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PARTITIONED METHODS FOR COUPLED FLUID FLOW PROBLEMS

Hoang A. Tran, PhD

University of Pittsburgh, 2013

Many flow problems in engineering and technology are coupled in their nature. Plenty of

turbulent flows are solved by legacy codes or by ones written by a team of programmers with

great complexity. As knowledge of turbulent flows expands and new models are introduced,

implementation of modern approaches in legacy codes and increasing their accuracy are of

great concern. On the other hand, industrial flow models normally involve multi-physical

process or multi-domains. Given the different nature of the physical processes of each sub-

problem, they may require different meshes, time steps and methods. There is a natural

desire to uncouple and solve such systems by solving each subphysics problem, to reduce the

technical complexity and allow the use of optimized legacy sub-problems’ codes.

The objective of this work is the development, analysis and validation of new modular,

uncoupling algorithms for some coupled flow models, addressing both of the above prob-

lems. Particularly, this thesis studies: i) explicitly uncoupling algorithm for implementation

of variational multiscale approach in legacy turbulence codes, ii) partitioned time stepping

methods for magnetohydrodynamics flows, and iii) partitioned time stepping methods for

groundwater-surface water flows. For each direction, we give comprehensive analysis of

stability and derive optimal error estimates of our proposed methods. We discuss the ad-

vantages and limitations of uncoupling methods compared with monolithic methods, where

the globally coupled problems are assembled and solved in one step. Numerical experiments

are performed to verify the theoretical results.
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1.0 INTRODUCTION

The flow of liquids and gases occurs in many processes in nature and plays an important role

in science and industry. Obtaining accurate, efficient and reliable prediction of quantities in

fluid flows is crucial to understand and predict the related real-world phenomena. Many fluid

flows in engineering and technology are solved by complex codes or coupled to other physical

effects. The ability of fast refining these models when understanding is improved and using

the legacy and best codes for subprocesses poses an important modeling problem. This

thesis involves the development and testing of new numerical methods which help address

the above difficulty in the modeling and simulation of some complex flows. In particular, we

have studied

• new variational multiscale algorithms for implementation of modern turbulence models

in legacy codes,

• partitioned methods to uncouple flows with electricity and magnetism in magnetohydro-

dynamics,

• partitioned methods for groundwater - surface water models.

The following sections will describe each of the topics in details.

1.1 EXPLICITLY UNCOUPLED VARIATIONAL MULTISCALE

STABILIZATION OF FLUID FLOWS

Numerical simulation of turbulent flows generally requires extremely fine mesh size due to

small characteristic size of these structures. This results in solving large systems of equations

1



and large amounts of computing time and power. Clearly, a direct numerical simulation of

many interesting and important flows is not practically possible at the present time. One

alternative promising approach is large eddy simulation (LES). LES is motivated by the

physical idea that the dynamics of the large and small structures of turbulent flows are quite

different. The large structures (large eddies) evolve deterministically; in the meantime, the

small eddies are sensitive on perturbations of the problem data. Their random character

does, however, have universal features so that there is hope that their mean effects on the

large eddies can be modelled. The goal of LES thus consists of accurately resolving the large

scale features and modeling the effect of missing, unresolved scales on resolved scales. The

dominant LES model over the years is Smagorinsky eddy viscosity model. This approach

however is unable to successfully separate between large and small scales.

Introduced by Hughes in [61] and used first in turbulence modeling in [62], Variational

Multiscale (VMS) method has proven to be a remarkably successful interpretation of the

LES concept within a variational formulation of the Navier-Stokes equations. This method

uses variational projection to differentiate scales and confines modeling to the small scale

equation rather than all scales, overcoming many shortcomings of classical LES. Given the

success of the VMS approach, there is a natural desire to introduce a VMS treatment of

turbulence within legacy codes, in complex multi-physics applications and in other settings

where reprogramming a new method from scratch is daunting. We propose, analyze and

test herein (and also in [78]) a method to induce a VMS treatment of turbulence in an

existing NSE discretization through an additional, modular and uncoupled projection step.

An uncoupled method generally cannot be as accurate as a fully coupled one. We find in

our analysis and first tests however that the uncoupled VMS method studied is consistent

to a high level with the fully coupled implementation of the same VMS realization and not

appreciably less accurate.

To introduce ideas, suppressing spatial discretization and the pressure, write the NSE as

∂u

∂t
+NSE(u) = f.

The algorithm we developed adds a modular, uncoupled, projection-like Step 2 to a standard

method, Step 1:

2



Step 1: Call for NSE solver to compute wn+1. Given un ' u(tn), for the Crank-Nicholson

method:

wn+1 − un

∆t
+NSE

(
wn+1 + un

2

)
=
fn+1 + fn

2
.

Step 2: Postprocess wn+1 to obtain un+1: un+1 = Πwn+1.

Eliminating Step 2 gives

un+1 − un

∆t
+NSE

(
wn+1 + un

2

)
+

1

∆t
(wn+1 −Πwn+1) =

fn+1 + fn

2
. (1.1)

We defined the operator Π in Step 2 so that the extra, bold term in (1.1) is exactly a VMS

eddy viscosity term acting on marginally resolved scales:

un+1 = Πwn+1 satisfies, for all v in the discrete velocity space,

(Extra Term, v) =
1

∆t
(wn+1 − un+1, v) = (νT (x, h) [I − P ]∇w

n+1 + un+1

2
, [I − P ]∇v),

where νT is the eddy viscosity coefficient and is assumed to be a known, positive, constant

elementwise function. Also P is an L2 projection that defines the VMS velocity gradient av-

erages (so [I − P ] defines the fluctuations). The exact formulation of Step 2 does not depend

on the time discretization used in Step 1. Therefore, the projection based stabilization in

Step 2 is an uncoupled, independent second step and amenable to implementation in legacy

codes.

The explicitly uncoupled variant of the VMS method presented in this thesis is based

on ideas from filter based postprocessing in [44] and [77]. High Re flows have many diffi-

culties including convection dominance and vortex stretching. The former can be studied

in linear problems and is much better understood: many stabilized methods are available

for convection dominance. In the context herein, these would be included in Step 1. Tur-

bulence models, such as VMS, are directed at nonlinear behavior such as error stretching,

backscatter (see [13]), equipartition of energy due to truncation of the energy cascade and

so on. Projection based VMS methods give some stabilization for convection dominance,

see [72]; they are known to reduce but do not eliminate oscillations near layers, [72, 73].

Properly tuned to mimic energy loss due to breakdown of eddies from resolved to unresolved

3



scales, their added dissipation eliminates equipartition. It also helps control error growth

from smaller to larger scales due to vortex stretching. Backscatter is a more complex issue.

Within the VMS framework, Ehuh in (2.5) below is the approximation to u and uh − Ehuh
is the model for u′. Thus, the VMS method we study allows for backscatter from u′ to u but

not from completely unresolved scale to u′.

There is a wide range of methods adding numerical dissipation on all scales of a flow,

like e.g. the residual based stabilization techniques [17]. One can find an overview in [106].

In LES modeling the aim is to simulate the large scales of a flow accurately, e.g., [14, 67]. In

[61, 51] and [62], the VMS approach to LES was developed. In VMS modeling the velocity

is decomposed into means, defined to be that which is resolvable on the given mesh, and the

fluctuations being everything else. Only the equation for fluctuations is approximated and

the resulting fluctuation model inserted exactly into the mean equation. Several fluctuation

models have been used such as defining fluctuations using either a pair of FEM spaces of

increasing local polynomial degree or with the same polynomial degree on a finer mesh (the

cases considered herein); see [75], and [49, 68] for other work with these choices. The most

common choice (that is not considered herein) is to define fluctuations using bubble functions

which connects this development of the VMS idea with SUPG and other stabilized methods;

see Bensow and Larson [13] and Hsu, Bazilev, Calo, Tezduyar and Hughes [58] for recent

and interesting development of this VMS realization.

1.2 PARTITIONED TIME STEPPING METHODS FOR

MAGNETOHYDRODYNAMIC FLOWS

The MHD equations describe the motion of electrically conducting, incompressible flows in

the presence of a magnetic field. If an electrically conducting fluid moves in a magnetic

field, the magnetic field exerts forces which may substantially modify the flow. Conversely,

the flow itself gives rise to a second, induced field and thus modifies the magnetic field.

Initiated by Alfven in 1942 [1], MHD models occur in astrophysics, geophysics as well as

engineering. Understanding these flows is central to many important applications, e.g., liquid

4



metal cooling of nuclear reactors [9, 55, 111], sea water propulsion [87], process metallurgy

[34].

The magnetic Reynolds number Rm is an important parameter in MHD, being indicative

of the relative strength of induced magnetic field and imposed magnetic field:

Rm =
Induced field

Applied field
= µσuL.

Here µ is the permeability of free space, σ is the electrical conductivity, u and L are the

characteristic velocity and length scale correspondingly. Large values of velocity and length

scale are unreachable in most industrial and laboratory flows. Consequently, MHD flows

in terrestrial applications typically occur at small magnetic Reynolds number. While the

magnetic field considerably alters the fluid motion, the induced field is usually found to

be negligible by comparison with the imposed field. Neglecting the induced magnetic field

reduces MHD models to the reduced MHD system: Given body force f and external imposed

magnetic field B, find the fluid velocity u, pressure p and electric potential φ such that:

1

N
(
∂u

∂t
+ u · ∇u)− 1

M2
∆u +∇p = f + (B×∇φ+ B× (B× u)) ,

∆φ = ∇ · (u×B), and ∇ · u = 0.

Here M , N are the Hartman number and interaction parameter given by

M = BL

√
σ

ρν
, N = σB2 L

ρu

where B is the characteristic magnetic field, ρ is the density, and ν is the kinematic viscosity,

all assumed constant. Justification of using simplified MHD equations to model MHD flows

in terrestrial applications can be found in [35, 74, 104]. There are several different, almost

equivalent formulations for RMHD. The one we study in this thesis was also considered in

[103, 53, 127].

MHD flows involve different physical processes: the motion of fluid is governed by hy-

drodynamics equations and the electric potential is governed by electrodynamics equations.

Despite the importance of MHD in science and engineering and the large computational expe-

rience, numerical methods for MHD have not been well developed. The results on existence,
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uniqueness and finite element approximation of the steady-state MHD problems were devel-

oped through work in [125] (for two dimensional case), [103] (for small magnetic Reynolds

number case) and [53] (for full MHD flows with perfectly conducting wall condition). In

[92, 93, 84, 94], Meir et. al. studied variational methods and numerical approximation for

solving stationary MHD equations under more physically realistic boundary conditions that

account for the electromagnetic interaction of the fluid with the outside world. For further

discussions on mathematical and numerical analysis of steady-state MHD flows, we refer to

[52, 37].

There are much less works on time-dependent MHD. Schmidt [108] developed a formu-

lation for evolutionary MHD and established the existence of global-in-time weak solutions

via the Galerkin method. To the best of our knowledge, the first paper dealing with time

discretization schemes of MHD problems was of Yuksel and Ingram [127], in which the au-

thors studied the stability and error analysis of the fully coupled, monolithic Crank-Nicolson

method for reduced MHD equations. In [117], Trenchea proposed a method that decouples of

the evolutionary full MHD system in the Elsässer variables. Wilson, Labovsky and Trenchea

developed that result by introducing a high-order accurate deferred correction method, which

also decouples the MHD system, [124].

In this thesis (and also in [79], [80]), we propose two new implicit-explicit partitioned

methods (based on uncoupling physical variables) for solving the evolutionary MHD equa-

tions at small magnetic Reynolds number. The methods we study include a first order,

one step scheme consisting of implicit discretization of the subproblem terms and explicit

discretization of coupling terms.

Algorithm. Given un, pn, φn, find un+1, pn+1, φn+1 satisfying

1

N

(
un+1 − un

∆t
+ un+1 · ∇un+1

)
− 1

M2
∆un+1 +∇pn+1

= fn+1 +
(
B×∇φn + B× (B× un+1)

)
,

∆φn+1 = ∇ · (un ×B) and ∇ · un+1 = 0.

The second scheme we consider employs second order, three level backward differentiation

formulas (BDF2) discretization for the subproblem terms. The coupling terms are treated
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by two step extrapolation in Navier-Stokes equation and by implicit method in Maxwell

equation. Since one needs the updated value of u at current time level to compute φ, this

method is uncoupled but sequential: φn → un+1 → φn+1.

Algorithm. Given un−1,un, pn−1, pn, φn−1, φn, find un+1, pn+1, φn+1 satisfying

1

N

(
3un+1 − 4un + un−1

2∆t
+ un+1 · ∇un+1

)
− 1

M2
∆un+1 +∇pn+1

= fn+1 +
(
B×∇(2φn − φn−1) + B× (B× un+1)

)
,

∆φn+1 = ∇ · (un+1 ×B) and ∇ · un+1 = 0.

We prove that these methods are stable over 0 ≤ t < ∞ and convergent at first and

second order respectively. In particular, we show that our first order partitioned method

is long time stable without needing a restriction on time step size ∆t, although we treat

the coupling terms explicitly. The performance of our methods is compared with that of

monolithic method by numerical tests.

1.3 PARTITIONED TIME STEPPING METHODS FOR THE

EVOLUTIONARY STOKES-DARCY PROBLEMS

Groundwater, forming two-thirds of the world’s fresh water, is vital to human activities.

One serious global problem nowadays is groundwater contamination, which occurs when

man-made pollutants are dissolved in lakes and rivers and get into the groundwater, making

it unsafe and unfit for human use. To predict and control the spread of such contamination

requires the accurate solution of coupling of groundwater flows with surface water flows

(the Stokes-Darcy problem). The essential problems of estimation of the propagation of

pollutants into groundwater are that (i) the different physical processes suggest that codes

optimized for each sub-process need to be used for solution of the coupled problem, (ii) the

large domains plus the need to compute for several turn-over times for reliable statistics

require calculations over long time intervals and (iii) values of some system parameters,

e.g., hydraulic conductivity and specific storage, are frequently very small. To address these
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issues, we study the stability and errors over long time intervals of uncoupled methods for

the fully time dependent Stokes-Darcy problem. We are particularly interested in analyzing

and comparing the performance of the studied methods for small parameters.

In this work (also in [81, 82]), we propose several implicit-explicit based and splitting

based partitioned methods for uncoupling the evolutionary Stokes-Darcy problem. Suppress-

ing technical complexities, write the Stokes-Darcy equation as

∂u

∂t
+ A1u+ Cφ = f,

∂φ

∂t
+ A2φ− CTu = g.

where A1, A2 are symmetric positive definite (self-adjoint, maximal monotone and coercive)

operators. The two equation are linked by exactly skew symmetric coupling. The methods

we study herein include the first order Backward Euler - Forward Euler (BEFE), which

was also studied in [98]: Given un, φn, find un+1, φn+1 satisfying

un+1 − un

∆t
+ A1u

n+1 + Cφn = fn+1,

φn+1 − φn

∆t
+ A2φ

n+1 − CTun = gn+1,

and Backward Euler - Leap Frog (BELF), a new two step partitioned scheme motivated

by the form of the coupling: Given un−1, un, φn−1, φn, find un+1, φn+1 such that

un+1 − un−1

2∆t
+ A1u

n+1 + Cφn = fn+1,

φn+1 − φn−1

2∆t
+ A2φ

n+1 − CTun = gn+1.

We prove the long time (over 0 ≤ t < ∞) stability of both methods and derive an optimal

error estimate that is uniform in time over 0 ≤ t < ∞. For uncoupling a coupled problem,

general experience with partitioned methods suggests that some price is inevitably paid. Our

proposed methods with explicit coupling terms inherit restrictions on time step size ∆t

∆t ≤ C0 min {k, S0} k (1.2)

where S0 is specific storage, k is hydraulic conductivity and C0 is a generic positive constant

independent of mesh size, time step and final time. The values of S0 and k are frequently
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very small, see [11], [42], and in those cases, the dependence indicated in (1.2) becomes

too pessimistic. To overcome this problem, we propose and analyze four novel uncoupling

methods for Stokes-Darcy equations, which have stronger stability properties, using ideas

from splitting methods. These methods include ones stable uniformly in S0 for moderate k

and uniformly in k for moderate S0. They are thus good options when one of the parameters

is small.

The literature on numerical analysis of methods for the Stokes-Darcy coupled problem

has grown extensively since [38], [85]. See [41] for a recent survey and [12], [24], [101],

[102], [107], [123] and [85] for theory of the continuum model. There is less work on the

fully evolutionary Stokes-Darcy problem. One approach is monolithic discretization by an

implicit method followed by iterative solution of the non-symmetric system where subregion

uncoupling is attained by using a domain decomposition preconditioner; see, e.g., [24], [23],

[22], [97], [20], [36], [40], [39], [60], [66], [95], [120]. Partitioned methods allow parallel,

non-iterative uncoupling into one (SPD) Stokes and one (SPD) Darcy system per time step.

The first such partitioned method was studied in 2010 by Mu and Zhu [98]. This has been

followed by an asynchronous (allow different time steps in the two subregions) partitioned

method in [110] and higher order partitioned methods in [21], [83]. In most of these works,

stability and convergence were studied over bounded time intervals 0 ≤ t ≤ T <∞ and the

estimates included eαT multipliers.

Alternate approaches for coupling surface water flows with groundwater flows include

Brinkman one-domain models, Angot [2], Ingram [64], which are a more accurate descrip-

tion of the physical processes. One-domain Brinkman models are also more computationally

expensive. Monolithic quasi-static models (one domain evolutionary and the other assumed

to instantly adjust back to equilibrium) have also been studied, e.g., [26]. While they are

not considered herein in detail, the methods considered also give non-iterative, domain de-

composition schemes for quasi-static models (e.g., set S0 ≡ 0 in (4.7), (4.8) below).

Partitioned methods employ implicit discretizations of the sub-physics/ subdomain prob-

lems and explicit time discretizations of the coupling terms, e.g., [118], [98], [18], [19], [25],

[32], [31], [30]. Thus there is a very strong connection between application-specific parti-

tioned methods and more general IMEX (IMplicit - EXplicit) methods; the latter developed
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in, e.g., [121], [119], [5], [33], [45], [63], [45], [3], [32] and [122]. On the other hand, application-

specific partitioned methods are often motivated by available codes for subproblems, [118].

Examples of partitioned methods include ones designed for fluid-structure interaction [18],

[19], [25], Maxwell’s equations, [122] and atmosphere-ocean coupling, [32], [31]. The idea

used in our CNsplit scheme to compute in parallel two approximations and then average

occurs in the Dyakunov splitting method, e.g., [91], [90], [126], [59].

Long time stable numerical schemes have also been introduced for related problems,

especially for 2D Navier-Stokes equations. For such works, we refer to [116], [48], [115] and

[71].

1.4 ANALYTICAL TOOLS

In this section, we state some well-known results and assumptions which will be utilized in

the analysis throughout this thesis. Let Ω be an open, regular domain in Rd (d = 2 or 3).

We denote the L2(Ω) norm and inner product by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms

and the Sobolev W k
p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk

p
, respectively. For the

semi-norm in W k
p (Ω) we use | · |Wk

p
. Hk is used to represent the Sobolev space W k

2 (Ω), and

‖ · ‖k denotes the norm in Hk. The space H−k denotes the dual space of Hk
0 .

Theorem 1.4.1. (the trace theorem) Let ∂Ω be a graph of a Lipschitz continuous function.

If u ∈ L2(Ω) and ∇u ∈ L2(Ω), then u|∂Ω ∈ L2(∂Ω) and

u|L2(∂Ω) ≤ C‖u‖1/2
(
‖u‖2 + ‖∇u‖2

)1/4
.

Theorem 1.4.2. (the Poincaré inequality) There is a constant C = C(Ω) such that

‖u‖ ≤ C‖∇u‖

for every u ∈ H1
0 (Ω).

Theorem 1.4.3. For any u, v, w ∈ H1
0 (Ω), there is C = C(Ω) such that∣∣∣∣∫

Ω

u · ∇v · wdx
∣∣∣∣ ≤ C

√
‖u‖‖∇u‖‖∇v‖‖∇w‖. (1.3)
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For the proof, see [76].

Lemma 1.4.4. (discrete Grönwall inequality) Let D ≥ 0 and κn, An, Bn, Cn ≥ 0 for any

integer n ≥ 0 and satisfy

AN + ∆t
N∑
n=0

Bn ≤ ∆t
N∑
n=0

κnAn + ∆t
N∑
n=0

Cn +D for N ≥ 0.

Suppose that for all n, ∆tκn < 1, and set gn = (1−∆tκn)−1. Then,

AN + ∆t
N∑
n=0

Bn ≤ exp

(
∆t

N∑
n=0

gnκn

)[
∆t

N∑
n=0

Cn +D

]
for N ≥ 0.

For the details, see, e.g., [57].

1.5 THESIS OUTLINE

This thesis begins in Chapter 2 with a study of an algorithm for implementation of VMS

approach in a legacy turbulence code. A complete stability and convergence analysis of this

method is given in Section 2.3. In Section 2.4 we turn to the problem of actually computing

the operator in Step 2 efficiently. A related VMS method (adding ideas from [3]) which is

slightly less accurate but more efficient is given in Section 2.5. Numerical experiments are

given in Section 2.6.

In Chapter 3, we discuss partitioned methods to uncouple conducting fluid flows with

electricity and magnetism in magnetohydrodynamics. Our schemes are introduced in Section

3.2. We show in Section 3.3 that these formulations have a stable solution for long time

periods. The main convergence results are presented in Theorem 3.4.1. The numerical

experiments in Section 3.5 support these theoretical results.

Chapter 4 will be devoted for uncoupling algorithms for solving groundwater - surface wa-

ter system. Section 4.3 presents two implicit-explicit based partitioned methods for Stokes-

Darcy problem: BEFE and BELF. In Theorem 4.4.1 and 4.4.5, we prove that these methods

are long time and uniformly in time stable. Section 4.5 (particularly, Theorem 4.5.1) gives
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a comprehensive error analysis and Section 4.6 follows with numerical tests which confirm

the theory.

The study on partitioning the groundwater - surface water flow is extended in Chapter

5. We introduce four uncoupling schemes which are more stable in motivating applications

involving small physical parameters. These algorithms are presented in Section 5.2. We

analyze long time stability and derive the associated timestep restrictions in Section 5.3. In

Section 5.4, we give computational experiments to verify the accuracy and stability of our

methods.
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2.0 EXPLICITLY UNCOUPLED VARIATIONAL MULTISCALE

STABILIZATION OF FLUID FLOWS

2.1 METHOD DESCRIPTIONS

In this chapter, we develop a modular, postprocessing method to implement a variational

multiscale method in complex (possibly legacy and possibly laminar) flow codes. Suppressing

the pressure and spatial discretization, suppose the Navier-Stokes equations are written as

∂u

∂t
+N(u) + νAu = f(t) .

Add one uncoupled, modular, projection-like step (Step 2) to the standard Crank-Nicolson

Finite Element Method (Step 1): given un ' u(tn), compute un+1 by

Step 1: Compute wn+1 via:
wn+1 − un

∆t
+N

(
wn+1 + un

2

)
+ νA

wn+1 + un

2
= fn+1/2 ,

Step 2: Postprocess wn+1 to obtain un+1: un+1 = Πwn+1,

where fn+1/2 = (fn+fn+1)/2. We will develop theoretical results for the unstabilized Crank-

Nicolson FEM in Step 1, but the setting of Step 2 is independent of the time discretization,

see Remark 2.3.4. The deviations from previous work considered herein are that (1) the

projection based stabilization is an uncoupled, independent second step and thus amenable

to implementation in legacy codes, and (2) the projection in Step 2 is not a filter but

constructed to recover the VMS eddy viscosity term.

Eliminating Step 2 gives

un+1 − un

∆t
+N

(
wn+1 + un

2

)
+ νA

wn+1 + un

2
+

1

∆t
(wn+1 −Πwn+1) = fn+1/2 , (2.1)
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which is a time relaxation discretization of the original problem with time relaxation coeffi-

cient 1/∆t. We define the operator in Step 2 so that (see Section 2.4 for details) the extra,

bold term in (2.1) is exactly a VMS eddy viscosity term acting on marginally resolved scales:

un+1 = Πwn+1 satisfies, for all vh in the discrete velocity space,

(Extra Term, vh) =
1

∆t
(wn+1 − un+1, vh) = (νT (x, h) [I − P ]∇w

n+1 + un+1

2
, [I − P ]∇vh).

The subscript h = h(x) denotes the local meshwidth of a FEM mesh and P , defined precisely

in (2.5), is an L2 projection that defines the VMS velocity gradient averages (so [I − P ]

defines the fluctuations). Full details are given in Section 2.3. Also νT (x, h) is the chosen

eddy viscosity coefficient. We shall assume (motivated by the nonlinear case in which its

value is often extrapolated from previous time levels) in this report that:

Condition 2.1.1. νT = νT (x, h) is a known, positive, bounded function which is constant

elementwise.

2.2 NOTATION AND PRELIMINARIES

We define the norms (1 ≤ m <∞)

‖v‖∞,k := EssSup[0,T ]‖v(t, ·)‖k , and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖mk dt
)1/m

.

for functions v(x, t) defined on the entire time interval (0, T ). The Navier-Stokes equation

with boundary and initial condition are: Given time T > 0, body force f , find velocity

u : [0, T ]× Ω→ Rd, pressure p : [0, T ]× Ω→ R satisfying

ut + u · ∇u − ν∆u + ∇p = f(x) and ∇ · u = 0 in Ω, for 0 < t ≤ T

u(x, 0) = u0(x) in Ω, u = 0 on ∂Ω, for 0 < t ≤ T.
(2.2)

The velocity and pressure spaces are

X := (H1
0 (Ω))d, Q := L2

0(Ω), with ‖v‖X := ‖∇v‖.
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The space of divergence free functions is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} .

A weak formulation of (2.2) is: Find u : [0, T ] → X, p : [0, T ] → Q for a.e. t ∈ (0, T ]

satisfying

(ut, v) + (u · ∇u, v)− (p,∇ · v) + ν(∇u,∇v) = (f, v) ∀v ∈ X (2.3)

u(x, 0) = u0 in X and (∇ · u, q) = 0 ∀q ∈ Q. (2.4)

We consider our analysis on the finite element method (FEM) for the spatial discretiza-

tion (the results extend to many other variational methods). The finite element velocity

and pressure spaces considered are built on a conforming, edge to edge triangulation with

maximum triangle parameter denoted by a subscript ”h”. We assume that they satisfy the

usual discrete inf-sup condition for div-stability. For a given selection of velocity and pres-

sure elements, this can require enrichment by bubbles or impose implicitly a condition on

the mesh. In our tests we have used the common Taylor-Hood pair of conforming quadrat-

ics for velocity and conforming linears for pressure. There are many cases where low order

elements and very fine meshes are needed. These often require additional stabilizations for

the incompressibility-pressure coupling. Extension of the methods herein to include such

stabilizations is naturally an important problem that must be analyzed and tested on a case

by case approach. We shall denote conforming velocity, pressure finite element spaces by

Xh ⊂ X, Qh ⊂ Q.

We also must select a space of ”well resolved” velocities and pressures, denoted by

XH ⊂ X, QH ⊂ Q.

Three commonly seen examples of the definition of the well resolved spaces are:

• The fine space (containing means and fluctuations) Xh arises from augmentation of a

given FEM space XH with element bubble functions; see Hsu, Bazilev, Calo, Tezduyar

and Hughes [58].
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• A coarse mesh velocity and pressure spaceXH , QH (with meshwidth denoted by subscript

H ≤
√
h) is constructed. If the meshes are nested and the space uses the same elements

as the fine mesh space then XH ⊂ Xh ⊂ X, QH ⊂ Qh ⊂ Q; see [50, 89] for examples.

• The space of well refined velocities and pressures are defined on the same mesh but using

finite element spaces of lower polynomial degree. In this case also XH ⊂ Xh ⊂ X, QH ⊂

Qh ⊂ Q; see [68, 105] for examples.

The first approach is most commonly seen and not considered herein. The second requires

a code with only one element but pointers between the two meshes (as are commonly found

with h−adaptive codes) while the third works only on one mesh but requires at least two

velocity elements (such as in p−adaptive codes). We shall assume that XH/h, QH/h satisfy

the usual inf-sup condition necessary for the stability of the pressure, e.g. [54]. The discretely

divergence free subspace of XH/h is

VH/h = {vH/h ∈ XH/h : (∇ · vH/h, qH/h) = 0 ∀qH/h ∈ QH/h} .

Note that VH * Vh in general. Taylor-Hood elements (see [16, 54]) are one common ex-

ample of such a choice for (Xh, Qh), and are also the elements we use in our numerical

experiments. Further, we denote the space of (typically discontinuous) coarse mesh velocity

gradient tensors by

LH := ∇XH = {∇vH : for all vH ∈ XH},

and analogously for Lh. The weighted L2 and elliptic projections are defined as usual (in

general and in this specific case following [14], Section 11.6) by

PH∇u = GH ∈ LH satisfies (νT (x, h) [GH −∇u] , lH) = 0,∀ lH ∈ LH ,

EHu = ũ ∈ XH satisfies (νT (x, h) [∇ũ−∇u] ,∇vH) = 0,∀ vH ∈ XH .
(2.5)

The motivation for the definition in (2.5) is that means (and thus fluctuations) defined

by elliptic projection are equivalent to means of deformations defined by L2 projection (see

[14], Lemma 11.10)

u := EHu, PH∇u = ∇EHu.
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Further, while computation of velocity means is global, when the means of deformation are

defined by L2 projection into a C0 finite element space, PH∇u can be computed in parallel

element by element.

Define the usual, explicitly skew symmetrized trilinear form

b(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

Let v(tn+1/2) = v((tn+1 + tn)/2) for a continuous function in time and vn+1/2 = (vn+1 +vn)/2

for functions of time that are both continuous and discrete.

2.3 THE POSTPROCESSED VMS METHOD

In this section we will give a precise formulation of the method and prove stability and an a

priori error estimate.

Definition 2.3.1. Given wn+1
h , un+1

h = Πwn+1
h ∈ Vh is the (unique) solution of

(
wn+1
h − un+1

h

∆t
, vh

)
=

(
νT [I − PH ]∇w

n+1
h + un+1

h

2
, [I − PH ]∇vh

)
+
(
λn+1
h ,∇ · vh

)
for all vh ∈ Xh(

∇ · un+1
h , qh

)
= 0 for all qh ∈ Qh

(2.6)

Step 2 requires taking a velocity on a mesh and from that solving Stokes like problems

either on a different mesh followed by interpolation back to the mesh used for Step 1 or

on the same mesh. Our analysis assumes Step 2 will be performed on the mesh used for

Step 1. Extending the method and numerical analysis to the case of using Step 2 treating

Step 1 as a black box solver requires this extra error (and other subtleties as well) to be

understood. The form of the uncoupled projection step of Step 2 does not depend on the

time discretization scheme used in Step 1.
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Algorithm 2.3.2. Given unh compute un+1
h by

Step 1: Compute wn+1
h ∈ Vh satisfying: for all vh ∈ Vh

(
wn+1
h − unh

∆t
, vh

)
+ b

(
wn+1
h + unh

2
,
wn+1
h + unh

2
, vh

)
+ ν

(
∇w

n+1
h + unh

2
,∇vh

)
=
(
fn+1/2, vh

)
Step 2: Apply projection Π on wn+1

h to obtain un+1
h

un+1
h = Πwn+1

h .

Eliminating Step 2 gives

(
un+1
h − unh

∆t
, vh

)
+ b

(
wn+1
h + unh

2
,
wn+1
h + unh

2
, vh

)
+ ν

(
∇w

n+1
h + unh

2
,∇vh

)
+

(
wn+1
h − Πwn+1

h

∆t
, vh

)
= (fn+1/2, vh) .

The last term on the left hand side is the additional term from Step 2. By definition

(2.6), this term recovers the VMS eddy viscosity term and the projected velocity is discretely

divergence free. The following lemma quantifies the eddy viscosity induced by Step 2.

Lemma 2.3.3. [Numerical Dissipation induced by Step 2] Let νT fulfill Condition

2.1.1. Then, there holds

∥∥wn+1
h

∥∥2
=
∥∥un+1

h

∥∥2
+ 2∆t

∥∥∥∥√νT [I − PH ]∇w
n+1
h + un+1

h

2

∥∥∥∥2

.

Proof. Set vh =
wn+1

h + un+1
h

2
and qh = λn+1

h in (2.6) and obtain

1

2∆t

(∥∥ wn+1
h

∥∥2 −
∥∥ un+1

h

∥∥2
)

=

∥∥∥∥√νT [I − PH ]∇ wn+1
h + un+1

h

2

∥∥∥∥2

,

where we used that wn+1
h ∈ Vh. This already proves the claim after rearranging.
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Remark 2.3.4. The special choice in (2.6) used in Step 2 with the argument of the form

wn+1
h + un+1

h

2
(and not

wn+1
h + unh

2
)

does not depend on the time discretization scheme in Step 1. With a different discretization

used in Step 1 we would get the same induced eddy dissipation terms in Step 2 within the

proof of Lemma 2.3.3. This is why the explicitly uncoupled Step 2 of Algorithm 2.3.2 does

not depend on the time discretization scheme in Step 1 and why Step 2 can be used with an

arbitrary CFD code.

Lemma 2.3.3 is one key to prove stability of Algorithm 2.3.2.

Theorem 2.3.5. Let νT satisfy Condition 2.1.1, then

1

2

∥∥ uNh ∥∥2
+ ∆t

N−1∑
n=0

[
ν

2

∥∥∥∥∇wn+1
h + unh

2

∥∥∥∥2

+

∥∥∥∥√νT [I − PH ]∇w
n+1
h + un+1

h

2

∥∥∥∥2
]

≤ 1

2

∥∥ u0
h

∥∥2
+

∆t

2ν

N−1∑
n=0

∥∥∥ fn+1/2
∥∥∥2

−1
.

