(f1) = R™(f)lli = lfinr1 — fnsalli = lemsr — empalh =1+ 1=2

Wy |l fi = fall -

Open questions.

(1) For a given b € (0,1), are there any fixed point free, affine, uniformly Lipschitzian
mappings U : K — K with (best) uniform Lipschitz constant M € (1,2/(1+b))?

(2) Can we find an explicit example of a mapping U : K — K that is asymptotically
nonexpansive and affine, and yet not nonexpansive? (Such a U necessarily has a fixed point

in K, by Theorem 3.1.1 above.)
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An answer for question (2): “Yes”.

LetrERsuchthathrTl<r<1. Define U : K — K by
U:xz= (btl,tg,tg,t4...) — (b(l-T’),T’tl,TtQ,T’tg,...> .

By induction, we see that for arbitrary x =3 > ¢, foandy => - | s, fn, € K, and for all
m e N,

U™ = U™ ylly =™ [tn — sal.

n=1

Using the techniques in Theorem 3.2.1, we may write

™) - Um @) = rm(\u RIS sn|)

= m( |t1 — s1| + 1—7’)|t1—81|+2|t sn|>
n=2
— m( = si|+ 1A =7) D> =D s +Zytn—sn|)
k=2 k=2 n=2
< m( It — s1] + 2—T)Z|tn—sn|>
n=2
Trm (2—71)b >
(%) - (b|t1—51|+f;|tn—sn|>

m T -
(*:*) 2—7)r (ﬁ|t1—51|+;|tn—sn|>.

Similarly to before, from (%) or (%), we obtain a Lipschitz constant for U™ of W}, ==
(2r™)/(1 4 b). To see that Wy, is best possible, consider again = := f; and y := f, € K.
Then ||f1 — f2|li = ||ber — e2||1 = b+ 1. Further, for all m € N,

U™ (f) = Ul = ™ S =™ Sl = 7™ emin — 7™ emyally = 7™ + 0™ = 27™
= Wim /1 = foll1 -

In summary, for all m € N,

2m
Urw = U™
U = Uyl <

|l =yl , forall x,y € K ;
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and the Lipschitz constant for U™ is best possible. Since ™ — 0, it follows that U is an

affine, asymptotically nonexpansive map on K. On the other hand, since r € (I’J“Tl, 1), we

2
have that ;=5 > 1. Hence,

1UfL = Ufally > |Ifs = foll1 ;

and consequently U is not nonexpansive.

We note that U™ is a strict contraction for all sufficiently large m, and C' with the ¢!
metric is a complete metric space. Therefore, there is a second way to see that that U has a
fixed point in K. Indeed, by a corollary of the Banach Contraction Mapping Theorem, we

may conclude that U has a unique fixed point in K.

Open Question. Does there exist an affine, asymptotically nonexpansive map V on K

such that V' is not nonexpansive, and for which each V™ is not a strict contraction?
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3.3 A C.B.C. NON-WEAK*-COMPACT SUBSET OF ¢! THAT HAS THE
FIXED POINT PROPERTY FOR NONEXPANSIVE MAPPINGS, BUT
FAILS THE F.P.P. FOR AFFINE ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS

Following Section 3 of [7], we define the closed, bounded, and convex subset G of ¢! by

G = {q—l—ianun: each «,, > 0 and ianzl} )

n=1 n=1

Here,

uL =g er; and
1 1 1
Uy 2= §—|—3ﬁ egn_l—ﬁegn,foralanQ.

In [7] it is proven that every nonexpansive map 7' on G has a fixed point.

Consider the right shift map R : G — G defined by

R(x) ::q+Zanun+1 , for allx:q—I—Z a, U, € G .

n=1 n=1

The map R is clearly fixed point free; and so R cannot be nonexpansive. It is also affine,

and thus has an approximate fixed point sequence.

Proposition 3.3.1. The mapping R : G — G is asymptotically nonexpansive with an

approximate fixed point sequence, and R has no fixed point in G.

Proof. 1t remains to show that R : G — G is asymptotically nonexpansive. Note that

1 1 2
HU1H1:§ and Hun‘|1:§+@ , foralln > 2.

