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COLLECTIVE CELL MIGRATION IN SINGLE AND DUAL CELL LAYERS

Tracy L. Stepien, PhD

University of Pittsburgh, 2013

Collective cell migration plays a substantial role in maintaining the cohesion of epithelial

cell layers, in wound healing, and in embryonic development. We extend a previously de-

veloped one-dimensional continuum mechanical model of cell layer migration based on an

assumption of elastic deformation of the cell layer to incorporate stretch-dependent prolifer-

ation, which leads to a generalized Stefan problem for the density of the layer. The resulting

partial differential equation system is solved numerically using an adaptive finite difference

method and similarity solutions are studied analytically. We show the existence of traveling

wave solutions with constant wave speed for a large class of constitutive equations for the

dependence of proliferation on stretch.

We then extend the corresponding two-dimensional model of cell migration to incorporate

two adhering cell layers. A numerical method to solve the model equations is based on a level

set method for free boundary problems with a domain decomposition method to account for

where the migrating cells in each layer are located. We apply the model to experimental

migration of epithelial and mesenchymal cell layers during gastrulation, an early phase of

development, in animal cap explants of Xenopus laevis embryos to analyze the mechanical

properties of each cell layer. Understanding the mechanics of collective cell migration during

embryonic development will aid in developing tools to perturb pathological cases such as

during wound healing and to aid in the prediction and early detection of birth defects.

Keywords: cell migration, wound healing, embryology, mathematical modeling, elastic con-

tinuum, free boundary problem, traveling wave solutions.
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1.0 INTRODUCTION

Beginning momentarily after we are conceived through to our final days, cells migrate within

our bodies. Near the beginning of embryonic development, cells migrate to form the germ

layers of the embryo, the ectoderm, mesoderm and endoderm. These layers eventually form

into tissues and organs, which are shaped and vascularized through cell migration. Our

immune systems rely heavily on cell migration daily. Leukocytes such as macrophages and

neutrophils migrate to locations of infection and epithelial cells close gaps during wound

healing. Migration also plays a significant role in the progression of many diseases including

cancer, arthritis, osteoporosis, atherosclerosis, mental retardation, and multiple sclerosis

(Ridley et al. [56], Rørth [57], Trinkaus [75]).

Much work has been done to study how cells move on an individual basis, see for example

the review papers by Ridley et al. [56] and Van Haastert and Devreotes [77] and references

therein. To migrate, an individual cell first morphologically polarizes so that there is a

clear distinction between the cell front and the cell rear. Then, lamellipodia or filopdia

protrude from the cell and attach to the substrate. Following this, the cell body is translo-

cated forward. Lastly, the cell rear is detached and the cycle continues (Lauffenburger and

Horwitz [38], Mogilner [44]).

Another principal mode of migration is collective cell migration, which is the migration

of cells in loosely or closely associated groups (Friedl and Gilmour [20], Rørth [57]). Cells

remain physically and functionally connected to one another as they move via adherens

junction proteins (including cadherins), desmosomal proteins, integrins, tight junctions, and

gap junctions (Ilina and Friedl [31]). The features of collective migration include those of

individual migrating cells with the effects of the entire group of cells, so the movement of

one cell moving collectively depends on the behavior of itself and of the cells in its cohort.
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For example, if a mechanical force is applied locally to the cadherins on a cell that normally

moves collectively, polarized lamellipodia are formed and migration is persistent, typical of

individually moving cells (Weber et al. [81]). Many epithelial tissues move collectively as a

sheet of cells, including during wound healing and during embryonic development.

There are many factors that influence the speed of migrating cells which includes the

surrounding cells and environment. The stiffer the substrate on top of which cells are located,

the larger the traction forces, cell spreading area, and sizes of focal adhesions (Ghibaudo et

al. [25]). Furthermore, cells migrate in the direction of the stiffest parts of anisotropic

substrates. Cell speed also depends on the substrate extracellular matrix concentration,

expression of cell integrins, and the affinity of integrin–ligand binding (Palecek et al. [51]).

The dependence of cell speed on cell–substrate adhesiveness is biphasic such that there is

an optimal adhesiveness for maximizing speed. In wound closure, cell proliferation does not

contribute to the closure of gaps; rather, damaged cells are replaced in part to restore the

original cell layer density (Farooqui and Fenteany [16]).

There has been a lot of discussion over the past hundred years regarding how cells near

the edge of a migrating group, termed “leader” cells, move compared to how cells in the

interior, termed “follower” cells, move. Do the leader cells actively pull along the passively

moving follower cells? Do the follower cells move actively too? Is there another mechanism

responsible for the motion? Vitorino and Meyer [78] found that while the morphological

polarization of cells to initiate migration is dependent on growth factor signals, migration

several cell diameters away from the moving edge is not dependent on these signals. The

leader cells distinctively form lamellipodia and have directed motion while it was theorized

that cell–cell adhesion forces in part convert random migration of the follower cells into a

coordinated directed migration response. Farooqui and Fenteany [16] observed that follower

cells form lamellipodia and do actively move but their direction is not as highly correlated

as for the leader cells, and the velocity of cells within a layer is inversely proportional to

the distance from the edge. Trepat et al. [74] showed by direct measurement that traction

forces applied by cells on the substrate arise predominately many cell rows behind the edge

and extend across immense distances. “Waves” of increasing velocity and stress forces were

shown to propagate from the leading edge toward the interior in Serra-Picamal et al. [61],
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establishing a mechanism of long-range cell guidance. Evidence hence implies that all cells

throughout a migrating group actively contribute to the movement of the group in the

direction toward a gap, and mechanical coupling and chemical signaling dynamically affect

the movement.

1.1 BIOLOGICAL MOTIVATION

There are two principal motivations for our studying collective cell migration, namely, necro-

tizing enterocolitis and birth defects.

1.1.1 Necrotizing Enterocolitis

Necrotizing enterocolitis (NEC) is an intestinal inflammatory disease that is a major cause

of death in premature infants. It is the most common cause of surgical emergency in the

neonatal intensive care unit, and it affects 2000–4000 newborns in the United States each

year. 27–63% of these newborns require surgical intervention, but despite over three decades

of research, surgical mortality associated with NEC is 20–50% (Feng et al. [17], Henry and

Moss [29]).

NEC results from injury to the mucosal lining of the intestine, which leads to translo-

cation of bacteria and endotoxins such as lipopolysaccharide (LPS) from the intestine into

general circulation (Cetin et al. [10]). Injury to the intestinal lining is repaired initially via

rapid migration of intestinal epithelial cells from the wound edge, termed intestinal resti-

tution. However, LPS increases integrin function and cell–matrix adhesion, which impairs

the ability of intestinal epithelial cells to migrate effectively (Cetin et al. [9], Qureshi et

al. [55]). If left untreated, NEC will lead to multisystem organ failure and death from sys-

temic sepsis, though the clinical management of infants with NEC is very challenging for

doctors since the patients are small and the timing and choice of surgical procedure must be

attentively decided (Anand et al. [2]). Understanding the mechanisms that govern intestinal

epithelial collective cell migration is essential to gain insights into the regulation of intestinal
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physiology during conditions of health and NEC.

Experiments examining epithelial cell sheet migration during wound healing often involve

scratch wound assays. This technique involves allowing epithelial cells to grow to confluence,

and then some cells are mechanically scraped away to form a gap which represents a wound.

To study whether damage to the cells at the edge triggers movement or whether the release of

spatial constraints initiates it, Block et al. [6] and Poujade et al. [53], among others, allowed

cells to grow to confluence around a barrier or within a microstencil that is subsequently

removed. In these types of experiments, collective cell migration is triggered as well. Scratch

wound assays of intestinal epithelial cells will be the basis of our studies on single layer cell

migration.

1.1.2 Birth Defects

In 2006, birth defects were the number one cause of infant deaths in the United States, af-

fecting approximately 1 in 33 newborns (Heron et al. [30]). There are many possible causes

of birth defects and it is very hard to identify which factors are primarily responsible. Stud-

ies have investigated how molecular regulatory pathways and the mechanics of embryonic

development cope, or fail to cope, with variation, but these are ongoing (von Dassow and

Davidson [79]). Development is a complex, multi-step process during which any number of

processes can go astray, and one phase that researchers focus on is gastrulation.

Gastrulation is arguably one of the most important parts of a living being’s life. This is

a phase during embryonic development in which the embryo transforms from a ball of cells,

termed the blastula, to a structure with a gut, termed the gastrula. This is accomplished

by the coordinated migration of cells to form the endoderm, an inner layer of cells that

forms the epithelial lining of the gut (which includes the pharynx, esophagus, stomach, and

intestines), the ectoderm, an outer layer of cells that forms the epidermis and the nervous

system (including the sensory cells of the nose, ears, and eyes), and the mesoderm, a middle

layer of cells that forms embryonic connective tissue which later becomes cartilage, bone,

muscles, and the vascular system (including the heart, blood vessels, and blood cells) (Alberts

et al. [1]). Understanding the mechanics of collective cell migration during gastrulation will
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aid in developing tools to aid in the prediction and early detection of birth defects.

Amphibians, insects, reptiles, fish, birds, and mammals have all been used as animal

models for embryonic development, and in any particular species, gastrulation seems to

occur in the same way in most individuals (Trinkaus [75]). The African claw-toed frog,

Xenopus laevis, has been a research animal since 1930, so it has a well-characterized life

cycle (Gurdon and Hopwood [26]). Furthermore, Xenopus is a vertebrate that undergoes

external development, the eggs are relatively large in size (the diameter is 1–1.3mm), it is

easy to obtain a large number of eggs, and the eggs are suitable for microsurgery, which

are all benefits for biomedical research. John Gurdon recently won the 2012 Nobel Prize

in Physiology or Medicine for his work with Xenopus, which indicates the frogs’ immense

influence. Experiments involving animal cap explants of Xenopus embryos will be the basis

of our studies on dual layer cell migration.

1.2 PREVIOUS MATHEMATICAL MODELS

To mathematically model collective cell migration, it is appropriate to model cells as a

continuum as long as the characteristic length of cell movement is much larger than the size

of a cell (Callaghan et al. [7]). Many existing continuum-based models of cell migration are

based on the Fisher-Kolmogorov equation

∂u

∂t
= D∂

2u

∂x2
+ αu(1− u), (1.1)

a reaction-diffusion equation where u is a concentration, D is the diffusion coefficient, and

α is a growth rate (Fisher [18], Kolmogorov et al. [36]). These models assume cells move

randomly, they are appropriate for non-adhering cells, and they are not based on mechanics.

For example, Sherratt and Murray [65, 66] modeled the closure of epidermal wounds with two

governing equations describing the conservation of cell density per unit area, which depends

on cell migration, proliferation, and death, and conservation of proliferation-regulating chem-

ical concentration, which depends on diffusion, production by cells, and decay. In this setting,
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the moving edge of a cell layer is represented as a traveling wave of cell concentration, veri-

fied experimentally by Maini et al. [39, 40]. This seems natural since the Fisher-Kolmogorov

equation on an infinite domain is a classic example of a problem with a traveling wave.

Other reaction-diffusion continuum models of cell migration include Dale et al. [14, 15],

Javierre et al. [32], Murray [46], Murray and Oster [47], Oster et al. [50], Sheardown and

Cheng [62], Sherratt [64], Tranquillo and Murray [71, 72], Tremel et al. [73], and Wearing

and Sherratt [80], among others.

