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OPTIMAL PROCEDURES IN HIGH-DIMENSIONAL VARIABLE

SELECTION

Qi Zhang, PhD

University of Pittsburgh, 2013

Motivated by the recent trend in “Big data”, we are interested in the case where both p, the

number of variables, and n, the number of subjects are large, and probably p � n. When

p � n, the signals are usually rare and weak, and the observation units are correlated in

a complicated way. When the signals are rare and weak, it may be hard to recover them

individually. In this thesis, we are interested in the problem of recovering the rare and weak

signals with the assistance of correlation structure of the data.

We consider the helps from two types of correlation structures, the correlation structure

of the observed units, and the dependency among the unobserved factors. In Chapter 2, in a

setting of high dimensional linear regression, we study the variable selection problem when

the observed predictors are correlated. In Chapter 3, we consider recovering the sparse mean

vector of a Stein’s normal means model, where the elements of the unobserved mean vector

are dependent through an Ising model. In each chapter, we study the optimality in variable

selection, discover the non-optimality of the conventional methods such as the lasso, subset

selection and hard thresholding, and propose Screen and Clean type of variable selection

procedures which are optimal in terms of the Hamming distance. The theoretical findings is

supported by the simulation results and applications.
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1.0 BACKGROUND AND INTRODUCTION

Nowadays, massive data are collected in many areas of sciences and business on a routine

basis (e.g. genomics, cosmology, finance and imaging).

The primary feature of the massive data is that both p, the number of variables, and n,

the number of samples are large, and p � n. For example, in cancer genetics, the sample

size may be a few dozen or a few hundred, and for each patient, the expression values of tens

of thousands of genes are measured, no mention other clinical measurements. There are two

consequences of p� n, namely, the signal sparsity and the signal weakness. Signal sparsity

means that for a specific purpose (e.g. regression, classification), only a small portion of the

variables are relevant. For example, in the cancer genetics example, though tens of thousands

of gene expressions are measured from each patient, maybe only a few hundreds of them are

related to tumor metastasis. While signal sparsity is intuitive and widely accepted, signal

weakness is a less understood notion. We say the signals are weak if they are barely separable

from the noise, or hard to be detected individually. In the p � n regime, the noise level is

high, which makes the weak signals dominate in numbers. We remark that p� n is not the

only source of the signal weakness and there are signals that are intrinsically weak.

A second feature of the massive data set is that the observation units are correlated in a

complicated way. For example, in the cancer genetics example, the observed gene expression

values are usually correlated, and in imaging, the gray scale of one pixel is usually similar

to those of its neighbors. Besides the direct correlations among the observed units, the

dependency among the unobserved factors may also contribute to the observed complicated

correlation structure. For example, in the cancer genetics example, if one gene is known

to be related to metastasis, those genes that work in the same biological function with it

are more likely to be related to metastasis as well. Such dependency information is usually
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in a form of networks and pathways, and known from common sense (e.g. [3]) or previous

studies(e.g.[33], [36]).

Motivated by the above observations, we are primarily interested in recovering the rare

and weak signals by the assistance of the correlation structure. The key idea is: though the

weak signals cannot be detected individually, we may be able to estimate them jointly. We

consider both the correlation structure of the observed units and the dependency structure

of the unobserved factors.

Consider the following high dimensional linear regression problem as an illustrative ex-

ample

Y = Xβ + z, and z ∼ N(0, In).

Here X = Xn×p where p � n. β is unknown, but presumably sparse, and the signals may

be very weak (its non-zero elements are only moderately large in magnitude). Our goal is

to find the locations of the non-zero elements of β. In order to recover the weak signals

as accurately as possible, we use the observed correlation structure of the predictors or the

dependency among the elements of the unobserved factor β for assistance.

In Chapter 2, we consider the former in the setting of linear regression, and in Chapter 3,

we consider the later in a more general setting. In each case, we develop an optimal procedure

to perform the task, and also present intensive theoretical discussions on the situations where

the conventional methods (e.g. lasso [43], subset selection[1, 42], hard thresholding) are not

optimal.
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2.0 EXPLOIT THE CORRELATION AMONG THE PREDICTORS

2.1 INTRODUCTION

Consider a linear regression model

Y = Xβ + σz, z ∼ N(0, In), (2.1)

where the design matrix X = Xn,p has n rows and p columns. Throughout this chapter, we

assume the diagonals of the Gram matrix

G = X ′X

are normalized to 1 (and approximately 1 in the random design model). Motivated by the

recent trend of ‘Big Data’ where massive datasets consisting of millions or billions of obser-

vations and variables are mined for associations and patterns (e.g. genomics, compressive

sensing), we are primarily interested in the case where both p and n are large with p ≥ n

(though this should not be taken as a restriction). The signal vector β is unknown to us, but

is presumably sparse in the sense that only a small proportion of its coordinates is nonze-

ro. The main interest of this chapter is to identify such nonzero coordinates (i.e., variable

selection).
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2.1.1 The paradigm of rare and weak signals

We are primarily interested in the regime where the signals are both rare and weak: Whether

we are talking about clickstreams in web browsing or genome scans or tick-by-tick financial

data, most of what we see is noise; the signals, mostly very subtle, are hard to find, and it’s

easy to be fooled.

While rarity (or sparsity) of the signal is a well-accepted concept in high dimensional

data analysis, the weakness of the signal is a much neglected notion. Many contemporary

studies of variable selection have focused on rare and strong signals, where the so-called

oracle property or probability of exact support recovery are used as the measure of optimality.

Typically, these works assume the signals are sufficiently strong, so that the variable selection

problem does not involve the subtle tradeoff between signal sparsity and signal strength.

However, such a tradeoff is of great interest from both scientific and practical perspectives.

In this chapter, we focus on the regime where the signals are so rare and weak that they

are barely separable from the noise. We are interested in the exact demarcation that sepa-

rates the region of impossibility from the region of possibility. In the region of impossibility,

the signal is so rare and weak that successful variable selection is impossible. In the region

of possibility, the signals are strong enough so that successful variable selection is possible.

in the sense of committing a much smaller number of selection errors than the number of

signals. This is a very delicate situation, where it is of major interest to develop methods

that yields successful variable selection.

When signals are rare and weak, exact recovery is usually impossible, and oracle property

or probability of exact support recovery is no longer an appropriate criterion for assessing

optimality. In this chapter, we use the minimax Hamming distance as a measure of opti-

mality. Hamming distance is the expected number of components for which the estimated

signs and true signs of the regression coefficients disagree. The goal is to study the rate of

the minimax Hamming distance study the optimality of variable selection procedures.
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2.1.2 Exploiting the sparsity of the graph of strong dependence

Most of the work to date on “rare and weak” effects consider the completely unstructured

case where no two features interact with each other in a significant way [14, 15, 28, 39].

However, in numerous applications, there are relationships between predictors which are

important to consider.

In this chapter, we are primarily interested in the class of linear models where the Gram

matrix G is ‘sparse’, in the sense that each row of G only has relatively few large coordinates.

Linear models where G are sparse can be found in the following application areas.

• Compressive sensing. We are interested in a very high dimensional sparse vector β.

The plan is to store or transmit n linear functionals of β and then reconstruct it. For

1 ≤ i ≤ n, we choose a p-dimensional coefficient vector Xi and observe Yi = X ′iβ + zi

with an error zi. The so-called Gaussian design is often considered [12, 13, 2], where

Xi
iid∼ N(0,Ω/n) with a sparse covariance matrix Ω. In this example, the sparsity of Ω

induces that of G = X ′X.

• Genetic Regulatory Network (GRN). For 1 ≤ i ≤ n, Wi = (Wi(1), . . . ,Wi(p))
′ represents

the expression level of p different genes corresponding to the i-th patient. Approximately,

Wi
iid∼ N(α,Σ), where the contrast mean vector α is sparse reflecting that only few

genes are differentially expressed between a normal patient and a diseased one [40].

Frequently, the concentration matrix Ω = Σ−1 is believed to be sparse, and can be

effectively estimated in some cases (e.g. [5, 6]), or can be assumed as known in others,

with the so-called “data about data” available [34]. To estimate α, one may consider

Y = n−1/2
∑n

i=1Wi ∼ N(
√
nα,Σ) and use brute-force thresholding. However, such an

approach is inefficient as it neglects the correlation structure. Alternatively, let Ω̂ be a

positive-definite estimate of Ω, the problem can be re-formulated as the following linear

model: (Ω̂)1/2Y ≈ Ω1/2Y ∼ N(Ω1/2β, Ip), where β =
√
nα and G ≈ Ω, and both are

sparse.

Other examples can be found in Computer Security [31] and Factor Analysis [26].

Well-known approaches to variable selection include subset selection, the lasso, SCAD,

MC+, greedy search and more [1, 8, 16, 17, 42, 43, 50, 52, 53, 54]. While these approaches
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may exploit the signal sparsity effectively, they are not designed to take advantage of the

sparsity of the graphical structure of the design variables. It is therefore of great interest to

study how to exploit such graph sparsity to substantially improve variable selection. This is

particularly important in the “rare and weak” paradigm, where it is so easy to be fooled by

noise.

In fact, in such a paradigm, even the ‘optimal’ penalized least squares methods (including

exhaustive subset selection) are non-optimal. The exhaustive subset selection is non-optimal

because it is a one-stage and non-adaptive method that does not fully utilize the graphical

structure among the design variables. See Section 2.3 for detailed discussion. On the other

hand, there are two-stage Screen and Clean methods that are optimal, e.g.Graphlet Screen-

ing (GS). The main methodological innovation is the use of a graph of strong dependence

(GOSD), constructed from the Gram matrix, to guide both the screening and the cleaning

processes. The procedure limits the attention to strong correlated substructures only, and

has a two-fold advantage: modest computational cost and theoretic optimality. For for more

details, see Section 2.2 and the paper [32].

2.1.3 Sparse signal model, interplay of signal sparsity and graph sparsity

Motivated by the above examples, we adopt a sparse signal model as follows (e.g., [7]). Fix

parameters ε ∈ (0, 1) and τ > 0. Let b = (b1, . . . , bp)
′ be the p× 1 random vector where

bi
iid∼ Bernoulli(ε). (2.2)

We model the signal vector β as

β = b ◦ µ, (2.3)

where ◦ denotes the Hadamard product (i.e., for any p× 1 vectors x and y, x ◦ y is the p× 1

vector such that (x ◦ y)i = xiyi, 1 ≤ i ≤ p), and µ ∈ Θp(τ) with

Θp(τ) = {µ ∈ Rp : |µi| ≥ τ, 1 ≤ i ≤ p}. (2.4)

In later sections, we may further restrict µ to a subset of Θp(τ); see (2.9).

Definition 2.1.1. We call (2.2)-(2.4) the Rare and Weak signal model (RW(ε, τ, µ)).

6



In this model, βi is either 0 or a signal with at least strength τ . The parameter ε is

unknown to us, but is presumably small so the signals are sparse. At the same time, we

take τ to be moderately large (see Section 2.1.4 for details) so that the signals are barely

separable from the noise. This models a situation where the signals are both rare and weak.

Naturally, a sparse Gram matrix induces a sparse graph among design vectors, which we

call the graph of strong dependence (GOSD). Towards this end, write

X = [x1, x2, . . . , xp] = [X1, X2, . . . , Xn]′ (2.5)

so that xj is the j-th column of X and X ′i is the i-th row of X. For a tuning parameter

δ > 0 (δ = 1/ log p or other small values of logarithmic order), we introduce

Ω∗ = (Ω∗(i, j))p×p, Ω∗(i, j) = G(i, j)1{|G(i, j)| ≥ δ}, (2.6)

as a regularized Gram matrix.

Definition 2.1.2. The GOSD is the graph G∗ = (V,E), where V = {1, 2, . . . , p} and nodes

i and j are connected if and only if Ω∗(i, j) 6= 0.

If each row of Ω∗ has no more than K nonzeros, then the graph G∗ is K-sparse.

Definition 2.1.3. A graph G = (V,E) is K-sparse if the degree of each node is no greater

than K.

At first glance, it is unclear how the sparsity of G∗ may help in variable selection. In fact,

for any fixed node i, even when K is as small as 2, it is possible to have a very long path

that connects node i to another node j. Therefore, it is unclear how to remove the influence

of other nodes when we attempt to make inference about node i.

However, on a second thought, we note that what is crucial to variable selection is not

the graph G∗, but the subgraph of G∗ formed by all the signal nodes. Compared to the whole

graph, this subgraph not only has a much smaller size, but also has a much simpler structure:

It decomposes into many components, each of which is small in size, and different components

are disconnected (a component is a maximal connected subgraph). The following notation

is frequently used in this chapter.

Definition 2.1.4. Fixing a graph G, we say I0 C G if I0 is a component of G.

7



In other words, due to the interplay between the signal sparsity and the graph sparsity,

the original regression problem is decomposable: the signals live in isolated units, each is

small in size (if only we know where they are!), and different units are disconnected to each

other. So to solve the original regression problem, it is sufficient to solve many small-size

regression problems in parallel, where one problem has little influence over the others.

Formally, denote the support of the signal vector by

S = S(β) = {1 ≤ i ≤ p : βj 6= 0}.

Let G∗S be the subgraph of G∗ formed by all the nodes in S. The following lemma is proved

in Section A.1.1.

Lemma 2.1.1. Fixing K ≥ 1, m ≥ 1, ε > 0, τ > 0, suppose G∗ is K-sparse and β is from

the Rare and Weak model RW (ε, τ, µ). Then, with at least probability 1 − p(eεK)m+1, G∗S
decomposes into many components, each has a size ≤ m, and different ones are disconnected.

For moderately sparse signals (e.g. in an asymptotic framework where as p → ∞,

ε = εp ≤ p−ϑ for some fixed parameter ϑ > 0), p(eεK)m+1 is small so that the decomposability

in Lemma 2.1.1 holds with overwhelming probability. We mention that Lemma 2.1.1 is

not tied to Model (2.2)-(2.4) and holds in much broader settings. For example, a similar

claim can be drawn if the vector b in β = b ◦ µ satisfies a certain Ising model [29]. The

decomposability of G∗S is mainly due to the interplay of the signal sparsity and the graph

sparsity, not the specific model of the signals. For further elaboration on this point, see the

proof of Lemma 2.1.1 in Section A.1.1.

2.1.4 Asymptotic Rare and Weak model for regression with random design

We continue our discussion with the Rare and Weak model RW(ε, τ, µ) by introducing an

asymptotic framework. In this framework, we let p be the driving asymptotic parameter, and

parameters (ε, τ) are tied to p through some fixed parameters. In detail, fixing 0 < ϑ < 1,

we model

ε = εp = p−ϑ. (2.7)
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For any fixed ϑ, the signals become increasingly sparser as p → ∞. Also, as ϑ ranges, the

sparsity level ranges from very dense to very sparse, and covers most interesting cases.

It turns out that the most interesting range for τ is τ = τp = O(
√

log(p)). In fact, when

τp � σ
√

log(p), the signals are simply too rare and weak so that successful variable selection

is impossible. On the other hand, when τp is sufficiently large, it is possible to exactly recover

the support of β under proper conditions on the design. In light of this, we fix r > 0 and

calibrate τ by

τ = τp = σ
√

2r log(p). (2.8)

At the same time, fixing a constant a > 1, in the RW (ε, τ, µ), we further restrict the

vector µ to a subset of Θp(τp), denoted by Θ∗p(τp, a), where

Θ∗p(τp, a) = {µ ∈ Θp(τp) : |µi| ≤ aτp, i = 1, 2, . . . , p}, (2.9)

and the parameter a is unknown.

Definition 2.1.5. We call model (2.2)-(2.4) and (2.7)-(2.9) the Asymptotic Rare Weak

signal model ARW(ϑ, r, a, µ).

We now introduce the random design model. Fix a correlation matrix Ω that is presum-

ably unknown to us (however, for simplicity, we assume that Ω has unit diagonals). In the

random design model, we assume that the rows of X as iid samples from a p-variate zero

means Gaussian vector with correlation matrix Ω:

Xi
iid∼ N(0,

1

n
Ω). (2.10)

The factor 1/n is chosen so that the diagonal elements of the Gram matrix G are approx-

imately one. In the literature, this is called the Gaussian design, which can be found in

Compressive Sensing [2], Computer Security [11], and other application areas.

At the same time, fixing κ ∈ (0, 1), we model the sample size n by

n = np = pκ. (2.11)

As p→∞, np becomes increasingly large but is still much smaller than p. We assume

κ > (1− ϑ), (2.12)
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so that np � pεp. Note pεp is approximately the total number of signals. Condition (2.12)

is almost necessary for successful variable selection [12, 13].

Definition 2.1.6. We call Model (2.10)-(2.12) the Random Design model RD(ϑ, κ,Ω).

Come back to (2.9). From a practical point of view, it is preferable to assume a mod-

erately large (but fixed) a, since we usually don’t have sufficient knowledge on µ. For this

reason, we are primarily interested in the case where a is “appropriately” large. This will

make Θ∗p(τp, a) sufficiently broad so that neither the minimax rate nor any variable selection

procedure needs to adapt to a.

Towards this end, we impose some mild “local” regularity conditions on Ω. In detail, for

any positive definite matrix A, let λ(A) be the smallest eigenvalue, and let

λ∗k(Ω) = min{λ(A) : A is a k × k principle submatrix of Ω}. (2.13)

At the same time, fixing a constant c0 > 0, let (ϑ, r) be as in (2.7) and (2.8), respectively,

let m be as in the GS-step, and let g be the smallest integer such that

g ≥ max{m, (ϑ+ r)2/(2r)}. (2.14)

Introduce

Mp(c0, g) = {Ω : p× p correlation matrix, λ∗k(Ω) ≥ c0, 1 ≤ k ≤ g}.

For any two subsets V0 and V1 of {1, 2, . . . , p}, consider the optimization problem

(
θ(0)
∗ (V0, V1), θ(1)

∗ (V0, V1)
)

= argmax{(θ(1) − θ(0))′Ω(θ(1) − θ(0))}, (2.15)

subject to the constraints that for k = 0, 1, θ(k) are p×1 vectors satisfying |θ(k)
i | ≥ 1 for i ∈ Vk

and θ
(k)
i = 0 otherwise, and that the sign vectors of θ(0) and θ(1) are unequal. Introduce

a∗g(Ω) = max
{(V0,V1):|V0∪V1|≤g}

max{‖θ(0)
∗ (V0, V1)‖∞, ‖θ(1)

∗ (V0, V1)‖∞}.

We have the following lemma, the proof of which is elementary and thus omitted.

Lemma 2.1.2. For any Ω ∈ Mp(c0, g), there is a constant C = C(c0, g) such that a∗g(Ω) ≤

C.
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In this chapter, unless stated otherwise, we assume

Ω ∈Mp(c0, g), a > a∗g(Ω). (2.16)

In Section 2.2, we further restrict Ω to a subset ofMp(c0, g) to foster graph sparsity. Condi-

tion (2.16) is mild for it involves only small-size principle sub-matrices of Ω, and we assume

a > a∗g(Ω) mostly for simplicity. For insight, imagine that in (2.15), we further require that

|θ(k)
i | ≤ aτp, i ∈ Vk, k = 0, 1. Then as long as a > a∗g(Ω), the optimization problem in (2.15)

has exactly the same solution, which does not depend on a. This explains (2.16).

2.1.5 Measure the performance of variable selection: Hamming distance and

phase diagram

For any fixed β and any variable selection procedure β̂, we measure the performance by the

Hamming distance between the sign vectors sgn(β̂) and sgn(β):

hp(β̂, β
∣∣X) = E

[ p∑
j=1

1
(
sgn(β̂j) 6= sgn(βj)

)∣∣X].
In the Asymptotic Rare Weak model, β = b ◦ µ, and (εp, τp) depend on p through (ϑ, r), so

the overall Hamming distance for β̂ is

Hp(β̂; εp, np, µ,Ω) = EεpEΩ

[
hp(β̂, β

∣∣X)
]
≡ EεpEΩ

[
hp(β̂, b ◦ µ

∣∣X)
]
,

where Eεp is the expectation with respect to the law of b, and EΩ is the expectation with

respect to the law of X; see (2.2) and (2.10). Finally, the minimax Hamming distance is

Hamm∗p(ϑ, κ, r, a,Ω) = inf
β̂

sup
µ∈Θ∗

p(τp,a)

{
Hp(β̂; εp, np, µ,Ω)

}
.

In the above definitions, sgn(x) = 0, 1,−1 if x = 0, x > 0, and x < 0 correspondingly. Note

that the Hamming distance is no smaller than the sum of the expected number of signal

components that are misclassified as noise and the expected number of noise components

that are misclassified as signal. For a lower bound of this minimax Hamming distance, see

[32].
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For given (Ω, κ, a), the minimax Hamming distance depends on the tuning parameters

(ϑ, r), which are associated with the signal sparsity and the signal strength, respectively.