Proof. Set vh =
wn+1

h + unh
2

in Step 1 and obtain

1

2∆t

(∥∥ wn+1
h

∥∥2 − ‖ unh‖
2
)

+ ν

∥∥∥∥∇ wn+1
h + unh

2

∥∥∥∥2

=

(
fn+1/2,

wn+1
h + unh

2

)
.

Application of Lemma 2.3.3 to this equation gives

1

2∆t

(∥∥ un+1
h

∥∥2 − ‖ unh‖
2
)

+

[
ν

∥∥∥∥∇ wn+1
h + unh

2

∥∥∥∥2

+

∥∥∥∥√νT [I − PH ]∇ wn+1
h + un+1

h

2

∥∥∥∥2
]

=

(
fn+1/2,

wn+1
h + unh

2

)
.

Summing this up from n = 0 to n = N − 1 results in

1

2

∥∥ uNh ∥∥2
+ ∆t

N−1∑
n=0

[
ν

∥∥∥∥∇ wn+1
h + unh

2

∥∥∥∥2

+

∥∥∥∥√νT [I − PH ]∇ wn+1
h + un+1

h

2

∥∥∥∥2
]

=
1

2

∥∥ u0
h

∥∥2
+ ∆t

N−1∑
n=0

(
fn+1/2,

wn+1
h + unh

2

)
, (2.7)

where we can apply Young’s inequality to the right hand side inside the sum to see

∆t

(
fn+1/2,

wn+1
h + unh

2

)
≤ ∆t

2ν

∥∥∥ fn+1/2
∥∥∥2

−1
+
ν∆t

2

∥∥∥∥∇ wn+1
h + unh

2

∥∥∥∥2

.

Hiding the last term on the left hand side of (2.7) proves the claim.
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Theorem 2.3.5 also gives a stability estimate for wNh . In particular, Corollary 2.3.6 shows

that wNh is also not the usual CN approximation.

Corollary 2.3.6. Let νT fulfill Condition 2.1.1, then

1

2

∥∥ wNh ∥∥2
+ ∆t

N−1∑
n=0

ν

2

∥∥∥∥∇ wn+1
h + unh

2

∥∥∥∥2

+ ∆t
N−2∑
n=0

∥∥∥∥√νT [I − PH ]∇ wn+1
h + un+1

h

2

∥∥∥∥2

≤ 1

2

∥∥ u0
h

∥∥2
+

∆t

2ν

N−1∑
n=0

∥∥∥ fn+1/2
∥∥∥2

−1
.

Proof. Apply Lemma 2.3.3 for ‖wNh ‖2 to Theorem 2.3.5.

As a next step we will give an a priori error estimate for the approximation scheme,

Algorithm 2.3.2. Let tn = n∆t, n = 0, 1, 2, . . . , NT , and T := NT∆t. Also introduce the

following discrete norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤NT

‖vn−1/2‖k ,

‖|v|‖m,k :=

(
NT∑
n=0

‖vn‖mk ∆t

)1/m

, ‖|v1/2|‖m,k :=

(
NT∑
n=1

‖vn−1/2‖mk ∆t

)1/m

.

In order to establish the optimal asymptotic error estimates for the approximation we

need to assume the following regularity of the true solution:

u ∈ L∞(0, T ;Hk+1(Ω)) ∩H1(0, T ;Hk+1(Ω)) ∩H3(0, T ;L2(Ω)) ∩W 2
4 (0, T ;H1(Ω)),

p ∈ L∞(0, T ;Hs+1(Ω)) , and f ∈ H2(0, T ;L2(Ω)).
(2.8)

For the error between un − unh we have the following theorem and corollary.
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Theorem 2.3.7. For u, p, and f satisfying (2.8), (2.3) and (2.4), and unh, wnh given by

Algorithm 2.3.2 we have that, for ∆t sufficiently small,

1

2
‖uN − uNh ‖2 +

∆t

4

N−1∑
n=0

(
ν‖∇(u(tn+1/2)− (wn+1

h + unh)/2)‖2

+ ‖
√
νT [I − PH ]∇(un+1 − (wn+1

h + un+1
h )/2)‖2

)
≤Ch2k+2‖|u|‖2

∞,k+1 + Cνh2k‖|u|‖2
2,k+1 + CνTh

2k‖|u|‖2
2,k+1 + CνTH

2k‖|u|‖2
2,k+1

+ C
h2k

ν2
‖|u|‖2

∞,k+1 + C
h2k+1

ν

(
‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
+ C

h2s+2

ν
‖|p1/2|‖2

2,s+1

+ Ch2k+2‖|ut|‖2
2,k+1 + C(∆t)4

(1

ν
‖|∇u|‖4

4,0 +
1

ν
‖|∇u1/2|‖4

4,0

+ ‖|uttt|‖2
2,0 + ν‖|∇utt|‖2

2,0 +
1

ν
‖|∇utt|‖4

4,0 + ‖|ftt|‖2
2,0

)
.

For k = 2, s = 1 Taylor-Hood elements, i.e. C0 piecewise quadratic velocity space Xh

and C0 piecewise linear pressure space Qh, we have the following asymptotic estimate.

Corollary 2.3.8. Under the assumptions of Theorem 2.3.7, with ∆t = Ch, νT = h2,

H =
√
h and (Xh, Qh) given by the Taylor-Hood approximation elements, we have

‖uN − uNh ‖2 +
∆t

2

N−1∑
n=0

(
ν‖∇(u(tn+1/2)− (wn+1

h + unh)/2)‖2

+ ‖
√
νT [I − PH ]∇(un+1 − (wn+1

h + un+1
h )/2)‖2

)
≤ C

(
(∆t)4 + h4

)
.

The rest of this section is devoted for proving Theorem 2.3.7. This proof is technical

and exhibits the usual limitations in the final result that arise from employing the discrete

Grönwall inequality of exponential error growth and the assumption that ∆t is sufficiently

small.

Proof. (of Theorem 2.3.7) Denote w̃
n+1/2
h :=

wn+1
h +unh

2
. To begin the analysis we rewrite

Algorithm 2.3.2. As the spaces Xh and Qh satisfy the usual inf-sup condition, Algorithm
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2.3.2 is equivalent to:

For n = 0, 1, . . . , NT − 1 find wn+1
h , un+1

h ∈ Vh such that

(wn+1
h , vh) + ∆t b(w̃

n+1/2
h , w̃

n+1/2
h , vh) + ∆t ν(∇w̃n+1/2

h ,∇vh)

= (unh, vh) + ∆t (fn+1/2, vh), ∀vh ∈ Vh, (2.9)

1

∆t
(wn+1

h − un+1
h , vh) = (νT [I − PH ]∇w

n+1
h + un+1

h

2
, [I − PH ]∇vh), ∀vh ∈ Vh. (2.10)

To establish the optimal asymptotic error estimates for the approximation we assume

true solution satisfies the regularity condition (2.8) from Section 2.3:

At time tn+1/2 = (n+ 1/2)∆t the true solution u of (2.3), (2.4) satisfies

(un+1 − un, vh) + ∆t ν(∇un+1/2 , ∇vh) + ∆t b(un+1/2 , un+1/2 , vh) − ∆t (p(tn+1/2),∇ · vh)

= ∆t (fn+1/2, vh) + ∆t Intp(un+1; vh) , (2.11)

for all vh ∈ Vh, where Intp(un+1; vh), representing the consistency error, denotes

Intp(un+1; vh) =
(
(un+1 − un)/∆t− ut(tn+1/2), vh

)
+ ν(∇un+1/2 −∇u(tn+1/2) , ∇vh)

+ b(un+1/2 , un+1/2 , vh) − b(u(tn+1/2), u(tn+1/2), vh)

+ (f(tn+1/2)− fn+1/2, vh) . (2.12)

We split the error into a Step 1 error εh according to (2.9), a Step 2 error eh according

to (2.10), and an approximation error Λ

un+1 − wn+1
h = (un+1 − Ihun+1) + (Ihu

n+1 − wn+1
h ) =: Λn+1 + εn+1

h ,

un+1 − un+1
h = (un+1 − Ihun+1) + (Ihu

n+1 − un+1
h ) =: Λn+1 + en+1

h ,
(2.13)

where Ihu
n+1 ∈ Vh will be an interpolation of un+1 in Vh later in the proof but is an arbitrary

element in Vh at this point. Now we subtract (2.9) from (2.11) and use 1
2
(εn+1
h + enh) ∈ Vh as

test function vh to obtain

1

2

(
‖εn+1

h ‖2 − ‖enh‖2
)

+ ∆t ν‖∇1

2
(εn+1
h + enh)‖2 =

− (Λn+1 − Λn,
1

2
(εn+1
h + enh)) − ∆t ν(∇Λn+1/2,∇1

2
(εn+1
h + enh))

− ∆t b(un+1/2 , un+1/2 ,
1

2
(εn+1
h + enh)) + ∆t b(w̃

n+1/2
h , w̃

n+1/2
h ,

1

2
(εn+1
h + enh))

+ ∆t(p(tn+1/2)− qn+1
h ,∇ · 1

2
(εn+1
h + enh)) + ∆t Intp(un+1;

1

2
(εn+1
h + enh)). (2.14)
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The key to this equation is that 1
2
(εn+1
h +enh) is discretely divergence free and hence a possible

test function vh. Next we estimate the terms on the RHS of (2.14) and get

(Λn+1 − Λn,
1

2
(εn+1
h + enh)) ≤ 1

2
∆t‖Λn+1 − Λn

∆t
‖2 +

1

2
∆t‖1

2
(εn+1
h + enh)‖2

=
1

2
∆t

∫
Ω

(
1

∆t

∫ tn+1

tn
Λt dt

)2

dΩ +
1

2
∆t‖1

2
(εn+1
h + enh)‖2

≤ 1

2
∆t

∫
Ω

(
1

∆t

∫ tn+1

tn
|Λt|2 dt

)
dΩ +

1

2
∆t‖1

2
(εn+1
h + enh)‖2

≤ 1

2

∫ tn+1

tn
‖Λt‖2 dt +

1

4
∆t
(
‖εn+1

h ‖2 + ‖enh‖2
)
,

(2.15)

ν(∇Λn+1/2,∇1

2
(εn+1
h + enh)) ≤ ν

10
‖∇1

2
(εn+1
h + enh)‖2 + Cν ‖∇Λn+1/2‖2 . (2.16)

We rewrite b(un+1/2 , un+1/2 , 1
2
(εn+1
h + enh)) − b(w̃

n+1/2
h , w̃

n+1/2
h , 1

2
(εn+1
h + enh)) as

b(un+1/2 , un+1/2 ,
1

2
(εn+1
h + enh)) − b(w̃

n+1/2
h , w̃

n+1/2
h ,

1

2
(εn+1
h + enh))

= b(un+1/2 , un+1/2 ,
1

2
(εn+1
h + enh)) − b(w̃

n+1/2
h , un+1/2,

1

2
(εn+1
h + enh))

+ b(w̃
n+1/2
h , un+1/2,

1

2
(εn+1
h + enh)) − b(w̃

n+1/2
h , w̃

n+1/2
h ,

1

2
(εn+1
h + enh))

= b(
1

2
((un+1 − wn+1

h ) + (un − unh)) , un+1/2 ,
1

2
(εn+1
h + enh))

+ b(w̃
n+1/2
h ,

1

2
((un+1 − wn+1

h ) + (un − unh)),
1

2
(εn+1
h + enh))

= b(Λn+1/2 +
1

2
(εn+1
h + enh) , un+1/2 ,

1

2
(εn+1
h + enh))

+ b(w̃
n+1/2
h ,Λn+1/2 +

1

2
(εn+1
h + enh) ,

1

2
(εn+1
h + enh))

= b(Λn+1/2, un+1/2 ,
1

2
(εn+1
h + enh)) + b(

1

2
(εn+1
h + enh) , un+1/2 ,

1

2
(εn+1
h + enh))

+ b(w̃
n+1/2
h ,Λn+1/2 ,

1

2
(εn+1
h + enh)) ,

(2.17)

where we used the skew symmetry of b. Using (1.3) and Young’s inequality, we bound the

terms on the RHS of (2.17) as follows.

b(Λn+1/2 , un+1/2 ,
1

2
(εn+1
h + enh)) ≤ C

√
‖Λn+1/2‖ ‖∇Λn+1/2‖ ‖∇un+1/2‖ ‖∇1

2
(εn+1
h + enh)‖

≤ ν

10
‖∇1

2
(εn+1
h + enh)‖2 + C ν−1 ‖Λn+1/2‖ ‖∇Λn+1/2‖ ‖∇un+1/2‖2 (2.18)
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b(
1

2
(εn+1
h + enh) , un+1/2 ,

1

2
(εn+1
h + enh))≤C ‖1

2
(εn+1
h + enh)‖1/2 ‖∇1

2
(εn+1
h + enh)‖3/2 ‖∇un+1/2‖

≤ ν

10
‖∇1

2
(εn+1
h + enh)‖2 + C ν−3 ‖∇un+1/2‖4 ‖1

2
(εn+1
h + enh)‖2

≤ ν

10
‖∇1

2
(εn+1
h + enh)‖2 + C ν−3 ‖∇un+1/2‖4

(
‖εn+1

h ‖2 + ‖enh‖2
)

(2.19)

b(w̃
n+1/2
h ,Λn+1/2 ,

1

2
(εn+1
h + enh)) ≤ C ‖∇w̃n+1/2

h ‖ ‖∇Λn+1/2‖ ‖∇1

2
(εn+1
h + enh)‖

≤ ν

10
‖∇1

2
(εn+1
h + enh)‖2 + C ν−1 ‖∇w̃n+1/2

h ‖2 ‖∇Λn+1/2‖2 (2.20)

(p(tn+1/2)− qn+1
h ,∇ · 1

2
(εn+1
h + enh)) ≤ ‖p(tn+1/2)− qn+1

h ‖ ‖∇ · 1

2
(εn+1
h + enh)‖

≤ ν

10
‖∇1

2
(εn+1
h + enh)‖2 + C ν−1 ‖p(tn+1/2)− qn+1

h ‖2 . (2.21)

The consistency error term ∆t|Intp(un+1; 1
2
(εn+1
h + enh))| in (2.14) can be bounded as

follows.

Lemma 2.3.9. Under the regularity assumption (2.8) from Section 2.3 there holds

∆t|Intp(un+1;
1

2
(εn+1
h + enh))| ≤ ∆t

2

(
‖εn+1

h ‖2 + ‖enh‖2
)

+
ν∆t

4
‖∇1

2
(εn+1
h + enh)‖2

+
C(∆t)5

ν

(
‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4

)
+ C(∆t)4

∫ tn+1

tn

(
‖uttt‖2 + ν‖∇utt‖2 +

1

ν
‖∇utt‖4 + ‖ftt‖2

)
dt.

Proof. We want to estimate every term in the definition of Intp(un+1; vh)) from (2.12) and

obtain

((un+1 − un)/∆t− ut(tn+1/2),
1

2
(εn+1
h + enh))

≤1

2
‖1

2
(εn+1
h + enh)‖2 +

1

2
‖(un+1 − un)/∆t− ut(tn+1/2)‖2

≤1

4
‖εn+1

h ‖2 +
1

4
‖enh‖2 +

1

2

(∆t)3

1280

∫ tn+1

tn
‖uttt‖2dt,
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(f(tn+1/2)− fn+1/2,
1

2
(εn+1
h + enh)) ≤ 1

2
‖1

2
(εn+1
h + enh)‖2 +

1

2
‖f(tn+1/2)− fn+1/2‖2

≤ 1

4
‖εn+1

h ‖2 +
1

4
‖enh‖2 +

1

2

(∆t)3

48

∫ tn+1

tn
‖ftt‖2dt,

ν(∇un+1/2 −∇u(tn+1/2),∇1

2
(εn+1
h + enh))

≤ ν

8
‖∇1

2
(εn+1
h + enh)‖2 + 2ν‖∇un+1/2 −∇u(tn+1/2)‖2

≤ ν

8
‖∇1

2
(εn+1
h + enh)‖2 + 2ν

(∆t)3

48

∫ tn+1

tn
‖∇utt‖2dt,

where we used classical Cauchy-Schwarz inequality and Taylor expansion. Also with these

inequalities we get an estimate of the terms of the nonlinearity

b(un+1/2, un+1/2,
1

2
(εn+1
h + enh))− b(u(tn+1/2), u(tn+1/2),

1

2
(εn+1
h + enh))

= b(un+1/2−u(tn+1/2), un+1/2,
1

2
(εn+1
h + enh)) + b(u(tn+1/2), un+1/2−u(tn+1/2),

1

2
(εn+1
h +enh))

≤C‖∇(un+1/2 − u(tn+1/2))‖‖∇1

2
(εn+1
h + enh)‖

(
‖∇un+1/2‖+ ‖∇u(tn+1/2)‖

)
≤ ν

8
‖∇1

2
(εn+1
h + enh)‖2 + Cν−1‖∇(un+1/2 − u(tn+1/2))‖2

(
‖∇un+1/2‖2 + ‖∇u(tn+1/2)‖2

)
≤ ν

8
‖∇1

2
(εn+1
h + enh)‖2 + Cν−1 (∆t)3

48

(
‖∇un+1/2‖2 + ‖∇u(tn+1/2)‖2

) ∫ tn+1

tn
‖∇utt‖2dt

≤ ν
8
‖∇1

2
(εn+1
h + enh)‖2 + Cν−1 (∆t)3

48

∫ tn+1

tn
‖∇utt‖2

(
‖∇un+1/2‖2 + ‖∇u(tn+1/2)‖2

)
dt

≤ ν
8
‖∇1

2
(εn+1
h + enh)‖2

+ Cν−1 (∆t)3

48

(∫ tn+1

tn
‖∇utt‖4dt+

∫ tn+1

tn

(
‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4

)
dt

)

≤ ν
8
‖∇1

2
(εn+1
h + enh)‖2 + C

(∆t)3

48ν

(
∆t
(
‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4

)
+

∫ tn+1

tn
‖∇utt‖4dt

)
.

Combining all estimates yields the lemma.
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The application of Lemma 2.3.9 to (2.14) together with the estimates (2.15)–(2.21) gives

1

2

(
‖εn+1

h ‖2 − ‖enh‖2
)

+ ∆t
ν

4
‖∇1

2
(εn+1
h + enh)‖2

≤ C∆t (1 + ν−3‖∇un+1/2‖4)
(
‖εn+1

h ‖2 + ‖enh‖2
)

+ Cν∆t‖∇Λn+1/2‖2

+
C∆t

ν
‖∇w̃n+1/2

h ‖2 ‖∇Λn+1/2‖2 +
C∆t

ν
‖∇un+1/2‖2‖Λn+1/2‖ ‖∇Λn+1/2‖

+
C∆t

ν
‖p(tn+1/2)− qn+1

h ‖2 +
C(∆t)5

ν

(
‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4

)
+ C

∫ tn+1

tn
‖Λt‖2dt+ C(∆t)4

∫ tn+1

tn

(
‖uttt‖2 + ν‖∇utt‖2 +

1

ν
‖∇utt‖4 + ‖ftt‖2

)
dt.

(2.22)

As un+1
h and wn+1

h are connected through the variational multiscale projection in Step 2,

we next use that equation to obtain a relationship between ‖εnh‖ and ‖enh‖.

Lemma 2.3.10. There holds

‖εn+1
h ‖2 = ‖en+1

h ‖2 +
1

2
∆t‖
√
νT [I − PH ]∇(εn+1

h + en+1
h )‖2

+ ∆t(νT [I − PH ]∇(Λn+1 − un+1), [I − PH ]∇(εn+1
h + en+1

h )).

Proof. From (2.10) we have(
wn+1
h − un+1

h

∆t
, vh

)
=

(
νT [I − PH ]∇w

n+1
h + un+1

h

2
, [I − PH ]∇vh

)
and set vh = (wn+1

h − Ihun+1) + (un+1
h − Ihu

n+1) = −(εn+1
h + en+1

h ). We obtain

(
−(εn+1

h − en+1
h )

∆t
,−(εn+1

h + en+1
h )

)
=(

νT [I − PH ]∇−(εn+1
h + en+1

h ) + 2Ihu
n+1

2
, [I − PH ]∇(−(εn+1

h + en+1
h ))

)
.

Hence

1

∆t
(‖εn+1

h ‖2 − ‖en+1
h ‖2) =

1

2

∥∥√νT [I − PH ]∇(εn+1
h + en+1

h )
∥∥2

− (νT [I − PH ]∇Ihun+1, [I − PH ]∇(εn+1
h + en+1

h ))

and with Ihu
n+1 = un+1 − Λn+1 from (2.13) we conclude the proof.
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Substituting Lemma 2.3.10 into (2.22), we obtain

1

2

(
‖en+1

h ‖2 − ‖enh‖2
)

+
∆t

4

(
ν‖∇1

2
(εn+1
h + enh)‖2 + ‖

√
νT [I − PH ]∇(εn+1

h + en+1
h )‖2

)
≤C∆t(1 + ν−3‖∇un+1/2‖4)

(
‖en+1

h ‖2 + ‖enh‖2
)

+ Cν∆t‖∇Λn+1/2‖2

+ C(∆t)2(1 + ν−3‖∇un+1/2‖4)
(1

2
‖
√
νT [I − PH ]∇(εn+1

h + en+1
h )‖2

+ (νT [I − PH ]∇(Λn+1 − un+1), [I − PH ]∇(εn+1
h + en+1

h ))
)

+
∆t

2
(νT [I − PH ]∇(un+1 − Λn+1), [I − PH ]∇(εn+1

h + en+1
h )) (2.23)

+
C∆t

ν
‖∇w̃n+1/2

h ‖2 ‖∇Λn+1/2‖2 +
C∆t

ν
‖∇un+1/2‖2‖Λn+1/2‖ ‖∇Λn+1/2‖

+
C∆t

ν
‖p(tn+1/2)− qn+1

h ‖2 +
C(∆t)5

ν

(
‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4

)
+ C

∫ tn+1

tn
‖Λt‖2dt+ C(∆t)4

∫ tn+1

tn

(
‖uttt‖2 + ν‖∇utt‖2 +

1

ν
‖∇utt‖4 + ‖ftt‖2

)
dt.

Since we can estimate

|(νT [I − PH ]∇(Λn+1 − un+1), [I − PH ]∇(εn+1
h + en+1

h ))|

≤ 1

8
‖
√
νT [I − PH ]∇(εn+1

h + en+1
h )‖2 + C‖

√
νT [I − PH ]∇(Λn+1 − un+1)‖2,

it is possible to choose ∆t sufficiently small, i.e., C∆t < 1
16

(1 + ν−3‖∇un+1/2‖4)−1 such that

the terms stemming from the VMS method are hidden and after summing this up from n = 0

to n = N − 1 equation (2.23) results in

1

2
‖eNh ‖2 +

∆t

4

N−1∑
n=0

(
ν‖∇1

2
(εn+1
h + enh)‖2 +

1

2
‖
√
νT [I − PH ]∇(εn+1

h + en+1
h )‖2

)

≤
N−1∑
n=0

{
C∆t(1 + ν−3‖∇un+1/2‖4)(‖en+1

h ‖2 + ‖enh‖2)

+ Cν∆t‖∇Λn+1/2‖2 + C∆t
(
‖
√
νT [I − PH ]∇Λn+1‖2 + ‖

√
νT [I − PH ]∇un+1‖2

)
+
C∆t

ν
‖∇w̃n+1/2

h ‖2 ‖∇Λn+1/2‖2 +
C∆t

ν
‖∇un+1/2‖2‖Λn+1/2‖ ‖∇Λn+1/2‖

+
C∆t

ν
‖p(tn+1/2)− qn+1

h ‖2 +
C(∆t)5

ν

(
‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4

)
+ C

∫ tn+1

tn
‖Λt‖2dt+ C(∆t)4

∫ tn+1

tn

(
‖uttt‖2 + ν‖∇utt‖2 +

1

ν
‖∇utt‖4 + ‖ftt‖2

)
dt

}
.
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Now we choose the interpolation operator in Vh, constructed in [47, 4], and a usual

interpolation operator for the pressure, which leads us to

‖u− Ihu‖r ≤ Chk+1−r|u|k+1,

where r ≤ k and k is the polynomial degree of the corresponding FE space. Since PH also

fulfills the interpolation property, due to the regularity assumptions and Theorem 2.3.5 this

gives

1

2
‖eNh ‖2 +

∆t

4

N−1∑
n=0

(
ν‖∇1

2
(εn+1
h + enh)‖2 +

1

2
‖
√
νT [I − PH ]∇(εn+1

h + en+1
h )‖2

)

≤
N∑
n=0

C∆t
(
1 + ν−3‖|∇u|‖4

∞,0
)
‖enh‖2

+Cνh2k‖|u|‖2
2,k+1 + CνTh

2k‖|u|‖2
2,k+1 + CνTH

2k‖|u|‖2
2,k+1

+C
h2k

ν2
‖|u|‖2

∞,k+1 + C
h2k+1

ν

(
‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
+ C

h2s+2

ν
‖|p1/2|‖2

2,s+1

+Ch2k+2‖|ut|‖2
2,k+1 + C(∆t)4

(1

ν
‖|∇u|‖4

4,0 +
1

ν
‖|∇u1/2|‖4

4,0

+ ‖|uttt|‖2
2,0 + ν‖|∇utt|‖2

2,0 +
1

ν
‖|∇utt|‖4

4,0 + ‖|ftt|‖2
2,0

)
.

The next step will be the application of Lemma 1.4.4, the discrete Grönwall inequality.

Let ∆t be sufficiently small, i.e., C∆t < (1 + ν−3‖|∇u|‖4
∞,0)−1, it is allowed to apply the

lemma and we obtain

1

2
‖eNh ‖2 +

∆t

4

N−1∑
n=0

(
ν‖∇1

2
(εn+1
h + enh)‖2 +

1

2
‖
√
νT [I − PH ]∇(εn+1

h + en+1
h )‖2

)
≤Cνh2k‖|u|‖2

2,k+1 + CνTh
2k‖|u|‖2

2,k+1 + CνTH
2k‖|u|‖2

2,k+1

+C
h2k

ν2
‖|u|‖2

∞,k+1 + C
h2k+1

ν

(
‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
+ C

h2s+2

ν
‖|p1/2|‖2

2,s+1

+Ch2k+2‖|ut|‖2
2,k+1 + C(∆t)4

(1

ν
‖|∇u|‖4

4,0 +
1

ν
‖|∇u1/2|‖4

4,0

+ ‖|uttt|‖2
2,0 + ν‖|∇utt|‖2

2,0 +
1

ν
‖|∇utt|‖4

4,0 + ‖|ftt|‖2
2,0

)
.
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Now we have an estimate for the model error eh and it is left to find an error estimate

for the whole error. We obtain

1

2
‖uN − uNh ‖2 +

∆t

4

N−1∑
n=0

(ν‖∇(u(tn+1/2)− (wn+1
h + unh)/2)‖2

+ ‖
√
νT [I − PH ]∇(u(tn+1)− (wn+1

h + un+1
h )/2)‖2)

≤ ‖ΛN‖2 + ‖eNh ‖2 +Cν∆t
N−1∑
n=0

(‖∇(un+1/2− u(tn+1/2))‖2 + ‖∇Λn+1/2‖2 + ‖∇1

2
(εn+1
h + enh)‖2)

+ C∆t
N−1∑
n=0

(‖
√
νT [I − PH ]∇Λn+1‖2 + ‖

√
νT [I − PH ]∇1

2
(εn+1
h + en+1

h )‖2),

where the upcoming new terms are either already contained in the RHS of the model error,

or easy to handle like e.g. with Lemma 2.3.9. Combining all estimates from above we get

Theorem 2.3.7 and (in the particular case) Corollary 2.3.8.

2.3.1 Growth of Perturbations in the discrete scheme.

The question naturally arises of dependence of the constant C in Theorem 2.3.7 upon the

final time T . This dependence is exponential (reflecting exponential stretching in the con-

tinuous NSE) and inevitably arising from the discrete Grönwall inequality. It is related to

the maximal Lyapunov exponent in the discrete model given by Algorithm 2.3.2. In this

subsection we derive an estimate for the Lyapunov exponent of this model and thus its error

growth. To simplify the notation we will suppress the index h, although we only consider

discrete solutions here. Let (u1, w1, f1) and (u2, w2, f2) be two solutions with different prob-

lem data from Algorithm 2.3.2. By subtracting the two corresponding equations in Step 1,

we obtain

1

∆t

(
(wn+1

1 − wn+1
2 )− (un1 − un2 ), v

)
+ ν

(
∇(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2
,∇v

)
+ b

(
wn+1

1 + un1
2

,
wn+1

1 + un1
2

, v

)
− b
(
wn+1

2 + un2
2

,
wn+1

2 + un2
2

, v

)
=
(
f
n+1/2
1 − fn+1/2

2 , v
)

29



for all functions v ∈ Vh. Setting v = 1
2
[(wn+1

1 − wn+1
2 ) + (un1 − un2 )] gives

1

2∆t

(
‖wn+1

1 − wn+1
2 ‖2 − ‖un1 − un2‖2

)
+ ν

∥∥∥∥∇(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥2

=

b

(
wn+1

2 + un2
2

,
wn+1

2 + un2
2

,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

)
−b
(
wn+1

1 + un1
2

,
wn+1

1 + un1
2

,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

)
+

(
f
n+1/2
1 − fn+1/2

2 ,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

)
. (2.24)

As a next step we estimate all terms on the RHS and start with the easy one

(
f
n+1/2
1 − fn+1/2

2 ,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

)
≤ ν

8

∥∥∥∥∇(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥2

+
2

ν

∥∥∥(f
n+1/2
1 − fn+1/2

2 )
∥∥∥2

−1
.

To bound the nonlinear term we use (1.3)

∣∣∣b(wn+1
2 + un2

2
,
wn+1

2 + un2
2

,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

)
− b
(
wn+1

1 + un1
2

,
wn+1

1 + un1
2

,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

) ∣∣∣
=
∣∣∣b(wn+1

2 + un2
2

,
(wn+1

2 − wn+1
1 ) + (un2 − un1 )

2
,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

)
+ b

(
wn+1

2 + un2
2

,
wn+1

1 + un1
2

,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

)
− b
(
wn+1

1 + un1
2

,
wn+1

1 + un1
2

,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

) ∣∣∣
=
∣∣∣b((wn+1

2 − wn+1
1 ) + (un2 − un1 )

2
,
wn+1

1 + un1
2

,
(wn+1

1 − wn+1
2 ) + (un1 − un2 )

2

) ∣∣∣
≤ C∗

√∥∥∥∥(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥∥∥∥∥∇(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥3/2 ∥∥∥∥∇wn+1
1 + un1

2

∥∥∥∥
≤ 3ν

4

∥∥∥∥∇(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥2

+
C4
∗

4ν3

∥∥∥∥∇wn+1
1 + un1

2

∥∥∥∥4 ∥∥∥∥(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥2

,
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where the factor
∥∥∥∇wn+1

1 +un1
2

∥∥∥4

can also be replaced by mini=1,2

∥∥∥∇wn+1
i +uni

2

∥∥∥4

when we apply

the same steps for wn+1
2 +un2 again and use both estimates. With this in mind (2.24) becomes

1

2∆t

(
‖wn+1

1 − wn+1
2 ‖2 − ‖un1 − un2‖2

)
+
ν

8

∥∥∥∥∇(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥2

≤ C4
∗

8ν3
min
i=1,2

∥∥∥∥∇wn+1
i + uni

2

∥∥∥∥4 (∥∥wn+1
1 − wn+1

2

∥∥2
+ ‖un1 − un2‖

2
)

+
2

ν

∥∥∥(f
n+1/2
1 − fn+1/2

2 )
∥∥∥2

−1
.

To get a connection between u and w, we use a variant of Lemma 2.3.3 for the difference of

the solutions and get

1

2∆t

(
‖un+1

1 − un+1
2 ‖2 − ‖un1 − un2‖2

)
+
ν

8

∥∥∥∥∇(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥2

+

∥∥∥∥√νT [I − PH ]∇(wn+1
1 − wn+1

2 ) + (un+1
1 − un+1

2 )

2

∥∥∥∥2

≤ C4
∗

8ν3
min
i=1,2

∥∥∥∥∇wn+1
i + uni

2

∥∥∥∥4 (∥∥un+1
1 − un+1

2

∥∥2
+ ‖un1 − un2‖

2
)

+
2

ν

∥∥∥(f
n+1/2
1 − fn+1/2

2 )
∥∥∥2

−1

+
∆tC4

∗
4ν3

min
i=1,2

∥∥∥∥∇wn+1
i + uni

2

∥∥∥∥4 ∥∥∥∥√νT [I − PH ]∇(wn+1
1 − wn+1

2 ) + (un+1
1 − un+1

2 )

2

∥∥∥∥2

.

At this point let us assume that

∆t ≤

(
C4
∗

3ν3
min
i=1,2

∥∥∥∥∇wn+1
i + uni

2

∥∥∥∥4
)−1

to get

1

2∆t

(
‖un+1

1 − un+1
2 ‖2 − ‖un1 − un2‖2

)
+
ν

8

∥∥∥∥∇(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥2

+
1

4

∥∥∥∥√νT [I − PH ]∇(wn+1
1 − wn+1

2 ) + (un+1
1 − un+1

2 )

2

∥∥∥∥2

≤ C4
∗

8ν3
min
i=1,2

∥∥∥∥∇wn+1
i + uni

2

∥∥∥∥4 (∥∥un+1
1 − un+1

2

∥∥2
+ ‖un1 − un2‖

2
)

+
2

ν

∥∥∥(f
n+1/2
1 − fn+1/2

2 )
∥∥∥2

−1
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and sum up the inequalities from n = 0 to n = N − 1. It holds

1

2∆t
‖uN1 − uN2 ‖2 +

N−1∑
n=0

(ν
8

∥∥∥∥∇(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥2

+
1

4

∥∥∥∥√νT [I − PH ]∇(wn+1
1 − wn+1

2 ) + (un+1
1 − un+1

2 )

2

∥∥∥∥2 )
≤ 1

2∆t
‖u0

1 − u0
2‖2 +

C4
∗

8ν3

N−1∑
n=0

min
i=1,2

∥∥∥∥∇wn+1
i + uni

2

∥∥∥∥4 (∥∥un+1
1 − un+1

2

∥∥2
+ ‖un1 − un2‖

2
)

+
2

ν

N−1∑
n=0

∥∥∥(f
n+1/2
1 − fn+1/2

2 )
∥∥∥2

−1
=

N∑
n=0

κn
2
‖un1 − un2‖

2 +
2

ν

N−1∑
n=0

∥∥∥(f
n+1/2
1 − fn+1/2

2 )
∥∥∥2

−1
,

where

κn =
C4
∗

4ν3



4ν3

C4
∗∆t

+ mini=1,2

∥∥∥∇w1
i +u0i

2

∥∥∥4

for n = 0

mini=1,2

(∥∥∥∇wn
i +un−1

i

2

∥∥∥4

+
∥∥∥∇wn+1

i +uni
2

∥∥∥4
)

for n = 1, . . . , N − 1

mini=1,2

∥∥∥∇wN
i +uN−1

i

2

∥∥∥4

for n = N.

