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FAST TREATMENT OF π-STACKING USING DENSITY FUNCTIONAL

THEORY.

A. B. Sharapov, PhD

University of Pittsburgh, 2013

In this work, we concentrate on various unconventional Density Functional Theory ap-

proaches for calculations of electronic structure of molecules. In particular, we are moti-

vated by gaining substantial speed-up of such calculations. Firstly, explore the Orbital-Free

Density Functional Theory and show how one can compute the energies of dimers by per-

forming large-scale optimization with more than a million variables. We also show that this

approach does not give satisfactory results. Secondly, we investigate tight-binding methods

and in particular show that Harris approximation gives good results when applied to calcu-

lations of energies of dimers. In the last section, we apply Harris approximation to molecular

packing optimization,and show that the SPSA algorithm is capable of finding all minima of

the energy surface.
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1.0 INTRODUCTION.

The desire to predict the crystal structure of molecular compounds from the molecular

geometry alone has triggered a substantial amount of research in the past and is motivated

by the wide range of potential scientific and technological applications. Most solid-state

properties such as density, hardness, color, morphology, or solubility crucially depend on the

crystal packing. The ability to predict crystal structures would open up the door to the

computation of solid-state properties with nothing more than the molecular geometry as a

starting point, thus making it possible to select molecules for certain solid-state applications

before they are even synthesized. The state of the art in the field of polymorph prediction

has been assessed by a series of blind tests organized by the Cambridge Crystallographic

Data Center [1, 2, 3, 4, 5, 6]. The blind tests reveal a fundamental shortcoming of all current

approaches, which is the inability to calculate lattice energy differences with an accuracy

that is higher than or at least comes close to typical energy differences of about 0.01-0.1

kcal/mol found between the low-energy crystal structures of a given molecule. Even though

crystallization kinetics may complicate things further, it can be expected that in most cases

only the stable polymorph and some of the meta-stable polymorphs with slightly higher

lattice energies can actually be crystallized.

As a consequence, polymorph prediction is bound to fail if the energy ranking is too in-

accurate to allow for the reliable identification of the most stable crystal structures. Current

methods used for lattice energy calculation can be roughly divided into empirical, semiem-

pirical, and ab initio approaches. Empirical approaches use force fields which consist of a

set of functional forms and parameters that have been fitted to experimental data and/or

high-level ab initio calculations. If well parameterized, force fields can be appropriate for

polymorph prediction [8, 9], but in general sufficiently accurate parameters are not readily
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available for most molecules. In contrast to force fields, ab initio calculations do not need

to be parameterized, but involve the numerical solution of Schrodinger’s equation for the

electronic motion, thus requiring significantly more CPU time and computer memory. Since

the exact solution of Schrodinger’s equation is impossible for all but the simplest cases, var-

ious approximate techniques have been developed of which density functional theory (DFT)

calculations are of particular interest, as they offer a good compromise between speed and

accuracy for crystal structures with cell volumes of 100− 1000 Å
3
and above. Because DFT

calculations make use of the independent electron approximation, they fail to incorporate

long-range dispersive interactions (van der Waals interactions) which result from electron

correlation effects and play an important role in molecular crystals. Accordingly, pure DFT

calculations are not appropriate for the structure optimization of molecular crystals.

Several attempts have been reported to overcome this problem. Some authors have tried

to incorporate van der Waals interactions in the DFT formalism [10, 11, 12, 13]. Although

promising, these approaches either are currently too time-consuming for practical applica-

tions or suffer from other limitations. A more pragmatic approach, already explored by

several authors [12, 13] and also used in this work, is to combine DFT calculations with

an empirical van der Waals correction. The empirical correction is defined as the sum over

atom-atom pair potentials with each pair potential for two atoms A and B being the product

of an asymptotic C6,A,B/r
6 term and a damping function dA,B(r). The damping function is

required to counteract the divergence of the C6,A,B/r
6 term at short interatomic distances

r. At large interatomic distances, the damping function is equal to 1. This approach has

already been reviewed in many details by Marcus [14].

Although dispersion-corrected DFT(DFT+D) or hybrid approaches are quite common

nowadays, they can be computationally expensive. The running time of such methods can

be days and sometimes weeks of calculations on multiple cores. Indeed, these methods have

a decent accuracy but may take very long run-times. On the other side, we have force

fields methods which are based on certain parametrization of the underlying equations. For

example, one can model bonds as springs and try to find the coefficient of proportionality

by means of the available experimental data. This is an appealing approach and indeed, it

is very fast in the computational sense. The only problem is that it is not ab initio and
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the accuracy suffers considerably when applied outside the range of the parametrization,

especially with electrostatic interactions. The overall conclusion that can be drawn from

the above reasoning is that there is a lack of an ab initio method which is computationally

fast and reasonably accurate compared to the high-level methods. Such a method can be

tentatively applied not only for geometry optimization by also for a quick scan over thousands

of molecules in order to study general trends.

The goal of the current project was to find a new electronic structure calculation method

which is reasonably accurate and at the same time possesses good computational perfor-

mance. We would like to apply such a method for geometry optimization purposes and be

able to find the global minimum of a system consisting of a number of molecules. As we

have mentioned above, the field of the electronic structure calculations can be subdivided

into two extremes. On one side, we have fast but questionable methods based in empirical

force field. These methods are computationally very fast (geometry optimization takes time

on the order of minutes) but their accuracy wishes much to be desired. Placing atoms in

different environments can have unpredictable effects on the accuracy. On the other side, we

have very accurate but at the same time very slow high-level wave functional based meth-

ods. One can qualify them as the state-of-the-art modern approaches. Unfortunately, the

applicability of such methods to geometry optimization may seem infeasible for the reason of

their low computational performance. As an example, the conventional Kohn-Sham Density

Functional Theory calculation scales cubically with the number of atoms (N), MP2 method

scales as O(N5), and some of the more advanced method have an even higher complexity.

This simple analysis shows that in order to run the geometry optimization using high-level

methods, one will have to wait for days, if not weeks, in order to obtain results.

In the work described in this thesis, we present a method which is reasonably accurate

(i.e. the method gives results close to those of high-level, computationally intensive methods)

and relatively fast. Moreover, we are mostly concerned with geometry optimization.For this

reason, we quantify the desired accuracy of our method in terms of the proximity of the

binding curves obtained using our method to the binding curves obtained by means of high-

level methods as well as the proximity of locations of the minima of those binding curves. In

terms of computational performance, we would like to obtain the optimized geometry within

3



several hours. Since our method is an approximation, the overall strategy for any geometry

optimization should be divided into two parts. Firstly, we run our method in order to find

an approximate location of the minimum. Secondly, one can now run a high-level method

in order to adjust the geometry.

In chapter 2 of this work, we investigate the performance and the accuracy of the Orbital-

Free Density Functional Theory. This is a very attractive method of the electronic structure

calculation because its complexity scales linearly with the number of atoms as opposed to the

cubic scaling of the conventional Kohn-Sham DFT. This scaling is achieved by completely

eliminating orbitals from the calculation. Instead, the electron density is discretized in a

rectangular grid and the total energy functional is optimized with respect to the values of

the electron density on each site. The total energy consists of five major parts:

Etot[ρ] = Ts[ρ] + Eext[ρ] + Ehart[ρ] + Exc[ρ] + ENN (1.1)

The electron kinetic energy Ts[ρ] approximated by the sum of the Thomas-Fermi and von

Weizsacker terms; the electron-nucleus interaction Eext[ρ];the Hartree term Ehart[ρ];the nuc-

leus-nucleus interaction ENN , and the exchange-correlation term Exc[ρ]. The major problem

of the OF-DFT approach is related to the kinetic energy approximation used: the Thomas-

Fermi term is only valid for a homogeneous electron gas and the von Weizsacker term is only

exact for systems with no more than two electrons. Other, non-local terms have been recently

proposed [62],[51]. We make use of the periodic boundary conditions in order to reduce the

computational complexity of the Hartree term from O(M2) to O(M logM), where M is the

number of grid points. At the same time, the imposition of the periodic boundary conditions

will require us to have a very big simulation region in order to prevent the electrostatic images

of molecules from feeling each other. This will cause the number of grid point to rise and so

will prevent us from using the non-local kinetic energy terms, which otherwise can make the

calculation computationally infeasible. This leaves us just two contributions to the kinetic

energy of electrons: Thomas-Fermi and von Weizsacker terms:

Ts[ρ] = CTF

∫
ρ(r)5/3dr+

λ

8

∫
|∇ρ(r)|2

ρ(r)
dr (1.2)
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Following [93], we investigate the performance of the model

Ts[ρ] = a× CTF

∫
ρ(r)5/3dr+ b× 1

8

∫
|∇ρ(r)|2

ρ(r)
dr (1.3)

to the benzene and thiophene dimers, where a and b are parameters taking values a =

1.0, 1.1, 1.2 and b = 1
3
, 1
6
, 1
9
. The introduction of these parameters may compensate for the

lack of non-local terms and approximate the binding curves up the a reasonable accuracy.

We compute the binding curves for the benzene and thiophene dimers and show that one

can find a pair of parameters such that the resulting binding curve is able to reasonably ap-

proximate the benchmark results obtained by means of M06-2X functional. Unfortunately,

we do not find any transferability of any given model from molecule to molecule: the opti-

mal parameters vary in an unpredictable way as the molecular structure changes. We can

summarize the results as follows:

• Results show no transferability.

• Certain trends can be recovered. As a ↑ or b ↑ the minima occur at longer distances.

• Further investigation is needed to access the applicability of OF-DFT to molecular sys-

tems.

• Minima occur quite far from the benchmark results.

• We do not intend to further apply this method

In chapter 3, we take a completely different approach. It is motivated by the Harris

Functional Approximation [28] of the Kohn-Sham DFT. The conventional way of solving

Kohn-Sham equations is called the Self Consistent Field (SCF). The equations are non-

linear, so the only way of finding a solution is by using an iterative approach. The Harris

approximation is the first order expansion of the Kohn-Sham energy around the electron

density of non-interacting fragments and so it avoids iterations completely, increasing per-

formance by a double digit factor. Historically, the Harris approximation has used atoms

as fragments.In the current work, we proposed to use molecules as fragments and compute

the Harris energy based on that assumption. The molecular electron density can be eas-

ily pre-computed using the standard SCF technique and then reused multiple times. We

also proposed to augment the Harris energy by an empirical correction [15]. We investigate
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the performance of the augmented Harris approximation with LDA (local density approx-

imation) and GGA (generalized gradient approximation) and compare the results to two

benchmark high-level methods - M06-2X and MP2. We explore the accuracy of the Harris

based methods by computing the biding curves of the benzene and thiophene dimer and

comparing them to the benchmark curves obtained by MO6-2X [21] and MP2 [26]. The

results can be summarized as follows:

• Each energy curve obtained with Harris + Dispersion approximation gives binding.

• LDA Harris + Dispersion performs somewhat worse than GGA Harris + Dispersion in

comparison to M06-2X and MP2.

• GGA Harris + Dispersion method performs very well compared to M06-2X and MP2.

Both methods give minima which coincide up to one tenth of an angstrom (may be

better).Shapes of binding curves are almost identical.

• The method can be accelerated using openMP and gives a substantial speed-up over the

full SCF.

• The method is suitable for geometry optimization but details remain to be tested.

The results show that Harris+GGA+D method compares very well to the results of the

benchmark method, with the results obtained at a fraction of the cost. This suggests that

this method can be successfully applied to geometry optimization.

In chapter 4, we apply the Harris+GGA+D method to the geometry optimization of

the benzene dimer. The drawback of the Harris energy expression is the lack of the explicit

formulae for the gradient of the energy with respect to the nuclei positions. One can approx-

imate the gradient by means of the finite central differences. Although possible in theory,

such approximation quickly becomes computationally intractable, since for each degree of

freedom one has to perform two energy evaluations. Unlike in a conventional approach where

all nuclei positions are optimized, we constraint our system to only 6 degrees of freedom.In

the present situation we optimize 3 translational coordinates associated with the centroid

of a molecules and 3 rotational coordinates associated with rotations around that centroid,

yielding 6 degrees of freedom and so 12 energy evaluations per iteration. This makes it

computationally very expensive. Instead, we propose to use the Simultaneous Perturbation

6



Stochastic Approximation (SPSA) algorithm [112]. It needs only 2 energy evaluations per

iteration and is very attractive in the present context. Furthermore, this algorithm is a

global optimizer [113],which will help us find the configuration with the minimal energy.

The most important component of the algorithm is the gain sequence which controls

the magnitude of a step toward the minimum at each iteration. We perform a very careful

investigation of the choice of the gain sequence and show that different values may yield dif-

ferent final configurations. In particular, we show that one choice of gain sequence makes the

algorithm find two minima with very close energy values: starting sandwiched configuration

becomes a t-shaped final configuration and starting parallel-displaced configuration stays

one but at a different distance. Another choice of the gain sequence makes the algorithm

converge to the final t-shaped configuration independently of the choice of the initial orien-

tation. The algorithm provide a certain level of flexibility giving researchers a way of finding

either the overall global minimum (in this case t-shaped configuration) or converging to a

local minimum. The result show that SPSA algorithm finds the global minimum of the ben-

zene dimer and is also able to locate the local minima, if needed. GGA Harris + Dispersion

method may indeed be used as a starter for geometry optimization. Current implementation

scales almost linearly with the number of cores and provides a double-digit speedup over

the conventional full SCF methods.The method is efficient and accurate enough to be able

to predict the molecular packing of the benzene dimer. The results can be summarized as

follows:

• GGA Harris + Dispersion method may indeed be used as a starter for geometry opti-

mization.

• Current implementation scales almost linearly with the number of cores and provides a

double-digit speedup over the conventional full SCF methods.

• The method is efficient and accurate enough to be able to predict the molecular packing

of the benzene dimer.

• Current implementation is able to find all minima of the energy surface in multiple

dimensions.
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2.0 ORBITAL-FREE DENSITY FUNCTIONAL THEORY AND ITS

APPLICATION TO MODELING OF π-STACKING.

In this section, we explain the orbital free Density Functional Theory (OF-DFT) approach

to modeling of molecular systems. We start by introducing the reader to the basic concepts

of this methodology. We derive the expressions for some basic energy functionals and give

the motivation for why it is advantageous to use this scheme for real calculations. We also

pinpoint various drawbacks and possible solutions which have been recently proposed. Next,

we apply the OF-DFT approach to modeling of π-stacking in molecules such as benzene

and thiophene. We explain our computational approach and point out its advantages and

disadvantages. Finally, we present the results of our calculations.

2.1 APPLICATION OF ORBITAL FREE DENSITY FUNCTIONAL

THEORY TO MODELING OF COVALENT INTERACTIONS.

OF-DFT is a first principle quantum mechanics method that can be formulated to scale

linearly with system size. By contrast, Kohn-Sham DFT, which will be discussed in the

next chapter, scales cubically with size initially and then can be made to scale linearly

asymptotically. Currently, OF-DFT can be used to study samples consisting of tens of

thousands of atoms on a single processor and hundreds of thousands of atoms on tens of

processors if parallel implementation is used.

OF-DFT eliminates the Kohn-Sham orbitals and instead relies on approximation to the

kinetic energy that depends explicitly in the electron density. The viability of OF-DFT

thus depends heavily on accuracy of the kinetic energy functional chosen. Due to limitation
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in the accuracy of state-of-the-art kinetic limitations in the accuracy of the kinetic energy

functionals, at present OF-DFT is only accurate as KS-DFT for main group metals, as well

as for some properties of semiconductors.

Currently, the best approximations available are those that explicitly account for the

exact linear response of a uniform electron gas density subject to small perturbations in the

potential. We gave an example of such a functional which was pioneered by Wang and Teter

[51], modified by Perrot [52], and generalized by Wang, Govind and Carter (WGC) [58].

Unfortunately, the latter functionals suffer from a series of drawbacks when applied to

molecules. The Wang and Teter [51] functional is purely nonlocal which leads to quadratic

scaling O(M2), whereM is the discretization of the integration grid. In practice, it is possible

to use the periodic boundary conditions and reduce the complexity of the calculation of the

Coulomb term from O(M2) to O(M logM). This is not possible for the Wang and Teter

functional [51]. Wang, Govind and Carter [58] were able to generalize the Wang and Teter

functional, and by means of Taylor expansion around the average electron density they were

able to reduce the complexity to O(M logM). The main issue here is that it is hard to define

an average electron density for a complex molecule.

2.1.1 Orbital-free energy functional.

We now examine each term in the OF-DFT individually. The OF-DFT total energy can be

written as

Etot[ρ] = Ts[ρ] + Exc[ρ] + Eext[ρ] + Ehart[ρ] + Eii[r] (2.1)

where Ts[ρ] is the electronic kinetic energy, Eext[ρ] is the electron-ion potential energy, Ehart[ρ]

is the Coulomb repulsion energy between electrons, Exc[ρ] is the exchange-correlation energy,

and Eii[r] is the ion-ion repulsion energy. In our calculation we decided to place all the nuclei

on the grid. This is one of the reason why our grid should be very fine. Taking that into

account we will simply combine the last three terms in our energy expression into one and

call it J [ρ].

In the following we present individual expressions for the functionals and the methods

of their calculation.
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2.1.2 Coulomb term.

The Coulomb energy for the charge density including nuclei at a point r interacting with the

electron density at another point r
′
is expressed as

J [ρ] =
1

2

∫ ∫
ρ(r)ρ(r

′
)

|r− r′|
drdr

′
(2.2)

Under the periodic boundary conditions, it is possible to perform this convolution in recip-

rocal space with O(M lnM) scaling to obtain the Coulomb energy as

J [ρ] =
V

2

∑
g ̸=0

4π

|g|2
ρ(g)ρ(−g) (2.3)

where V is the volume of the periodic cell and ρ(g) is obtained as ρ(g) = F̂ (ρ(r)) , where F̂

is a forward fast Fourier transform, defined as

F̂ (f(r)) = f(g) =
1

N

∑
r

f(r)e−ig·r (2.4)

The potential in real space is computed as

∂J [ρ]

∂ρ
(r) = F̂

′
(

4π

|g|2
ρ(g)

)
(2.5)

where F̂
′
denotes the reverse fast Fourier transform

F̂
′
(f(g)) = f(r) =

∑
g

f(g)eig·r (2.6)
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2.1.3 Thomas-Fermi kinetic energy density functional.