Call the two-dimensional parameter space {(ϑ, r) : 0 < ϑ < 1, r > 0} the phase space.

There are two curves r = ϑ and r = ρ(ϑ,Ω) (the latter can be thought of as the solution of

Hamm∗p(ϑ, κ, r, a,Ω) = 1) that partition the whole phase space into three different regions:

• Region of No Recovery. {(ϑ, r) : 0 < r < ϑ, 0 < ϑ < 1}. In this region, as p → ∞,

for any Ω and any procedures, the minimax Hamming error equals approximately to the

total expected number of signals. This is the most difficult region, in which no procedure

can be successful in the minimax sense.

• Region of Almost Full Recovery. {(ϑ, r) : ϑ < r < ρ(ϑ,Ω)}. In this region, as p→∞, the

minimax Hamming distance satisfies 1� Hamm∗p(ϑ, κ, r, a,Ω)� p1−ϑ, and it is possible

to recover most of the signals, but it is impossible to recover all of them.

• Region of Exact Recovery. In this region, as p → ∞, the minimax Hamming distance

Hamm∗p(ϑ, κ, r, a,Ω) = o(1), and it is possible to exactly recover all signals with over-

whelming probability.

We are interested in study whether certain variable selection procedures can achieve

exact recovery when the optimal procedure can. If a procedure is optimal, its exact recovery

region should be as large as the Region of Exact Recovery. We are also interested in study

the rate of Hamming distance of some procedures in the Region of Almost Full Recovery.

More exactly, we further partition this region into two sub-regions, the optimal region where

the rate of this procedure is optimal, and the non-optimal region, where it is not optimal.

We continue this discussion in Section 2.3.

2.2 GRAPHLET SCREENING AND ITS OPTIMALITY

The decomposability discussed in Section 2.1.3 invites the following two-stage variable selec-

tion procedure, which we call the Graphlet Screening (GS). We describe the procedure and

state its optimality result here, and please see the author and the collaborators’ paper [32]
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for details.

Conceptually, Graphlet Screening contains a graphical screening step (GS-step) and a

graphical cleaning step (GC-step).

• GS-step. This is an m-stage χ2-screening process, where m ≥ 1 is a preselected integer.

In this process, we investigate all connected subgraphs of G∗ of no more than m nodes.

For each of them, we test whether some of the nodes in the connected subgraph are

signals, or none of them is a signal. We then retain all those which we believe to contain

one or more signals.

• GC-step. The surviving nodes decompose into many components, each of which has no

more than `0 nodes, where `0 is a fixed small number. We then fit each component with

penalized MLE, in hopes of removing all falsely kept signals.

In philosophy, the GS is similar to [47, 18] in that they have a screening and a cleaning stage,

but is more sophisticated in nature.

We now describe two steps in details. Recalling (2.5), we have the following definition.

Definition 2.2.1. For X in Model (2.1) and any I ⊂ {1, 2, ..., p}, let P I = P I(X) be the

projection from Rn to the span of {xj, j ∈ I}.

Consider the GS-step first. Let G∗ be as in (2.6) and fix m ≥ 1. The m-stage χ2-screening

is as follows.

• Initial sub-step. Let U∗p = ∅. List all connected subgraphs of G∗, say I0, in ascending

order of the number of nodes |I0|, with ties broken lexicographically, subject to |I0| ≤ m.

Since a node is thought of as connected to itself, the first p connected subgraphs on the

list are simply the nodes 1, 2, . . . , p. We screen all connected subgraphs in the order they

are listed.

• Updating sub-step. Let I0 be the connected subgraph under consideration, and let U∗p
be the current set of retained indices. We update U∗p with a χ2 tests as follows. Let

F̂ = I0 ∩U∗p and D̂ = I0 \ U∗p , so that F̂ is the set of nodes in I0 that have already been

accepted, and D̂ is the set of nodes in I0 that is currently under investigation. Note that

no action is needed if D̂ = ∅. For a threshold t(D̂, F̂ ) > 0 to be determined, we update
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U∗p by adding all nodes in D̂ to it if

T (Y, D̂, F̂ ) = ‖P I0Y ‖2 − ‖P F̂Y ‖2 > t(D̂, F̂ ), (2.17)

and we keep U∗p the same otherwise (by default, ‖P F̂Y ‖ = 0 if F̂ = ∅). We continue this

process until we finish screening all connected subgraphs on the list.

In the GS-step, once a node is kept in any sub-stage of the screening process, it remains

there until the end of the GS-step (however, it may be killed in the GC-step). This has a

similar flavor to that of the Forward regression. See Table 2.1 for a recap of the procedure.

The GS-step uses the following set of tuning parameters:

Q ≡ {t(D̂, F̂ ) : (D̂, F̂ ) are as defined in (2.17)}.

A convenient way to set these parameters is to let t(D̂, F̂ ) = 2σ2q log p for a fixed q > 0 and

all (D̂, F̂ ). More sophisticated choices are given in [32].

The computational cost of the GS-step hinges on the sparsity of G∗. In Section 2.1.4,

we show that with a properly chosen δ, for a wide class of design matrices, G∗ is K-sparse

for some K = Kp ≤ (log(p))α as p → ∞, where α > 0 is a constant. As a result, the

computational cost of the GS-step is moderate, because for any K-sparse graph, there are

at most p(eK)m subgraphs with size m [23].

The GS-step has two important properties: Sure Screening and Separable After Screening

(SAS). With tuning parameters Q properly set, the Sure Screening property says that U∗p
retains all but a negligible fraction of the signals. Viewing U∗p as a subgraph of G∗, the SAS

property says that this subgraph decomposes into many disconnected components, each has

a size ≤ `0 for a fixed small integer `0. Together, these two properties enable us to reduce

the original large-scale regression problem to many small-size regression problems that can

be solved in parallel in the GC-step.

We now discuss the GC-step. The following notation is frequently used in this chapter.
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Definition 2.2.2. For a p × m matrix X and I0 ⊂ {1, 2, . . . , p} and J0 ⊂ {1, 2, . . . ,m},

XI0,J0 denotes the |I0| × |J0| sub-matrix of X formed by restricting the rows of X to I0 and

columns to J0. For short, in the case where J0 = {1, 2, . . . ,m}, we write it as XI0, and in

the case where I0 = {1, 2, . . . , p}, we write it as X∗,J0. When m = 1, X is a vector, and

XI0 is the sub-vector of X formed by restricting the rows of X to I0.

For any 1 ≤ j ≤ p, we have either j /∈ U∗p , or that there is a unique connected subgraph

I0 such that j ∈ I0 C U∗p (see Definition 1.3 for the notation). In the first case, we estimate

βj as 0. In the second case, for two tuning parameters ugs > 0 and vgs > 0, we estimate the

whole set of variables βI0 by minimizing the following functional:

‖P I0(Y −X∗,I0ξ)‖2 + (ugs)2‖ξ‖0. (2.18)

Here, ξ is an |I0|×1 vector each nonzero coordinate of which ≥ vgs in magnitude, and ‖ξ‖0 is

the L0-norm of ξ. The resultant estimator is the final estimate of Graphlet Screening which

we denote by β̂gs = β̂gs(Y ; δ,Q, ugs, vgs, X, p, n).

The computational cost of the GC-step hinges on maximal size of the components of

U∗p . By the SAS property of the GS-step, for a broad class of design matrices, with the

tuning parameters chosen properly, there is a fixed integer `0 such that with overwhelming

probability, |I0| ≤ `0 for any I0 C U∗p . As a result, the computational cost of the GC-step is

no greater than |U∗p | × 2`0 , which is moderate.

For moderately large p, we also propose an iterative Graphlet Screening in the spirit of

the refined UPS[31], except with a different initial estimate. See Section 2.4 for details.

Regarding to the performance, it turns out that under mild conditions, Graphlet Screen-

ing is optimal in terms of the Hamming distance given the tuning parameters are well-set

[32] . The most important regularity condition is the sparsity of Ω, which is presented as

the following,

M∗
p(γ, c0, g, A) =

{
Ω ∈Mp(c0, g) :

p∑
j=1

|Ω(i, j)|γ ≤ A, 1 ≤ i ≤ p
}
. (2.19)

where γ ∈ (0, 1) and A > 0.
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GS-step: List G∗-connected submodels I0,k with |I0,1| ≤ |I0,2| ≤ · · · ≤ m

Initialization: U∗p = ∅ and k = 1

Test H0 : I0,k ∩ U∗p against H1 : I0,k with χ2 test (2.17)

Update: U∗p ← U∗p ∪ I0,k if H0 rejected, k ← k + 1

GC-step: As a subgraph of G∗, U∗p decomposes into many components I0

Use the L0-penalized test (2.18) to select a subset Î0 of each I0

Return the union of Î0 as the selected model

Table 2.1: Graphet Screening Algorithm

2.3 A BLOCKWISE EXAMPLE: NON-OPTIMAILITY OF SUBSET

SELECTION AND THE LASSO AND THE OPTIMALITY OF

GRAPHLET SCREENING

Subset selection (also called the L0-penalization method) is a well-known method for variable

selection, which selects variables by minimizing the following functional:

1

2
‖Y −Xβ‖2 +

1

2
(λss)

2‖β‖0, (2.20)

where ‖β‖q denotes the Lq-norm, q ≥ 0, and λss > 0 is a tuning parameter. The AIC,

BIC, and RIC are methods of this type [1, 42, 19]. Subset selection is believed to have good

“theoretic property”, but the main drawback of this method is that it is computationally

NP hard. To overcome the computational challenge, many relaxation methods are proposed,

including but are not limited to the lasso [9, 43], SCAD [17], MC+ [50], and Dantzig selector

[8]. Take the lasso for example. The method selects variables by minimizing the following

functional:

1

2
‖Y −Xβ‖2 + λlasso‖β‖1, (2.21)
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where the L0-penalization is replaced by the L1-penalization, so the functional is convex and

the optimization problem is solvable in polynomial time under proper conditions.

Somewhat surprisingly, subset selection is generally rate non-optimal in terms of selection

errors. This sub-optimality of subset selection is due to its lack of flexibility in adapting to the

“local” graphic structure of the design variables. Similarly, other global relaxation methods

are sub-optimal as well, as the subset selection is the “idol” these methods try to mimic. To

save space, we only discuss subset selection and the lasso, but a similar conclusion can be

drawn for SCAD, MC+, and Dantzig selector.

For mathematical simplicity, we illustrate the point with an idealized regression model

where the Gram matrix G = X ′X is diagonal block-wise and has the following form

G(i, j) = 1{i = j}+ h0 · 1{|j − i| = 1, max(i, j) is even}, |h0| < 1, 1 ≤ i, j ≤ p. (2.22)

Using an idealized model is mostly for technical convenience, but the non-optimality of subset

selection or the lasso holds much more broadly than what is considered here. Since our goal

is to show such methods are non-optimal, using a simple model is sufficient: if a procedure

is non-optimal in an idealized case, we can not expect it to be optimal in a more general

context.

At the same time, we continue to model β with the Asymptotic Rare and Weak model

ARW(ϑ, r, a, µ), but where we relax the assumption of µ ∈ Θ∗p(τp, a) to that of µ ∈ Θp(τp) so

that the strength of each signal ≥ τp (but there is no upper bound on the strength). Consider

a variable selection procedure β̂?, where ? = gs, ss, lasso, representing Graphlet Screening,

subset selection, and the lasso (where the tuning parameters for each method are ideally set;

for the worst-case risk considered below, the ideal tuning parameters depend on (ϑ, r, p, h0)

but do not depend on µ). For some exponents ρ? = ρ?(ϑ, r, h0) that does not depend on p,

it is seen that for large p, the worst-case Hamming selection error of β̂? has the form of

sup
{µ∈Θp(τp)}

Hp(β̂
?; εp, µ,G) = Lpp

1−ρ?(ϑ,r,h0).

Here, Hp is slightly different from that in Section 2.1.4 since the settings are slightly different.

We now study ρ?(ϑ, r, h0). Towards this end, we first introduce

ρ
(3)
lasso(ϑ, r, h0) =

{
(2|h0|)−1[(1− h2

0)
√
r −

√
(1− h2

0)(1− |h0|)2r − 4|h0|(1− |h0|)ϑ]
}2
,
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and

ρ
(4)
lasso(ϑ, r, h0) = ϑ+

(1− |h0|)3(1 + |h0|)
16h2

0

[
(1 + |h0|)

√
r −

√
(1− |h0|)2r − 4|h0|ϑ/(1− h2

0)
]2
.

We then let

ρ(1)
ss (ϑ, r, h0) =

 2ϑ, r/ϑ ≤ 2/(1− h2
0)

[2ϑ+ (1− h2
0)r]2/[4(1− h2

0)r], r/ϑ > 2/(1− h2
0)
,

ρ(2)
ss (ϑ, r, h0) =

 2ϑ, r/ϑ ≤ 2/(1− |h0|)

2[
√

2(1− |h0|)r −
√

(1− |h0|)r − ϑ]2, r/ϑ > 2/(1− |h0|)
,

ρ
(1)
lasso(ϑ, r, h0) =

 2ϑ, r/ϑ ≤ 2/(1− |h0|)2

ρ
(3)
lasso(ϑ, r, h0), r/ϑ > 2/(1− |h0|)2

,

and

ρ
(2)
lasso(ϑ, r, h0) =

 2ϑ, r/ϑ ≤ (1 + |h0|)/(1− |h0|)3

ρ
(4)
lasso(ϑ, r, h0), r/ϑ > (1 + |h0|)/(1− |h0|)3

.

The following theorem is proved in Section A.1.2.

Theorem 2.3.1. Fix ϑ ∈ (0, 1) and r > 0 such that r > ϑ. If G satisfies (2.22), then

ρgs(ϑ, r, h0) = min
{(ϑ+ r)2

4r
, ϑ+

(1− |h0|)
2

r, 2ϑ+
{[(1− h2

0)r − ϑ]+}2

4(1− h2
0)r

}
, (2.23)

ρss(ϑ, r, h0) = min
{(ϑ+ r)2

4r
, ϑ+

(1− |h0|)
2

r, ρ(1)
ss (ϑ, r, h0), ρ(2)

ss (ϑ, r, h0)
}
, (2.24)

and

ρlasso(ϑ, r, h0) = min{(ϑ+ r)2

4r
, ϑ+

(1− |h0|)r
2(1 +

√
1− h2

0)
, ρ

(1)
lasso(ϑ, r, h0), ρ

(2)
lasso(ϑ, r, h0)

}
. (2.25)
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ϑ/r/h0 .1/11/.8 .3/9/.8 .5/4/.8 .1/4/.4 .3/4/.4 .5/4/.4 .1/3/.2 .3/3/.2

? = gs 1.1406 1.2000 0.9000 0.9907 1.1556 1.2656 0.8008 0.9075

? = ss 0.8409 0.9047 0.9000 0.9093 1.1003 1.2655 0.8007 0.9075

? = lasso 0.2000 0.6000 0.7500 0.4342 0.7121 1.0218 0.6021 0.8919

Table 2.2: The exponents ρ?(ϑ, r, h0) in Theorem 2.3.1, where ? = gs, ss, lasso.

It can be shown that ρgs(ϑ, r, h0) ≥ ρss(ϑ, r, h0) ≥ ρlasso(ϑ, r, h0), where depending on

the choices of (ϑ, r, h0), we may have equality or strict inequality (note that a larger expo-

nent means a better error rate). This fits well with our expectation, where as far as the

convergence rate is concerned, Graphlet Screening is optimal for all (ϑ, r, h0), so it beats

the subset selection, which in turn beats the lasso. Table 2.2 summarizes the exponents for

some representative (ϑ, r, h0). It is seen that differences between these exponents become

increasingly prominent when h0 increase and ϑ decrease.

Similar to that in Section 2.1.5, each of these methods has a phase diagram, where the

phase space partitions into three regions: Region of Exact Recovery, Region of Almost Full

Recovery, and Region of No Recovery. Interestingly, the separating boundary for the last

two regions are the same for three methods, which is the line r = ϑ. The boundary that

separates the first two regions, however, vary significantly for different methods. For any

h0 ∈ (−1, 1) and ? = gs, ss, lasso, the equation for this boundary can be obtained by setting

ρ?(ϑ, r, h0) = 1 (the calculations are elementary so we omit them). Note that the lower the

boundary is, the better the method is, and that the boundary corresponding to the lasso is

discontinuous at ϑ = 1/2. Compare the phase diagrams in Figure 2.1.

Subset selection and the lasso are rate non-optimal for they are so-called one-step or

non-adaptive methods [31], which use only one tuning parameter, and which do not adapt

to the local graphic structure. The non-optimality can be best illustrated with the diagonal

block-wise model presented here, where each block is a 2 × 2 matrix. Correspondingly, we

can partition the vector β into many size 2 blocks, each of which is of the following three
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types (i) those have no signal, (ii) those have exactly one signal, and (iii) those have two

signals. Take the subset selection for example. To best separate (i) from (ii), we need to

set the tuning parameter ideally. But such a tuning parameter may not be the “best” for

separating (i) from (iii). This explains the non-optimality of subset selection.

Seemingly, more complicated penalization methods that use multiple tuning parameters

may have better performance than the subset selection and the lasso. However, it remains

open how to design such extensions to achieve the optimal rate for general cases. To save

space, we leave the study along this line to the future.
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Figure 2.1: Phase diagrams for Graphlet Screening (top left), subset selection (top right),

and the lasso (bottom; zoom-in on the left and zoom-out on the right), where h0 = 0.5.
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2.4 SIMULATIONS

We conducted a small-scale simulation study to investigate the numerical performance of

Graphlet Screening and compare it with the lasso. The subset selection is not included for

comparison since it is computationally NP hard. We consider experiments for both random

design and fixed design, where as before, the parameters (εp, τp) are tied to (ϑ, r) by εp = p−ϑ

and τp =
√

2r log(p) (we assume σ = 1 for simplicity in this section). The experiments with

random design contain the following steps.

1. Fix (p, ϑ, r, µ,Ω) such that µ ∈ Θp(τp). Generate a vector b = (b1, b2, . . . , bp)
′ such that

bi
iid∼ Bernoulli(εp), and set β = b ◦ µ.

2. Fix κ and let n = np = pκ. Generate an n× p matrix with iid rows from N(0, (1/n)Ω).

3. Generate Y ∼ N(Xβ, Ip), and apply Graphlet Screening and the lasso.

4. Repeat 1-3 independently, and record the average Hamming distances.

The steps for fixed design experiments are similar, except for that np = p and X = Ω1/2.

Graphlet Screening uses tuning parameters (m,Q, ugs, vgs). We set m = 3 for our exper-

iments, which is usually large enough due to signal sparsity. The choice of Q is not critical,

as long as the corresponding parameter q satisfies (1.26 [32]). Numerical studies below (e.g.

Experiment 4a) support this point. In principle, the optimal choices of (Q, ugs, vgs) depend

on the unknown parameters (εp, τp), and how to estimate them in general settings is a lasting

open problem (even for linear models with orthogonal designs). Fortunately, our studies (e.g.

Experiment 4b-4d) show that mis-specifying parameters (εp, τp) by a reasonable amount does

not significantly affect the performance of the procedure. For this reason, in most experi-

ments below, we set the tuning parameters in a way by assuming (εp, τp) as known. To be

fair in comparison, we also set the tuning parameters of the lasso ideally assuming (εp, τp)

as known. We use glmnet package [22] to perform lasso.

The simulations contain 4 different experiments which we now describe separately.

Experiment 1. In this experiment, we investigate how different choices of signal vector β

affect the comparisons of two methods. We use a random design model, and Ω is a symmetric

tri-diagonal correlation matrix where the vector on each sub-diagonal consists of blocks of
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(.4, .4,−.4)′. Fix (p, κ) = (0.5 × 104, 0.975) (note n = pκ ≈ 4, 000). We let εp = p−ϑ with

ϑ ∈ {0.35, 0.5} and let τp ∈ {6, 8, 10}. For each combination of (εp, τp), we consider two

choices of µ. For the first choice, we let µ be the vector where all coordinates equal to

τp (note β is still sparse). For the second one, we let µ be the vector where the signs of

µi = ±1 with equal probabilities, and |µi|
iid∼ 0.8ντp + 0.2h, where ντp is the point mass at

τp and h(x) is the density of τp(1 + V/6) with V ∼ χ2
1. For Graphlet Screening, the tuning

parameters (m,ugs, vgs) are set as (3,
√

2 log(1/εp), τp), and the tuning parameter q in Q

are set as maximal possible value satisfying the optimality conditions of GS. The average

Hamming errors for both procedures across 40 repetitions are tabulated in Table 2.3.