When we now apply the discrete Grönwall inequality from Lemma 1.4.4, we get

‖uN1 − uN2 ‖2 + ∆t
N−1∑
n=0

(ν
4

∥∥∥∥∇(wn+1
1 − wn+1

2 ) + (un1 − un2 )

2

∥∥∥∥2

+
1

2

∥∥∥∥√νT [I − PH ]∇(wn+1
1 − wn+1

2 ) + (un+1
1 − un+1

2 )

2

∥∥∥∥2 )
≤ exp

(
∆t

N∑
n=1

gnκn

){
∆tκ0

∥∥(u0
1 − u0

2)
∥∥2

+
4∆t

ν

N−1∑
n=0

∥∥∥(f
n+1/2
1 − fn+1/2

2 )
∥∥∥2

−1

}
,

where gn = (1 − ∆tκn)−1 under the assumption that ∆tκn < 1. Now, we will look at the

exponential multiplier. For clarity, let us define

|w + u|41,∞ : = max
n=0,...,N

min
i=1,2

∥∥∥∥∇wni + un−1
i

2

∥∥∥∥4

.

Given in addition that ∆t ≤
(
C4
∗
ν3

mini=1,2

∥∥∥∇wn+1
i +uni

2

∥∥∥4
)−1

we can estimate

exp

(
∆t

N∑
n=1

gnκn

)
≤ exp

(
∆t

C4
∗

2ν3
|w + u|41,∞(1−∆t

C4
∗

2ν3
|w + u|41,∞)−1

N∑
n=1

1

)

≤ exp

(
N∆t

C4
∗
ν3
|w + u|41,∞

)
≤ exp

(
T
C4
∗
ν3
|w + u|41,∞

)
. (2.25)
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Remark 2.3.11. The result in (2.25) is what one can expect from the discrete Grönwall

inequality. Nevertheless it would be better to have an improvement of the factor C4
∗
ν3

to C4
∗

(ν+νT )3
.

The analysis herein failed to produce this because of the mismatch in the arguments of the

usual Galerkin terms in comparison to the term stemming from the VMS projection step.

The Galerkin terms had an argument of the Crank-Nicolson time discretization scheme, i.e.

wni + un−1
i , where the terms from the VMS projection step had an argument wni + uni . Recall

that the projection step does not depend on the time discretization, Remark 2.3.4.

2.4 ALGORITHMS FOR COMPUTING THE PROJECTION

In Step 2 the action of Π must be computed. We consider two approaches to solving the

linear system to compute the projection Πu in this section and one approach in Section 2.5

where the difficult term in (2.6) involving the operator PH is simply lagged to the previous

time level, reducing complexity to one Stokes solve and circumventing this possible difficulty.

The simplest method is a fixed point iteration in which the terms involving PH are in the

RHS residual calculation. We prove convergence in Theorem 2.4.4. This method was used

in our computable experiments in which convergence was seen in 15 steps or less. The proof

of Theorem 2.4.4 can be adapted to give an estimate of the number of steps that is not

in accord with the rapid convergence observed in our experiments. Step 2 involves solving

a linear system with a mixed structure. Let RHS denote a right hand side known from

previous values and let
{
φh1 · ··, φhN

}
denote a basis for the velocity space Xh. Then we have

the system  M + ∆t
2
A C

Ct 0

 u

λ

 =

 RHS

0

 , where (2.26)

(M +
∆t

2
A)ij = B(φhi , φ

h
j ) := (φhi , φ

h
j ) +

∆t

2
(νT [I − PH ]∇φhi , [I − PH ]∇φhj ).

The 1, 1 block M + ∆t
2
A is SPD. However, the difficulty in this system is that (for some

common choices of PH) if it is assembled it has a large bandwidth. For example, if PH is the

(weighted) L2 projection onto a coarse mesh space, then it is very easy to compute it in a
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residual term but it couples fine mesh basis functions across the coarse mesh macro element.

Our standard approach to mixed type systems is to solve the Schur complement system

CT (M +
∆t

2
A)−1Cλ = CT (RHS)

by an iterative method in which the inner action of (M + ∆t
2
A)−1 is evaluated by another

iterative method. We show in Proposition 2.4.2 that cond(M + ∆t
2
A) = O(1) so this inner

iteration is not challenging (and the action of PH is computed in the residual calculation

at each step). This suggests that alternate approaches (whose delineation is still an open

question) are feasible.

To study the condition number of the 1, 1 block of (2.26), we make the following two

assumptions on the velocity space which hold for many spaces on shape-regular meshes.

Condition 2.4.1 (Inverse Estimate and Norm Equivalence). (i) There is a CINV such that

for every vh ∈ Xh we have

||∇vh|| ≤ CINV h
−1||vh||.

(ii) There are positive constants C1, C2 such that for every vh ∈ Xh, vh =
∑N

i=1 αiφ
h
i , we

have

C1h
−d||vh||2 ≤

N∑
i=1

α2
i ≤ C2h

−d||vh||2.

Proposition 2.4.2. Suppose the velocity space satisfies Condition 2.4.1 and νT = νT (x, h).

Then

cond2(M +
∆t

2
A) ≤ C2

C1

[
1 + C2

INV

∆t

2h2

(
max
x

νT (x, h)
)]

.

Proof. First note that M + ∆t
2
A is clearly SPD. Let −→α = (α1, · · ·, αN)t be an eigenvector of

M + ∆t
2
A and define vh :=

∑N
i=1 αiφ

h
i . We have

λ|−→α |2 = −→α t(M +
∆t

2
A)−→α = B(vh, vh) =

= ||vh||2 +
∆t

2
(νT [I − PH ]∇vh, [I − PH ]∇vh).
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If λ = λmin then dropping ∆t
2

(νT [I − PH ]∇vh, [I − PH ]∇vh) and using norm equivalence we

have

λmin =
||vh||2 + ∆t

2
(νT [I − PH ]∇vh, [I − PH ]∇vh)

|−→α |2
≥ C−1

2 hd.

If λ = λmax then majorizing ∆t
2

(νT [I −PH ]∇vh, [I −PH ]∇vh) and using the inverse estimate

and norm equivalence we have

λmax =
||vh||2 + ∆t

2
(νT [I − PH ]∇vh, [I − PH ]∇vh)

|−→α |2
≤

≤
||vh||2 + ∆t

2
(νT∇vh,∇vh)
|−→α |2

≤ C−1
1 hd

||vh||2 + ∆t
2

(maxx νT (x, h)) ||∇vh||2

||vh||2

≤ C−1
1 hd

||vh||2 + ∆t
2

(maxx νT (x, h))C2
INV h

−2||vh||2

||vh||2

≤ C−1
1 hd

[
1 + C2

INV

∆t

2h2

(
max
x

νT (x, h)
)]

.

The result follows by dividing these two estimates.

In many cases the dependence of νT (x, h) upon h scales like O(h2), implying (in these

cases) that cond2(M + ∆t
2
A) = O(1).

Consider next the fixed point iteration for solving (2.26).

Algorithm 2.4.3. Until convergence criteria are satisfied, given uj ∈ Vh find uj+1 ∈ Vh

satisfying

(uj+1, vh) +
∆t

2
(νT∇uj+1,∇vh) =

∆t

2
(νTPH∇uj,∇vh) + (wn+1

h , vh)

− ∆t

2
(νT [I − PH ]∇wn+1

h ,∇vh) for all vh ∈ Vh.

Theorem 2.4.4. Let {uj}j∈N be determined by Algorithm 2.4.3. Suppose that there exists

a constant C such that 0 < νT ≤ C <∞. Then uj → Πwn+1
h in X as j →∞.

Proof. Subtracting the above equalities defining uj and uj+1 yields

(uj+1 − uj, vh) +
∆t

2
(νT∇(uj+1 − uj),∇vh) =

∆t

2
(νTPH∇(uj − uj−1),∇vh).

35



Set vh = uj+1 − uj and applying Young’s inequality to the RHS give

‖uj+1 − uj‖2 +
∆t

2
‖
√
νT∇(uj+1 − uj)‖2

≤ ∆t

4
‖
√
νTPH∇(uj − uj−1)‖2 +

∆t

4
‖
√
νT∇(uj+1 − uj)‖2

≤ ∆t

4
‖
√
νT∇(uj − uj−1)‖2 +

∆t

4
‖
√
νT∇(uj+1 − uj)‖2.

Applying the inverse estimate ‖uj+1 − uj‖2 ≥ C−2
INV h

2‖∇(uj+1 − uj)‖2, we obtain

C−2
INV h

2‖∇(uj+1 − uj)‖2 +
∆t

4
‖
√
νT∇(uj+1 − uj)‖2 ≤ ∆t

4
‖
√
νT∇(uj − uj−1)‖2.

Since νT is bounded from above by C we have

h2

C2
INVC

‖
√
νT∇(uj+1 − uj)‖2 ≤ C−2

INV h
2‖∇(uj+1 − uj)‖2.

Therefore,
(

h2

C2
INV C

+ ∆t
4

)
‖√νT∇(uj+1 − uj)‖2 ≤ ∆t

4
‖√νT∇(uj − uj−1)‖2. This implies (as a

consequence of Contraction Mapping Theorem) both existence and uniqueness of a solution

u to (2.26) and convergence.

2.5 A COMPUTATIONALLY ATTRACTIVE VARIANT

The projector Π in Algorithm 2.3.2 is the solution of

1

∆t
(wn+1 − un+1, vh) = (νT [I − PH ]∇w

n+1 + un+1

2
, [I − PH ]∇vh).

The difficulty with this system for un+1 is coupling across many fine mesh elements caused

by the projection PH . First note that the above is equivalent to

1

∆t
(wn+1 − un+1, vh) = (νT∇

wn+1 + un+1

2
,∇vh)− (νTPH∇

wn+1 + un+1

2
,∇vh).

Thus the difficulty is given by the second term alone. We consider the modification of Step

2 in Algorithm 2.3.2 of just lagging this term to the previous time level with no iteration.

The complexity of Step 2 is then one Stokes solve.
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Step 2’: Given wn+1 ∈ Vh, find un+1 ∈ Vh satisfying

1

∆t
(wn+1 − un+1, vh) = (νT∇

wn+1 + un+1

2
,∇vh)− (νTPH∇

wn + un

2
,∇vh),∀vh ∈ Vh.

(2.27)

In (2.27) the action of PH is calculated for a known function and goes into the RHS of the

linear system (2.27). Surprisingly, we show this to be unconditionally stable and second

order accurate.

We thus consider the modification of Algorithm 2.3.2 below.

Algorithm 2.5.1. Step 1: Given unh find wn+1
h ∈ Xh, p

n+1
h ∈ Qh satisfying

(
wn+1
h − unh

∆t
, vh) + b(

wn+1
h + unh

2
,
wn+1
h + unh

2
, vh) + ν(∇w

n+1
h + unh

2
,∇vh)− (p

n+1/2
h ,∇ · vh)

= (fn+1/2, vh), for all vh ∈ Xh, (2.28)

(∇ · wn+1
h , qh) = 0, for all qh ∈ Qh.

Step 2: un+1
h := Πwn+1

h where (un+1
h , λh) ∈ Xh ×Qh is the unique solution of

1

∆t
(wn+1

h − un+1
h , vh)− (λh,∇ · vh) = (νT∇

wn+1
h + un+1

h

2
,∇vh)− (νTPH∇

wnh + unh
2

,∇vh),

(∇ · un+1
h , qh) = 0, ∀vh ∈ Xh, qh ∈ Qh.

Figure 2.1 shows a flow diagram of algorithms proposed herein - Algorithm 2.3.2, 2.4.3

and 2.5.1.

Theorem 2.5.2. Assume νT is constant in space at each time level. Consider Algorithm

2.5.1. It satisfies, for any N > 0, the following energy equality, implying stability,

1

2

[
||uNh ||2 + ∆t||

√
νTPH∇

wNh + uNh
2

||2
]

+ ∆t
N−1∑
n=0

ν||∇w
n+1
h + unh

2
||2

+ ∆t
N−1∑
n=0

(
||
√
νT [I − PH ]∇w

n+1
h + un+1

h

2
||2 +

∆t2

8
||
√
νTPH∇

[
wn+1
h − wnh

∆t
+
un+1
h − unh

∆t

]
||2
)

=
1

2

[
||u0

h||2 + ∆t||
√
νTPH∇

w0
h + u0

h

2
||2
]

+ ∆t
N−1∑
n=0

1

2
(fn+1/2, wn+1

h + unh).
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Figure 2.1: Flow diagram of a numerical simulation with Algorithm 2.3.2 and 2.4.3. The

number crit is the stopping criterion of Algorithm 2.4.3. In Algorithm 2.5.1 we simply omit

the iteration for Step 2 in the diagram.
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Proof. Take the L2 inner product of (2.28) with (wn+1
h +unh)/2. Rearranging the result gives

1

2∆t

[
‖un+1

h ‖2 − ‖unh‖2
]

+ ν

∥∥∥∥∇wn+1
h + unh

2

∥∥∥∥2

+
1

2∆t

[
‖wn+1

h ‖2 − ‖un+1
h ‖2

]
=

1

2
(fn+1/2, wn+1

h + unh).

Now consider Step 2. Set vh =
(
wn+1
h + un+1

h

)
/2. This gives

1

2∆t

[
‖wn+1

h ‖2 − ‖un+1
h ‖2

]
=

∥∥∥∥√νT∇wn+1
h + un+1

h

2

∥∥∥∥2

−
(
νTPH∇

wnh + unh
2

,∇w
n+1
h + un+1

h

2

)
=

∥∥∥∥√νT∇wn+1
h + un+1

h

2

∥∥∥∥2

−
(
νTPH∇

wnh + unh
2

, PH∇
wn+1
h + un+1

h

2

)
=

∥∥∥∥√νT∇wn+1
h + un+1

h

2

∥∥∥∥2

−

{
1

2

∥∥∥∥√νTPH∇wnh + unh
2

∥∥∥∥2

+
1

2

∥∥∥∥√νTPH∇wn+1
h + un+1

h

2

∥∥∥∥2

− 1

2

∥∥∥∥√νTPH∇ [wn+1
h + un+1

h

2
− wnh + unh

2

]∥∥∥∥2
}

=

∥∥∥∥√νT (I − PH)∇w
n+1
h + un+1

h

2

∥∥∥∥2

+
1

2

∥∥∥∥√νTPH∇ [wn+1
h + un+1

h

2
− wnh + unh

2

]∥∥∥∥2

+

{
1

2

∥∥∥∥√νTPH∇wn+1
h + un+1

h

2

∥∥∥∥2

− 1

2

∥∥∥∥√νTPH∇wnh + unh
2

∥∥∥∥2
}
.

Now insert the above RHS in the energy estimate for the term 1
2∆t

[
‖wn+1

h ‖2 − ‖un+1
h ‖2

]
.

This gives

1

2∆t

[
‖un+1

h ‖2 − ‖unh‖2
]

+

{
1

2

∥∥∥∥√νTPH∇wn+1
h + un+1

h

2

∥∥∥∥2

− 1

2

∥∥∥∥√νTPH∇wnh + unh
2

∥∥∥∥2
}

+ ν

∥∥∥∥∇wn+1
h + unh

2

∥∥∥∥2

+

∥∥∥∥√νT (I − PH)∇w
n+1
h + un+1

h

2

∥∥∥∥2

+
1

2

∥∥∥∥√νTPH∇ [wn+1
h + un+1

h

2
− wnh + unh

2

]∥∥∥∥2

=
1

2
(fn+1/2, wn+1

h + unh).

Summing from n = 0 to N − 1 yields the result.
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Remark 2.5.3. The form of the kinetic energy and numerical diffusion induced by Algorithm

2.5.1 is

Kinetic Energy =
1

2

[
‖uNh ‖2 + ∆t

∥∥∥∥√νTPH∇wNh + uNh
2

∥∥∥∥2
]
,

V iscous Diffusion = ν

∥∥∥∥∇wn+1
h + unh

2

∥∥∥∥2

,

V MS Diffusion =

∥∥∥∥√νT [I − PH ]∇w
n+1
h + un+1

h

2

∥∥∥∥2

,

Additional Algorithmic Diffusion =
∆t2

8

∥∥∥∥√νTPH∇ [wn+1
h − wnh

∆t
+
un+1
h − unh

∆t

]∥∥∥∥2

.

2.6 NUMERICAL EXPERIMENTS

We present numerical experiments to test the algorithms presented herein. Using the Green-

Taylor vortex problem, we confirm the predicted convergence rates from the theory. Next,

the effects of the methods as stabilization technique are tested with an advected L-shaped

front. Further testing is then performed using the well-known benchmark of the decaying

homogeneous isotropic turbulence to compare the algorithms presented herein to the usual

approach where everything is applied in one step. We used FreeFEM++ [56] for the Green-

Taylor vortex and advection of L-shaped discontinuity and deal.II [6, 7] for the decaying

homogeneous isotropic turbulence.

2.6.1 Green-Taylor vortex.

For the first test we select the velocity field given by the Green-Taylor vortex, [114], [113],

which is used as a numerical test in many papers, e.g., Chorin [28], Tafti [112], John and

Layton [69], Barbato, Berselli and Grisanti [8] and Berselli [15]. The exact velocity field is

given by

u1(x, y, t) = − cos(ωπx) sin(ωπy)e−2ω2π2t/τ , u2(x, y, t) = sin(ωπx) cos(ωπy)e−2ω2π2t/τ ,

p(x, y, t) = −1

4
(cos(2ωπx) + cos(2ωπy))e−4ω2π2t/τ . (2.29)
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We take ω = 2, t = 1, τ = Re = 500, Ω = (0, 1)2, h = 1/m, ∆t = h/10, H2 = h, where m

is the number of subdivisions of the interval (0, 1). We utilize Taylor-Hood finite elements

for the discretization. Newton iterations are applied to solve the nonlinear system with

a ‖w(j+1) − w(j)‖H1(Ω) < 10−10 as a stopping criterion. For the fixed point iteration in

Algorithm 2.4.3, the convergence criterion is ‖u(j+1)−u(j)‖H1(Ω) < 10−10. Convergence rates

are calculated from the error at two successive values of h in the usual manner by postulating

e(h) = Chβ and solving for β via β = ln(e(h1)/e(h2))/ ln(h1/h2). The boundary conditions

could be taken to be periodic (the easier case). Instead we take the boundary condition on

the problem to be inhomogeneous Dirichlet: uh = uexact, on ∂Ω.

The errors and rates of convergence are presented in Table 2.1 and 2.2. From the tables,

we see that the rates of convergence of both algorithms confirm the predicted convergence

rates from theory. Algorithm 2.5.1 (in which the projected term in Step 2 is simply lagged

to the previous time level) proves itself to be effective. While it does not utilize any iterative

method in Step 2, the quality of its errors is as good as full solve VMS algorithm.

h ∆t ‖u− uh‖∞,0 rate ‖∇u−∇uh‖2,0 rate

1/16 1/160 3.788e-2 −− 4.560e-1 −−

1/25 1/250 1.306e-2 2.39 2.009e-1 1.84

1/36 1/360 4.819e-3 2.73 8.627e-2 2.32

1/49 1/490 1.900e-3 3.02 3.975e-2 2.51

1/64 1/640 8.674e-4 2.94 1.931e-2 2.70

1/81 1/810 4.395e-4 2.89 1.009e-2 2.75

1/100 1/1000 2.642e-4 2.42 5.818e-3 2.61

Table 2.1: Error and convergence rate data for Algorithm 2.4.3

2.6.2 Test with an L-shaped discontinuity advected skew to mesh.

We also test and compare the performance of our uncoupled, partitioned approach to VMS

with the usual, centered FEM without any stabilization for advection dominance on the
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h ∆t ‖u− uh‖∞,0 rate ‖∇u−∇uh‖2,0 rate

1/16 1/160 3.776e-2 −− 4.546e-1 −−

1/25 1/250 1.303e-2 2.38 2.007e-1 1.83

1/36 1/360 4.811e-3 2.73 8.624e-2 2.32

1/49 1/490 1.897e-3 3.02 3.974e-2 2.51

1/64 1/640 8.657e-4 2.94 1.931e-2 2.70

1/81 1/810 4.387e-4 2.89 1.009e-2 2.75

1/100 1/1000 2.638e-4 2.41 5.817e-3 2.61

Table 2.2: Error and convergence rate data for Algorithm 2.5.1

benchmark problem of advection of an L-shaped discontinuity from [10]; see [75], [72] and

[73] for an analysis of projection based VMS for stabilization of advection. We solve

φt + a · ∇φ−∇ · (κ∇φ) = f on Ω,

φ = g on ∂Ω,

where f is the known source term, g is the prescribed boundary data, a is a solenoidal

velocity field and κ is the diffusivity.

The problem setup is given in Figure 2.2. The domain is a unit square subdivided into

triangle elements. The number of subdivisions in each side of the domain is 25. At the initial

time, the value of φ is set to 1 in the interior of the L-shaped block located in the lower left-

hand corner of the domain and 0 elsewhere. We choose the angle of advection to be 45◦ and

the diffusivity κ = 10−6. The solution is marched to t = 0.5 with time step ∆t = 0.025. We

utilize C1-piecewise quadratic finite element in this test of three different approaches. The

first approach is simply using a standard discretization scheme. The result is then compared

with that of our proposed modular, postprocessing VMS approach. In the second test, the

solution is computed by the Algorithm 2.4.3 and in the third test we use Algorithm 2.5.1.

The results in [10] using bubble function based VMS and quintic smoothest splines were

significantly better than all the results using projection based VMS and quadratic splines.
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Figure 2.2: Advection of an L-shaped front. Problem description, from [10].

The performance of the mentioned methods is shown using two different approximation

schemes in Step 1. In the first scheme, the numerical solutions in Step 1 are generated

by Backward Euler discretization while in second scheme, we use Crank-Nicholson FEM.

Results are shown in Figure 2.3 herein. We observe that in both case, the unstabilized

solutions show the expected wiggles. The stabilized solutions are consistent with the results

in [72] and [73]. There are less oscillations in solutions produced by the two later methods.

In this test, the uncoupled VMS approach where the projected term is lagged again show its

high consistence and competitiveness with the full solve VMS algorithm’s solution.

2.6.3 Decaying Homogeneous Isotropic Turbulence.

Our next numerical illustration is for the three dimensional flow of the decaying, homoge-

neous, isotropic turbulence. The setting is a domain Ω = [0, 2π]3 with periodic boundary

conditions on all sides of Ω and right hand side f = 0.

For comparison, we consider the experimental results of [29] which provide energy spectra
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Figure 2.3: Advection of an L-shaped front. In the left is the solutions produced by using

Backward Euler time discretization scheme in Step 1: (a) before stabilization, (b) after

stabilized by Algorithm 2.4.3, (c) after stabilized by Algorithm 2.5.1. In the right is the

solutions produced by using Crank-Nicholson time discretization scheme in Step 1: (d)

before stabilization, (e) after stabilized by Algorithm 2.4.3, (f) after stabilized by Algorithm

2.5.1. The plotted solutions is at time t = 0.5 with time step ∆t = 0.025.
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at three different times. We take the first for calculating the turbulent initial data and

compare the numerical solution to the remaining two energy spectra. Therefore we apply a

Fourier transform û(k, t) =
∫

Ω
u(x, t)e−ik·xdx and get the values of the energy spectrum of the

numerical solution E(k, t) = 1
2

∑
k− 1

2
≤|k|≤k+ 1

2
û(k, t)·û(k, t) for a given time t. The experiment

in [29] is prescribed by a Taylor scale Reynolds number Reλ = 150 and ν = 1.494 × 10−5

(Reynolds number for air).

For the simulations we apply the FE library deal.II, see [6, 7], with the one legged Crank-

Nicolson time discretization scheme. The time-step size is taken as ∆t = 0.0174, since smaller

values showed no improvement. We apply the inf-sup stable Taylor-Hood element Q2/Q1

for the discretization of velocity and pressure in space. The nonlinearity is treated with the

Picard iterative algorithm and there is no additional stabilization applied.

We will use this test case to have a fair comparison of the method developed within

this paper to the usual VMS approach for this method. Therefore we choose νT to be as

optimized for the usual VMS approach in [105]. The value of C∗ in νT below was derived

analytically based on arguments of Lilly [86]. We set νT to be cellwise constant and for every

cell K ⊂ Ω

νT = C∗∆
2‖[I − PH ]∇u‖L2(K).

The nonlinearity is iterated linearly within the Stokes iteration of Algorithm 2.4.3, i.e. νT =

C∗∆
2‖[I − PH ]∇u(j)‖L2(K). The filter width is taken to be ∆ = min(∆x,∆y,∆z)

2(q−1)
, where q ≥ 2

is the polynomial degree of the finite element space for the velocity and the parameter C∗ is

chosen like in Table 1 of [105], see Table 2.3 herein.

FE Q2/Q1, LH = {0} Q2/Q1, LH = Qdisc0

C∗ 0.0942 0.2010

Table 2.3: Corresponding C∗ for different finite element large scale spaces

To illustrate the behaviour of the decaying turbulence we show some results on the

development of the kinetic energy, approximated by ‖uh‖2, in Figure 2.4. The kinetic energy

of the approximated solution is shown with 323 degrees of freedom for the pure Galerkin

method without any additional stabilization etc. We observe that a turbulence model is
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really necessary, since the energy does not decay. The other lines correspond to the usual

approaches of the variational multiscale method and the Smagorinsky in comparison to

the Algorithms with an explicitly uncoupled postprocessing step developed herein. They

are denoted by Exp. VMS, respectively Exp. Smagorinsky. We obtain that the additional

postprocessing step induces additional numerical diffusion and that the Smagorinsky induces

more diffusion than the VMS method.

10
−1

10
0

10
1

10
2

10
3

t

||
u

h
||

2

VMS

Smagorinsky

Exp. VMS

Exp. Smagorinsky

Galerkin

Figure 2.4: The decay of energy with time for different schemes.

Next, we look at the energy spectrum at different points in time. In Figure 2.5 we see

results for the Smagorinsky model, i.e. LH = {0}. With 323 and also 643 degrees of freedom

for the velocity we obtain values of the energy spectrum in good agreement to the reference

data. When we apply the Smagorinsky model in a postprocessing step we can see that

more dissipation is induced. The plot also indicates that the Galerkin method without any

turbulence model can not predict the energy spectra from [29] at the times t = 0.87 and

t = 2.0.

Figure 2.6 illustrates a comparable behaviour as the explicitly uncoupled postprocessing

step induces more dissipation to the system than the coupled, one step VMS approach. In

this case the results of the postprocessed method with 323 degrees of freedom for the velocity

are even closer to the reference data than the pure VMS results. On the left side of Figure
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Figure 2.5: Energy spectra observed with the Smagorinsky model in comparison to a post-

processed Smagorinsky step, i.e. Algorithm 2.3.2 with LH = {0}. ’x’ and ’+’ denote the

experimental data from Ref. [29].
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Figure 2.6: Energy spectra observed with 323 degrees of freedom for the velocity and the

usual VMS model in comparison to a postprocessed VMS step, i.e. Algorithm 2.3.2 with

LH = Qdisc0 , and a zoom into the plot on the right. ’x’ and ’+’ denote the experimental data

from Ref. [29].
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2.6 the dotted line corresponding to the solution of Step 1 in Algorithm 2.3.2 is very hard

to see. That is why we added a zoom into the plot on the right side, where one can see that

the values for wh are always very close to the values of uh but always higher. This is exactly

what one would expect, since the Step 2 is adding the numerical diffusion stemming from

the VMS method in every time step.

When we look at the results with 643 degrees of freedom for the velocity in Figure 2.7

on the left, we see a similar behaviour as in the case of the Smagorinsky model. The

postprocessing step induces more dissipation than the monolithic VMS method and this

must be taken into account in the selection of C∗. On the right side of Figure 2.7 we see

results for a different value of C∗ in a better comparison to the experimental data.
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Figure 2.7: Energy spectra observed with 643 degrees of freedom for the velocity and the

usual VMS model in comparison to a postprocessed VMS step, i.e. Algorithm 2.3.2 with

LH = Qdisc0 on the left. The postprocessed VMS step with a parameter C∗/4 on the right.

’x’ and ’+’ denote the experimental data from Ref. [29].

In Figure 2.8 we present some observations concerning Algorithm 2.4.3 to compute the

projection in Step 2 of Algorithm 2.3.2. Here we see that the number of iterations decays and

that very few iterations are needed, except in the first steps. This decay might be related to

the stopping criteria since the L2-norm of the solution is decaying with the energy and the

stopping criterion depends on the L2-norm. Nevertheless, the results are very satisfying and

in good agreement to the theory.
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Figure 2.8: Number of iterations in Algorithm 2.4.3 with stopping criterion ‖u(j+1)−u(j)‖ <

10−4 (solid line) and the decay of the L2-norm of the approximated solution (dashed line).

2.7 CONCLUSIONS

The goal of any uncoupled, partitioned method is to give results not appreciably worse than

the associated fully coupled approach (which is expected to be more accurate) by methods

that have algorithmic advantages. The treatment of the variational multiscale method as

an uncoupled postprocessing step is an effective method to introduce a modern approach to

turbulence in a given fluid code. It is stable and accurate. The uncoupled method predicted

the energy spectra of decaying homogeneous isotropic turbulence overall comparably to the

full VMS approach. By this standard, this is a successful test for the method. To compute

the projection with Algorithm 2.4.3 very few iterations are needed and the (preliminary)

results from just lagging the troublesome term are also positive.

There are many open problems in elaborating this approach to VMS methods. These

include extending the postprocessing VMS approach to the most common realization of

VMS using bubble functions and understanding how to use Step 2 when Step 1 is the result

from a black box flow code. This requires in particular understanding modifications in the
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algorithm and analysis necessary when different meshes are used for Steps 1 and 2. Further,

general experience with partitioned methods suggests that some price is inevitably paid for

uncoupling a coupled problem. Understanding if that is true for the methods herein and

where the price is paid is another important open problem.
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3.0 PARTITIONED TIME STEPPING METHODS FOR

MAGNETOHYDRODYNAMICS FLOWS

3.1 PROBLEM SETTING

Incompressible flow of an electrically conducting fluid in the presence of a magnetic field at

low Rm is modelled by the system, see, e.g., [103, 53, 127]: Given f , B and time T > 0, find

u : Ω× [0, T ]→ Rd, p : Ω× [0, T ]→ R and φ : Ω× [0, T ]→ R such that:

1

N
(ut + u · ∇u)− 1

M2
∆u +∇p = f + (B×∇φ+ B× (B× u)) ,

∆φ =∇ · (u×B), and ∇ · u = 0. (RMHD)

Here Ω is a bounded, Lipschitz domain in Rd (d = 3) and the body force f and the magnetic

field B are assumed to be known with ∇·B = 0. Further, u is the fluid velocity, p is pressure

and φ is electric potential. M , N are the Hartman number and interaction parameter given

by

M = BL

√
σ

ρν
, N = σB2 L

ρu

where u, B, L are the characteristic velocity, magnetic field and length, respectively. The

other parameters appearing above are the density ρ, the kinematic viscosity ν, and the

electrical conductivity σ, all assumed constant. The system (RMHD) is supplemented by

the homogeneous Dirichlet boundary conditions

u = 0, φ = 0 on ∂Ω× [0, T ]

51



and the initial data

u(x, 0) = u0(x) ∀x ∈ Ω. (3.1)

Other boundary conditions and variable material parameters can be considered. However,

constant parameters and simple boundary conditions allow us to focus on the physical cou-

pling between u and φ and an algorithm allowing uncoupling of RMHD into physical sub-

processes.

In this chapter, we propose and analyze the stability and errors of two partitioned meth-

ods for the evolutionary RMHD equations. The methods we study herein include a first

order, one step scheme and a second order, two step scheme, both of which consist of im-

plicit discretization of the subproblem terms and explicit discretization of coupling terms.

These approaches solve the coupled problems by solving each sub-physics problem per time

step (without iteration), allowing the use of optimized NSE codes and Ohm’s law codes.

3.1.1 Notation and preliminaries.

In this chapter, we will use C0 to represent a generic positive constant whose value may

be different from place to place but which is independent of mesh size and time step. The

velocity, pressure and potential spaces are X = (H1
0 (Ω))d, Q = L2

0(Ω) and S = H1
0 (Ω),

respectively. The space of divergence free functions is given by

V = {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} .

A weak formulation of (RMHD) is: Find u : [0, T ]→ X, p : [0, T ]→ Q and φ : [0, T ]→ S

for a.e. t ∈ (0, T ] satisfying

1

N
((ut,v) + (u · ∇u,v)) +

1

M2
(∇u,∇v)− (p,∇ · v)

+ (u×B,v ×B)− (∇φ,v ×B) = (f ,v) ∀v ∈ X,

(∇ · u, q) = 0 ∀q ∈ Q,

− (∇φ,∇ψ) + (u×B,∇ψ) = 0 ∀ψ ∈ S,

(3.2)
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with the initial condition (3.1) a.e. in Ω. Note that, setting v = u, ψ = φ and adding, the

coupling terms exactly cancel in the monolithic sum and one verifies the energy equality of

the continuous problem.