Fixe=q+> > apu,and y=q+> ~ 7mu, in G and m € N. Then,
1 /1 2
b= = gl =11+ 3 (5 + 55 om0
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and

. . 1 2 = /1 2
|1B™(x) = R™(y)|lx = (5 + W) lar — |+ Z; (5 + W) |t — 7l -
It is straightforward to check that

[1R™(z) = R™(W)lly < Am [z =yl , forall z,y € G ;

(%JFWQM) 4
Am::TZHW-
2

Note that (A, )men is a decreasing sequence that converges to 1. Therefore, R is asymptoti-

where

cally nonexpansive. O
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3.4 A DISTANCE TO A SIMPLEX THEOREM AND ITS COROLLARY

Let (a;)ien be any bounded sequence of non-negative real numbers, and set f* = (1 + a;)e;.

Following Goebel and Kuczumow [9], Example 3.1, define

C .= {x:i)\ifi:)\iZOand i)\izl}
i=1 i=1

The weak™ closure of C is

az{z:iuiﬂ:uiannd iuigl}
i=1 i=1

Since the sequence (a;);en is bounded, 3B € R such that a; < B,Vi € N. Let a :=
infiey a; and No := {i : a; = a}. Next, Vz € C, set 0, := 1 — > o2, wi- Goebel and Kuczomow
showed that Vz € C, dist(z, C) = 0,(1 + a).

For any z € C, define

Proj(z) : = {y eC:|z—ylL = dist(z,C)}
—E{z—i—ézfi:ie]\fo}

Note that in comparison to Theorem 2.0.4, we are using b; = 1 4+ a; and f; = f*. Also,

the set Ny corresponds, as before, to the set F' in Theorem 2.3.15 and Theorem 2.3.18.

Theorem 3.4.1. Fixn € N (n > 2). Let Ny C N with #(Ny) = n. Let (0;);en, be such
that each o; € R.
Define

JENo

G =Gy= ) |oy — ayl, Vo = (ay)jen, € P

JENo
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1. If (%1) [3 € Ny such that o; > 1] or (%) [3j # k € Ny such that o; + o > 1] or ---
or (kn—1) [there exist distinct integers ji,. .., jn—1 € No such that ZZ;; oj, > 1], then

c{lggi Gnla) < Z |om| — 1.
me Ny

2. If not (%k1) and not (¥k2) and --- and not (Hkn—1), then

i <
s, o) =

Z Om—l‘.

meNy

Proof. We begin by proving the base case, that is, when #(Ny) = 2. Without loss of
generality, assume that Ny = {1, 2}.
(1) Assume that there is a j € Ny such that o; > 1. Without loss of generality, assume

that o7 > 1. Then for any a = (ay, ag) € s,

Go(ag,as) = |og —aq| + |og — s

Hence,
néipn Ga(a) < G5(1,0) = o1 — 1] + |oy|
e} 2
=01 — 1 + |O'2|
S |O'1’ — ]. + |0'2|
2
— Z o] — 1,
j=1
as desired.

(2) Assume not (%), that is, 01,09 € (—o0, 1].

Case 2(a), 01,09 < 0.

Note that for all & = (a1, ) € P9, 05 —a; <0 for j =1,2. Fix a € .
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GQ(O{) = |O'1 - 061’ + |0'2 - 042‘
= —(01 —a1) + (—(02 — a2))
:—01—|-Oé1—02—|-042

= —(01 4+ 03) + (g + )

= —(0'1 + 0'2) +1
= —[(o1 + 09) — 1]
=loy + 09 — 1]

Hence,

i <
2 o) =

2
ZO’j — 1‘
j=1

Case 2(b) oy € [0,1] or o9 € [0, 1]. Without loss of generality, assume o € [0, 1].
Note that 1 — oy € [0,1]. Then, (01,1 — 1) € ®3, and

G2(01,1—0'1> :0+|O'2—<1—0'1>| = |O'1+O'2—1|

Hence,

Helgl Ga(a) < G0, 1 —01) =

2
ZO’j - 1'
j=1

Therefore the lemma is true for #(Ngy) = 2.