τp 6 8 10

Signal Strength Equal Unequal Equal Unequal Equal Unequal

ϑ = 0.35
Graphic Screening 0.0810 0.0825 0.0018 0.0034 0 0.0003

lasso 0.2424 0.2535 0.1445 0.1556 0.0941 0.1109

ϑ = 0.5
Graphic Screening 0.0315 0.0297 0.0007 0.0007 0 0

lasso 0.1107 0.1130 0.0320 0.0254 0.0064 0.0115

Table 2.3: Ratios between the average Hamming errors and pεp (Experiment 1), where

“Equal” and “Unequal” stand for the first and the second choices of µ, respectively.

Experiment 2. In this experiment, we generate β the same way as in the second choice of

Experiment 1, and investigate how different choices of design matrices affect the performance

of the two methods. Setting (p, ϑ, κ) = (0.5× 104, 0.35, 0.975) and τp ∈ {6, 7, 8, 9, 10, 11, 12},

we use Gaussian random design model for the study. For each method, the tuning parameters

are set in the same way as in Experiment 1. The experiment contains 3 sub-experiments

2a-2c. For each sub-experiment, the average Hamming errors of 40 repetitions are reported

in Figure 2.2.

In Experiment 2a, we set Ω as the symmetric diagonal block-wise matrix, where each

block is a 2 × 2 matrix, with 1 on the diagonals, and ±0.5 on the off-diagonals (the signs

alternate across different blocks).
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In Experiment 2b, we set Ω as a symmetric penta-diagonal correlation matrix, where

the main diagonal are ones, the first sub-diagonal consists of blocks of (.4, .4,−.4)′, and the

second sub-diagonal consists of blocks of (.05,−.05)′.

In Experiment 2c, we generate Ω as follows. First, we generate Ω using the function

sprandsym(p,K/p) in matlab. We then set the diagonals of Ω to be zero, and remove some

of entries so that Ω is K-sparse for a pre-specified K. We then normalize each non-zero

entry by the sum of the absolute values in that row or that column, whichever is larger,

and multiply each entry by a pre-specified positive constant A. Last, we set the diagonal

elements to be 1. We choose K = 3 and A = 0.7, draw 5 different Ω with this method, and

for each of them we repeat the simulation 10 times independently.

The results suggest that Graphlet Screening is consistently better than the lasso.
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Figure 2.2: x-axis: τp. y-axis: ratios between the average Hamming errors and pεp (from left

to right: Experiment 2a, 2b, and 2c).

Experiment 3. In this experiment, we investigate what are the minimum signal strength

levels τp required by Graphlet Screening and the lasso to yield exact recovery, respectively.

Fixing p = 104, we let εp = p−ϑ for ϑ = 0.25, 0.45, 0.65, and let τp ∈ {5, 6, 7, 8, 9, 10, 11, 12}.

We use a fixed design model where Ω is the block-wise matrix as in Experiment 2a. For

each pair of (εp, τp), we generate β as in the second choice of Experiment 1. The tuning

parameters for Graphlet Screening and the lasso are set in the same way as in Experiment

1. The average Hamming errors across 20 repetitions are tabulated in Table.2.4.
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Suppose we say a method yields ‘exact recovery’ if the average Hamming error ≤ 3.

Then the minimum τp for Graphlet Screening to yield exact recovery is τp ≈ 9, but that for

the lasso is much larger (≥ 12). For larger ϑ, the differences are less prominent, but the

minimum τp for Graphlet Screening to yield exact recovery is consistently smaller than that

of the lasso.

τp 5 6 7 8 9 10 11 12

ϑ = 0.25
Graphic Screening 58 21.4 9.2 3.5 3 1.8 1.0 0.6

lasso 75.2 34.4 21.6 15 14.3 12.6 10.1 8.9

ϑ = 0.45
Graphic Screening 11 3.7 0.7 0.2 0.1 0 0 0

lasso 13.9 5.2 1.3 0.6 0.1 0.4 0.2 0.2

ϑ = 0.65
Graphic Screening 3.4 0.8 0.1 0.1 0 0 0 0

lasso 3.7 1 0.3 0.1 0 0 0 0

Table 2.4: Comparison of average Hamming errors (Experiment 3).

Experiment 4. In this experiment, we investigate how sensitive Graphlet Screening is

with respect to the tuning parameters. The experiment contains 4 sub-experiments, 4a-4d.

In Experiment 4a, we investigate how sensitive the procedure is with respect to the tuning

parameter q in Q (recall that the main results hold as long as q fall into the range given

in (1.26 [32]), where we assume (εp, τp) are known. In Experiment 4b-4d, we mis-specify

(εp, τp) by a reasonably small amount, and investigate how the mis-specification affect the

performance of the procedure. For the whole experiment, we choose β the same as in

the second choice of Experiment 1, and Ω the same as in Experiment 2b. We use a fixed

design model in Experiment 4a-4c, and a random design model in Experiment 4d. For each

sub-experiment, the results are based on 40 independent repetitions. We now describe the

sub-experiments with details.

In Experiment 4a, we choose ϑ ∈ {0.35, 0.6} and r ∈ {1.5, 3}. In Graphlet Screening, let

qmax = qmax(D̂, F̂ ) be the maximum value of q satisfying (1.26 [32]). For each combination

of (ϑ, r) and (D̂, F̂ ), we choose q(D̂, F̂ ) = qmax(D̂, F̂ ) × {0.7, 0.8, 0.9, 1, 1.1, 1.2} for our
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experiment. The results are tabulated in Table 2.5, which suggest that different choices of q

have little influence over the variable selection errors. We must note that the larger we set

q(D̂, F̂ ), the faster the algorithm.

q(F̂ , D̂)/qmax(F̂ , D̂) 0.7 0.8 0.9 1 1.1 1.2

(ϑ, r) = (0.35, 1.5) 0.0782 0.0707 0.0661 0.0675 0.0684 0.0702

(ϑ, r) = (0.35, 3) 0.0066 0.0049 0.0036 0.0034 0.0033 0.0032

(ϑ, r) = (0.6, 1.5) 0.1417 0.1417 0.1417 0.1417 0.1417 0.1417

(ϑ, r) = (0.6, 3) 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089

Table 2.5: Ratios between the average Hamming errors of Graphlet Screening and pεp (Ex-

periment 4a).

In Experiment 4b, we use the same settings as in Experiment 4a, but we assume ϑ (and so

εp) is unknown (the parameter r is assumed as known, however), and let ϑ∗ is the misspecified

value of ϑ. We take ϑ∗ ∈ ϑ× {0.85, 0.925, 1, 1.075, 1.15, 1.225} for the experiment.

In Experiment 4c, we use the same settings as in Experiment 4a, but we assume r (and so

τp) is unknown (the parameter ϑ is assumed as known, however), and let r∗ is the misspecified

value of r. We take r∗ = r × {0.8, 0.9, 1, 1.1, 1.2, 1.3} for the experiment.

In Experiment 4b-4c, we run Graphlet Screening with tuning parameters set as in Exper-

iment 1, except ϑ or r are replaced by the misspecified counterparts ϑ∗ and r∗, respectively.

The results are reported in Table 2.6, which suggest that the misspecifications have little

effect as long as r∗/r and ϑ∗/ϑ are reasonably close to 1.

In Experiment 4d, we re-examine the misspecification issue with a random design. We

use the same settings as in Experiment 4b and Experiment 4c, except for (a) while we use

the same Ω as in Experiment 4b, the design matrix X are generated according to the random

design model as in Experiment 2b, and (b) we only investigate for the case of r = 2 and

ϑ ∈ {0.35, 0.6}. The results are summarized in Table 2.7, which is consistent with the results

in 4b-4c.
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ϑ∗/ϑ 0.85 0.925 1 1.075 1.15 1.225

(ϑ, r) = (0.35, 1.5) 0.0799 0.0753 0.0711 0.0710 0.0715 0.0746

(ϑ, r) = (0.35, 3) 0.0026 0.0023 0.0029 0.0030 0.0031 0.0028

(ϑ, r) = (0.6, 1.5) 0.1468 0.1313 0.1272 0.1280 0.1247 0.1296

(ϑ, r) = (0.6, 3) 0.0122 0.0122 0.0139 0.0139 0.0130 0.0147

r∗/r 0.8 0.9 1 1.1 1.2 1.3

(ϑ, r) = (0.35, 1.5) 0.0843 0.0731 0.0683 0.0645 0.0656 0.0687

(ϑ, r) = (0.35, 3) 0.0062 0.0039 0.0029 0.0030 0.0041 0.0054

(ϑ, r) = (0.6, 1.5) 0.1542 0.1365 0.1277 0.1237 0.1229 0.1261

(ϑ, r) = (0.6, 3) 0.0102 0.0076 0.0085 0.0059 0.0051 0.0076

Table 2.6: Ratios between of the average Hamming error of the Graphlet Screening and pεp

(Experiment 4b (top) and Experiment 4c (bottom)).

2.5 DISCUSSION AND FUTURE WORK

In this chapter, we focus on the regime where the Gram matrix is sparse. A further exten-

sion of the GS methodology would be the cases where the Gram matrix is not sparse, but

sparsifiable. One such case is when there are a few hot hubs in GOSD. Once we find these

hubs, the conditional covariance structure of the other variables may be sparse or blockwise.

Another interesting direction of future research is the extension of the GS methodology to

more general models such as logistic regression.
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ϑ∗/ϑ 0.85 0.925 1 1.075 1.15 1.225

(ϑ, r) = (0.35, 2) 0.1730 0.1367 0.1145 0.1118 0.0880 0.0983

(ϑ, r) = (0.6, 2) 0.0583 0.0591 0.0477 0.0487 0.0446 0.0431

r∗/r 0.8 0.9 1 1.1 1.2 1.3

(ϑ, r) = (0.35, 2) 0.1881 0.1192 0.1275 0.1211 0.1474 0.1920

(ϑ, r) = (0.6, 2) 0.0813 0.0515 0.0536 0.0397 0.0442 0.0510

Table 2.7: Ratios between the average Hamming errors of Graphlet Screening and pεp (Ex-

periment 4d).
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3.0 EXPLOIT THE DEPENDENCY AMONG THE SIGNALS

3.1 INTRODUCTION

Consider a Stein’s normal means model

Y = β + z, (3.1)

where Y , β and z are p× 1 vectors, z ∼ N(0, Ip). Here β = (β1, β2, ..., βp)
′, if βi 6= 0, we call

it a signal, otherwise, a noise. The mean vector β is unknown, but presumably sparse, which

means most of the coordinates of β are zeroes. We define a length p vector b = (b1, . . . , bp)
′

as bi = 1{βi 6= 0} for i = 1, . . . , p. Then b is the indicator of the signals. The main goal of

this paper is to estimate b, or equivalently, to find all the non-zero coordinates of β.

Though (3.1) is very simple, it has profound implications in many statistical problems.

• Linear regression. Consider Y = Xβ + z, where z ∼ N(0, In), X is the n × p design

matrix, and the Gram matrix X ′X ≈ Ip. Let Ỹ = X ′Y , then approximately we have

Ỹ = β + z̃, where z̃ ∼ N(0, Ip).

• Classification. Consider a two class classification problem where the training set has

n subjects and p variables and X = [X1, . . . , Xp] is the n × p feature matrix. We are

interested in building an effective classifier with a small portion of the variables. We can

define an length p vector Y where for i = 1, . . . , p, Yi is the standardized difference of

the sample means of Xi between the two classes. When both p and n are large (possibly

p� n), approximately Y satisfies (3.1). Intuitively, if βi 6= 0, then Xi should be included

to the classifier. If βi = 0, Xi may not be necessary for classification.
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3.1.1 Structured sparsity in the paradigm of rare and weak signals

We focus on the regime where the signals are both rare and weak. The rarity (or sparsity)

is a well-accepted concept. But signal weakness is a much neglected notion until recently.

Actually, similar to the sparsity, signal weakness is also a natural phenomenon that usually

arise from the issue of p � n. Take the above high dimensional classification problem for

example, when p � n, some of the standardized two-sample means could be very noisy. In

our model, signal weakness implies that the magnitudes of the non-zeros of β are individually

small or moderately large, and barely separable with the noise.

Most of the previous work on the rare and weak signals focus on the completely unstruc-

tured case and do not take in interaction among the features into account. Recently, in the

setting linear regression and classification, some works [21, 31, 32, 35] start to consider the

correlation structure of the features. While these works are successful in their own regimes,

what is still neglected is the dependency structure among the signals themselves. In this

paper, we consider the variable selection problem when the signals depend on each other

significantly.

3.1.2 Ising model: modeling the signal dependency

Let G be an undirected graph of dependency with p nodes, and each node is conditional

independent to others given its neighbors. In our model (3.1), the signals depend on each

other in a sense that if we know that βi 6= 0, then βj1 , . . . , βni are more likely to be non-zeros,

where {j1, . . . , jni} are the neighbors of node i in graph G. We also assume the dependency

structure is sparse in a sense that the graph G is sparse or equivalently, for each node i,

the size of its neighborhood ni is very small. In many application areas, the dependency

among the sparse signals naturally exists, and the dependency structure is sparse and known,

though the dependency strength may be unknown.

• Image analysis: In image analysis, it is of interest to recover the objects in a “dirty

picture” [3]. Consider a toy example where there are only two colors, black and white.

Assume that most area of the picture is white, then the signals (black pixels) are sparse.

In this problem, if we know one pixel is black, the pixels near it are more likely to be
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black. The simplest graphical presentation of the above observation would be a 2-d

lattice, where the pixels are treated as nodes in the graph, and for each pixel, only the

four pixels in its direct neighborhood are connected with it in the lattice graph. This

graph is sparse.

• Network-based analysis in biology: In biology, genes and proteins interact in a compli-

cated way. In the past two decades, various network databases have been built to model

these interaction patterns, e.g genetic regulatory network, protein-protein interaction

network and biological pathways. In most of the cases, each gene or protein only interact

with a small portion of other genes or proteins, hence the network in biology is usual-

ly sparse. In data analysis problems such as finding differentially expressed genes(DE)

between the tumor patients and the general population, it is believed that only a small

portion of the human genes are DE, hence DE is sparse. In this problem, it is intuitive

to believe that if we know one gene is related to cancer, then those genes that interact

with it are more likely to be also related to cancer. Thus, the existing biological network

information may be very useful in such problems, and can be integrated into the analysis

as the known “data about data” [34, 48].

An immediate question would be how to incorporate such prior information on signal de-

pendency into data analysis.

We tackle this problem from a generative model perspective. Recall that b is the indicator

of the locations of the signals, and as before, our primary goal is to estimate b. We model

the dependency among the signals by modeling b as a sample from an Ising model. So that

Y satisfies a hidden Ising model.

The Ising model is originally a mathematical model of ferromagnetism in statistical

mechanics [29]. Nowadays, we use Ising model to denote a wide class of Binary Markov

Random Field with a distribution

P (b = `) =
1

Zp(η,Ω)
exp

(
−η`′Ω`

)
, (3.2)

where Ω is the weighted adjacency matrix of the encoded undirected graph G, and its diagonal

elements are 1′s. Zp(η,Ω) is the normalizing constant. We denote it as b ∼ Ising(η,Ω). We
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remark that when Ω = Ip,

bi
iid∼ Bernoulli(

1

1 + eη
); (3.3)

Hence the Ising model can be viewed as a multivariate bernoulli distribution that takes the

pairwise interactions into account.

Roughly speaking, in (3.2), Ω controls the dependency strength among the signals and

for given Ω, the parameter η controls the number of signals. In our setting, Ω is sparse and

the locations of the non-zeros are known, but the values of the elements of Ω are unknown.

The signals generated by an Ising model live in disjoint signal clusters which we will

formally define In Section 3.2.1. In Section 3.2.1, we show that under mild constraints, (3.2)

is an appropriate generative model for the sparse signals with sparse dependency structure.

It generates sparse signals living in short signal clusters in graph G that are isolated to

each other, and the maximal cluster length has a constant upper bound except a negligible

probability. We refer to such models as sparse Ising model.

3.1.3 Objective of the chapter

We are interested in the optimal variable selection for (3.1) where the signal is weak and b

is an interdependent signal generated by a sparse Ising model. The objective of the paper is

three-fold.

• To study the Ising model, and specify a class of sparse Ising model that appropriately

models the sparse interdependent signals.

• To develop a variable selection procedure that is accurate and computationally affordable,

and investigate its application in various statistical problems.

• To study the variable selection problem with interdependent signals and the rate of

minimax Hamming distance, to characterize the difficulty level of the variable selection

problem and the performance of the procedures by Hamming distance, and to show the

optimality of the above procedure in the rate of convergence in Hamming distance and

the phase diagram.

In the regime of the rare and weak signal, exact recovery of b is usually impossible.

Instead of probability of exact support recovery or “oracle property”, Hamming distance is a
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more appropriate measure for the performances of variable selection procedures. Hamming

distance is the expected number of errors in estimating the support b. Two related notions

are Hamming ratio and the phase diagram. The phase diagram is a graphical criterion

for measuring the performance of variable selection procedures, which is appropriate in our

rare and weak signal paradigm. Hamming ratio is the ratio of the Hamming distance and

the expected number of signals, which we use as the measurement of the variable selection

procedures in our numeric study.

3.1.4 Non-optimality of hard thresholding

When b is a sample from a bernoulli model, the signal is unstructured. In this case, as a

corollary of the results in [31], the element-wise hard thresholding can separate the signal

from the noise optimally in the Hamming distance, given that the uniform threshold is

optimally set. The the optimal rate of the hard thresholding is the same as the rate of

separating a signal singleton from pure noise. Thus, the success of hard thresholding in the

unstructured case can be attributed to the fact that the signals are independent to each other.

Generally speaking, hard thresholding could be optimal if most signals live as singletons.

When the signals are generated from a sparse Ising model, there are two different cases.

In the first case, the signals are moderately sparse and the dependency strength is strong so

that most signals live in short signal clusters with more than one nodes, e.g. pairs, triplets.

Thus hard thresholding is not optimal since it ignores the dependency structure. In the

second case, the signals are so sparse or the dependency strength is so weak such that most

signals are still singletons. Thus hard thresholding may be still optimal in this case.

However, when the signal dependency is very weak, it may not be necessary to incorporate

such information into analysis at all, no matter what signal model we intend to use. Only

when the signal dependency is strong, a model for interdependent signals such as our sparse

Ising model becomes important or even crucial in data analysis. Therefore, as long as the

signal dependency is a major concern in data analysis, hard thresholding is not the optimal

choice for variable selection.
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3.1.5 Intractability and decomposability of the likelihood of the sparse Ising

model

Viewing b as hidden states, maximizing the conditional probability P (b|Y ) is the “funda-

mentally correct” way to estimate b. However, even when the parameters of the Ising model

are known, maximizing this probability may involve comparing all b ∈ {0, 1}p, which is

intractable in computation.

Though this problem is seemingly intractable, we can still maximize P (b|Y ) approxi-

mately. Recall that the sparse Ising model generates sparse signal living in short clusters

that are isolated to each other. By the definition of the signals clusters, there is no other

signal in the neighborhood of each cluster. Thus if we know the locations of these clusters,

these clusters are independent to each other. Then the signal graph of the sparse Ising model

is decomposable, and so is the likelihood of the sparse Ising model.

To see this, let Si, i = 1, . . . ,M be a collection of the isolated connected subgraphs of G

that contains all the signal clusters, and for any subgraph B, let N(B) be the neighborhood

of B in the graph G. There is no signal outside ∪Mi=1Si, and we have

P (b|Y ) ∝ P (bj = 0 for j /∈ ∪Mi=1Si|Y )
M∏
i=1

P (bSi |YSi , bj = 0 for j ∈ N(Si)) (3.4)

Then we can maximize P (b|Y ) by maximizing P (bSi |YSi , bj = 0 for j ∈ N(Si)) separately

for i = 1, . . . ,M .

Example 1. We illustrate the decomposability with a toy example. In model (3.1)-(3.2),

let p = 4, and Ω is a diagonal matrix whose non-zero off-diagonal elements are −1/2. Then,

P (b = `) ∝ exp

[
−η(

4∑
i=1

`i −
3∑
i=1

`i`i+1)

]
.

If we know that b2 = 0, we have

P (b = `|b2 = 0) ∝ exp (−η`1) · exp [−η(`3 + `4 − `3`4)] .