To make a spatial discretization of the RMHD system by the finite element method, we

select finite element spaces

velocity: Xh ⊂ X, pressure: Qh ⊂ Q, and potential: Sh ⊂ S

which are built on a conforming, edge to edge triangulation with maximum triangle pa-

rameter denoted by a subscript “h”. We assume that Xh × Qh satisfies the usual discrete

inf-sup condition for the stability of the discrete pressure and Xh, Qh, Sh satisfy approxima-

tion properties of piecewise polynomials on quasi-uniform meshes of local degrees k, k− 1, k

respectively. The error analysis in [103, 127] indicates that the same order elements to be

used for the velocity and electric potential. The discretely divergence free velocity space is

denoted by

V h := Xh ∩ {vh : (qh,∇ · vh) = 0, for all qh ∈ Qh}.

Also define the usual, explicitly skew symmetrized trilinear form

b(u,v,w) =
1

2
((u · ∇v,w)− (u · ∇w,v)).

The monolithic, semi-discrete approximation of (3.2) (see [127]) are maps (uh, ph, φh) :

[0, T ]→ Xh ×Qh × Sh satisfying for all vh ∈ Xh, qh ∈ Qh, ψh ∈ Sh

1

N
((uh,t,vh) + b(uh,uh,vh)) +

1

M2
(∇uh,∇vh)− (ph,∇ · vh)

+ (uh ×B,vh ×B)− (∇φh,vh ×B) = (f ,vh),

(∇ · uh, qh) = 0,

− (∇φh,∇ψh) + (uh ×B,∇ψh) = 0.

(3.3)
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3.2 THE PARTITIONED TIME STEPPING SCHEMES

The methods we propose and analyze herein have the coupling terms lagged or extrapolated

in a careful way that preserves stability. Thus the system at each time step uncouples into

two subproblem solves. The first scheme we study is a combination of the backward Euler

method with the coupling terms treated by the forward Euler method. It is first order

accurate and solves two subproblems parallely. We call this scheme 1PARA. We shall use

the same time step in both subproblems. It reads

Algorithm 3.2.1 (First order scheme). Given unh ∈ Xh, pnh ∈ Qh, φnh ∈ Sh, find un+1
h ∈

Xh, pn+1
h ∈ Qh, φn+1

h ∈ Sh satisfying

1

N

((
un+1
h − unh

∆t
,vh

)
+ b(un+1

h ,un+1
h ,vh)

)
+

1

M2
(∇un+1

h ,∇vh)

− (pn+1
h ,∇ · vh) + (un+1

h ×B,vh ×B)− (∇φnh,vh ×B) = (fn+1,vh),

(∇ · un+1
h , qh) = 0, (1PARA)

− (∇φn+1
h ,∇ψh) + (unh ×B,∇ψh) = 0,

for all vh ∈ Xh, qh ∈ Qh and ψh ∈ Sh.

The second scheme we consider employs second order, three level BDF discretization

for the subproblem terms. The coupling terms are treated by two step extrapolation in

Navier-Stokes equation and by implicit method in Ohm’s law. Since one needs the updated

value of uh at current time level to compute φh, this method is uncoupled but sequential:

φnh → un+1
h → φn+1

h . Nevertheless, solving the subproblems sequentially may be an acceptable

tradeoff for higher accuracy and preservation of stability. Computing time for the nonlinear

equation of uh is normally expected to dominate that for the Poisson solve for φh. We call

this method 2SEQU
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Algorithm 3.2.2 (Second order scheme). Given un−1
h ,unh ∈ Xh, pn−1

h , pnh ∈ Qh, φn−1
h , φnh

∈ Sh, find un+1
h ∈ Xh, pn+1

h ∈ Qh, φn+1
h ∈ Sh satisfying

1

N

((
3un+1

h − 4unh + un−1
h

2∆t
,vh

)
+ b(un+1

h ,un+1
h ,vh)

)
+

1

M2
(∇un+1

h ,∇vh)

− (pn+1
h ,∇ · vh) + (un+1

h ×B,vh ×B)− (∇(2φnh − φn−1),vh ×B) = (fn+1,vh),

(∇ · un+1
h , qh) = 0, (2SEQU)

− (∇φn+1
h ,∇ψh) + (un+1

h ×B,∇ψh) = 0,

for all vh ∈ Xh, qh ∈ Qh and ψh ∈ Sh.

3.3 STABILITY

In this section, we establish stability of the approximations in Algorithms 1PARA and

2SEQU.

Theorem 3.3.1 (Unconditional stability of Algorithm 1PARA). Let (unh, p
n
h, φ

n
h) ∈ Xh ×

Qh × Sh satisfy (1PARA) for each n ∈ {1, 2, ..., T
∆t
}. Then

1

N
‖unh‖2 +

1

N

n−1∑
j=0

‖uj+1
h − ujh‖

2 + ∆t‖∇φnh‖2 + ∆t‖B× unh‖2 +
∆t

M2

n−1∑
j=0

‖∇uj+1
h ‖

2

+ ∆t
n−1∑
j=0

(
‖ − ∇φjh + uj+1

h ×B‖2 + ‖ − ∇φj+1
h + ujh ×B‖2

)
(3.4)

≤ 1

N
‖u0

h‖2 + ∆t‖∇φ0
h‖2 + ∆t‖B× u0

h‖2 +M2∆t
n−1∑
j=0

‖f j+1‖2
−1.

Proof. In (1PARA), setting vh = uj+1
h , qh = pj+1

h , ψh = φj+1
h , we have

1

2∆t
· 1

N

(
‖uj+1

h ‖
2 − ‖ujh‖

2 + ‖uj+1
h − ujh‖

2
)

+
1

M2
‖∇uj+1

h ‖
2 + ‖B× uj+1

h ‖
2

=
(
uj+1
h ×B,∇φjh

)
+ (f j+1,uj+1

h ), (3.5)

‖∇φj+1
h ‖

2 =
(
ujh ×B,∇φj+1

h

)
.
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Applying polarization identity ab = 1
2
a2 + 1

2
b2 − 1

2
(a− b)2, it gives(

uj+1
h ×B,∇φjh

)
=

1

2
‖uj+1

h ×B‖2 +
1

2
‖∇φjh‖

2 − 1

2
‖−∇φjh + uj+1

h ×B‖2,(
ujh×B,∇φj+1

h

)
=

1

2
‖ujh×B‖2 +

1

2
‖∇φj+1

h ‖
2 − 1

2
‖−∇φj+1

h + ujh ×B‖2.
(3.6)

Inserting (3.6) into (3.5), adding (3.5), then multiplying by 2∆t and summing from j = 0 to

n− 1 give

1

N
‖unh‖2 +

1

N

n−1∑
j=0

‖uj+1
h − ujh‖

2 + ∆t‖∇φnh‖2 + ∆t‖B× unh‖2

+
2∆t

M2

n−1∑
j=0

‖∇uj+1
h ‖

2 + ∆t
n−1∑
j=0

(
‖ − ∇φjh + uj+1

h ×B‖2 + ‖ − ∇φj+1
h + ujh ×B‖2

)
=

1

N
‖u0

h‖2 + ∆t‖∇φ0
h‖2 + ∆t‖B× u0

h‖2 + 2∆t
n−1∑
j=0

(f j+1,uj+1
h ).

Applying Young’s inequality yields the result.

Remark 3.3.2. Besides the electric potential φ, the electric current density J defined by

J = σ(−∇φ+u×B) is another important electromagnetic quantity to be determined in MHD

flows, see [104, 35]. For 1PARA, the stability of J comes directly from the boundedness of

1
N

∑n−1
j=0 ‖u

j+1
h − ujh‖2 and ∆t

∑n−1
j=0 ‖ − ∇φ

j+1
h + ujh ×B‖2 in (3.4).

Next, we turn to Algorithm 2SEQU. We prove that it is stable over 0 ≤ t < ∞ with

a condition related the time step and the problem data but independent of the spacial

meshwidth.

Theorem 3.3.3 (Stability of Algorithm 2SEQU). Let (unh, p
n
h, φ

n
h) ∈ Xh × Qh × Sh satisfy

(2SEQU) for each n ∈ {1, 2, ..., T
∆t
}. Under the time step restriction

∆t <
1

2N‖B‖2
L∞(M2C2

P‖B‖2
L∞ + 1)

(3.7)

Algorithm 2SEQU is stable

1

2N
‖unh‖2 +

1

2N
‖2unh − un−1

h ‖2 +
∆t

2M2

n−1∑
j=1

‖∇uj+1
h ‖

2 +
∆t

σ2

n−1∑
j=1

‖2Jj − Jj−1‖2

≤ 1

2N
‖u1

h‖2 +
1

2N
‖2u1

h − u0
h‖2 + 2∆tM2

n−1∑
j=1

‖f j+1‖2
−1. (3.8)
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Proof. Set vh = uj+1
h in the first equation of (2SEQU) and use the identity

1

4
[3a2 − 4b2 + c2] +

1

2
(a− b)2 − 1

2
(b− c)2 +

1

4
(a− 2b+ c)2 =

1

2
(3a− 4b+ c)a

with a = uj+1
h , b = ujh, c = uj−1

h to get

1

4∆t
· 1

N

(
3‖uj+1

h ‖
2 − 4‖ujh‖

2 + ‖uj−1
h ‖

2
)

+
1

2∆t
· 1

N
‖uj+1

h − ujh‖
2 − 1

2∆t
· 1

N
‖ujh − uj−1

h ‖
2

+
1

4∆t
· 1

N
‖uj+1

h − 2ujh + uj−1
h ‖

2 +
1

M2
‖∇uj+1

h ‖
2 +

1

2
‖B× uj+1

h ‖
2

+
1

2
‖ − ∇(2φjh − φ

j−1
h ) + uj+1

h ×B‖2

=
1

2
‖∇(2φjh − φ

j−1
h )‖2 + (f j+1,uj+1

h ).

(3.9)

The third equation of (2SEQU) gives

−(∇(2φjh − φ
j−1
h ),∇ψh) + ((2ujh − uj−1

h )×B,∇ψh) = 0.

Setting ψh = 2φjh − φ
j−1
h , we have

‖∇(2φjh − φ
j−1
h )‖2 = ‖(2ujh−uj−1

h )×B‖2 (3.10)

− ‖−∇(2φjh − φ
j−1
h ) + (2ujh−uj−1

h )×B‖2.

Plugging (3.10) into (3.9) yields

1

4∆t
· 1

N

(
3‖uj+1

h ‖
2 − 4‖ujh‖

2 + ‖uj−1
h ‖

2
)

(3.11)

+
1

2∆t
· 1

N
‖uj+1

h − ujh‖
2 − 1

2∆t
· 1

N
‖ujh − uj−1

h ‖
2

+
1

4∆t
· 1

N
‖uj+1

h − 2ujh + uj−1
h ‖

2 +
1

M2
‖∇uj+1

h ‖
2 +

1

2
‖B× uj+1

h ‖
2

+
1

2
‖ − ∇(2φjh − φ

j−1
h ) + uj+1

h ×B‖2 +
1

2
‖−∇(2φjh − φ

j−1
h ) + (2ujh−uj−1

h )×B‖2

=
1

2
‖(2ujh−uj−1

h )×B‖2 + (f j+1,uj+1
h ).
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Next, observe that for an arbitrary ε > 0

‖(2ujh−uj−1
h )×B‖2 = ‖(−uj+1

h + 2ujh−uj−1
h )×B‖2 + ‖uj+1

h ×B‖2 (3.12)

+ 2((−uj+1
h + 2ujh−uj−1

h )×B,uj+1
h ×B)

= ‖(−uj+1
h + 2ujh−uj−1

h )×B‖2 + ‖uj+1
h ×B‖2 +

1

ε2
‖(−uj+1

h + 2ujh−uj−1
h )×B‖2

+ ε2‖uj+1
h ×B‖2 − ‖(1

ε
(−uj+1

h + 2ujh−uj−1
h )− εuj+1

h )×B‖2

≤
(

1 +
1

ε2

)
‖B‖2

L∞‖(−uj+1
h + 2ujh−uj−1

h )‖2 + ‖uj+1
h ×B‖2

+ ε2C2
P‖B‖2

L∞‖∇uj+1
h ‖

2 − ‖(1

ε
(−uj+1

h + 2ujh−uj−1
h )− εuj+1

h )×B‖2

where CP is the Poincaré constant.

From (3.12), we can hide 1
2
‖(2ujh−uj−1

h )×B‖2 in the left hand side of (3.11) to obtain

1

4∆t
· 1

N

(
3‖uj+1

h ‖
2 − 4‖ujh‖

2 + ‖uj−1
h ‖

2
)

(3.13)

+
1

2∆t
· 1

N
‖uj+1

h − ujh‖
2 − 1

2∆t
· 1

N
‖ujh − uj−1

h ‖
2

+

(
1

4∆t
· 1

N
− 1

2

(
1 +

1

ε2

)
‖B‖2

L∞

)
‖uj+1

h − 2ujh + uj−1
h ‖

2

+
1

2
‖ − ∇(2φjh − φ

j−1
h ) + uj+1

h ×B‖2 +
1

2
‖−∇(2φjh − φ

j−1
h ) + (2ujh−uj−1

h )×B‖2

+
1

2
‖(1

ε
(−uj+1

h + 2ujh−uj−1
h )− εuj+1

h )×B‖2 +

(
1

M2
− 1

2
ε2C2

P‖B‖2
L∞

)
‖∇uj+1

h ‖
2

≤ (f j+1,uj+1
h ).

Let ε = (CPM‖B‖L∞)−1, under the condition (3.7), we have from (3.13)

1

4∆t
· 1

N

(
3‖uj+1

h ‖
2 − 4‖ujh‖

2 + ‖uj−1
h ‖

2
)

+
1

2∆t
· 1

N
‖uj+1

h − ujh‖
2 − 1

2∆t
· 1

N
‖ujh − uj−1

h ‖
2

+
1

2
‖ − ∇(2φjh − φ

j−1
h ) + uj+1

h ×B‖2 +
1

2
‖−∇(2φjh − φ

j−1
h ) + (2ujh−uj−1

h )×B‖2

+
1

2
‖(1

ε
(−uj+1

h + 2ujh−uj−1
h )− εuj+1

h )×B‖2 +
1

2M2
‖∇uj+1

h ‖
2

≤ (f j+1,uj+1
h ).
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Summing from j = 1 to n− 1, multiply both sides by 2∆t and use the identity

3

2
a2 − 1

2
b2 + (a− b)2 =

a2

2
+

(
a
√

2− b√
2

)2

we get

1

2N
‖unh‖2 +

1

2N
‖2unh − un−1

h ‖2 +
∆t

M2

n−1∑
j=1

‖∇uj+1
h ‖

2

+ ∆t
n−1∑
j=1

‖ − ∇(2φjh − φ
j−1
h ) + uj+1

h ×B‖2

+ ∆t
n−1∑
j=1

‖−∇(2φjh − φ
j−1
h ) + (2ujh−uj−1

h )×B‖2

≤ 1

2N
‖u1

h‖2 +
1

2N
‖2u1

h − u0
h‖2 + 2∆t

n−1∑
j=1

(f j+1,uj+1
h ).

Applying Young’s inequality for the term involving body force yields the energy estimate

(3.8).

3.4 ERROR ANALYSIS

We proceed to give an a priori error estimate for the partitioned methods 1PARA and

2SEQU. Due to the length and technicality of the proofs, for compactness, we only present the

error of the first order uncoupling scheme, i.e. Algorithm 1PARA. With minor modifications

(and greater length), the analogous convergence rates are obtained for Algorithm 2SEQU.

Let tj = j∆t and uj := u(tj) (and similarly for other variables). To establish the optimal

error estimate for the model, we introduce the following discrete norms

‖|ω|‖∞,k := max
0≤j≤T/∆t

‖ωj‖k, ‖|ω|‖2,k :=

T/∆t∑
j=0

‖ωj‖2
k∆t

1/2

and assume the following regularity of the true solution

u ∈ L∞(0, T ; (Hk+1(Ω))d) ∩H1(0, T ; (Hk+1(Ω))d) ∩H2(0, T ; (L2(Ω))d),

p ∈ L2(0, T ;Hs+1(Ω)), φ ∈ L∞(0, T ;Hk+1(Ω)) ∩H1(0, T ;H1(Ω))
(3.14)
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Denote the errors by eju = uj − ujh, e
j
φ = φj − φjh and ejJ = −∇ejφ + eju × B. We have the

following result.

Theorem 3.4.1. For u, p, φ satisfying the weak formulation (3.2) and regularity condition

(3.14), and unh, p
n
h, φ

n
h given by Algorithm 1PARA with n ∈ {1, 2, ..., T

∆t
}, we have for ∆t

sufficiently small

‖enu‖2 +
n−1∑
j=0

‖ej+1
u − eju‖2 +

N∆t

M2

n−1∑
j=0

‖∇ej+1
u ‖2 +N∆t

n−1∑
j=0

‖∇ej+1
φ ‖

2 (3.15)

+N∆t
n−1∑
j=0

‖ − ∇ejφ + ej+1
u ×B‖2 +N∆t

n−1∑
j=0

‖ − ∇ej+1
φ + eju ×B‖2

≤ C0

(
‖u0 − u0

h‖2 + ‖∇(φ0 − φ0
h)‖2 + h2k+2‖|u|‖2

∞,k+1 + h2k‖|φ|‖2
∞,k+1

+ h2k+2‖ut‖2
2,k+1 + h2k‖|u|‖2

2,k+1 + h4k‖|u|‖4
4,k+1 + ∆t2‖φt‖2

2,1 + h2s+2‖|p|‖2
2,s+1

+ ∆t2‖utt‖2
2,0 + h2k‖|φ|‖2

2,k+1 + h2k+2‖|u|‖2
2,k+1 + ∆t2‖ut‖2

2,0

)
.

Proof. At time tj+1 = (j + 1)∆t, the true solution (u, p, φ) of (3.2) satisfies

1

N

((
uj+1 − uj

∆t
,vh

)
+ b(uj+1,uj+1,vh)

)
+

1

M2
(∇uj+1,∇vh)

− (pj+1,∇ · vh) + (uj+1 ×B,vh ×B)− (∇φj,vh ×B) = (f j+1,vh)

+ (∇(φj+1 − φj),vh ×B) +
1

N

(
uj+1 − uj

∆t
− ut(tj+1),vh

)
∀vh ∈ Xh,

− (∇φj+1,∇ψh) + (uj ×B,∇ψh) = −((uj+1−uj)×B,∇ψh) ∀ψh ∈ Sh.

(3.16)

We construct the error equations for velocity and electric potential. Decompose the velocity

error

uj+1 − uj+1
h = (uj+1 − ũj+1

h ) + (ũj+1
h − uj+1

h ) =: ηj+1 + Uj+1
h

and the electric potential error

φj+1 − φj+1
h = (φj+1 − φ̃j+1

h ) + (φ̃j+1
h − φj+1

h ) =: ζj+1 + Φj+1
h

where ũj+1
h and φ̃j+1

h will be the interpolation of uj+1 and φj+1 in Vh and Sh, respectively.
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Substract (3.16) from (1PARA) and set vh = Uj+1
h and ψh = Φj+1

h to obtain

1

2∆t
· 1

N

(
‖Uj+1

h ‖
2 − ‖Uj

h‖
2 + ‖Uj+1

h −Uj
h‖

2
)

+
1

M2
‖∇Uj+1

h ‖
2 + ‖B×Uj+1

h ‖
2

− (∇Φj
h,U

j+1
h ×B) = − 1

N

(
ηj+1 − ηj

∆t
,Uj+1

h

)
− 1

N
b(Uj+1

h ,uj+1,Uj+1
h ) (3.17)

− 1

N
b(uj+1

h , ηj+1,Uj+1
h )− 1

N
b(ηj+1,uj+1,Uj+1

h ) + (pj+1 − λj+1
h ,∇ ·Uj+1

h )

− 1

M2
(∇ηj+1,∇Uj+1

h )− (ηj+1 ×B,Uj+1
h ×B) + (∇ζj,Uj+1

h ×B)

+ (∇(φj+1 − φj),Uj+1
h ×B) +

1

N

(
uj+1 − uj

∆t
− ut(tj+1),Uj+1

h

)
,

for every λj+1
h ∈ Qh, and

− ‖∇Φj+1
h ‖

2 + (Uj
h ×B,∇Φj+1

h ) = (∇ζj+1,∇Φj+1
h )

− (ηj ×B,∇Φj+1
h )− ((uj+1 − uj)×B,∇Φj+1

h ).
(3.18)

We have from (3.18)

2‖∇Φj+1
h ‖

2 − (Uj
h ×B,∇Φj+1

h ) = (Uj
h ×B,∇Φj+1

h )− 2(∇ζj+1,∇Φj+1
h )

+ 2(ηj ×B,∇Φj+1
h ) + 2((uj+1 − uj)×B,∇Φj+1

h ).
(3.19)

Adding (3.17) and (3.19) and rearranging terms in the left hand side give

1

2∆t
· 1

N

(
‖Uj+1

h ‖
2 − ‖Uj

h‖
2 + ‖Uj+1

h −Uj
h‖

2
)

+
1

M2
‖∇Uj+1

h ‖
2

+
1

2
‖Uj+1

h ×B‖2 − 1

2
‖Uj

h ×B‖2 +
1

2
‖∇Φj+1

h ‖
2 − 1

2
‖∇Φj

h‖
2

+
1

2
‖ − ∇Φj

h + Uj+1
h ×B‖2 +

1

2
‖ − ∇Φj+1

h + Uj
h ×B‖2 + ‖∇Φj+1

h ‖
2

= − 1

N

(
ηj+1 − ηj

∆t
,Uj+1

h

)
− 1

N
b(Uj+1

h ,uj+1,Uj+1
h )

− 1

N
b(uj+1

h , ηj+1,Uj+1
h )− 1

N
b(ηj+1,uj+1,Uj+1

h ) + (pj+1 − λj+1
h ,∇ ·Uj+1

h )

− 1

M2
(∇ηj+1,∇Uj+1

h )− (−∇ζj + ηj+1 ×B,Uj+1
h ×B) + (Uj

h ×B,∇Φj+1
h )

+ (∇(φj+1 − φj),Uj+1
h ×B) +

1

N

(
uj+1 − uj

∆t
− ut(t

j+1),Uj+1
h

)
− 2(∇ζj+1,∇Φj+1

h ) + 2(ηj ×B,∇Φj+1
h ) + 2((uj+1 − uj)×B,∇Φj+1

h ).

(3.20)
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We proceed to bound each term on the right hand side of (3.20), absorb like-terms into

the left hand side. For an arbitrary ε > 0,

− 1

N

(
ηj+1 − ηj

∆t
,Uj+1

h

)
≤ 1

4εN2

∥∥∥∥ηj+1 − ηj

∆t

∥∥∥∥2

−1

+ ε‖∇Uj+1
h ‖

2. (3.21)

The first nonlinear term can be bounded as

− 1

N
b(Uj+1

h ,uj+1,Uj+1
h ) ≤ C0‖Uj+1

h ‖‖u
j+1‖2‖∇Uj+1

h ‖

≤ C2
0

4ε
‖Uj+1

h ‖
2‖uj+1‖2

2 + ε‖∇Uj+1
h ‖

2. (3.22)

We now give an estimation for − 1
N
b(uj+1

h , ηj+1,Uj+1
h ):

− 1

N
b(uj+1

h , ηj+1,Uj+1
h ) = − 1

N
b(uj+1, ηj+1,Uj+1

h )

+
1

N
b(ηj+1, ηj+1,Uj+1

h ) +
1

N
b(Uj+1

h , ηj+1,Uj+1
h ),

where terms in the right hand side can be controlled as

− 1

N
b(uj+1, ηj+1,Uj+1

h ) ≤C0‖∇uj+1‖‖∇ηj+1‖‖∇Uj+1
h ‖ (3.23)

≤C
2
0

4ε
‖u‖2

∞,1‖∇ηj+1‖2 + ε‖∇Uj+1
h ‖

2,

1

N
b(ηj+1, ηj+1,Uj+1

h ) ≤C
2
0

4ε
‖∇ηj+1‖4 + ε‖∇Uj+1

h ‖
2, (3.24)

and

1

N
b(Uj+1

h , ηj+1,Uj+1
h ) ≤ C0‖Uj+1

h ‖
1/2‖∇Uj+1

h ‖
1/2‖∇ηj+1‖‖∇Uj+1

h ‖ (3.25)

≤ C0h
−1/2‖Uj+1

h ‖‖∇η
j+1‖‖∇Uj+1

h ‖ ≤ C0h
1/2‖Uj+1

h ‖‖u
j+1‖2‖∇Uj+1

h ‖

≤ C2
0

4ε
h‖Uj+1

h ‖
2‖uj+1‖2

2 + ε‖∇Uj+1
h ‖

2.

The last nonlinear term can be bounded exactly like in (3.23). For the pressure term

(pj+1 − λj+1
h ,∇ ·Uj+1

h ) ≤ C2
0

4ε
‖pj+1 − λj+1

h ‖
2 + ε‖∇Uj+1

h ‖
2. (3.26)

We continue to deal with the remaining terms. First,

− 1

M2
(∇ηj+1,∇Uj+1

h ) ≤ C2
0

4ε
‖∇ηj+1‖2 + ε‖∇Uj+1

h ‖
2. (3.27)
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Next, we have

− (−∇ζj + ηj+1 ×B,Uj+1
h ×B) ≤ ‖ −∇ζj + ηj+1 ×B‖‖Uj+1

h ×B‖ (3.28)

≤ C0‖ − ∇ζj + ηj+1 ×B‖2 + ‖B‖2
L∞‖U

j+1
h ‖

2.

Also, observe that

(Uj
h ×B,∇Φj+1

h ) ≤ ‖Uj
h ×B‖‖∇Φj+1

h ‖ ≤
1

4ε′
‖B‖2

L∞‖U
j
h‖

2 + ε′‖∇Φj+1
h ‖

2, (3.29)

and

(∇(φj+1 − φj),Uj+1
h ×B) ≤ C0‖∇(φj+1 − φj)‖2 + ‖B‖2

L∞‖U
j+1
h ‖

2. (3.30)

Furthermore,

1

N

(
uj+1 − uj

∆t
− ut(t

j+1),Uj+1
h

)
≤ C0

∥∥∥∥uj+1 − uj

∆t
− ut(t

j+1)

∥∥∥∥∥∥∇Uj+1
h

∥∥ (3.31)

≤ C2
0

4ε

∥∥∥∥uj+1 − uj

∆t
− ut(t

j+1)

∥∥∥∥2

+ ε
∥∥∇Uj+1

h

∥∥2
.

We also have

− 2(∇ζj+1,∇Φj+1
h ) ≤ 2‖∇ζj+1‖‖∇Φj+1

h ‖ ≤
1

ε′
‖∇ζj+1‖2 + ε′‖∇Φj+1

h ‖
2. (3.32)

Finally, it gives

2(ηj ×B,∇Φj+1
h ) ≤ 2‖ηj ×B‖‖∇Φj+1

h ‖ ≤
1

ε′
‖B‖2

L∞‖ηj‖2 + ε′‖∇Φj+1
h ‖

2, (3.33)

and

2((uj+1 − uj)×B,∇Φj+1
h ) ≤ 2‖(uj+1 − uj)×B‖‖∇Φj+1

h ‖ (3.34)

≤ 1

ε′
‖B‖2

L∞‖uj+1 − uj‖2 + ε′‖∇Φj+1
h ‖

2.
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Applying estimate (3.21)–(3.34) to (3.20) with ε = 1
18M2 and ε′ = 1

8
gives

1

2∆t
· 1

N

(
‖Uj+1

h ‖
2 − ‖Uj

h‖
2 + ‖Uj+1

h −Uj
h‖

2
)

+
1

2M2
‖∇Uj+1

h ‖
2

+
1

2
‖Uj+1

h ×B‖2 − 1

2
‖Uj

h ×B‖2 +
1

2
‖∇Φj+1

h ‖
2 − 1

2
‖∇Φj

h‖
2

+
1

2
‖ − ∇Φj

h + Uj+1
h ×B‖2 +

1

2
‖ − ∇Φj+1

h + Uj
h ×B‖2 +

1

2
‖∇Φj+1

h ‖
2

≤
(

9

2
C2

0M
2‖uj+1‖2

2(1 + h) + 2‖B‖2
L∞

)
‖Uj+1

h ‖
2 + 2‖B‖2

L∞‖U
j
h‖

2

+
9M2

2N2

∥∥∥∥ηj+1 − ηj

∆t

∥∥∥∥2

−1

+ 9C2
0M

2‖u‖2
∞,1‖∇ηj+1‖2 +

9

2
C2

0M
2‖∇ηj+1‖4

+
9

2
C2

0M
2‖pj+1 − λj+1

h ‖
2 +

9

2
C2

0M
2‖∇ηj+1‖2 + C0‖ − ∇ζj + ηj+1 ×B‖2

+ C0‖∇(φj+1 − φj)‖2 +
9

2
C2

0M
2

∥∥∥∥uj+1 − uj

∆t
− ut(t

j+1)

∥∥∥∥2

+ 8‖∇ζj+1‖2 + 8‖B‖2
L∞‖ηj‖2 + 8‖B‖2

L∞‖uj+1 − uj‖2.

(3.35)

Let κ = 9C2
0M

2N‖u‖2
∞,2(1+h)+8‖B‖2

L∞N , summing from j = 0 to j = n−1 and applying

the discrete Grönwall lemma (Lemma 1.4.4) yield

‖Un
h‖2 +

n−1∑
j=0

‖Uj+1
h −Uj

h‖
2 +

N∆t

M2

n−1∑
j=0

‖∇Uj+1
h ‖

2 +N∆t
n−1∑
j=0

‖∇Φj+1
h ‖

2 (3.36)

+N∆t
n−1∑
j=0

‖ − ∇Φj
h + Uj+1

h ×B‖2 +N∆t
n−1∑
j=0

‖ − ∇Φj+1
h + Uj

h ×B‖2

≤ exp

(
(n+ 1)

∆tκ

1−∆tκ

)(
‖U0

h‖2 +N∆t‖U0
h ×B‖2 +N∆t‖∇Φ0

h‖2

+ ∆t
9M2

N

n−1∑
j=0

∥∥∥∥ηj+1 − ηj

∆t

∥∥∥∥2

−1

+ 2N∆t

(
9C2

0M
2‖u‖2

∞,1 +
9

2
C2

0M
2

) n−1∑
j=0

‖∇ηj+1‖2

+ 9∆tC2
0M

2N

n−1∑
j=0

‖∇ηj+1‖4 + 9∆tC2
0M

2N

n−1∑
j=0

‖pj+1 − λj+1
h ‖

2

+ 2N∆tC0

n−1∑
j=0

‖∇(φj+1 − φj)‖2 + 9∆tC2
0M

2N
n−1∑
j=0

∥∥∥∥uj+1 − uj

∆t
− ut(t

j+1)

∥∥∥∥2

+ 2N∆t(2C0 + 8)
n∑
j=0

‖∇ζj‖2 + 2N∆t(2C0 + 8)‖B‖2
L∞

n∑
j=0

‖ηj‖2

+ 16N∆t‖B‖2
L∞

n−1∑
j=0

‖uj+1 − uj‖2

)
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provided that ∆t < 1/κ.

We next bound the right hand side of (3.36). First,

‖U0
h‖2 +N∆t‖U0

h ×B‖2 +N∆t‖∇Φ0
h‖2

≤ 2‖u0 − u0
h‖2 + 2‖η0‖2 + 2N∆t‖(u0 − u0

h)×B‖2 + 2N∆t‖η0 ×B‖2

+ 2N∆t‖∇(φ0 − φ0
h)‖2 + 2N∆t‖∇ζ0‖2 (3.37)

≤ (2 + 2N∆t‖B‖2
L∞)‖u0 − u0

h‖2 + 2N∆t‖∇(φ0 − φ0
h)‖2

+ C0(2 + 2N∆t‖B‖2
L∞)h2k+2‖|u|‖2

∞,k+1 + 2N∆tC0h
2k‖|φ|‖2

∞,k+1

≤C0‖u0 − u0
h‖2 + C0‖∇(φ0 − φ0

h)‖2 + C0h
2k+2‖|u|‖2

∞,k+1 + C0h
2k‖|φ|‖2

∞,k+1.