The Thomas-Fermi kinetic energy functional [64, 65] is the simplest one available. It is

completely local, and depends only on the density. It is the LDA for the kinetic energy. It

has the form

TTF [ρ] = CTF

∫
ρ(r)5/3dr (2.7)

However, this functional by itself predicts no shell structure for atoms and no molecular

binding whatsoever [82, 83], and therefore is clearly inadequate on it own for real materials.

The Thomas-Fermi potential is given by

∂TTF [ρ]

∂ρ(r)
=

5

3
CTFρ(r)

2/3 (2.8)

2.1.4 von Weizsacker kinetic energy density functional.

The von Weizsacker (vW) kinetic energy functional [84] is exact for any single orbital system,

i.e. for up to two singlet-coupled fermions or any number of bosons. The vW functional by

itself is a lower bound to the true kinetic energy, since it neglects spin. Imposition of the

Pauli Principle for more than two electrons introduces nodes in the many-body wave function,

which increases the kinetic energy. Additionally, the functional Ts[ρ] = TTF [ρ] + TvW [ρ] has

been shown to be an upper bound to the true kinetic energy for non-interacting particles in

one dimension [85, 86].

The vW functional has the form

TvW [ρ] =

∫ √
ρ(r)

(
−1

2
∇2

)√
ρ(r)dr (2.9)

This integral is simply the standard Hamiltonian form of the kinetic energy when the wave

function is precisely the square root of the electron density. This functional also can be

written as [87]

TvW [ρ] =
1

8

∫
|∇ρ(r)|2

ρ(r)
dr (2.10)
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This can be proved by the chain rule:

TvW [ρ] =

∫ √
ρ(r)

(
−1

2
∇2

)√
ρ(r)dr =

∫
−1

2

√
ρ(r)∇(∇

√
ρ(r))dr = (2.11)

=

∫
−1

2

√
ρ(r)∇

(
∇ρ(r)
2
√
ρ(r)

)
dr =

∫
−1

4

√
ρ(r)∇

(
∇ρ(r)
2
√
ρ(r)

)
dr =

=

∫
−1

4

√
ρ(r)


√
ρ(r)∇2ρ(r)− ∇ρ(r)·∇ρ(r))

2
√

ρ(r)

ρ(r)

 dr =

∫ (
−1

4
∇2ρ(r) +

1

8

|∇ρ(r)|2

ρ(r)

)
dr

Since the value of
∫
−1

4
∇2ρ(r)dr is zero under the periodic boundary conditions, we recover

formula (2.10) for a periodic system. The expression (2.9) for the vW kinetic energy is

favored because it gives more stable convergence to the minimum. Expression (2.10) becomes

ill-behaved in the regions far from the nuclei when the electron density is very small.

The functional derivative with respect to ρ of the vW kinetic energy functional is given

by
∂TvW [ρ]

∂ρ(r)
= −1

4

∇2ρ

ρ
+

1

8

∇ρ · ∇ρ
ρ2

= −1

2

∇2√ρ
√
ρ

(2.12)

When using an optimization algorithm, it was found that keeping the electron density posi-

tive is a very challenging problem unless we introduce a new variable χ =
√
ρ and minimize

the total energy with respect to χ [88, 89, 90]. Using this variable transformation, the first

expression of the vW functional becomes

TvW [χ] =

∫
χ(r)

(
−1

2
∇2

)
χ(r)dr (2.13)

and the functional derivative becomes

∂TvW
∂χ(r)

= −∇2χ(r) (2.14)

2.1.5 Exchange-correlation functionals.

The expression for exchange-correlation functionals have already been presented above in

abundance. For the present work, we do not derive any expressions for the gradient of

the exchange-correlation functionals either. We prefer to use the well-established library of

functionals libxc [72].
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2.1.6 Optimization method for OF-DFT.

The second Hohenberg-Kohn [50] theorem states that for a trial density ρ(r), in which

ρ(r) ≥ 0 at all point and
∫
ρ(r)dr = Ne, with Ne the number of electrons, E[ρ̃(t)] ≥ Eground,

where Eground is the exact ground state energy.

Thus, given a configuration of ions that create an external potential and a trial electron

density ρ̃(r), we can recover the ground state electron density and energy by minimizing the

total energy of the system with respect to the electron density, subject to the two constraints

that the number of electrons be conserved and that the density be nonnegative everywhere.

More simply, we wish to solve the nonlinear, multidimensional problem

EOF−DFT
ground = min

{
EOF−DFT [ρ]− λ

(∫
ρ(r)dr −Ne

)
; ρ ≥ 0

}
(2.15)

where λ is a Lagrange multiplier used to enforce the constraint that the total number of

electrons is conserved.

A variety of technique are available for minimizing (2.15). Ideally, an algorithm must

be robust, fast, and use O(M) amount of memory. After trying a number of algorithms we

have focused on the augmented lagrangian method coupled with low storage BFGS optimizer

[75, 76, 77, 78].

A brief description of these algorithms is given below.

The problem we are trying to solve is generally expressed in the following form:

min
x∈RN

f(x) (2.16)

subject to

c(x) = 0

To solve this problem we compose the augmented Lagrangian function:

Φ(x, u, µ) = f(x)− uT c(x) + 1

2µ
||c(x)||22 (2.17)

where u and µ are auxiliary parameters. By making such a transformation, we perform

the so-called convexification of the Lagrangian function. The goal is to adjust u and µ to

encourage convergence.
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The algorithm usually does the following:

Given µ0 > 0 and u0, set k = 0.

Until convergence iterate:

• Starting from xsk, use an unconstrained minimization algorithm (in our case BFGS) to

find an approximate minimizer xk of Φ(x, uk, µk) for which ||∇xΦ(xk, uk, µk)|| ≤ ϵk.

• If ||c(xk)|| ≤ ηk, set uk+1 = uk − c(xk)
µk

and µk+1 = µk

• Otherwise set uk+1 = uk and µk+1 ≤ τµk

• Set suitable ϵk+1 and ηk+1 and increase k by 1.

2.1.6.1 BFGS Method Given starting point x0, convergence tolerance ϵ > 0

inverse Hessian approximation H0;

• set k ← 0

while ||∇fk|| > ϵ; Compute search direction

pk = −Hk∇fk (2.18)

• set xk+1 = xk + αkpk where αk is computed from a line search procedure to satisfy the

Wolfe conditions;

• Define sk = xk+1 − xk and yk = ∇fk+1 −∇fk;

• Compute Hk+1 by means of (2.19) and set k ← k + 1;

Hk+1 = (I − ρkskyTk )Hk(I − ρkyksTk ) + ρksks
T
k (2.19)

where

ρk =
1

yTk sk
(2.20)

end(while)
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2.1.7 Results and discussions.

In the previous section we have attempted to outline some major components of our OF-

DFT code/approach. We have specified individual pieces of the total energy and ways to

numerically approximate them. In the following, we further explain some of the finer details

of our approach and give the results of our simulation. In particular, we choose to study the

sandwiched configuration of benzene and thiophene dimers. This can give us an idea of how

well those systems are explained by the OF-DFT approach.

In order to evaluate the above formula for the total energy of the system, we discretize the

space onto a fine grid of points and approximate the integrals by finite sums. In particular,

we impose periodic boundary conditions in order to be able to use Fast Fourier Transform

routines implemented by fftw3 library [94] to evaluate the Coulomb energy. One possible

drawback of imposing the periodic boundary conditions is the fact that we have to make our

simulation region very big in order to prevent images of dimers from feeling each other as

indicated in Fig.2.1. In particular, in case of the benzene dimer we use a simulation box of

the size of 18× 18× 18 Å and the lattice of 113× 113× 113 with the lattice spacing of about

0.16Å. For the case of the thiophene dimer we use a simulation region of 20× 20× 20 Å and

the lattice of 100× 100× 100 with the lattice spacing of about 0.2Å. These parameters can

be changed by the user. In fact, the finer discretization is more favorable in this case. One

should remember though that such grids produce optimization problems with more than

one million of variables. For example, in the present situation in case of the benzene dimer

with the monomers at the distance of 3.5Å, we can get an optimization problem with 1.5

million variables. We attempt to place the nuclei on the lattice sites here. By placing the

nuclei on the grid we avoid the usage of local pseudo potentials and approximate techniques

for evaluation of Coulomb energy in periodic systems such as Ewald sums [73], etc. On the

other hand, by shifting the nuclei we introduce unrealistic perturbations into the system. We

can only hope that those perturbations are negligible. In the later section, we will discuss

alternative ways to evaluate ion-ion and ion-electron Coulomb energy.

One important ingredient of the optimization routine for the electron density which we

have evaded discussing so far is the initial guess. This is a very important piece of the
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puzzle since gradient based optimization routines are intrinsically local which allows the

possibility to converge to a wrong local minimum. Another point of concern is the speed of

convergence. In other words, starting from a sensible initial guess can significantly reduce the

amount of time needed to get close to the minimum. In the current study we are primarily

interested in the calculation of binding curves of molecules such as benzene, thiophene,etc.

We consider only two molecules for the current simulation. We suggest using the initial

guess for the conglomerate/dimer in the form of the overlap of the electron densities of each

individual molecule pre-computed by means of any suitable quantum chemical software. In

the current study we use Gaussian 09[30] software and generate the electron density on the

grid by means of the utility function cubegen [30]. In order to obtain the electron density

we run a series of Gaussian calculations with B3LYP[25] exchange-correlation functional and

cc-pVDZ [34, 35, 36] basis set. Subsequently, we create the initial guess for the dimer by

means of a simple overlap of the two electron densities of each monomer. Once we create

the initial guess we proceed to the optimization routine. In the current work we use nlopt

[72] optimization library.

We run our OF-DFT calculation with two types of functionals. We use LDA approxima-

tion to the exchange-correlation functional in the form Dirac exchange [17] and Perdew and

Wang correlation [18]. We also use the GGA approximation in the form of PBE exchange-

correlation functional [19]. In order to evaluate them we make use of the libxc library [72].

We only evaluate the stacked configuration with the present approach. Finally, we compare

our results with M062X [21, 22, 23, 24] exchange-correlation functional and use it as a bench-

mark in this type of calculations. We again use the Gaussian 09 [30] software to compute

the binding curves of the molecules under study.

It has been mentioned above that models of the TFDλW have been quite popular in the

literature, where the useful values of λ such as 1/3, 1/6, 1/9 have been reported to give good

approximations of atomic energies [92]. Knowing that the kinetic energy in the OF-DFT

approximation is not known (it is only known for the homogeneous electron gas and one-

electron system), we introduce an additional parameter following [93]. Our kinetic energy
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functional looks like

T [ρ] = a× CTF

∫
ρ(r)5/3dr+ b× 1

8

∫
|∇ρ(r)|2

ρ(r)
dr (2.21)

We use parameter b instead of λ. We try several values of parameter a = 1.0, 1.1, 1.2 and

b = 1/3, 1/6, 1/9. We hope to see trends or/and transferability of models. The results

are given below in Fig. 2.2, 2.3. The locations of minima of binding curves are given in

Tab.2.1,2.2. To obtain the minima locations we perform the spline smoothing of the binding

curves and find the minima of those by using simple one-dimensional minimization routines.

We intentionally do not present results produced by the LDA approximation because of their

incorrectness and non-smoothness of curves. On the other hand, GGA gives very smooth

curves and results which are somewhat close to the benchmark. The good quality of the GGA

result may be explained by the presence of the gradient dependence of the GGA functionals,

which in turn enforces the smoothness of the curves.

Let us first examine the binding curves computed for the benzene dimer. Figures

2(a), 2(b), 2(c) show the results. We intensionally avoided presenting the curves with the

parameter b = 1/3 because it creates very deep potential wells. One can clearly see from

these figures that curves with parameter b = 1/6 significantly overbind by creating very

deep potential wells as well as by having minima at a short distance. In other words, the

increase of parameter b creates more and more overbinding. On the other hand, the increase

of parameter a does not have any influence on the depth of the potential wells but shifts

the minima to longer separations. These trends can be summarized in Tab.2.1. The minima

obtained from the OF-DFT calculations are quite far from the benchmark result obtained

by M06-2X where the minimum is at 3.73Å.

Next, we examine the binding curves of the thiophene dimer Fig. 3(a), 3(b), 3(c). We

observe similar trends where the increase of parameter b introduces overbinding and very

deep potential wells,while the increase of parameter a simply increases shifts the minima to

longer distances. These trends can be seen from Tab.2.2.

After examining the binding curves and the corresponding minima, we can see that as

the coefficient a increases, the distance increases as well. On the other hand, the decrease of

the b coefficient makes the distance increase. This trend is clearly presented in both cases.
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Figure 2.1: Sandwiched configuration of thiophene

We get the best model for benzene as a = 1.2, b = 1/9 and the best model for thiophene

as a = 1.1, b = 1/9. We do not observe transferability across the models. In fact, the best

binding curve for the benzene dimer is off by 0.2Å from the benchmark result. On the other

hand, the best model for the thiophene dimer is quite accurate. If we pick a model with

parameters a = 1.1 and b = 1/9 the results obtained for benzene are a little worse but are

reasonable.

The current behavior the OF-DFT model can be explained by its inadequacy. Indeed, we

tried to approximate the molecular electron density by the uniform electron gas. In order to

improve the performance we should include non-local terms. Unfortunately, this may yield

the model computationally infeasible. In the next section, we suggest possible improvements

for the model.

2.1.8 Possible improvement of the model.

2.1.8.1 Kinetic energy. The main drawback of OF-DFT approach is the lack of the

kinetic energy functional. So far, we have used the Thomas-Fermi term and the von Weiz-
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(a) Stacked configuration a = 1.0
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(c) Stacked configuration a = 1.2

Figure 2.2: Calculation of stacked configuration of benzene binding curve with different

parameters.
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(c) Stacked configuration a = 1.2

Figure 2.3: Calculation of stacked configuration of thiophene binding curve with different

parameters.
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Table 2.1: Minima locations (Å) of benzene binding curves vs M062X minimum at 3.73Å

a/b 1 1.1 1.2

1/6 3.09 3.18 3.26

1/9 3.34 3.45 3.55

Table 2.2: Minima locations (Å) of thiophene binding curves vs M062X minimum at 3.78Å

a/b 1 1.1 1.2

1/6 3.33 3.46 3.75

1/9 3.7 3.8 none

sacker term together to approximate the kinetic energy. The von Weizsacker term originates

from the expansion of the kinetic energy with respect to local inhomogeneities of the density.

One can use that expansion to the fourth order, and can write

T [ρ] = TTF [ρ] + T2[ρ] + T4[ρ] (2.22)

where TTF [ρ] is the Thomas-Fermi expression, T2 is the von Weizsacker term, and fourth

term looks like:

T4[ρ] =
(3π2)−2/3

540

∫
ρ1/3

[(
∇2ρ

ρ

)2

− 9

8

∇2ρ

ρ

(
|∇ρ|2

ρ

)2

+
1

3

(
|∇ρ|2

ρ

)4
]
dr (2.23)

As usual with perturbative expansions, the convergence with increasing number of terms is

not guaranteed. In this case, the second order in known to improve over Thomas-Fermi,

while the inclusion of T4 does not represent a significant advance over T2. In addition, this

expansion cannot account for rapidly varying density such as those occurring in vacuum

regions (outside molecules and surfaces). In fact, for atoms the density calculated with the

truncated gradient expansion still diverges at long distances.
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The correct second-order correction for one-electron systems, and also for two electron

systems where the two electrons occupy the same spatia orbital is represented by the Weiz-

sacker expression. Any approximate functional should be able to retrieve this expression in

those cases, but should also reproduce the gradient expansion in the limit of slowly varying

densities. Several advances in this direction have been proposed along the years, and have

become more reliable in recent times.

One possibility is to propose an effective re-summation schemes similar to GGA for

exchange:

Ts[ρ] = c0

∫
ρ(r)5/3P (s[ρ,∇ρ])dr (2.24)

with s = c2/c0|∇ρ/ρ4/3|2. The function P (s) should observe the two limits P (s) → 1 + s

for small s, and P (s) → 9s for s → ∞, in order to respect the behavior of the energy in

the two known limits. Besides this, there is much freedom in how to do this. It was shown

that the gradient contributions from the kinetic energy and the exchange terms are closely

related, and proposed a functional form consistent with Becke’s exchange. This improves the

energetics of atomic and molecular systems, but does not lead to the correct ground state

density by minimization of the energy functional. This issue was addressed by Wang at al.

(2001), who derived a differential equation for P (s) in terms of the Kohn-Sham potential,

for spherically symmetric systems. They concluded that in order for a kinetic functional to

achieve this goal, it must be at least of the meta-GGA type, i.e. including the Laplacian of

the density. King and Handy (2001) explored a similar road, but using

Ts[ρ] = c0

∫
ρ(r)5/3

(
Φ(r) +

1

8

|∇ρ|2

ρ

)
dr (2.25)

where Φ(r) is a modular function that goes to zero at long distances. Interestingly, using

this approach they obtained the correct atomic shell structure.

A cleaner, although computationally heavier, route to the shell structure is to abandon

semi-local approximations in favor of a fully non-local approach to the kinetic term. This

has been done in the spirit of the weighted density approximation for exchange. The idea

here is to divide the kinetic energy into a Weizsacker term TvW and a non-local contribution

Tnl written as

Tnl[ρ] =
8

5

∫
ρ(r)t[ρ̃(r)]dr − 3

5
TTF [ρ] (2.26)
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where t[ρ] is the kinetic energy density in the LDA (Thomas-Fermi), and

ρ̃(r) =

∫
ρ(r

′
)ω(ξ(r, r

′
), |r− r

′|)dr′
(2.27)

is a non-spherical average density defined by the weight function ω. This latter depends

on the local density though a function ξ(r, r
′
)) which, importantly is symmetric in r and

r
′
. A universal weight function is determined by imposing that the linear response of the

homogeneous electron gas is reproduced.

