Speed Scaling for Energy Aware Processor Scheduling: Algorithms and AnalysisCole, Daniel (2013) Speed Scaling for Energy Aware Processor Scheduling: Algorithms and Analysis. Doctoral Dissertation, University of Pittsburgh. (Unpublished)
AbstractWe present theoretical algorithmic research of processor scheduling in an energy aware environment using the mechanism of speed scaling. We have two main goals in mind. The first is the development of algorithms that allow more energy efficient utilization of resources. The second goal is to further our ability to reason abstractly about energy in computing devices by developing and understanding algorithmic models of energy management. In order to achieve these goals, we investigate three classic process scheduling problems in the setting of a speed scalable processor. Integer stretch is one of the most obvious classical scheduling objectives that has yet to be considered in the speed scaling setting. For the objective of integer stretch plus energy, we give an online scheduling algorithm that, for any input, produces a schedule with integer stretch plus energy that is competitive with the integer stretch plus energy of any schedule that finishes all jobs. Second, we consider the problem of finding the schedule, S, that minimizes some quality of service objective Q plus B times the energy used by the processor. This schedule, S, is the optimal energy trade-off schedule in the sense that: no schedule can have better quality of service given the current investment of energy used by S, and, an additional investment of one unit of energy is insufficient to improve the quality of service by more than B. When Q is fractional weighted flow, we show that the optimal energy trade-off schedule is unique and has a simple structure, thus making it easy to check the optimality of a schedule. We further show that the optimal energy trade-off schedule can be computed with a natural homotopic optimization algorithm. Lastly, we consider the speed scaling problem where the quality of service objective is deadline feasibility and the power objective is temperature. In the case of batched jobs, we give a simple algorithm to compute the optimal schedule. For general instances, we give a new online algorithm and show that it has a competitive ratio that is an order of magnitude better than the best previously known for this problem. Share
Details
MetricsMonthly Views for the past 3 yearsPlum AnalyticsActions (login required)
|