The next term can be controlled as follows

∆t
9M2

N

n−1∑
j=0

∥∥∥∥ηj+1 − ηj

∆t

∥∥∥∥2

−1

≤ C0

n−1∑
j=0

∫ tj+1

tj
‖ηt‖2dt ≤ C0h

2k+2‖ut‖2
2,k+1. (3.38)

We also have

9N∆tC2
0M

2
(
2‖u‖2

∞,1+1
)n−1∑
j=0

‖∇ηj+1‖2

≤ C0∆t
n−1∑
j=0

h2k‖uj+1‖2
k+1 = C0h

2k‖|u|‖2
2,k+1. (3.39)

Observe that

9∆tC2
0M

2N
n−1∑
j=0

‖∇ηj+1‖4 ≤ C0∆t
n−1∑
j=0

h4k‖uj+1‖4
k+1 = C0h

4k‖|u|‖4
4,k+1, (3.40)

and

2N∆tC0

n−1∑
j=0

‖∇(φj+1 − φj)‖2 ≤ C0∆t2
n−1∑
j=0

∫ tj+1

tj
‖∇φt‖2dt ≤ C0∆t2‖φt‖2

2,1. (3.41)

Let λj+1
h be the interpolation of pj+1 in Qh, we have

9∆tC2
0M

2N

n−1∑
j=0

‖pj+1 − λj+1
h ‖

2 ≤ C0h
2s+2‖|p|‖2

2,s+1. (3.42)
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Moreover, it gives

9∆tC2
0M

2N
n−1∑
j=0

∥∥∥∥uj+1 − uj

∆t
−ut(t

j+1)

∥∥∥∥2

≤C0∆t2
n−1∑
j=0

∫ tj+1

tj
‖utt‖2dt=C0∆t2‖utt‖2

2,0. (3.43)

On the other hand, we can see that

2N∆t(2C0+8)
n∑
j=0

‖∇ζj‖2 ≤ C0∆t
n∑
j=0

h2k‖φj‖2
k+1 = C0h

2k‖|φ|‖2
2,k+1. (3.44)

Finally, we have

2N∆t(2C0+8)‖B‖2
L∞

n∑
j=0

‖ηj‖2 ≤ C0∆t
n∑
j=0

h2k+2‖uj‖2
k+1 = C0h

2k+2‖|u|‖2
2,k+1, (3.45)

and

16N∆t‖B‖2
L∞

n−1∑
j=0

‖uj+1−uj‖2 ≤ C0∆t2
n−1∑
j=0

∫ tj+1

tj
‖ut‖2dt ≤ C0∆t2‖ut‖2

2,0. (3.46)

Combining (3.36)–(3.46) gives

‖Un
h‖2 +

n−1∑
j=0

‖Uj+1
h −Uj

h‖
2 +

N∆t

M2

n−1∑
j=0

‖∇Uj+1
h ‖

2 +N∆t
n−1∑
j=0

‖∇Φj+1
h ‖

2 (3.47)

+N∆t
n−1∑
j=0

‖ − ∇Φj
h + Uj+1

h ×B‖2 +N∆t
n−1∑
j=0

‖ − ∇Φj+1
h + Uj

h ×B‖2

≤ C0

(
‖u0 − u0

h‖2 + ‖∇(φ0 − φ0
h)‖2 + h2k+2‖|u|‖2

∞,k+1 + h2k‖|φ|‖2
∞,k+1

+ h2k+2‖ut‖2
2,k+1 + h2k‖|u|‖2

2,k+1 + h4k‖|u|‖4
4,k+1 + ∆t2‖φt‖2

2,1 + h2s+2‖|p|‖2
2,s+1

+ ∆t2‖utt‖2
2,0 + h2k‖|φ|‖2

2,k+1 + h2k+2‖|u|‖2
2,k+1 + ∆t2‖ut‖2

2,0

)
.

To obtain the error estimate given in (3.15), we add both sides of (3.47) with

Extra terms = ‖ηn‖2 +
n−1∑
j=0

‖ηj+1 − ηj‖2 +
N∆t

M2

n−1∑
j=0

‖∇ηj+1‖2+N∆t
n−1∑
j=0

‖∇ζj+1‖2

+N∆t
n−1∑
j=0

‖ − ∇ζj + ηj+1 ×B‖2 +N∆t
n−1∑
j=0

‖ − ∇ζj+1 + ηj ×B‖2,

and apply the triangle inequality for the left hand side, noticing that the upcoming new

terms are already contained in the right hand side of the model.
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Consequently, for Taylor-Hood elements, i.e. k = 2, s = 1, we have the following result.

Corollary 3.4.2. Consider Algorithm 1PARA. Under the assumptions of Theorem 3.4.1,

suppose that (Xh, Qh) is given by P2-P1 Taylor-Hood approximation elements and Sh is P2

finite element. Then, there is a positive constant C0 such that

‖|eu|‖2
∞,0 + ‖|∇eu|‖2

2,0 + ‖|∇eφ|‖2
2,0 + ‖|eJ|‖2

2,0 ≤ C0(∆t2 + h4).

3.5 NUMERICAL EXPERIMENTS

We present two numerical experiments to test the algorithms proposed herein. First, given

exact solutions, we verify the convergence rates of our methods. Second, we will test the

stability in case the Hartman number M and the interaction parameter N are large. The

code was implemented using the software package FreeFEM++.

3.5.1 Test 1: Convergence rates

We consider true solution (u, p, φ) from [127] is given by

u(x, y, t) = (2 cos(2x) sin(2y),−2 sin(2x) cos(2y))e−5t,

p(x, y, t) = 0,

φ(x, y, t) = (cos(2x) cos(2y) + x2 − y2)e−5t.

defined on the domain Ω = [0, π]2, satisfying ∆φ = ∇·(u×B). Take the time interval 0 ≤ t ≤

1 and set M = 20, N = 16. The imposed magnetic field is B = (0, 0, 1). We utilize piecewise

quadratic for velocity and piecewise linear for pressure for the Navier-Stokes equation and

continuous piecewise quadratic finite elements for the Ohm’s law. The boundary condition

on the problem is inhomogeneous Dirichlet: uh = u on ∂Ω. The initial data and source

terms are chosen to correspond the exact solution. Convergence rates are computed using

linear regression. We denote ‖ · ‖∞ = ‖ · ‖L∞(0,T ;L2(Ω)) and ‖ · ‖2 = ‖ · ‖L2(0,T ;L2(Ω)). From the

tables 3.1 and 3.2, 1PARA is first order and 2SEQU is second order.
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h ∆t ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖∇·(p−ph)‖∞ ‖φ−φh‖∞ ‖∇φ−∇φh‖2

1/5 1/40 1.047e+0 2.921e+0 1.956e+0 5.760e-1 9.764e-1

1/10 1/80 7.406e-1 2.062e+0 1.005e+0 3.913e-1 6.764e-1

1/20 1/160 4.338e-1 1.214e+0 5.094e-1 2.277e-1 3.952e-1

1/40 1/320 2.348e-1 6.522e-1 2.564e-1 1.237e-1 2.137e-1

1/80 1/640 1.223e-1 3.374e-1 1.286e-1 6.459e-2 1.113e-1

Rate of conv. 0.7853 0.7889 0.9825 0.7975 0.7928

Table 3.1: The convergence performance for Algorithm 1PARA.

h ∆t ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖∇·(p−ph)‖∞ ‖φ−φh‖∞ ‖∇φ−∇φh‖2

1/5 1/40 3.217e-1 1.108e+0 2.837e-1 1.634e-1 3.206e-1

1/10 1/80 4.633e-2 3.670e-1 6.676e-2 2.374e-2 6.380e-2

1/20 1/160 8.973e-3 8.325e-2 1.614e-2 4.694e-3 1.519e-2

1/40 1/320 2.081e-3 1.533e-2 4.003e-3 1.096e-3 3.806e-3

1/80 1/640 5.118e-4 3.104e-3 1.001e-3 2.698e-4 9.577e-4

Rate of conv. 2.1747 2.1541 2.0353 2.2922 2.0841

Table 3.2: The convergence performance for Algorithm 2SEQU.

A more oscillatory true solution is also tested:

u(x, y, t) = (5 cos(5x) sin(5y),−5 sin(5x) cos(5y), 0)e−5t,

p(x, y, t) = 0,

φ(x, y, t) = (cos(5x) cos(5y) + x2 − y2)e−5t.

(3.48)

Convergence rates are calculated from the errors at two successive values of h in the usual

manner by postulating e(h) = Chβ and solving for β via β = ln(e(h1)/e(h2))/ ln(h1/h2).

The errors and convergence rates for this case are shown in Table 3.3 and 3.4.
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h ∆t ‖u−uh‖∞ Rate ‖∇u−∇uh‖2 Rate ‖∇φ−∇φh‖2 Rate

1/20 1/160 9.196e-1 – 5.361e+0 – 8.046e-1 –

1/40 1/320 5.307e-1 0.793 2.856e+0 0.908 4.455e-1 0.853

1/60 1/480 3.644e-1 0.927 1.935e+0 0.960 3.031e-1 0.950

1/80 1/640 2.769e-1 0.955 1.462e+0 0.974 2.293e-1 0.970

1/120 1/960 1.870e-1 0.968 9.826e-1 0.980 1.542e-1 0.979

Table 3.3: The convergence performance for Algorithm 1PARA: more oscillatory true solu-

tion.

h ∆t ‖u−uh‖∞ Rate ‖∇u−∇uh‖2 Rate ‖∇φ−∇φh‖2 Rate

1/20 1/160 1.209e-1 – 1.725e+0 – 2.137e-1 –

1/40 1/320 1.187e-2 3.348 4.147e-1 2.056 5.227e-2 2.032

1/60 1/480 3.417e-3 3.071 1.769e-1 2.101 2.338e-2 1.984

1/80 1/640 1.516e-3 2.825 9.738e-2 2.075 1.321e-2 1.985

1/120 1/960 5.782e-4 2.377 4.253e-2 2.043 5.897e-3 1.989

Table 3.4: The convergence performance for Algorithm 2SEQU: more oscillatory true solu-

tion.

The performance of numerical methods we studied herein is also compared with the

monolithic, fully implicit methods (same discretization of subdomain terms but implicit dis-

cretization of coupling terms). Specifically, using the test problem (3.48), Table 3.5 compares

the errors ‖u− uh‖∞ + ‖φ− φh‖∞ produced by 1PARA and Backward Euler method (BE),

and compares those errors of 2SEQU and second order, implicit BDF method (BDF).

69



h ∆t 1PARA BE 2SEQU BDF

1/20 1/160 1.073e+0 9.573e-2 1.407e-1 1.238e-1

1/40 1/320 6.195e-1 4.295e-2 1.372e-2 1.339e-2

1/60 1/480 4.254e-1 3.104e-2 3.942e-3 3.873e-3

1/80 1/640 3.233e-1 2.376e-2 1.758e-3 1.597e-3

1/120 1/960 2.183e-1 1.602e-2 6.710e-4 4.592e-4

Table 3.5: Comparison of error ‖u−uh‖∞+‖φ−φh‖∞ of 1PARA, 2SEQU and corresponding

monolithic methods.

3.5.2 Test 2: Stability.

Many important applications of MHD in laboratory and industry involve large Hartmann

number and interaction parameter, see, e.g., [104, 35]. The theory shows that Algorithm

1PARA is unconditionally stable. However, the time step condition for stability of Algorithm

2SEQU looks pessimistic in these cases. In the following experiment, we test and compare

the performance of our methods for such flows. We confirm the unconditional stability of

Algorithm 1PARA and show that Algorithm 2SEQU to be stable for much larger time steps

than predicted by Theorem 3.3.3.

Let Ω = [0, 10−1]2 and B = (0, 0, 1). We consider the flow of liquid aluminium at 700◦C:

σ = 4.1 · 106 mho/m, ρ = 2400 kg/m3,

ν = 6 · 10−7 m2/s, η = 1.94 · 10−1 m2/s.

We take the characteristic values of length, velocity and magnetic field to be L = 0.1m,

u = 0.1m/s, B = 1T, typical for laboratory and industrial flows. The Reynolds number,

magnetic Reynolds number, Hartmann number and interaction parameter are then Re =

16667, Rm = 0.051496, M = 5336, N = 1708 correspondingly.
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We take the source term f and the boundary condition to be 0 and the initial condition

is given by

u0(x, y) = (10π cos(10πx) sin(10πy),−10π sin(10πx) cos(10πy)),

φ0(x, y) = (cos(10πx) cos(10πy) + x2 − y2).

In absence of external energy exchange and body forces, the system energy decays over time.

The energy Ej = ‖ujh‖2 + ‖φjh‖2 is computed using two different methods studied herein, on

h = 1/10. For each algorithm, the time step is chosen purposely to give us an estimate of

practical restriction on time step for the stability of the method. The results are shown in

Figure 3.1.

Figure 3.1: The decay of system energy computed by 1PARA (left) and 2SEQU (right) with

several different time steps chosen.

Next, we consider the flow of liquid sodium at 100◦C, which involves larger M and N :

σ = 1.03 · 107 mho/m, ρ = 928 kg/m3,

ν = 7.39 · 10−7 m2/s, η = 7.72 · 10−2 m2/s.

The characteristic values of length, velocity and magnetic field are now assigned as follows:

L = 0.1m, u = 0.05m/s, B = 1T. The Reynolds number, magnetic Reynolds number,
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Hartmann number and interaction parameter are then Re = 6766, Rm = 0.064736, M =

12255, N = 22198 correspondingly.

With the same source term, boundary and initial condition, the results are shown in

Figure 3.2.
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Figure 3.2: The decay of system energy computed by 1PARA (left) and 2SEQU (right) with

several different time steps chosen and larger parameters.

Figures 3.1 and 3.2 confirm the unconditional stability of 1PARA established in Theorem

3.3.1. They also indicate that the experimental stability condition for 2SEQU is ∆t . 1/2000

for the first test and ∆t . 1/5000 for the second test, which, while still restrictive, are

significantly better than the condition in Theorem 3.3.3.

3.6 CONCLUSION

We give a complete analysis on stability and errors of a promising approach to solving the

MHD problems at low magnetic Reynolds numbers. Our algorithms lag or extrapolate the

coupling terms to previous time levels at which their values are known; therefore, at each

time step, the multi-physics problem is uncoupled and solved non-iteratively. Compared to

monolithic methods, our methods allow the use of legacy and optimized codes for subprob-

lems.
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Normally, for uncoupling a coupled problem, the price to be paid is stability. The first

order scheme is, surprisingly, unconditionally stable. However, the time step condition of

second order scheme, while independent of h, may be too restrictive in some applications

involving small or large physical parameters. Open problems in elaborating this approach to

MHD flows include higher order partitioned methods that are long time stable with improved

time step restrictions with respect to the physical parameters. Another important question

which naturally arises is developing partitioned methods for general MHD flows, which occur

in both astrophysics and terrestrial applications and whose coupling terms are nonlinear.
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4.0 IMPLICIT-EXPLICIT BASED PARTITIONED METHODS FOR THE

EVOLUTIONARY STOKES-DARCY PROBLEMS

4.1 INTRODUCTION

In this chapter, we give a complete analysis of the stability and errors over long time intervals

of partitioned methods (which require only one uncoupled Stokes and one Darcy subdomain

solve per time step) for the coupled, fully time dependent Stokes-Darcy problem. This builds

upon recent studies of partitioned methods over bounded time intervals (with constants

C(T ) ∼ eaT ) of Mu and Zhu [98] who studied the first (first order) partitioned method for

the Stokes-Darcy coupling. The method was extended to allow different time steps in the two

subregions [110]. These works used Grönwall’s inequality in an essential way for analyzing

both stability and convergence. Thus, the stability and error behaviour over the required

long time intervals is important for both algorithm development and analysis.

We analyze the stability and error behaviour over long time intervals (0 ≤ t < ∞) of

two implicit-explicit based partitioned methods for uncoupling the evolutionary Stokes-Darcy

problem. The first method we study is the first order method of [98] consisting of first order

implicit discretization of subdomain terms and explicit discretization of coupling terms.

The stability regions of the explicit method used for the anti-symmetric coupling terms

suggest that exponential growth of errors and perturbations is inevitable for the combination.

Surprisingly, we show that this is not the case: the method is stable and optimally convergent

uniformly over 0 ≤ t < ∞. The second method we study is a new, two step partitioned

scheme motivated by the form of the coupling. It involves first order implicit discretization

of the subdomain terms and leap frog discretization of the exactly skew symmetric coupling

terms. We prove that this combination has superior stability properties and is optimally
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accurate and convergent uniformly over 0 ≤ t <∞. We also present numerical experiments

verifying the numerical analysis and comparing the accuracy of the two approaches.

To specify the problem considered, let the two domains be denoted by Ωf ,Ωp and lie

across an interface I from each other. The fluid velocity and porous media piezometric head

(Darcy pressure) satisfy

ut − ν∆u+∇p = ff ,∇ · u = 0, in Ωf ,

S0φt −∇ · (K∇φ) = fp, in Ωp,

φ(x, 0) = φ0, in Ωp and u(x, 0) = u0, in Ωf ,

φ(x, t) = 0, in ∂Ωp\I and u(x, t) = 0, in ∂Ωf\I,

+ coupling conditions across I.

The exact boundary conditions chosen above on the exterior boundaries (∂Ωf/p\I) are not

essential to either the analysis or algorithms studied herein. Let n̂f/p denote the indicated,

outward pointing, unit normal vector on I. The coupling conditions are conservation of mass

and balance of forces on I

u · n̂f −K∇φ · n̂p = 0, on I,

p− ν n̂f · ∇u · n̂f = gφ on I.

The last condition needed is a tangential condition on the fluid region’s velocity on the

interface. The most correct condition is not completely understood (possibly due to matching

a pointwise velocity in the fluid region with an averaged or homogenized velocity in the porous

region). We take the Beavers-Joseph-Saffman (-Jones) interfacial coupling

−ν τ̂i · ∇u · n̂f = αBJ

√
νg

τ̂i · K · τ̂i
u · τ̂i, on I for any τ̂i tangent vector on I.1

1Since K = Πg
ν where Π is the intrinsic permeability, this form of the interface condition is equivalent to

−ν τ̂i · ∇u · n̂f = αBJν√
τ̂i·Π·τ̂i

u · τ̂i, which was derived in [12], [107], [65].
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This is a simplification of the original and more physically realistic Beavers-Joseph conditions

(in u · τ̂i which is replaced by (u−up) · τ̂i), studied in [24], [23]. Here αBJ is a dimensionless,

experimentally determined constant and

φ = Darcy pressure + elevation induced pressure = piezometric head,

p = kinematic pressure in fluid region, Ωf ,

u = fluid velocity in Stokes region, Ωf ,

ff , fp = body forces in fluid region and source in porous region,

K = hydraulic conductivity tensor,

ν = kinematic viscosity of fluid,

S0 = specific mass storativity coefficient,

g = gravitational acceleration constant.

We shall assume that all material and fluid parameters above are positive and O(1), in

particular, K is a symmetric positive definite (SPD) matrix with the smallest eigenvalue

kmin > 0.

4.2 THE CONTINUOUS PROBLEM AND SEMI-DISCRETE

APPROXIMATION

We denote the L2(I) norm by ‖ · ‖I and the L2(Ωf/p) norms by ‖ · ‖f/p, respectively; the

corresponding inner products are denoted by (·, ·)f/p. Define

Xf = {v ∈
(
H1(Ωf )

)d
: v = 0 on ∂Ωf\I}, Qf = L2(Ωf ),

Xp = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I}.
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Throughout this chapter, we will use C0 to denote a generic positive constant whose value

may be different from place to place but which is independent of mesh size, time step and

final time. We will use the combined trace, interpolation and Poincaré inequality

‖φ‖I ≤ C(Ωp)
√
‖φ‖p‖∇φ‖p and ‖u‖I ≤ C(Ωf )

√
‖u‖f‖∇u‖f

where, by a scaling argument, C(Ωf/p) = O(
√
Lf/p), Lf/p = diameter(Ωf/p).

Define the bilinear forms

af (u, v) = (ν∇u,∇v)f +
∑
i

∫
I

αBJ

√
νg

τ̂i · K · τ̂i
(u · τ̂i)(v · τ̂i)ds,

ap(φ, ψ) = g(K∇φ,∇ψ)p, and cI(u, φ) = g

∫
I

φu · n̂fds.

The bilinear forms af/p(·, ·) are continuous and coercive. The key to uncoupling the problem

is the treatment of coupling term through the bilinear form cI(u, φ). Let CP,f and CP,p be the

Poincaré constants of the indicated domains. Define three parameter-dependent constants

C1 =
g3/2 [C(Ωf )C(Ωp)]

2

4
√
νkmin

, C2 =
1

ν2
C2
P,f [gC(Ωf )C(Ωp)]

4,

C3 =
1

k2
min

C2
P,pg

2[C(Ωf )C(Ωp)]
4.

Lemma 4.2.1. We have for (u, φ) ∈ Xf ×Xp and all ε1, ε2, ε3 > 0

|cI(u, φ)| ≤ ν

4ε1

‖∇u‖2
f +

gkmin

4ε1

‖∇φ‖2
p + ε1C1

(
‖u‖2

f + ‖φ‖2
p

)
, (4.1)

|cI(u, φ)| ≤ 1

4ε2

‖φ‖2
p + ε2C2‖∇φ‖2

p +
ν

4
‖∇u‖2

f , (4.2)

|cI(u, φ)| ≤ 1

4ε3

‖u‖2
f + ε3C3‖∇u‖2

f +
gkmin

4
‖∇φ‖2

p. (4.3)
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Proof. Using basic estimates we obtain

cI(u, φ) = g

∫
I

φu · n̂ds

≤ gC(Ωf )C(Ωp)
√
‖φ‖p‖∇φ‖p ·

√
‖u‖f‖∇u‖f

≤ ν

4ε1

‖∇u‖2
f +

gkmin

4ε1

‖∇φ‖2
p + ε1C1

(
‖u‖2

f + ‖φ‖2
p

)
.

For (4.2), observe that

cI(u, φ) = g

∫
I

φu · n̂ds ≤ gC(Ωf )C(Ωp)
√
‖φ‖p‖∇φ‖p ·

√
‖u‖f‖∇u‖f

≤

(
1

ε
1/4
2

‖φ‖1/2
p

)(
gC(Ωf )C(Ωp)ε

1/4
2

(
2

ν

)1/2

C
1/2
P,f ‖∇φ‖

1/2
p

)((ν
2

)1/2

‖∇u‖f
)

≤ 1

4ε2

‖φ‖2
p + ε2C2‖∇φ‖2

p +
ν

4
‖∇u‖2

f .

Finally, (4.3) comes from a similar argument.

A (monolithic) variational formulation of the coupled problem is to find (u, p, φ) :

[0,∞) → Xf × Qf × Xp satisfying the given initial conditions and, for all v ∈ Xf , q ∈

Qf , ψ ∈ Xp

(ut, v)f + af (u, v)− (p,∇ · v)f + cI(v, φ) = (ff , v)f ,

(q,∇ · u)f = 0, (4.4)

gS0(φt, ψ)p + ap(φ, ψ)− cI(u, ψ) = g(fp, ψ)p.

Note that, setting v = u, ψ = φ and adding, the coupling terms exactly cancel in the

monolithic sum yielding the energy estimate for the coupled system.

To discretize the Stokes-Darcy problem in space by the finite element method, we select

finite element spaces

velocity: Xh
f ⊂ Xf , Darcy pressure: Xh

p ⊂ Xp, Stokes pressure: Qh
f ⊂ Qf

based on a conforming FEM triangulation with maximum triangle diameter denoted by ”h”.

No mesh compatibility or interdomain continuity at the interface I between the FEM meshes

in the two subdomains is assumed. It is known that provided a minimum angle condition
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holds functions in piecewise polynomial finite element spaces including Xh
f , X

h
p and even Qh

f

(for the elementwise gradient) satisfy an inverse inequality2:

||∇vh|| ≤ CINV h
−1||vh||, h = minimum meshwidth. (4.5)

The Stokes velocity-pressure FEM spaces are assumed to satisfy the usual discrete inf-sup

condition for stability of the discrete pressure, e.g., [46], and Xh
f , X

h
p , Q

h
f satisfy approxima-

tion properties of piecewise polynomials on quasi-uniform meshes of local degrees k, k, k− 1

respectively. We denote the discretely divergence free velocities by

V h := Xh
f ∩ {vh : (qh,∇ · vh)f = 0, for all qh ∈ Qh

f}.

The HDIV (Ωf ) norm is given by

||u||DIV :=
√
||u||2f + ||∇ · u||2f .

Note that if d = dim(Ωf ), then ||∇ · u||f ≤
√
d||∇u||f . The semi-discrete approximations

are maps (uh, ph, φh) : [0,∞) → Xh
f × Qh

f × Xh
p satisfying the given initial conditions and,

for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p

(uh,t, vh)f + af (uh, vh)− (ph,∇ · vh)f + cI(vh, φh) = (ff , vh)f ,

(qh,∇ · uh)f = 0, (4.6)

gS0(φh,t, ψh)p + ap(φh, ψh)− cI(uh, ψh) = g(fp, ψh)p.

Note in particular the exactly skew symmetric coupling between the Stokes and the Darcy

sub-problems.

2The constant CINV depends upon the angles in the finite element mesh but not on the domain size. The
analysis must either use hmin in stability restrictions and hmax in the interpolation inequalities or assume a
quasi-uniform mesh. For notational simplicity we do the latter.
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4.3 DISCRETE FORMULATION

In this section, we consider two implicit-explicit based partitioned methods. The first method

we analyze is BEFE = Backward Euler - Forward Euler, the original method of Mu

and Zhu [98]. Since we focus on the long time error and stability, we shall use the same time

step in both subdomains. Let tn := n∆t and let superscripts denote the time level of the

approximation. The BEFE partitioned approximations are maps (unh, p
n
h, φ

n
h) ∈ Xh

f ×Qh
f×Xh

p

for n ≥ 1 satisfying, for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p

(
un+1
h − unh

∆t
, vh)f + af (u

n+1
h , vh)− (pn+1

h ,∇ · vh)f + cI(vh, φ
n
h) = (fn+1

f , vh)f ,

(qh,∇ · un+1
h )f = 0, (4.7)

gS0(
φn+1
h − φnh

∆t
, ψh)p + ap(φ

n+1
h , ψh)− cI(unh, ψh) = g(fn+1

p , ψh)p.

The second method we consider is BELF = Backward Euler - Leap Frog, a com-

bination of the three level implicit method with the coupling terms treated by the explicit

Leap-Frog method. We shall use the same time step, ∆t, in both sub domains; extension

to asynchronous time stepping, e.g. [110], is an important open problem. The BELF parti-

tioned approximations are maps (unh, p
n
h, φ

n
h) ∈ Xh

f × Qh
f × Xh

p for n ≥ 2 satisfying, for all

vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p

(
un+1
h − un−1

h

2∆t
, vh)f + af (u

n+1
h , vh)− (pn+1

h ,∇ · vh)f + cI(vh, φ
n
h) = (fn+1

f , vh)f ,

(qh,∇ · un+1
h )f = 0, (4.8)

gS0(
φn+1
h − φn−1

h

2∆t
, ψh)p + ap(φ

n+1
h , ψh)− cI(unh, ψh) = g(fn+1

p , ψh)p.

BELF is a 3 level method and approximations are needed at the first two time steps to begin.

We shall suppose these are computed to appropriate accuracy, such as by BEFE (the first

method above). See Verwer [121] for subtle effects that depend on the starting values. The

stability region of the usual Leap-Frog time discretization for y′ = λy is exactly the interval

of the imaginary axis −1 ≤ Im(∆tλ) ≤ +1. Thus, LF is unstable for every problem except

for ones which are exactly skew symmetric such as the coupling herein, see [43]. For them,

as with any explicit scheme, it inherits a time step restriction.
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4.4 LONG TIME STABILITY

We analyze the long time stability of the proposed methods over 0 ≤ tn <∞. We derive the

restriction needed as the time step, of the form ∆t ≤ C(physical parameter) under which

1. the approximate solutions are convergent uniformly over 0 < t <∞,

2. if ff = fp = 0, un, φn → 0 as tn → ∞ (thus, if (i = 1, 2) uni , φ
n
i are two solutions with

the same RHS and different initial conditions, then un1 − un2 , φn1 − φn2 → 0 as n → ∞),

and

3. if ‖ff (t)‖, ‖fp(t)‖ are uniformly bounded in time then suptn (‖un‖+ ‖φn‖) <∞.

4.4.1 BEFE Stability.

The analysis of Mu and Zhu includes (inside the error estimation) a proof (which also extends

to BELF as well) of stability over bounded time intervals of the form: for any ∆t and

0 ≤ tn < T <∞

‖unh‖2
f + ‖φnh‖2

p ≤ C(T )

[
sup

0≤tn≤T

{
‖ff (tn)‖2

f + ‖fp(tn)‖2
p

}
+ ‖u0

h‖2
H1(Ωf ) + ‖φ0

h‖2
H1(Ωp)

]

where C(T ) arises from Gronwall’s inequality and thus grows exponentially with T . We

begin by proving uniform in time stability of the BEFE partitioned approximation (4.7)

under the time step restriction

∆t ≤ ∆tBEFE := min

{
kmin

C2
P,p

,
S0ν

C2
P,f

}
νkmin

8g2(C(Ωf )C(Ωp))4
. (4.9)

Note that the RHS of (4.9) is independent of h so that, in the usual terminology of numerical

PDEs, BEFE is unconditionally stable. Our experiments in Section 4.6 with kmin = 10−6

show that there is some dependence of ∆tBEFE on kmin but the dependence indicated in

(4.9) is likely not sharp.
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Theorem 4.4.1. (BEFE long time stability) Consider BEFE method (4.7). Under the time

step condition (4.9) it is long time and uniformly in time stable

1

2
‖uNh ‖2

f +
gS0

2
‖φNh ‖2

p + ∆t
N−1∑
n=0

(
ν

4
‖∇un+1

h ‖2
f +

gkmin

4
‖∇φn+1

h ‖2
p

)
+

∆tν

8
‖∇uNh ‖2

f +
∆tgkmin

8
‖∇φNh ‖2

p

≤ 1

2
‖u0

h‖2
f +

gS0

2
‖φ0

h‖2
p + ∆t

N−1∑
n=0

(
C2
P,f

ν
‖fn+1
f ‖2

f +
gC2

P,p

kmin

‖fn+1
p ‖2

p

)
+

∆tν

8
‖∇u0

h‖2
f +

∆tgkmin

8
‖∇φ0

h‖2
p.

(4.10)

There is a C0 <∞ such that if ff ∈ L∞(L2(Ωf )), fp ∈ L∞(L2(Ωp)) then

sup
0≤N≤∞

{
‖uNh ‖2

f + gS0‖φNh ‖2
p

}
≤ C0

(
sup

0≤N≤∞

{
‖fNf ‖2

f + ‖fNp ‖2
p

}
(4.11)

+ ‖u0
h‖2

H1(Ωf ) + ‖φ0
h‖2

H1(Ωp)

)
,

and if ff ≡ 0, fp ≡ 0 then

uNh → 0, φNh → 0 (4.12)

in H1(Ωf ) and H1(Ωp) respectively as N →∞.

Proof. In (4.7), set vh = un+1
h and ψh = φn+1

h and add. This gives

1

2∆t
‖un+1

h ‖2
f −

1

2∆t
‖unh‖2

f +
1

2∆t
‖un+1

h − unh‖2
f +

gS0

2∆t
‖φn+1

h ‖2
p −

gS0

2∆t
‖φnh‖2

p

+
gS0

2∆t
‖φn+1

h − φnh‖2
p + af (u

n+1
h , un+1

h ) + ap(φ
n+1
h , φn+1

h ) + cI(u
n+1
h − unh, φn+1

h )

− cI(un+1
h , φn+1

h − φnh) = (fn+1
f , un+1

h ) + g(fn+1
p , φn+1

h ).

Applying (4.2) and (4.3) with ε2 = ∆t
2gS0

and ε3 = ∆t
2

, if (4.9) occurs, we have

cI(u
n+1
h − unh, φn+1

h )− cI(un+1
h , φn+1

h − φnh)

≥ − gS0

2∆t
‖φn+1

h − φnh‖2
p −

∆t

2gS0

C2‖∇(φn+1
h − φnh)‖2

p −
ν

4
‖∇un+1

h ‖2
f

− 1

2∆t
‖un+1

h − unh‖2
f −

∆t

2
C3‖∇(un+1

h − unh)‖2
f −

gkmin

4
‖∇φn+1

h ‖2
p

≥ − gS0

2∆t
‖φn+1

h − φnh‖2
p −

gkmin

8
(‖∇φn+1

h ‖2
p + ‖∇φnh‖2

p)−
ν

4
‖∇un+1

h ‖2
f

− 1

2∆t
‖un+1

h − unh‖2
f −

ν

8
(‖∇un+1

h ‖2
f + ‖∇unh‖2

f )−
gkmin

4
‖∇φn+1

h ‖2
p.
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Furthermore, a combination of Schwarz inequality and Poincaré inequality yields

(fn+1
f , un+1

h ) + g(fn+1
p , φn+1

h )

≤
C2
P,f

ν
‖fn+1
f ‖2

f +
ν

4
‖∇un+1

h ‖2
f +

gC2
P,p

kmin

‖fn+1
p ‖2

p +
gkmin

4
‖∇φn+1

h ‖2
p.

Thus

1

2∆t
‖un+1

h ‖2
f −

1

2∆t
‖unh‖2

f +
gS0

2∆t
‖φn+1

h ‖2
p −

gS0

2∆t
‖φnh‖2

p (4.13)

+
ν

4
‖∇un+1

h ‖2
f +

gkmin

4
‖∇φn+1

h ‖2
p +

ν

8

(
‖∇un+1

h ‖2
f − ‖∇unh‖2

f

)
+
gkmin

8

(
‖∇φn+1

h ‖2
p − ‖∇φnh‖2

p

)
≤

C2
P,f

ν
‖fn+1
f ‖2

f +
gC2

P,p

kmin

‖fn+1
p ‖2

p.

Summing this up from n = 0 to n = N − 1 results in

1

2
‖uNh ‖2

f +
gS0

2
‖φNh ‖2

p +
∆tν

8
‖∇uNh ‖2

f +
∆tgkmin

8
‖∇φNh ‖2

p

+ ∆t
N−1∑
n=0

(
ν

4
‖∇un+1

h ‖2
f +

gkmin

4
‖∇φn+1

h ‖2
p

)
≤ 1

2
‖u0

h‖2
f +

gS0

2
‖φ0

h‖2
p +

∆tν

8
‖∇u0

h‖2
f +

∆tgkmin

8
‖∇φ0

h‖2
p

+ ∆t
N−1∑
n=0

(
C2
P,f

ν
‖fn+1
f ‖2

f +
gC2

P,p

kmin

‖fn+1
p ‖2

p

)
.

For the second part, let

Q(∆t) = min

{
2ν

4C2
P,f + ν∆t

,
2kmin

4S0C2
P,p + kmin∆t

}
∆t.

After simple calculations and applying Poincaré inequality

ν

4
‖∇un+1

h ‖2
f ≥ Q(∆t)

(
1

2∆t
‖un+1

h ‖2
f +

ν

8
‖∇un+1

h ‖2
f

)
,

gkmin

4
‖∇φn+1

h ‖2
p ≥ Q(∆t)

(
gS0

2∆t
‖φn+1

h ‖2
p +

gkmin

8
‖∇φn+1

h ‖2
p

)
.