The idea of enforcing the linear response has also been pursued by other authors, but in

a slightly different form. The kinetic functional is written as Ts = TTF + TvW + Tnl, with

Tnl[ρ] =

∫ ∫
ρα(r)ωαβ(ξ(r, r

′
), |r− r

′|)ρβ(r′
)drdr

′
(2.28)

and ωαβ is again determined by imposing the correct linear response. There have also been

proposals of incorporating the second order response into this approach. Unfortunately, the

feasibility of this scheme relies on Taylor expansion around some uniform density, and is thus

of little applicability to molecular systems.

2.1.8.2 Coulomb interaction. As we have mentioned above, we placed the nuclei on

the lattice sites by moving them by a small margin. This may cause bad consequences

because now the nuclei are located at the wrong positions. This problem can be alleviated

by introducing a finer grid. At the same time doubling the dimensions of the lattice will cause

the increase in the number of variables by a factor of 8, which may results in a prohibitively

long calculation or an excessive amount of computer memory.

A more realistic approach is to split the Coulomb energy into three parts: the electron-

electron, ion-ion, and electron-ion parts. The first part can be computed by using the Fourier

Transform method described above. The ion-ion Coulomb energy can be evaluated using

the Ewald summation [73] or fast multipole method [111]. The electron-ion interaction can

be computed by means of the local pseudo potential. We chose to avoid the usage of pseudo

potentials because of the lack of parameters used to parameterize the pseudo potential.

Further improvements can be introduced by partitioning the space into two types of

regions: the regions around the nuclei enclosed by a certain cutoff radii (usually used with
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pseudo potentials) and the regions outside of the cutoff radii of each nucleus. The grid

within the first type regions should be made fine enough to approximate the quickly changing

electron density and the grid in the second type regions can be made coarse for reason that

the electron density in the outskirts of a molecule take small values and varies just slightly.

The problem with this approach can arise from the fact that when we compute the

electron-electron Coulomb energy, the interaction energy of the inner regions with the outer

regions should be calculated. This is not possible using the Fourier Transform because the

standard Fourier Transform routines require a uniform grid. In fact this can be solved by

setting up a unique fine grid for the whole system but by placing a zero charge at all second,

third, fourth grid site in the outer region. This way we can reduce the number of variables

quite substantially and take into account the local pseudo potential.
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3.0 HARRIS APPROXIMATION METHOD FOR MODELING OF

COVALENT INTERACTION.

In this section, we take a conventional approach used in the Density Functional Theory

(DFT) based on Kohn-Sham (KS) equation and orbitals. We first give a derivation of

the KS method and show how one can implement it using Gaussian basis sets. We will

also present some other functionals used in DFT but which can only used within the KS

framework. Next, we introduce the Harris approximation and explain its advantages and

disadvantages.

3.1 INTRODUCTION TO KOHN-SHAM METHOD.

3.1.1 Introduction to orbitals and Kohn-Sham equations.

It is indeed appealing that the ground-state energy of a many-electron system can be obtained

as the minimum of the energy functional

E[ρ] =

∫
ρ(r)v(r)dr+ F [ρ] (3.1)

where

F [ρ] = T [ρ] + Vee[ρ] (3.2)

all terms having been defined in the previous section. The ground state electron density is

the density that minimizes E[ρ] and hence satisfies the Euler equation

µ = v(r) +
δF [ρ]

δρ(r)
(3.3)

25



where µ is the Lagrange multiplier associated with the constraint∫
ρ(r)dr = N (3.4)

Among all possible solutions of (3.3), one takes that which minimizes E[ρ].

We have seen in the previous section how one can proceed to approximate implementation

by making certain assumptions. How can we do better? How can we avoid the great loss in

accuracy associated with the Thomas-Fermi model and its derivative models?

Thomas-Fermi and related models constitute a direct approach, where one constructs

explicit approximate forms for T [ρ] and Vee[ρ]. This produces a nice simplicity, because

the equations involve electron density alone. Unfortunately, however, there are incredible

difficulties in going beyond the crude level of approximation. In a trade of simplicity for

accuracy, Kohn and Sham invented an indirect approach to the kinetic energy functional

T [ρ], the Kohn-Sham (KS) method.

Kohn and Sham proposed to introduce orbitals into the problem in such a way that the

kinetic energy can be computed simply to good accuracy, leaving a small residual correction

that is handled separately. To understand what is involved and what Kohn and Sham did,

it is convenient to begin with the exact formula for the ground-state kinetic energy,

T =
N∑
i=1

ni < ψi| −
1

2
∇2|ψi > (3.5)

where the ψi and ni are, respectively, natural spin orbitals and their occupation numbers.

The Pauli principle requires that 0 ≤ ni ≤ 1. From the Hohenberg-Kohn theory this T is a

functional of the total electron density

ρ(r) =
N∑
i=1

ni

∑
s

|ψi(r, s)| (3.6)

For any interacting system of interest, there is an infinite number of terms in (3.5) and (3.6).

Kohn and Sham showed that one can build a theory using simpler formulas namely

Ts[ρ] =
N∑
i=1

ni < ψi| −
1

2
∇2|ψi > (3.7)
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and

ρ(r) =
N∑
i=1

∑
s

|ψi(r, s)| (3.8)

Equations (3.7) and (3.8) are special cases of (3.5) and (3.6) having ni = 1 for N orbitals

and ni = 0 for the rest. This representation of kinetic energy and density holds true for the

determinantal wave function that exactly describes N noninteracting electrons.

Any nonnegative, continuous, and normalized density ρ is N - representable and always

can be decomposed according to (3.8). But given a ρ(r), how can we have a unique decom-

position in terms of orbitals so as to give a unique value to Ts[ρ] through (3.7)?

In analogy with the Hohenberg-Kohn definition of the universal functional FHK [ρ], Kohn

and Sham invoked a corresponding noninteracting reference system, with the Hamiltonian

Ĥs =
N∑
i=1

(
−1

2
∇2

i

)
+

N∑
i=1

vs(r) (3.9)

in which there are no electron-electron repulsion terms, and for which the ground-state

electron density is exactly ρ. For this system there will be an exact determinantal ground-

state wave function

Ψs =
1√
N !

det[ψ1ψ2 · · ·ψN ] (3.10)

where the ψi are the N lowest eigenvalues of the one-electron Hamiltonian ĥs:

ĥsψi =

[
−1

2
∇2 + vs(r)

]
ψi = ϵiψi (3.11)

The kinetic energy is Ts[ρ], given by (3.7)

Ts[ρ] =< Ψs|
∑(

−1

2
∇2

)N

i=1

|Ψs >=
N∑
i=1

< ψi| −
1

2
∇2|ψi > (3.12)

and the density is decomposed as in (3.8).

The definition of Ts[ρ] leaves an undesirable restriction on the density - it needs to be

noninteracting v-representable. That is, there must exist a noninteracting ground state with

the given ρ(r). In the Kohn-Sham approach this restriction can be lifted, and Ts[ρ] of the

form (3.7) can be defined for any density derived from an antisymmetric wave function.
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The quantity Ts[ρ], although uniquely defined for any density, is still not the exact kinetic

energy functional T [ρ]. The very clever idea of Kohn and Sham is to set up a problem of

interest in such a way that Ts[ρ] is its kinetic energy component, exactly. The resultant

theory turns out to be of independent particle form.

To produce the desired separation out of Ts[ρ] as the kinetic energy component, rewrite

(3.2) as

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ] (3.13)

where

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (3.14)

The defined quantity Exc[ρ] is called the exchange-correlation energy.

The Euler equation now becomes

µ = veff (r) +
δTs[ρ]

δρ(r)
(3.15)

where the KS effective potential is defined by

veff (r) = v(r) +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
= v(r) +

∫
ρ(r

′
)

|r− r′|
dr

′
+ vxc(r) (3.16)

with the exchange-correlation potential

vxc(r) =
δExc[ρ]

δρ(r)
(3.17)

The Kohn-Sham procedure runs as follows. Equation (3.15) with the constraint (3.4) is

precisely the same equation that one obtains from conventional density functional theory

when one applies it to a system of noninteracting electrons moving in the external potential

vs(r) = veff (r). Therefore, for a given veff (r), one obtains the ρ(r) that satisfies (3.15)

simply by solving the N one electron equations[
−1

2
∇2 + veff (r)

]
ψi = ϵiψi (3.18)

and setting

ρ(r) =
N∑
i=1

∑
s

|ψi(r, s)| (3.19)
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3.1.2 Derivation of the Kohn-Sham equations.

We here express the Hohenberg-Kohn variational problem (3.3) in terms of the Kohn-Sham

orbitals appearing in (3.10). The energy functional (3.1) can be rewritten as

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +

∫
v(r)ρ(r)dr = (3.20)

=
N∑
i=1

∑
s

∫
ψ∗
i (r)

(
−1

2
∇2

)
ψi(r)dr + J [ρ] + Exc[ρ] +

∫
v(r)ρ(r)dr

and the electron density as

ρ(r) =
N∑
i=1

∑
s

|ψi(r, s)|2 (3.21)

We thus have the energy expressed in terms of N orbitals.

If the N orbitals are allowed to vary over the space of functions that are continuous - to

have finite kinetic energy, and be square integrable - to guarantee normalization, then the

density ρ covers all N -representable densities, the appropriate domain of definition of E[ρ]

in (3.20). That is to say, variational search for the minimum of E[ρ] can be equivalently

effected in the space of orbitals {ψi}. In doing this one must actually constrain the orbitals

to be orthogonal, namely, ∫
ψ∗
i (x)ψj(x)dx = δij (3.22)

because otherwise the kinetic energy formula of (3.7) would not be valid. Note that (3.22)

implies that ρ(r) remains normalized as required by (3.4).

Define the functional of the N orbitals

Ω[{ψi}] = E[ρ]−
N∑
i=1

N∑
j=1

ϵij

∫
ψ∗
i (x)ψj(x)dx (3.23)

where E[ρ] is the functional of the ψi expressed in (3.20) and the ϵij are Lagrange multipliers

for the constraints (3.22). For E[ρ] to be a minimum,it is necessary that

δΩ[{ψi}] = 0 (3.24)

which leads to the equations

ĥeffψi =

[
−1

2
∇2 + veff

]
ψi =

N∑
j=1

ϵijψj (3.25)
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with the effective potential veff (r) determined from the density through (3.16). ĥeff is a

Hermitian operator, hence ϵij is a Hermitian matrix, and can be diagonalized by a unitary

transformation of the orbitals. Such a transformation leaves invariant the determinant of

(3.10), the density (3.21), and hence the Hamiltonian of (3.25). The Kohn-Sham orbital

equations are thus obtained in their canonical form:[
−1

2
∇2 + veff

]
ψi = ϵiψi (3.26)

veff (r) = v(r) +

∫
ρ(r

′
)

|r− r′|
dr

′
+ vxc(r) (3.27)

ρ(r) =
N∑
i=1

∑
s

|ψi(r, s)|2 (3.28)

In (3.25) and (3.26), the solutions ψi can be different. These equations are nonlinear and be

solved iteratively. The total energy can be determined from the resultant density from the

formula

E =
N∑
i=1

ϵi −
1

2

∫ ∫
ρ(r)ρ(r

′
)

|r− r′ |
drdr

′
+ Exc[ρ]−

∫
vxc(r)ρ(r)dr (3.29)

3.2 EXCHANGE-CORRELATION FUNCTIONALS AND OTHER

METHODS.

3.2.1 Hybrid HF-KS approaches.

The observation that LDA and GGA trends are opposite to those of Hartree-Fock motivated

the development of approximations which combine these two approaches. These involve a

DFT correlation with a combination of DFT and Hartree-Fock exchange:

Ehyb
xc = αEHF

X + (1− α)EDFT
X + EDFT

C (3.30)

where the coefficient α is either chose to assume a specific value such as 1/2, or is fitted to

some properties of a molecular database.
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As example of the latter is the approximation known as B3LYP. This reproduces the

geometries and binding energies of molecular systems, to the same accuracy of low-level cor-

related quantum chemistry approaches like second order Moller-Plesset perturbation theory

(MP2) [26], and sometimes even at a higher level such as coupled clusters or CI methods.

This idea is appealing and physically sensible, but the approach of fitting the coefficient α

to molecular data is not compatible with an ab initio approach.

Interestingly, it has been shown that hybrid schemes have a rigorous formal justification

within the exact DFT scheme, when this is formulated as a generalized Kohn-Sham approach.

The reference system is still described by a Slater determinant, but, at variance with the

usual Kohn-Sham approach, it does not correspond to the minimization of the expectation

value of the kinetic energy Ts =< Ψs|T |Ψs >. Instead, it is obtained by minimizing a

different functional under the constraint that the wave function can be written as a Slater

determinant. If this functional is chosen to be

THF−KS =< Ψs|T + Vee|Ψs >= Ts + EH [Ψ] + EX [Ψ] (3.31)

the scheme resembles the Hartree-Fock method, but it contains an unknown, formally exact

correlation term that is absent in standard HF. This approach is known as the Hartree-

Fock-Kohn-Sham scheme (HF-KS). Another possibility is to construct a functional where

the exchange term is replaced by a screened exchange, with the bare Coulomb interaction

replaced with a statically screened interaction of the Yukawa type.

3.2.2 Van der Waals (dispersion) interactions.

The issue of van der Waals of dispersion interactions is a difficult benchmark is many-body

theory that ultimately any correlation functional should address. The origin of the van

der Waals interaction between two non-chemically bonded fragments is the coupling of the

electric field generated by fluctuations in the electronic density of one fragment with the

density of the other fragment. This is a dynamical correlation effect that the usual local and

semi-local functionals such LDA and GGA cannot capture, and is not related to the exchange.

At long distances the van der Waals interaction should approach the classical dipole-dipole
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interaction, which decays as EvdW = −C6/R
6. Typical van der Waals systems are dimers

of closed-shell atoms. Most theoretical works concentrated precisely on reproducing this

long-range behavior by separating the electron-electron interaction into a short-range and a

long-range part. The long-range part is responsible for the van der Waals interaction, and

can be typically represented by an effective interaction of the form

U lr
ee(r, r

′
) =

A(r, r
′
)

|r− r′|6
(3.32)

where A(r, r
′
) depends on the choice of an effective density for the exchange-correlation

linear response kernel, like ρeff =
√
ρ(r)ρ(r′) or ρeff = {

√
ρ(r)ρ(r′)[

√
ρ(r) +

√
ρ(r′)]}2/3.

With this, the long-range contribution to the XC energy from two well-separated fragments

in volumes V1 and V2 is given by

Elr
XC = − 3

π

∫ ∞

0

du

∫
V1

dr1

∫
V2

dr2
χz
1(iu)χ

z
2(iu)

|r1 − r2|6
(3.33)

where χz
i (ω) is the density response of a uniform 5electron gas of density ρ(ri) to a pertur-

bation in the direction of the bond. A more general approach that calculates the density

response using real-time propagation has been proposed by Kohn. This finally leads to the

well known long-range behavior of the van der Waals interaction between two fragments

separated by a distance R:

EvdW (R) = −
(
3

π
ℑ
∫ ∞

0

χz
1(ω)χ

z
2(ω)dω

)
1

R6
(3.34)
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3.2.3 Becke-Johnson approach to dispersion interaction.

The dispersion interaction between molecules is a weak attraction attributed to an instanta-

neous dipole moment in one molecule inducing a dipole moment in another molecule. The

resulting dipole-induced-dipole interaction leads, in the limit of large intermolecular separa-

tion, to a dispersion energy of the form

Edisp = −
C6

R6
(3.35)

where the dispersion coefficient C6 is a constant depending on the molecules involved.

While dispersion interactions are very important in chemistry, efficient modeling of dis-

persion remains a hard computational problem. Correlated ab initio methods with large

basis sets provide an accurate treatment of dispersion but are computationally expensive.

There is considerable interest in modifying the more computationally affordable methods

like Hartree-Fock or DFT to approximately account for dispersion.

Such modifications usually involve addition of a dispersion term of the following form to

the HF or DFT energy:

Edisp = −
∑
i>j

C6

R6
ij

(3.36)

The summation is over all atom pairs and C6 coefficients depend on the atoms i and j.

But how does one determine the values of the interatomic C6 coefficients? Interatomic

C6’s are commonly obtained from empirical fits. An example is the Slater-Kirkwood [106,

107] approach in which C6’s are obtained from atomic polarizabilities fit to molecular polar-

izability data [108]. The atomic polarizabilities are dependent on the molecular environment

and involve explicit atom types. Wu and Yang [109] have suggested the interatomic C6’s

be directly fit to a reference set of intermolecular C6 data. Intermolecular C6’s can be ob-

tained from experimental dipole oscillator strengths and can be rigourously calculated from

frequency dependent polarizabilities. Wu and Yang’s fitted C6’s were averaged over atom

types to obtain a more general parameter set and used in more extensive calculations by

Grimme [15, 16].

The Becke-Johnson model [98, 99, 100, 101, 102] uses the ab initio approach to calculate

these coefficients. They consider the exchange hole (A.2.11) (see Appendix) of an atom
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or molecule, hXσ(r1, r2). When a σ-spin electron is at position r1 the hole measures the

depletion of probability, with respect to the total electron density, of finding another σ-spin

electron at position r2. The electron plus its hole has a zero net charge. However, the

hole is generally not spherically symmetric around r1 and the electron plus its exchange hole

therefore has a non-zero dipole moment. Becke and Johnson proposed that the exchange hole

instantaneous dipole moment is the source of dispersion interaction between non-overlapping

systems.