Next, we show that the lemma is true for the general case via induction. Assume that

the lemma is true for #(Ny) = n — 1. We show that this implies that the lemma holds for

Without loss of generality, assume Ng = {1,2,3,...,n—1,n}. Fixoy,09,03,...,0,_1,0, €]

R.
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(1) (¥1). Assume 35 € Ny such that o; > 1. Without loss of generality, o4 > 1. Then,

mzbnGn(oz) < G(1,0,0,...,0,0) = |og — 1| + |oa| + -+ - + |o,]
acdPy,

=01 — 1+ |oo| + -+ |on]

—[o1] = 1+ [0zl + - + [l

=Y lojl -1
j=1

Hence,

aed,

min G, (a) < Z lo;| —1
j=1

(%2) Assume that there exists distinct integers j, k € {1,2,...,n} such that o;+ 04 > 1.
Without loss of generality, assume o1 + o9 > 1.

Fix a € &, a = (a1, 9,...,0,-1,,). Set a,, = 0. Let

]/—\7(;:{1727"'772_1}7 (I)n—1:(DNO) Gn_lzGNO)

n—1>

Then,

Gnla) = Ghoq(on,ag, ... an_1) + |0y

Hence,

min G, (o) < min [Gnl(a)ﬂan@

aeq)n ae@n_l

_ [ min Gn_l(a)] + |0

a€Ed, 1

By assumption, the lemma is true for ]AV;). Then by (1)(%2) for ®,_1,
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min Gn(a) < { min Gn_l(a)} + |ol

acdy, a€¢n71

n—1
<Dl =1+ o]
j=1
= ol -1
j=1
3) Assume that there exist distinct ¢, 7, K € Ny such that o; + 0, + o > 1. 1thout
*3) A hat th ist disti L, 7, k€ N, h th y 1. With

loss of generality, o1 + 03 + 03 > 1. Again, fix a = (ay,...,a,) € D, and set o, = 0. Then

with NB, ®,,_1, and G,,_1 as above,

: < :
min Gn(a) < ngil Gn_l(oc)} + |on|
n—1
< ol =1+ |ou| by (1)(Fs) for @,y
j=1

n
=> lojl -1
j=1

The proof for cases (¥4) through (J,_2) follow the same method as (¥2) and (¥3),

using the corresponding case for ®,,_;.

(¥n—1). Assume that there are distinct iy, 19, ...,7,—1 € Ny such that o;, + 0y, + -+ +
o;,_, > 1. Without loss of generality, assume that oy + 09+ --- 4+ 0,1 > 1. Also we may
assume that (J1) through (%, _1) do not hold. Then all of oy,09,...,0,1 must be great

than or equal to zero, for if o; < 0, then

ortoyt-topr=(01+ ot oipt o) oy
<(0'1+"'+Jj71+O'j+1+"‘+0'n71)+0

<1 by not(¥k,_2)
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Then, (o1,09,...,04-2,1— (01 + 09+ ...+ 0,-2),0) € D, and

min G, (a) < Gp(01,09,...,0p-2,1 — (01 + 02+ ...+ 0,-2),0)

acd,

=[0]+ -+ 0] +|op1 =1+ 01+ 09+ + 0na| + |0
=01+0a+ -+ 02+ 01— 14 |0y

= loy| + |og| + -+ |on_a| + |on_1| + |on] — 1

= oj| -1
j=1

This concludes the proof of part (1).

(2) Assume that (¥;) through (s ,_1) do not hold, i.e, we have that

(%1) Vi € No,0; < 1;

(%2) Vi1, 19 € No, 04, + 03, <1

(J3) Vi1, 19,13 € No, 04, + 04, + 04y < 1;

(Fen—1) Vi1, i, .. in—1 € No,04, + 04 + -+ 05, < 1.

Case 2(0) Vi € {1,...,n}, 0; <0.