Free boundary formalism has been introduced in various models to account for the influ-

ence of physiological electrical fields on wound closure. Across the boundary of a wound, a

physiological electric field arises due to the healed region maintaining a normal potential and

the wounded region having a short-circuited potential. Gaffney et al. [23] developed a model

with a free boundary which examines corneal epithelial wound healing. Chen and Fried-

man [12] analyzed this model to show that the equations have a unique solution, complete

healing is achieved in finite time, and traveling waves exist. Later, Chen and Friedman [13]

analyzed a free boundary problem that applied to tumor growth based on a model by Pettet

et al. [52]. Xue et al. [82] developed a model with a free boundary problem for ischemic

dermal wounds that was used to predict how ischemic conditions may impair wound closure.

In this dissertation, we will focus on the collective cell migration models of Mi et al. [43]

and Arciero et al. [3], in which a single cell layer is represented by an elastic continuum ca-

pable of deformation, motion, and material growth. These models can be applied to wound

healing and cell colony growth to investigate epithelial sheet migration. The model of Mi

et al. [43] uses a material, or Lagrangian, coordinate system in which the reference config-

uration is the initial configuration, while the model of Arciero et al. [3] uses a spatial, or

Eulerian, coordinate system in which the reference configuration is the current configuration.

In Chapter 2, we derive both of these models in one dimension based on principles of me-

chanics with an assumption of stretch-dependent cell proliferation and show the equivalence

between them. The main open question is to what extent different choices of constitutive

functions for the elasticity and cell proliferation rate affect the motion of the cell layer and

whether it is possible to determine such functions by observing that motion.

In Chapter 3, we give evidence for the existence of traveling waves based on numerical
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solutions of the material formulation for a single cell layer in one dimension for various

elasticity and cell proliferation rate functions. An adaptive finite difference numerical method

is developed, and the consistency, stability, and convergence of the method is discussed.

Another numerical method, a transverse method of lines method, is also presented.

We analyze the existence of a similarity solution under scaling in the absence of cell

proliferation and the existence and uniqueness of traveling wave solutions when there is cell

proliferation for a single layer in one dimension in Chapter 4. We find a familiar explicit

formula for a similarity solution under scaling in the spatial formulation for one specific

elasticity function, while more general elasticity functions are examined in the material

formulation. We also show in Chapter 4 that for a broad class of elasticity and nonzero

cell proliferation rate functions, the motion of the layer converges to a traveling wave and

the velocity and shape of that wave is not particularly sensitive to those functions. We also

study the stability of traveling waves using numerical solutions. The traveling wave solutions

are stable if the solution trajectory in phase space does not cross the horizontal axis.

To model the migration of epithelial and mesenchymal cells during gastrulation, we

extend the two-dimensional model of Arciero et al. [3] to incorporate two adhering layers of

cells in Chapter 5. The resulting equations are characterized by the adhesion between the

substrate and the bottom layer, the adhesion between the two layers, the stretching modulus

of each layer, and the net external force of each layer. In Chapter 6, we present a level set

method with a domain decomposition method to numerically solve the model equations and

show results of the simulations.

In Chapter 7, model parameters for the two-dimensional dual layer cell migration model

are estimated using experimental data from time-lapse images of animal cap explants of

Xenopus laevis embryos. Our method of extracting experimental cell layer edge positions

and densities is discussed along with our strategy to find optimal parameters. The parameters

are used to shed light on how the mechanical properties of the layers differ when the layers

are together or separated.
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2.0 1-D SINGLE LAYER CELL MIGRATION MODEL

In this chapter, we derive the material and spatial formulations of a continuum mechanical

model of one-dimensional movement of a single layer of cells in which the cell proliferation

rate depends on stretch. We also show equivalence between the two models.

These models are based on time-lapse images of migrating small intestinal epithelial

(IEC-6) cell layers provided by the Hackam Lab at the University of Pittsburgh. In the

experiment, the cells were cultured on a glass coverslip, grown to confluence, and then

scraped with a pipette or cell scraper to create a gap that represents a wound. The coverslip

was mounted on the stage of an Olympus 1X71 (Tokyo, Japan) inverted microscope warmed

to 37◦C, and fresh medium was continuously perfused across the cells. Every 5 minutes,

differential inference contrast images were obtained. The cell layer is one cell thick and it

was observed that during migration the cells do not separate from the edge and holes were

not formed in the interior.

2.1 DERIVATION OF MATERIAL FORMULATION

A continuum mechanical model for one-dimensional cell migration in material, or Lagrangian,

coordinates was originally derived by Mi et al. [43], and we summarize the derivation here.

The cell layer is represented by a one-dimensional elastic continuum capable of defor-

mation, motion, and material growth. The motion of the cell layer is assumed to be driven

by the cells at the leading edge through the formation of lamellipodia (Sheetz et al. [63]).

Interior cells are tightly connected to the cells at the boundary, and tight junctions prevent

separation between neighboring cells (Anand et al. [2]). The cell layer stretches because of
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Figure 2.1: Schematic representation of a single cell layer as a 1-D continuum: (Top) Initial
state, (Middle) Hypothetical state at time t accounting for proliferation but not deformation,
(Bottom) True configuration of the layer at time t.

the tension applied by the edge cells, and the motion of the cells is slowed down by the

adhesion between cells and the substrate.

The main interactions considered are the force of the lamellipodia, adhesion of the cell

layer to the substrate, and elasticity of the cell layer. Elasticity of the substrate is ignored

since the model describes in vitro scratch wound assay experiments which studied cells on

glass coverslips.

The motion of cells is described using independent variable s which describes the position

of a cell in the original layer and dependent variable x(s, t) which describes the position of

cell s at time t. The additional variable ŝ(s, t) describes the hypothetical position of cell s

at time t if all deformation in the layer was instantaneously removed, thus, ŝ(s, t) describes

purely the local growth of the layer at the position s. See Figure 2.1.

Consider a segment of cells that are the offspring of cells between s and s + ∆s of

the original layer where ∆s is small. At time t, this segment extends between x(s, t) and
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x(s + ∆s, t), and the velocity is ẋ(s, t) = ∂x(s,t)
∂t

while the acceleration is ẍ(s, t) = ∂2x(s,t)
∂t2

.

We will use the notation υ(t) = ẋ(1, t) to denote the velocity of the leading edge at time t

(s = 1 is the right boundary of the original cell layer in dimensionless units). Balance of

momentum implies

M(s, t)ẍ(s, t) +B(s, t)ẋ(s, t) = f(s+ ∆s, t)− f(s, t), (2.1)

where M(s, t) is the time-dependent mass of the segment, B(s, t) is the coefficient describing

the sliding resistance due to adhesion of the cells to the substrate, and f(s, t) is the resultant

force on a cross section of the cell layer.

Deformation of a cell is accompanied by an active remodeling of the cytoskeleton, gen-

erally resulting in a viscoelastic stress-strain response (Fung [22]). The resultant force f

describes the stress-strain relationship of the cell layer. f is a function of the strain (dis-

placement gradient), ε, defined as

ε(s, t) =
∂x(s, t)

∂ŝ
− 1, (2.2)

where ε > 0 corresponds to stretch and −1 < ε < 0 corresponds to compression. Various

constitutive functions can be employed to relate f to the strain; examples (see Figure 2.2A)

include

logarithmic: f = φ(ε) = k ln(ε+ 1), (2.3a)

Hooke’s law: f = φ(ε) = kε, (2.3b)

ideal gas law: f = φ(ε) = k

(
1− 1

ε+ 1

)
, (2.3c)

where k is the residual stretching modulus of the cell layer after cytoskeleton relaxation. The

timescale of the motion of the cell layer, which is on the order of hours, is slow compared

to the relaxation time of single-cell deformation, which is on the order of tens of seconds

(Canetta et al. [8]), so it is assumed that k is time-independent. Thus, the cell layer responds

instantaneously and passively to the forces generated on it. k has units of force, since the

cell layer thickness is assumed to be constant. Of the constitutive functions (2.3), only the

logarithmic relation allows for an infinite magnitude of stress for both ε→ −1 and ε→∞,
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Figure 2.2: (A) Resultant forces f (2.3) that will be analyzed as a function of ε. Here, k = 1.
ε > 0 corresponds to stretching of the cell layer and −1 < ε < 0 corresponds to compression
of the cell layer. (B) Growth functions γ (2.9) that will be analyzed as a function of ε. ε > 0
corresponds to stretching of the cell layer and −1 < ε < 0 corresponds to compression of the
cell layer. γ > 0 corresponds to cell proliferation and γ < 0 corresponds to cell apoptosis.

giving a physiologically appropriate behavior at both large and small densities. We derive

our results for a general function φ but restrict our attention to cases in which φ is monotone

increasing in ε and φ(0) = 0.

Let b be the adhesion constant between the cell layer and the substrate, which has

units of force times time divided by length squared. Assuming that the coefficient B(s, t)

is proportional to the extent of contact of the segment with the substrate (Cetin et al. [9],

Qureshi et al. [55]),

B(s, t) =
(
x(s+ ∆s, t)− x(s, t)

)
b, (2.4)

and assuming acceleration is negligible since the motion is slow, (2.1) becomes

(
x(s+ ∆s, t)− x(s, t)

)
bẋ(s, t) = f(s+ ∆s, t)− f(s, t). (2.5)

Taking the limit as ∆s→ 0 results in the governing equation for the motion of the layer

b
∂x

∂s

∂x

∂t
=
∂f

∂s
. (2.6)
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Material growth and decay of the cell layer can be described using the growth gradient,

g, defined as

g(s, t) =
∂ŝ(s, t)

∂s
, (2.7)

which obeys
∂g

∂t
= γg, (2.8)

where γ is the cell proliferation rate given by a constitutive assumption that may depend

on s, t, g, and/or ε. In this dissertation we analyze the dependence of proliferation on

stress and strain within the layer, and hence we assume that γ is dependent solely on ε,

i.e. γ = γ(ε). We assume that a stretched cell layer is more likely to proliferate than a

compressed layer (Bindschadler and McGrath [5]). Examples of possible growth functions

that will be analyzed in this dissertation (see Figure 2.2B) include

linear: γ(ε) = ε, (2.9a)

Fisher: γ(ε) =
ε

ε+ 1
, (2.9b)

cubic: γ(ε) = −ε(ε2 − 1). (2.9c)

The set of equations (2.6) and (2.8) will be further called the material formulation of the

one-dimensional single layer cell migration model. These two equations are coupled through

the resultant force f .

To see how equations (2.6) and (2.8) are coupled, for example assume that f is the

logarithmic elasticity function (2.3a). From the definitions (2.2) and (2.7),

ε =
∂x

∂ŝ
− 1 =

∂x

∂s

(
∂ŝ

∂s

)−1

− 1 =
∂x

∂s

1

g
− 1, (2.10)

and then f can be written as

f = φ(ε) = k ln(ε+ 1) = k ln

(
∂x

∂s

1

g

)
= k

(
ln

(
∂x

∂s

)
− ln(g)

)
. (2.11)

Substituting (2.11) into (2.6), we obtain

∂x

∂t
=
k

b


∂2x

∂s2(
∂x

∂s

)2 −
∂g

∂s

g
∂x

∂s

 , (2.12)
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and then the material formulation consists of (2.12) and (2.8), which are clearly coupled.