For the isotropic C6 coefficients between the two systems A and B, they obtained

C6 =
< d2X >A< d2X >B αAαB

< d2X >A αB+ < d2X >B αA

(3.37)

where < d2X > is the expectation value of the squared exchange-hole dipole moment and α is

the isotropic molecular polarizability. < d2X > are easily computed by numerical integration,

over HF or DFT orbitals

< d2X >=< dXα >
2 + < dXβ >

2 (3.38)

< dXσ >
2=

∫
ρσ(r1)d

2
Xσ(r1)dr1 (3.39)

where ρσ is the σ-spin density and the dipole moment of the σ-spin exchange hole at reference

point r1 is given by

dXσ(r1) =

[
1

ρσ(r1)

∑
ij

ψiσ(r1)ψjσ(r1)

∫
rψiσ(r)ψjσ(r)dr

]
− r1 (3.40)
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3.2.4 Grimme approach to dispersion interaction.

In the present work, we are using dispersion C6 coefficients obtained by Grimme [15, 16]. As

we mentioned above, these values were obtained by fitting to a large molecular data set. In

particular, the total energy is split into two parts

EDFT−D = EKS−DFT + Edisp (3.41)

where EKS−DFT is the usual self-consistent Kohn-Sham energy as obtained from the chosen

Density Functional and Edisp is an empirical dispersion correction given by

Edisp = −s6
Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdmp(Rij) (3.42)

Here, Nat is the number of atoms in the system, Cij
6 denotes the dispersion coefficient for

atom pair ij, s6 is a global scaling factor that only depends on the Density Functional used,

and Rij is an interatomic distance. In order to avoid near-singularities for small R, a damping

function fdmp must be used, which is given by

fdmp(Rij) =
1

1 + e−d(Rij/Rr−1)
(3.43)

where Rr is the sum of atomic van der Waals radii.

Because higher-order dispersion terms such as C8 and C10 that have been used in a similar

method are more short-ranged and strongly interfere with the damping function, Grimme

did not include them in his method. Grimme also proposed to use a geometric mean for the

composed coefficients

Cij
6 =

√
Ci

6C
j
6 (3.44)
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3.3 THE TIGHT BINDING METHODS.

The tight binding (TB) approach to electronic structure of solids is complementary to the

nearly free electron picture. While the latter is a reasonably good representation of the

electronic structure of simple metals, TB provides a plausible representation of systems where

the electrons are localized in chemical bonds of different degrees of covalency.The starting

point of this model is to consider that, in a first approximation, electrons are localized in

a single atom, but they have the possibility to jump to neighboring atoms. TB methods

range from very basic empirical models to the most sophisticated ab initio schemes, where

the Hamiltonian matrix is derived from DFT.

3.3.1 Empirical tight-binding.

In a sense, this is the simplest possible form of the TB model. The state of an electron

in atom i is indicated by the ket |i >. In a real-space representation, this would be the

atomic eigenstate ϕi(r − Ri). If the atoms are sufficiently far apart, then, in the crudest

approximation, electrons in every atom will have the same on-site energy value ϵ0. This

situation can be represented by a model Hamiltonian of the form Ĥ0 = ϵ0
∑

i |i >< i|.

When the atoms are brought together, we need to take into account the possibility of the

electrons jumping from one atom to any other of its neighbors. This is achieved by including

off-diagonal elements in the Hamiltonian, which now looks like

ĤTB = ϵ0
∑
i

|i >< i|+ t
∑
i

∑
j

|i >< j| (3.45)

In a model situation, the sum on j runs only over the nearest neighbors of i. The parameter

t is usually called hopping integral.

In order to understand the meaning of the hopping integrals, we need to consider the

real-space version of TB Hamiltonian for a single electron in a molecule,

ĤTB = − ~2

2m
∇2 +

∑
K

vK(r−RK) (3.46)
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and propose a linear combination of atomic orbitals for the TB wave function, ϕ(r) =∑
j Cjϕj(r−Rj), where [

~2

2m
∇2 + vj(r)

]
ϕj(r) = ϵ0ϕj(r) (3.47)

By replacing the expression into Schrodinger’s equation, we obtain

ĤTBϕ(r) =
∑

Cj

[
− ~2

2m
∇2 + vj(r−Rj) +

∑
K ̸=j

vK(r−RK)

]
ϕj(r) = ϵ0

∑
j

Cjϕj(r)

(3.48)

which, after multiplication by ϕ∗
K(r) and integration gives

Hjj
TB =

∫
ϕ∗
j(r)

[
− ~2

2m
∇2 + vj(r−Rj)

]
ϕj(r)dr = ϵ0 (3.49)

and

H ij
TB = − ~2

2m

∫
ϕ∗
j(r)∇2ϕj(r)dr+

∑
K

∫
ϕ∗
j(r)vK(r−RK)ϕj(r)dr (3.50)

These are precisely hopping terms, which involve two- and three-center integrals. The two-

center integrals are the most important contribution. If three-center integrals are neglected,

what remains is

H ij
TB ≈

∫
ϕ∗
i (r)

[
− ~2

2m
∇2 + vi(r−Ri) + vj(r−Rj)

]
ϕj(r)dr (3.51)

which correspond to electron being shared between two atoms i and j. There is a kinetic

energy contribution to hopping, but more important are the potentials attracting the electron

to the two atoms. The most substantial part of the kinetic energy is actually associated with

the on-site terms.

The electronic energy in the empirical tight-binding model, as in ab initio tight-binding

methods, is given simply by the sum of the eigenvalues of the Hamiltonian up to the highest

occupied energy level.

The above empirical tight-binding model can be made more realistic by taking into

account the identity of the atoms. This is achieved by considering that the electrons in the

isolated atom occupy their corresponding atomic orbitals, and these orbitals hybridize to

give rise to energy bands. Therefore, for each atomic species we consider a minimal set of

atomic valence orbitals,i.e. one orbital for each valence state occupied in the isolated atom.
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Within this picture first- and second-row elements are represented by one s and three p

orbitals, while transition metal atoms require one s and five d orbitals. This more elaborate

tight-binding Hamiltonian can be expressed as:

ĤTB =
∑
i

∑
α

ϵiα|ϕi
α >< ϕi

α|+
∑
αβ

∑
i̸=j

tijαβ|ϕ
i
α >< ϕj

β| (3.52)

where |ϕi
α > represents an atomic orbital of symmetry α. ϵiα are the on-site atomic energies

associated with these orbitals, and depend on the type of orbitals.

3.3.2 ab initio tight-binding.

As suggested by similarity in the form of the Hamiltonian, it is possible to make a connection

between the Kohn-Sham scheme for an atom-centered basis set and tight-binding approach.

The Kohn-Sham Hamiltonian matrix element is

H ij
KSµν =< ϕi

µ|
[
− ~2

2m
∇2 + v̂eff [ρ]

]
|ϕj

ν > (3.53)

The matrix element of the effective potential can be written as

vijeff,µν [ρ] = U ij
µν + µij

XCµν [ρ] +
M∑

γδ=1

P∑
KL=1

ρLKγδ < µiγK |νiδL > (3.54)

with U ij
µν the matrix element of the nuclear attraction and µij

XCµν the matrix element of the

exchange-correlation potential. The last term is the Hartree potential written in terms of

the density matrix and the Coulomb two-electron matrix elements.

The calculation of the Kohn-Sham matrix elements formally involves the calculation of

integrals ranging from one up to four centers, although the latter are reduced to two-center

integrals if the density is expressed in an atom-centered basis set, or if the Hartree potential

is expressed as a sum of atom-centered potentials. To avoid having to calculate the integrals

every time they are required, a standard procedure in TB schemes is to parameterize them

as a function of the type of basis function and distance between the centers. Two-center

integrals involve one orbital at each center, and are given by

tijµν =

∫
ϕ∗
µ(r−Ri)Ĥ

TB
KSϕν(r−Rj)dr (3.55)

38



with

ĤTB
KS = − ~2

2m
∇2 + v

(i)
eff (r−Ri) + v

(j)
eff (r−Rj) (3.56)

where the approximation was used that the effective potential can be written as v̂eff =∑
K v̂

(K)
eff .

3.3.3 Harris functional.

In principle, the solution of Kohn-Sham equations requires the self-consistent determination

of the density matrix. It is possible, however, to derive a non-self-consistent approach akin

to the empirical tight-binding approach. This is based on the approximation to the energy

proposed by Harris and Foulkes [28]. This energy functional was originally devised as an

approximation to the energy of weakly interacting fragments of the system. The approxima-

tion is almost equivalent to expanding the Kohn-Sham energy expression about the density

that is the sum of overlapped but frozen fragment densities and neglecting corrections which

are quadratic in the difference density.

The Kohn-Sham scheme for calculating energies is based on the expression

E = T0 +

∫
drρ(r)[

1

2
ϕ(r) + Vext(r)] + Exc + EN (3.57)

where E is the total energy for N electrons in nuclear field Vext(r), ρ(r), and ϕ(r) are the

electron density and associated Poisson potential, EN is the internuclear repulsion, T0 is

the kinetic energy of a system of independent electrons, and Exc is the so-called exchange-

correction energy. The solution is done by iteratively solving

[−1

2
∇2 + V (r)]ψi(r) = ϵiψi(r) (3.58)

where

T0 =

∫ ∑
i

niψ
∗
i (r)

(
−1

2
∇2

)
ψi(r)dr (3.59)

ρ(r) =
∑
i

niψ
∗
i (r)ψi(r) (3.60)

39



where ni are occupation numbers. The potential V (r) is then varied and the process repeated

until the minimum of E is found. The potential and density at minimum, V0(r), ρ0(r) will

then be found to satisfy the self-consistency condition

V0(r) = ϕ(r) + Vext(r) +
δExc

δρ(r)
|ρ=ρ0 (3.61)

and this is used to guide the potential towards its minimum value by iteration.

Subject to some representability requirements, the Kohn-Sham scheme is formally exact.

Furthermore, an exact expression for Exc can be written down if one invokes the adiabatic

connection formulation of the theory, where (3.57) is viewed as a functional of the one-

electron potential, V (r). The link between Exc and the density is then implicit and the

functional derivative in (3.61) is given by

µxc(r) =
δExc

δρ(r)
=

∫
dr

′ δExc

δV (r′)

δV (r
′
)

δρ(r)
(3.62)

If a local-density approximation (LDA) is used,

Exc =

∫
ρ(r)ϵxc(ρ(r))dr (3.63)

the above expression reduces to

µxc(r) = ϵxc(ρ(r)) + ρ(r)
dϵxc(ρ(r))

dρ(r)
(3.64)

and the dependence of Exc and µxc on the orbital structure is lost.

Consider two fragments, F1 and F2, whose coupling energy is of interest. Let ρ1(r) and

ρ2(r) be the densities that correspond to the exact minimum of (3.57) for isolated fragments.

These are given by (3.60) for some orbitals and occupations such that (3.58) and (3.61) are

satisfied simultaneously. The energy of fragment F1 can then be written in terms of the

self-consistent eigenvalues ϵ1i and density ρ1(r)

E1 =
∑
i

n1
i ϵ

i
i −
∫
ρ1(r)[

1

2
ϕ1(r) + µρ1

xc(r)]dr+ Exc[ρ1] + E1
N (3.65)
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with a similar expression for fragment F2. Suppose we place the fragments some finite

distance R apart and solve the seif-consistency equations exactly, obtaining density ρ(r),

occupations and eigenvalues ni, ϵi, and energy

ER =
∑
i

niϵi −
∫
ρ(r)[

1

2
ϕ(r) + µρ

xc(r)]dr+ Exc[ρ] + ER
N (3.66)

Write now

ρ(r) = ρf (r) + δρ(r) (3.67)

with ρf (r) = ρ1(r)+ρ2(r) with the two frozen fragment densities placed at separation R, and

assume δρ(r) to be sufficiently small that quadratic corrections can be ignored. Introduce a

potential

Ṽ (r) = ϕf (r) + µ
ρf
xc(r) + Vext(r) (3.68)

where Vext(r) is the true external field for separation R and ϕf and µ
ρf
xc are computed from the

overlapped fragment densities. Then the difference between the true self-consistent potential

and Ṽ (r) is

∆V (r) = ϕ(r)− ϕf (r) + µρ
xc(r)− µ

ρf
xc(r) (3.69)

which will be assumed small. If ϵ̃i are eigenvalues corresponding to Ṽ (r), we have

∑
i

niϵi =
∑

niϵ̃i −
∫
ρ(r)∆V (r)dr+O(∆V 2) (3.70)

which, on substituting in (3.66) gives

ER =
∑

niϵ̃i +

∫
ρ(r)[

1

2
ϕ(r)− ϕf (r)− µ

ρf
xc(r)]dr+ Exc[ρ] + ER

N (3.71)

Using

Exc[ρ] = Exc[ρf ] +

∫
µ
ρf
xc(r)δρ(r)dr+O(δρ2) (3.72)

and noting that ϕ is linear in ρ, we then find

ER =
∑

niϵ̃i −
∫
ρf (r)[

1

2
ϕf (r) + µ

ρf
xc(r)]dr+ Exc[ρf ] + ER

N (3.73)
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3.4 PRACTICAL IMPLEMENTATION.

In the following subsections, we will give a brief overview of how the solution of Kohn-Sham

equations is implemented in practice. We will closely follow the paper by Pople, Gill and

Johnson [110].

3.4.1 Solution of Kohn-Sham equations within a finite basis set.

In the current treatment we adopt a spin-unrestricted format, α and β electrons are as-

signed to sets of orthogonal orbitals ψα
i (i = 1, ..., nα) with ψβ

i (i = 1, ..., nβ) respectively.

Corresponding α, β and total densities are

ρα =
nα∑
i=1

|ψα
i |2 (3.74)

ρβ =

nβ∑
i=1

|ψβ
i |2 (3.75)

ρ = ρα + ρβ (3.76)

Kinetic energy Ts, electron-ion interaction EV , and electron-electron interaction J energies

are given by

Ts =
nα∑
i

(ψα
i | −

1

2
∇2|ψα

i ) +

nβ∑
i

(ψβ
i | −

1

2
∇2|ψβ

i ) (3.77)

EV = −
nucl∑
A

ZA

∫
ρ(r)

|r− rA|
dr (3.78)

J =
1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (3.79)

For the GGA exchange-correlation functional we have

Exc =

∫
f(ρα, ρβ, γαα, γαβ, γββ)dr (3.80)

γαα = |∇ρα|2 γαβ = ∇ρα · ∇ρβ γββ = |∇ρββ|2
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where f is a functional only of the local density and its gradients. The one-electron potentials

corresponding to (3.80) can be obtained by calculus of variation and are

V xc
α =

∂f

ρα
− 2∇ ·

(
∂f

∂γαα
∇ρα

)
−∇ ·

(
∂f

∂γαβ
∇ρβ

)
(3.81)

the expression for V xc
β is similar.

In practical computations, it is convenient to write the orbitals as finite expansions is a

basis set ϕµ

ψα
i =

∑
µ

cαµiϕµ ψβ
i =

∑
i

cβµiϕµ

so that

ρα =
N∑
µ

N∑
ν

nα∑
i

(cαµi)
∗cανiϕµϕν =

∑
µν

Pα
µνϕµϕν (3.82)

∇ρα =
∑
µν

Pα
µν∇(ϕµϕν) (3.83)

and similarly for ρβ.By substituting these expression into energy and then minimizing with

respect to unknown coefficients cαµi, c
β
µi (subject to orthogonality of ψi) we obtain a finite set

of algebraic equations for canonical orbitals,

N∑
ν

(Fα
µν − ϵαi Sµν)c

α
νi = 0 (3.84)

and similarly for cβνi. The quantities ϵ
α
i , ϵ

β
i are one-electron eigenvalues for occupied orbitals.

The Fock-type matrices Fµν are given by

F α
µν = Hcore

µν + Jµν + F xcα
µν (3.85)

F β
µν = Hcore

µν + Jµν + F
xcβ
µν (3.86)

Here Sµν and Hcore
µν are the overlap and bare-nucleus Hamiltonian matrices, respectively, Jµν

is the Coulomb matrix

Jµν =
N∑
λσ

Pλσ(µν|λσ) (3.87)
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where Pλσ is the total density matrix (Pα
λσ + P β

λσ) and the conventional notation is used for

two-electron repulsion integrals. The exchange-correlation parts of the Fock matrices are

given by

F xcα
µν =

∫ [
∂f

∂ρα
ϕµϕν +

(
2
∂f

∂γαα
∇ρα +

∂f

∂γαβ
∇ρβ

)
· ∇(ϕµϕν)

]
dr (3.88)

and similarly for F
xcβ
µν .

3.5 APPLICATION OF HARRIS-FUNCTIONAL APPROXIMATION.

3.5.1 Harris approximation with LDA.

In the Kohn-Sham DFT, the total energy of an N - electron system together with ν nuclei is

E =
∑
i

ni

∫
drψi(r)

(
−1

2
∇2 −

ν∑
a=1

Za

|r−Ra|

)
ψi(r) + Exc(ρ) + EC(ρ) + ENN (3.89)

ρ(r) =
∑
i

niψi(r)ψi(r) (3.90)

EC =
1

2

∫
dr

∫
dx
ρ(r)ρ(x)

|r− x|
(3.91)

where Za is the positive charge of nucleus a at site Ra, ψi is the ith occupied molecular

orbital, and its electron occupation number is defined as ni. EC is the Coulomb energy, and

a direct calculation of it in the basis-set approach requires the evaluation of K4 two-electron

integrals, where K is the number of basis functions. Exc is the exchange-correlation energy

which depends in the electron density ρ, and ENN is the nuclear repulsion energy.

Harris approximated [28] EC and Exc by equations

EH
C =

∫
dr

∫
dx
ρ(r)ρH(x)

|r− x|
− 1

2

∫
dr

∫
dx
ρH(r)ρH(x)

|r− x|
(3.92)

EH
xc = Exc(ρ

H) +

∫
dr[ρ(r)− ρH(r)]δExc(ρ

H)

δρH(r)
(3.93)
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where ρH is a superposition of electron densities of atomic fragments. The first-order energy

correction of the density error [ρ(r)−ρH(r)] is exactly included in the above equations, while

other higher-order corrections are partially canceled and ignored.