On the other hand, we know

P (b = `|Y ) ∝ P (b = `)
4∏
i=1

p(Yi|bi)
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Thus

P (b = `|b2 = 0, Y ) ∝ p(Y2|b2 = 0) · [p(Y1|b1 = `1) exp (−η`1)]

· {p(Y3|b3 = `3)p(Y4|b4 = `4) · exp [−η(`3 + `4 − `3`4)]} .

Simplifying the above yields

P (b = `|b2 = 0, Y ) ∝ P (b1 = `1|b2 = 0, Y1) · P (b3 = `3, b4 = `4|b2 = 0, Y3, Y4).

The decomposability as illustrated in the above example naturally introduces a Screen

and Clean procedure for variable selection which we refer to as Graphical Model Assisted

Selection(GMAS). GMAS approximately maximizes P (b|Y ) with moderate computational

cost, and the result is still optimal in a broad context. In the following, we provide a

non-technical description of the procedure and a discussion on our key ideas and major

innovations.

3.1.6 Our proposal: Graphical Model Assisted Selection (GMAS), a screen and

clean approach

Graphical Model Assisted Selection (GMAS) is a Screen and Clean procedure that contains

a screening stage and a cleaning stage. In the screening stage, the signal clusters are roughly

located; and in the cleaning stage, the isolated pieces of the survivors are investigated sepa-

rately in more details. The key idea of GMAS is to take advantage of the decomposability

of the likelihood of the sparse Ising model. The problem of maximizing the intractable high

dimensional data likelihood can be solved by only considering a collection low dimensional

tractable likelihoods separately. Because of the this, GMAS enjoys a two-fold advantage:

theoretical optimality and modest computational complexity. In the following, we provide

a non-technical description of the procedure and a discussion on our key ideas and major

innovations.

We first consider the screening stage. Recall that the sparse Ising model generates sparse

signals living in isolated short signal clusters. The goal of the screening stage of GMAS is

to roughly locate these clusters. It needs to be done in a way that most of the signals are

34



retained while the majority of the noise is removed. Our strategy is m-phase screening. Let

U be the set of retained nodes after screening, and initially we have U = ∅. The m-phase

screening works as follows.

• In Phase 1, we test whether each node can be a signal individually. For j = 1, . . . , p, we

perform the test

H0 : βj = 0 against H1 : βj 6= 0.

We update U by adding node j if H0j is rejected.

• In Phase 2 we test whether each pair of nodes can be a signal pair. For each edge (i, j)

in graph G, if {i, j} ⊂ U even before the test, no action will be taken. If none of {i, j} is

in U , we perform the test

H0 : βi = βj = 0 against H1 : βi 6= 0, βj 6= 0.

If only one of (i, j) is in U , without losing generality, let i ∈ U , we perform the test

H0 : βj = 0 against H1 : βj 6= 0.

In either case, if H0 is rejected, we update U by adding {i, j}.

• In general, in Phase k, 1 ≤ k ≤ m, let B be a connected subgraph of G with k nodes,

and we want to test whether all nodes in B are signals or there is no new signals in B

other than those that are already in U before the test. In detail, let E = B ∩ U and

D = B \ E. If D 6= ∅, we perform the test

H0 : βk 6= 0 for k ∈ E, against H1 : βk 6= 0 for k ∈ B.

For each test, we only use the conditional distribution of (bB, YB) given that there is no

other signal in the neighborhood of B in graph G. Then we use the likelihood ratio test

of this conditional likelihood as the test statistic. For each likelihood ratio test, we set the

rejection rule in a way that the Type II error is very low such that the expected number of

false negative in all tests is negligible (e.g only o(1)).

We now consider the cleaning step. It can be shown that the survivors after the screening

stage split into many separated small-size connected subgraphs(“islands”) in graph G, and
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each connected subgraph may contain one or more signal clusters. Since the excluded nodes

contain almost no signal, by the decomposability of the likelihood of the sparse Ising model,

we can investigate each connected subgraph separately to remove the false positives.

The success of GMAS can be attributed to the decomposability of the signal graph. In

more detail, this decomposability answers the following four questions.

How does GMAS avoid the problems caused by the intractability of the likelihood of the

sparse Ising model? In the screening stage, each test only depends on the conditional like-

lihood, L(bB|YB, bj = 0 for j ∈ N(B)). If B itself is a signal cluster, the nodes in B can be

selected except a negligible probability. In the cleaning stage there is essentially no signal in

the excluded nodes. Therefore, by (3.4), the isolated islands of the survivors can be analyzed

separately, and for an island S, only the conditional likelihood L(bS|YS, bj = 0 for j ∈ N(S))

is involved. In both stages, we only use the conditional likelihoods of a few coordinates of b,

instead of referring to the intractable likelihood.

How many phases does the screening stage of GMAS need? In the m-phase screening, we

can include all the signal clusters with no more than m signals. Hence the larger m is, the

less false negatives are made. On the other hand, a large m also bring larger computational

cost. We wish m to be as small as possible, yet still large enough to keep most signals.

Except a negligible probability, the missed signals must be in a signal cluster that is longer

than m. Let G∗i , for i = 1, . . . ,M be all the signal clusters, m need to be set such that

P (max
i

(|G∗i |) > m) = o(p−1).

m can be set as the maximal cluster size as in Theorem 3.2.1.

Why is the computational cost of GMAS moderate? The computational complexity of

GMAS contains two parts: screening stage and the cleaning stage. The computational

complexity of the screening stage depends on the number of connected subgraphs of G

screened. Now suppose that the maximal degree of G is K. A neat result in graph theory [23]

says that for any integer `, the sparse graph G at most has p(eK)` connected subgraphs with

exactly ` nodes. Since K is finite or a multi-log(p) term, and m is finite, the computational

complexity of the screening stage is moderate. It could be shown that the survivors after the

screening stage splits int isolated “islands”, and the size of each is finite. In the cleaning stage,
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we clean these “islands” separately, and at most there are p islands. Thus the computational

complexity of the cleaning stage is also moderate.

How does GMAS achieve the optimal rate of the convergence in the Hamming distance?

The Hamming distance is the expected total number of incorrect selection. We construct its

lower bound by finding the configuration of the sparse Ising model that is the worst possible

one for the greedy search. The signal graph G∗ of the worst possible configuration is still

decomposable. Hence this high-dimensional lower bound of the Hamming distance can be

matched nearly sharply by only doing the local low-dimensional analysis, as GMAS does.

3.1.7 Contents

In Section 3.2, we state our main results. Section 3 details the properties of GMAS and

concludes with the proof of Theory 3.2.4. In Section 3.4, we provides a small scale simulation

study. In Section 3.5, we illustrate the application of GMAS by two real data examples in

microarray: one is about the identification of the differentially expressed genes in the yeast

environmental stress data; and the other is about the variable selection in the human tumor

classification.

3.2 MAIN RESULTS

To recap, we consider a Stein’s normal means model

Y = β + z, z ∼ N(0, Ip). (3.5)

We model β as

β = u ◦ b

where b is the indicator vector of being a signal or noise. We model b ∼ Ising(η,Ω) and

u ∈ Θp(τp) where Θp(τp) = {u : |ui| ≥ τp, i = 1, . . . , p} and τp =
√

2r log(p).
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We are interested finding the non-zero elements of β when the signals are rare, weak and

interdependent. In Section 3.2.1, we first specify a class of Ising(η,Ω) as appropriate model

for such signals. In the rest of this paper, we study the variable selection problem for (3.5).

3.2.1 Sparse Ising model

As discussed in Section 3.1.1 and 3.1.2, we are interested in modeling the length p vectors β

that have the following four properties:

• Signal sparsity : the expected number of signals generated by this model is o(p).

• Graph sparsity : each coordinate of β only depends on a few other coordinates of β.

• Clustering effect : if a signal is found the signals attract each other and tend to live in

clusters.

• Finite cluster size: with probability 1−o(p−1), the lengths of all signal clusters are finite.

The goal of this section is thus to specify a class of Ising model that generates signals with

these properties.

Towards this end, we model b as a realization of an Ising model with the distribution

P (b = `) =
1

Zp(η,Ω)
exp

(
−η`′Ω`

)
.

Here Ω is the weighted adjacency matrix of the encoded undirected graph G, and Zp(η,Ω) is

the normalizing constant. Not all Ising models generate signals with the desired properties,

and in this section, we specify this class of Ising models by adding some regularity conditions

on (η,Ω).

In order to model the graph sparsity of the signals, we only need the sparsity of Ω which

is formally defined as follows.

Definition 3.2.1. A graph G is K-sparse if for every node in G, there are at most K edges

connecting it to other nodes. A symmetric matrix Ω is sparse if and only if its induced graph

is sparse.
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Before we proceed to the discussion on the signal sparsity, we need to introduce some

notations. For an induced subgraph B of the graph G with a weighted adjacency matrix Ω,

we use ΩS the denote the submatrix of Ω restricted to the set B, and VB =
∑

i,j∈B Ω(i, j).

In order to characterize the signal sparsity, we set

η = ϑ log(p) where ϑ > 0.

Then in the Bernoulli model (3.3), as p→∞, 1/(1 + eη) ≈ p−ϑ, so that the Bernoulli model

considered in Ji and Jin 2012, Jin and et al 2012 is a special case of the Ising model in this

paper. For `, a realization of the Ising model (3.2), let S(`) be the set of all the signals. The

probability of ` is P (b = `) = exp(−ηVS(`))/Zp(η,Ω), which depends on VS(`). Similar to

Bernoulli model, the most likely single realization of a sparse Ising model should be ` = 0,

which is a vector with all zeros. Hence we assume VS ≥ 0, for all subgraph S. The sparsity

level of the Bernoulli model is p1−ϑ, which is not necessarily true in our Ising model setting.

In fact, Theorem 3.2.1 shows that p1−ϑ is the number of the singletons and hence a lower

bound of the overall sparsity level.

In general, the sparsity level is p1−c(Ω)ϑ, where c(Ω) is a constant between (0, 1). c(Ω)

depends on the clustering effect as described in the following, and illustrated via a simple

example in Section 3.2.7. The spirit of our discussion in the following is: when the clustering

effect is very weak, c(Ω) is close to 1; when the clustering is strong, c(Ω) is small; and we

need some regularity condition on Ω so that c(Ω) is bounded away above zero and the signal

sparsity still holds.

Now we formally define the signal cluster, and start the discussion on the clustering effect

and the cluster size.

Definition 3.2.2. Let B be a connected subgraph of the graph G, and ` be a realization of

the Ising model (3.2). If `i = 1 for all i ∈ B, and `j = 0 for j ∈ N(B), we call B a signal

cluster of `.

Let ` be a random realization of the Ising model (3.2), and `? a specific realization of the

Ising model where all the signals are singletons. We assume ` and `? have the same number

of signals so that |S(`)| = |S(`)|. Clustering effect implies that the signals generated by
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the Ising model are more likely to live in clusters with more than one signal. So for most

choices of `, there is P (b = `) > P (b = `?). Hence VS(`) < VS(`?) = |S(`)|. This explains why

c(Ω) < 1 for Ω that is not an identity matrix. In a special case where |S(`)| = 2, VS(`) < 2

implies that all the non-zero off-diagonal elements of Ω are negative.

On the other hand, extremely strong clustering effect may result in long signal clusters.

When there are too many such clusters, ` may not be sparse. This is why we need a regu-

larity condition to guarantee the finite cluster length. Towards this end, for any connected

subgraph B of G, we consider constructing an upper bound of the probability that B is a

signal cluster. It is easy to see that

P (B is a signal cluster. ) ≤ exp(−ηVB)∑
S⊂B exp(−ηVS)

≤ exp(−ηVB).

Thus we only need a regularity condition that characterizes a reasonable lower bound of VB,

especially when |B| is large. In the rest of this paper, we focus on the Ising models where

Ω) satisfies the following condition.

Condition 1. Let G be a K-sparse graph, and Ω is its weighted adjacency matrix whose diag-

onal elements are 1, and the non-zero off-diagonal elements are negative. For any connected

subgraph S of the graph G,

VS ≥

 δ if |S| = t, 1 ≤ t ≤ d

(t− d)ρ+ δ if |S| = t, d ≤ t ≤ p

where 0 < ρ, δ ≤ 1, ρ log(p)
log(k)

= O(1), and d is an integer.

Here d represents the length of the most common seen signal cluster length, δ controls

the number of clusters with no more than d nodes, and ρ controls the probability of longer

clusters. We remark that Bernoulli model obviously satisfies Condition 1 for d = δ = ρ = 1.

The following notation will be used throughout this paper.

Definition 3.2.3. Lp > 0 is a multi− log(p) term which may change from occurrence from

occurrence, such that for for any fixed δ > 0, limp→∞ Lp · pδ =∞ and limp→∞ Lp · p−δ = 0

To summarize, we formally define the Sparse Ising model as follows.
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Definition 3.2.4. Sparse Ising model is an Ising model (3.2) whose parameters (η,Ω) satisfy

the following three conditions:

1. η = ϑ log(p) where ϑ > 0;

2. Ω is K-sparse where K is at most a Lp term;

3. Ω satisfies Condition 1.

As discussed above, Sparse Ising model is an appropriate generative model for the sparse

interdependent signals. Its properties are summarized in the following lemma.

Theorem 3.2.1. Let random variable b satisfies a sparse Ising model Ising(η,Ω), and sp =∑p
k=1 P (bk = 1) be the sparsity level of the Ising model. Then the following three statements

are true.

• Lower bound of the sparsity level: except a probability of o(p−1),

sp ≥ Lp · p1−ϑ.

• Upper bound of the sparsity level: except a probability of o(p−1),

sp ≤ (eK)d · p1−δϑ

Especially, when d is finite,

sp ≤ Lp · p1−δϑ.

• Maximal cluster size: let mmax be the size of the longest signal cluster in a realization

of b, then except a probability of o(p−1),

mmax ≤
2− ϑδ
ρϑ

+ d.

We remark that the lower bound of the sparsity level holds for a more general class of

Ising model, where Condition 1 is substituted by VS ≥ 0 for all connected subgraph S.
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3.2.2 GMAS: a screen and clean procedure for variable selection

Theorem 3.2.1 reveals the signals generated by a sparse Ising model live in disconnected short

clusters, which introduce GMAS, our proposed Screen and Clean procedure for variable

selection naturally. GMAS has two steps, a Screening step and a Cleaning step. In the

screening step, for each connected subgraph of G no longer than a pre-specified size m > 1,

we test whether it could be a signal cluster. We perform the tests in a way that all the

signals are retained except a negligible probability. The retained nodes live in many small

components. In Cleaning step, in order to find all the signals and remove the previously

falsely kept signals, we fit with a constrained MLE on each component survived after the

screening.

The Screening step works as follows,

• In the first step, we perform a univariate screening. A node βi is chosen as a signal if

Ti = Y 2
i > q(∅, {i})τ 2

Let Ŝ be the set of chosen nodes.

• In the second step, we perform a bivariate screening. Line up all possible connected pairs

in some order. For each edge (i, j), if both of them are already in Ŝ, we keep both. If

exactly one of them is already in Ŝ, say i ∈ Ŝ we will include j if

T{i},{i,j} = Y 2
j > q({i}, {i, j})τ 2

If none of them is in Ŝ, we include both if

T∅,{i,j} = (Y 2
j + Y 2

i ) > q(∅, {i, j}) · 2τ 2

• Next, we test all triplets, quadruples, so on and so forth. In general, consider a connected

subgraph B, let E = B
⋂
Ŝ, D = B \ E. We test

H0 : βi = 0, i ∈ D and βi 6= 0, i ∈ E against H1 : βi 6= 0, i ∈ B (3.6)

We reject H0 and update Ŝ by adding the nodes in D if

TE,B =
∑
i∈D

Y 2
i ≥ q(E,B)|D|τ 2 (3.7)

Otherwise, we keep Ŝ unchanged. Here q(E,B) ∈ (0, 1) are tuning parameters.
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• The process stops when we finish screening all size-`c connected subgraphs and the prob-

ability of having a larger connected subgraph is negligible.

The retained subgraph after screening contains most of the signals(SS property) and can be

separate into disjoint components(SAS property), and in the Cleaning step, we can conduct

more careful analysis in each of the components of the retained subgraph individually.

In the Cleaning step, assume Sc is a component in the surviving indices and |Sc| = m.

We estimate βc, the coordinates of β in set Sc, by minimizing the negative log-likelihood

L(βc) =
1

2

∑
i∈Sc

(Yi − βi)2 + ϑVSc,1 log(p), (3.8)

subject to |βi| = 0 or |βi| ≥ τ , where Sc,1 is the support of βc.

Later on, we will show GMAS procedure is optimal in variable selection.

3.2.3 Evaluating variable selection procedures: Hamming distance, Hamming

ratio and the phase diagram

In order to compare the variable selection procedures and assess their optimality, we choose

the Hamming distance as the loss function. In model (3.5), for any true model β and an

estimate β̂, the Hamming distance between the two is the number of differences in their sign

vectors:

hp(β, β̂) =

p∑
j=1

1(sgn(βj) 6= sgn(β̂j)),

and the overall Hamming distance of a variable selection procedure β̂ is

Hp(β̂;ϑ, r,Ω) = E[hp(u ◦ b, β̂) | b ∼ Ising(ϑ,Ω)].

In the worst case scenario, the overall Hamming distance of this procedure is

Hammp(β̂;ϑ, r,Ω) = sup
u∈Θp(τp)

E[hp(u ◦ b, β̂) | b ∼ Ising(ϑ,Ω)],

and its minimum across all variable procedures is

Hamm∗p(ϑ, r,Ω) = inf
β̂

sup
u∈Θp(τp)

E[hp(u ◦ b, β̂) | b ∼ Ising(ϑ,Ω)],
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which we refer to as the minimax Hamming distance.

If Hammp(β̂;ϑ, r,Ω) = Lp · Hamm∗p(ϑ, r,Ω) for a given variable selection procedure β̂,

then we say this procedure achieves the optimal rate of convergence in Hamming distance.

Minimax Hamming distance is a natural measure for the optimality in variable selection for

two reasons: (1) it directly measures the errors made in variable selection; (2) it lays its

foundation on the classic minimax theory.

Besides comparing variable selection procedures for a given set of (ϑ, r,Ω), we are also

interested in comparing the performance of a given variable selection procedure for difference

(ϑ, r,Ω). Hamming distance is not appropriate for this task because Hamming error usually

increases as the sparsity level increases. Instead, we can use the ratio of the Hamming

distance and the sparsity level, which we refer to as Hamming ratio. We remark that

Hamming ratio is also appropriate for comparing different procedures for given (ϑ, r,Ω).

In the following, we illustrate how to measure the performance of the variable selection

procedures with the Hamming distance and Hamming ratio to . Let Hammp(ϑ,Ω, r, β̂) =

Lpp
1−ρ(ϑ,Ω,r,β̂). Also, as in Section 3.2.1, let the sparsity level of a sparse Ising model be

sp = Lp · p1−ϑsp where ϑsp = c(Ω)ϑ. If ρ(ϑ,Ω, r, β̂) ≤ ϑsp, then Hammp(ϑ,Ω, r, β̂) ≥

Lp · sp and the Hamming ratio is Lp. In this case, the variable selection procedure makes

more errors than the number of signals, and it fails its task. If ρ(ϑ,Ω, r, β̂) ≥ 1, then

Hammp(ϑ,Ω, r, β̂) < Lp. In this case, the variable selection procedure only makes a few

errors, and all signals are recovered except negligible many. If ϑsp < ρ(ϑ,Ω, r, β̂) < 1, then

there is Lp < Hammp(ϑ,Ω, r, β̂) < Lp · sp. In this case, as p → ∞, the Hamming distance

goes to infinity but the Hamming ratio goes to zero. Hence the variable selection procedure

recovers most signals, though not all of them.

For given Ω and the variable selection procedure, ρ(ϑ,Ω, r, β̂) and sp only depends on

(ϑ, r) and hence only depends on (ϑsp, r). The above three cases are corresponding to

the three regions in the so-called phase diagram. We call the two-dimensional parameter

space {(ϑsp, r) : 0 < ϑsp < 1, r > 0} the phase space. There are two important curves

r = γno(ϑsp,Ω) and r = γet(ϑsp,Ω) in the phase space. The former is the solution of

ρ(ϑsp,Ω, r, β̂) = ϑsp and the later is the solution of ρ(ϑsp,Ω, r, β̂) = 1. We remark that there

is γno(ϑsp,Ω) ≤ γet(ϑsp,Ω). Hence these two curves partition the whole phase space into
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three different regions:

• Region of No Recovery. {(ϑsp, r) : 0 < r < γno(ϑsp,Ω), 0 < ϑsp < 1}. In this region,

as p → ∞, the minimax Hamming error that the variable selection procedure makes as

many errors as the the total expected number of signals. In this region, this procedure

fails.