Va € O,
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n

Gula) = |oj — ay
j=1
=Y (0, — )
j=1
Ya-Ye
j=1 j=1
=1- ZO']'
j=1
ZO']' — 1’
j=1

Case 2(1) through Case 2(n — 2) where Case 2(v) is:

Jiv,...3, € {1,...,n} suchthat 0;,,04,,...,0;, > 0and o; < Oforj e {1,...,n}\{i1,..., 0} |}

The proof of Case 2(v) proceeds as follows:

Without loss of generality oy,...,0,-, <0 and 0,,_,41,...,0, > 0. Note that

—~—

apg=(0,0,...,0,1—(0p—pi1+ -4+ 00),0n-rs1,---,00) €D, by (k)

Then,

Gn(CVO) = |Ul| +-+ |0n—u—1| + |0-n—1/ -1+ (Jn—u+1 + O-n)|

= —01 — " —0p—py-1 " Op—ypy —Op—py1 —*°* —0p + 1 by (*qul)

i@'j - 1‘
j=1

Hence,
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i <
s Onle) <

>0
j=1
Case 2(n — 1) Either n — 1 or n of the o;’s are greater than or equal to zero. Without

loss of generality, assume that o9, 03,...,0, > 0. Set

n
Qo = (1— E O'j,O'Q,...,O'n>
J=2

Gn(Oé()) == ZO']' — ]_'
j=1
Therefore,
. < o
i G <[ Lo - |
]:
This concludes the proof of part (2) and the proof of the theorem. n

In [9], Goebel and Kuczumow showed that the set C' above has the fixed point property
for nonexpansive maps if and only if Ny is nonempty but finite. We will show that C' has
the fixed point property for affine asymptotically nonexpansive maps if and only if Ny is
nonempty and finite, and a certain extra condition holds.

As mentioned in the Introduction, Corollary 3.4.2 and Remark 3.4.3 are a special case of

a theorem of Kaczor and Prus [11], who establish their result by a different proof technique.

Corollary 3.4.2. Let T : C' — C' be a mapping that is affine and asymptotically nonezx-
pansive. If Ny is nonempty and finite, then T has a fixed point, as long as I' > a, where

I' :=infzn, a; > a.

Proof. Let C, C, Ny, and I be as defined above. Suppose that T : C' — (' is affine and

asymptotically nonexpansive, and that I' > a.

Case 1 #(Ny) = 1. Without loss of generality, Nyg = {1}. Since T is affine, there exists

an approximate fixed point sequence (2, )neny € C for T and an 2y € C with 2, — z( weak*

as n —— OQ.
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If 2y € C, then the corresponding case in the proof of theorem 3.1.1 shows that 7" has a
fixed point.

Assume 1y € C\C and fix y € C. Note that in this case, Proj(z¢) = {zo + 04 f'}. Let
Yo 1= o + 0z .

Note that
ly = wolls = 18) = 15 — Say |(1+ @) + > 85 — p;l(1 + ay)
j=2
81— 1 — G| = |1 — pa — (1_Z,Uj)’
j=1
J0-50) o 0-50)
=2 j=1
= Z(Nj 5)
j=2
< Z 185 — 11
j=2
5:(:0:1 ZMJ:ZﬁJ ZH]
7j=1 7=1 7=1
= Z(ﬁj = 115)
j=1
< Z 185 — 11
j=1
Therefore,
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lv = vollr = |51 — p1 — 05| (1 + @) + Z 1B — 11(1 + a;)

Jj=2

<(14a) > 16—l + D> (1 +0a,)|8; — ]
= =2

S 2Ot U (14 ay) — (1+a)]

= Clj—CL

= /2 B
<> (BEEE) 16 - w0+ 0) - (14

=2
= () [0t 0+ 15—l (0 +0) — (0] = (1))

I —a i @0 < i My J o

< (BB [ s s -l + 301 — 1+ a) — (14 )
< r—a _ a)|p1 Ml‘"“%‘y ﬂ]‘ + a; + )0,
_(2+a+B\]
~ (BB iy — s~ o = ]

From here, the proof of Theorem 3.1.1 shows that Ty = yo with v(¢) = (i—;g) e replaced
by

10 = (53005)°

Case 2 #(Ny) = n, where n > 2. Note that in this case,

Proj(zo) = {xo + Z 0z f 1 oy >0 and Z aj; = 1}

JENo JE€No

and u € Proj(x) has the form

w= Y il + >+ ada,)

JEN\No JENy
Again, since T is affine, there exists an approximate fixed point sequence (z,)neny € C
for T and an z, € C with z,, — xy weak* as n — oo, and if g € C, then the proof of

Theorem 3.1.1 shows that T has a fixed point.
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Assume x5 € C\C and fix y € C. We wish to minimize ||y —ul|; as u varies over Proj(z).