We note that the equations of the slowly varying continuum approximation of the agent-

based model of Fozard et al. [19], neglecting internal cell viscosity, are the same as the

material formulation with no cell proliferation (γ(ε) = 0) and Hooke’s law elasticity function

(2.3b).

In all cases studied in this dissertation, we assume that the cell layer is initially uniform

and free from internal stresses, the location of the left boundary of the cell layer (at s = 0)

is fixed while the right boundary (at s = 1 in dimensionless units) is free to move, and the

force applied at the right boundary is constant and equal to F , a parameter which represents

the net external force that develops as a result of lamellipodia formation. Thus, the initial

and boundary conditions are

x(s, 0) = s, 0 ≤ s ≤ 1, (2.13a)

g(s, 0) = 1, 0 ≤ s ≤ 1, (2.13b)

x(0, t) = 0, 0 ≤ t, (2.13c)

f(1, t) = F, 0 < t. (2.13d)

In summary, the equations, initial and boundary conditions, variables, constitutive func-

tions, and parameters for the material formulation of the one-dimensional single layer cell

migration model are as follows.

Model 1. Material Formulation of 1-D Single Layer Cell Migration

Governing Equations

b
∂x

∂s

∂x

∂t
=
∂f

∂s
, 0 ≤ s ≤ 1, 0 < t

∂g

∂t
= γ(ε)g, 0 ≤ s ≤ 1, 0 < t

Initial Conditions

x(s, 0) = s, 0 ≤ s ≤ 1

g(s, 0) = 1, 0 ≤ s ≤ 1
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Boundary Conditions

x(0, t) = 0, 0 ≤ t

f(1, t) = F, 0 < t

Variables

• t = time

• s = position of a cell in the original cell layer

• ŝ(s, t) = hypothetical position of cell s at time t if all deformation in the layer was

instantaneously removed

• ε(s, t) = ∂x(s,t)
∂ŝ
− 1 = strain (displacement gradient)

• x(s, t) = position of cell s at time t

• g(s, t) = ∂ŝ(s,t)
∂s

= growth gradient

Constitutive Functions

• f = resultant force on a cross section of the cell layer (describes the stress-strain

relationship of the cell layer)

• γ = cell proliferation rate

Parameters

• b = adhesion constant between the cell layer and the substrate

• F = net external force that develops as a result of lamellipodia formation

• k = residual stretching modulus of the layer after cytoskeleton relaxation

2.2 DERIVATION OF SPATIAL FORMULATION

Though the model of Arciero et al. [3] describes two-dimensional cell layer movement in

spatial, or Eulerian, coordinates, we will summarize it here in terms of one-dimensional

movement. The most significant difference between this model and the model described in

the previous section is the coordinate system. In the material formulation, each cell in the

14



layer is considered individually. In the spatial formulation, the density of cells in the layer is

considered as a whole. We will derive the equivalence between the two formulations in the

subsequent section.

The cell layer is represented as a compressible fluid, and the variable ρ(x, t) describes the

cell density as a function of position x and time t. The law of conservation of cell number

(mass),

∂ρ(x, t)

∂t
= − ∂

∂x

(
ρ(x, t)

∂x

∂t

)
+ q(ρ(x, t)), (2.14)

where ∂x
∂t

is the velocity of the cell layer, includes the growth term q(ρ) that describes

the density-dependent net rate of change in the number of cells within the layer due to

proliferation and apoptosis. The relation between q and γ will be shown in the next section.

Balance of linear momentum implies

ρ(x, t)
∂2x

∂t2
+ ρ(x, t)

∂x

∂t

∂2x

∂t2
= B̂(x, t) +

∂T (x, t)

∂x
, (2.15)

where the tensor T (x, t) represents the stresses within the cell layer and B̂(x, t) accounts for

the force of adhesion of the cell layer to the substrate. B̂ is the result of the action exerted

on a material element by the substrate, i.e. the negative of traction force. As in the previous

section, it is assumed that B̂ is negatively proportional to the cell layer velocity,

B̂(x, t) = −b∂x
∂t
. (2.16)

The cell layer is assumed to behave as a compressible inviscid fluid with the constitutive

equation

T = −p(ρ), (2.17)

where p is the pressure within the cell layer. The pressure depends on the cell density and

is taken to be positive when cells are compressed and negative when cells are stretched. It
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is related to the resultant force f , which will be stated in the next section. Defining ρ0 as

the constant density of the initial relaxed (unstressed) cell layer, this corresponds to

p(ρ) > 0, if ρ > ρ0, (2.18a)

p(ρ) < 0, if ρ < ρ0, (2.18b)

p(ρ0) = 0, (2.18c)

p′(ρ) > 0. (2.18d)

Assuming acceleration is negligible and substituting equations (2.16) and (2.17) into

(2.15), we obtain
∂x

∂t
= −1

b
p′(ρ)

∂ρ

∂x
, (2.19)

which is the relation between the velocity of cells and the gradient of cell density; it resembles

Darcy’s law describing the flow of fluid through a porous medium.

Substituting (2.19) into (2.14) results in the governing equation that describes the evo-

lution of cell density,
∂ρ

∂t
=

1

b

∂

∂x

(
ρp′(ρ)

∂ρ

∂x

)
+ q(ρ), (2.20)

which we term the spatial formulation of the one-dimensional single layer cell migration

model.

As we will see in Section 2.3.4, one of the boundary conditions in the spatial formulation

describes the speed of the moving edge, which is called a Stefan condition. The spatial

formulation is thus a generalized free boundary problem, or Stefan problem. The Stefan

problem was first derived for the transfer of heat during solidification or melting processes,

where ρ would represent the temperature and the moving edge would represent the boundary

where phase transitions occur. Classical solutions in small time intervals for smooth domains

was shown by Hanzawa [28] and global existence and uniqueness of weak solutions were shown

by Kamenomostskaja [34], Oleinik [48], and Friedman [21].

In summary, the equations; initial, boundary, and Stefan conditions (which will be de-

rived in Section 2.3.4); variables; constitutive functions; and parameters for the spatial

formulation of the one-dimensional single layer cell migration model are as follows.
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Model 2. Spatial Formulation of 1-D Single Layer Cell Migration

Governing Equation

∂ρ

∂t
=

1

b

∂

∂x

(
ρp′(ρ)

∂ρ

∂x

)
+ q(ρ), 0 ≤ x ≤ X(0), 0 < t

Initial Condition

ρ(x, 0) = ρ0, 0 ≤ x ≤ X(0)

Boundary Conditions

∂ρ(0, t)

∂x
= 0, 0 ≤ t

p(ρ(X(t), t)) = −F, 0 < t

Stefan Condition

X ′(t) = −1

b
p′(ρ(X(t), t))

∂ρ(X(t), t)

∂x
, 0 < t

Variables

• t = time

• x = spatial position of cells

• X(t) = position of the leading edge in spatial coordinates

• ρ(x, t) = cell density

Constitutive Functions

• p = pressure within the cell layer (describes the stress-strain relationship of the

cell layer)

• q = growth term describing the density-dependent net rate of change in the number

of cells within the layer due to proliferation and apoptosis

Parameters

• b = adhesion constant between the cell layer and the substrate
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• F = net external force that develops as a result of lamellipodia formation

• k = residual stretching modulus of the layer after cytoskeleton relaxation

• ρ0 = constant density of the initial relaxed (unstressed) cell layer

2.3 EQUIVALENCE OF MODELS

There is an equivalence between material and spatial coordinates through point-particle

interchangeability (see Figure 2.3). In the material coordinates description, x = x(s, t), and

in the spatial coordinates description, s = s(x, t), and therefore we have x(s(x, t), t) = x and

s(x(s, t), t) = s. We will also use the notation ρ̃(s, t) = ρ(x(s, t), t), where ρ̃ is the density of

cells in material coordinates defined as

ρ̃(s, t) = ρ0

(
∂x(s, t)

∂ŝ

)−1

. (2.21)

Note that (2.21) and (2.2) imply

ε(s, t) =
ρ0

ρ̃(s, t)
− 1. (2.22)

In this section, we will show that the material formulation of the one-dimensional single

layer model (Model 1) is equivalent to the spatial formulation (Model 2).

2.3.1 Governing Equations and Elasticity Functions

Evaluating the equation relating the velocity of cells and the gradient of cell density in the

spatial formulation, equation (2.19), at x = x(s, t), we obtain

∂x

∂t
= −1

b
p′(ρ̃)

∂ρ̃

∂x
= −1

b

∂

∂x

(
p(ρ̃)

)
= −1

b

∂s

∂x

∂

∂s

(
p(ρ̃)

)
= −1

b

∂p(ρ̃)/∂s

∂x/∂s
. (2.23)

This is the same equation as the material formulation governing equation (2.6) since, by

definition,

f(s, t) = −p(ρ̃(s, t)), (2.24)
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Figure 2.3: Material vs. spatial coordinates: The red and pink bars illustrate the material
(Lagrangian) description of motion, where the current density ρ̃(s, t) depends on initial point
s and time t. The blue and light blue bars illustrate the spatial (Eulerian) description of
motion, where the initial density ρ(x, t) depends on current point x and time t.

implying that we have equivalence between the governing equations of the two models.

From (2.24), we obtain conversion formulas for the elasticity functions

φ(ε) = −p
(

ρ0

ε+ 1

)
, (2.25a)

p(ρ) = −φ
(
ρ0

ρ
− 1

)
. (2.25b)

Note that the case when φ is monotone increasing on ε ∈ (−1,∞) implies that p is monotone

increasing on ρ ∈ (0,∞).

The equivalent spatial coordinates logarithmic (2.3a), Hooke’s law (2.3b), and ideal gas

law (2.3c) cell layer stress-strain relationships are, respectively,

p(ρ) = k ln

(
ρ

ρ0

)
, (2.26a)

p(ρ) = k

(
1− ρ0

ρ

)
, (2.26b)

p(ρ) = k

(
ρ

ρ0

− 1

)
. (2.26c)
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2.3.2 Cell Proliferation Functions

To derive the relation between the growth functions γ and q, we note that the material

derivative
∂ρ(x(s, t), t)

∂t
=
∂ρ(x, t)

∂x

∣∣∣∣
x=x(s,t)

∂x(s, t)

∂t
+
∂ρ(x, t)

∂t

∣∣∣∣
x=x(s,t)

, (2.27)

is equivalent, by notation, to

∂ρ̃(s, t)

∂t
= ρ0

(
∂x(s, t)

∂s

)−1
∂2ŝ(s, t)

∂s∂t
− ρ0

∂ŝ(s, t)

∂s

(
∂x(s, t)

∂s

)−2
∂2x(s, t)

∂s∂t
. (2.28)

Equating the right hand sides of the last two equations (2.27) and (2.28),

∂ρ(x, t)

∂t

∣∣∣∣
x=x(s,t)

= ρ0

(
∂x(s, t)

∂s

)−1
∂2ŝ(s, t)

∂s∂t
− ρ0

∂ŝ(s, t)

∂s

(
∂x(s, t)

∂s

)−2
∂2x(s, t)

∂s∂t

− ∂ρ(x, t)

∂x

∣∣∣∣
x=x(s,t)

∂x(s, t)

∂t
, (2.29)

which is the left hand side of the conservation of mass equation (2.14) evaluated at x = x(s, t).