• Region of Almost Full Recovery. {(ϑsp, r) : γno(ϑsp,Ω) < r < γet(ϑsp,Ω), 0 < ϑsp < 1}..

In this region, as p→∞, the Hamming distance goes to infinity but the Hamming ratio

goes to zero. Hence this procedure can recover most of the signals, but not all of them.

• Region of Exact Recovery. In this region, as p→∞, the Hamming distance is Lp · o(1),

and this procedure can exactly recover all signals with overwhelming probability.

We can also compare the variable selection procedures by their phase diagrams. If one

procedure yields larger exact recovery region and/or smaller no recovery region than the

other one, this procedure is considered a better procedure, at least in some regions in the

(ϑsp, r) plane.

Using Hamming distance as the loss function, we are ready to study the optimality of

variable selection. We first characterize an lower bound of Hamm∗p(ϑ, r,Ω). Then, for a

variable selection procedure β̂, we calculate an upper bound of Hammp(β̂;ϑ, r,Ω). If the

lower bound and the upper bound match up to a Lp level, there must be Hammp(β̂;ϑ, r,Ω) =

Lp ·Hamm∗p(ϑ, r,Ω) and this procedure is optimal. If they do not match, take a closer look

and find the situations where it is not optimal. In the rest of this section, we will show

that hard thresholding is not optimal in some cases, while our proposed procedure GMAS

is optimal.

3.2.4 Lower bound of the minimax Hamming distance

The goal of this section is to formulate a lower bound of the minimax Hamming distance.

This lower bound serves as a benchmark in assessing the variable selection procedures. If the

errors a procedure makes is of the same level of this lower bound, we can say this procedure

is optimal. The strategy of constructing such a lower bound is: we define the “local risk”

around each node and use the sum of the “local risk” across the p nodes as the lower bound
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of the minimax Hamming distance. In the following, we sketch the way of defining the “local

risk” and introduce necessary notations, yet leave the technical details in Section A.2.2.

We start with considering a specific node j and a connected subgraph S that j is in,

presumably no signals in N(S). Let S0 ⊂ S be the signals in the current realization of the

Ising model, and S1 the set of signals in a tampered model. In the tampered model, we only

change S by replacing the signals in S0 by S1 while keeping other coordinates unchanged.

Without losing generality, let S = S0 ∪ S1, and j /∈ S0 ∩ S1. Then, how well we can decide

whether node j is signal depends on how well can separate the current model from the

tampered model. Since in both models, the signals and noises in subgraph S do not depend

on the signals outside, we only need to concern about the coordinates in subgraph S. In the

rest of this section, we will use Y , β u and b to denote the coordinates of Y , β u and b in

subgraph S, and use Ω to denote the submatrix of Ω in S without confusion. We use βSi

uSi and bSi , i = 0, 1 to denote β, u and b in the current model and the tampered model,

respectively.

Mathematically speaking, how well the two models can be separated could be measured

by the minimax risk of the hypothesis testing problem

H0 : Y ∼ N(βS0 , I|S|) against H1 : Y ∼ N(βS1 , I|S|) (3.9)

Neyman-Pearson’s lemma says the most powerful test for these hypotheses is to reject H0

when

T = (Y − βS0)
T (Y − βS0) > t

for some threshold t = 2q log(p). Under H0, T ∼ χ2
|S|, and under H1, T ∼ χ2

|S|(τ
2ω), where

τ 2ω = (βS1 − βS0)
′(βS1 − βS0). For given S0, S1, βS0 , βS1 and q, the risk of this test is

P (H1 is true)P (χ2
|S| ≤ t) + P (H0 is true)P (χ2

|S|(τ
2ω) > t) (3.10)

Easy to see that this risk is of the level of Lp · p−ρ(S0,S1,βS0 ,βS1 ,q), where ρ(S0, S1, βS0 , βS1 , q)

is a positive constant that depends on (S0, S1, βS0 , βS1 , q). When q is chosen optimally, this

risk is minimized. We define

ρ(S0, S1, βS0 , βS1) = max
q>0

[ρ(S0, S1, βS0 , βS1 , q)],
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and the lower bound of the risk of the specific test is Lp · p−ρ(S0,S1,βS0 ,βS1 ). The minimax

“local risk” around a node j would be the risk of the test in the “worst case scenario” among

all (S0, S1) such that j ∈ S0 ∪ S1, and all (βS0 , βS1) for each given (S0, S1) pair. Let Aj be

the set of (S0, S1) need to be considered at node j, and we define

ρ∗j = ρ∗j(r, ϑ,Ω) = min
(S0,S1)∈Aj ,uS0 ,uS1∈Θp(τ)

{ρ(S0, S1, βS0 , βS1)}.

Then the lower bound of the minimax risk at the node j is Lp · p−ρ
∗
j . The result is formally

stated in the following theory. For more details, please refer to Section A.2.2.

Theorem 3.2.2. Consider Model (3.5) and (3.2), and assume the assumptions of Theorem

3.2.1 holds. Define

ρ∗j = ρ∗j(r, ϑ,Ω) = min
(S0,S1)∈Aj ,uS0 ,uS1∈Θp(τ)

{ρ(S0, S1, βS0 , βS1)}.

where

Aj = {(S0, S1) | S0 and S1 are distinct subgraphs of G, j ∈ S0 ∪ S1 ≡ S, S is connected, , 0 ≤ |S| ≤ 2`c}.

Then, a universal lower bound of the Hamming distance of any variable selection procedure

is

inf
β̂
{Hammp(ϑ,Ω, r, β̂)} ≥ Lp ·

p∑
j=1

p−ρ
∗
j = Hamm∗p(ϑ, u,Ω)
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3.2.5 When does hard thresholding fail?

It has been shown that hard thresholding cannot achieve the optimal rate when the noise

is highly correlated [31]. On the other hand, when the signals are not independent, hard

thresholding may also fail to achieve the optimal rate. In this section, we study whenand

why it happens.

Consider (.12), the minimax risk of the hypothesis test problem (3.9). Let S0 = ∅ and

S1 = {j}, then

ρ(∅, {j}) = ϑ+
1

4
(
√
r − ϑ√

r
)2
+.

There must be

ρ∗j ≤ ρ(∅, {j}),

and the equality holds only when (∅, {j}) is the worst case.

On the other hand, the optimal rate of hard thresholding at node j is

ρH = ϑsp +
1

4
(
√
r − ϑsp√

r
)2
+,

where P (bj = 1) = Lp · p−ϑsp . Note for any connected subgraph S with VS > 0 and j ∈ S,

we have

P (bj = 1) ≥ p−VSϑ.

Hence ϑsp ≤ VSϑ, especially, ϑsp ≤ ϑ.

By saying hard thresholding fails in we mean it cannot achieve the optimal rate in variable

selection, or equivalently,

ρH < ρLB, (3.11)

which implies ρH < ρ(∅, {j}). Note that ρ(∅, {j}) and ρH have the same form, and this is an

increasing function of ϑ( or ϑsp). So a necessary condition of hard thresholding’s failure is

ϑsp < ϑ

This is the key insight in understanding hard thresholding, and its interpretation is the

following. Hard thresholding intrinsically assumes the independence among the signals and

only utilizes the marginal distribution of each node. It will work perfectly when most of the
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signals live as singletons. However, when ϑsp < ϑ, the probability of being a singleton is

O(p−ϑ) = o(p−ϑsp), and most of the signals live in short clusters(pairs, triplets and etc.). In

such cases, hard thresholding may fail due to its ignorance on the dependency among the

signals.

In detail, we have the following theorem characterizing the situations when hard thresh-

olding fails.

Theorem 3.2.3. In the hypothesis problem (3.9), let S0 and S1 be the pair of clusters at

node j in the worst case scenario, and we write VS0 = V0 and VS1 = V1 for short. Also

assume P (bj = 1) = Lp · p−ϑsp and r > ϑsp. Hard thresholding cannot achieve the optimal

rate if and only if one of the following holds.

1. ϑsp
ϑ
< r

ϑ
≤ |V0−V1|

|D| .

2. |D| > 1 and r
ϑ
> max(ϑsp

ϑ
, |V0−V1||D| ).

3. |D| = 1, ϑsp
ϑ
≤ V0 + V1 and r

ϑ
> max( (ϑsp/ϑ)2−(V0−V1)2

2[(V0+V1)−ϑsp/ϑ]
, ϑsp
ϑ
, |V0−V1||D| ).

3.2.6 Optimal rate of convergence of GMAS

Theorem 3.2.4. Consider Model (3.5) and (3.2), and assume the assumptions of Theo-

rem.3.2.1 holds.

• In the screening step of GMAS procedure, for each test (3.6), tune

0 < q(E,B) ≤
(

1−

√
(ρ∗D − VBϑ)+

|D|r

)2

= q∗(E,B),

where ρ∗D = maxi∈D(ρi).

• In the cleaning step, in each component of the surviving indices, we minimize (3.8).

Denote the set of the screening parameters as qs, and the result of GMAS as β̂mcs(Ω, ϑ, r, qs).

The upper bound of the hamming error of GMAS procedure is

Hammp(β̂mcs(Ω, ϑ, r, qs), ϑ,Ω, r) ≤ Lp ·
p∑
j=1

p−ρ
∗
j
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3.2.7 A tri-diagonal example

The exact sparsity level of a sparse Ising model and the minimax Hamming error are rarely

of explicit forms except in some special cases. In this section, we carefully analyze such a

simple example. Our result shows that the theoretical properties of the sparse Ising model

rely on Ω, especially its large off-diagonal elements.

We consider an Ising model where Ω is a tri-diagonal matrix as follows.

Ω(i, j) =



1 if i = j

−θ1 if |i− j| = 1 and max(i, j) is an even number

−θ2 if |i− j| = 1 and max(i, j) is an odd number

0 otherwise

(3.12)

where 0 < θ2 < 1/2 < θ1 < 1 − θ2. Here the edges with parameter θ1 are those of the

strong dependency, and θ2 are those of the weak dependency. Hence the induced graph of Ω

contains both strong and weak dependency, which is more realistic than a dependency graph

with homogeneous strength.

When Ω is of the form of (3.12), the sparsity level of the Ising model can be explicitly

calculated, which is presented in the following corollary, along with result on the maximal

cluster size.

Corollary 3.2.1. For a sparse Ising model where Ω satisfies (3.12), the following two state-

ments hold.

• Sparsity Level: the sparse level of this model is sp = Lp · p1−ϑsp = Lp · p1−ϑ(2−2θ1).

• Maximal cluster size: except probability of o(p−1), all the clusters are no longer than

2(1−ϑθ2)
ϑ(1−θ1−θ2)

The surprise is that the sparsity level is determined by the strong dependency θ1, up to

a Lp term.

For the Ising model considered in this section, most signals it generates live in pairs due

to the strong dependency. Hence hard thresholding is not optimal in the minimax Hamming

error, though it separates the singletons and the noises optimally. The follow corollary

characterizes the universal lower bound of the minimax Hamming error in variable selection

and the non-optimality of hard thresholding.
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Corollary 3.2.2. In model (3.5) and (3.12), the following statements hold .

• The optimal rate of Hamming distance is p1−ρ∗1d where

ρ∗1d =

 ϑ+ 1
4
(
√
r − ϑ√

r
)2
+, If r

ϑ
≥ c(θ1)

2ϑ(1− θ1) + 1
2
[
√
r − ϑ(1−θ1)√

r
]2+, If r

ϑ
< c(θ1)

where

c(θ1) = (θ1 +
√

2θ1 − 1)I(θ1 ≤ 2−
√

2) + [θ1(2 +
√

2)− 1]I(θ1 > 2−
√

2).

• Hard thresholding cannot achieve the optimal rate when r
ϑ
> 1− θ1.

In general, the optimal rate of Hamming error depends on (ϑ, r,Ω) in a complicated way,

and it is hard to draw the phase diagram for GMAS. However, Corollary 3.2.2 characterizes

an example where the optimal rate p1−ρ∗1d only depends on (ϑ, r, θ1) via a very simple form. In

Figure 3.1, we take advantage of this simple form, and compare the optimal phase diagrams

(also the phase diagrams of GMAS) and the phase diagrams of the hard thresholding in the

tri-diagonal case when θ1 = 0.75 and 0.55. We remark that in both cases, most signals live

in pairs, triplets and longer clusters, but not singletons.

We make two comparisons in Figure 3.1. First, we compare the two phase diagrams

in each row. The rate of hard thresholding is non-optimal in both cases. This is because

hard thresholding ignores the signal dependency, and only utilizes the sparsity level. It may

separate the singletons from the pure noise optimally, but is non-optimal in separating the

pairs from the singletons or the pure noise. Second, we compare the phase diagrams in each

column. We can see that the rate of hard thresholding does not depend on θ1. On the

other hand, when θ1 = 0.75, the exact recovery region is larger than that in the case of

θ1 = 0.55, and the no recovery region is also smaller. Therefore, when θ1 is large and the

signal dependency is strong, the variable selection problem is actually easier for the optimal

procedures such as GMAS. This is different from the findings in [32]. In their case, when

the correlation among the predictors becomes stronger, the optimal rate of Hamming error

becomes worse. In our case, when the signal dependency becomes stronger, the optimal rate

of Hamming error becomes better. Thus, the signal dependency is rather a “bless” than a

“curse”.
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(c) GMAS: θ1 = 0.55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ϑ
sp

r

Exact Recovery

Non−Optimal Region

No Recovery

(d) Hard Thresholding: θ1 = 0.55

Figure 3.1: Phase diagrams of GMAS and hard thresholding in the tri-diagonal case with

different θ1
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3.3 SCREEN AND CLEAN ON ISING MODEL

As we have stated, our two-step Screen and Clean procedure work as follows: in the screening

step, the majority of the noise are excluded while almost all the signals are retained; and in

the cleaning step, the signals are detected. The screening step has two important properties

that guarantees the success of this two-step strategy, which are Sure Screening(SS) property

and Separable After Screening (SAS) property. The former makes sure that most of the

signals are retained, and the latter guarantees the retained nodes live in small components

so that the cleaning in each piece is computationally affordable. In this section, we present

this idea in detail, and conclude with the proof of Theory 3.2.4.

We first study the properties of the screening step. The key is to set a collection of

thresholds Q for the tests. Let U be the set of the retained nodes. If the thresholds are too

large, we will miss a lot of signals; and if the thresholds are too low, U may be too large and

the cleaning step becomes too expensive in computation. The following lemma characterizes

the Sure Screening property, and give the maximal thresholds that guarantee this property.

Lemma 3.3.1. In Model (3.5), assume the assumptions of Theorem 3.2.1 holds. In each

test in the the screening step, we test the hypothesis (3.6) with the test statistics (3.7). Tune

0 < q(E,B) ≤
(

1−

√
(ρ∗D − VBϑ)+

|D|r

)2

≡ q∗(E,B),

where ρ∗D = maxi∈D(ρi), then as p→∞,

p∑
i=1

P (βi 6= 0, i 6= U) ≤ Lp ·
p∑
i=1

p−ρ
∗
i .

The next is SAS property.

Lemma 3.3.2. Consider Model (3.5), and assume the assumptions of Theorem.3.2.1 holds.

In each test in the screening step, we test the hypothesis (3.6) with the test statistics (3.7),

if

q∗ = min{q(E,B)|B ⊆ G connected, E ⊂ B.} > 0, (3.13)
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then the the screening step has SAS property except a probability of o(p−1). The set of the

retained nodes contains no cluster that is longer than

max

(
a`c,

2a

[
√
r(
√
q∗(a− 1)−√qu)−

√
2]2

)
,

Here a is a constant and

a > 1 +
1

q∗
(
√
qu +

√
2/r)2,

where qu is the parameter of univariate screening.

We remark here the length of the clusters in the set of retained nodes is usually at most

a`c, where `c is the maximum size of the clusters in the underlying Ising Model defined in

Theorem.3.2.1, and a is a constant.

3.3.1 Proof of Theorem 3.2.4

Due to the Sure Screening Property of the the screening step, all the signals are kept in

the surviving indices, and the SAS property assure the surviving indices split into disjoint

components. Since neither the signals nor the noises in one component depend on the those

in other components, we can solve the normal means problem in each component separately.

Consider the model (3.5) in one component U , which is.

YU = βU + zU , where z ∼ N(0, I|U |) , βU = τ ◦ bU and bU ∼ Ising(ΩU)

In the rest of this proof, we will discard the subscript U without confusion.

(3.8) can be rewritten as

L(β) =
1

2
‖ Y − β ‖2

2 +ηVS, (3.14)

where S is the support of β. Recall that β = u◦b, and our cleaning step is minimizing (3.14)

subject to |ui| ≥ τ or = 0. When S is given, the constrained minimizer of (3.14) is β̂ = û◦ b,

where

ûi = sgn(Yi) max(|Yi|, τ).

Let β be the true underlying parameter with support S, β̂ = u ◦ b to be an estimate with

the true support, and β∗ = u∗ ◦ b∗ another estimate of β with a wrong support S∗. We are
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interested in P (L(β∗) < L(β̂)), the probability that the cleaning step fails to recover the

true support. In the cleaning step, this component contributes to Hamming distance for at

most |U | ·maxβ∗ P (L(β∗) < L(β̂))

Now let us start considering P (L(β∗) < L(β)) for a given true support b. As before, we

can view S as the true support and S∗ the support of a tampered model. We denote S ∩ S∗

as E, and D = (S ∪ S∗) \ E. We can split D into four disjoint sets,

D1 = {i ∈ S ∪ S∗, bi = 0, b∗i = 1 and Yi > τ}, D2 = {i ∈ S ∪ S∗, bi = 0, b∗i = 1 and Yi ≤ τ}

D3 = {i ∈ S ∪ S∗, bi = 1, b∗i = 0 and Yi > τ} andD4 = {i ∈ S ∪ S∗, bi = 1, b∗i = 0 and Yi ≤ τ}

It is easy to see, except a probability of Lp · |U | · p−r, D1 = ∅.

Recall that Yi = βi + zi where zi are iid standard normal. Direct calculation shows

L(β∗)−L(β̂) = τ(
∑
i∈D4

zi−
∑
i∈D2

zi)−
∑
i∈D1

z2
i

2
+
τ 2|D2|

2
+
∑
i∈D3

Y 2
i

2
+τ

∑
i∈D4

(βi−
τ

2
)+η(VS∗−VS).

Except a probability of Lp · |U | · p−r, D1 = ∅. Hence, Except a probability of Lp · |U | · p−r,

L(β∗)− L(β̂) = τ(
∑
i∈D4

zi −
∑
i∈D2

zi) +
τ 2|D2|

2
+
∑
i∈D3

Y 2
i

2
+ τ

∑
i∈D4

(βi −
τ

2
) + η(VS∗ − VS).

Use the definitions, we can obtain a lower bound of the right hand side, which is

τ(
∑
i∈D4

zi −
∑
i∈D2

zi) +
τ 2|D|

2
+ η(VS∗ − VS). (3.15)

Note that (3.15) < 0 is a necessary condition of L(β∗) < L(β), hence P (L(β∗) < L(β)) ≤

P ((3.15) < 0).

In (3.15) τ(
∑

i∈D4
zi −

∑
i∈D2

zi) has a normal distribution

η ≡ tau(
∑
i∈D4

zi −
∑
i∈D2

zi) ∼ N(0, (|D2|+ |D4|)τ 2).

Hence,

P ((3.15) < 0) ≤ P (η < −[
τ 2|D|

2
+ η(VS∗ − VS)]).

By mill’s ratio,

P (η < −[
τ 2|D|

2
+ η(VS∗ − VS)]) = Lp · exp

{
− [τ 2|D|/2 + η(VS∗ − VS)]2

2τ 2(|D2|+ |D4|)

}
.
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Obviously,

exp

{
− [τ 2|D|/2 + η(VS∗ − VS)]2

2τ 2(|D2|+ |D4|)

}
≤ exp

{
− [τ 2|D|/2 + η(VS∗ − VS)]2

2|D|τ 2

}
.

The right hand side the above is

exp

{
−1

4

(√
|D|r − ϑ|VS − VS∗|√

|D|r

)2

+

+ϑmax(VS, VS∗)

}
= p−ρ(S,S∗).

Therefore, we have

P (L(β∗) < L(β)) ≤ Lp · p−ρ(S,S∗).

If S ∪ S∗ is connected, by Lemma A.2.3, |S ∪ S∗| ≤ 2`c. If it is not connected, we can

always only consider its smallest component. Hence we can always find j ∈ S ∪ S∗, s.t.

(S, S∗) ∈ Aj. Therefore P (L(β∗) < L(β)) ≤ Lp · ρ∗j , which concludes the proof.