Note that for u € Proj(x),

ly—ulls = > 18— mil(L+a;) + > 185 — 15 — 6 [(1+ @)

jGN\No JENy

For oo = (o) jen,, define

(o) = Z |Bj = 115 — Qtj0aq | = 0z Z ]5 T -y
JENo jE€No o
From the Lemma, with o; = @ and F, (o) = 0., Gp(a), we have that 3a = (a;)jen,
z0

with either

(1) Ful@) <> 18—yl = 0ay or

JENo

In the case of (1), 3u € Proj(zo) such that F,(a) < 3°;cn, 185 — 4| — 0z~ Then,

ly =l =Y 18— ml(1+a5) + Fu(@)(1 +a)

JEN\No
S(E:WrWMHWﬂ+2N@—MW+®)—%@+®
JEN\No jENo

= [l = aub = 17—l @

2+a+B ~
< (ﬁ) {Hy — o[y — [lu— 950||1]

In the case of (f), Iu € Proj(xg) such that F,(a) < ‘ > ieny (Bi = 15) — O
Note that
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Fo(@) < | D (85 = 1y) = by

JENo

Im s (5

JE€Ng JE€Ng

m (5

JEN\No JEN\No

= > (- 8)

JEN\Ng

< >0 18— wl

JEN\No

So that

ly—ali= > 16— ml(1+a;) + Fu(@)(1 +a)

JEN\Ng

<(+a) Y 1B —ml+ >, (1+a))[8 —
JEN\Ny JEN\Ng

- > ()5 - wllara) - (+a)

JEN\Ng

B

< ¥ (BEE)5 - wll+a) - ()

JEN\No
- () o ane s ¥ -mina) -0 al- 0,

JEN\Ng
2+a+B =

< <F——a) {(1 +a) Y 18 — iyl
j=1

Y 18—l [ a) — (14 a)] - (1 +a>5m]

JEN\No
2 B
- (D) a0 T -l X 10wl (4 a) - (14 @b

JENo FEN\No

2tath I 1 = [[@ — o]
= — —x —l|lu—=x
I —a Y 0]1 0l1

Hence, in all cases, Vy € C, 3u € Proj(zg) such that
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- 2+a+ B ~
Iy =l < (Z5E2) [y = ol - - ol

Pick yy € Proj(zo) and consider (T™yo)men. As in Theorem 3.1.1 we can show that

1T yo — xo|l1 — ||yo — xo||l1 as m — oo. Hence, Vm € NU {0}, Ju,, € Proj(zo) such that

" 2+a+ B "
L A L e e

and [|[T™yy — Up||1 — 0 as m — oo.

Define v, = fwtutotinm o Proj(xy) and ¢, =

yo+Tyo+-+T"yo
m+1 :

T Since T is affine,

| TGm — Gmll1 — 0 as m — oo. Next, Proj(xzy) is norm compact, and so there is a
subsequence (Vp, )reny and vy € Proj(xg) such that ||v,,, — |1 — 0 as k — oo.

Observe that

e — Vmgll1 = T7yy — uj
i, — v \L%+1;; o |

mg

< 17730 — ;s
0

my + 1 4
J:

and therefore, since ||T7yo — u;ljs — 0 as j — oo for 0 < j < my,

Hka _mGHl — 0 ask — o0

This implies that

lgm, —oli — 0 as k — o0

Hence,

1Tvo — volly < 1T — T |1y + 1 TGy, — G|l + (@i — 0l
< (M + Dlgmy, — wolls + 1Ty, — Gy 11

—0+0 ask — o0
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and therefore Tvy = vy, i.e. T has a fixed point.