The right hand side of (2.14) evaluated at x = x(s, t) is

− ρ(x, t)|x=x(s,t)

(
∂x(s, t)

∂s

)−1
∂

∂s

(
∂x(s, t)

∂t

)
− ∂x(s, t)

∂t

∂ρ(x, t)

∂x

∣∣∣∣
x=x(s,t)

+ q(ρ(x, t))|x=x(s,t) , (2.30)

which is equal to

−ρ0

(
∂x(s, t)

∂s

)−2
∂ŝ(s, t)

∂s

∂2x(s, t)

∂s∂t
− ∂x(s, t)

∂t

∂ρ(x, t)

∂x

∣∣∣∣
x=x(s,t)

+ q(ρ(x, t))|x=x(s,t) . (2.31)

Thus, equating (2.29) and (2.31) and evaluating at x = x(s(x, t), t), we conclude that

q(ρ̃(s, t)) = ρ0

(
∂x(s, t)

∂s

)−1
∂2ŝ(s, t)

∂s∂t
. (2.32)

Since g(s, t) = ∂ŝ(s,t)
∂s

by definition (recall (2.7)), then ∂g(s,t)
∂t

= ∂2ŝ(s,t)
∂s∂t

, and in view of the

growth gradient equation (2.8), we have

∂2ŝ(s, t)

∂s∂t
= γ(ε(s, t))g(s, t). (2.33)
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Substituting (2.33) into (2.32) and recalling the strain equation (2.22), we thus obtain con-

version formulas for the growth functions

γ(ε) =
ε+ 1

ρ0

q

(
ρ0

ε+ 1

)
, (2.34a)

q(ρ) = ργ

(
ρ0

ρ
− 1

)
. (2.34b)

The spatial coordinates equivalents to the material coordinates linear (2.9a), Fisher

(2.9b), and cubic (2.9c) growth functions are, respectively,

q(ρ) = ρ0 − ρ, (2.35a)

q(ρ) = ρ

(
1− ρ

ρ0

)
, (2.35b)

q(ρ) = −ρ0

ρ2
(ρ0 − ρ) (ρ0 − 2ρ) . (2.35c)

2.3.3 Growth Gradient

The spatial coordinates model of Arciero et al. [3] does not include an expression for the

growth gradient. Let us introduce the notation

g(s, t) = ĝ(x(s, t), t), (2.36)

where ĝ is the growth gradient in spatial coordinates. Taking the partial derivative of both

sides of (2.36) with respect to t, from the growth gradient equation (2.8) and the material

derivative we obtain

γ(ε(s, t))g(s, t) =
∂ĝ(x, t)

∂x

∣∣∣∣
x=x(s,t)

∂x(s, t)

∂t
+
∂ĝ(x, t)

∂t

∣∣∣∣
x=x(s,t)

. (2.37)

From the conversion formulas (2.34), we derive

γ(ε(s, t)) =
1

ρ̃(s, t)
q(ρ̃(s, t)). (2.38)

From the material formulation governing equation (2.6) and by definitions,

∂x

∂t
=

1

b

(
∂x

∂s

)−1
∂f

∂s
= −1

b

(
∂x

∂ŝ

∂ŝ

∂s

)−1
∂

∂s
(p(ρ̃)) = −1

b

(
∂x

∂ŝ

∂ŝ

∂s

)−1
dp(ρ̃)

dρ̃

∂ρ̃

∂x

∂x

∂ŝ

∂ŝ

∂s

= −1

b

dp(ρ̃)

dρ̃

∂ρ̃

∂x
. (2.39)
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Substituting (2.38) and (2.39) into (2.37) and evaluating at s = s(x, t), we obtain the

following partial differential equation for ĝ,

∂ĝ

∂t
− 1

b
p′(ρ)

∂ĝ

∂x
− q(ρ)

ρ
ĝ = 0. (2.40)

2.3.4 Initial and Boundary Conditions

To derive the equivalent initial and boundary conditions for the spatial formulation compared

to the conditions for the material formulation (2.13), define X(t) as the position of the leading

edge in spatial coordinates. Assuming the cell layer is initially uniform and free from internal

stresses, initial condition (2.13a), via (2.21), is equivalent to

ρ(x, 0) = ρ0, 0 ≤ x ≤ X(0). (2.41)

Note that this assumption is contrary to Arciero et al. [3]. Assuming the left boundary of the

cell layer is fixed, boundary condition (2.13c) is equivalent to a no flux Neumann condition

∂ρ(0, t)

∂x
= 0, 0 ≤ t. (2.42)

Assuming the force applied at the right boundary is equal to F , boundary condition (2.13d),

via (2.24), is equivalent to

p(ρ(X(t), t)) = −F, 0 < t. (2.43)

Lastly, the speed of the leading edge X(t) satisfies (2.19), so we have the Stefan boundary

condition

X ′(t) = −1

b
p′(ρ(X(t), t))

∂ρ(X(t), t)

∂x
, 0 < t. (2.44)
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3.0 NUMERICAL SOLUTIONS OF 1-D SINGLE LAYER MODEL

The material formulation of the one-dimensional single layer model (Model 1) describes the

current configuration of cells with respect to the variable s that is defined on a fixed domain,

so it is straightforward to step through time to solve the model equations at each time step.

The spatial formulation (Model 2) includes a free boundary making it significantly more

difficult to solve numerically. Thus, for numerical solutions of the one-dimensional single

layer model we will utilize the material formulation, but as we will see in Chapter 4, there

are advantages of using the spatial formulation instead for some analytic solutions.

A numerical solution of the material formulation model equations for a given cell prolif-

eration function γ, elasticity function f , and parameters k, b, and F can be found using an

adaptive finite difference method based on the method of Mi et al. [43]. Using a nonadaptive

mesh results in exponential growth at the leading edge, an unrealistic result. By adaptively

refining the mesh at positions of largest growth, we inhibit numerical errors. Please see

Section 3.1 for details of the solution method and Section 3.1.1 for details on the consis-

tency, stability, and convergence of the method. Parameter values used were chosen based

on estimates from Mi et al. [43].

Figures 3.1–3.4 show the evolution of the cell layer for zero, linear (2.9a), Fisher (2.9b),

and cubic (2.9c) cell proliferation functions and logarithmic (2.3a), Hooke’s law (2.3b), and

ideal gas law (2.3c) elasticity functions.

In Figure 3.1, we observe that the velocity of the leading edge converges to 0 and the cells

move a finite distance to the right for the logarithmic and Hooke’s law elasticity functions,

as well as the ideal gas law elasticity function although the convergence is much slower in

this case. This is a limiting case of the time-dependent solution and there is a maximum
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ŝ

g

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

x

t

 B
0.25 0.5 0.75 1

0 2 4 6 8 10
0

1

2

3

4

5

6

t

υ

1 0.8 0.6 0.4 0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ŝ
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Figure 3.1: Numerical solution of the 1-D single layer model: no growth γ(ε) = 0, k =
2.947, b = 1, and F = 2.5. Here, as in Figures 3.2–3.4 below, the first column shows the
position x of cells with s = 0.25, 0.5, 0.75, 1, as time (in hours) increases. Each curve is
labeled by its initial position between [0, 1] on the x-axis and represents the path of one cell
from where it begins initially to how far right it moves as time increases along the t-axis. The
second column shows the velocity of the leading edge υ as a function of time (in hours). The
third column shows the strain ε as a function of position ŝ. Each curve is labeled by the time
(in hours) and represents the solution translated to the left so that the largest value of ŝ for
each time shown is 0. The last column shows the growth gradient g as a function of position
ŝ. Each curve is labeled by the time (in hours) and represents the solution translated to the
left so that the largest value of ŝ for each time shown is 0. (A) Logarithmic elasticity function
(2.3a), (B) Hooke’s law elasticity function (2.3b), (C) ideal gas law elasticity function (2.3c).
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ŝ

ε
2

4

6
8

1
0

4
3

2
1

0
05101520253035

ŝ
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ŝ

ε
2

4

6
8

1
0

3.
5

3
2.
5

2
1.
5

1
0.
5

0
02468101214161820

ŝ
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ŝ

ε

2

4
6

8
1
0

4
3

2
1

0
01020304050607080

ŝ
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ŝ

ε

2

4

6
8

1
0

12
10

8
6

4
2

0
05010
0

15
0

20
0

25
0

30
0

35
0

ŝ
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distance the right edge of the cell layer can reach, which is

φ−1(F ) + 1, (3.1)

where −1 denotes the inverse. This phenomenon of large wounds being unable to close was

described by Mi et al. [43] and verified experimentally. The initial evolution of the finite size

layer and the evolution of a layer that is semi-infinite (extending to infinity on the left side)

is governed by a similarity solution. We analyze the existence of similarity under scaling

solutions in Section 4.1 in the absence of cell proliferation.

In Figures 3.2–3.4, we observe that the velocity of the leading edge converges to a positive

constant and the curves in the plots of ε versus ŝ converge to a similar shape. This behavior

occurs for the logarithmic, Hooke’s law, and ideal gas law elasticity functions. It is indicative

of a traveling wave, a wave that travels at constant velocity without change of shape. In

Section 4.2, we analyze the existence of traveling wave solutions using phase plane and

bifurcation analysis.

We point out that, for the zero, linear, Fisher, and cubic growth functions, the range of

the numerically realized ε is the largest for the ideal gas law elasticity function and smallest

for the Hooke’s law elasticity function. The nonzero growth functions behave similarly within

the numerically realized ε ranges for the logarithmic and Hooke’s law elasticity functions (see

Figure 2.2B).

3.1 ADAPTIVE FINITE DIFFERENCE METHOD

A numerical solution of the material formulation (Model 1) can be found using an adaptive

finite difference method based on the method of Mi et al. [43] for a given cell proliferation

function γ, elasticity function f , and parameters k, b, and F .

Let ∆t > 0 be a given step size and ti = (i− 1)∆t, i = 1, 2, 3, . . .. Let

0 = s1 < s2 < · · · < sj < sj+1 < · · · < sN1 = 1

28



be the initial uniform or nonuniform mesh of [0, 1], where Ni denotes the number of space

steps in the mesh at a given time step ti. Let xji denote the numerical approximation of the

cell position x(sj, ti), and let gji denote the numerical approximation of the growth gradient

g(sj, ti).

A nonadaptive finite difference method results in erroneous exponential growth at the

cell layer gap edge due to the moving boundary and expanding mesh (see Section 3.1.1).

Let TOL denote a maximum allowed distance between any two cells. At time step ti, if any

two cells at positions xji and xj+1
i for some j are further apart than TOL, we add a new

mesh point halfway between sj and sj+1 and linearly interpolate the position x and growth

gradient g at the new mesh point. The new mesh is used for time step ti+1.

Various resultant forces f can be assumed, but for a concrete example assume

f = φ(ε) = k ln(ε + 1), and define parameters κ = k
b

and ϕ = F
k

. Recall from (2.2)

and (2.7) that ε = ∂x
∂ŝ
− 1 = ∂x

∂s
1
g
− 1.