(4.14)

Denote

sn+1 =
1

2∆t
‖un+1

h ‖2
f +

ν

8
‖∇un+1

h ‖2
f +

gS0

2∆t
‖φn+1

h ‖2
p +

gkmin

8
‖∇φn+1

h ‖2
p

and P =
C2
P,f

ν
sup

0≤N≤∞
‖fNf ‖2

f +
gC2

P,p

kmin

sup
0≤N≤∞

‖fNp ‖2
p.
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From (4.13) and (4.14), we have

(1 +Q(∆t))sn+1 − sn ≤ P,

which yields

sn+1 ≤
P

Q(∆t)
+

1

(1 +Q(∆t))n+1
s0.

Inserting the expression defining sn+1 gives

1

2∆t
‖un+1

h ‖2
f +

gS0

2∆t
‖φn+1

h ‖2
p ≤

P

Q(∆t)
+

1

(1 +Q(∆t))n+1
s0.

Hence, (4.11) follows since

‖un+1
h ‖2

f + gS0‖φn+1
h ‖2

p ≤
2∆tP

Q(∆t)
+ 2∆ts0

≤max

{
4C2

P,f

ν
+ ∆t,

4C2
P,pS0

kmin

+ ∆t

}
P + 2∆ts0

≤max

{
4C2

P,f

ν
+ ∆tBEFE,

4C2
P,pS0

kmin

+ ∆tBEFE

}
P

+ ‖u0
h‖2

f +
ν∆tBEFE

4
‖∇u0

h‖2
f + gS0‖φ0

h‖2
p +

gkmin∆tBEFE
4

‖∇φ0
h‖2

p.

Finally, if ff ≡ 0, fp ≡ 0, from (4.10), the series

∞∑
n=0

(
ν

4
‖∇un+1

h ‖2
f +

gkmin

4
‖∇φn+1

h ‖2
p

)
is convergent and conclusion (4.12) follows.

Remark 4.4.2 (Asymptotic stability of BEFE). Since the problem is linear, the stability

result in Theorem 4.4.1 implies asymptotic stability in the classical sense. Indeed, let unh, φ
n
h

denote the difference between two solutions of BEFE with the same right hand side and

different initial conditions. Then, by linearity, the differences unh, φ
n
h satisfy BEFE with RHS

identically zero. Let yn := ||unh||2 + ||φnh||2. Then by the Poincaré inequality, (4.10) implies

yN + ∆t
N∑
n=1

yn ≤ C(y0) <∞, C independent of N .

Hence
∑∞

n=1 y
n converges, yn → 0 and BEFE is asymptotically stable. By a longer but still

standard argument, exponential asymptotic stability can also be shown.
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4.4.2 BELF Stability.

As noted above, stability over bounded time intervals (allowing exponential growth in time)

follows for BELF as for BEFE without any time step restriction. We thus turn to long time

stability. First, under time step condition

∆t ≤ ∆tBELF1 :=
2
√
νkmin min{1, gS0}

[C(Ωf )C(Ωp)]
2 g3/2

, (4.15)

we prove a stability result of BELF, which does not include eaT multiplier.

Theorem 4.4.3. (A first stability bound for BELF) Under the time step condition (4.15)

above, BELF method (4.8) is stable:

‖uNh ‖2
f + ‖uN−1

h ‖2
f + gS0‖φNh ‖2

p + gS0‖φN−1
h ‖2

p (4.16)

+ ∆t
N−1∑
n=1

[
ν‖∇

(
un+1
h + un−1

h

)
‖2
f + gkmin‖∇

(
φn+1
h + φn−1

h

)
‖2
p

]
≤ 4∆t

N−1∑
n=1

(
C2
P,f

ν

∥∥fn+1
f

∥∥2

f
+
gC2

P,p

kmin

∥∥fn+1
p

∥∥2

p

)
+ 2‖u1

h‖2
f + 2‖u0

h‖2
f

+ 2gS0‖φ1
h‖2

p + 2gS0‖φ0
h‖2

p + 2∆t
(
af (u

1
h, u

1
h) + ap(φ

1
h, φ

1
h) + af (u

0
h, u

0
h) + ap(φ

0
h, φ

0
h)
)

+ 4∆tg

∫
I

(
φ0
hu

1
h · n̂f − φ1

hu
0
h · n̂f

)
ds.

Proof. Define the system energy En := 1
2
‖unh‖2

f + gS0

2
‖φnh‖2

p. In (4.8) set vh = un+1
h +un−1

h , qh =

pn+1
h , ψh = φn+1

h + φn−1
h respectively and add

1

∆t

(
En+1 − En−1

)
+ af (u

n+1
h , un+1

h + un−1
h ) + ap(φ

n+1
h , φn+1

h + φn−1
h )

+ cI(u
n+1
h + un−1

h , φnh)− cI(unh, φn+1
h + φn−1

h )

= (fn+1
f , un+1

h + un−1
h )f + g(fn+1

p , φn+1
h + φn−1

h )p.

Since af (·, ·) and ap(·, ·) are symmetric we have

af (u
n+1
h , un+1

h + un−1
h ) =

1

2
af (u

n+1
h , un+1

h )− 1

2
af (u

n−1
h , un−1

h )

+
1

2
af (u

n+1
h + un−1

h , un+1
h + un−1

h ), (4.17)

ap(φ
n+1
h , φn+1

h + φn−1
h ) =

1

2
ap(φ

n+1
h , φn+1

h )− 1

2
ap(φ

n−1
h , φn−1

h )

+
1

2
ap(φ

n+1
h + φn−1

h , φn+1
h + φn−1

h ).
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Let us denote

An =
1

2
af (u

n
h, u

n
h) +

1

2
ap(φ

n
h, φ

n
h),

Bn =
1

2
af (u

n+1
h + un−1

h , un+1
h + un−1

h ) +
1

2
ap(φ

n+1
h + φn−1

h , φn+1
h + φn−1

h ),

Cn+1/2 = cI(u
n+1
h , φnh)− cI(unh, φn+1

h ).

Adding and subtracting En and ∆tAn in the first two terms below and rearranging the

remainder gives

[
En+1 + En + ∆tAn+1 + ∆tAn + ∆tCn+1/2

]
−
[
En−1 + En + ∆tAn + ∆tAn−1 + ∆tCn−1/2

]
+∆tBn = ∆t

(
(fn+1
f , un+1

h + un−1
h )f + g(fn+1

p , φn+1
h + φn−1

h )p
)
.

Summing this up from n = 1 to n = N − 1 results in

EN + EN−1 + ∆t(AN + AN−1) + ∆tCN−1/2 + ∆t
N−1∑
n=1

Bn

= E1 + E0 + ∆t(A1 + A0) + ∆tC1−1/2

+∆t
N−1∑
n=1

(fn+1
f , un+1

h + un−1
h )f + ∆t

N−1∑
n=1

g(fn+1
p , φn+1

h + φn−1
h )p.

We note that

An ≥ ν

2
‖∇unh‖2

f +
gkmin

2
‖∇φnh‖2

p,

Bn ≥ ν

2
‖∇
(
un+1
h + un−1

h

)
‖2
f +

gkmin

2
‖∇
(
φn+1
h + φn−1

h

)
‖2
p.

Applying (4.1) with ε1 = 1
2

yields

Cn−1/2 ≥ −ν
2
‖∇unh‖2

f −
ν

2
‖∇un−1

h ‖2
f −

gkmin

2
‖∇φnh‖2

p −
gkmin

2
‖∇φn−1

h ‖2
p

−1

2
C1

(
‖unh‖2

f + ‖un−1
h ‖2

f + ‖φnh‖2
p + ‖φn−1

h ‖2
p

)
.

Applying the last three inequalities into the energy estimate, bounding the RHS by Schwarz

and Poincaré inequalities, summing and rearranging terms yield the result.
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Remark 4.4.4 (Asymptotic stability of BELF does not follow from Theorem 4.4.3). Asymp-

totic stability for BELF does not follow from Theorem 4.4.3. Following the last remark, the

proof here fails since ‖∇(un+1
h + un−1

h )‖2 is not coercive due to the unstable mode of Leap

Frog.

Interestingly, our proof of long time stability of BELF requires an additional time step

condition. We impose the following time step condition

∆t ≤ ∆tBELF := min{2∆tBEFE,∆tBELF1} (4.18)

to prove long time stability of BELF.

Theorem 4.4.5. (BELF long time stability) Consider BELF method (4.8). Assume ∆t < 1

and the time step condition (4.18) hold, then

‖uNh ‖2
f + gS0‖φNh ‖2

p + ∆t
N−1∑
n=1

ν‖∇un+1
h ‖2

f + ∆t
N−1∑
n=1

gkmin‖∇φn+1
h ‖2

p (4.19)

≤ 2‖u1
h‖2

f + 2gS0‖φ1
h‖2

p + 2‖u0
h‖2

f + 2gS0‖φ0
h‖2

p + 4∆tg

∫
I

(φ0
hu

1
h · n̂f − φ1

hu
0
h · n̂f )ds

+∆tν(2‖∇u1
h‖2

f + ‖∇u0
h‖2

f ) + ∆tgkmin(2‖∇φ1
h‖2

p + ‖∇φ0
h‖2

p)

+4∆t
N−1∑
n=1

C2
P,f

ν
‖fn+1
f ‖2

f + 4∆t
N−1∑
n=1

gC2
P,p

kmin

‖fn+1
p ‖2

p.

There is a C0 <∞ such that if ff ∈ L∞(L2(Ωf )), fp ∈ L∞(L2(Ωp)) then

sup
0≤N≤∞

{
‖uNh ‖2

f + gS0‖φNh ‖2
p

}
≤ C0

(
sup

0≤N≤∞

{
‖fNf ‖2

f + ‖fNp ‖2
p

}
(4.20)

+ ‖u0
h‖2

H1(Ωf ) + ‖φ0
h‖2

H1(Ωp) + ‖u1
h‖2

H1(Ωf ) + ‖φ1
h‖2

H1(Ωp)

)
.

Also, if ff ≡ 0, fp ≡ 0 then

uNh → 0, φNh → 0 (4.21)

in H1(Ωf ) and H1(Ωp) respectively as N →∞.
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Proof. In (4.8) set vh = un+1
h , qh = pn+1

h , ψh = φn+1
h respectively and add

1

2∆t

(
En+1 − En−1

)
+

1

4∆t
‖un+1

h − un−1
h ‖2

f +
gS0

4∆t
‖φn+1

h − φn−1
h ‖2

p (4.22)

+ 2An+1 + cI(u
n+1
h , φnh)− cI(unh, φn+1

h ) ≤ (fn+1
f , un+1

h )f + g(fn+1
p , φn+1

h )p.

Denote the LHS and RHS of (4.22) by L and R correspondingly. Write

cI(u
n+1
h , φnh) =

1

2
cI(u

n+1
h , φnh) +

1

2
cI(u

n−1
h , φnh) +

1

2
cI(u

n+1
h − un−1

h , φnh),

cI(u
n
h, φ

n+1
h ) =

1

2
cI(u

n
h, φ

n+1
h ) +

1

2
cI(u

n
h, φ

n−1
h ) +

1

2
cI(u

n
h, φ

n+1
h − φn−1

h ).

Adding and subtracting En and rearranging the remainder gives

L =
1

2∆t

[
En+1 + En + ∆tCn+1/2

]
− 1

2∆t

[
En + En−1 + ∆tCn−1/2

]
+

1

4∆t
‖un+1

h − un−1
h ‖2

f +
gS0

4∆t
‖φn+1

h − φn−1
h ‖2

p + 2An+1

+
1

2
cI(u

n+1
h − un−1

h , φnh)− 1

2
cI(u

n
h, φ

n+1
h − φn−1

h )

Applying (4.2) and (4.3) with ε2 = ∆t
2gS0

and ε3 = ∆t
2

, since ∆t ≤ 2∆tBEFE we have

1

2
cI(u

n+1
h − un−1

h , φnh)− 1

2
cI(u

n
h, φ

n+1
h − φn−1

h )

≥ − gS0

4∆t
‖φn+1

h − φn−1
h ‖2

p −
∆t

4gS0

C2‖∇(φn+1
h − φn−1

h )‖2
p −

ν

8
‖∇unh‖2

f

− 1

4∆t
‖un+1

h − un−1
h ‖2

f −
∆t

4
C3‖∇(un+1

h − un−1
h )‖2

f −
gkmin

8
‖∇φnh‖2

p

≥ − gS0

4∆t
‖φn+1

h − φn−1
h ‖2

p −
gkmin

8
(‖∇φn+1

h ‖2
p + ‖∇φn−1

h ‖2
p)−

ν

8
‖∇unh‖2

f

− 1

4∆t
‖un+1

h − un−1
h ‖2

f −
ν

8
(‖∇un+1

h ‖2
f + ‖∇un−1

h ‖2
f )−

gkmin

8
‖∇φnh‖2

p.

Denote Dn = ν‖∇unh‖2
f + gkmin‖∇φnh‖2

p, there follows

L ≥ 1

2∆t

[
En+1 + En + ∆tCn+1/2

]
− 1

2∆t

[
En + En−1 + ∆tCn−1/2

]
+

5

8
Dn+1 +

1

8
(Dn+1 −Dn) +

1

8
(Dn+1 −Dn−1)

=
1

2∆t

[
En+1 + En + ∆tCn+1/2 +

∆t

4
(2Dn+1 +Dn)

]
− 1

2∆t

[
En + En−1 + ∆tCn−1/2 +

∆t

4
(2Dn +Dn−1)

]
+

5

8
Dn+1
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Applying Schwarz inequality and Poincaré inequality to the RHS, summing the whole ex-

pression from n = 1 to n = N − 1 and multiplying by 2∆t results in

EN + EN−1 + ∆tCN−1/2 +
∆t

2
DN +

∆t

4
DN−1 +

5∆t

4

N−1∑
n=1

Dn+1

≤E1 + E0 + ∆tC1/2 +
∆t

2
D1 +

∆t

4
D0 + ∆t

N−1∑
n=1

Dn+1 (4.23)

+ ∆t
N−1∑
n=1

C2
P,f

ν
‖fn+1
f ‖2

f + ∆t
N−1∑
n=1

gC2
P,p

kmin

‖fn+1
p ‖2

p.

Applying (4.1), since ∆t ≤ ∆tBELF1 we have

CN−1/2 ≥ −ν
2
‖∇uNh ‖2

f −
ν

4
‖∇uN−1

h ‖2
f −

gkmin

2
‖∇φNh ‖2

p −
gkmin

4
‖∇φN−1

h ‖2
p

− C1

2

(
‖uNh ‖2

f + ‖φNh ‖2
p

)
− C1(‖uN−1

h ‖2
f + ‖φN−1

h ‖2
p) (4.24)

≥ −D
N

2
− DN−1

4
− EN

2∆t
− EN−1

∆t
.

Inserting this inequality into the energy estimate (4.23) and multiplying by 4 yields (4.19).

For the second part, denote Hn = En + En−1 + ∆tCn−1/2 + ∆t
4

(2Dn + Dn−1), we will

prove that Hn ≤ β(Dn +Dn−1), where

β=max

{
C2
P,f+gC(Ωf )C(Ωp)C

1/2
P,fC

1/2
P,p +ν

2ν
,
S0C

2
P,p+C(Ωf )C(Ωp)C

1/2
P,fC

1/2
P,p +kmin

2kmin

}
.

Indeed, by the Poincaré inequality

En + En−1 ≤
C2
P,f

2ν
(ν‖∇unh‖2

f + ν‖∇un−1
h ‖2

f )

+
S0C

2
P,p

2kmin

(gkmin‖∇φnh‖2
p + gkmin‖∇φn−1

h ‖2
p).

Since ∆t < 1, we have 2∆t
4
Dn + ∆t

4
Dn−1 ≤ 1

2
(Dn +Dn−1). Applying the trace, Poincaré and

Schwarz inequalities, we get

∆tCn−1/2 = ∆tcI(u
n
h, φ

n−1
h )−∆tcI(u

n−1
h , φnh)

≤ gC(Ωf )C(Ωp)C
1/2
P,fC

1/2
P,p

(
‖∇unh‖f‖∇φn−1

h ‖p + ‖∇un−1
h ‖f‖∇φnh‖p

)
≤
gC(Ωf )C(Ωp)C

1/2
P,fC

1/2
P,p

2ν
(ν‖∇unh‖2

f + ν‖∇un−1
h ‖2

f )

+
C(Ωf )C(Ωp)C

1/2
P,fC

1/2
P,p

2kmin

(gkmin‖∇φnh‖2
p + gkmin‖∇φn−1

h ‖2
p).
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The last three inequalities give Hn ≤ β(Dn +Dn−1). There follows

L ≥ 1

2∆t
Hn+1 − 1

2∆t
Hn +

5

8
Dn+1

≥ 1

2∆t
Hn+1 − 1

2∆t
Hn +

5

8
Dn+1 +

1

32β
Hn − 1

32
(Dn +Dn−1)

≥ 1

2∆t
Hn+1 − 1

2∆t
γHn +

5

8
Dn+1 − 1

32
(Dn +Dn−1),

(4.25)

where γ =
(

1− ∆t
16β

)
< 1.

As ∆t < 1 and β > 1
2
, we have γ > 7

8
>
√

2
2

. Thus,

− 1

32
(Dn +Dn−1) ≥ − γ

16
Dn − γ2

16
Dn−1.

Combining this with (4.25) yields

L ≥ 1

2∆t
Hn+1 − 1

2∆t
γHn +

1

8
(Dn+1 − γDn) +

γ

16
(Dn − γDn−1) +

1

2
Dn+1

=
1

2∆t
Mn+1 − γ

2∆t
Mn +

1

2
Dn+1,

(4.26)

where Mn = Hn + ∆t
4
Dn + γ∆t

8
Dn−1.

Meanwhile, for every n = 1, 2, ..., N − 1

R ≤
C2
P,f

2ν
‖fn+1

f ‖2
f +

gC2
P,p

2kmin

‖fn+1
p ‖2

p +
1

2
Dn+1

≤ C0 sup
0≤N≤∞

{‖fNf ‖2
f + ‖fNp ‖2

p}+
1

2
Dn+1 =: I +

1

2
Dn+1.

(4.27)

Combining (4.26) and (4.27) gives: for every n = 1, 2, ..., N − 1

Mn+1 ≤ γMn + 2∆tI. (4.28)

Applying (4.28) recursively, we have MN ≤ γN−1M1 +32βI. On the other hand, from (4.24)

MN ≥ HN ≥ 1

2
EN .

Thus, 1
2
EN ≤ γN−1M1 + 32βI and the second assertion follows.

If ff ≡ 0 and fp ≡ 0, the third assertion of Theorem 4.4.5 follows from the convergence

of series
∑∞

n=1 ν‖∇u
n+1
h ‖2

f +
∑∞

n=1 gkmin‖∇φn+1
h ‖2

p, given by (4.19).

Remark 4.4.6 (Asymptotic stability of BELF). Asymptotic stability for BELF does fol-

low from Theorem 4.4.5 (under a different time step condition than Theorem 4.4.3) by the

argument outlined for BEFE.

90



4.5 ERROR ANALYSIS OVER 0 ≤ TN <∞.

For compactness, we only present the analysis of error of BELF. With minor modifications in

our proof, we will get the analogous results of convergence rates and long time behaviour for

BEFE. Recall that our FEM spaces are assumed to satisfy the usual approximation properties

and the Stokes velocity-pressure spaces satisfy the discrete inf-sup condition. Also

V h := Xh
f ∩ {vh : (qh,∇ · vh)f = 0, for all qh ∈ Qh

f}.

Let tn = n∆t, T = N∆t (if T = ∞ then N = ∞), and un := u(tn) (and similarly for other

variables).

To establish the optimal error estimates for the approximation we assume

u ∈ L∞(0, T ;Hk+1(Ωf )), ut ∈ L∞(0, T ;Hk+1(Ωf )), utt ∈ L∞(0, T ;L2(Ωf )),

φ ∈ L∞(0, T ;Hk+1(Ωp)), φt ∈ L∞(0, T ;Hk+1(Ωp), φtt ∈ L∞(0, T ;L2(Ωp)),

p ∈ L∞(0, T ;Hs+1(Ωf )).

(4.29)

We denote the following continuous and discrete norms by

‖v‖p,k,r := ‖v‖Lp(0,T ;Hk(Ωr)), ‖|v|‖∞,k,r := sup
0≤n≤N

‖vn‖Hk(Ωr), r ∈ {f, p}.

Denote the errors by enf := un − unh, e
n
p := φn − φnh. The variational formulation of the

continuous problem is first rewritten as the discrete problem driven by consistency errors as:

for all vh ∈ V h, ψh ∈ Xh
p and any λn+1

h ∈ Qh
f ,

(
un+1 − un−1

2∆t
, vh)f + af (u

n+1, vh)− (pn+1 − λn+1
h ,∇ · vh)f + cI(vh, φ

n)

= (fn+1
f , vh)f + εn+1

f (vh),

gS0(
φn+1 − φn−1

2∆t
, ψh)p + ap(φ

n+1, ψh)− cI(un, ψh) (4.30)

= g(fn+1
p , ψh)p + εn+1

p (ψh).

The consistency errors, εn+1
f (vh), ε

n+1
p (ψh), are defined, as usual, by

εn+1
f (vh) : = (

un+1 − un−1

2∆t
− un+1

t , vh)f + cI(vh, φ
n − φn+1),

εn+1
p (ψh) : = gS0(

φn+1 − φn−1

2∆t
− φn+1

t , ψh)p − cI(un − un+1, ψh).
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Subtraction gives the error equations: for all vh ∈ V h, ψh ∈ Xh
p and any λn+1

h ∈ Qh
f ,

(
en+1
f − en−1

f

2∆t
, vh)f + af (e

n+1
f , vh) + cI(vh, e

n
p ) = εn+1

f (vh) + (pn+1 − λn+1
h ,∇ · vh)f ,

gS0(
en+1
p − en−1

p

2∆t
, ψh)p + ap(e

n+1
p , ψh)− cI(enf , ψh) = εn+1

p (ψh). (4.31)

Theorem 4.5.1. (Long time error estimate) Consider BELF method (4.8). Suppose ∆t < 1

and the time step condition (4.18) holds and u, φ and p satisfy regularity condition (4.29).

Then, for any 0 ≤ tN <∞, there is a positive constant C0 such that

‖eNf ‖2
f + gS0‖eNp ‖2

p (4.32)

≤ C0

{∥∥u1 − u1
h

∥∥2

f
+
∥∥u0 − u0

h

∥∥2

f
+ gS0

∥∥φ1 − φ1
h

∥∥2

p
+ gS0

∥∥φ0 − φ0
h

∥∥2

p

+ ∆t

(∥∥∇ (u1 − u1
h

)∥∥2

f
+
∥∥∇ (u0 − u0

h

)∥∥2

f
+
∥∥∇ (φ1 − φ1

h

)∥∥2

p
+
∥∥∇ (φ0 − φ0

h

)∥∥2

p

)
+h2k

(
‖|u|‖2

∞,k+1,f + ‖|φ|‖2
∞,k+1,p

)
+ h2k+2

(
‖ut‖2

∞,k+1,f + ‖φt‖2
∞,k+1,p

)
+ ∆t2

(
‖utt‖2

∞,0,f + ‖φtt‖2
∞,0,p

)
+ ∆t2

(
‖ut‖2

∞,1,f + ‖φt‖2
∞,1,p

)
+ h2s+2‖|p|‖2

∞,s+1,f

}
.

Proof. Let Un+1, Φn+1 be the interpolation of un+1 and φn+1 in V h and Xh
p correspondingly.

Denote

en+1
f = (un+1 − Un+1) + (Un+1 − un+1

h ) =: ηn+1
f + ξn+1

f ,

en+1
p = (φn+1 − Φn+1) + (Φn+1 − φn+1

h ) =: ηn+1
p + ξn+1

p .

Rearranging terms of the error equations (4.31) gives

1

2∆t

(
ξn+1
f − ξn−1

f , vh
)
f

+ af (ξ
n+1
f , vh) + cI(vh, ξ

n
p ) = − 1

2∆t

(
ηn+1
f − ηn−1

f , vh
)
f

−af (ηn+1
f , vh)− cI(vh, ηnp ) + εn+1

f (vh) + (pn+1 − λn+1
h ,∇ · vh)f ,

gS0

2∆t

(
ξn+1
p − ξn−1

p , ψh
)
p

+ ap(ξ
n+1
p , ψh)− cI(ξnf , ψh) = − gS0

2∆t

(
ηn+1
p − ηn−1

p , ψh
)
p

− ap(ηn+1
p , ψh) + cI(η

n
f , ψh) + εn+1

p (ψh), (4.33)

for every vh ∈ Vh, ψh ∈ Xh
p and λn+1

h ∈ Qh
f .
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Choosing vh = ξn+1
f and ψh = ξn+1

p and denoting

An =
1

2
af (ξ

n
f , ξ

n
f ) +

1

2
ap(ξ

n
p , ξ

n
p ), Cn+1/2 = cI(ξ

n+1
f , ξnp )− cI(ξnf , ξn+1

p ),

Dn = ν‖∇ξnf ‖2
f + gkmin‖∇ξnp ‖2

p, En =
1

2
‖ξnf ‖2

f +
gS0

2
‖ξnp ‖2

p.

After adding (4.33) sides by sides

1

2∆t
(En+1 + En + ∆tCn+1/2)− 1

2∆t
(En + En−1 + ∆tCn−1/2) +

1

4∆t
‖ξn+1

f − ξn−1
f ‖2

f

+
gS0

4∆t
‖ξn+1

p − ξn−1
p ‖2

p + 2An+1 +
1

2
cI(ξ

n+1
f − ξn−1

f , ξnp )− 1

2
cI(ξ

n
f , ξ

n+1
p − ξn−1

p )

= − 1

2∆t

(
ηn+1
f − ηn−1

f , ξn+1
f

)
f
− gS0

2∆t

(
ηn+1
p − ηn−1

p , ξn+1
p

)
p

(4.34)

− af (ηn+1
f , ξn+1

f )− ap(ηn+1
p , ξn+1

p )− cI(ξn+1
f , ηnp )

+ cI(η
n
f , ξ

n+1
p ) + εn+1

f (ξn+1
f ) + εn+1

p (ξn+1
p ) + (pn+1 − λn+1

h ,∇ · ξn+1
f )f .

Denote the left and right hand side of (4.34) by L and R correspondingly. Also, denote

M = En + En−1 + ∆tCn−1/2 + 3∆t
4
Dn +

(
∆t
4

+ γ∆t
8

)
Dn−1. By the argument outlined in

Theorem 4.4.5, using the same definition for β and γ, we have

L ≥ 1

2∆t
Mn+1 − γ

2∆t
Mn +

1

2
Dn+1. (4.35)

Next, we derive a bound for R. We first note

− 1

2∆t

(
ηn+1
f − ηn−1

f , ξn+1
f

)
f
− gS0

2∆t

(
ηn+1
p − ηn−1

p , ξn+1
p

)
p
≤

5C2
P,f

2ν

∥∥∥∥∥ηn+1
f − ηn−1

f

2∆t

∥∥∥∥∥
2

f

+
ν

10
‖∇ξn+1

f ‖2
f +

2C2
P,pgS

2
0

kmin

∥∥∥∥ηn+1
p − ηn−1

p

2∆t

∥∥∥∥2

p

+
gkmin

8

∥∥∇ξn+1
p

∥∥2

p
. (4.36)

The next terms can be controlled as follows

− af (ηn+1
f , ξn+1

f )− ap(η
n+1
p , ξn+1

p ) (4.37)

≤ C0

(
‖∇ηn+1

f ‖2
f + ‖∇ηn+1

p ‖2
p

)
+

ν

10
‖∇ξn+1

f ‖2
f +

gkmin

8
‖∇ξn+1

p ‖2
p.
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Using the trace inequality, Young’s inequality and Poincaré’s inequality, we obtain

−cI(ξn+1
f , ηnp ) + cI(η

n
f , ξ

n+1
p ) (4.38)

≤ C0‖∇ηnp ‖2
p + C0‖∇ηnf ‖2

f +
ν

10
‖∇ξn+1

f ‖2
f +

gkmin

8
‖∇ξn+1

p ‖2
p.

The consistency errors are bounded as follows:

|εn+1
f (ξn+1

f )| ≤ C0

∥∥∥∥un+1
t − un+1 − un−1

2∆t

∥∥∥∥2

f

+ C0‖∇(φn+1 − φn)‖2
p +

ν

10
‖∇ξn+1

f ‖2
f ,

|εn+1
p (ξn+1

p )| ≤C0

∥∥∥∥φn+1
t − φn+1 − φn−1

2∆t

∥∥∥∥2

p

+C0‖∇(un+1 − un)‖2
f +

gkmin

8
‖∇ξn+1

p ‖2
p.

(4.39)

Lastly, we bound the pressure term by

(pn+1 − λn+1
h ,∇ · ξn+1

f )f ≤ C0‖pn+1 − λn+1
h ‖2

f +
ν

10
‖∇ξn+1

f ‖2
f . (4.40)

From (4.36)–(4.40), for every n = 1, 2, ..., N − 1

R ≤
5C2

P,f

2ν
sup

1≤n≤N−1

∥∥∥∥∥ηn+1
f − ηn−1

f

2∆t

∥∥∥∥∥
2

f

+
2C2

P,pgS
2
0

kmin

sup
1≤n≤N−1

∥∥∥∥ηn+1
p − ηn−1

p

2∆t

∥∥∥∥2

p

(4.41)

+ C0 sup
1≤n≤N−1

∥∥∥∥un+1
t − un+1 − un−1

2∆t

∥∥∥∥2

f

+ C0 sup
1≤n≤N−1

∥∥∥∥φn+1
t − φn+1 − φn−1

2∆t

∥∥∥∥2

p

+C0

(
sup

1≤n≤N−1
‖∇(un+1 − un)‖2

f + sup
1≤n≤N−1

‖∇(φn+1 − φn)‖2
p

)
+C0

(
sup

1≤n≤N
‖∇ηnf ‖2

f + sup
1≤n≤N

‖∇ηnp ‖2
p

)
+ C0 sup

1≤n≤N−1
‖pn+1 − λn+1

h ‖2
f +

1

2
Dn+1.

Applying Taylor’s theorem and interpolation error estimates gives

5C2
P,f

2ν
sup

1≤n≤N−1

∥∥∥∥∥ηn+1
f − ηn−1

f

2∆t

∥∥∥∥∥
2

f

+
2C2

P,pgS
2
0

kmin

sup
1≤n≤N−1

∥∥∥∥ηn+1
p − ηn−1

p

2∆t

∥∥∥∥2

p

(4.42)

≤ C0 sup
1≤n≤N−1

(
sup

tn−1≤t≤tn+1

‖ηf,t(t)‖2
f

)
+ C0 sup

1≤n≤N−1

(
sup

tn−1≤t≤tn+1

‖ηp,t(t)‖2
p

)
≤ C0

(
‖ηf,t‖2

∞,0,f + ‖ηp,t‖2
∞,0,p

)
≤ C0h

2k+2
(
‖ut‖2

∞,k+1,f + ‖φt‖2
∞,k+1,p

)
.
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The remaining terms in (4.41) requiring bounds are treated in the same way. First,

C0 sup
1≤n≤N−1

∥∥∥∥un+1
t − un+1 − un−1

2∆t

∥∥∥∥2

f

+ C0 sup
1≤n≤N−1

∥∥∥∥φn+1
t − φn+1 − φn−1

2∆t

∥∥∥∥2

p

(4.43)

≤ C0∆t2

[
sup

1≤n≤N−1

(
sup

tn−1≤t≤tn+1

‖utt(t)‖2
f

)
+ sup

1≤n≤N−1

(
sup

tn−1≤t≤tn+1

‖φtt(t)‖2
p

)]
≤ C0∆t2

(
‖utt‖2

∞,0,f + ‖φtt‖2
∞,0,p

)
.

The next term requires interpolation error estimates to bound as

C0( sup
1≤n≤N

‖∇ηnf ‖2
f + sup

1≤n≤N
‖∇ηnp ‖2

p)≤C0h
2k
(
‖|u|‖2

∞,k+1,f + ‖|φ|‖2
∞,k+1,p

)
. (4.44)

Also,

C0( sup
1≤n≤N−1

‖∇(un+1 − un)‖2
f + sup

1≤n≤N−1
‖∇(φn+1 − φn)‖2

p) (4.45)

≤ C0∆t2

[
sup

1≤n≤N−1

(
sup

tn≤t≤tn+1

‖∇(ut(t))‖2
f

)
+ sup

1≤n≤N−1

(
sup

tn≤t≤tn+1

‖∇(φt(t))‖2
p

)]
≤ C0∆t2

(
‖ut‖2

∞,1,f + ‖φt‖2
∞,1,p

)
.

Let λn+1
h be the interpolation of pn+1 in Qf

h, we have

C0 sup
1≤n≤N−1

‖pn+1 − λn+1
h ‖2

f ≤ C0h
2s+2‖|p|‖2

∞,s+1,f . (4.46)

From (4.41)–(4.46), it follows that

R ≤ C0h
2k+2

(
‖ut‖2

∞,k+1,f + ‖φt‖2
∞,k+1,p

)
+C0∆t2

(
‖utt‖2

∞,0,f + ‖φtt‖2
∞,0,p

)
+ C0h

2k
(
‖|u|‖2

∞,k+1,f + ‖|φ|‖2
∞,k+1,p

)
+C0∆t2

(
‖ut‖2

∞,1,f + ‖φt‖2
∞,1,p

)
+ C0h

2s+2‖|p|‖2
∞,s+1,f +

1

2
Dn+1

=: I +
1

2
Dn+1.

(4.47)

Combining (4.35) and (4.47) and multiplying by 2∆t yields

Mn+1 ≤ γMn + 2∆tI, ∀n = 1, 2, ..., N − 1. (4.48)
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Using the same argument as in Theorem 4.4.5 gives

1

2
EN ≤ γN−1M1 + 32βI. (4.49)

Bound for M1 can be derived from interpolation error estimates

M1 = E1 + E0 +
3∆t

4
D1 +

(
∆t

4
+
γ∆t

8

)
D0 + ∆tC1/2

≤
∥∥u1 − u1

h

∥∥2

f
+
∥∥u0 − u0

h

∥∥2

f
+ gS0

∥∥φ1 − φ1
h

∥∥2

p
+ gS0

∥∥φ0 − φ0
h

∥∥2

p

+ C0∆t

(∥∥∇ (u1 − u1
h

)∥∥2

f
+
∥∥∇ (u0 − u0

h

)∥∥2

f
+
∥∥∇ (φ1 − φ1

h

)∥∥2

p

+
∥∥∇ (φ0 − φ0

h

)∥∥2

p

)
+C0h

2k

(
‖|u|‖2

∞,k+1,f + ‖|φ|‖2
∞,k+1,p

)
.