The molecular orbital ψi then satisfies the equations(
−1

2
∇2 −

∑
a

Za

|r−Ra|
+

∫
dx

ρH(x)

|r− x|
+ V [ρH(r)]

)
ψi(r) = ϵiψi(r) (3.94)

V [ρH(r)] =
δExc(ρ

H)

δρH(r)
(3.95)

In these equations ρH does not depend on ψi, so that self-consistent iterations are not

needed to obtain ψi. Consequently, the Harris method is often used for an initial guess

to SCF methods like Hartree-Fock and DFT. The above approach uses the local density

approximation (LDA) but others have extended the Harris approach to the GGA.

3.5.2 Generalized-gradient approximation.

GGA functionals depend not only on the values of electron density but also on its gradient.

This approximation has been shown to give more accurate results.[19, 20] Generally speaking,

the total exchange-correlation energy of a spin-unpolarized state is obtained as:

Exc = Ex(ρ, |∇ρ|) + Ec(ρ, |∇ρ|) =
∫
drΩ(ρ, |∇ρ|) (3.96)

In the total exchange-correlation-energy formula (3.96), if the terms of order of (ρ − ρH)2,

(∇ρ−∇ρH)2, (ρ− ρH)(∇ρ−∇ρH), and the higher-order terms are neglected, we obtain the

following exchange-correlation form in the Harris-GGA approximation [29]:

EH
xc = Exc(ρ

H , |∇ρH |) +
∫
dr[ρ(r)− ρH(r)]∂Ω(ρ

H , |∇ρH |)
∂ρH(r)

+ (3.97)

∫
+dr[∇ρ(r)−∇ρH(r)]∂Ω(ρ

H , |∇ρH |)
∂(∇ρH(r))

The above equation can be modified to the following equation by partial integration of the

third term:

EH
xc = Exc(ρ

H , |∇ρH |) +
∫
dr[ρ(r)− ρH(r)]V (ρH) (3.98)
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where

V (ρH) =
∂Ω(ρH , |∇ρH |)

∂ρH(r)
−∇

(
∂Ω(ρH , |∇ρH |)
∂(∇ρH(r))

)
(3.99)

3.5.3 Using the Harris approximation in new ways.

Originally, Harris applied his method in a context of atoms. In other words, one would

consider ρH as the electron density of isolated atoms assembled into a molecule. Instead,

we propose to use Harris approximation within a larger framework. Imagine that someone

needs to calculate the binding curve between two fragments. Those can be large molecules.

We propose to use the Harris approximation by creating ρH = ρM1+ρM2 where ρM1 and ρM2

are electron densities of molecules computed using full SCF DFT. The reuse of information

in such a situation is enormous. Instead of running the full DFT for a set of fragments,

one can easily reuse the electron density of those pieces and not the atomic densities. This

should significantly speed up the calculation of the energies. Similar ideas are in use in other

techniques such as SAPT.

We also propose to correct the original Harris energies by adding an empirical dispersion

correction [15]. The dispersion correction plays a very important role when looking at π-

stacking. In chemistry, π- stacking refers to attractive, non-covalent interactions between

aromatic rings.

We use the dispersion correction of the form proposed by Grimme [15]:

ED = −
∑
i

∑
j

Cij

r6
f(rij) (3.100)

f(rij) =
1

1 + e−d(rij/Rij−1)
(3.101)

where d = 23, f(rij) is the damping function and Rij is the sum of the van-der-Waals radii

of the corresponding atoms.
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3.6 RESULTS AND DISCUSSIONS.

3.6.1 Results.

In this work, we do not attempt to present a full picture of all types of interactions involved.

Instead, we compare the results obtained by our method with a set of well-known functionals.

More specifically, we compare Harris+LDA+D and Harris+GGA+D with PW91 [38, 39, 40,

41, 42], PBE [19, 20], M062X [21, 22, 23, 24], B3LYP [25] and MP2 [26, 27]. We consider

M062X and MP2 as a benchmark. To generate binding curves from the latter methods we

use the Gaussian 09 [30] program. Harris based methods were implemented by modifying

the Erkale package. [31, 32] All calculations, including Harris based ones, were done with

a cc-pVDZ [33, 34, 35, 36, 37] basis set. Harris+LDA+D is computed based on Dirac

exchange[17] and Perdew Wang correlation [18] functionals and Harris+GGA+D is derived

from PBE [19, 20] exchange-correlation functional. The initial electron densities for each

molecule were generated using B3LYP functional with cc-pVDZ basis set. We found that

the final results are not sensitive to the choice of a method used to produce the initial guess

for each fragment.

To study the performance of our method, we look at the shapes of binding curves and the

locations of minima which are produced. We examine systems based on various orientations

of two benzene and two thiophene molecules. The sandwich configuration was created by

stacking of two molecules without performing any rotations. The parallel-displaced configu-

ration was created by shifting one of molecules horizontally at separation of 3.5 Å. Rotations

of thiophene molecule were performed at the distance of 5 Å from the initial position where

two thiophene molecules are parallel to each other and one of them in rotated by 180 de-

grees around the vertical axis going through the geometric center. All curves are shifted to

have zero value of energy at infinity. Results are obtained by shifting molecules by a tenth

of an angstrom in case of sandwiched, T-shaped and parallel-displaced orientations and by

rotating by 3 degrees in case of clockwise and counterclockwise rotations.

Additionally we compute the maximum and average total energy deviation of Har-

ris+GGA+D method from PW91, PBE, B3LYP, M062X, and MP2 to demonstrate the
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Figure 3.1: Orientations

proximity of the binding curves Tab. 3.1,3.3 as well as locations of minima across all meth-

ods presented in this work Tab.3.2,3.4. Additional digits in the minima locations were

obtained by spline fitting of the binding curves and solving for a minimum.

3.6.2 Discussions.

As we mentioned above, we judge the effectiveness of our approach by examining its prox-

imity to the benchmark curves generated with MP2 and M062X functionals across different

configurations. For the case of benzene we examine the sandwich, T-shaped and parallel-

displaced orientations, while in case of thiophene we look at the sandwich, parallel-displaced

orientations and rotations. We perform a 360 degrees rotation of a thiophene molecules at

the distance of 5 Å starting from a sandwich orientation when sulfur atoms point in opposite

directions. When sulfur atom goes up, we call it a clockwise rotation. When it goes down,

we call it counterclockwise rotation Fig. 3.8

We first examine closely the binding curves for the benzene dimer. The performance

of the Harris approximation in case of the sandwiched configuration is excellent. The Har-

ris+GGA+D curve almost exactly follows the MP2 curve giving an average deviation of 0.18

kcal/mol. The M06-2X curves is slightly shifted upward which results into a higher average

deviation. The minimum of the Harris+GGA+D curve almost exactly coincides with the

minimum of MP2 and is slightly smaller than the minimum of M06-2X. A similar behavior

48



3 3.5 4 4.5 5 5.5

−5

0

5

10

Distance, A

E
ne

rg
y,

 k
ca

l/m
ol

 

 
PW91
PBE
B3LYP
M062X
MP2
Harris+LDA+D
Harris+GGA+D

Figure 3.2: Sandwich configuration of benzene
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Figure 3.3: T-shaped configuration of benzene
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Figure 3.4: Parallel-displaced configuration of benzene at separation of 3.5 Å

Sandwich T-shaped Parallel-displaced

Method Max Average Max Average Max Average

PW91 12.02 2.00 13.17 5.50 4.30 2.39

PBE 12.89 2.26 12.92 5.71 4.58 2.55

B3LYP 18.41 3.13 42.49 11.81 6.22 3.41

M062X 6.78 1.01 32.02 6.36 0.95 0.51

MP2 1.22 0.18 13.69 1.95 0.21 0.12

Table 3.1: Maximum and average total energy deviation (kcal/mol) of Harris+GGA+D vs

other methods applied to benzene.
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Table 3.2: Locations of minima of binding curves of benzene.Å

Orientation/Method Sandwich T-shaped Parallel-displaced

PW91 4.30 5.20 -a

PBE 4.31 5.22 -a

B3LYP -a -a -a

M062X 3.73 4.89 1.54

MP2 3.67 4.87 1.50

Harris+LDA+D 3.32 4.58 1.27

Harris+GGA+D 3.66 4.76 1.56
a No minimum;
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Figure 3.5: Sandwich configuration of thiophene
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Figure 3.6: Parallel-displaced configuration of thiophene at separation of 3.5 Å

is observed in case of the T-shaped and the parallel-displaced configurations. The former

having higher average deviations. The location of the minimum of Harris+GGA+D is about

0.1Å off compared to M06-2X and MP2. Finally, the parallel-displaced configuration exhibits

similar properties by having even very small average deviation and the minimum being closer

to M06-2X result. Overall, we observe very good agreement of the Harris+GGA+D method

compared with the benchmark results. Needless to say, that other functional that we have

used give a very different performance. In case of the sandwiched configuration PW91 and

PBE give minima at very long distances, while B3LYP does not give any minimum at all.

The above statement is also true for the T-shaped configuration. For the parallel-displaced

arrangement neither of these functionals give any binding.

A similar behavior is observed for the thiophene dimer. The sandwiched and the parallel-

displaced configurations exhibit similar trends, with the minima being very close to the

benchmark results. Again, functionals like PW91,PBE, and B3LYP either give minima at

very long distances (in case of the sandwiched configuration) or do not show any binding

(in case of the parallel-displaced configuration). In addition to translations we perform the

rotation of one of the thiophene molecules. In case of the clockwise rotation Harris+GGA+D

follows closely the curve generated by MP2. One should notice a similar behavior of all func-

tional in this situation. On the other hand, counterclockwise rotation is describes differently
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(a) Clockwise rotation of thiophene
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(b) Counterclockwise rotation of thiophene

Figure 3.7: Rotation performed at separation of 5.0 Å

53



Table 3.3: Maximum and average total energy deviations (kcal/mol) of Harris+GGA+D vs

other methods applied to thiophene, for all points on the illustrated binding curves.

Sandwich Parallel-displaced CWa rotation CCWb rotation

Method Max Average Max Average Max Average Max Average

PW91 9.29 2.43 3.85 2.04 0.51 0.30 2.07 1.11

PBE 10.09 2.78 4.15 2.21 0.55 0.31 2.14 1.13

B3LYP 16.26 4.26 5.95 3.12 0.88 0.48 2.30 1.22

M062X 5.80 0.84 0.49 0.16 0.36 0.20 0.15 0.07

MP2 2.17 0.35 0.36 0.14 0.18 0.06 0.44 0.25

a Clockwise; b Counterclockwise;

Table 3.4: Locations of minima of binding curves of thiophene.

Orient./Meth. Sandwich(Å) PDb(Å) CWRc (◦) CCWRd (◦)

PW91 4.51 -a 86.00 134.85

PBE 4.61 -a 86.14 136.72

B3LYP -a -a 86.98 -a

M062X 3.78 1.60 86.11 99.73

MP2 3.83 1.63 87.43 97.92

Harris+LDA+D 3.47 1.30 84.29 95.34

Harris+GGA+D 3.80 1.64 87.09 96.40

a No minimum; b Parallel-displaced; c Clockwise rotation; d Counterclockwise rotation;
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(a) Clockwise rotation

(b) Counterclockwise rotation

Figure 3.8: Rotations. Distance between molecules is 5.0 Å
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by different functionals. As before, Harris+GGA+D closely follows the benchmark curves,

while PW91, PBE, and B3LYP give qualitatively different curves. The locations of minima

produced by Harris+GGA+D are in a very good agreement with the benchmark results.

By taking a quick look at the binding curves one can immediately notice the bad per-

formance of the Harris+LDA+D method. It consistently overbinds and produces very deep

potential wells. We are not going to discuss this combination further because it obviously

stands on its own. This is one of the reasons why we do not present any comparisons of

Harris+LDA+D with other methods.

On the other hand, Harris+GGA+D gives good results for all instances. A closer look

at the Tab.3.1,3.3 and Tab.3.2,3.4 can clearly demonstrate this. Firstly, we examined the

maximum and average deviation of the Harris+GGA+D method from the other functionals.

We present maximum deviation for completeness here. Some of them are not visible in the

plots of binding curves and occur at 2.8Å in case of sandwich and T-shaped orientations. A

more interesting measure of proximity is the average deviation of the curves. In case of Har-

ris+GGA+D vs M062X and MP2 we observe an excellent proximity across all orientations.

Secondly, we obtained the minima by spline smoothing of the original data and the results

are given in Tab. 3.2,3.4. Again, we observe a good agreement of Harris+GGA+D with our

benchmark methods.

An interesting feature is observes when counterclockwise rotations are performed with

thiophene molecules. We observe a drastic disagreement of B3LYP, PW91 and PBE vs

M062X, MP2. On the other hand, Harris+GGA+D is in excellent agreement with our

benchmark functionals as one can see by examining the average deviation and the locations

of minima. This proves the value of our approach.

3.6.3 Timing results.

In this section we present parallel speed-up 9(a),9(b) and relative timing 3.10 results of

our code. We run GGA calculation with PBE exchange-correlation functional and LDA

calculation with Dirac exchange and PW91 correlation. We scale up the calculation up

to 24 processors via OpenMP. The system under study here is a benzene dimer. This
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system is perfect for this sort of studies because it contains 24 atoms and 24 is divisible

by 2,3,4,6,8,12,24. This can be explained by the fact the the code uses grid construction

technique where the latter is separately generated for each atom. Likewise, the routines which

compute the total energy also do it in atom by atom manner. This way each thread created

by openMP is able to process atoms individually. The most computationally expensive part

of the calculation here is the adaptive grid generation. The results show that the speed-up

factor is close to perfect when up to 12 processors are used. When the number of CPUs

exceeds 12 we observe a steady deterioration of the performance which may be explained by

the fact that not all atoms are processed by threads simultaneously. For example, in case

of 11 CPUs we have 2 atoms left for the third round of grid generation. In particular, this

explains why the speed-up curve is essentially flat in the regions between 12 and 17 CPUs

and 18 and 23 CPUs. Obviously, one needs more time to generate grid for a carbon atom

that for a hydrogen atom. This results in a slight imbalance.

We also demonstrate timing results of Harris+GGA+D vs full SCF GGA calculation

(as described above). We run the code with 3 different basis sets: cc-pVDZ, aug-cc-pVDZ,

and cc-pVTZ respectively. We also run the Harris approximated calculation on a fine and a

coarse grids. The bar plots Fig. 3.10 presented below shows the results of this comparison.

It is very clear that this approximation does indeed bring a substantial acceleration when

compared to the full SCF and clearly demonstrate the utility of the Harris approximation.

When run on a fine grid we get 6.4,11.1, and 6.4 acceleration respectively when compared to

the full SCF method. Higher speed-up is attained when we run our code on a coarse grid.

This brings 16.4,27.6 and 15.7 acceleration respectively.

One major drawback of the Harris based methodology is that it lacks an analytical ex-

pression for the gradient of energy with respect to molecular coordinates. Besides numerical

gradients the only possible way of minimizing the energy of any system in such a setup can

be a stochastic algorithm such as simulated annealing, parallel-tempering etc. Lastly, one

needs to be able to rotate the density matrix of a molecule when requested. In case of a

stochastic optimizer one needs to compute the energy of a proposed state and then either

accept it or reject. That requires knowledge of the density matrix at all possible orientations.

Although, Harris+GGA+D methods produce accurate binding curves together with dis-
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persion correction, they will most likely fail to account for any sort of polarization effects.

Molecules with high dipole moment will require additional energy corrections.
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Figure 3.9: Speed-up curves
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Figure 3.10: Relative acceleration with different basis sets and discretizations.
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4.0 MOLECULAR PACKING OPTIMIZATION.

As we discussed in the previous section, Harris approximation happens to work very well in

a number of systems. The accuracy of the method suggests that it can be used for molecular

packing optimization. Ideally, one can use the Harris approximation in order to quickly

find an approximate minimum, and then adjust the geometry by means of more accurate

approaches. In this section, we discuss how one can run the geometry optimization with

the Harris approximation, and give an example of optimizing the benzene dimer. We will

apply an unconventional minimization technique called Simulated Perturbation Stochastic

Approximation (SPSA) [112]. We are using a stochastic algorithms because of the lack of

an analytic expression for the gradient of the total energy with respect to the positions of

the nuclei. This prevents us from using deterministic local gradient based optimizers such as

the gradient descent, etc. Instead, we choose to use a stochastic algorithm which also takes

a step using a similar update as the deterministic gradient descent, but the direction of this

step is now determined stochastically.

4.1 SIMULATED PERTURBATION STOCHASTIC APPROXIMATION

ALGORITHM.

4.1.1 Basic algorithm.

We assume that no direct measurements of the gradient g(θ) are available. The basic un-

constrained SPSA algorithm [112] in the general recursive form looks like:

θ̂k+1 = θ̂k − akĝk(θ̂k) (4.1)
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where ĝk(θk) is the simultaneous perturbation estimate of the gradient at the iterate θ̂k based

on the measurements of the loss function and ak is a nonnegative scalar gain coefficient. The

loss function in the current context is equivalent to the energy the system.

The essential part of of (4.1) is the gradient approximation ĝk(θ̂k). With simultane-

ous perturbation, all elements of θ̂k are randomly perturbed together to obtain two loss

measurements y(·). For the two-sided gradient approximation, this leads to

ĝk(θ̂k) =


y(θ̂k+ck∆k)−y(θ̂k−ck∆k)

2ck∆k1

...

y(θ̂k+ck∆k)−y(θ̂k−ck∆k)
2ck∆kp

 = (4.2)

=
y(θ̂k + ck∆k)− y(θ̂k − ck∆k)

2ck
[∆−1

k1 ,∆
−1
k2 , ...,∆

−1
kp ]

T

where the mean-zero p-dimensional random perturbation vector, ∆k = [∆k1,∆k2, ...,∆kp]
T ,

has a user-specified distribution with finite inverse moments. Because the numerator is the

same in all p components of ĝk(θ̂k), the number of loss measurements needed to estimate the

gradient is SPSA is two, regardless of the dimension p.