In Goebel and Kuczomow’s proof for nonexpansive maps, they provided counterexamples
to show that T may not have a fixed point if Ny is empty or infinite. Since nonexpansive
maps are also asymptotically nonexpansive (and the counterexamples they gave were affine),

the same counterexamples when NV is empty or infinite work here. O

Remark 3.4.3. For the purposes of the following, without loss of generality, No = {1,...,n}.
In our hypothesis, we have made the assumption that I' := inf,>,1; a; > a. What happens
when I' = a? Making use of a variant of the “Right Shift” operator, we can show that there

exists a fixed point free, asymptotically nonexpansive, affine map 7' : C' — C.

Assume that I' = a. Then there is a subsequence (a;, Jken such that lim,_ . a,, = a.
We may assume that j; > n and that the sequence is decreasing. Define for all £ € N.

o(k) := jxy1. Define T': C — C' by

T ( > 5kfk) = B
k=1 k=1

Using the notation ¢?(k) = ¢(p(k)), ©*(k) = ¢(p(p(k))), ete, note that

T”(Zﬁkfk> =Y 5w
k=1 k=1

and for x = > 7, Bef* and y = > 7 i fF in C,

70— Tyl = 3 1B — ] (1 ‘ am)

k=1
and

o=yl =301l + @+ 3 15l o)
k=1

k=n+1

T is an affine, fixed point free mapping from C to C'. Furthermore, T" is asymptotically

nonexpansive, as the following calculation demonstrates.
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||TV,Z' — TVyHl S Z |ﬁ]€ —_ ’Yk| (1 + awu(l))

k=1

1+awm)(”
= (22U ST 5 - (14 a
( [y P |8 — il )

1+ aprq
< —* _
_< a vl

Let \, = (%) Noting that A\, > 1,Vv € Nand A\, — 1 as v — 00, and we see

that T is indeed asymptotically nonexpansive.
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4.0 OPEN QUESTIONS

Open question (1). In (¢',]|-]/;) (or more generally in an arbitrary Banach space (X, ||-||)),
can we identify precisely which isomorphic ¢!-basic sequences are such that their closed
convex hulls have the FPP(n.e.)? In particular, can we prove a theorem that includes both

Theorem 2.2.1 and Theorem 2.3.18 as special cases?

Open question (2). In (¢',]|-]/;) (or more generally in an arbitrary Banach space (X, ||-||)),
can we identify precisely which isomorphic ¢!-basic sequences are such that their closed con-

vex hulls have the fixed point property for asymptotically nonexpansive maps (FPP(a.n.e.))?

Open question (3). When do the sets discussed in Chapters 3 and 4 have the FPP(a.n.e.)?
In the paper of T. Dominguez Benavides, J. Garcia Falset, E. Llorens-Fuster, and P. Lorenzo
Ramirez [2], Theorem 4.13 suggests a possible proof strategy in the case of asymptotically
nonexpansive mappings with approximate fixed point sequences. (We thank Torrey Gal-

lagher for drawing our attention to this paper).

Open question (4). In 2002, Dowling, Lennard, and Turett [6] showed that if (X, || - ||)
is a Banach space and K is a closed, bounded, and convex subset of X that contains an
asymptotically isometric ¢!-basic sequence, then K contains a non-empty, closed, bounded,
and convex subset C' on which there is a nonexpansive mapping 7' that fails to have a fixed
point in C.

It is an open question as to whether or not every non-weak* compact closed, bounded, and
convex subset K of (¢!, ]|-||1) contains a further subset G that is non-empty, closed, bounded,

convex, and non-weak* compact such that G has the FPP(n.e.). If we could show this, then
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the result would imply that inside any non-weak* compact, closed, bounded, and convex
subset of (¢, ] - ||1), there exists a sequence of sets (K, ),en that are nested and decreasing
such that each odd term has the FPP(n.e.) and each even term fails the FPP(n.e.). Note

that in Goebel and Kuczumow [9] an example of such a decreasing chain is given.

Open question (5). As in Chapter 6, for a given b € (0, 1), are there any fixed point free,
affine, uniformly Lipschitzian mappings U : K — K with (best) uniform Lipschitz constant

M e (1,2/(1+b))?