(4.50)

The estimate given in (4.32) follows from (4.49)–(4.50) and the triangle inequality with

the notice that the upcoming new terms are already contained in the right hand side of the

model.

For Taylor-Hood elements, i.e. k = 2, s = 1, we have the following long time estimate.

Corollary 4.5.2. Consider BELF method (4.8). Under the assumptions of Theorem 4.5.1

with T =∞, suppose that (Xh
f , Q

h
f ) is given by P2-P1 Taylor-Hood approximation elements

and Xh
p is P2 finite element. Then, there is a positive constant C0 such that

sup
1≤N≤∞

{
‖eNf ‖2

f + gS0‖eNp ‖2
p

}
≤ C0(∆t2 + h4).

4.6 NUMERICAL EXPERIMENTS

We present numerical experiments to test the algorithms presented in this chapter. First,

using the exact solutions introduced in [98], we confirm the predicted convergence rates from

the theory. Second, we will look at errors over longer time intervals and small values of kmin

to see the long time stability of our proposed methods for kmin smaller than covered by the

theory. The code was implemented using the software package FreeFEM++ [56].
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4.6.1 Test 1: Convergence rates.

For the first test we select the velocity and pressure field given in [98]. Let the domain Ω be

composed of Ωf = (0, 1)× (1, 2) and Ωp = (0, 1)× (0, 1) with the interface I = (0, 1)× {1}.

The exact velocity field is given by

u1(x, y, t) = (x2(y − 1)2 + y) cos t ,

u2(x, y, t) =

(
−2

3
x(y − 1)3 + 2− π sin(πx)

)
cos t ,

p(x, y, t) = (2− π sin(πx)) sin
(π

2
y
)

cos t ,

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos t.

We take the time interval 0 ≤ t ≤ 3 and all the physical parameters η, ρ, g, ν,K, S0 and α

are simply set to 1. We utilize Taylor-Hood P2-P1 finite elements for the Stokes equations

and continuous piecewise quadratic finite element for the Darcy equation. The boundary

condition on the problem is inhomogeneous Dirichlet: uh = uexact on ∂Ω. The initial data

and source terms are chosen to correspond the exact solution.

For convenience, we denote ‖.‖∞=‖.‖∞,0,f |p and ‖.‖2=‖.‖2,0,f |p. The rates of convergence

are computed using linear regression. Table 4.1–4.4 summarize the convergence rates with

different order combinations of h and ∆t. In particular, Table 4.3 and 4.4 confirm the

convergence rates provided in Corollary 3.4.2.

The performance of numerical methods we studied herein is also compared with the

monolithic, coupled implicit method. Using the same test problem, the errors ‖u− uh‖∞ +

‖φ − φh‖∞ produced by three methods (Fully coupled Backward Euler, BEFE and BELF)

are shown in Table 4.5.

Next let the source terms ff ≡ 0, fp ≡ 0 and the initial condition is given by

u1(x, y, 0) = (x2(y − 1)2 + y) , u2(x, y, 0) =

(
−2

3
x(y − 1)3 + 2− π sin(πx)

)
,

p(x, y, 0) = (2− π sin(πx)) sin
(π

2
y
)
, φ(x, y, 0) = (2− π sin(πx))(1− y − cos(πy)).

We take h = 1
20
, ∆t = 1

20
, T = 2.0 and compute En = ‖unh‖2

f + ‖φnh‖2
p for each n = 0, ..., N

using three methods: fully coupled implicit method, BEFE and BELF. The variation of
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h ∆t ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖p−ph‖2 ‖φ−φh‖∞ ‖∇φ−∇φh‖2

1/5 1/5 3.565e-3 1.230e-1 9.863e-2 1.142e-2 2.050e-1

1/10 1/10 1.814e-3 3.563e-2 4.760e-2 5.760e-3 6.172e-2

1/20 1/20 9.113e-4 1.359e-2 2.354e-2 2.891e-3 2.42e-2

1/40 1/40 4.560e-4 6.166e-3 1.176e-2 1.448e-3 1.125e-2

1/80 1/80 2.280e-4 2.989e-3 5.882e-3 7.248e-4 5.506e-3

Rate of conv. 0.9926 1.3256 1.0152 0.9946 1.2891

Table 4.1: Convergence rate for BEFE with ∆t = h.

h ∆t ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖p−ph‖2 ‖φ−φh‖∞ ‖∇φ−∇φh‖2

1/5 1/5 4.484e-3 1.176e-1 1.334e-1 1.210e-2 1.937e-1

1/10 1/10 1.947e-3 3.680e-2 6.842e-2 6.038e-2 6.121e-2

1/20 1/20 9.805e-4 1.481e-2 3.473e-2 3.026e-3 2.451e-2

1/40 1/40 4.922e-4 6.883e-3 1.753e-2 1.515e-3 1.146e-2

1/80 1/80 2.467e-4 3.367e-3 8.812e-3 7.578e-4 5.615e-3

Rate of conv. 1.0352 1.2672 0.9805 0.9988 1.2634

Table 4.2: Convergence rate for BELF with ∆t = h.

approximated kinetic energy En from 0.0 to 2.0 is shown in Figure 4.1. For the exact

solution, we solve the problem with a small time step and mesh size (h = 1
100

, ∆t = 1
200

)

and use the solution obtained as reference. We note that all methods predict that En → 0

as tn →∞, which is completely consistent with our theoretical results when ff , fp ≡ 0.

4.6.2 Test 2: Stability

Stokes-Darcy flows with very small hydraulic conductivity tensor K are of special interest in

some applications, see [42]. We test herein and compare the performance of our two proposed
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h ∆t ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖p−ph‖2 ‖φ−φh‖∞ ‖∇φ−∇φh‖2

1/5 1/5 3.565e-3 1.230e-1 1.024e-1 1.142e-2 2.050e-1

1/10 1/20 9.086e-4 3.143e-2 2.532e-2 2.894e-3 4.978e-2

1/20 1/80 2.279e-4 7.356e-3 6.282e-3 7.251e-4 1.202e-2

1/40 1/320 5.702e-5 1.822e-3 1.563e-3 1.814e-4 3.017e-3

1/80 1/1280 1.426e-5 4.673e-4 3.923e-4 4.532e-5 7.631e-4

Rate of conv. 1.9926 2.0189 2.0074 1.9950 2.0183

Table 4.3: Convergence rate for BEFE with ∆t = h2/5.

h ∆t ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖p−ph‖2 ‖φ−φh‖∞ ‖∇φ−∇φh‖2

1/5 1/5 4.484e-3 1.176e-1 1.359e-1 1.210e-2 1.937e-1

1/10 1/20 1.004e-3 3.153e-2 3.597e-2 3.035e-3 4.926e-2

1/20 1/80 2.479e-4 7.492e-3 9.085e-3 7.584e-4 1.203e-2

1/40 1/320 6.188e-5 1.862e-3 2.273e-3 1.896e-4 3.027e-3

1/80 1/1280 1.547e-5 4.773e-4 5.699e-4 4.738e-5 7.661e-4

Rate of conv. 2.0378 1.9971 1.9779 1.9994 1.9989

Table 4.4: Convergence rate for BELF with ∆t = h2/5.

methods with that of the fully implicit method for such flows. In the following numerical

experiment, we keep all initial condition, boundary condition, source data and parameters

unchanged from the last test, except kmin is now set to be 10−6 and final time T is switched

to 5.0, for a clearer representation of behavior of kinetic energy En over a longer time. Let

h = 1/10, we plot En with four different time steps ∆t = 1/5, 1/8, 1/10, 1/20 (Figure 4.6.2).

We observe that the fully implicit method is stable with no restriction on ∆t. However,

BELF and BEFE are already as stable as the implicit method for ∆t = 1/10, which is a

very mild constraint and far better than predicted by the theory.
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h ∆t Fully coupled implicit method BEFE BELF

1/5 1/5 9.305e-3 1.499e-2 1.658e-2

1/10 1/10 2.083e-3 7.574e-3 7.985e-3

1/20 1/20 9.604-4 3.802e-3 4.007e-3

1/40 1/40 4.797e-4 1.904e-3 2.007e-3

1/80 1/80 2.463e-4 9.528e-4 1.005e-3

Table 4.5: Comparison of error ‖u−uh‖∞+‖φ−φh‖∞ of the fully coupled implicit method,

BEFE and BELF.
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Figure 4.1: The decay of kinetic energy for different numerical methods.

Finally, we repeat the above experiment with ν and kmin set to be 10−1 and 10−6 corre-

spondingly. We present the results for various values of ∆t, purposely chosen to show the

difference of the studied methods.

We see that the fully coupled Backward Euler method is the most stable, followed by

BELF and then BEFE, as expected. We also note that BELF is already stable for ∆t = 1/30
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and so is BEFE for ∆t = 1/50, again far better than conditions derived in the theory. The

problem of optimizing the time step conditions for the long time stability of BEFE and

BELF is thus an open question.
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Figure 4.2: Variation of kinetic energy with ν = 1 and kmin = 10−6.
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Figure 4.3: Variation of kinetic energy with ν = 10−1 and kmin = 10−6.

102



4.7 CONCLUSION

The evolutionary coupled Stokes-Darcy problem is a complex and high impact problem

for which detailed numerical analysis can have a direct impact on algorithm development

and solution strategies. Partitioned methods, which require one (per subdomain) solve of

SPD system per time step are very attractive in computational complexity compared to

monolithic methods (requiring one coupled, non symmetric system of roughly double in

size). However, because the coupling is exactly skew symmetric, care must be taken in

devising an appropriate uncoupling strategy. We have analyzed two first order partitioned

methods which are also comparable in stability and accuracy to fully coupled, monolithic

methods. Many open questions remain such as higher order partitioned methods that are

long time stable and the severity of the time step restriction in motivating applications where

kmin small and S0 small. We will address both of the issues in next chapter.
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5.0 SPLITTING BASED PARTITIONED METHODS FOR THE

EVOLUTIONARY STOKES-DARCY PROBLEMS

5.1 NOTATIONS AND PRELIMINARIES

Partitioned methods for the evolutionary Stokes-Darcy problem confront small values of

hydraulic conductivity kmin (ranging from 10−12 for sands to 10−15 for clay, see [11]) and

the storativity coefficient S0 (ranging from 10−2 in unconfined aquifers to 10−5 in confined

aquifers, [70]). In this chapter, we study stability vs. the severity of the induced time

step restriction for small kmin, S0 and long time intervals for four splitting based partitioned

methods. Our estimates and tests suggest that these methods are stable for larger timesteps

than the IMEX based partitioned methods mentioned in Chapter 4 and in [98], [83], [81],

[109]. In particular, stability analysis and numerical tests herein indicate that splitting

based partitioned methods are a very good option when either kmin or S0 is small. Since

the Stokes-Darcy problem and the methods we consider are linear, their error satisfies the

same equations as the approximate solution with the body force replaced by a consistency

error. Thus, for errors also, stability over long time intervals for small S0, kmin is the key to

a method with good error behavior.

For the continuous model, notations and preliminaries, we refer to Section 4.1 and 4.2.

We only state new assumptions and estimations necessary for the analysis herein. In this

chapter, we shall assume that the domains Ωf/p are such that the following trace inequality

holds:

∣∣∣∣∫
I

φu · n̂ds
∣∣∣∣ ≤ C||u||DIV ||φ||H1(Ωp), for all u ∈ Xf , φ ∈ Xp. (HDIV trace)
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This inequality is standard if Ωp = Ωf and I = ∂Ωp and holds with C = 1 in that case, e.g.,

[46]. It also holds if Ωp is contained in Ωf and I = ∂Ωp and visa versa. The most general

domains and shared boundaries I which satisfy this inequality do not seem to be known.

However, Moraiti [96] shows that it holds in many cases directly (without extra assumptions

like φ ∈ H1/2
00 (I)) such as when one domain is an image under a smooth map of the other.

For example, we have the following special case of Moraiti [96].

Lemma 5.1.1. Suppose Ωf/p are open connected, regular sets in Rd sharing a boundary

portion I which is an open connected set with I ⊂ {x = (x1, · · ·, xd) : xd = 0}. Suppose Ωp

is the reflection of Ωf across I, i.e., (x1, · · ·, xd) ∈ Ωp if and only if (x1, · · ·,−xd) ∈ Ωf . Then

(HDIV trace) holds with C = 1.

Proof. We have that φ(x1, · · ·, xd) ∈ Xp means φ∗ := φ(x1, · · ·,−xd) is a well defined function

on Ωf with the same regularity, norms and boundary conditions. Since φ∗ = φ on I we have

∫
I

φu · n̂ds =

∫
I

φ∗u · n̂ds =

∫
Ωf

∇ · (uφ∗) dx =

=

∫
Ωf

(∇ · u)φ∗dx+

∫
Ωf

u · ∇φ∗dx.

Thus, by the Cauchy-Schwarz inequality

∣∣∣∣∫
I

φu · n̂ds
∣∣∣∣ ≤ ||u||DIV ||φ∗||H1(Ωf ) = ||u||DIV ||φ||H1(Ωp).

On the other hand, we include grad-div stabilization (the term (∇ · u,∇ · v)f ), an idea

developed by [88], [99], [100], with coefficient (normally O(1)) chosen to be 1/ρ. To input

this term to the scheme, we re-define the bilinear form af (·, ·):

af (u, v) = (ν∇u,∇v)f +
1

ρ
(∇ · u,∇ · v)f +

∑
i

∫
I

αBJ

√
νg

τ̂i · K · τ̂i
(u · τ̂i)(v · τ̂i)ds,

The key to the problem is again the coupling term. The following lemma gives several

estimates for this term, which will be used in our next analysis.
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Lemma 5.1.2. If (HDIV trace) holds we have for u, φ ∈ Xf , Xp

|cI(u, φ)| ≤ ν

2
||∇u||2f +

gkmin

2
||∇φ||2p +

[C(Ωf )C(Ωp)]
2g3/2

4
√
νkmin

||u||f ||φ||p,

|cI(u, φ)| ≤ ν

2
||∇u||2f +

gkmin

2
||∇φ||2p +

1

2
||u||2f +

[C(Ωf )C(Ωp)]
4g3

32νkmin

||φ||2p,

and

|cI(u, φ)| ≤ gkmin

2
||∇φ||2p +

g(1 + C2
P,p)

2kmin

(
||u||2j + ||∇ · u||2f

)
.

In the discrete case, if the inverse estimate (4.5) holds we have for all uh, φh ∈ Xh
f , X

h
p

|cI(uh, φh)| ≤ gC(Ωf )C(Ωp)CINV h
−1

(
1

2
||uh||2f +

1

2
||φh||2p

)
.

Proof. Using (2.2) and the Cauchy-Schwarz inequality twice we obtain

cI(u, φ) = g

∫
I

φu · n̂ds ≤ g||u||I ||φ||I

≤ gC(Ωf )C(Ωp)||φ||1/2p ||∇φ||1/2p ||u||
1/2
f ||∇u||

1/2
f

≤ ν

2
||∇u||2f +

gkmin

2
||∇φ||2p +

[C(Ωf )C(Ωp)]
2g3/2

4
√
νkmin

||u||f ||φ||p.

The second follows from the first by another application of the Cauchy-Schwarz inequality.

For the third estimate we use (HDIV trace) and the Poincaré inequality

|cI(u, φ)| ≤ g||u||DIV ||φ||H1(Ωp) ≤ g||u||DIV
√

1 + C2
P,p||∇φ||p

≤ gkmin

2
||∇φ||2p +

g(1 + C2
P,p)

2kmin

||u||2DIV .

The fourth follows similarly using the inverse estimate:

|cI(uh, φh)| ≤ g||uh||I ||φh||I ≤ gC(Ωf )||u||1/2f ||∇u||
1/2
f C(Ωp)||φh||1/2p ||∇φh||1/2p

≤ gC(Ωf )C(Ωp)CINV h
−1||uh||f ||φh||p ≤ gC(Ωf )C(Ωp)CINV h

−1

(
1

2
||uh||2f +

1

2
||φh||2p

)
.
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5.2 DISCRETE FORMULATION

We consider four uncoupling methods. BEsplit1 and 2 methods have superior stability

properties in different cases of small physical parameters. The fourth method is second order

accurate. The first method is a translation of the method from [121] to the Stokes-Darcy

problem.

Method 1: SDsplit = a Stokes-Darcy time-split method. SDsplit is a first order

accurate, three sub-step method adapted from [121]. The SDsplit approximations are: given

(unh, p
n
h, φ

n
h), find (un+1

h , pn+1
h , φ

n+1/2
h ) ∈ Xh

f × Qh
f × Xh

p and φn+1
h ∈ Xh

p satisfying, for all

vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p :

gS0(
φ
n+1/2
h − φnh

∆t
, ψh)p +

1

2
ap(φ

n+1/2
h , ψh)−

1

2
cI(u

n
h, ψh) =

1

2
g(fn+1/2

p , ψh)p,

(
un+1
h − unh

∆t
, vh)f + af (u

n+1
h , vh)− (pn+1

h ,∇ · vh)f

+cI(vh, φ
n+1/2
h ) = (fn+1

f , vh)f , and (qh,∇ · un+1
h )f = 0, (SDsplit)

gS0(
φn+1
h − φn+1/2

h

∆t
, ψh)p +

1

2
ap(φ

n+1
h , ψh)−

1

2
cI(u

n+1
h , ψh) =

1

2
g(fn+1

f , ψh)p.

SDsplit is uncoupled but sequential: unh → φ
n+1/2
h → un+1

h → φn+1
h .

Method 2: BEsplit1 = a Backward Euler time-split method. The BEsplit

approximations are: given (unh, p
n
h, φ

n
h) find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f × Qh

f × Xh
p satisfying,

for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p ,

(
un+1
h − unh

∆t
, vh)f + af (u

n+1
h , vh)− (pn+1

h ,∇ · vh)f + cI(vh, φ
n
h) = (fn+1

f , vh)f ,

(qh,∇ · un+1
h )f = 0, (BEsplit1)

gS0(
φn+1
h − φnh

∆t
, ψh)p + ap(φ

n+1
h , ψh)− cI(un+1

h , ψh) = g(fn+1
p , ψh)p.

The coupling term in the φ equation is evaluated at the newly computed value un+1
h so we

compute φnh → un+1
h → φn+1

h .

Method 3: BEsplit2. The order of cycling through the equations alters the computed

results. BEsplit2 is the previous method in the opposite order. It is given by: given
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(unh, p
n
h, φ

n
h) find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f × Qh

f × Xh
p satisfying, for all vh ∈ Xh

f , qh ∈ Qh
f ,

ψh ∈ Xh
p ,

gS0(
φn+1
h − φnh

∆t
, ψh)p + ap(φ

n+1
h , ψh)− cI(unh, ψh) = g(fn+1

p , ψh)p

(
un+1
h − unh

∆t
, vh)f + (∇ · u

n+1
h − unh

∆t
,∇ · vh)f + af (u

n+1
h , vh) (BEsplit2)

−(pn+1
h ,∇ · vh)f + cI(vh, φ

n+1
h ) = (fn+1

f , vh)f ,

(qh,∇ · un+1
h )f = 0.

Our initial analysis revealed that control was needed for a term ||un+1
h − unh||DIV . This led

to the idea of inserting the grad-div stabilization term (∇ ·
(
un+1
h − unh

)
/∆t,∇ · vh)f acting

on the time discretization of ut. This term is exactly zero for the continuous problem so it

does not increase the method’s consistency error.

Method 4: CNsplit= a Crank-Nicolson time-split method. CNsplit is second

order accurate. It computes in parallel1 two partitioned approximations (ûn+1
h , p̂n+1

h , φ̂n+1
h )

and (ũn+1
h , p̃n+1

h , φ̃n+1
h ) ∈ Xh

f ×Qh
f ×Xh

p whereupon the new approximation to each variable

is the average of the two computed approximations :

(un+1
h , pn+1

h , φn+1
h ) =

1

2
[(ûn+1

h , p̂n+1
h , φ̂n+1

h ) + (ũn+1
h , p̃n+1

h , φ̃n+1
h )]. (CNsplit)

The two individual approximations satisfy, for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p

(
ûn+1
h − ûnh

∆t
, vh)f + af (

ûn+1
h + ûnh

2
, vh)− (

p̂n+1
h + p̂nh

2
,∇ · vh)f

+cI(vh, φ̂
n
h) = (f

n+1/2
f , vh)f , and (qh,∇ · ûn+1

h )f = 0, (CNsplit-a)

gS0(
φ̂n+1
h − φ̂nh

∆t
, ψh)p + ap(

φ̂n+1
h + φ̂nh

2
, ψh)− cI(ûn+1

h , ψh) = g(fn+1/2
p , ψh)p

and

gS0(
φ̃n+1
h − φ̃nh

∆t
, ψh)p + ap(

φ̃n+1
h + φ̃nh

2
, ψh)− cI(ũnh, ψh) = g(fn+1/2

p , ψh)p.

(
ũn+1
h − ũnh

∆t
, vh)f + af (

ũn+1
h + ũnh

2
, vh)− (

p̃n+1
h + p̃nh

2
,∇ · vh)f (CNsplit-b)

+cI(vh, φ̃
n+1
h ) = (f

n+1/2
f , vh)f , and (qh,∇ · ũn+1

h )f = 0.

1Two processors can be working simultaneously with waiting only due to the different speeds of solving
the subdomain problems.
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The calculation can proceed as follows

Step 1: Pass previous values across the interface to the other domains

solve, in parallel for ûn+1
h , φ̃n+1

h

Step 2: Pass each of ûn+1
h , φ̃n+1

h across the interface to the other domains

solve, in parallel, for ũn+1
h , φ̂n+1

h .

Step 3: Average the two approximations on each domain

Averaging the equations of the two approximations shows that the averages unh and φnh

satisfy

(
un+1
h − unh

∆t
, vh)f + af (

un+1
h + unh

2
, vh)− (

pn+1
h + pnh

2
,∇ · vh)f (5.1)

+cI(vh,
φ̃n+1
h + φ̂nh

2
) = (f

n+1/2
f , vh)f , and (qh,∇ · un+1

h )f = 0,

gS0(
φn+1
h − φnh

∆t
, ψh)p + ap(

φn+1
h + φnh

2
, ψh)− cI(

ûn+1
h + ũnh

2
, ψh) = g(fn+1/2

p , ψh)p

To assess consistency errors, the residual is estimated when the true solution u(t), φ(t) is

inserted for all variables u, ũ, û, φ, φ̃ and φ̂ in (5.1). As this eliminates the differences

between the ”hat” and the ”tilde” variables, it shows that CNsplit has the same consistency

error as the (monolithic / fully coupled) Crank-Nicolson time discretization.

5.3 ANALYSIS OF STABILITY OF SDSPLIT, BESPLIT1/2 AND CNSPLIT

This section gives a stability proof by energy methods in the form that implies stability over

long time intervals and elucidates the timestep restriction required for the four methods.
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5.3.1 SDsplit Stability.

We prove conditional stability (with a timestep restriction linked to the spacial meshwidth)

of SDsplit in this subsection. The timestep restriction is of the form

∆t < C min {S0, kmin}h.

To be precise, define

∆T0 :=
2

g[C(Ωf )C(Ωp)]2CINV
min

{
S0ν

CP,f
,
kmin
CP,p

}
h.

Theorem 5.3.1. Suppose that for some α, 0 < α < 1,

∆t ≤ (1− α)∆T0. (5.2)

Then SDsplit is stable:

1

2

[
||uNh ||2f + gS0||φNh ||2p

]
+ ∆t

N−1∑
n=0

∆t
gS0

2
||φ

n+1/2
h − φnh

∆t
||2p

+
αgS0

2
∆t

N−1∑
n=0

∆t||φ
n+1/2
h − φn+1

h

∆t
||2p +

α

2
∆t

N−1∑
n=0

∆t||u
n+1
h − unh

∆t
||2f

≤ 1

2

[
||u0

h||2f + gS0||φ0
h||2p
]

+
gC2

P,p

2kmin
∆t

N−1∑
n=0

||fn+1/2
p ||2p

+
C2
P,f

2ν
∆t

N−1∑
n=0

||fn+1
f ||2f +

gC2
P,p

4kmin
∆t

N−1∑
n=0

||fn+1
p ||2p.

(5.3)

Proof. In the first 1/3 step of SDsplit, take ψ = ∆tφ
n+1/2
h . This gives

1

2
gS0(||φn+1/2

h ||2p − ||φnh||2p + ||φn+1/2
h − φnh||2p) +

∆t

2
ap(φ

n+1/2
h , φ

n+1/2
h )

=
∆t

2
g(fn+1/2

p , φ
n+1/2
h )p +

∆t

2
cI(u

n
h, φ

n+1/2
h ).

Take v = ∆tun+1
h , q = pn+1

h in the 2/3 step and add. This gives

1

2
(||un+1

h ||2f − ||unh||2f + ||un+1
h − unh||2f ) + ∆taf (u

n+1
h , un+1

h )

= ∆t(fn+1
f , un+1

h )f −∆tcI(u
n+1
h , φ

n+1/2
h ).
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In the 3/3 step, take ψ = ∆tφn+1
h :

1

2
gS0(||φn+1

h ||2p − ||φ
n+1/2
h ||2p + ||φn+1

h − φn+1/2
h ||2p) +

∆t

2
ap(φ

n+1
h , φn+1

h )

=
∆t

2
g(fn+1

p , φn+1
h )p +

∆t

2
cI(u

n+1
h , φn+1

h ).

Adding, we obtain:

1

2
gS0(||φn+1

h ||2p − ||φnh||2p) +
1

2
(||un+1

h ||2f − ||unh||2f )

+
1

2
gS0(||φn+1/2

h − φnh||2p + ||φn+1
h − φn+1/2

h ||2p) +
1

2
||un+1

h − unh||2f

+
∆t

2
ap(φ

n+1/2
h , φ

n+1/2
h ) +

∆t

2
ap(φ

n+1
h , φn+1

h ) + ∆taf (u
n+1
h , un+1

h )

=
∆t

2
g(fn+1/2

p , φ
n+1/2
h )p + ∆t(fn+1

f , un+1
h )f +

∆t

2
g(fn+1

p , φn+1
h )p

+
∆t

2
cI(u

n
h, φ

n+1/2
h )−∆tcI(u

n+1
h , φ

n+1/2
h ) +

∆t

2
cI(u

n+1
h , φn+1

h ).

Consider the interface terms (the last line):

Interface Terms =
∆t

2
cI(u

n
h, φ

n+1/2
h )−∆tcI(u

n+1
h , φ

n+1/2
h ) +

∆t

2
cI(u

n+1
h , φn+1

h ).

Rewrite the interface term as a difference by splitting the middle term. This gives

Interface Terms =
∆t

2
cI(u

n
h, φ

n+1/2
h )− ∆t

2
cI(u

n+1
h , φ

n+1/2
h )

−∆t

2
cI(u

n+1
h , φ

n+1/2
h ) +

∆t

2
cI(u

n+1
h , φn+1

h )

=
∆t

2
cI(u

n
h − un+1

h , φ
n+1/2
h )− ∆t

2
cI(u

n+1
h , φ

n+1/2
h − φn+1

h ).

Lemma 5.1.2, the Poincaré inequality and inverse inequality (4.5) give the two bounds

∆t

2
|cI(un − un+1, φn+1/2)|

≤ g∆t

4
||K1/2∇φn+1/2

h ||2p +
g[C(Ωf )C(Ωp)]

2CINVCP,ph
−1∆t

4kmin
||unh − un+1

h ||2f ,

∆t

2
|cI(un+1

h , φ
n+1/2
h − φn+1

h )|

≤ ν∆t

4
||∇un+1

h ||2f +
g2[C(Ωf )C(Ωp)]

2CINVCP,fh
−1∆t

4ν
||φn+1/2

h − φn+1
h ||2p.
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Next, we bound the right-hand side in a standard way:

∆t

2
g(fn+1/2

p , φ
n+1/2
h ) ≤ g∆t

8
||K1/2∇φn+1/2

h ||2p +
gC2

P,p∆t

2kmin
||fn+1/2

p ||2p,

∆t(fn+1
f , un+1

h ) ≤
C2
P,f∆t

2ν
||fn+1

f ||2f +
ν∆t

2
||∇un+1

h ||2f ,

∆t

2
g(fn+1

p , φn+1
h ) ≤ g∆t

4
||K1/2∇φn+1

h ||2p +
gC2

P,p∆t

4kmin
||fn+1

p ||2p.

For the left side, apply coercivity:

∆t

2
ap(φ

n+1/2
h , φ

n+1/2
h ) ≥ g∆t

2
||K1/2∇φn+1/2

h ||2p,

∆taf (u
n+1
h , un+1

h ) ≥ ν∆t||∇un+1
h ||2f ,

∆t

2
ap(φ

n+1
h , φn+1

h ) ≥ g∆t

2
||K1/2∇φn+1

h ||2p.

Combine, we arrive at:

1

2
gS0(||φn+1

h ||2p − ||φnh||2p) +
1

2
(||un+1

h ||2f − ||unh||2f ) +
1

2
gS0||φn+1/2

h − φnh||2p

+(
1

2
gS0 −

g2[C(Ωf )C(Ωp)]
2CINVCP,fh

−1∆t

4ν
)||φn+1/2

h − φn+1
h ||2p

+(
1

2
− g[C(Ωf )C(Ωp)]

2CINVCP,ph
−1∆t

4kmin
)||un+1

h − unh||2f

≤
gC2

P,p∆t

2kmin
||fn+1/2

p ||2p +
C2
P,f∆t

2ν
||fn+1

f ||2f +
gC2

P,p∆t

4kmin
||fn+1

p ||2p.

Sum this over n = 0, 1, · · · , N − 1 . We have:

1

2

[
||uNh ||2f + gS0||φNh ||2p

]
+

1

2
gS0

N−1∑
n=0

||φn+1/2
h − φnh||2p

+(
1

2
gS0 −

g2[C(Ωf )C(Ωp)]
2CINVCP,fh

−1∆t

4ν
)
N−1∑
n=0

||φn+1/2
h − φn+1

h ||2p

+(
1

2
− g[C(Ωf )C(Ωp)]

2CINVCP,ph
−1∆t

4kmin
)
N−1∑
n=0

||un+1
h − unh||2f

≤ 1

2

[
||u0

h||2f + gS0||φ0
h||2p
]

+
gC2

P,p∆t

2kmin

N−1∑
n=0

||fn+1/2
p ||2p

+
C2
P,f∆t

2ν

N−1∑
n=0

||fn+1
f ||2f +

gC2
P,p∆t

4kmin

N−1∑
n=0

||fn+1
p ||2p.
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Stability follows under the two conditions below, which are equivalent to the time step

restriction ∆t ≤ (1− α)∆T0:

1

2
gS0 −

g2[C(Ωf )C(Ωp)]
2CINVCP,fh

−1∆t

4ν
≥ α

gS0

2
,

1

2
− g[C(Ωf )C(Ωp)]

2CINVCP,ph
−1∆t

4kmin
≤ α

1

2
.

5.3.2 BEsplit1 Stability.

Define

∆T1 := 2 min{νkminS0
16

[C(Ωf )C(Ωp)]4g2
, 1},

∆T2 :=
2 min{1, gS0}

gC(Ωf )C(Ωp)CINV
h,

∆T3 := 2gS0νh[gC(Ωf )C(Ωp)]
−2(CINVCP,f )

−1,

∆T4 :=
2 min{1, ρ}
ρg(1 + C2

P,p)
kmin,

Parameters := (1 + C2
P,p)(C

2
P,f + d)

g

kminν
.

Note that ∆T1 and ∆T4 are independent of h but depend on kmin and S0 as ∆T1 ' S0kmin

and ∆T4 ' kmin. ∆T2 and ∆T3 are independent of kmin but depend on h and S0 as ∆T2/3 '

S0h. The combination of physical parameters Parameters is independent of h and S0 but

depends on all the other physical parameters. When ν = O(1), the meshwidth h in the

porous medium is moderate and kmin, S0 are small the above restrictions mean either ∆t ≤

C max{kmin, S0kmin, S0h} or C
√
νkmin ≥ 1.

Theorem 5.3.2 (Uniform in time stability of BEsplit1). Suppose either the problem param-

eters satisfy

Parameters ≤ 1

or there is an 0 < α < 1 such that ∆t satisfies the time step restriction

∆t ≤ (1− α) max{∆T1,∆T2,∆T3,∆T4}.
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Then, (BEsplit1) is stable uniformly in time. Specifically, if the timestep restriction with

∆T3 is active then:

1

2

[
||uNh ||2f + gS0||φNh ||2p

]
+ ∆t

N−1∑
n=0

[
∆t

2
||u

n+1
h − unh

∆t
||2f + αaf (u

n+1
h , un+1

h ) + ap(φ
n+1
h , φn+1

h )]

≤ 1

2

[
||u0

h||2f + gS0||φ0
h||2p
]

+ ∆t
N−1∑
n=0

[
(fn+1
f , un+1

h )f + g(fn+1
p , φn+1

h )p
]
.