3.4 SIMULATION

In this section, we conduct a series of small scale simulation experiments to investigate

the numerical properties of GMAS and compare it with other procedures such as hard

thresholding and the lasso. We consider the experiments where the b ∼ Ising(ηp,Ω), and

u ∈ Θp(τp). As before (ηp, τp) are tied to (ϑ, r) by η = ϑ log(p) and τp =
√

2r log(p). Each

experiment except Experiment 3 contains the following steps.

1. Fix (p, ϑ, r, µ,Ω) such that µ ∈ Θp(τp). Generate a vector b = (b1, b2, . . . , bp)
′ ∼

Ising(η,Ω) from a Gibbs sampler and set β = b ◦ µ.

2. Generate Y ∼ N(β, Ip), and apply GMAS and the hard thresholding.

3. Repeat 1-2 independently, and record the average Hamming distances.
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In the two sub-experiments in Experiment 3, we investigate the application of GMAS in linear

regression and classification, hence the simulation follows slightly different steps, which we

will describe therein.

Experiment 1: In this experiment, we investigate how the choices of the signal strength

vector u and Ω affect the comparison of GMAS and the hard thresholding. This experiment

include 4 sub-experiments, each of which use a different combination of (u,Ω). In experiments

1(a) and 1(b), we consider signals with equal strength by setting ui = ±τp with equal

probability. In experiments 1(c) and 1(d), we consider the unequal strength signals and

set the signs of ui to be ±1 with equal probability, and |ui| = τp(0.8 + hi) where hi
iid∼

Gamma(1, 0.2). In experiments 1(a) and 1(c), we use Ω as in Section 3.2.7 with θ1 = 0.75

and θ2 = 0.1. In experiments 1(b) and 1(d), we use Ω whose encoded graph is a random

graph with a power law distribution. The procedure of generating Ω we use is as the follow.

1. Generate the degree parameter sequence:

a. Generate η(0) = (η
(0)
1 , . . . , η(p))′ η

(0)
i

iid∼ η−a1{1 ≤ η ≤ c}.

b. Normalize η(0) to η(1) such that η
(1)
i = [η

(0)
i −0.9·min(η(0))]/[max(η(0))−0.9·min(η(0))].

Note that now the range of η(1) is in (0, 1).

c. Set η = p0 · η(1), where p0 is a positive constant such that 1
p

(
∑p

i=1 ηi)
2

= f .

η is the degree parameter sequence.

2. Generate a random graph Grand = (Vrand, Erand) for given degree parameters η: For

1 ≤ i < j ≤ p, assigning (i, j) as an edge in Erand randomly with probability P ((i, j) ∈

Erand) = ηiηj.

3. Generate Ω by randomly assigning weights to the edges of Grand: for 1 ≤ i < j ≤ p, we let

Ω(i, i) = 1, Ω(j, i) = Ω(i, j) and Ω(i, j) = −gij1{(i, j) ∈ Erand} where gij
iid∼
∑L

`=1 p`νθ` .

Here ν? is a point mass at the value “?”, p` ∈ (0, 1) is the weight of νθ` and
∑L

`=1 p` = 1.

We remark that the graph Grand is drawn from a Degree-corrected Block Model with only one

block. Its degree parameter sequence follows a power law x−a and its average degree is around

f . In our experiment, we use c = 101/4, a = 5, f = 3, L = 3, (θ1, θ2, θ3) = (0.6, 0.2, 0.1)

and (p1, p2, p3) = (0.1, 0.1, 0.8). For all experiments, we fix (p, ϑ) = (2000, 0.65). For each

sub-experiment, we let τp ∈ 0.25 + 0.25 × {1, 2, 3, 4, 5, 6, 7}. We run the simulation for 40
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repetitions. The average Hamming ratios are reported in Figure 3.2. The results suggest

that GMAS outperforms hard thresholding consistently.

Experiment 2: The goal of this experiment is two fold. First, we examine how the

optimal rate of Hamming error depends on the sparsity level, the signal strength and the

strength of the signal dependency. Second, we want to thoroughly compare GMAS and the

hard thresholding in various combinations of signal sparsity, signal strength and dependency

strength. In this experiment, we fix p = 2000 and Ω as the tri-diagonal example in Section

3.2.7. We also fix θ2 = 0.1 since by Lemma 3.2.1 and Corollary 3.2.2, θ2 at most has a minor

effect on the Hamming ratio. Let θ1 = 0.55, 0.75, ϑ = 0.4, 0.65, τ = 2.5, 3.5, 4.5, and for

each τ , r = τ 2/ log(p). We consider all the 8 combinations of (ϑ, τ, θ1). These cases include

all combinations of moderately sparse/very sparse, strong/weak signals, strong/weak signal

dependency, e.g. (ϑ, τ, θ1, θ2) = (0.4, 3.75, 0.75, 0.05) is a case where the signal is moderately

sparse, but very strong, the dependency among the signals is a mixture of very strong

dependency (θ1 = 0.75), and very weak ones (θ2 = 0.05). The average Hamming ratios

are recorded in Table 3.1. Our results suggest that GMAS is better than hard thresholding

when the signal is weak or the signal dependency is strong. Regarding to the behavior of

the Hamming ratio of GMAS (also the optimal Hamming ratio), we have the following three

observations: (1) For fixed (ϑ, θ1), it decreases with τp, which is consistent with the intuition

that the variable selection is easier when the signal becomes stronger; (2) For fixed (θ1, τp),

our recorded Hamming ratio of GMAS actually increases with ϑ in most cases; (3) For fixed

(ϑ, τp), the Hamming ratio decreases with θ1. That is to say, variable selection is easier when

the signal dependency is strong, and hence the signal dependency is a “bless” that we should

take advantage of instead of a “curse” that we need to break.

Experiment 3: In this experiment, we investigate the sensitivity of GMAS with respect

to the parameters (ϑ, r,Ω). It includes three sub-experiments. In each sub-experiment, we

perturb each of (ϑ, r,Ω) by a reasonable small amount, respectively, and investigate how the

perturbation affect the performance of GMAS. Throughout the whole experiment, we adopt

the random Ω and equal strength u as in Experiment 1b. Let ϑ = 0.65, 0.85 and r = 0.6, 1.4,

and we consider all the four combinations of (ϑ, r) in all sub-experiments.
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Figure 3.2: Hamming ratio results in Experiment 1
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τp 2.5 3.5 4.5

θ1 0.75 0.55 0.75 0.55 0.75 0.55

ϑ = 0.4
GMAS 0.3610 0.5215 0.1010 0.2019 0.0304 0.0781

hard thresholding 0.4191 0.5437 0.1637 0.2166 0.0433 0.0694

ϑ = 0.65
GMAS 0.4886 0.7970 0.1242 0.2909 0.0195 0.1463

hard thresholding 0.5906 0.7366 0.2473 0.3289 0.0661 0.1350

Table 3.1: Ratios between the average Hamming errors and the average number of signals.

In Experiment 3a, we investigate the sensitivity of GMAS against the mis-specification

of ϑ. We assume ϑ is unknown ( r and Ω are assumed as known, however), and let ϑ∗

be the misspecified value of ϑ. We perform GMAS with the parameters (ϑ∗, r,Ω). In this

sub-experiment, we take ϑ∗ ∈ ϑ× {0.9, 0.95, 1, 1.05, 1.1}.

In Experiment 3b, we investigate the sensitivity of GMAS against the mis-specification

of r. We assume r is unknown ( ϑ and Ω are assumed as known, however), and let r∗

be the misspecified value of r. We perform GMAS with the parameters (ϑ, r∗,Ω). In this

sub-experiment, we take r∗ ∈ r × {0.8, 0.9, 1, 1.1, 1.2}. The results of Experiment 3a-3b are

tabulated in Table 3.2.

In Experiment 3c, we investigate the sensitivity of GMAS against the mis-specification

of Ω. We assume Ω is noisy but (ϑ, r) are known. We construct the mis-specified Ω∗ by

randomly deleting a small proportion of edges encoded in Ω, and then randomly adding some

edges with randomly assigned weight. In detail, the diagonal elements of Ω∗ are ones, and

for 1 ≤ i < j ≤ p, we set

Ω∗(i, j) = Ω(i, j)1{Ω(i, j) 6= 0}h0(i, j)− g1(i, j) · h1(i, j), and Ω∗(j, i) = Ω∗(i, j)

where h0(i, j)
iid∼ pdelν0 + (1 − pdel)ν1, h1(i, j)

iid∼ (1 − paddf/p)ν0 + (paddf/p)ν1. Here pdel is

the proportion of the edges deleted, and padd is the ratio of expected number of randomly

added edges and the expected number of edges encoded in Ω. It is reasonable to believe

60



ϑ∗/ϑ 0.9 0.95 1 1.05 1.1

(ϑ, r) = (0.65, 0.6) 0.3038 0.2968 0.2937 0.2945 0.3019

(ϑ, r) = (0.85, 0.6) 0.4039 0.4270 0.4076 0.4057 0.4057

(ϑ, r) = (0.65, 1.4) 0.1008 0.1012 0.0984 0.0992 0.1016

(ϑ, r) = (0.85, 1.4) 0.1174 0.1174 0.1183 0.1203 0.1193

r∗/r 0.8000 0.9000 1.0000 1.1000 1.2000

(ϑ, r) = (0.65, 0.6) 0.3131 0.3009 0.3046 0.3087 0.3516

(ϑ, r) = (0.85, 0.6) 0.3884 0.3805 0.3510 0.3510 0.3805

(ϑ, r) = (0.65, 1.4) 0.0729 0.0785 0.0898 0.0959 0.1007

(ϑ, r) = (0.85, 1.4) 0.0900 0.1052 0.1081 0.1194 0.1327

Table 3.2: Hamming ratio results in Experiment 3a-3b.

that both proportions are small. In our analysis, we choose (pdel, padd) ∈ {0, 0.05, 0.1}2.

g1(i, j) is the randomly assigned weight of of (i, j) if it is a randomly added edge to the

perturbed graph. Its distribution is
∑T

t=1 πtνwt where T = 3, (w1, w2, w3) = (0.1, 0.2, 0.3)

and (π1, π2, π3) = (0.6, 0.2, 0.2). The result of Experiment 3c is tabulated in Table 3.3.

Experiment 4: In this experiment, we explore the prediction performance of GMAS.

It contains two sub-experiments. In Experiment 4a, we explore the application of GAMS

in linear regression, and in Experiment 4b, in classification. In both sub-experiments, we

use equal strength signals, and use both of the tri-diagonal Ω and the random Ω as in

the Experiment 1. In each setting, we consider two combinations of (ϑ, r), and compare

GMAS with hard thresholding and lasso. For GMAS, we use tuning parameters (ϑ, r,Ω);

for lasso, we use λ ∈ 0.002{1, . . . , 100} and report the minimal prediction error; and for

hard thresholding, we use sh, the number of selected variables as the tuning parameter, and

report the minimal prediction error. For each setting, we run 40 times.

Experiment 4a: The steps of this experiment is as the follows.
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1. For fixed (p, n, nt), generate an n× p matrix X and a nt × p matrix X(test), by generate

their columns as iid samples of N(0, 1
n
Ip)

2. Generate z ∼ N(0, In), and z(test) ∼ N(0, Int)

3. For fixed (p, ϑ, r,Ω), generate b and construct β as in Experiment 1a-1b.

4. Y = Xβ + z, and Y (test) = X(test)β + z(test).

5. Perform lasso on the training set (X, Y ), and calculate the prediction error on the test

set (X(test), Y (test)).

6. Perform GMAS and hard thresholding on Ỹ = X ′Y .

7. Use the GMAS/hard thresholding estimate of b to estimate β by OLS on the training

set.

8. Calculate the prediction errors on the test set.

In our experiment, we use (p, n, nt) = (5000, 4000, 500). For hard thresholding, we consider

sh ∈ {1, . . . , 500}. In the case with tri-diagonal Ω, we set ϑ = 0.8, and for the random Ω,

we set ϑ = 0.65. For both cases, we consider r ∈ {0.6, 1.5}. For each method, we report

a triplet that includes the means and the standard deviations of the prediction errors and

the average number of variables selected. For reference, we also report the means and the

standard deviations of var(Y ), and the actual number of signals. We refer this row as “Ref”.

The results are recorded in Table 3.4. In almost all cases, we can see that GMAS is the best

in terms of predictor error and hard thresholding performs the worst. GMAS also recover the

true sparsity better than the hard thresholding (in most cases) and the lasso (in all cases).

Experiment 4b: The steps of this experiment is as follows.

1. For fixed (p, n, nt), generate an (n+ nt)× p matrix Z whose elements are iid samples of

N(0, 1).

2. Fix the first (n+nt)/2 elements of the length Y to be 1, and the last (n+nt)/2 elements

be −1.

3. For fixed (p, ϑ, r,Ω), generate b and construct β as in Experiment 1a-1b.

4. X = Y β′ + z.

5. random sample nt rows of (X, Y ) as the test set (X(test), Y (test)), and the rest as the

training set (X(train), Y (train)).
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6. Perform lasso on the training set (X(train), Y (train)), and calculate the prediction error

rate on the test set (X(test), Y (test)).

7. Perform GMAS and hard thresholding on the standardized difference of the means of

the two groups.

8. Use the variables selected by GMAS/hard thresholding to train linear classifiers on the

training set.

9. Calculate the classification errors on the test set.

In our experiment, we use (p, n, nt) = (5000, 400, 100). For hard thresholding, we consider

sh ∈ {1, . . . , 250}. In the case with tri-diagonal Ω, we set ϑ = 0.8, and for the random Ω, we

set ϑ = 0.65. For both cases, we consider r ∈ {0.5, 1}. For each method, we report a triplet

that includes the means and the standard deviations of the balanced classification errors and

the average number of variables selected. For reference, we also report the actual number

of signals. We refer this row as “Ref”. The results are recorded in Table 3.5. Due to our

model setup, lasso is expected to perform poorly, as in the table. Comparing with the hard

thresholding, GMAS is better both in terms of predictor errors and in the sparsity recovery.

3.5 REAL DATA APPLICATIONS

3.5.1 Identify differentially expressed genes: an yeast data example

We analyze the yeast heat shock data in [24]. In the authors’ heat shock experiment, they

measure the gene expression values from two cultures. In one culture(hs-1), the researchers

add heated material (heat shock). In the other culture(hs-2), the cells are grown in a constant

temperature, and serve as a reference group. For hs-1, samples were removed at 5, 10, 15,

20, 30, 40, 50, and 60 minutes, and total RNA was harvested for array analysis. For hs-2,

the same thing was done at at 5, 15, 30, 45, and 60 minutes.

Fixing time t, we can obtain Y , the gene expression difference vector of hs-1 and hs-2,

and use it to identify the differentially expressed (DE) genes between the two conditions. We

expect them also to be associated to the yeast heat shock response, and finding such genes
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is our ultimate goal. In literature, researchers have identified some genes responsive to heat

shock. In the online data base at http://www.yeastgenome.org, we find 80 genes whose Gene

Ontology Biological Process (GOBP) terms contain key word ”heat”, 68 of which are also in

our data set. We use this set as a benchmark, and a good DE genes identification procedure

should pick more genes in this set(GOBP-heat) without using the information about this

set. In literature, this is sometimes referred to as GO term enrichment(reference).

For simplicity, we only use the data at 60 minutes and 30 minutes, respectively. For each

data, we apply hard thresholding and GMAS and compare the number of genes selected.

For the hard thresholding, we use the number of genes selected as the tuning parameter. For

GMAS, we use two parameters (s, θ) to estimate (ϑ, r,Ω). s is an integer that represents

the number of genes picked by hard thresholding. Let (Y1, . . . , Ys) be the largest elements

in Y in magnitude, and we estimate τp = median(Y1, . . . , Ys), r = τ 2
p /(2 log(p)) and ϑ =

1 − log(s)/ log(p). In order to obtain Ω, we use the network of curated protein interaction

extracted from [33], as part of their evidence in building their probabilistic model based

unified network. For a positive tuning parameter θ, we set Ω as Ω(i, j) = − θ
didj
· 1{ θ

didj
<

0.9} − 0.9 · 1{ θ
didj
≥ 0.9} where di is the degree of the node i in the network. θ is the

parameter that characterizing the dependency strength, and we use θ = 10, 25, 50.

The results are graphed in Figure 3.3, which are the plots of the number of genes selected

against the number of genes in GOBP-heat. In general, more GOBP-heat genes are selected

in the 60 minutes data than in the 30 minutes data, which is consistent with the intuition in

biology. In each analysis, GMAS performs better than hard thresholding, and GMAS with

larger θ performs better than GMAS with smaller θ. This is a sign that the improvement

made by GMAS is attributed to the signal dependency.

3.5.2 Variable selection for classification: a human tumor classification example

In this section, we explore the application of GMAS in classification. We use the breast

cancer data compiled in [44] and used in [10] and [30]. This data includes 78 metastasis

tumor patients and 217 non-metastasis patients, and records the expression of 8141 genes.

The network I used is also from [10], which it contains 7910 nodes, and 42587 edges. For
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computational simplicity, we focus on the p = 576 genes whose variance are of the top 1000

in all genes, and it is connected to some other genes in this network.

We first calculate the standardized difference in the gene expression mean between the

two groups Y . Then we apply hard thresholding and GMAS on it, separately, and then

we build a Fisher’s linear classifier for each selected model. We compare hard thresholding

and GMAS by comparing the classification errors of their resultant classifiers. We use 5-

fold cross-validation to calculate the error rate, and for each training set, we use 10-fold

cross-validation to select the tuning parameters.

We use the same method to set the tuning parameter of the hard thresholding, and Ω

for GMAS. In order to estimate (ϑ, r) for GMAS, we impute the tuning parameter t > 0,

and set r = t2/(2 log(p)) and ϑ = 1− log(s)/ log(p) where s = 2
∑p

i=1 1{|Yi| > t}. For tuning

parameter selection of GMAS, we consider all combinations of (t, θ) where t ∈ 3.5 + 0.25 ·

{0, . . . , 12} and θ ∈ 0.25 · {0, . . . , 20}. The median error rate and the model size are reported

in Table 3.6. Though the improvement is slim, but the model size of GMAS is much smaller

than that of the hard thresholding. This is an evidence that GMAS build a more efficient

classifier by using the network structure.

3.6 CONNECTION TO EXISTING LITERATURE, DISCUSSION AND

FUTURE WORK

Our idea of using a sparse graph for variable selection is similar to [34], in which the authors

propose a structured Elastic Net type of penalty for regularization in linear regression. How-

ever, our goal and approach are very different from that in [34]. First, they use dependency

graph heuristically, and our approach is a generative model approach. Second, we developed

the optimality theory of variable selection for signals generated by an Ising model. Third,

their proposed procedure is a one-step non-adaptive approach, and ours is a two-step Screen

and Clean type of method.

Our use of Ising model is close related to [48], where the authors propose an Ising model

based approach for detecting differentially expressed genes. Our research concerns variable
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selection for regression and classification, so the scope of our research is much wider than

that of [48]. Also, though the authors claim the use of an Ising model, in their algorithm,

they actually use a pseudo likelihood that is not compatible with the likelihood of the Ising

model, so their approach is not a generative model approach in nature. Furthermore, our

paper presents a real data example where the superiority of GMAS is justified by accuracy

of the detected DE’s, while in the real data application in [48], the authors justify their

approach by the biological interpretability of the selected subnetworks.

Our research is close related to recent works by Jin and his collaborators ([31, 32]), and

these papers propose similar Screen and Clean type of variable selection methods. However,

the motivation, the scope and the innovation of our research are significantly different from

theirs in many ways. The motivation of our research is how to integrate the known signal

dependency information into data analysis, while [31, 32] are motivated by the affect of the

observed correlation structure of the predictors. Our research concerns the variable selection

problem in general, including both regression and classification, while [31, 32] focus on the

linear regression. The success of GMAS is attributed to the decomposability of the likelihood

of the sparse Ising model, while the major innovation of [32] is to guide variable selection by

the graph of strong dependency among the predictors.

The theoretical implications of our research are also very different from those in [31, 32].

For example, in Section 3.2.7, for fixed (ϑsp, r), we can see that the lower bound of the

minimax Hamming distance decreases when the signal dependency becomes stronger. So

signal dependency is a “bless”, and GMAS is optimal because it take advantage of it. On

the other hand, in [32], their lower bound of the Hamming distance increases when the

correlation among the predictors increases. Hence the correlation among the predictors is a

“curse”, and their major contribution is to overcome the challenge of signal cancelation [47]

brought by the predictor correlation structure.