The initial conditions imply, for 1 ≤ j ≤ Ni,

xj1 = sj, gj1 = 1, εj1 = 0. (3.2)

Equation (2.8) is solved first using explicit difference with a mixed discretization for the right

hand side, for 1 ≤ j ≤ Ni,

gji+1 =
gji

1−∆tγ(εji )
. (3.3)

Centered difference is used for ε in the interior and explicit difference for the boundaries,

and because the right boundary is constant, for i ≥ 2 and 2 ≤ j ≤ Ni − 1,

εji =

(
xj+1
i + (α2 − 1)xji − α2xj−1

i

(α + 1)(sj+1 − sj)

)
1

gji
− 1, α =

sj+1 − sj
sj − sj−1

, (3.4a)

ε1i =

(
x2
i − x1

i

s2 − s1

)
1

g1
i

− 1, (3.4b)

εNi
i = eϕ − 1. (3.4c)
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Equation (2.6) is solved next, and assuming f is of the form stated above, it becomes (see

(2.12))

∂x

∂t
= κ


∂2x

∂s2(
∂x

∂s

)2 −
∂g

∂s

g
∂x

∂s

 . (3.5)

Using implicit difference in the numerator and explicit difference in the denominator to

discretize the governing equation, we obtain a method that is first-order accurate in time

and second-order accurate in space (see Section 3.1.1.1). For i ≥ 2 and 2 ≤ j ≤ Ni − 1,

xji+1 − xji = κ∆t


2(sj+1 − sj−1)xj+1

i+1

sj+1 − sj
− 2(sj+1 − sj−1)2xji+1

(sj+1 − sj)(sj − sj−1)
+

2(sj+1 − sj−1)xj−1
i+1

sj − sj−1

(xj+1
i − xj−1

i )2

− gj+1
i+1 − gj−1

i+1

gji (x
j+1
i − xj−1

i )

 , (3.6)

which, after rearranging, becomes

ηjM
j
i x

j+1
i+1 − (σjM

j
i + 1)xji+1 + µjM

j
i x

j−1
i+1 = −xji + uji , (3.7)

where we have defined

M j
i = κ∆t

(
2

(xj+1
i − xj−1

i )2

)
, (3.8a)

uji = κ∆t

(
gj+1
i+1 − gj−1

i+1

gji (x
j+1
i − xj−1

i )

)
, (3.8b)

ηj =
sj+1 − sj−1

sj+1 − sj
, (3.8c)

σj =
(sj+1 − sj−1)2

(sj+1 − sj)(sj − sj−1)
, (3.8d)

µj =
sj+1 − sj−1

sj − sj−1

. (3.8e)
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The boundary conditions imply, for i ≥ 2,

x1
i = 0, (3.9a)

xNi
i = xNi−1

i + (sNi
− sNi−1)gNi

i e
ϕ, (3.9b)

and the solution xji+1 at the time step ti+1 can be found by solving the linear system

A



x2
i+1

x3
i+1

...

xNi−2
i+1

xNi−1
i+1


=



−x2
i + u2

i

−x3
i + u3

i

...

−xNi−2
i + uNi−2

i

−xNi−1
i + uNi−1

i − ηNi−1(sNi
− sNi−1)MNi−1

i gNi
i+1e

ϕ


, (3.10)

where A is the tridiagonal matrix



−(σ2M
2
i +1) η2M

2
i 0 · · · 0

µ3M
3
i −(σ3M

3
i +1) η3M

3
i · · · 0

...
. . .

. . .
. . .

...

0 · · · µNi−2M
Ni−2
i −(σNi−2M

Ni−2
i +1) ηNi−2M

Ni−2
i

0 · · · 0 µNi−1M
Ni−1
i

−(σNi−1M
Ni−1
i +1)

+ηNi−1M
Ni−1
i


. (3.11)
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3.1.1 Analysis of the Numerical Method

Investigating the consistency, stability, and convergence of the adaptive finite difference

method will give insights on how close the numerical solution is to the exact solution. We

will analyze the method on a nonadaptive uniform mesh, and switch to an adaptive mesh as

necessary. We assume, for a concrete example, that f = φ(ε) = k ln(ε+ 1).

Letting ∆s denote the spatial step size, the discretization of x on a uniform mesh is

xji+1 − xji = κ∆t

(
4
(
xj+1
i+1 − 2xji+1 + xj−1

i+1

)(
xj+1
i − xj−1

i

)2 − gj+1
i+1 − gj−1

i+1

gji
(
xj+1
i − xj−1

i

)) , (3.12)

the discretization of ε on a uniform mesh is

εji =

(
xj+1
i − xj−1

i

2∆s

)
1

gji
− 1, (3.13)

and the discretization of g on a uniform mesh is the same as in (3.3). Note that the nonuni-

form discretizations of the previous section do reduce to these discretizations on a uniform

mesh.

3.1.1.1 Consistency A way of examining how closely the discretization approximates

the exact differential operator is to look at the local truncation error, which is the residual

of the difference operator when it is applied to the exact solution. If a numerical method is

consistent, then the discretization should become exact as the mesh size, and thus the local

truncation error, tends to zero. For our finite difference method, the local truncation error

is

dji =
x(sj, ti+1)− x(sj, ti)

∆t
− κ
(

4
x(sj+1, ti+1)− 2x(sj, ti+1) + x(sj−1, ti+1)(

x(sj+1, ti)− x(sj−1, ti)
)2

− g(sj+1, ti+1)− g(sj−1, ti+1)

g(sj, ti)
(
x(sj+1, ti)− x(sj−1, ti)

)). (3.14)

Taylor expanding the local truncation error (3.14) about the point (sj, ti), the first frac-

tion is
x(sj, ti+1)− x(sj, ti)

∆t
=
∂x

∂t
+

∆t

2

∂2x

∂t2
+ h.o.t., (3.15)
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where all unspecified evaluations are at the point (sj, ti) and “h.o.t.” stands for “higher order

terms.” Taylor expanding the numerator of the second fraction in (3.14) we obtain

x(sj+1, ti+1)− 2x(sj, ti+1) + x(sj−1, ti+1) =

(∆s)2∂
2x

∂s2
+ ∆t(∆s)2 ∂3x

∂t∂s2
+

(∆t)2(∆s)2

2

∂4x

∂t2∂s2
+

(∆s)4

12

∂4x

∂s4
+ h.o.t., (3.16)

and the denominator is

x(sj+1, ti)− x(sj−1, ti) = 2∆s
∂x

∂t
+ h.o.t., (3.17)

and thus the second fraction becomes

4
x(sj+1, ti+1)− 2x(sj, ti+1) + x(sj−1, ti+1)(

x(sj+1, ti)− x(sj−1, ti)
)2 =

1(
∂x
∂t

)2

(
∂2x

∂s2
+ ∆t

∂3x

∂t∂s2
+

(∆t)2

2

∂4x

∂t2∂s2
+

(∆s)2

12

∂4x

∂s4

)
+ h.o.t. (3.18)

Taylor expanding the numerator of the third fraction in (3.14) we obtain

g(sj+1, ti+1)− g(sj−1, ti+1) =

2∆s
∂g

∂s
+ 2∆t∆s

∂2g

∂t∂s
+ (∆t)2∆s

∂3g

∂t2∂s
+

(∆s)3

3

∂3g

∂s3
+ h.o.t., (3.19)

and using the expansion (3.17) for the denominator, the third fraction becomes

g(sj+1, ti+1)− g(sj−1, ti+1)

g(sj, ti)
(
x(sj+1, ti)− x(sj−1, ti)

) =

1

g ∂x
∂t

(
∂g

∂s
+ ∆t

∂2g

∂t∂s
+

(∆t)2

2

∂3g

∂t2∂s
+

(∆s)2

6

∂3g

∂s3

)
+ h.o.t. (3.20)
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Substituting the fractions (3.15), (3.18), and (3.20) into the local truncation error (3.14),

we obtain

dji =
∂x

∂t
− κ

(
∂2x/∂s2

(∂x/∂s)2 −
∂g/∂s

g (∂x/∂t)

)
︸ ︷︷ ︸

= 0 by (3.5)

+
∆t

2

∂2x

∂t2

− κ
[

1(
∂x
∂t

)2

(
∆t

∂3x

∂t∂s2
+

(∆t)2

2

∂4x

∂t2∂s2
+

(∆s)2

12

∂4x

∂s4

)

− 1

g ∂x
∂t

(
∆t

∂2g

∂t∂s
+

(∆t)2

2

∂3g

∂t2∂s
+

(∆s)2

6

∂3g

∂s3

)]
+ h.o.t.

= O(∆t) +O(∆s2). (3.21)

This implies that the finite difference method is first-order accurate in time and second-

order accurate in space. Hence, the method is consistent because the local truncation error

dji → 0 as ∆t→ 0 and ∆s→ 0.

3.1.1.2 Stability A numerical method is stable if small perturbations in the data cor-

respond to small perturbations in the solution, so that numerical errors do not increase

unboundedly over time. Most techniques for showing stability are only applicable to linear

numerical methods, but we will apply the Fourier Series Method to our nonlinear numerical

method to see approximately what behavior we should expect of the numerical solutions.

We briefly discuss the Fourier Series Method before applying it; please see, for example, Hall

and Porsching [27] for more details.

Any x ∈ L2(0, 2π) has a unique Fourier series representation in terms of complex expo-

nentials, i.e.,

x(s) =
∞∑

m=−∞

x̂(m)eims, (3.22)

where

x̂(m) =
1

2π

∫ 2π

0

e−imsx(s)ds, m = 0,±1, . . . , (3.23)

is its mth Fourier coefficient. Then for x(·, t) ∈ L2(0, 2π), we can write

x(s, t) =
∞∑

m=−∞

x̂(m, t)eims. (3.24)
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Let J be a finite nonnegative integer and let aj, j = 0,±1, . . . ,±J , be 2J + 1 complex

constants. Regarding ∆s as a function of ∆t, the amplification factors are defined as

G(m,∆t) =
J∑

j=−J

aje
imj∆s, m = 0,±1, . . . , (3.25)

and thus

x̂(m, t+ ∆t) = G(m,∆t)x̂(m, t). (3.26)

Characterization of the stability of a numerical method in terms of amplification factors

arises from the following theorem.

Theorem 3.1 (von Neumann condition). A difference method is stable if and only if as

∆t→ 0, |G(m,∆t)| ≤ 1 +O(∆t), m = 0,±1, . . . .

We will now apply the Fourier Series Method to our nonlinear finite difference method.