If any of the other timestep restrictions are active then for any N > 0, there holds

α
[
||uNh ||2f + gS0||φNh ||2p

]
+

∆t

2

N−1∑
n=0

[af (u
n+1
h + unh, u

n+1
h + unh) + ap(φ

n+1
h + φnh, φ

n+1
h + φnh)]

≤ α
[
||u0

h||2f + gS0||φ0
h||2p
]

+ ∆t
N−1∑
n=0

[
(fn+1
f , un+1

h + unh)f + g(fn+1
p , φn+1

h + φnh)p
]
.

Proof. In (BEsplit1) set vh = un+1
h + unh, qh = pn+1

h , average the incompressibility condition

at successive time levels and add. We use

af (u
n+1
h , un+1

h + unh) =
1

2
af (u

n+1
h , un+1

h )− 1

2
af (u

n
h, u

n
h) +

1

2
af (u

n+1
h + unh, u

n+1
h + unh). (5.4)

This gives:

1

2

[
2||un+1

h ||2f + ∆taf (u
n+1
h , un+1

h )
]
− 1

2

[
2||unh||2f + ∆taf (u

n
h, u

n
h)
]

(5.5)

+
∆t

2
af (u

n+1
h + unh, u

n+1
h + unh) + ∆tcI(φ

n
h, u

n+1
h + unh) = ∆t(fn+1

f , un+1
h + unh)f .

Similarly, in the porous media equation, set ψh = φn+1
h + φnh. We use here

ap(φ
n+1
h , φn+1

h + φnh) =
1

2
ap(φ

n+1
h , φn+1

h )− 1

2
ap(φ

n
h, φ

n
h) +

1

2
ap(φ

n+1
h + φnh, φ

n+1
h + φnh).

This gives

1

2

[
2gS0||φn+1

h ||2p + ∆tap(φ
n+1
h , φn+1

h )
]
− 1

2

[
2gS0||φnh||2p + ∆tap(φ

n
h, φ

n
h)
]

(5.6)

+
∆t

2
ap(φ

n+1
h + φnh, φ

n+1
h + φnh)−∆tcI(φ

n+1
h + φnh, u

n+1
h ) = ∆tg(fn+1

p , φn+1
h + φnh)p.
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Add (5.5) and (5.6). Consider the sum of the two coupling terms that results

Coupling = ∆t
[
cI(φ

n
h, u

n+1
h + unh)− cI(φn+1

h + φnh, u
n+1
h )

]
=

= ∆t
[
cI(φ

n
h, u

n
h)− cI(φn+1

h , un+1
h )

]
.

Let us denote Cn = cI(φ
n
h, u

n
h) and

En =
1

2

[
2||unh||2f + 2gS0||φnh||2p + ∆taf (u

n
h, u

n
h) + ∆tap(φ

n
h, φ

n
h)
]
,

Dn =
1

2
af (u

n+1
h + unh, u

n+1
h + unh) +

1

2
ap(φ

n+1
h + φnh, φ

n+1
h + φnh).

Adding the two energy estimates and using the above reduction of the coupling term reduces

the total energy estimate to

[
En+1 −∆tCn+1

]
− [En −∆tCn] +

+∆tDn = ∆t
(

(fn+1
f , un+1

h + unh)f + g(fn+1
p , φn+1

h + φnh)p
)
.

Summing this up from n = 0 to n = N − 1 results in

[
EN −∆tCN

]
+ ∆t

N−1∑
n=0

Dn =
[
E0 −∆tC0

]
+ ∆t

N−1∑
n=0

[
(fn+1
f , un+1

h + unh)f + g(fn+1
p , φn+1

h + φnh)p
]
.

Stability and the stated energy inequality thus follows provided

EN −∆tCN > 0 for every N .

We have already shown that

Dn ≥ ν

2
||∇
(
un+1
h + unh

)
||2f +

gkmin

2
||∇
(
φn+1
h + φnh

)
||2p,

|Cn| ≤ ν

2
||∇unh||2f +

gkmin

2
||∇φnh||2p +

1

2
||unh||2f +

[C(Ωf )C(Ωp)]
4g3

32νkmin

||φnh||2p.

Thus,

En −∆tCn ≥ ||unh||2f + gS0||φnh||2p +
∆t

2

(
ν||∇unh||2f + gkmin||∇φnh||2p

)
(5.7)

−∆t[
ν

2
||∇unh||2f +

gkmin

2
||∇φnh||2p +

1

2
||unh||2f +

[C(Ωf )C(Ωp)]
4g3

32νkmin

||φnh||2p].
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Thus stability follows provided

∆t
[C(Ωf )C(Ωp)]

4g3

32νkmin

≤ (1− α)gS0, or

∆t ≤ (1− α)νkminS0
32

[C(Ωf )C(Ωp)]4g2
≡ (1− α)∆T1.

Alternate conditions are obtained using different estimates of the coupling / interface

term. Indeed, using Lemma 5.1.2

|Cn| = |cI(unh, φnh)| ≤ gC(Ωf )C(Ωp)CINV h
−1

(
1

2
||unh||2f +

1

2
||φnh||2p

)
.

Thus stability follows provided

∆t

h
gC(Ωf )C(Ωp)CINV ≤ 2(1− α) min{1, gS0}, or

∆t ≤ (1− α)
2 min{1, gS0}

gC(Ωf )C(Ωp)CINV
h ≡ (1− α)∆T2,

which is the second condition.

For the condition Parameters ≤ 1, that by Lemma 5.1.2

|Cn| ≤ gkmin

2
||∇φnh||2p +

g(1 + C2
P,p)

2kmin

||unh||2DIV

≤ gkmin

2
||∇φnh||2p +

g(1 + C2
P,p)

2kmin

(||unh||2f + d||∇unh||2f )

≤ gkmin

2
||∇φnh||2p +

g(1 + C2
P,p)

2kmin

(C2
P,f + d)||∇unh||2f

Thus the method is also stable if the problem data satisfies

g(1 + C2
P,p)

2kmin

(C2
P,f + d) ≤ ν

2
or

Parameters = (1 + C2
P,p)(C

2
P,f + d)

g

kminν
≤ 1

The condition involving ∆T3 requires a separate stability proof. In (BEsplit1) set vh =

un+1
h , qh = pn+1

h and add. We use

(un+1
h − unh, un+1

h )f =
1

2

[
||un+1

h ||2f − ||unh||2f
]

+
1

2
||un+1

h − unh||2f ,
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and similarly for φ. This gives:

1

2

[
||un+1

h ||2f − ||unh||2f
]

+
1

2
||un+1

h − unh||2f + ∆taf (u
n+1
h , un+1

h )+

+∆tcI(φ
n
h, u

n+1
h ) = ∆t(fn+1

f , un+1
h )f .

Similarly, in the porous media equation, set ψh = φn+1
h , we get

1

2

[
gS0||φn+1

h ||2p − gS0||φnh||2p + gS0||φn+1
h − φnh||2p

]
+ ∆tap(φ

n+1
h , φn+1

h )

−∆tcI(φ
n+1
h , un+1

h ) = ∆tg(fn+1
p , φn+1

h )p.

Add these two equations and consider the sum of the two coupling terms that result:

|Coupling| = ∆t|cI(φnh, un+1
h )− cI(φn+1

h , un+1
h )| = ∆t|cI(φn+1

h − φnh, un+1
h )|.

The following bound holds by an analogous proof as that of in Lemma 5.1.2:

|Coupling| ≤ gS0

2
||φn+1

h − φnh||2p

+∆t

[
∆t

2gS0

(gC(Ωf )C(Ωp))
2CINV h

−1||un+1
h ||f ||∇un+1

h ||f
]

≤ gS0

2
||φn+1

h − φnh||2p

+∆t

[
∆t

2gS0ν
(gC(Ωf )C(Ωp))

2CINV h
−1CP,faf (u

n+1
h , un+1

h )

]
.

The remainder of the proof follows the above pattern and is complete, provided

∆t

2gS0ν
(gC(Ωf )C(Ωp))

2CINV h
−1CP,f ≤ 1− α, or

∆t < (1− α)
2gS0ν

(gC(Ωf )C(Ωp))
2CINVCP,f

h ≡ (1− α)∆T3.

For the ∆T4 condition, we exploit the added grad-div stabilization. By the third inequal-

ity of Lemma 5.1.2

|Coupling| ≤ ∆t
gkmin

2
||∇φ||2p + ∆t

g(1 + C2
P,p)

2kmin

||u||2 + ∆t
g(1 + C2

P,p)

2kmin

||∇ · u||2.

117



The last term can be subsumed into the grad-div stabilization term provided

∆t
g(1 + C2

P,p)

2kmin

≤ 1

ρ
.

The other two terms are subsumed into the system energy. Stability thus follows provided

||unh||2f + gS0||φnh||2p +
∆t

2

(
ν||∇unh||2f + gkmin||∇φnh||2p

)
−
[
∆t
gkmin

2
||∇φ||2p + ∆t

g(1 + C2
P,p)

2kmin

||u||2
]
> 0.

This requires

∆t
g(1 + C2

P,p)

2kmin

≤ 1

Thus, stability follows under these two conditions, i.e., if ∆t ≤ min{1, ρ} 2kmin

ρg(1+C2
P,p)

= ∆T4.

The rest of the proof follows by summing.

5.3.3 BEsplit2 Stability.

Due to the similarity of the analysis for BEsplit2 to BEsplit1, we present the aspects of the

proof that differ only. Define

∆T5 : =
2kminh

g[C(Ωf )C(Ωp)]2CP,pCINV

∆T6 : =
2

g
(
1 + C2

P,p

)kmin.

We prove uniform in time stability under a time step restriction of the form that occurred

in BEsplit1 with ∆T3 replaced by ∆T5 and ∆T4 replaced by ∆T6. Thus, for small S0 the

active constraint is expected to be

∆t < ∆T6 ' Ckmin

which is independent of both h and S0. Thus, BEsplit1/2 are promising for the quasi-static

approximation and for problems with very small S0 and moderate kmin.
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Theorem 5.3.3 (Uniform in time and S0 stability). Consider the method (BEsplit2). Sup-

pose that there is an α, 0 < α < 1, such that either the problem parameters satisfy

Parameters ≤ 1− α,

or ∆t satisfies the time step restriction

∆t ≤ (1− α) max{∆T1,∆T2,∆T5,∆T6}.

Then, BEsplit2 is stable uniformly in time and uniformly in S0. Specifically, for any

N > 0 we have the energy inequality (which also proves stability)

1

2

[
||uNh ||2f + ||∇ · uNh ||2f + gS0||φNh ||2p

]
+∆t

N−1∑
n=0

[
∆t

2
gS0||

φn+1
h − φnh

∆t
||2p + af (u

n+1
h , un+1

h ) + αap(φ
n+1
h , φn+1

h )

]

≤ 1

2

[
||u0

h||2f + ||∇ · u0
h||2f + gS0||φ0

h||2p
]

+ ∆t
N−1∑
n=0

[
(fn+1
f , un+1

h )f + g(fn+1
p , φn+1

h )p
]
.

Proof. The derivation of the stability conditions involving Parameters and ∆T1, ∆T2 is very

similar to the case of BEsplit1. We therefore move to the condition involving ∆T5 and ∆T6.

In (BEsplit2) set ψh = φn+1
h , vh = un+1

h , qh = pn+1
h , and add. We use

−(unh, u
n+1
h )f = −1

2
(unh, u

n
h)f −

1

2
(un+1

h , un+1
h )f +

1

2
(un+1

h − unh, un+1
h − unh)f ,

and similarly for the (∇ · unh,∇ · un+1
h )f terms and the analogous terms in the φ equation.

This gives:

1

2

[
||un+1

h ||2f + ||∇ · un+1
h ||2f + gS0||φn+1

h ||2p
]
− 1

2

[
||unh||2f + ||∇ · unh||2f + gS0||φnh||2p

]
+

1

2

[
||un+1

h − unh||2f + ||∇ · (un+1
h − unh)||2f + gS0||φn+1

h − φnh||2p
]

+∆t
[
af (u

n+1
h , un+1

h ) + ap(φ
n+1
h , φn+1

h )
]

+∆tcI(φ
n+1
h , un+1

h − unh) = ∆t(fn+1
f , un+1

h )f + ∆tg(fn+1
p , φn+1

h )p.

Consider the sum of the two coupling terms

Coupling = ∆tcI(φ
n+1
h , un+1

h − unh).
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For the condition involving ∆T5,

|Coupling| ≤ ∆tgC(Ωf )C(Ωp)C
1
2
P,p(CINV h

−1)
1
2 ||∇φn+1

h ||p||un+1
h − unh||f

≤ 1

2
||un+1

h − unh||2f +
g[C(Ωf )C(Ωp)]

2CP,pCINV h
−1∆t2

2kmin
ap(φ

n+1
h , φn+1

h )

Subsuming the above two terms in the obvious places, the method is stable if

∆t ≤ 2kminh

g[C(Ωf )C(Ωp)]2CP,pCINV
= ∆T5.

For the stability condition involving ∆T6, we have, using Lemma 5.1.2 and ap(φ
n+1
h , φn+1

h ) ≥

gkmin||∇φn+1
h ||p,

|Coupling| ≤ ∆tg||φn+1
h ||H1(Ωp)||un+1

h − unh||DIV

≤ ∆tg
√

1 + C2
P,p||∇φ

n+1
h ||p||un+1

h − unh||DIV

≤ 1

2

[
||un+1

h − unh||2f + ||∇ · (un+1
h − unh)||2f

]
+

1

2
∆t2

g

kmin

(
1 + C2

P,p

)
ap(φ

n+1
h , φn+1

h ).

Thus

1

2

[
||un+1

h ||2f + ||∇ · un+1
h ||2f + gS0||φn+1

h ||2p
]
− 1

2

[
||unh||2f + ||∇ · unh||2f + gS0||φnh||2p

]
+

1

2
gS0||φn+1

h − φnh||2p + ∆t[af (u
n+1
h , un+1

h )

+(1− 1

2
∆tg

(
1 + C2

P,p

)
k−1

min)ap(φ
n+1
h , φn+1

h )]

≤ ∆t(fn+1
f , un+1

h )f + ∆tg(fn+1
p , φn+1

h )p.

Stability then follows under the timestep restriction

(1− 1

2
∆tg

(
1 + C2

P,p

)
k−1

min) ≥ α > 0

which is equivalent to

∆t ≤ (1− α)
2

g
(
1 + C2

P,p

)kmin ≡ (1− α)∆T6.
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5.3.4 CNsplit Stability.

CNsplit computes two partitioned approximations (ûnh, p̂
n
h, φ̂

n
h) and (ũnh, p̃

n
h, φ̃

n
h) ∈ Xh

f ×Qh
f×

Xh
p for n ≥ 1 whereupon

(un+1
h , pn+1

h , φn+1
h ) =

1

2
[(ûn+1

h , p̂n+1
h , φ̂n+1

h ) + (ũn+1
h , p̃n+1

h , φ̃n+1
h )], (CNsplit)

that is, the new approximation to each variable is the average of the two computed approx-

imations. Since the unit ball in a Hilbert space is convex, stability of (un+1
h , pn+1

h , φn+1
h )

follows from stability of (ûn+1
h , p̂n+1

h , φ̂n+1
h ) and (ũn+1

h , p̃n+1
h , φ̃n+1

h ). We thus prove stability of

the two individual sub-problems. Define

∆T6 :=

√
2S0√

gC(Ωf )C(Ωp)CINV
h

We prove long time stability under a time step condition of the form

∆t < C
√
S0h.

Theorem 5.3.4 (Stability of one step of CNsplit). Consider (CNsplit-a) one step of the

CNsplit method. Suppose there is an 0 < α < 1/2 such that ∆t satisfies the time step

restriction

∆t ≤ (1− α)∆T6

Then, (CNsplit-a) is stable uniformly in time over possibly long time intervals. Specifi-

cally, for every N ≥ 1

α
[
||ûNh ||2f + gS0||φ̂Nh ||2p

]
+ ∆t

N−1∑
n=0

1

2

[
af (û

n+1
h + ûnh, û

n+1
h + ûnh) + ap(φ̂

n+1
h + φ̂nh, φ̂

n+1
h + φ̂nh)

]
≤ ||û0

h||2f + gS0||φ̂0
h||2p −∆tcI(φ̂

0
h, û

0
h)

+ ∆t
N−1∑
n=0

[
(f

n+1/2
f , ûn+1

h + ûnh)f + g(fn+1/2
p , φ̂n+1

h + φ̂nh)p

]
.
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Proof. In (CNsplit-a) set vh = ûn+1
h + ûnh, qh = p̂n+1

h , average the incompressibility condition

at successive time levels and add. This gives:

||ûn+1
h ||2f − ||ûnh||2f +

∆t

2
af (û

n+1
h + ûnh, û

n+1
h + ûnh)

+∆tcI(φ̂
n
h, û

n+1
h + ûnh) = ∆t(f

n+1/2
f , ûn+1

h + ûnh)f .

Similarly, in the porous media equation, set ψh = φ̂n+1
h + φ̂nh . This gives

gS0||φ̂n+1
h ||2p − gS0||φ̂nh||2p +

∆t

2
ap(φ̂

n+1
h + φ̂nh, φ̂

n+1
h + φ̂nh)

−∆tcI(φ̂
n+1
h + φ̂nh, û

n+1
h ) = ∆tg(fn+1/2

p , φ̂n+1
h + φ̂nh).

Add and consider the sum of the two coupling terms

Coupling = ∆t
[
cI(φ̂

n
h, û

n+1
h + ûnh)− cI(φ̂n+1

h + φ̂nh, û
n+1
h )

]
= ∆t

[
cI(φ̂

n
h, û

n
h)− cI(φ̂n+1

h , ûn+1
h )

]
.

Let us denote Cn = cI(φ̂
n
h, û

n
h) and

En = ||ûnh||2f + gS0||φ̂nh||2p,

Dn =
1

2
af (û

n+1
h + ûnh, û

n+1
h + ûnh) +

1

2
ap(φ̂

n+1
h + φ̂nh, φ̂

n+1
h + φ̂nh).

Adding the two energy estimates and using the above reduction of the coupling term reduces

the total energy estimate to

[
En+1 −∆tCn+1

]
− [En −∆tCn]

+∆tDn = ∆t
(

(f
n+1/2
f , ûn+1

h + ûnh)f + g(fn+1/2
p , φ̂n+1

h + φ̂nh)p

)
.

Sum this inequality from n = 0 to N − 1. The energy inequality thus follows provided

EN −∆tCN ≥ αEN for every N .
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Consider ∆tCN . Dropping super and subscripts and applying Lemma 5.1.2 gives

∆t|CN | ≤ ∆tgC(Ωf )C(Ωp)CINV h
−1||u||f |||φ||p

≤ gS0

2
||φ||2p +

∆t2

2gS0

[
gC(Ωf )C(Ωp)CINV h

−1
]2 ||u||2f .

We thus have stability provided

∆t2

2gS0

[
gC(Ωf )C(Ωp)CINV h

−1
]2
< 1 or ∆t < ∆T6.

Under the timestep restriction ∆t ≤
√

1− α∆T6 which is implied by ∆t ≤ (1 − α)∆T6 we

have

||ûn+1
h ||2f + gS0||φ̂n+1

h ||2p −∆tcI(φ̂
n+1
h , ûn+1

h ) ≥ α
[
||ûn+1

h ||2f + gS0||φ̂n+1
h ||2p

]
.

This proves stability of the first half step.

Now we consider the second half step.

Theorem 5.3.5 (Stability of one step of CNsplit). Consider (CNsplit-b). Suppose there is

an α, 0 < α < 1, such that ∆t satisfies the time step restriction

∆t ≤ (1− α)∆T6

Then, it is stable over long time intervals. Specifically, for every N ≥ 1

α
[
||ũNh ||2f + gS0||φ̃Nh ||2p

]
+ ∆t

N−1∑
n=0

1

2

[
af (ũ

n+1
h + ũnh, ũ

n+1
h + ũnh) + ap(φ̃

n+1
h + φ̃nh, φ̃

n+1
h + φ̃nh)

]
≤
[
||ũ0

h||2f + gS0||φ̃0
h||2p + ∆tcI(φ̃

0
h, ũ

0
h)
]

+ ∆t
N−1∑
n=0

[
(f

n+1/2
f , ũn+1

h + ũnh)f + g(fn+1/2
p , φ̃n+1

h + φ̃nh)p

]
.

The proof is essentially the same as for the first half-step and is thus omitted.

123



5.4 NUMERICAL EXPERIMENTS

We present numerical experiments to test the algorithms proposed in this chapter. First,

using the exact solution introduced in [98], we test accuracy. One new aspect is that we also

test mass conservation errors across the interface I, the last columns of Tables 5.1 through

5.4. While mixed methods are expected to have better conservation properties than the

non-mixed formulation we use, we find the mass conservation errors are quite acceptable in

this limited test. Second, we test stability over longer time intervals and small values of kmin

and S0. In these tests the splitting based partitioned methods appear to be stable for larger

timestep sizes than the IMEX based partitioned methods tested previously in Chapter 4 and

that good partitioned methods are available when one parameter is small. When both are

small, a very small timestep is required for stability for the four methods. The code was

implemented using the software package FreeFEM++.

5.4.1 Test 1: Convergence rates.

For the first test we select the velocity and pressure field given in [98]. Let the domain Ω be

composed of Ωf = (0, 1)× (1, 2) and Ωp = (0, 1)× (0, 1) with the interface Γ = (0, 1)× {1}.

The exact velocity field is given by

u1(x, y, t) = (x2(y − 1)2 + y) cos t ,

u2(x, y, t) =

(
−2

3
x(y − 1)3 + 2− π sin(πx)

)
cos t ,

p(x, y, t) = (2− π sin(πx)) sin
(π

2
y
)

cos t ,

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos t.

To check the rates of convergence, take the time interval 0 ≤ t ≤ 1 and in this first test

the physical parameters ρ, g, µ,K, S0 and α are simply set to 1. We utilize Taylor-Hood

P2−P1 finite elements for the Stokes subdomain and continuous piecewise quadratic finite

element for the Darcy subdomain. The boundary conditions on the exterior boundaries

(not including the interface I) are inhomogeneous Dirichlet: uh = uexact, φh = φexact on the
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exterior boundaries. The initial data and source terms are chosen to correspond the exact

solution.

For convenience, we denote ‖ · ‖I = ‖ · ‖L2(0,T ;L2(I)), ‖ · ‖∞ = ‖ · ‖L∞(0,T ;L2(Ωf |p)) and

‖ · ‖2 = ‖ · ‖L2(0,T ;L2(Ωf |p)). We show below in Table 5.1–5.4 the errors of approximated

velocity and Darcy pressure in several different norms. In the last columns of the tables are

the errors in mass conservation on I.

From the tables, we see that SDsplit, BEsplit1 and BEsplit2 are first order methods

while CNsplit is second order accuracy, as predicted. Further, the error levels of the first

order methods seem quite acceptable as are the mass conservation errors across I.

h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 2.921e-3 7.194e-2 4.030e-3 4.626e-3 2.280e-1

1/10 8.954e-4 2.181e-2 1.183e-2 1.661e-3 4.070e-2

1/20 4.198e-4 5.751e-3 6.367e-4 9.080e-4 9.566e-3

1/40 2.105e-4 1.959e-3 3.399e-4 4.977e-4 2.376e-3

1/80 1.057e-4 8.328e-4 1.771e-4 2.668e-4 5.047e-4

Table 5.1: The convergence performance for SDsplit method. The time step ∆t is set to be

equal to mesh size h.

h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 3.448e-3 7.371e-2 4.289e-3 4.766e-3 2.278e-1

1/10 1.657e-3 2.343e-2 1.163e-3 1.665e-3 4.694e-2

1/20 8.405e-4 7.200e-3 5.409e-4 8.126e-3 9.531e-3

1/40 4.239e-4 2.923e-3 2.705e-4 4.081e-4 2.369e-3

1/80 2.128e-4 1.367e-3 1.356e-4 2.046e-4 5.035e-4

Table 5.2: The convergence performance for BEsplit1 method. The time step ∆t is set to

be equal to mesh size h.
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h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 2.768e-3 7.130e-2 9.738e-3 1.649e-2 2.547e-1

1/10 9.282e-4 2.164e-2 4.833e-3 8.441e-3 7.087e-2

1/20 4.390e-4 5.610e-3 2.447e-3 4.231e-3 2.722e-2

1/40 2.196e-4 1.860e-3 1.233e-3 2.119e-3 1.212e-2

1/80 1.100e-4 7.739e-4 6.188e-4 1.060e-3 6.258e-3

Table 5.3: The convergence performance for BEsplit2 method. The time step ∆t is set to

be equal to mesh size h.

h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 3.044e-3 7.789e-2 7.647e-3 1.112e-2 2.284e-1

1/10 4.323e-4 2.259e-2 1.520e-3 2.085e-3 4.795e-2

1/20 5.466e-5 5.193e-3 3.654e-4 4.961e-4 9.849e-3

1/40 7.829e-6 1.270e-3 9.081e-5 1.227e-4 2.487e-3

1/80 1.573e-6 3.187e-4 2.265e-5 3.056e-5 5.273e-4

Table 5.4: The convergence performance for CNsplit method. The time step ∆t is set to be

equal to mesh size h.

5.4.2 Test 2: Stability in case of small parameters.

In this test, we compare the performance of our proposed methods for uncoupling Stokes-

Darcy flows for three cases: small kmin and O(1) S0, O(1) kmin and small S0, and small kmin

and small S0. The last case is separated into several sub-cases to distinguish ’extremely

small’ and ’moderately small’ S0 and kmin. Our test here is to check the largest timestep for

which the four methods are stable over long time intervals. Since the problem is linear we

can take the body force terms to be zero. The true solution decays as t→∞, so any growth
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in the approximate solution is an instability. We take the initial condition

u1(x, y, 0) = (x2(y − 1)2 + y) ,

u2(x, y, 0) =

(
−2

3
x(y − 1)3 + 2− π sin(πx)

)
,

p(x, y, 0) = (2− π sin(πx)) sin
(π

2
y
)
,

φ(x, y, 0) = (2− π sin(πx))(1− y − cos(πy)).

Define the kinetic energy En = ‖unh‖2
f + ‖φnh‖2

p. The final time Tf in our experiment is 10.0

and the system parameters are simply set to be 1.0, except hydraulic conductivity kmin and

storativity coefficient S0. We take the mesh size h = 1/10 and run the experiment with

different time-step sizes. With each value of ∆t, we compute the kinetic energy at final time,

i.e., EN where N = Tf/∆t. However, we use 10250 as a ’cut-off’ value for En. If En exceeds

10250 at some n, we stop and output En, the kinetic energy at that point. By looking at

these figures, we can estimate the largest ∆t for which numerical methods is stable.

Since Stokes flows and porous media flows are not typically high velocity flows, and since

the domains are large with associated significant costs for subdomain solves, the ability to

take large timesteps is desirable. In the stability tests for small parameter kmin or S0 the three

first order methods are superior. They are stable for larger timesteps, as predicted by the

theory. The CNsplit method generally requires a much smaller timestep to attain stability.

Thus, in some of the figures, the largest timesteps needed for the stability of CNsplit are not

shown in some cases. To present the CNsplit case, Figure 5.7 gives a graph showing stability

of CNsplit alone with numerous small values of S0 and kmin.

5.5 CONCLUSION

In both our analysis and tests on problems kmin and S0 are small, it seems that stability over

long time intervals (and the associated time step restriction) is a key issue in uncoupling

the Stokes-Darcy problem. With one small parameter, the first order splitting methods had

significant advantages in stability and are a good option when kmin or S0 is small.
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Many other open problems remain. Finding partitioned methods stable for large time

steps when both kmin, S0 are small is an open problem. Further, while the first order methods

gave acceptable error levels, more accuracy is always desirable. The stability of higher order

partitioned methods for large timesteps and small parameters also is also largely an open

problem. We have not tried to optimize the dependence of the timestep barriers upon the

domain size. This is an important and open problem, especially for domains with large

aspect ratios. At this point we do not know if a partitioned method exists with timestep

restriction independent of S0, kmin, ν and h. If kmin, ν → 0 the problem reduces to ut+Cφ = 0

and φt−Cu = 0 and any such algorithm would be an explicit method for an abstract wave-

like equation written as a first order system. The behavior of numerical methods (both

partitioned time stepping methods and iterative decoupling methods for use with monolithic

time discretizations) in the quasi-static limit (as S0 → 0) is an open question critical in

applications to aquifers since quasi static models are common, e.g., [27] for an example and

[96] for a first step to its resolution. In many problems kmin and S0 are both small and

the double asymptotics of both parameters is important and open. Since fluid flow acts

on different time scales in free flow and in porous media, developing algorithms with good

properties that allow different time step sizes in the two domains (multi-rate or asynchronous

methods) is an important and largely open challenge.
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Figure 5.1: EN using different time step sizes and splitting methods with kmin = 1 and

S0 = 10−12.

Figure 5.2: EN using different time step sizes and splitting methods with kmin = 10−12 and

S0 = 1.
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Figure 5.3: EN using different time step sizes and splitting methods with kmin = 10−3 and

S0 = 10−3.

Figure 5.4: EN using different time step sizes and splitting methods with kmin = 10−4 and

S0 = 10−4.
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Figure 5.5: EN using different time step sizes and splitting methods with kmin = 10−4 and

S0 = 10−12.

Figure 5.6: EN using different time step sizes and splitting methods with kmin = 10−12 and

S0 = 10−4.
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Figure 5.7: Stability of CNsplit at different small values of kmin and S0.
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6.0 CONCLUDING REMARKS AND FUTURE RESEARCH

The major contribution of this work is the development and analysis of partitioned methods

for three coupled fluid flow problems:

1. uncoupled variational multiscale stabilization of turbulence flows,

2. partitioned time stepping methods for magnetohydrodynamics flows,

3. partitioned time stepping methods for Stokes-Darcy problems.

Our methods have substantial algorithmic advantage, since they effectively break the com-

plex coupled system into the subproblems and allow the use of optimized and legacy codes.

By this way, they help to reduce the technical costs and programming effort. It has been

shown that the proposed algorithms are stable and convergent at the optimal rates. In par-

ticular, long time and uniform in time stability are obtained for Stokes-Darcy flows, which

surpasses previous results. The goal of any uncoupled method is to give results not ap-

preciably worse than the associated fully coupled approach (which is expected to be more

accurate). In the numerical experiments presented herein, our methods well meet this goal.

For uncoupling a coupled problem, our methods face some limitations as a trade-off for

algorithmic advantage. The time stepping methods normally require time step restrictions

for stability. These conditions are particularly troublesome in applications involving small

or large physical parameters. We partially address the issue in this thesis; however, schemes

with stronger stability properties are still in need in many cases. Also, deriving the exact

dependence of the stability and/or error behavior on model parameters remains largely an

open question. Certainly, studying higher order accurate uncoupling strategies, or strategies

which allow the use of different time step and mesh size for subproblem solvers is another

important and promising direction for future works. The following research projects would
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help develop further computational capabilities for complex flow systems:

1. Studying how to induce VMS stabilization in Step 2 when Step 1 is the result from a

black box flow code. We need to analyze the algorithm when different meshes are used for

Steps 1 and 2 and estimate the extra error caused by interpolating the velocity between

the postprocessing step’s mesh and the code’s mesh.

2. Developing algorithms with higher order time accuracy for MHD flows, still allowing

large time steps. Methods with time step restrictions should be considered, focusing on

using larger time steps than are currently possible.

3. Developing partitioned algorithms for nonlinear coupling in full MHD flows.

4. Developing algorithms with higher order time accuracy for Stokes-Darcy flows, allowing

large time steps when both kmin and S0 are small.

5. Studying the mass conservation errors across the interface I for the Stokes-Darcy flow.

One interesting direction is developing and analyzing the combination of uncoupling

schemes and mixed formulations, which are expected to have better conservation prop-

erties.

6. It should be checked that the numerical methods in this thesis are adaptable to equations

with more realistic physics.

There are many other multiphysics flow models which are widely used in science and

technology, but whose computational simulation was not well developed. It is worth studying

uncoupling strategies for those models. Here are another problem we are investigating:

6.1 FAST-SLOW WAVE SPLITTING FOR ATMOSPHERIC AND OCEAN

CODES

The Earth’s atmosphere supports many types of wave motion, which are vastly different

in time and length scales: Rossby waves, gravity waves and sound waves. Rossby waves

propagate more slowly than gravity waves, which in turn move more slowly than sound

waves. If time derivatives in the equations governing atmospheric flow are approximated
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using explicit finite difference schemes, the maximum stable time step will be limited by

the speed of the fastest-moving wave. Since sound waves play no direct role in atmospheric

and ocean circulations, they need not be accurately simulated to obtain a good weather

forecast. The quality of the weather forecast depends solely on the ability of the model to

accurately simulate atmospheric disturbances that evolve on much slower time scales. To

obtain a reasonably efficient numerical model for the simulation of atmospheric circulations,

it is necessary to circumvent the severe time step restrictions associated with sound wave

propagation and bring the maximum stable time step into closer agreement with the time

step limitations arising from accuracy considerations, [43].

While fully implicit time differences successfully meet this goal by treating sound waves

in a stable manner, they require the solution of a nonlinear algebraic system at each time

step and are generally thought to be less efficient than implicit-explicit (IMEX) methods in

which only those terms responsible for linear sound wave propagation are evaluated using

implicit differences and the remaining terms are integrated using explicit formulas. One of

the most common time discretizations in atmospheric and ocean codes is the combination

of the Crank-Nicolson and Leap-Frog methods, usually abbreviated as CNLF. The usual

description is that implicit CN is used to discretized physical effects corresponding to fast

waves and low energy while explicit LF for high energy slow waves. In spite of the importance

of the application and the large computational experience with the method CNLF, there has

been little analysis of CNLF for the application and beyond root condition stability.

We study to give an analytic, nonlinear energy stability and convergence analysis of

CNLF based on a splitting of the NSE + rotation/Coriolis force, a great simplification of the

geophysical flow. The timestep restriction from the LF component can still be too restrictive

if the normal splitting into fast and slow modes is not perfectly done. We develop a new

CNLF stabilization which does not require any timestep condition for stability.
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