There are many possible extensions of our research. While we focus on Ising model, we

also believe that the procedure and the theories we develop here can be extend to other

graphical models, e.g. Potts model [41], a multi-class extension of Ising model. Another

interesting direction of future research lies in the implication of our Screen and Clean research

in the problem of maximizing intractable likelihood. Previous literature in this field focus
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on approaches such as composite likelihood [45] or simulation based approaches [4]. In our

research, our Stein’s normal means model can be viewed as a hidden Ising sparse model, which

is intractable. Viewing the mean vector β as the parameters, GMAS approximately maximize

its intractable likelihood by taking advantage of the decomposability of this sparse likelihood.

It would be interesting to investigate the application of Screen and Clean methodology on a

wider class of sparse models with intractable likelihood.
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(pdel, padd) (0,0) (0, 0.05) (0,0.1)

(ϑ, r) = (0.65, 0.6) 0.2985 0.2985 0.2985

(ϑ, r) = (0.85, 0.6) 0.4536 0.4536 0.4536

(ϑ, r) = (0.65, 1.4) 0.0909 0.0909 0.0909

(ϑ, r) = (0.85, 1.4) 0.1136 0.1136 0.1136

(pdel, padd) (0.05,0) (0.05, 0.05) (0.05,0.1)

(ϑ, r) = (0.65, 0.6) 0.3097 0.2985 0.3246

(ϑ, r) = (0.85, 0.6) 0.4536 0.4536 0.5052

(ϑ, r) = (0.65, 1.4) 0.0909 0.0988 0.1304

(ϑ, r) = (0.85, 1.4) 0.1136 0.1136 0.1364

(pdel, padd) (0.1,0) (0.1, 0.05) (0.1,0.1)

(ϑ, r) = (0.65, 0.6) 0.3134 0.3284 0.3321

(ϑ, r) = (0.85, 0.6) 0.5052 0.4639 0.5052

(ϑ, r) = (0.65, 1.4) 0.0988 0.0949 0.0949

(ϑ, r) = (0.85, 1.4) 0.1364 0.1136 0.1136

Table 3.3: Hamming ratio results in Experiment 3c.
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Tri-diagonal Ω

(ϑ, r) (0.8, 0.6) (0.8, 1.5)

Ref (1.4450, 0.0827, 197.95) (2.099, 0.179, 188.725)

GMAS (1.1963, 0.0729, 294.2) (1.1742, 0.0656, 227.7)

Hard thresholding (1.3014, 0.0863, 254) (1.3347, 0.0716, 347)

lasso (1.2295, 0.0717, 658.825) (1.2784, 0.0746, 771.25)

Random Ω

(ϑ, r) (0.65, 0.6) (0.65, 1.5)

Ref (1.2029, 0.0638, 81.775) (1.4822, 0.1056, 83.325)

GMAS (1.1166, 0.0515, 84.125) (1.1154, 0.0577, 90.45)

Hard thresholding (1.1641, 0.0544, 56) (1.1356, 0.0572, 102)

lasso (1.1288, 0.0559, 307.575) (1.1441, 0.0541, 387.425)

Table 3.4: The means and the standard deviations of the prediction errors and the average

number of variables selected by GMAS, the hard thresholding and the lasso. The means and

the standard deviations of var(Y ), and the real sparsity level are also recorded in the first

row titled “Ref”.
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Tri-diagonal Ω

(ϑ, r) (0.8, 0.5) (0.8, 1)

Ref 186.525 197.3

GMAS (0.1733, 0.0448, 191.325) (0.032, 0.0178, 193.5)

Hard thresholding (0.1865, 0.0507, 57) (0.046, 0.0173, 145)

lasso (0.5919, 0.0318, 118.95) (0.52, 0.0198, 172.15)

Random Ω

(ϑ, r) (0.65, 0.5) (0.65, 1)

Ref 87.1 91.925

GMAS (0.2106, 0.0442, 69.87) (0.1063, 0.0446, 74.4)

Hard thresholding (0.2771, 0.0394, 37) (0.1237, 0.0324, 62)

lasso (0.6, 0.2025, 0) (0.5669, 0.0222, 120.85)

Table 3.5: The means and the standard deviations of the classification errors and the average

number of variables selected by GMAS, the hard thresholding and the lasso. The real sparsity

level are also recorded in the first row titled “Ref”.
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Figure 3.3: Differentially expressed genes in heat shock

GMAS hard thresholding

error rate 0.2276 0.2309

model size 93.5 136.5

Table 3.6: The result of the hard thresholding and GMAS
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4.0 CURRENT AND FUTURE WORK: CLUSTERING AND NETWORK

In our previous research, we have focus on combining the correlation structure and the data

in supervised learning. In this process, we have been becoming more and more interested

in analyzing relational data such as network. We tackle this problem in the perspective of

clustering, and our primary result seems promising.

4.1 CURRENT RESEARCH: CLUSTER EXTRACTION AND ITS

APPLICATION IN COMMUNITY EXTRACTION FOR NETWORK

DATA

Motivated by network data analysis in political science, we consider the partial clustering

problem when at least one of the following three conditions holds:

• The sizes of the clusters are heterogenous.

• The tightness of the clusters are heterogenous.

• Not all points are in meaningful clusters.

In these situations, our goal is to extract these moderately small/reasonably tight/meaningful

clusters instead of fully cluster all data.

If we view all data that are not in a meaningful cluster as one of several “clusters of not

clustered”, conventional clustering procedures are also applicable, but usually fail. Take k-

means for example: our empirical studies show that k-means may split the data into clusters

of similar sizes. Hence it may split large clusters into several smaller ones, or merge small

clusters into a larger one. On the other hand, part of the clusters identified by k-means
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may be real meaningful clusters. Hence it is crucial to develop inner measures for cluster

validation and pick the meaningful clusters from the false clusters. It is also important to

give the identified meaningful clusters a second chance to refine themselves. We have solved

the first problem empirically, and have been working on its theory and the second problem.

4.2 CURRENT RESEARCH: THRESHOLDING IN CLUSTERING AND

NETWORK CONSTRUCTION

Most of current networks are not original data, but constructed from observed relational

data. In most cases, such construction involves thresholding a correlation-like matrix. The

two key questions here are: Why threshold? and How to threshold?. Similar discussions

have been seen in the literature of covariance matrix estimation and the gene coexpression

network analysis.

We attack the first question from the perspective of clustering. More specifically, in

certain regimes, thresholding may preserve the underlying group structure better. We have

carefully analyzed a few examples. The results indicate that hard thresholding helps when

the signals are weak and the noise level is heterogenous. This implication is supported by

simulation studies and data analysis. This problem is close related to high dimensional clus-

tering. Our theoretical analysis shows that when the signals are very weak, thresholding

on the attributes can improve the signal noise ratio and the clustering result. Our simula-

tion result even shows that aggregating the information from the thresholded variables may

improve the clustering result more than a careful variable selection.

We have been working on data-driven optimal thresholding schemes for both clustering

and network construction, and the theories behind our examples and empirical evidences.
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4.3 IMPORTANCE OF THE CURRENT WORK AND THE FUTURE

WORK

The two current research projects consider clustering and network analysis together, and

connect network analysis, this modern area with the traditional clustering. This is part of

the effort of understanding the structure of social and biological networks we have observed.

Especially in Section 4.2, we start to consider the origin of the networks. Future work

will include more theoretical studies of the relational data and network construction, and

exploring new network models in this perspective.
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APPENDIX

PROOFS

A.1 PROOFS OF THE RESULTS IN CHAPTER 2

A.1.1 Proof of Lemma.2.1.1

When G∗S contains a connected subgraph of size ≥ m + 1, it must contain a connected

subgraph with size m+ 1. By [23], there are ≤ p(eK)m+1 connected subgraph of size m+ 1.

Therefore, the probability that G∗S has a connected subgraph of size (m+1) ≤ p(eK)m+1εm+1
p .

Combining these gives the claim.

A.1.2 Proof of Theorem 2.3.1

Since σ is known, for simplicity, we assume σ = 1. First, consider (2.23). By [32], ρgs =

min{(D,F ):D∩F=∅,D 6=∅,D∪F⊂{1,2}} ρ(D,F ; Ω), where we have used that G is a diagonal block-

wise matrix, each block is the same 2× 2 matrix. To calculate ρ(D,F ; Ω), we consider three

cases (a) (|D|, |F |) = (2, 0), (b) (|D|, |F |) = (1, 0), (c) (|D|, |F |) = (1, 1). By definitions and

direct calculations, it is seen that ρ(D,F ; Ω) = ϑ+ [(1− |h0|)r]/2 in case (a), ρ(D,F ; Ω) =

(ϑ+ r)2/(4r) in case (b), and ρ(D,F ; Ω) = 2ϑ+ [(
√

(1− h2
0)r− ϑ/

√
(1− h2

0)r)+]2/4 in case

(c). Combining these gives the claim.

Next, consider (2.24). Similarly, by the block-wise structure of G, we can restrict our

attention to the first two coordinates of β, and apply the subset selection to the size 2

subproblem where the Gram matrix is the 2 × 2 matrix with 1 on the diagonals and h0 on
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the off-diagonals. Fix q > 0, and let the tuning parameter λss =
√

2qss log(p). Define

f (1)
ss (q) = flasso,1(q) = ϑ+ [(

√
r −√q)+]2, f (2)

ss (q) = 2ϑ+ [(
√
r(1− h2

0)−√q)+]2,

and

f (3)
ss (q) = 2ϑ+ 2[(

√
r(1− |h0|)−

√
q)+]2,

where x+ = max{x, 0}. The following lemma is proved below, where the key is to use [31,

Lemma 4.3].

Lemma A.1.1. Fix q > 0, and apply the subset selection to the aforementioned size 2

subproblem with λss =
√

2q log(p). As p → ∞, the worst-case Hamming error rate is

Lpp
−fss(q), where fss(q) = fss(q, ϑ, r, h0) = min

{
ϑ+ (1− |h0|)r/2, q, f (1)

ss (q), f
(2)
ss (q), f

(3)
ss (q)

}
.

By direct calculations, ρss(ϑ, r, h0) = max{q>0} fss(ϑ, r, h0) and the claim follows.

Last, consider (2.25). The proof is very similar to that of the subset selection, except for

that we need to use [31, Lemma 4.1], instead of [31, Lemma 4.3]. For this reason, we omit

the proof.

A.1.2.1 Proof of Lemma A.1.1 By the symmetry in (2.20)-(2.21) when G is given by

(2.22), we only need to consider that case where h0 ∈ [0, 1) and β1 ≥ 0. Introduce events,

A0 = {β1 = β2 = 0}, A1 = {β1 ≥ τp, β2 = 0}, A21 = {β1 ≥ τp, β2 ≥ τp},A22 = {β1 ≥

τp, β2 ≤ −τp}, B0 = {β̂1 = β̂2 = 0}, B1 = {β̂1 > 0, β̂2 = 0}, B21 = {β̂1 > 0, β̂2 > 0} and

B22 = {β̂1 > 0, β̂2 < 0}. It is seen that the Hamming error

= Lp(I + II + III), (.1)

where I = P (A0 ∩Bc
0), II = P (A1 ∩Bc

1) and III = P (A21 ∩Bc
21) + P (A22 ∩Bc

22).

Let H be the 2× 2 matrix with ones on the diagonals and h0 on the off-diagonals, α =

(β1, β2)′, and w = (Ỹ1, Ỹ2), where we recall Ỹ = X ′Y . It is seen that w ∼ N(Hα,H). Write

for short λ =
√

2q log(p). Define regions on the plane of (Ỹ1, Ỹ2), D0 = {max(|Ỹ1|, |Ỹ2|) >

λ or Ỹ 2
1 +Ỹ 2

2 −2h0Ỹ1Ỹ2 > 2λ2(1−h2
0)}, D1 = {|Ỹ1| < λ , Ỹ1 < Ỹ2 or |Ỹ2−h0Ỹ1| > λ

√
1− h2

0},

D21 = {Ỹ2 − h0Ỹ1 < λ
√

1− h2
0 or Ỹ1 − h0Ỹ2 < λ

√
1− h2

0} and D22 = {Ỹ2 − h0Ỹ1 >

−λ
√

1− h2
0 or Ỹ1 − h0Ỹ2 > λ

√
1− h2

0 or Ỹ
2

1 + Ỹ 2
2 − 2h0Ỹ1Ỹ2 < 2λ2(1 − h2

0)}. Using [31,

76



Lemma 4.3], we have Bc
0 = {(Ỹ1, Ỹ2)′ ∈ D0}, Bc

1 = {(Ỹ1, Ỹ2)′ ∈ D1}, Bc
21) = {(Ỹ1, Ỹ2)′ ∈ D21},

and Bc
22 = {(Ỹ1, Ỹ2)′ ∈ D22}. By direct calculation and Mills’ ratio, it follows that for all

µ ∈ Θp(τp),

I = Lp · (P (N(0, 1) > λ) + P (χ2
2 > 2λ2)) = Lp · p−q, (.2)

II ≤ Lp · P (N((τp, h0τp)
′, H) ∈ D1) = Lp · p−ϑ−min[(

√
r−√q)2,(1−h0)r/2,q], (.3)

and when β1 = τp and β2 = 0, the equality holds in (.3). At the same time, note that over

the event A21, the worst case scenario, is where β1 = β2 = τp. In such a case, (Ỹ1, Ỹ2)′ ∼

N(((1 + h0)τp, (1 + h0)τp)
′, H). Combining this with Mills’ ratio, it follows that for all

µ ∈ Θp(τp),

P (A21 ∩Bc
21) = P ((Ỹ1, Ỹ2)′ ∈ D21) ≤ Lp · p−2ϑ−(

√
r(1−h20)−√q)2+ , (.4)

and the equality holds when β1 = β2 = τp. Similarly, note that over the event A22, in

the worst case scenario, β1 = −β2 = τp. In such a case, (Ỹ1, Ỹ2)′ ∼ N(((1 − h0)τp,−(1 −

h0)τp)
′, H). Combining this with Mills’ ratio, it follows that for all µ ∈ Θp(τp),

P (A22 ∩Bc
22) = P ((Ỹ1, Ỹ2)′ ∈ D22) ≤ Lp · p−2ϑ−min([(

√
r(1−h20)−√q)+]2,2{[

√
r(1−h0)−√q]+}2), (.5)

and the equality holds when β1 = −β2 = τp. Inserting (.2)-(.5) into (.1) gives the claim.

A.2 PROOFS OF THE RESULTS IN CHAPTER 3

A.2.1 Proof of Theorem 3.2.1

The goal of this section is to find `0 = p1−δ0 and a constant g of a Lp level, s.t.

P ( there are no more than
`0

g
signals ) = o(p−1).

We want to find the smallest δ0. We will only assume VS ≥ 0 for any subgraph S.
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More specifically, we want to find `0 and g such that

P ( there are no more than
`0

g
signals ) =

1

Zp(η)

∑
|S|≤`0/g

exp (−ηVS) = o(p−1)

It is obvious that
1

Zp(η)

∑
|S|≤`0/g

exp (−ηVS) ≤ 1

Zp(η)

∑
|S|≤`0/g

1.

The right hand side can be written as 1
Zp(η)

∑`0/g
j=0

(
p
j

)
whose upper bound is `0

g

(
p

`0/g

)
. Now

we have

P ( there are no more than
`0

g
signals ) ≤ `0

gZp(η)

(
p

`0/g

)
The following lemma is Lemma 1.1 in [21],

Lemma A.2.1. Fix a sufficiently large p and 1 ≤ K < p and suppose G = (V,E) is a

K-sparse graph. There is a constant C > 0 such that the graph decomposes into at most

CK log(p) different disjoint subsets, where in each subset, there is no edge between any pair

of nodes.

By the above lemma, we can find a constant C > 0 such that

1
Zp(η)

(
p/(CK log(p))

`0

)
exp (−`0ϑ log(p)) ≤ P ( exactly `0 independent signals exist ) ≤ 1

So it is enough to show(
p

`0/g

)
≤ g

`0p

(
p/(CK log(p)

`0

)
exp

(
−`0ϑ log(p)

)

for a certain range of δ0 and g. Apply `0 = p1−δ0 to the inequality and apply Stirling’s

approximation, we have

p1−δ0

{
log(p)[δ0(1− 1/g)− ϑ] + (1 + log(g))/g + log(CK log(p))− 1/(CK log(p))

}
+o(p1−2δ0) + Lp ≥ 0

Hence it is equivalent to show

δ0(1− 1/g)− ϑ+
1

log(p)
[1/g + log(g)/g + log(CK log(p))− 1/(CK log(p))] ≥ 0,
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which can be rewrote as

δ0 ≥ ϑ+

(
ϑ

g − 1
− g log(CK log(p) + log(g) + 1

(g − 1) log(p)
+

g

C(g − 1)K log2(p)

)
.

If g is bounded, then δ0 ≥ ϑ
1−1/g

+ o(1). If g →∞ as p→∞, then δ0 ≥ ϑ+ o(1). Therefore,

the minimal δ0 is δ0 = ϑ. We can choose any g ≥ CK log(p), or just let g = CK log(p) for

simplicity. Finally, we conclude

P ( there are no more than
p1−ϑ

CK log(p)
signals ) = o(p−1).

If a node Ik is a signal, it has to be in a cluster. Hence we have

P (Ik = 1) =

p∑
j=1

P (Ik is a signal in a cluster with length j) (.6)

Each term on the right hand side can be further decomposed as

P (Ik is in a cluster of j nodes) =
∑

k∈S,|S|=j,S is connected

P (S is a cluster ). (.7)

The number of items on the right hand side of (.7) is well controlled by the following lemma

proved in [23]

Lemma A.2.2. In a K sparse graph, fix a node Ik, the number of the connected graphs that

contain Ik and have ` nodes is at most (eK)`−1.

What is left is to control each item on the right hand side of (.7), and the sum is thus

controlled.

Consider a node Ik in the Ising model, and assume this node is in a cluster S of j signals,

where j ≥ d. we have

P (S is a cluster ) ≤
exp

(
−1TSΩ1Sϑ log(p)

)
1 + exp

(
−1TSΩ1Sϑ log(p)

) ,

and an upper bound of the right hand side is exp

(
−[(j − d)ρ+ δ]ϑ log(p)

)
. Apply this and

Lemma A.2.2 to (.7), and we have, for j ≥ d

P (Ik is in a cluster of j nodes) ≤ p−δϑ(eK)d−1[eKp−ρϑ]j−d (.8)
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Similarly, for 1 ≤ j < d, we have

P (Ik is in a cluster of j nodes) ≤ p−δϑ(eK)j−1

Combine the above two with (.6), and we have

P (Ik = 1) ≤ p−δϑ(eK)d + p−δϑ(eK)d−1

p∑
j=d

Kj−d[eKp−ρϑ]j−d

When ρ > log(K)+1
ϑ log(p)

, eKp−ρϑ < 1. Then we can have

P (Ik = 1) ≤ (eK)d · p−δϑ.

It holds for any nodes in an Ising model. Hence

sp =

p∑
k=1

P (Ik = 1) ≤ (eK)d · p1−δϑ

When d � log(L∗p),

sp ≤ Lp · p1−δϑ

where Lp and L∗p are multi-log(p) terms. Especially, when d = 1,

sp ≤ O(Lp · p1−ϑ)

Our strategy here is similar to that of the proof of Lemma ??, we have

P (there exist a cluster longer than `) ≤
p∑

k=1

P (Ik is in a cluster longer than `) (.9)

and the right hand side can be further decomposed as

P (Ik is in a cluster longer than `) =

p∑
j=`+1

P (Ik is a signal in a cluster with length j) (.10)

We only need to control each item on the right hand side of (.10).

Apply (.8) to (.10), and we have

P (Ik is a signal in a cluster with length longer than `) ≤
p∑

j=`+1

p−δϑ(eK)d−1[eKp−ρϑ]j−d
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When ρ > log(K)+1
ϑ log(p)

, we have eKp−ρϑ < 1. Then

P (Ik is a signal in a cluster with length longer than `) ≤ Lp · p−δϑ(eK)d−1[eKp−ρϑ]`−d

Set the right hand side to be o(Lp · p−2), and we found it is satisfied when

` ≥ 2− δϑ+ ρϑd

ρϑ+ log(ek)/ log(p)

log(ek)/ log(p) = o(1), hence a simplified version of the lower bound is

` ≥ 2− δϑ
ρϑ

+ d (.11)

Note that (.11) does not depend on the specific node index k. Applying (.11) to (.9) concludes

the proof.

A.2.2 Proof of Theorem 3.2.2

We start at (3.10), and direct calculation gives

ρ(S0, S1, βS0 , βS1 , q) = min

[
VS0ϑ+ q, VS1 + (

√
ωr −√q)2

+

]
.