First consider our numerical method when there is no growth (γ(ε) = 0), therefore, g is

constant so the numerical method is only (3.12) where the second fraction on the right hand

side is 0. Let r = ∆t
(∆s)2

. Using the notation j+l
i+n = (s + l∆s, t + n∆t) for l, n = −1, 0, 1, and

fixing the denominator A :=
(
xj+1
i −xj−1

i

∆s

)2

, (3.12) becomes

x(s, t+ ∆t)− x(s, t) =

4κr

A

(
x(s+ ∆s, t+ ∆t)− 2x(s, t+ ∆t) + x(s−∆s, t+ ∆t)

)
. (3.27)

Substituting x(s, t) = eims and x(s, t+ ∆t) = G(m,∆t)eims into the equation above so that

we may solve for G(m,∆t), we obtain

G(m,∆t)eims − eims =
4κr

A
G(m,∆t)

(
eim(s+∆s) − 2eims + eim(s−∆s)

)
=⇒ G(m,∆t)− 1 =

8κr

A
G(m,∆t)

(
cos(m∆s)− 1

)
=⇒ G(m,∆t) =

1

1− 8κr
A

(
cos(m∆s)− 1

) . (3.28)
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Noting that κ, r, A > 0, for any m and ∆s we have | cos(m∆s)| ≤ 1, and thus

0 ≤ −8κr

A

(
cos(m∆s)− 1

)
≤ 16κr

A

=⇒ 1 ≤ 1− 8κr

A

(
cos(m∆s)− 1

)
≤ 1 +

16κr

A

=⇒ 1 ≥ 1

1− 8κr
A

(
cos(m∆s)− 1

) ≥ 1

1 + 16κr
A

> 0. (3.29)

This implies that

|G(m,∆t)| ≤ 1, (3.30)

for any r, which means that we should expect the numerical method to be unconditionally

stable by the von Neumann condition (recalling that our method is nonlinear and the con-

dition only applies to linear methods). Figure 3.5A indicates that the numerical solutions

have no instabilities for ∆t = 0.0125 and ∆s = 0.0125, 0.00125.

However, once we add any amount of cell proliferation, we no longer have unconditional

stability. Assume for the sake of simplicity that γ(ε) = c, where c ∈ R is a constant. Again,

let r = ∆t
(∆s)2

, and fix the denominators A :=
(
xj+1
i −xj−1

i

∆s

)2

and B :=
gji (xj+1

i −xj−1
i )

(∆s)2
. Using the

notation j+l
i+n = (s+ l∆s, t+ n∆t) for l, n = −1, 0, 1, (3.12) becomes

x(s, t+ ∆t)− x(s, t) =

4κr

A

(
x(s+ ∆s, t+ ∆t)− 2x(s, t+ ∆t) + x(s−∆s, t+ ∆t)

)
− κr

B

(
g(s+ ∆s, t+ ∆t)− g(s−∆s, t+ ∆t)

)
, (3.31)

and (3.3) becomes

g(s, t+ ∆t) =
1

1− c∆tg(s, t). (3.32)

Substituting x(s, t) = eims, x(s, t + ∆t) = G1(m,∆t)eims, g(s, t) = eims, and

g(s, t + ∆t) = G2(m,∆t)eims into the equations above so that we may solve for G1(m,∆t)

and G2(m,∆t), we obtain

G1(m,∆t) =
1− 2iκr

B
sin(m∆s)G2(m,∆t)

1− 8κr
A

(
cos(m∆s)− 1

) , (3.33a)

G2(m,∆t) =
1

1− c∆t . (3.33b)
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Figure 3.5: Stability of numerical method for the 1-D model: The position x of the leading
edge of cells (s = 1) with ∆t = 0.0125 for all plots. The green dotted line is the numerical
solution for a uniform mesh with ∆s = 0.0125, the red dashed line is the numerical solution
for a uniform mesh with ∆s = 0.00125, and the blue solid line is the numerical solution
for an initially uniform mesh with ∆s = 0.00125 and adaptive mesh refinement with the
tolerance TOL = 1.5∆s. In the first column, k = 0.32, b = 1, F = 0.025, in the second
column, k = 0.838, b = 1, F = 0.25, and in the third column, k = 2.947, b = 1, F = 2.5.
(A) No growth γ(ε) = 0, (B) constant growth γ(ε) = 1, (C) linear growth (2.9a), and (D)
Fisher growth (2.9b).
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We see that as long as |c|∆t < 1, approximating by a geometric power series,

|G2(m,∆t)| = 1 + c∆t+ h.o.t. ≤ 1 +O(∆t). (3.34)

For G1 we have

|G1(m,∆t)|2 =
1 + 4κ2r2

B2

sin2(m∆s)
(1−c∆t)2(

1− 8κr
A

(
cos(m∆s)− 1

))2 , (3.35)

and this will be less than or equal to 1 if

r ≥
4
A

(
cos(m∆s)− 1

)
16κ
A2

(
cos(m∆s)− 1

)2 − κ
B2

sin2(m∆s)
(1−c∆t)2

. (3.36)

Since the numerator is nonpositive and the denominator can approach zero from the negative

side, the lower bound on r could become infinitely large and positive, depending on A

and B, parameter κ = k
b
, and growth function γ. This means that we should expect the

numerical method to be conditionally stable by the von Neumann condition. However, since

A and B are not fixed constants, a uniform mesh may not suffice because the inequality

may cease to be satisfied after integrating long enough. Figure 3.5B–D indicates that for

various growth functions γ, if the numerical solution is allowed to integrate for a sufficient

amount of time, for any uniform spatial mesh, the leading edge of cells will appear to have

exponentially increasing velocity. With adaptive mesh refinement as described in Section 3.1,

the erroneous exponential movement is eliminated. Hence, adaptive mesh refinement is

necessary for stability for the numerical method with nonzero proliferation.

3.1.1.3 Convergence A numerical method is convergent if the numerical solution tends

to the exact solution and converges to it as the mesh size goes to zero, and can be shown

with the following equivalence theorem.

Theorem 3.2 (Lax equivalence). If a method is consistent, then it is convergent if and only

if it is stable.
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Similar to the Fourier Series Method in the previous section for stability, the Lax equiv-

alence theorem only applies to linear numerical methods. However, even though our method

is nonlinear, from the previous two sections we should expect our method without adaptive

mesh refinement to be convergent when there is no proliferation since it is consistent and

expected to be unconditionally stable. For nonzero proliferation, with adaptive mesh refine-

ment we should expect our method to be convergent since it is consistent and expected to

be conditionally stable.

3.2 TRANSVERSE METHOD OF LINES METHOD

We developed an alternative numerical method, a transverse method of lines (TMOL)

method, for solving the material formulation (Model 1) with the intent of focusing on the

weaknesses of the nonadaptive finite difference method discussed in the previous section.

The TMOL method is a variant of the method of lines in that the semidiscretization is in

time first, not space, and the resulting ordinary differential equation is solved in space. The

TMOL method is a backward scheme, and since the nonadaptive finite difference method is

not truly backward, it is likely that the issues with the step size in time would be avoided.

Using the TMOL method results in needing to solve a boundary value problem.

As in the previous section, assume f = φ(ε) = k ln(ε + 1), and define parameters κ = k
b

and ϕ = F
k

. Let ∆t > 0 be a given step size and ti = (i − 1)∆t, i = 1, 2, 3, . . .. We first

discretize the time derivatives in (2.6) and (2.8) by the forward difference approximations

∂x(s, ti)

∂t
=
x(s, ti+1)− x(s, ti)

∆t
, (3.37a)

∂g(s, ti)

∂t
=
g(s, ti+1)− g(s, ti)

∆t
. (3.37b)

Substituting these approximations into the left hand sides of the governing equations (2.6)
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and (2.8), and evaluating the right hand sides at the future time step ti+1, we have

x(s, ti+1)− x(s, ti)

∆t
= κ


∂2x(s, ti+1)

∂s2(
∂x(s, ti+1)

∂s

)2 −
∂g(s, ti+1)

∂s

g(s, ti+1)

(
∂x(s, ti+1)

∂s

)
 , (3.38a)

g(s, ti+1)− g(s, ti)

∆t
= γ

(
∂x(s, ti+1)

∂s

1

g(s, ti+1)
− 1

)
g(s, ti+1). (3.38b)

We rewrite x and g as functions of s only, and relabel their time dependence. At time

step ti+1, we use the notation x(s, ti+1) = xn+1(s) and g(s, ti+1) = gn+1(s), and at time step

ti, we use the notation x(s, ti) = xn(s) and g(s, ti) = gn(s). Thus, (3.38) becomes

xn+1(s)− xn(s)

∆t
= κ

(
x′′n+1(s)(
x′n+1(s)

)2 −
g′n+1(s)

gn+1(s)x′n+1(s)

)
, (3.39a)

gn+1(s)− gn(s)

∆t
= γ

(
x′n+1(s)

gn+1(s)
− 1

)
gn+1(s), (3.39b)

and rearranging terms we obtain

x′′n+1(s)− 1

κ∆t

(
x′n+1(s)

)2
(xn+1(s)− xn(s))− g′n+1(s)x′n+1(s)

gn+1(s)
= 0, (3.40a)

gn+1(s)

(
1−∆tγ

(
x′n+1(s)

gn+1(s)
− 1

))
− gn(s) = 0. (3.40b)

We now rewrite x and g again. At time step n, we rewrite x and g as functions that

depend on the previous time step using the notation xn(s) = v(t) and gn(s) = z(t). At time

step n+1, we rewrite x and g as functions that depend on s using the notation xn+1(s) = y(s)

and gn+1(s) = h(s). Then (3.40) becomes

y′′(s)− 1

κ∆t
(y′(s))

2
(y(s)− v(t))− h′(s)y′(s)

h(s)
= 0, (3.41a)

h(s)

(
1−∆tγ

(
y′(s)

h(s)
− 1

))
− z(t) = 0, (3.41b)

which is a differential algebraic equation.

Writing the second-order differential equation (3.41a) as a system of first-order differential

equations with the initial conditions (2.13a) and (2.13b), left boundary condition (2.13c),
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right boundary condition (2.13d), and setting y3 := h to simplify notation, the full differential

algebraic equation system is

y′1 = y2, 0 ≤ s ≤ 1, (3.42a)

y′2 =
1

κ∆t
y2

2(y1 − v) +
y′3
y3

y2, 0 ≤ s ≤ 1, (3.42b)

0 = y3

(
1−∆tγ

(
y2

y3

− 1

))
− z, 0 ≤ s ≤ 1, (3.42c)

v(0) = s, z(0) = 1, 0 ≤ s ≤ 1, (3.42d)

y1(0) = 0, y2(1) = eϕy3(1), 0 < t. (3.42e)

At each time step we numerically solve this system of ordinary differential equations

in s in MATLAB using ode15s, a function that can be used to solve differential algebraic

equations. We rewrite system (3.42) with a singular mass matrix as follows


1 0 0

0 1 −y2

y3

0 0 0



y′1

y′2

y′3

 =


y2

1

κ∆t
y2

2(y1 − v)

y3

(
1−∆tγ

(
y2

y3

− 1

))
− z

 . (3.43)

Recall that v(ti) = y1(s, ti−1) and z(ti) = y3(s, ti−1).

A shooting method is implemented to incorporate both boundary conditions. We trans-

form the boundary value problem into an initial value problem by changing boundary con-

ditions (3.42e) to

y1(0) = 0, y2(0) = α, (3.44)

where α ∈ R is a value we seek such that the boundary conditions (3.42e) are satisfied within

a certain tolerance. To find such an α, at each time step we solve the system of equations

for various α and use the secant method to determine if the corresponding solution gives

that y2(1) − eϕy3(1) is sufficiently close to zero. If the secant method fails after a certain

fixed number of iterations, we then use the bisection method which is generally slower but

guaranteed to converge to a root.