This can be contrasted with the conventional finite difference approximation of the gra-

dient where one needs 2p loss function evaluations: two for each degree of freedom.

ĝFD
k (θ̂k) =


y(θ̂k1+ck∆k1)−y(θ̂k1−ck∆k1)

2ck∆k1

...

y(θ̂kp+ck∆kp)−y(θ̂kp−ck∆kp)

2ck∆kp

 (4.3)

The step-by-step implementation summary below shows how SPSA iteratively produces a

sequence of estimates that progressively minimizes the function.
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4.1.2 Basic SPSA algorithm.

• Initialization and coefficient selection. Set iteration counter k = 0. Pick the initial

guess θ̂0 and nonnegative coefficients a, c, A,α, and γ in the SPSA gain sequences ak =

a/(k + 1 + A)α and ck = c/(k + 1)γ . Practically effective values for α and γ are 0.602

and 0.101, respectively [112]; other parameters are discussed below.

• Generation of the simultaneous perturbation vector. Generate by Monte-Carlo a p-

dimensional random perturbation vector ∆k, where each of the p components are inde-

pendently generated from a zero-mean probability distribution with finite inverse mo-

ments. An effective choice for each component of ∆k is to use a Bernoulli ±1 distribution

with probability of 1/2 for each outcome, although other choices are valid and be desir-

able in some applications.

• Loss function evaluation. Obtain two measurements of the loss function based on the

simultaneous perturbation around the current θ̂k: y(θ̂k + ck∆k) and y(θ̂k − ck∆k).

• Gradient approximation. Generate the simultaneous perturbation approximation to the

unknown gradient gk(θ̂k) according to (4.2). It is sometimes useful to average several

gradient approximations at θ̂k, each formed from an independent generation of ∆k. The

benefits are especially apparent if the noise effects are relatively large.

• Update θ estimate. Use the standard SA form (4.1) to update θ̂k to a new value θ̂k+1.

• Iteration or termination. Return to step 1 with k+1 replacing k. Terminate the algorithm

if there is little change in several successive iterates or if the maximum allowable number

of iterations has been reached. The algorithm can also be terminated if the gradient is

vanishingly small, or by meeting multiple conditions.

4.1.3 Choice of gain sequence.

The choice of the gain sequence is critical to the performance. With α and γ as specified in

the description of the algorithm above, one typically finds that in a high-noise setting it is

necessary to pick a smaller a and larger c than in a low-noise setting. The asymptotically

optimal values of α and γ with noisy loss measurements are 1 and 1/6, respectively [112]. In

practice, however, it is usually the case that α < 1 yields better finite-sample performance
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through maintaining a larger step size. Hence the recommendation is to use values (0.602

and 0.101) that are effectively the lowest allowable subject to satisfying certain theoretical

conditions. When the algorithm is being run with a larger number of iterations, it may be

beneficial to convert to α = 1 and γ = 1/6 at some point in the iteration process to take

advantage of the asymptotic optimality.

With the Bernoulli ±1 distribution (this distribution has finite inverse moments) for the

elements of ∆k and the α and γ specified, a rule of thumb is to set c at a level approximately

equal to the standard deviation of the measurement noise in y(θ). This helps keep the

p elements of ĝk(θ̂k) from getting excessively large in magnitude. The standard deviation

can be estimated by collecting several y(θ) values at the initial guess θ̂0. When perfect

measurements are available, then c should be chosen as some small positive number.

The values of a,A can be chosen together to ensure effective practical performance of the

algorithm. A useful rule of thumb is to choose A > 0 such that it is 10 percent or less of

the maximum number of expected/allowed iterations. After choosing A, one can choose a

such that a0 = a/(1+A)0.602 times the magnitude of the elements in ĝ0(θ̂0) is approximately

equal to the smallest of the desired change magnitudes among the elements of θ in the early

iterations.

4.2 RESULTS AND DISCUSSIONS.

In this section, we consider some results obtained for the molecular packing optimization of

the benzene dimer that we have studied in detail in the previous chapter. In order to find a

configuration of these molecules with the minimum of energy, we choose to move just one of

the monomers relative to the other. This avoids the recalculation of the density matrix for

the other monomer, which in turn increases the performance of our code. One might think

that we have introduced an unnecessary constraint into the system, but as we will see later,

it does not introduce any biases into the system, and the algorithm finds the correct minima.

Additionally, one should be aware that in the present situation we perform the optimiza-

tion with only 6 degrees of freedom. This comes from the fact that we keep our molecules rigid
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and do not relax the actual nuclei positions. The degrees of freedom include 3 translational

variables (x,y,z) which correspond to the coordinates of the geometric center (the molecule

is highly symmetric) and 3 rotational variables which correspond to rotations around the

geometric center. This setup is different from the conventional analytic gradient bases op-

timizers where the gradient of the energy with respect to each nucleus position is readily

available. We present some optimization results below. We consider 3 different situations.

First we constraint the system to translations only in the z direction and try to assess its

convergence speed compared to the ADF package [114] simulation of the same system. Next,

we relax the above constraint to include x and y translations (rotations are forbidden). Fi-

nally, we let the system to optimize without any constraints. Each of the above cases will

be discussed separately.

4.2.1 The gain sequence choice.

The above description of the algorithm is deceptively simple. Indeed, we propose two possible

orientations of the the monomer, compute the gradient based on the values of the energies

obtained and update the coordinates. As discussed above,the most important ingredient of

this algorithm is the gain sequence. One may falsely assume that since the algorithm is base

on the gradient descent idea, then it should be local. In other words, being able to converge

to the local minimum is the only possibility. It has been proven that the SPSA procedure

can also be used as a global optimizer [113]. This is a very important feature because being

able to locate the global minimum is a key goal, avoiding local barriers if desired.

In the last section we will show that the careful choice of the gain sequence is critical for

the performance of the algorithm. We used different gain sequences for the different cases

that we have studied. The convergence is assessed by examining the energy change from

iteration to iteration. The maximum number of iterations is set to be intentionally large

to see the evolution of the system. Our experiments show that running the simulation for

500− 600 iteration is more than enough to find a minimum.

One last important point which is worth discussing here is the initial orientation - an

initial guess. This factor plays a very important role here and has a direct influence on
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the choice of the gain sequence. In case of the sandwiched and T-shaped orientations fig.

3.2,3.3, the binding curve becomes very steep at short distances. This results in very high

values of the gradient which in turn may cause substantial coordinate updates during the

first few iterations. On the other hand, the valleys of those curves are much shallower. The

problem is that all of the interesting things happens exactly there. If we attempt to place the

monomers at the distance of 2.8Å and pick a relatively large value for a, then the system will

jump too far from the the minimum and may not be able to converge at all. On the other

hand, assigning small values to a will results in a very,very slow convergence in the regions

close to the minimum. Although, any optimization code should be able to handle different

situations, we suggest having reasonable initial orientations where the energy change from

one configuration to another does not exceed 0.1 kcal/mol. We set A = 200,c = 0.2 for all

our simulations and use the suggested values for α and γ. The value of a will differ across

our simulations.

4.2.2 Vertical translations.

In this section we consider only vertical translations figures 4.1 and try to test whether the

algorithm is able to find the minimum. Indeed, we know the answer beforehand from Table

3.2 which is 3.66Å. We consider two initial orientations: the sandwiched one at separation

of 2.8Å and the t-shaped one at separation of 3.0Å. We set the value of a = 50. We

wish to follow the general convergence and compare the number of iterations requested to

reach a certain convergence criterion. We compare the performance of our approach to the

conventional gradient optimization run with ADF software package [114]. The convergence

criterion considered here is the energy change from iteration to iteration. The tolerance

of 10−4 Hartree is achieved within 32 iteration using SPSA and within 16 iterations by

the conventional gradient approach. In case of the t-shaped optimization SPSA took 8

iterations and the conventional method took 46 iterations. Indeed, one may be able to

achieve convergence even faster if a different gain sequence is used.

This tells us that the SPSA algorithm is suitable for this kind of problems and can

be a very promising alternative. As we expected, the minima are attained at 3.66Å for
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the sandwiched configuration and at 4.76Å for the t-shaped configuration. SPSA would

compare to numerical estimates of the gradient,e.g. by finite differences,requiring two energy

evaluations per degree of freedom, versus only two for SPSA. Thus SPSA compares well to

gradient methods.

4.2.3 Simulation with translations only.

In this section we try to run the SPSA algorithm with a = 50 as in the previous section.

Now we let the second monomer not only move along the z axis but also along the x and y

axes. This can be viewed as a trial run before we remove any constraints and optimize along

3 axes and 3 rotations. We run the simulation for the sandwiched and the parallel-displaced

initial orientations. The sandwiched configuration is set up, as in the previous section where

the monomers were located on top of each other at distance of 2.8Å. The parallel-displaced

configuration was obtained from the sandwiched one by shifting the second monomer by

3.0Å horizontally and by 0.7Å vertically placing it at 3.5Å from the first monomer. We will

not discuss the t-shaped orientation because it happens to be very stable and the simulation

simply shifts it upward.

We run the simulation with 250 iterations and observe that both initial orientations lead

to the final configuration which is similar to the initial parallel-displaced orientation. The

initial coordinate of the geometric center of the sandwiched configuration was (0.0, 0.0, 2.8)

Å and the final configuration is located at (1.0470,−1.2482, 3.25) Å. The initial coordi-

nate of the parallel-displaced monomer is configuration was at (3.0, 0.0, 3.5) Å and the final

coordinate is (0.9735, 0.0253, 3.23) Å. Longer runs should ultimately produce the same

parallel-displaced configuration. The results are shown in figures 4.2,4.3,4.4,4.5

4.2.4 Optimization with translations and rotations.

Finally we attempt to run the optimization algorithm with 6 degrees of freedom. As we

mentioned above, one should focus on the choice of the gain sequence and to the initial

orientations of the molecules. In this simulation we create the sandwiched configuration

by placing two benzene monomers at a distance of 3.5Å. The initial parallel-displaced
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(a) Sandwiched configuration

(b) T-shaped configuration

Figure 4.1: Vertical translations
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(a) Initial sandwiched configuration

(b) Final sandwiched configuration

Figure 4.2: Sandwiched configuration optimization
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(a) Initial sandwiched configuration

(b) Final sandwiched configuration

Figure 4.3: Sandwiched configuration optimization(view from the top)
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(a) Initial parallel-displaced configuration

(b) Final parallel-displaced configuration

Figure 4.4: Parallel-displaced configuration optimization
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(a) Initial parallel-displaced configuration

(b) Final parallel-displaced configuration

Figure 4.5: Parallel-displaced configuration optimization (view from the top)
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configuration is the same as in the previous section. The t-shaped configuration is now such

that the geometric center of the second monomer is 5.0Å over the first monomer. We choose

the value for the parameter to be a = 400.

When we run our program with the sandwiched initial configuration, we observe that the

second monomer rotates and ends up in a t-shaped -configuration. The parallel-displaced

initial configuration results in another parallel-displaced configuration which is located closer

to the first monomer. The initial t-shaped configuration does not change almost at all. After

462 iterations we find that the t-shaped orientation generated from the initial sandwiched

configuration has centroid 0.1Å higher over the first monomer than the t-shaped configuration

generated from the initial t-shaped configuration. As we approach the minimum, the energy

change from iteration to iteration does not exceed 10−6 Hartree in all of the above cases. It

is clear that both should converge to same minimum after running for a longer time.

We have mentioned above, that unlike the standard gradient decent algorithm, the SPSA

algorithm is a global optimizer. We have also mentioned that the choice of the gain sequence

may directly influence that property. The benzene dimer has two possible metastable configu-

rations with very close values of the energy. Those are the t-shaped and the parallel-displaced

orientations. The energy difference between the two configurations is 0.0014 Hartree or 0.8

kcal/mol.In this section we have demonstrated that the SPSA algorithm was able to find

both of them. In contrast, when we set c = 0.1,a = 400 and start from the same initial po-

sitions, the algorithm is only able find the parallel-displaced configuration. This fact clearly

demonstrates our claim of the sensitivity of the algorithm to the choice of the gain sequence

as well as its ability to locate the global minimum. The results are given in Fig. 4.6,4.7,4.8

Furthermore, by setting c = 0.3 the algorithm only finds the t-shaped configuration,

which corresponds to the overall global minimum. This demonstrates that the proper choice

of the gain sequence may result into different final configurations and makes the algorithm

very flexible and capable of finding not only the global minimum but also the local minima.

73



(a) Initial sandwiched configuration

(b) Final sandwiched configuration

Figure 4.6: Sandwiched configuration optimization with 6 degrees of freedom
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(a) Initial parallel-displaced configuration

(b) Final parallel-displaced configuration

Figure 4.7: Parallel-displaced configuration optimization

75



(a) Initial t-shaped configuration

(b) Final t-shaped configuration

Figure 4.8: T-shaped configuration optimization
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5.0 CONCLUSION.

In this work we have considered two unconventional methods of electronic structure calcula-

tions: OF-DFT and Harris functional approximation. In the OF-DFT approach one models

the molecular electron density by means of the Thomas-Fermi model and its extensions.

Although OF-DFT is a very appealing method from the point of view of computational

complexity because of its linear scaling with the system size. It is still not mature enough

to be applied to molecules. This can be explained by the lack of a meaningful kinetic energy

functional. Indeed, in this work we used a very crude approximation for the kinetic energy

by means of the Thomas-Fermi-Weizsacker functional. This expression is only valid for the

uniform electron gas and systems with no more than two fermions. The more advanced

forms of the kinetic energy which involve non-local contributions may result in prohibitively

long calculations. The famous expansions [62] around the average electron density are not

applicable to molecular systems. Although, the binding curves that we have obtained for

the benzene and thiophene dimers 2.2,2.3 look close to our benchmark results, the OF-DFT

methodology is not suitable for molecular packing optimization due to the lack of the correct

kinetic energy functional.

On the other hand, Harris functional approximation gave very promising results. First

of all, we have obtained the binding curves for various benzene and thiophene monomer

orientations. These curves were in a very good agreement with our benchmark results.

Moreover these results suggest that the Harris functional approximation augmented by the

empirical dispersion correction can be used for the geometry optimization.

In the final chapter we applied the SPSA algorithm to simulate the molecular packing

of two benzene monomers and found that armed with the Harris+GGA+D method and the

SPSA procedure one can find all possible minima of the proposed system.
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APPENDIX A

DENSITY MATRIX FORMALISM.

A.1 DENSITY OPERATORS AND REDUCED DENSITY OPERATORS.

Consider a general description of a quantum state, where x = (r, s). Here r represents the

spacial coordinate and s is the spin coordinate. The quantity,

ΨN(x1x2 · · ·xN)Ψ
∗
N(x1x2 · · ·xN) (A.1.1)

is the probability distribution associated with a solution of the Schrodinger equation, with

the Hamiltonian operator ĤN . The main result we are looking to establish here is the

usefulness of quantities like

γN(x
′

1x
′

2 · · ·x
′

N ,x1x2 · · ·xN) = ΨN(x
′

1x
′

2 · · ·x
′

N)Ψ
∗
N(x1x2 · · ·xN) (A.1.2)

which is more general than (A.1.1). The two sets of independent quantities x
′
1x

′
2 · · ·x

′
N and

x1x2 · · ·xN can be thought of as two sets of indices that give (A.1.2) a numerical value. We

can think of (A.1.2) as an element of a matrix, which we shall call a density matrix. It can

also be viewed as the coordinate representation of the density operator

|ΨN >< ΨN | = γ̂N (A.1.3)

The basic Hamiltonian operator is usually the sum of two symmetric one-electron operators

and a symmetric two-electron operator. It also does not depend on spin. Similarly, operators

corresponding to other physical observables are of one-electron or two-electron type and
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usually are spin free. Wave functions ΨN are antisymmetric. All of the above means that

the expectation formulas like

< Â >= tr(γ̂N Â) (A.1.4)

can be simplified by integrating ΨNΨ
∗
N over N − 2 of its variables. This gives rise to the

concept of reduced density matrix and spinless density matrix.

One calls (A.1.1) the Nth order density matrix for a pure state of an N -electron system.

One can then define the reduced density matrix of order p by the formula

γp(x
′

1x
′

2 · · ·x
′

p,x1x2 · · ·xp) =

(
N

p

)∫
· · ·
∫
γN(x

′

1x
′

2 · · ·x
′

pxp+1· · ·xN ,x1x2 · · ·xp· · ·xN)dxp+1 · · · dxN

where

(
N

p

)
is a binomial coefficient. For example, the density matrix of order 2 looks like

γ2(x
′

1x
′

2,x1x2) =
N(N − 1)

2

∫
· · ·
∫

ΨN(x
′

1x
′

2x3 · · ·xN)Ψ
∗
N(x1x2x3 · · ·xN)dx3 · · · dxN

(A.1.5)

and the density matrix of order 1 is

γ1(x
′

1,x1) = N

∫
· · ·
∫

ΨN(x
′

1x2 · · ·xN)Ψ
∗
N(x1x2 · · ·xN)dx2 · · · dxN (A.1.6)

One can also obtain γ1 from γ2 by performing a simple integration

γ1(x
′

1,x1) =
2

N − 1

∫
γ2(x

′

1x2,x1x2)dx2 (A.1.7)

Like γ̂N , all reduced density matrix operators are positive semi-definite and Hermitian. The

Hermitian reduced density operators γ̂1 and γ̂2 admit eigenfunctions and associated eigen-

values, ∫
γ1(x

′

1,x1)ψi(x1)dx1 = niψi(x
′

1) (A.1.8)

and ∫
γ2(x

′

1x
′

2,x1x2)θi(x1x2)dx1dx2 = giθi(x
′

1x
′

2) (A.1.9)
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For γ̂1, the eigenfunctions ψi(x) are called natural spin orbitals, and the eigenvalues ni

the occupation numbers. We can express an operator in terms of its eigenvectors and obtain

γ̂1 =
∑
i

ni|ψi >< ψi| (A.1.10)

or

γ1(x
′

1,x1) =
∑
i

niψi(x
′

1)ψ
∗
i (x1) (A.1.11)

Similarly,

γ̂2 =
∑
i

gi|θi >< θi| (A.1.12)

where gi is called an occupation number again and |θi > is called a natural geminal.