Open question (6). As in Chapter 6, does there exist an affine, asymptotically nonexpan-
sive map V on K such that V is not nonexpansive, and for which each V" is not a strict

contraction?

Open question (7). Let (X, -||) be a Banach space. Does every asymptotically nonex-
pansive map 7" on a closed, bounded, and convex subset C' of X have an approximate fixed

point sequence?

Open question (8). We note that (¢%,|| - ||;) isometrically embeds as diagonal matrices
in the space of infinite-by-infinite matrices called the trace class, C;, with its usual norm
| - |e,- Thus, all the Goebel and Kuczumow sets (examples of closed, bounded, and convex
sets with the FPP(n.e.)) embed into (Cy,| - ||c,). Are there natural analogues of the Goebel

and Kuczumow examples inside C; that have off-diagonal non-zero entries?

130



BIBLIOGRAPHY

[1] S. Banach, Sur les operations dans les ensembles abstraits et leur applications auz equa-
tions integrales, Fund. Math. 3 (1922), 133-181.

[2] T. Dominguez Benavides, J. Garcia Falset, E. Llorens-Fuster, and P. Lorenzo Ramirez,
Fized point properties and proziminality in banach spaces, Nonlinear Analysis 71 (2009),
no. 5-6, 1562-1571.

(3] L. E. J. Brouwer, Uber Abbildung von Mannigfaltigkeiten, Mathematische Annalen 71
(1912), 97-115.

[4] F. E. Browder, Fized-point theorems for noncompact mappings in Hilbert space, Proc.
Nat. Acad. Sci. U.S.A. 53 (1965), no. 6, 1272-1276.
[5]

, Fized-point theorems for noncompact mappings in Hilbert space, Proc. Nat.

Acad. Sci. U.S.A. 54 (1965), no. 4, 1041-1044.

[6] P.N. Dowling, C.J. Lennard, and B. Turett, The fized point property for subsets of some
classical Banach spaces, Nonlinear Analysis 49 (2002), 141-145.

[7] , New non-compact, closed, bounded, convex sets in (€1, - ||1) with and without

the fized point property for nonerpansive maps., in preparation (2009).

[8] K. Goebel and W.A. Kirk, Topics in Metric Fized Point Theory, Cambridge Studies in
Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.

9] K. Goebel and T. Kuczumow, Irreqular conver sets with the fized-point property for
non-expansive mappings, Colloq. Math. 40 (2) (1979), 259-264.

[10] D. Géhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258.

[11] W. Kaczor and S. Prus, Fized point properties of some sets in (', Proceedings of the
International Conference on Fixed Point Theory and Applications, Valencia, 2003; Ed.
J. Garcia Falset and E. Llorens Fuster and B. Sims; Yokohama Publishers (2004).

[12] W. A. Kirk, A fized point theorem for mappings which do not increase distances, The
American Mathematical Monthly 72 (1965), no. 9, 1004-1006.

131



[13] P.K. Lin, There is an equivalent norm on ¢y that has the fixed point property, Nonlinear
Analysis 68 (2008), 2303-2308.

[14] J. Schauder, Der Fizpunktsatz in Funktionalraumen, Studia. Math. 2 (1930), 171-180.

132



	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	PREFACE
	1.0 INTRODUCTION
	1.1 Preliminaries and Overview

	2.0 RESULTS FOR NONEXPANSIVE MAPPINGS
	2.1 Examples
	2.2 First Theorem
	2.3 A New Approach to Extending the Theorems of Goebel and Kuczumow to a larger class of subsets of 1.

	3.0 RESULTS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
	3.1 A c.b.c. non-weak*-compact subset of 1 that has the fixed point property for certain asymptotically nonexpansive mappings
	3.2 The right shift R on the c.b.c. set K 
	3.3 A c.b.c. non-weak*-compact subset of 1 that has the fixed point property for nonexpansive mappings, but fails the f.p.p. for affine asymptotically nonexpansive mappings
	3.4 A distance to a simplex theorem and its corollary

	4.0 OPEN QUESTIONS
	BIBLIOGRAPHY