Unfortunately, the system becomes stiff as ∆t→ 0. At each time step, ode15s solves the

system of equations multiple times depending on how many α’s are tested during shooting.
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Figure 3.6: Comparison of the transverse method of lines and nonadaptive finite difference
methods. Numerical solution of the 1-D one layer model with ∆t = 0.1. The dotted blue
curves are the solutions obtained using the transverse method of lines method, and the solid
red curves are the solutions obtained using the adaptive finite difference method. Each curve
is labeled by its initial position between [0, 1] on the x-axis and represents the path of one cell
from where it begins initially to how far right it moves as time increases along the t-axis.
(A) γ(ε) = 0, κ = k

b
= 10, ϕ = F

k
= 0.5, and (B) γ(ε) = 0.02(ε+1), κ = k

b
= 1, ϕ = F

k
= 0.4.

For larger ∆t, MATLAB issues no warnings but as ∆t decreases (the rate of decrease depends

on the parameters k, b, and F and the growth function γ), MATLAB outputs the error

“Unable to meet integration tolerances without reducing the step size below the smallest

value allowed at time t” more often at more time steps, which means that the system is stiff.

This implies that parameter choices are limited, in particular since, in effect, ∆t is rescaled if

k or b is rescaled. Therefore, it is not practical to use the TMOL method. Figure 3.6 shows a

comparison of the results that we obtain with the TMOL method and the nonadaptive finite

difference method. Both methods give the same qualitative behavior. Thus, the adaptive

finite difference method is the best suited for numerically solving the material formulation.
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4.0 ANALYTIC SOLUTIONS OF 1-D SINGLE LAYER MODEL

In the previous chapter, numerical solutions of the one-dimensional single layer model gave

evidence of a similarity solution under scaling for the model equations without cell prolif-

eration and a traveling wave solution for the model equations with cell proliferation. We

first analyze the existence of similarity solutions and then the existence and uniqueness of

traveling wave solutions.

4.1 SIMILARITY SOLUTIONS FOR MODEL WITHOUT GROWTH

Although the leading edge eventually stops moving in cell layers of finite size in the absence of

proliferation, it continues in semi-infinite layers. In this section, we derive similarity under

scaling solutions for such cases. These solutions can be explicitly written in the spatial

formulation for one specific elasticity function, and results can be extended to more general

elasticity functions in the material formulation.

4.1.1 Spatial Formulation

For analysis of similarity solutions, we consider the spatial formulation (Model 2) without

growth (q(ρ) = 0) with logarithmic elasticity function (2.26a) on a semi-infinite domain

x ∈ (−∞, X(t)] instead of on a finite domain x ∈ [0, X(t)], where the original left bound
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x = 0 identifies with the new left bound x→ −∞. The system of equations in this case is

∂ρ(x, t)

∂t
= κ

∂2ρ

∂x2
, x ≤ X(t), 0 ≤ t, (4.1a)

ρ(x, 0) = ρ0, x ≤ X(0), (4.1b)

ρ(X(t), t) = e−ϕρ0, 0 < t, (4.1c)

X ′(t) = −κ 1

ρ0

eϕ
∂ρ(X(t), t)

∂x
, 0 < t, (4.1d)

lim
x→−∞

ρ(x, t) = ρ̄, 0 ≤ t, (4.1e)

where ρ̄ is a limiting density and, as in Section 3.1, we have defined the parameters κ = k
b

and ϕ = F
k

.

There is a familiar similarity solution, for example as shown in Section 10.5 of Mattheij

et al. [42]. Assuming the scalings X(t) = α
√
t and ρ = ρ

(
x√
t

)
, we find

ρ(x, t) =
(
e−ϕρ0 − ρ̄

) erf
(

x
2
√
κt

)
+ 1

erf
(

α
2
√
κ

)
+ 1

+ ρ̄, (4.2)

where α solves

αeα
2/(4κ)

(
erf

(
α

2
√
κ

)
+ 1

)
=

4κ(eϕρ̄− ρ0)

ρ0

√
π

. (4.3)

We note that finding the similarity solution under scaling (4.2) required solving an un-

coupled system of first-order ordinary differential equations. If we chose a different elasticity

function instead of the logarithmic elasticity function (2.26a), then (4.1) would consist of a

coupled system of equations. This increases the difficulty of finding a similarity under scaling

solution drastically. Thus we turn to the material formulation to analyze the existence of

similarity solutions under scaling for more general elasticity functions.
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4.1.2 Material Formulation

Consider the material formulation (Model 1) without growth (γ(ε) = 0) on a semi-infinite

domain s ∈ (−∞, 0], instead of on the finite domain s ∈ [0, 1], where the original left bound

s = 0 identifies with the new left bound s → −∞ and the original right bound s = 1

identifies with the new right bound s = 0. In the absence of cell proliferation, ŝ = s. The

system of equations in this case is

∂x(s, t)

∂s

∂x(s, t)

∂t
=

1

b

∂f(s, t)

∂s
, s ≤ 0, 0 ≤ t, (4.4a)

x(s, 0) = s, s ≤ 0, (4.4b)

lim
s→−∞

∂x(s, t)

∂s
= 1, 0 ≤ t, (4.4c)

f(0, t) = F, 0 < t. (4.4d)

We look for a similarity solution under scaling of the form

x(s, t) = tαw(z), z = t−βs. (4.5)

Since the elasticity function φ depends on ε = ∂x
∂ŝ
− 1 (recall (2.2)) and ∂x

∂s
= tα−βw′, then

∂f

∂s
= tα−2βw′′Φ(tα−βw′), (4.6)

where we denote Φ(ε) = d
dε
φ(ε) and ′ = d

dz
. Plugging the ansatz (4.5) into the governing

equation (4.4a), we obtain the second-order ordinary differential equation

tα−1+β
(
αw(z)− βzw′(z)

)
w′(z) =

1

b
w′′(z)Φ

(
tα−βw′(z)

)
. (4.7)

The right boundary condition (4.4d) implies tα−βw′(0) = φ−1(F ) + 1. Since both w′(0) and

φ−1(F ) are constants and w′(0) 6= 0 by (4.4b), then tα−β must be a constant and hence

α = β. Then (4.7) becomes

αt2α−1
(
w(z)− zw′(z)

)
w′(z) =

1

b
w′′(z)Φ

(
w′(z)

)
. (4.8)

To remove t-dependence, no matter the constitutive assumption for φ, either w′(z) = 0,

w(z) = zw′(z), or α = 1
2
. If w′(z) = 0, then the solution x does not depend on s, and if
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w(z) = zw′(z), then the solution x does not depend on t. Therefore, α = 1
2

and the system

(4.4) has a similarity solution under scaling of the form

x(s, t) =
√
tw(z), z =

s√
t
, (4.9)

where w(z) is a solution of the second-order ordinary differential equation

w′′(z) +
b

2Φ
(
w′(z)

) (zw′(z)− w(z)) = 0. (4.10)

Setting y := w′, this becomes a nonautonomous system of first-order ordinary differential

equations

w′ = y, (4.11a)

y′ =
b

2Φ(y)
(w − zy)y, (4.11b)

subject to the boundary conditions

y(0) = φ−1(F ), (4.12a)

lim
z→−∞

y(z) = 1. (4.12b)

Figure 4.1A shows a numerical solution of (4.11)–(4.12) with logarithmic elasticity func-

tion (2.3a), solved via XPPAUT. Figure 4.1B shows this solution compared to the solution

obtained using the adaptive finite different method as described in Section 3.1. Since the

solution using the adaptive finite difference method is on a finite domain but the similarity

under scaling solution is on a semi-infinite domain, the solutions match for t not too large.
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Figure 4.1: Similarity solution under scaling of the material formulation with no growth
γ(ε) = 0, k = 0.01, b = 1, and F = 0.005. (A) Solution of the boundary value problem
(4.11)–(4.12) in the z coordinate. (B) The numerical solution of (2.6), (2.9), and (2.13),
using the adaptive finite difference method, is plotted against the analytic solution of the
boundary value problem (4.11)–(4.12) for t = 0, 1, 2, 3, 4, 5 hours.

4.2 TRAVELING WAVE SOLUTIONS FOR MODEL WITH GROWTH

The classical example of a problem with a traveling wave solution is the Fisher-Kolmogorov

equation on an infinite domain. We observe that with logarithmic elasticity function (2.26a)

and Fisher growth function (2.35b), the governing equation of the spatial formulation (2.20)

is the same as the Fisher-Kolmogorov equation. However, the spatial formulation is a free

boundary problem and we cannot identify its finite domain with an infinite domain, so the

results from the classical Fisher-Kolmogorov traveling wave analysis do not apply. In this

section, we analyze the existence and uniqueness of traveling wave solutions for the spatial

formulation for general elasticity and nonzero cell proliferation rate functions. Due to the

nonlinearity of the governing equation, traveling wave analysis for the material formulation

is very difficult.

Consider the spatial formulation (Model 2) on a semi-infinite domain x ∈ (−∞, X(t)]
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instead of on a finite domain x ∈ [0, X(t)]. The system of equations in this case is

∂ρ

∂t
=

1

b

∂

∂x

(
ρp′(ρ)

∂ρ

∂x

)
+ q(ρ), x ≤ X(0), 0 ≤ t (4.13a)

ρ(x, 0) = ρ0, x ≤ X(0), (4.13b)

p(ρ(X(t), t)) = −F, 0 < t, (4.13c)

X ′(t) = −1

b
p′(ρ(X(t), t))

∂ρ(X(t), t)

∂x
, 0 < t, (4.13d)

lim
x→−∞

ρ(x, t) = ρ̄, 0 ≤ t, (4.13e)

where ρ̄ is a limiting density and a root of q, and thus a density at which there is no growth.

In our analysis, we assume the condition

q′(ρ̄) < 0. (4.14)

Recall that X(t) is the position of the leading edge and condition (4.13d) is the Stefan

condition for the speed of the propagation of the free boundary.

We look for a traveling wave solution of the form

ρ(x, t) = ρ(z), z = x− ct, (4.15)

where c is the speed of the traveling wave. We assume c ≥ 0 to examine the closure of

a cell layer gap. Substituting (4.15) into the governing equation (4.13a), we obtain the

second-order ordinary differential equation

(ρp′(ρ)ρ′)
′
+ cbρ′ + bq(ρ) = 0, (4.16)

where ′ = d
dz

. Setting y := ρ′, this becomes a system of first-order ordinary differential

equations

ρ′ = y, (4.17a)

y′ =
−1

p′(ρ)ρ

(
(p′(ρ)ρ)′y + cby + bq(ρ)

)
, (4.17b)
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which is subject to the conditions

ρ(0) = ρF = p−1(−F ), (4.18a)

y(0) = yF =
−cb
p′(ρF )

, (4.18b)

lim
z→−∞

(ρ(z), y(z)) = (ρ̄, 0), (4.18c)

where −1 denotes the inverse.

The limit point (ρ̄, 0) in (4.18c) is a fixed point of the system (4.17). Recalling the inequal-

ities (2.18d) and (4.14), the determinant of the Jacobian evaluated at (ρ̄, 0) is

bq′(ρ̄)
p′(ρ̄)ρ̄

< 0, which implies that (ρ̄, 0) is a saddle point, and hence the boundary value problem

(4.17)–(4.18) has a solution. Note that if q′(ρ̄) > 0 instead of condition (4.14), the point

(ρ̄, 0) is a center or an attractor and no traveling wave solution exists.