The interpretation of niand gi is very straightforward. ni is proportional to the proba-

bility of the one-electron state |ψi > being occupied and gi is proportional to the probability

of the two-electron state |θi > being occupied.

Consider the expectation value for an antisymmetric N -body wave function Ψ of a one-

electron operator

P̂1 =
N∑
i=1

P1(xi,x
′

i) (A.1.13)

We have

< P̂1 >= tr(P̂1γN) =

∫
P1(x

′

1x1)γ1(x
′

1,x1)dx1dx
′

1 (A.1.14)

For local operators we will keep a simpler notation

P̂1 =
N∑
i=1

P1(xi) (A.1.15)

and the corresponding expectation value is

< P̂1 >=

∫
[P1(x1)γ1(x

′

1,x1)]x′
1=x1

dx1 (A.1.16)

All local two-electron operators we can denote by their diagonal part and write

P̂2 =
∑
i<j

P2(xi, xj) (A.1.17)

80



and obtain for the corresponding expectation value

< P̂2 >= tr(P̂2γN) =

∫ ∫
[P2(x1,x2)γ2(x

′

1x
′

2,x1x2)]x′
1=x1,x

′
2=x2

dx1dx2 (A.1.18)

For the expectation value of the Hamiltonian we obtain

E = tr(ĤγN) =

∫
[(−1

2
∇2

1 + v(r1))γ1(x
′

1,x1)]]x′
1=x1

dx1 +

∫ ∫
1

r12
γ2(x1x2,x1x2)dx1dx2

(A.1.19)

A.2 SPINLESS DENSITY MATRICES.

Many operators of interest do not have spin dependence. This makes it possible to reduce

the reduced density matrices even further by performing summation over spin degrees of

freedom.

We define the first-order and second order spinless density matrices by

ρ1(r
′

1, r1) =

∫
γ(r

′

1s1, r1s1)ds1 = N

∫
· · ·
∫

Ψ(r
′

1s1x2 · · ·xN)Ψ(r1s1x2 · · ·xN)ds1dx2 · · · dxN

(A.2.1)

and

ρ2(r
′

1r
′

2, r1r2) =

∫ ∫
γ2(r

′

1s1r
′

2s2, r1s1r2s2)ds1ds2 = (A.2.2)

N(N − 1)

2

∫
· · ·
∫

Ψ(r
′

1s1r
′

2s2 · · ·xN)Ψ(r1s1r2s2 · · ·xN)ds1ds2dx3 · · · dxN

We also introduce a shorthand notation for the diagonal elements of ρ2

ρ2(r1, r2) = ρ2(r1r2, r1r2) =
N(N − 1)

2

∫
· · ·
∫
|Ψ|2ds1ds2dx3 · · · dxN (A.2.3)

and note that the diagonal elements of ρ1(r
′
1, r1) is just the electron density

ρ(r1) = ρ1(r1, r1) = N

∫
· · ·
∫
|Ψ|2ds1dx2 · · · dxN (A.2.4)
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We can also recall the relationship between first and second order density matrices and write

ρ(r1) =
2

N − 1

∫
ρ2(r1, r2)dr2 (A.2.5)

The expectation value for spin free operators Q1(r1) and Q2(r1r2)

< Q̂1 >=

∫
[Q1(r1)ρ1(r

′

1, r1)]r′1=r1
dr1 (A.2.6)

and

< Q̂2 >=

∫ ∫
[Q2(r1r2)ρ2(r

′

1r
′

2, r1r2)]r′1=r1,r
′
2=r2

dr1dr2 (A.2.7)

The energy is now given by

E =

∫
[−1

2
∇2

rρ1(r
′
, r)]r′=rdr+

∫
v(r)ρ(r)dr+

∫ ∫
1

r12
ρ2(r1, r2)dr1dr2 (A.2.8)

Additional insight can be gained by considering the last term in (A.2.8) which represents

the electron-electron repulsion energy. If this were purely classical, it would just be the

self-repulsion energy of ρ(r), which is

J [ρ] =
1

2

∫ ∫
1

r12
ρ(r1)ρ(r2)dr1dr2 (A.2.9)

We can obtain a similar formula in (A.2.8) if we write

ρ2(r1, r2) =
1

2
ρ(r1)ρ(r2)[1 + h(r1, r2)] (A.2.10)

where h(r1, r2) is the pair correlation function which incorporates non-classical effects. This

function satisfies an important integral condition∫
ρ(r2)h(r1, r2)dr2 = −1 (A.2.11)

The quantity inside the integral is called the exchange-correlation hole of an electron at r1

and is given by ρxc(r1, r2) = ρ(r2)h(r1, r2). Now the expression for the electron repulsion

energy can be written as

Vee = J [ρ] +
1

2

∫ ∫
1

r12
ρ(r1)ρxc(r1, r2)dr1dr2 (A.2.12)
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Sometimes it is convenient to have the spinless density matrices resolved into components

arising from different spins. For ρ1(r
′
1, r1) and for any values of r

′
1 and r1, this is the sum

over the spin of the diagonal parts of γ1. So we have then

ρ1(r
′

1, r1) = ραα1 (r
′

1, r1) + ρββ1 (r
′

1, r1) (A.2.13)

Similarly, for the second order density matrix we have

ρ2(r
′

1r
′

2, r1r2) = ραα,αα2 (r
′

1r
′

2, r1r2) + ρββ,ββ2 (r
′

1r
′

2, r1r2) + ραβ,αβ2 (r
′

1r
′

2, r1r2) + ρβα,βα2 (r
′

1r
′

2, r1r2)

(A.2.14)

For example, the famous Hartree-Fock energy can be written in terms of these density

matrices in a very compact way. We provide here just the final result. The detailed derivation

can be found in any book on density functional theory [87].

EHF [ρ1] =

∫
[(−1

2
∇2

rρ1(r
′
, r) + v(r1))]r′1=r1

dr1+ (A.2.15)

1

2

∫ ∫
1

r12
ρ(r1)ρ(r2)dr1dr2 −

1

2

∫ ∫
[ραα1 (r1, r2)ρ

αα
1 (r2, r1) + ρββ1 (r1, r2)ρ

ββ
1 (r2, r1)]dr1dr2
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APPENDIX B

ORBITAL FREE DENSITY FUNCTIONAL THEORY BACKGROUND.

B.1 THE THOMAS-FERMI MODEL AS THE ORIGINAL IDEA.

The history begins with the works of Thomas [64] and Fermi [65] in the 1920s. These authors

realized that it was possible to approximate the electron density within an atom by means

of statistical mechanics considerations. The model they proposed is quite crude because

they suggested to compare the atomic electron density locally with a uniform electron gas.

The formula that they derived seeks the value of the kinetic energy of electrons of the

uniform electron gas. In fact, the modern OF-DFT is still in search of a good kinetic energy

functional. Here we present a short derivation of that expression for the kinetic energy.

We divide the space into many small cubes, each of side l and volume ∆V = l3, each

containing some fixed number of electrons ∆N , and assume that the electrons in each cell

behave like independent fermions at the temperature of 0K, with cells being independent.

The energy levels of a particle in a 3D infinite well are given by the formula

ε(nx, ny, nz) =
h2

8ml2
(n2

x + n2
y + n2

z) =
h2

8ml2
R2 (B.1.1)

where nx, ny, nz = 1, 2, 3, .... For high quantum numbers, that is, for large R, the number of

distinct energy levels with energy smaller that ε can be approximated by the volume of one

octant of a sphere with radius R in the space (nx, ny, nz). The number is

Φ(ε) =
1

8

(
4πR3

3

)
=
π

6

(
8ml2ε

h2

)3/2

(B.1.2)
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The number of energy levels between ε and ε+ δε is

h(ε)∆ε = Φ(ε+ δε)− Φ(ε) =
π

4

(
8ml2

h2

)3/2

ε1/2δε (B.1.3)

where h(ε) is the density of states.

To compute the total energy for the cell with ∆N electrons, we need the probability for

the state with energy ε, to be occupied, which in our case is the Fermi-Dirac distribution,

f(ε) =
1

1 + eβ(ε−µ)
(B.1.4)

which at 0K reduces to a step function:

f(ε) =

1, ε < εF

0, ε > εF

(B.1.5)

where εF is the Fermi energy.

Now we find the total energy of the electrons in this cell by summing the contributions

from the different energy states:

∆E = 2

∫
εf(ε)h(ε)dε =

8π

5

(
2m

h2

)3/2

l3ε
5/2
F (B.1.6)

The Fermi energy is related to the number of electrons ∆N in the cell, thought the formula

∆N = 2

∫
f(ε)g(ε)dε =

8π

3

(
2m

h2

)3/2

l3ε
3/2
F (B.1.7)

Eliminating εF from these equations we obtain

∆E =
3

5
∆NεF =

3h2

10

(
3

8π

)2/3

l3
(
∆N

l3

)5/3

(B.1.8)

Adding the contributions from all cells, we find the total kinetic energy in atomic units to

be,

TTF [ρ] = CF

∫
ρ5/3(r)dr (B.1.9)

where CF = 0.3(3π2)2/3 = 2.871. This is the famous Thomas-Fermi kinetic energy functional.

In fact, this is also the first LDA (local density approximation) functional.
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Neglecting non-classical terms, we obtain the energy functional for the Thomas-Fermi

theory of atoms

ETF [ρ] = CF

∫
ρ5/3(r)dr− Z

∫
ρ(r)

r
dr+

1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (B.1.10)

The ground state energy can be obtained by minimizing this functional with respect to

the electron density subject to the constraint that the electron density integrates up to the

number of electrons in the system.

Needless to say, this functional gives a poor approximation for any molecular system

because it compares the electron density to the uniform electron gas. Furthermore, this

approach completely disregards any exchange-correlation effects. It was also shown that the

model in the present form predicts no molecular binding.

B.2 FROM THOMAS-FERMI MODEL TO THOMAS-FERMI-DIRAC

MODEL.

For simplicity, consider a non-degenerate closed-shell ground state described by a single-

determinant wave function, a first-order density matrix, and a spinless first-order density

matrix of the form

ρ1(r1, r
′

1) = 2

N/2∑
i

ϕi(r1)ϕ
∗
i (r

′

1) (B.2.1)

where the ϕi are the doubly occupied spatial orbitals. The energy is then given by the

Hartree-Fock formula (A.2.15)

EHF [ρ1] =

∫ [
−1

2
∇2

1ρ1(r1, r2)

]
r2=r1

dr1 +

∫
ρ(r)v(r)dr+ (B.2.2)

+J [ρ]− 1

4

∫ ∫
1

r12
ρ1(r1, r2)ρ1(r2, r1)dr1dr2

Here, the kinetic energy is

T [ρ] =

∫ [
−1

2
∇2

1ρ1(r1, r2)

]
r2=r1

dr1 (B.2.3)
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and

Vee[ρ] = J [ρ]−K[ρ] (B.2.4)

where K[ρ] is the Hartree-Fock exchange energy functional

K[ρ] =
1

4

∫
1

r12
|ρ1(r1, r2)|2dr1dr2 (B.2.5)

and

J [ρ] =
1

2

∫ ∫
1

r12
ρ(r1)ρ(r2)dr1dr2 (B.2.6)

We are facing the problem of expressing T [ρ] and K[ρ] in terms of the diagonal elements of

ρ1,the electron density. To solve this problem we take a second look at the uniform electron

gas.

In the previous section we considered the uniform-gas description for particle-in-a-box

states for which the boundary conditions had the form ψ(x = 0) = ψ(x = l) = 0. Equiva-

lently, for a large number of particles, one can employ periodic boundary conditions of the

type ψ(x+ l) = ψ(x). These lead to the orbitals

ψ(kx, ky, kz) =
1

l3/2
ei(kxx+kyy+kzz) =

1

V 1/2
eikr (B.2.7)

where kx = (2π/l)nx, ky = (2π/l)ny, kz = (2π/l)nz with nx, ny, nz = 0,±1,±2 · · · . The

energy levels are

E(nx, ny, nz) =
h2

8ml2
((2nx)

2 + (2ny)
2 + (2nz)

2) (B.2.8)

The first order density matrix then becomes

ρ1(r1, r2) =
2

V

∑
koccupied

eik(r1−r2) (B.2.9)

If there are many occupied states, the sum can be replaced by an integral, giving

ρ1(r1, r2) =
1

4π3

∫
eik(r1−r2)dk =

1

4π3

∫ kF

0

k2dk

∫ ∫
eikr12 sin(θ)dθdϕ (B.2.10)

Since ρ1(r, r) = ρ(r), we obtain

ρ(r) =
k3F
3π2

(B.2.11)

and then

kF (r) = [3π2ρ(r)]1/3 (B.2.12)
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For an inhomogeneous system, the natural choice of the argument of kF (r) to be used in

(B.2.10) is the average of r1 and r2. Let denote

r =
1

2
(r1 + r2) (B.2.13)

and

s = r1 − r2 (B.2.14)

and proceed to out the integration in (B.2.10).

Choose s to lie along the kz axis. Then (B.2.10) can be evaluated as follows:

ρ1(r1, r2) =
1

4π3

∫ kF

0

k2dk

∫ π

0

sin(θ)eikr12 cos(θ)dθ

∫ 2π

0

dϕ = (B.2.15)

= 3ρ(r)

[
sin(t)− t cos(t)

t3

]
= ρ1(r, s)

where t = kF (r)s.

To evaluate the kinetic energy, we need

∇2
r1

=
1

4
∇2

r +∇2
s +∇r∇s (B.2.16)

and

∇2
r2

=
1

4
∇2

r +∇2
s −∇r∇s (B.2.17)

Thus

[∇2
1ρ1(r1, r2)]r2=r1 = [(

1

4
∇2

r+∇2
s+∇r∇s)ρ1(r, s)]s=0 =

1

4
∇2

rρ(r)−
3

5
(3π2)2/3ρ(r)5/3 (B.2.18)

For any well-behaved ρ(r), ∫
∇2

rρ(r)dr = 0 (B.2.19)

so that the kinetic energy becomes

TTF [ρ] = CF

∫
ρ(r)5/3dr (B.2.20)

The exchange energy can be obtained similarly

KD[ρ] =
1

4

∫ ∫
[ρ1(r, s)]

2

s
drds = (B.2.21)
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= 9π

∫
ρ2(r)

1

k2F
dr

[∫ ∞

0

(sin(t)− t cos(t))2

t5
dt

]
= Cx

∫
ρ4/3(r)dr

where Cx = 3
4

(
3
π

)1/3
= 0.7386. This is the famous exchange-energy formula of Dirac [17].

The total energy now becomes

ETFD[ρ] = CF

∫
ρ(r)5/3dr+

∫
ρ(r)v(r)dr+ J [ρ]− Cx

∫
ρ(r)4/3dr (B.2.22)

B.3 GRADIENT CORRECTION.

Consider the ground state of N noninteracting electrons. The spinless first-order reduced

density matrix can be written as

ρ1(r, r
′
) = 2

∞∑
i

ϕi(r)ϕ
∗
i (r

′
)η(εF − εi) = 2 < r|η(εF − Ĥ)|r′

> (B.3.1)

where η(x) is the Heaviside step function and Ĥ is the one-particle Hamiltonian having ϕi

and εi as its eigenstates and eigenvalues:

Ĥϕi(r) = {−
1

2
∇2 + w(r)}ϕi(r) = εiϕi(r) (B.3.2)

with w(r) the local potential function and εF can take values between the highest occupied

and lowest unoccupied eigenvalues.

Our goal is to express the kinetic energy T as a function of the electron density. The idea

is the following: T is determined by ρ1(r, r
′
), which in turn is determined by w(r) though

(B.3.1); electron density ρ(r) as the diagonal of ρ1(r, r
′
) is also determined by w(r);therefore

we can hope to use w(r) as a bridge to connect T to ρ(r).

The key problem is to find ρ1(r, r
′
) in terms of w(r). Note that as expressed in (B.3.1),

the N -electron quantity ρ1(r, r
′
) is the matrix representation of a one-particle operator ρ̂1 =

η(εF − Ĥ). A one-electron problem is much easier to handle than an N -electron one. Many
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techniques have been developed to manipulate and approximate the single-electron Green’s

function, defined as

G(r, r
′
; β) =< r|e−βĤ |r′

>=
∞∑
i

ϕi(r)ϕ
∗
i (r

′
)ε−βεi (B.3.3)

G(r, r
′
) is in turn related to ρ1(r, r

′
) by an inverse Laplace transform

ρ1(r, r
′
) =

2

2πi

∫ γ+i∞

γ−i∞

dβ

β
eβεFG(r, r

′
; β) (B.3.4)

where γ is any positive constant.