From this, it is easy to find the optimal choice of q is

q =

(√
ωr

2
+
ϑ(VS1 − VS0)

2
√
ωr

)2

+

.

When q is optimal, the risk is minimal, and ρ(S0, S1, βS0 , βS1 , q) = ρ(S0, S1, βS0 , βS1). Hence

the minimax risk for given S0, S1, βS0 and βS1 is Lp · p−ρ(S0,S1,βS0 ,βS1 ) where

ρ(S0, S1, βS0 , βS1) = VS0ϑ+

(
√
ωr
2

+
ϑ(VS1−VS0 )

2
√
ωr

)2

+

= ϑmax(VS0 , VS1) +

(
√
ωr
2
− ϑ|VS1−VS0 |

2
√
ωr

)2

+

Worst case scenario requires to minimize ρ(S0, S1, βS0 , βS1) over (S0, S1, βS0 , βS1). We

minimize it over (βS0 , βS1) for given S0 and S1 first, and then minimize over (S0, S1). Obvi-

ously, ρ(S0, S1, βS0 , βS1) is minimized when

ω =| VS0 − VS1 | ϑ/r,

81



and as a function of ω, ρ(S0, S1, βS0 , βS1) is nondecreasing. Let E = S0

⋂
S1 and D = S \E.

By the definition of ω, we have

ω =
1

τ 2

[∑
i∈D

(βS1(i)− βS0(i))
2 +

∑
i∈E

(βS1(i)− βS0(i))
2

]
≥ 1

τ 2
[
∑
i∈D

(βS1(i)− βS0(i))
2 ≥ |D|.

Hence the worst-case-scenario choice of ω is

ω = max[| VS0 − VS1 | ϑ/r, |D|],

and the minimax risk of the hypothesis testing problem (3.9) can be written as Lp · p−ρ(S0,S1)

where

ρ(S0, S1) ≡ minuS0 ,uS1∈Θp(τp)[ρ(S0, S1, βS0 , βS1)] = ϑmax(VS0 , VS1) + 1
4

(√
|D|r − ϑ|VS1−VS0 |√

|D|r

)2

+

.

(.12)

Hence it only contributes to the Hamming distance by Lp · p−ρ(S0,S1).

The only issue left is how to define the range of (S0, S1) that are necessary to be con-

sidered. First of all, since we are considering the local risk at the node j, we only need

to consider those such that (S0, S1). Second, if S is not connected, we can only consider

its component that contains node j. Hence we only need to consider those (S0, S1) such

that S0 ∪ S1 is connected. At the last, we assume S = S0 ∪ S1 and (S0, S1) are signals in

the current model and the tempered model, respectively. Obviously, at least in one of the

current and the tempered models, there are at least |S|/2 signals.

The following lemma shows that because of this, |S| is small except for a negligible

probability.

Lemma A.2.3. Assume b is a realization of Ising Model (3.2), and bS stands for its coordi-

nates in subgraph S. Also assume the assumptions of Lemma.?? hold. For a finite number

a > 1, and `c = 2−δϑ
ρϑ

+ d, there is no connected subgraph S satisfies both |S| ≥ a`c and

|bS|0 > |S|/a, except a probability of o(p−1).
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Since S = S0

⋃
S1, immediately we know |S| ≤ |S0| + |S1|. In Lemma A.2.3, set a > 2.

Thus for |S| > a`c, we have |S0| < |S|/2 in the current model and |S1| < |S|/2 in the

tampered model, except a probability of o(p−1). This contradicts with |S| ≤ |S0| + |S1|,

hence |S| ≤ 2`c, except a probability of o(p−1). This concludes the definition of Aj.

Easy to check |Aj| ≤ 2(2ek)2`c which is at most a Lp term. Then we can write the

minimax “local risk” at the node j as Lp · p−ρ
∗
j where

ρ∗j = ρ∗j(r, ϑ,Ω) = min
(S0,S1)∈Aj

{ρ(S0, S1)}.

Finally, summing up these local risks of the p nodes yields the universal lower bound of the

Hamming distance

inf
β̂
{Hammp(ϑ,Ω, r, β̂)} ≥ Lp ·

p∑
j=1

p−ρ
∗
j = Hamm∗p(ϑ, u,Ω).

A.2.3 Proof of Theorem 3.2.3

To recap.

ρ∗j = ϑmax(VS0 , VS1) +
1

4

(√
|D|r − ϑ | VS1 − VS0 |√

|D|r

)2

+

and

ρH = ϑsp +
1

4
(
√
r − ϑsp√

r
)2
+.

We only need to find the conditions that

ϑmax(VS0 , VS1) +
1

4

(√
|D|r − ϑ | VS1 − VS0 |√

|D|r

)2

+

≥ ϑsp +
1

4
(
√
r − ϑsp√

r
)2
+. (.13)

When r ≤ ϑsp, the right hand side of (.13) is ϑsp, which is in the non-recovery region of hard

thresholding. This is the uninteresting case. In the following, we focus on the case where

r > ϑsp. We consider the case of r ≤ ϑ|VS1−VS0 |
|D| , and the case of r >

ϑ|VS1−VS0 |
|D| separately.

(.13) holds iff
r

4
+
ϑsp
2

+
ϑ2
sp

4r
< ϑmax(V0, V1).

For given (ϑ, ϑsp), the above holds when

r < (
√
ϑmax(V0, V1) +

√
ϑmax(V0, V1)− ϑsp)2.
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It is easy to check that the right hand side of the above is larger than
ϑ|VS1−VS0 |
|D| . Hence in

this case, what is need is only ϑsp < r ≤ ϑ|VS1−VS0 |
|D| .

(.13) holds iff

ϑmax(VS0 , VS1) +
1

4

(√
|D|r − ϑ | VS1 − VS0 |√

|D|r

)2

≥ ϑsp +
1

4
(
√
r − ϑsp√

r
)2.

The above holds iff

|D|(|D| − 1)r2 + 2r|D|[ϑ(V1 + V0)− ϑsp] + ϑ2(V1 − V0)2 − |D|ϑ2
sp > 0 (.14)

When |D| = 1, (.14) holds iff ϑ(V1 + V0) > ϑsp and r >
ϑ2sp−ϑ2(V0−V1)2

2[ϑ(V0+V1)−ϑsp]
. When |D| > 1, the

left hand side of (.14) increases monotonically with r for r > ϑsp−ϑ(V0+V1)

|D|−1
, hence it does for

r > ϑsp. When r = ϑsp, (.14) holds, hence it holds for all r > ϑsp.

A.2.4 Proof of Corollary 3.2.1

For each node j,

P (bj = 1) = P (b1 = . . . = bp = 1) +

j∑
iL=2

p−1∑
iR=j

P (biL = . . . = biR = 1, biL−1 = biR+1 = 0)

An upper bound of the right hand side is

j∑
iL=1

p∑
iR=j

exp

[
−ϑ log(p)

(
iR∑
i=iL

bi − 2θ1

iR−1∑
i=iL,i odd

bibi+1 − 2θ2

iR−1∑
i=iL,i even

bibi+1

)]

We can further simply it as

p−ϑ + p−ϑ(2−2θ1) + p−ϑ(2−2θ2)

(1− p−ϑ(1−θ1−θ2))2

and it is Lp · p−ϑ(2−2θ1).

On the other hand, without losing generality, let j be an odd number. We then have

P (bj = bj+1 = 1|bj−1 = bj+2 = 0)P (bj−1 = bj+2 = 0) ≥ p−ϑ(2−2θ1)

p−ϑ(2−2θ1)+2p−ϑ+1
(1− 2Lp · p−ϑ(2−2θ1))

and it is also of the level of Lp · p−ϑ(2−2θ1). Hence P (bj = 1) = Lp · p−ϑ(2−2θ1), and the sparse

level is Lp · p1−ϑ(2−2θ1).
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For a specific integer `, an upper bound of

P (bj+1 = . . . = bj+` = 1, bj = bj+`+1 = 0)

is

exp

[
−ϑ log(p)

(
j+`∑
i=j+1

bi − 2θ1

j+`−1∑
i=j+1,i odd

bibi+1 − 2θ2

j+`−1∑
i=j+1,i even

bibi+1

)]
.

A simplified upper bound of it is Lp · p−2ϑ[1−θ1+(`−2)(1−θ1−θ2)]. Hence

P (node j is in a cluster longer than d) =
∑p

`=d Lp · p−2ϑ[1−θ1+(`−2)(1−θ1−θ2)] = Lp·p−2ϑ[1−θ1+(d−2)(1−θ1−θ2)]

1−Lp·p−ϑ(1−θ1−θ2)

We set the above probability to be O(Lp · p−2), and we get d = 2(1−ϑθ2)
ϑ(1−θ1−θ2)

. For this d,

P ( there exists a cluster longer than d) = O(Lp · p−1)

A.2.5 Proof of Corollary 3.2.2

In this proof, we compare ρ(S0, S1) with ρ(∅, {j}) and ρ(∅, {j, j+ 1}), and eliminate (S0, S1)

that obviously produce a larger rate. Then we compare the (S0, S1) pairs left and define the

optimal rate in the worst case scenario.

We first compare ρ(∅, {j}) and ρ(S0, S1). In (.12), let (S0, S1) = (∅, {j}), and we have

ρ(∅, {j}) = ϑ+
1

4
(
√
r − ϑ√

r
)2
+.

When r ≤ ϑ, ρ(∅, {j}) ≤ ρ(S0, S1) implies ϑ ≤ ϑmax(V0, V1). Hence we only need

max(V0, V1) ≥ 1. When r > ϑ, apply the fact that

|V0 − V1| ≤ |1′S0
⋃
S1

ΩS0
⋃
S11S0

⋃
S1 − 1′S0

⋂
S1

ΩS0
⋂
S11S0

⋂
S1 | ≤ |D|

to
√
r − ϑ√

r
≤
√
|D|r − ϑ|V0 − V1|√

|D|r
,

and we can find that it holds for all r > ϑ. Hence ρ(∅, {j}) ≤ ρ(S0, S1) if max(V0, V1) ≥ 1.
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We then compare ρ(∅, {j, j + 1}) and ρ(S0, S1). Here

ρ(∅, {j, j + 1}) = 2ϑ(1− θ1) +
1

2
(
√
r − ϑ√

r
)2
+.

We only need to consider (S0, S1) pairs where max(V0, V1) < 1. Note that in this tri-diagonal

example, if |S0| is an odd number, then V0 ≥ 1. Thus we only need to consider those (S0, S1)

pairs where |S0| and |S1| are both even numbers. In such cases, for i = 0, 1, Vi has a form of

2ti(1− θ1) + 2(|Si|/2− ti)(1− θ1 − θ2) where si is the number of components in Si. Thus,

|V0 − V1|
|D|

=
|2(t0 − t1)(1− θ1) + 2(|S0|/2− |S1|/2− t0 + t1)(1− θ1 − θ2)|

|D|
≤ 1− θ1,

and we can get

(
√
|D|r − ϑ|V0 − V1|√

|D|r
)2 ≥ |D|(

√
r − (1− θ1)ϑ/

√
r)2 ≥ 2(

√
r − (1− θ1)ϑ/

√
r)2.

Combine this with the fact that ϑmax(V0, V1) > 2ϑ(1− θ1), we can find that for all (S0, S1)

such that max(V0, V1) < 1,

ρ(S1, S0) ≥ ρ(∅, {j, j + 1}).

To summarize, for any pair of (r, ϑ), there is

ρ∗1d = min(ρ(∅, {j}), ρ(∅, {j, j + 1})).

We now compare ρ(∅, {j}) and ρ(∅, {j, j + 1}). When r/ϑ ≤ 1 − θ1, ρ(∅, {j, j + 1}) =

2(1− θ1)ϑ < ϑ = ρ(∅, {j}). When 1− θ1 < r/ϑ ≤ 1, ρ(∅, {j}) ≤ ρ(∅, {j, j + 1}) is equivalent

to

ϑ ≤ (1− θ1)ϑ+
r

2
+

(1− θ1)2ϑ2

2r
.

It holds when
r

ϑ
≥ θ1 +

√
2θ1 − 1.

Thus it holds when θ1 +
√

2θ1 − 1 ≤ r
ϑ
≤ 1, which is not empty iff θ1 ≤ 2 −

√
2. When

r/ϑ > 1, ρ(∅, {j}) ≤ ρ(∅, {j, j + 1}) is equivalent to

ϑ

2
+
r

4
+
ϑ2

4r
≤ (1− θ1)ϑ+

r

2
+

(1− θ1)2ϑ2

2r
.
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It holds when
r

ϑ
≥ (2 +

√
2)θ1 − 1

When θ1 > 2−
√

2, (2 +
√

2)θ1 − 1 > 1. Summarize the above 2 cases and the optimal rate

in the tri-diagonal case follows.

The optimal rate of hard thresholding is

ρH = 2(1− θ1)ϑ+
1

4
(
√
r − 2(1− θ1)ϑ/

√
r)2

+.

Compare ρH with ρ(∅, {j}) and ρ(∅, {j, j+ 1}). It is trivial to see that ρH < ρ(∅, {j}) for all

(r, ϑ) and that ρH < ρ(∅, {j, j + 1}) for r/ϑ > 1− θ1. Since ρ∗1d = min(ρ(∅, {j}), ρ(∅, {j, j +

1})), we immediately obtain ρH < ρ∗1d for r/ϑ > 1− θ1.

A.2.6 Proof of Lemma 3.3.1

For each test in the screening step, use p−II to denote its Type II error. We want

p−II = P (TE,B ≤ q(E,B)|Dj|τ 2|H1 is true.)P (H1 is true.) ≤ Lp ·min
i∈D

(p−ρ
∗
i ),

Define

ρ∗D = max
i∈D

(ρi),

we then only need

II = VBϑ+ |D|r(1−
√
q(E,B))2 ≥ ρ∗D.

Solving the above inequality gives the upper bound of the tuning parameters

q(E,B) ≤
(

1−

√
(ρ∗D − VBϑ)+

|Dj|r

)2

= q∗(E,B),

and the upper bound of the Type II error of this single test is

Lp ·min
i∈D

(p−ρ
∗
i ) = Lp · p−ρ

∗
D .

Assume there are M tests in the screening step, we know M = Lp ·p, then there must be

M∑
j=1

p−IIj ≤ Lp ·
M∑
j=1

p−ρ
∗
D ≤ Lp ·

p∑
i=1

p−ρ
∗
i .

It holds for any

0 < q(E,B) ≤ q∗(E,B)
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A.2.7 Proof of Lemma 3.3.2

Ŝ is the set of the retained nodes after multivariate screening. Follow the first part(before

formula(A.22)) of the proof of Lemma.2.4 in [31] it is sufficient to show that we can find a

sufficient large integer m, s.t. for a fixed connected subgraph S0 with |S0| = m,

P (S0 ⊂ Ŝ) = o(p−2(eK)−m) = o(p−δ0),

where δ0 = 2 + m log(eK)
log(p)

.

Without losing generality, assume S0 ⊂ Ŝ and there is no other connected subgraph S∗0 ,

s.t. S0 ⊂ S∗0 ⊂ Ŝ(or say, S0 is a component of Ŝ). S0 ⊂ Ŝ only if there is a sequence of

hypothesis tests

H0j : βi = 0, i ∈ Dj and βi 6= 0, i ∈ Ej against H1j : βi 6= 0, i ∈ Bj, for j = 1, ..., J

where Bj is a connected subgraph of G, Ŝj is the set of chosen nodes after the first j − 1

tests, Ej = Bj

⋂
Ŝj, Dj = Bj \ Ej, E1 = ∅ and S0 =

⋃J
j=1 Bj =

⋃J
j=1 Dj. For each test, we

have

TEj ,Bj > q(Ej, Bj)|Dj|τ 2.

Then, after these tests, we can find S0 as a component of Ŝ.

Since we only care about the order of m, and intuitively, there should be m > `c, it does

not matter if we assume m > a`c for a constant a. Use Lemma.A.2.3, for any connected

subgraph S with |S| = m > a`c, there are at most m/a signals. If we can find a sufficiently

large constant a, such that in each component of Ŝ, there are at least [m
a

] signals, then

components longer than a`c do not exist.

We can split S0 into two sets, SU and SM , which are the sets of the nodes that are

added in univariate screening and multivariate screening, respectively. Set m1 = |SU | and

m2 = |SM |, then m1 + m2 = m, and the m1 tests are univariate screenings. Denote the

tuning parameter of the univariate screening as qu, obviously qu ≥ q∗. The number of noise

that univariate screening retains in S0 is at most m · p−qu . Obviously, univariate screening

can find m/a signals at most, hence

m1 ≤ m/a+m · p−qu and m2 ≥ m(1− a−1) +m · p−qu
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We remark here that for a constant a > 1 and sufficiently large m, SM is not empty.

In set SM , since each node fails in the univariate screening, we have Y 2
i ≤ quτ

2 for i ∈ SM .

Direct calculation gives

|βi| ≤ τ
√
qu + |zi|, zi ∼ N(0, 1) for i ∈ SM

By mill’s ratio, except a probability of o(p−2), |zi| ≤ 2
√

log(p). Let τu = τ
√
qu + 2

√
log(p),

then except a probability of o(p−1), for all i ∈ SM , |βi| ≤ τu. When τu < τ , this says there

is essentially no signal left after univariate screening, But we can always find qu ∈ (0, 1),

s.t.τu > τ .

By the definition of q∗, we have

TEj ,Bj > q(Ej, Bj)|Dj|τ 2 > q∗|Dj|τ 2,

therefore

TM =
∑
i∈SM

Y 2
i =

T∑
j=m1+1

TEj ,Bj >
T∑

j=m1+1

q∗|Dj|τ 2 = q∗m2τ
2.

The distribution of TM is

TM ∼ χ2
m2

(‖ βM ‖2
2),

where βM is composed with the coordinates of β in SM . The support of βM is at most m/a,

hence

‖ βM ‖2
2≤ mτ 2

u/a.

By the properties of non-central χ2 distribution, the survival probability increase with the

degree of freedom and the non-central parameter, we have

P (TM ≥ q∗m2τ
2 | TM ∼ χ2

|SM |(‖ βM ‖
2
2)) ≤ P (TM ≥ q∗m2τ

2 | TM ∼ χ2
m(mτ 2

u/a)),

For large m, m2 ≥ m(1− a−1), hence

P (TM ≥ q∗m2τ
2 | TM ∼ χ2

m(mτ 2
u/a)) ≤ P (TM ≥ q∗mτ 2(1− a−1) | TM ∼ χ2

m(mτ 2
u/a))

By the properties of non-central χ2 and the mill’s ratio,

P (TM ≥ q∗mτ 2(1− a−1) | TM ∼ χ2
m(mτ 2

u/a)) = Lp · exp
{
−m

2a
(τ
√
q∗(a− 1)− τu)2

+

}
.
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Therefore, we only need to find (a,m) such that

m

2a
(τ
√
q∗(a− 1)− τu)2

+ ≥ δ0 = 2 +
m log(eK)

log(p)
(.15)

Let τ
√
q∗(a− 1)− τu > 0, and we get

a > 1 +
1

q∗
(
√
qu +

√
2/r)2.

For each a that satisfies the above inequality, (.15) implies

m ≥ 2a

[
√
r(
√
q∗(a− 1)−√qu)−

√
2]2
.

A.2.8 Proof of Lemma A.2.3

Let ma > 0, by Lemma A.2.2,

P (there is a subgraph S, s.t. |S| ≥ ma, |bS| > |S|/a) ≤
∑p

m≥ma p(eK)mP (|S| = m and |bS| > m/a).

For a subgraph S with m nodes, there is

P (|bS| = `) ≤
(
m

`

)
exp−ϑ log(p)[ρ(`− d) + δ].

Combine the above two, only need to prove
p∑

m≥ma

p(eK)m
m∑

`=[m
a

]+1

(
m

`

)
exp−ϑ log(p)[ρ(`− d) + δ] = o(p−1)

for ma = a`c.

When log(K)
log(p)

� ρ, for constant a, 2eKp−ρϑ/a < 1. Then the left hand side of the above

equation is simplified as

p1+dρϑ−δϑ
p∑

m=ma+1

(2eKp−ρϑ/a)m = Lp · p1+dρϑ−δϑ(2eKp−ρϑ/a)ma .

Thus we only need to prove that for ma = a`c,

ma[
ρϑ

a
log(p)− log(2eK)]− (1 + dρϑ− δϑ) log(p) ≥ log(p).

Finally we get

ma ≥
2 + dρϑ− δϑ

ρϑ/a− log(2eK)/ log(p)
= a`c + o(1).
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