We now invoke G̃(r,p; β), the Wigner transformation of G(r, r
′
; β). Define

G̃(r,p; β) =
1

(2π~)3

∫
ds < r− s

2
|e−βĤ |r+ s

2
> eips/~ =

1

(2π~)3

∫
dsG(r− s

2
, r+

s

2
; β)eips/~

(B.3.5)

Then the inverse is

G(r, r
′
; β) =

∫
dpe−ip(r−r

′
)/~G̃(

1

2
(r+ r

′
),p; β) (B.3.6)

Inserting (B.3.6) in (B.3.4), we obtain

ρ1(r, r
′
) =

∫
dpe−ip(r−r

′
)/~ρ̃1(

1

2
(r+ r

′
),p) (B.3.7)

where

ρ̃1(r,p) =
2

2πi

∫ γ+i∞

γ−i∞

dβ

β
eβεF G̃(r,p; β) (B.3.8)

Using Wigner expansion of G̃ we can find an explicit approximation of ρ1(r, r
′
) in terms of

the potential w(r). Thus we obtain

G̃(r,p; β) =
1

(2π~)3
exp[−βH(r,p)] (B.3.9)

{
1 + ~2

[
− β2

8m
∇2w(r) +

β3

24m
|∇w(r)|2 + β3

24m
(p · ∇)(p · ∇)w(r)

]}
with

H(r,p) =
p2

2m
+ w(r) (B.3.10)
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Correspondingly, by (B.3.8)

ρ̃1(r,p) =
2

(2π~)3
η(εF −H(r,p))+ (B.3.11)

+
2~2

(2π~)3

{
− 1

8m
η(2)(εF −H(r,p))∇2w(r)

}
+

+
2~2

(2π~)3

{
η(3)(eF −H(r,p)) +

[
1

24m
|w(r)|2 + 1

24m2
(p · ∇)(p · ∇)w(r)

]}
where we used

η(εF − εi) =
1

2πi

∫ γ+i∞

γ−i∞

dβ

β
eβεF e−βεi (B.3.12)

and

η(n)(εF −H(r,p)) =
∂n

∂εnF
η(εF −H(r,p)) (B.3.13)

By inserting (B.3.11) into (B.3.7), we find for the total electron density,

ρ(r) = ρ1(r, r) =

∫
ρ̃1(r,p)dp =

1

3π2

(
2m

~2

)3/2

[εF − w(r)]3/2η(εF − w(r)) (B.3.14)

{
1− 1

8

~2

2m
[∇2w(r)(εF − w(r))−2 +

1

4
|∇w(r)|2(εF − w(r))−3]

}
where we have used the integral formula∫

η

(
εF −

p2

2m
− w(r)

)
dp =

∫
η

(
εF − w(r)−

p2

2m

)
4πp2dp =

4π

3
p3F (r) = (B.3.15)

=
4π

3
[2m(εF − w(r))]3/2η(εF − w(r))

and its derivative with respect to εF . The total kinetic energy is

T =

∫
p2

2m
ρ̃1(r,p)drdp =

∫
dr

~2

10π2m

(
2m

~2

)5/2

[εF − w(r)]5/2η(εF − w(r)) (B.3.16)

{
1− 5

8

~2

2m
[
5

3
∇2w(r)(εF − w(r))−2 − 3

4
|∇w(r)|2(εF − w(r))−3]

}
Using (B.3.14) and (B.3.16) we can eliminate εF − w(r) from (B.3.16). The result found is

the TF-1
9
W functional:

T (2)[ρ] = TTF [ρ] +
1

9
TW [ρ] =

~2

m

[
3

10
(3π2)2/3

∫
ρ(r)5/3dr+

1

9
· 1
8

∫
|∇ρ(r)|2

ρ(r)
dr

]
(B.3.17)
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Thus we obtained the so-called Thomas-Fermi-Dirac-Weizsacker [64, 65, 44, 46] (TFD-λW)

model,

ETFD−λW [ρ] = CF

∫
ρ5/3(r)dr+ λ

1

8

∫
|∇ρ(r)|2

ρ(r)
dr+

∫
ρ(r)v(r)dr+ J [ρ]− Cx

∫
ρ4/3(r)dr

(B.3.18)

B.4 LINEAR RESPONSE CORRECTION MODEL.

The kinetic energy models above do not satisfy the exact linear response (LR) behavior

described by the Lindhard function in the homogeneous limit and the simple local gradient

correction used cannot reproduce the oscillatory atomic shell structure. A modification of the

kinetic energy functional which is a somewhat different combination of the Thomas-Fermi

terms TTF and the gradient correction given by von Weizsacker TW has been suggested as

follows [79]:

T [ρ] = F (N)TTF [ρ] + TW [ρ] (B.4.1)

where N is the number of electrons and the factor F (N) is

F (N) =

(
1− 2

N

)
(1− A1

N1/3
+

A2

N2/3
) (B.4.2)

with optimized parameter values A1 and A2. This kinetic energy functional is known to

describe the response properties of the electron gas well and has yielded very good polariz-

abilities for various atomic systems. It also provides an excellent representation of the kinetic

energy of atoms.

However, since only a truly nonlocal kinetic energy density functional can satisfy the

exact LR condition, we have to modify the kinetic energy by nonlocal terms completely

determined by the requirement that the linear response is exactly satisfied.
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In 1994, Perrot [52] proposed another functional by adding a term to the Thomas-Fermi

[65] and vonWeizsacker [44, 46] functional with an integration kernelKα(r−r
′
) to incorporate

the correct linear response:

T [ρ] + TTF [ρ] + TW [ρ] +

∫ ∫
drdr

′
P (r)Kα(r− r

′
)P (r

′
) (B.4.3)

where

P (r) =
6

5

ρα + v∆ρ

ρ

(
ρ5/6 − ρ5/6α

)
(B.4.4)

with v = 5/
√
32 and ρα the average electron density. This functional has the correct scaling

for ρα → 0, and incorporates the proper linear response for perturbations both small and

large.

The correction term of the Thomas-Fermi and von Weizsacker was proposed by Wang

and Teter [51]. The Wang and Teter kinetic energy is determined by

TWT [ρ] = TTF [ρ] + TW [ρ] + FWT [ρ] (B.4.5)

where

FWT [ρ] = −
32CTF

35

∫
ρ5/3 +

4CTF

5

∫
ρ5/6KWT ∗ ρ5/6 (B.4.6)

The convolution kernel KWT is given in Fourier space in terms of the Lindhard susceptibility

function, which is already available for nearly free electron gas system:

K̂WT (η) =

(
1

2
+

1− η2

4η
ln |1 + η

1− η
|
)
− 3η2 +

3

5
(B.4.7)

Furthermore, there exists an important group of kinetic energy functionals based on linear

response theory which contain the Wang-Teter [51] model. These functionals take the form

Ts[ρ] = TTF [ρ] + TW [ρ] + TK [ρ] (B.4.8)

where the kernel term TK [ρ] is expressed as

TK [ρ] = CTF

∫ ∫
ρα(r)ω(r, r

′
)ρβ(r

′
)drdr

′
(B.4.9)

Different functionals of this class are determined by constants α and β and the kernel function

ω. A standard treatment based on the linear response of the noninteracting electron gas leads
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to a simple expression in reciprocal space for ω when it is taken to be density independent.

It is shown [62, 58, 59, 60] that the choice

α =
5 +
√
5

6
,β =

5−
√
5

6
(B.4.10)

was optimal for the density independent kernel.

The latter improvements were recently developed by Wang, Govind and Carter (WGC)

[58], who generalize (B.4.9) to density dependent kernels.We are not using the latter func-

tionals in our present work. For this reason we are not discussing them here in detail.

B.5 EXCHANGE-CORRELATION FUNCTIONALS.

So far, we have looked at the major parts of the total energy of an N -electron system. In

particular, we have given some approximation to the kinetic energy functional T [ρ], the

classical electron-electron interaction or Hartree term J [ρ], the interaction of electron with

the external field
∫
ρ(r)v(r)dr and the approximation to the exchange energy proposed by

Dirac −Cx

∫
ρ4/3(r)dr. The last contribution, i.e. the correlation energy is the big unknown.

Wigner [63] was the first to address this issue in the context of the homogeneous electron

gas, by proposing the correlation energy per unit volume given by

C[ρ] = −0.056
∫

ρ4/3(r)

0.079 + ρ1/3(r)
dr (B.5.1)

The exchange energy, although well known as a function of the single-particle orbitals

(Hartree-Fock), involves the calculation of computationally expensive integrals. In addi-

tion, up to date there is no approximation available where the correlation energy is treated

at a comparable level of accuracy. Therefore, if exchange is treated exactly as a functional of

the orbitals, it will not be able to compensate for any errors introduced when approximating

the correlation term. The key issue here is that the really meaningful quantity is the sum

of the two terms K[ρ] + C[ρ]; the division is the matter of convenience. Therefore, it seems

sensible to treat both terms to a similar level of approximation.
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The idea now is to look for consistent approximations to exchange and correlation where

both terms are treated in a similar manner. One of the natural starting points is the

homogeneous electron gas. We have seen that the exchange energy for this system is exactly

given by Dirac’s expression [17]:

KD[ρ] = −Cx

∫
ρ(r)4/3dr (B.5.2)

Excellent approximations for correlation are also available. The most accurate results are

based on the quantum Monte Carlo (QMC) simulations of Ceperley and Alder [66]. This

correlation functional is exact within numerical accuracy, and has been parameterized by

Perdew and Zunger for spin-polarized (P) and spin-unpolarized (U) homogeneous electron

gas [68, 69]:

CPZ [ρ] =

A ln rs +B + Crs ln rs +Drs, rs ≤ 1

γ
1+β1

√
rs+β1rs

, rs > 1

(B.5.3)

where rs = (3/4πρ)1/3.

For rs ≤ 1 the above expression derives from the random phase approximation, has been

calculated by Gell-Mann and Brueckner. This is valid in the limit of very dense electron

systems, and fixes the values of the leading coefficients: AU = 0.0311, BU = −0.048. The

remaining coefficients were fitted to the QMC results of Ceperley and Alder [66]: CU =

0.002,DU = −0.0116.

Another possible parametrization is one proposed by Vosko [67] where the correlation

functional is given by

CV NW [rs]

A
= ln

(
rs

F (
√
rs)

)
+

2b√
4c− b2

tan−1

(√
4c− b2

2
√
rs + b

)
− (B.5.4)

− bx0
F (x0)

[
ln

(√
rs − x0
F (
√
rs)

)
+ tan−1

(√
4c− b2
√
rs + b

)]
with F (x) = x2 + bx + c, and where A,b,c, and x0 are fitting constants that differ for spin-

polarized and spin-unpolarized cases.
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B.5.1 The local density approximation.

The local density approximation (LDA) has been for a long time the most widely used

approximation to the exchange-correlation energy. The main idea is to consider a general

inhomogeneous electronic system as locally homogeneous, and then to use the exchange-

correlation hole (A.2.11) corresponding to the homogeneous electron gas, which is known

to an excellent accuracy. In practice, energy terms local in the density are calculated by

integrating over the volume of the system.

The exchange-correlation energy can be written as the average of an energy density

ϵLDA
XC [ρ]:

ELDA
XC [ρ] =

∫
ρ(r)ϵLDA

XC [ρ(r)]dr (B.5.5)

weighted with the space-dependent electronic density of the system.

While the exchange-correlation energy EXC [ρ] should be a local functional of ρ, there is

no reason why the energy density should also be so. In fact, in general ϵXC is not a functional

of the density. From its definition it is clear that it has to be a non-local object, because it

reflects the fact that the probability of finding an electron at r depends on the presence of

other electrons in the surroundings. However, in the LDA it becomes a function of the local

density because it corresponds to a homogeneous system where ρ is the same everywhere.

There are a number of features of the LDA that are rather general and well established.

These are the following.

• It favors electronic densities that are more homogeneous than the exact ones.

• It tends to overestimate the binding energy of molecules and the cohesive energy of solids.

This trend is opposite to Hartree-Fock, which underestimates binding energies.

• Geometries of well-behaved systems, i.e. those involving strong bonds are remarkably

good within the LDA. Bond lengths, bond angles, and vibrational frequencies reproduce

experimental values within a few percent. Dielectric properties like the dielectric constant

and piezo-electric coefficients are overestimated by about 10%.

• For weakly bound systems that involve hydrogen bonds or van der Waals closed shell

interactions, bond lengths are too short. Dispersion interactions are poorly reproduced.
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B.5.2 Gradient expansions.

To address the issue of inhomogeneities in the electron density, the natural road is to carry

out an expansion of the density in terms of the gradient and higher order derivatives. In

general, the exchange-correlation energy can be written in the following form:

EXC [ρ] =

∫
ρ(r)ϵXC [ρ(r)]FXC [ρ(r),∇ρ(r),∇2ρ(r), · · · ]dr (B.5.6)

where the function FXC is an enhancement factor that modifies the LDA expression according

to the variation of the density in the vicinity of the considered point. In this sense, the

gradient corrections constitute a semi-local approach, which will hardly be able to capture

non-local effects at longer ranges.

The second order gradient expansion of the exchange energy introduces a term propor-

tional to the squared gradient of the density. The fourth order gradient expansion of the

exchange enhancement factor FX is

FX(p, q) = 1 +
10

81
p+

146

2025
q2 − 73

405
qp+Dp2 +O(∇ρ6) (B.5.7)

where

p =
|∇ρ|2

4(3π2)2/3ρ8/3
(B.5.8)

and

q =
∇2ρ

4(3π2)2/3ρ5/3
(B.5.9)

The first two coefficients of the expansion are exactly known. The third one is the result of

a difficult many-body calculation. The fourth coefficient, has not been explicitly calculated

to date, but the best numerical estimate is that it is negligible.

The second order gradient expansion corresponds to an expression of the type

EXC [ρ] =

∫
AXC [ρ]ρ(r)

4/3dr+

∫
CXC [ρ]

|∇ρ(r)|2

ρ(r)4/3
dr (B.5.10)

which is asymptotically correct for densities which vary slowly in space. The LDA retains

only the leading term of (B.5.10). It is well known that a straightforward evaluation of this

expansion is ill behaved, in the sense that it is not monotonically convergent, and exhibits

singularities that cancel out only when an infinite number of terms is re-summed. In fact,
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the first order correction worsens the results, and the second order correction is plagued with

divergences.

Gradient expansion should be carried out very carefully in order to retain all the rele-

vant contributions to the desired order. These expansions easily violate one or more of the

exact conditions required for the exchange and correlation holes, such as the normalization

condition, the negativity of the exchange density, or the self-interaction cancelation. Perdew

showed that imposing these conditions on functionals that originally do not satisfy them

results in a remarkable improvement of the quality of exchange energies. On the basis of

this type of reasoning, a number of modified gradient expansions have been proposed. These

have been named generalized gradient approximations (GGAs).

Normally GGAs improve over some of the drawbacks of the LDA, although this is not

always the case.

B.5.2.1 Langreth-Mehl functional. The first GGA proposed in the literature as-

sumes the following form [70]:

ϵX = ϵLDA
X − a |∇ρ(r)|

2

ρ(r)4/3

(
7

9
+ 18f 2

)
(B.5.11)

ϵC = ϵRPA
C + a

|∇ρ(r)|2

ρ(r)4/3
(2e−F + 18f 2) (B.5.12)

where F = b|∇ρ(r)|/ρ(r)7/6, b = (9π)1/6, a = π/(16(3π2)4/3), and f = 0.15.

B.5.2.2 BLYP functional. In 1988, Becke [71] proposed an exchange functional where

the parameters were fitted to experimental molecular data.

ϵX = ϵLDA
X

(
1− β

21/3Ax

x2

1 + 6βx sinh−1(x)

)
(B.5.13)

for x = 2(6π2)1/3, s = 21/3|∇ρ(r)|/ρ(r)4/3, Ax = (3/4)(3/π)1/3, and β = 0.0042. This was

complemented by a correlation functional derived by Lee, Yang and Parr (LYP), thus giving

rise to a very widely used combination called BLYP functional:

ϵC = − a

1 + dρ−1/3

{
ρ+ bρ−2/3

[
CFρ

5/3 − 2tW +
1

9

(
tW +

1

2
∇2ρ

)]
e−cρ−1/3

}
(B.5.14)
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where

tW =
1

8

(
|∇ρ|2

ρ
−∇2ρ

)
(B.5.15)

CF = (3/10)(3π2)2/3, a = 0.04918, b = 0.132, c = 0.2533, and d = 0.349. This correlation

functional is not based on the LDA.

B.5.2.3 PBE functional and revisions In 1996, Perdew, Burke, and Ernzerhof (PBE)

[19, 20] proposed an exchange and correlation functional that satisfies as many formal prop-

erties and limits as possible, sacrificing only those deemed to be energetically less important.

The enhancement factor FX(ρ, ς, s) over the local exchange defined in (B.5.6) depends on

the local density ρ, magnetization density ς (in spin-dependent case), and the dimensionless

density gradient s = |∇ρ(r)|/(2kFρ). The chosen expression is

FX(s) = 1 + κ− κ

1 + µs2/κ
(B.5.16)

where µ = β(π2/3) = 0.21951 and β = 0.066725 is related to the second order gradient

expansion.This form:

• satisfies the uniform scaling condition

• recovers the correct uniform gas limit because FX(0) = 1

• obeys the spin-scaling relationship

• recovers the local spin density approximation (LSDA) linear response limit for s→ 0

• satisfies the local Lieb-Oxford bound, ϵX(r) ≥ −1.679ρ(r)4/3

PBE choose the largest allowed value, κ = 0.804. Other author have proposed the same

form, but with values of κ and µ fitted empirically to a database of atomization energies.

The correlation energy is written in a form similar to an earlier proposal of Perdew and

Wang [38, 39, 40, 41, 18]. It assumes the form

EGGA
C =

∫
ρ(r)

[
ϵLDA
C (ρ, ς) +H[ρ, ς, t]

]
dr (B.5.17)

with

H[ρ, ς, t] =
e2

a0
γϕ3 ln

{
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}
(B.5.18)
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Here, t = |∇ρ(r)|/(2ϕksρ) is a dimensionless density gradient, with ks the Thomas-Fermi

screening wave number, and ϕ(ς) = [(1 + ς)2/3 + (1 − ς)2/3]/2 is a spin-scaling factor. The

quantity β is the same as for the exchange term and γ = (1 − ln 2)/π2 = 0.031091. The

function A has the following form:

A =
β

γ

[
e−ϵLDA

C [ρ]/(γϕ3e2/a0) − 1
]−1

(B.5.19)

Trends of the GGAs.

• They improve binding energies and also atomic energies.

• They improve bond lengths and angles.

• They improve energetics, geometries, and dynamic properties of water,ice, and water

clusters.

• Semiconductors are marginally better described within the LDA than in GGA, except

for the binding energies.
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