We will use phase plane analysis to identify traveling wave solutions. In particular, a

traveling wave solution is given by the portion of the unstable manifold connecting the saddle

point (ρ̄, 0) and its intersection with the curves {ρ = ρF} and
{
y = −cb

p′(ρ)

}
in the ρy-plane

for a particular wave speed c. We first examine stationary waves, which occur when c = 0,

before examining the case when c > 0.

4.2.1 Stationary Waves

To find stationary wave solutions of (4.17)–(4.18), we set c = 0. System (4.17) with c = 0 is

conservative with energy

E(ρ, y) =
y2

2
− b

(p′(ρ)ρ)2

∫ ρ̄

ρ

αp′(α)q(α) dα, (4.19)

which is constant along any trajectory. In view of the boundary conditions (4.18), we seek

the level set through the points (ρ̄, 0) and (ρF , 0) for which E(ρ̄, 0) = 0. It follows that we

require

E(ρF , 0) =
b

(p′(ρF )ρF )2

∫ ρF

ρ̄

αp′(α)q(α) dα = 0. (4.20)

Another way to state this condition is as follows. Let ρ̂ be the largest number smaller than

ρ̄ such that E(ρ̂, 0) = 0. Also assume there exists a trajectory of (4.17) that terminates at
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Figure 4.2: Stationary wave solutions of the spatial formulation with growth: (A) In order
to have stationary waves, the plot of ρp′(ρ)q(ρ) must be of this form, where there is equal
area under the curve on the intervals [ρF , ρ1] and [ρ1, ρ̄] and the slope is positive at ρ1 and
negative at ρ̄. (B) The phase portrait for (4.17) with c = 0 has a center at (ρ1, 0). The blue
lines denote the stable and unstable manifolds of the saddle point (ρ̄, 0). The orange lines
denote sample trajectories. The red line denotes the stationary wave solution, which is the
portion of the unstable manifold between the points (ρ̄, 0) and (ρF , 0).

(ρ̂, 0) and converges to (ρ̄, 0) as z → −∞. Then the boundary value problem (4.17)–(4.18)

has a stationary solution if p(ρ̂) = −F .

Suppose that 0 < ρF < ρ̄. One example for which (4.20) is satisfied, assuming (2.18d),

is when there exists another fixed point of q, say ρ1, such that

ρF < ρ1 < ρ̄, (4.21a)

q(ρ1) = 0, (4.21b)

q(ρF ) < 0, (4.21c)

−
∫ ρ1

ρF

αp′(α)q(α) dα =

∫ ρ̄

ρ1

αp′(α)q(α) dα. (4.21d)

In such a case, the graph of ρp′(ρ)q(ρ) is of the form in Figure 4.2A. Furthermore, in the

phase portrait of the system, (ρ1, 0) is a center, and a sketch looks like Figure 4.2B.
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4.2.2 Traveling Waves

To find traveling wave solutions of (4.17)–(4.18), we set c > 0, which corresponds to the

direction of motion toward a cell layer gap, i.e. the direction of positive x. The solution is

a segment of the unstable manifold of the saddle point (ρ̄, 0) that terminates at the point

(ρF , yF ) given by (4.18a)–(4.18b). We find this solution by varying the wave speed c, which

affects both the unstable manifold and yF . Let yu(ρ, c) be a function describing such a

manifold, defined for ρ ∈ [ρ̂, ρ̄] and c ≥ 0, where ρ̂(c) is the value of ρ at which the unstable

manifold first intersects the ρ-axis (if the unstable manifold does not intersect the ρ-axis,

then we set ρ̂(c) = 0).

For c = 0, we have an explicit formula for yu, in view of (4.19),

yu(ρ, 0) =
−1

p′(ρ)ρ

√
2b

∫ ρ̄

ρ

αp′(α)q(α)dα. (4.22)

For c > 0, the unstable manifold function yu is a solution of the integral equation

yu(ρ, c) =

∫ ρ̄

ρ

1

p′(α)α

(
(p′(α)α)

′
+ b

q(α)

yu(α, c)

)
dα. (4.23)

Of course, such a solution may not exist for all wave speeds c, so we examine the condi-

tions for existence and uniqueness of solutions and their dependence on the elasticity function

p(ρ), growth function q(ρ), and parameter F . The parameter b > 0 is assumed fixed.

First, consider when q(ρ) > 0 for 0 < ρ < ρ̄. In this case, there is no homoclinic orbit

in the phase portrait of the system when c = 0, and hence the boundary value problem

(4.17)–(4.18) has no stationary solutions.

Theorem 4.1. Let ρ̄ be such that q(ρ̄) = 0, q′(ρ̄) < 0, and q(ρ) > 0 for ρ ∈ [0, ρ̄). Then for

any F > 0 such that ρF = p−1(−F ) ∈ (0, ρ̄), there exists a unique c(F ) > 0 for which the

boundary value problem (4.17)–(4.18) has a solution, and that solution is unique.

Proof. Let F > 0 be such that ρF = p−1(−F ) ∈ (0, ρ̄). The boundary value problem (4.17)–

(4.18) has a solution for some c ≥ 0 if there is a trajectory of (4.17) that terminates at

(ρF , yF ) and converges to (ρ̄, 0) as z → −∞, i.e. if yu(ρF , c) = yF , where yu is defined by

(4.22)–(4.23). We now examine how the unstable manifold depends on c.
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Figure 4.3: The set Wc in the proof of Theorem 4.1 is bounded by the ρ-axis, the vertical
line {ρ = ρF}, and the unstable manifold of the saddle point (ρ̄, 0), yu(ρ, c). The arrows
indicate the direction of the flow with c∗ > c.

For any c ≥ 0, let Wc be the closed set in the ρy-plane bounded by the lines {y = 0} and

{ρ = ρF} and the curve {y = yu(ρ, c)} (see Figure 4.3). Since q(ρ) is positive for ρ ∈ [0, ρ̄),

there are no other fixed points in Wc besides (ρ̄, 0). The line {y = 0} is the ρ-nullcline and

the flow across this line is in the negative y-direction for ρ ∈ [0, ρ̄) (recall equation (2.18d)).

For y < 0, the flow across the line {ρ = ρF} is in the negative ρ-direction. The direction

field has the slope

y′

ρ′
=
−1

p′(ρ)ρ

(
(p′(ρ)ρ)

′
+ cb+ b

q(ρ)

y

)
. (4.24)

Fix c and consider any c∗ > c. The slope at any point (ρ, yu(ρ, c)) with ρ ∈ [ρF , ρ̄) is strictly

smaller than the slope of yu(ρ, c) when considering the flow with c∗. Hence, for c∗ > c, the

flow will enter Wc across yu(ρ, c) (see Figure 4.3).

Furthermore, the eigenvector associated with the positive eigenvalue of the linearized

system at (ρ̄, 0) is given by


1

−cb
2p′(ρ̄)ρ̄

+
1

2

√(
cb

p′(ρ̄)ρ̄

)2

− 4b
q′(ρ̄)

p′(ρ̄)ρ̄

 , (4.25)
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Figure 4.4: Linear growth function (2.9a) is an example of a function that satisfies the
conditions of Theorem 4.1 with logarithmic elasticity function (2.3a). Here, k = 0.838,
b = 1, F = 0.25, ρ̄ = ρ0 = 1, and speed c = 0.274120. (A) The phase portrait of the system
with the unstable and stable manifolds of the saddle point in blue, the line {ρ = ρF} in

orange, the curve
{
y = −cb

p′(ρ)

}
in purple, and the solution trajectory in red. (B) The traveling

wave profile of the solution trajectory in traveling wave coordinate z. cf. Figure 3.2A.

and its slope decreases as c increases from 0. Therefore, for any c∗ > c ≥ 0, the unstable

manifold yu(ρ, c∗) enters Wc at the point (ρ̄, 0) and exits Wc across the line {ρ = ρF}. Since

ρ′ < 0 in Wc, the unstable manifold yu(ρ, c∗) exits Wc at a unique point (ρF , y
u(ρF , c

∗)),

where yu(ρF , c
∗) > yu(ρF , c).

Consequentially, yu(ρF , c) is a continuous monotonically increasing function of c. Re-

call from (4.18b) that yF = −cb
p′(ρF )

, and hence yF (c) continuously monotonically decreases

with c such that yF (0) = 0 > yu(ρF , 0) and yF → −∞ as c → ∞. By the Intermediate

Value Theorem and monotonicity of the two functions, there exists a unique c at which

yu(ρF , c) = yF (c). In addition, for such c, there is a unique trajectory that terminates at

(ρF , yF ) and converges to (ρ̄, 0) as z → −∞, implying that there exists a unique solution of

the boundary value problem (4.17)–(4.18). �

The linear (2.9a) and Fisher (2.9b) growth functions are examples of growth functions

that satisfy the conditions of Theorem 4.1. Figure 4.4 illustrates the phase portrait and trav-
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Figure 4.5: The bifurcation diagram for the linear growth function (2.9a) with logarithmic
elasticity function (2.3a) and parameters as in Figure 4.4. Values of ρF and c that lie along
the curve result in unique traveling waves.

eling wave solution profile for the linear growth function and logarithmic elasticity function

(2.3a). The bifurcation diagram with c as the varying parameter is illustrated in Figure 4.5,

where the curve represents pairs of c and ρF for which a solution exists.

We now examine when the phase portrait of the system for a given growth function q

has a homoclinic orbit when c = 0.

Theorem 4.2. Let ρ̄ be such that q(ρ̄) = 0 and q′(ρ̄) < 0, and let ρ̂ be the smallest non-

negative number such that
∫ ρ̄
η
q(α)dα ≥ 0 for η ∈ [ρ̂, ρ̄). Then for any F > 0 such that

ρF = p−1(−F ) ∈ [ρ̂, ρ̄), there exists a c(F ) > 0 for which the boundary value problem

(4.17)–(4.18) has a solution.

Proof. The proof is identical to that of Theorem 4.1 except that the flow across the nullcline

{y = 0} is no longer in the negative y-direction for all ρ ∈ (ρF , ρ̄), and hence for c∗ > c

the unstable manifold can exit the domain Wc along the ρ-axis. As a result, there is a

limited range [0, c†] of c for which the unstable manifold intersects the line {ρ = ρF}, but,

nonetheless, the functions yu(ρF , c) and yF (c) (defined as in the proof of Theorem 4.1) are
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monotone and intersect at a value c ∈ [0, c†]. �

The difference in this case is that the solution to the boundary value problem may not be

unique. The conditions of the theorem admit that there be at least one other root ρ1 < ρ̄ of

the function q which gives rise to a stable spiral fixed point of the system. In that case, the

unstable manifold may converge to that fixed point in the limit as z → −∞ and intersect

the curves {ρ = ρF} and
{
y = yF (c) = −cb

p′(ρF )

}
for more than one c.

Figure 4.6 illustrates some of the phase portraits and traveling wave solution profiles for

the cubic growth function (2.9c), which satisfies the conditions of Theorem 4.2, and loga-

rithmic elasticity function (2.3a). Four possible solutions are shown, and as c decreases, the

solution trajectory winds about the spiral fixed point. For any growth function that satisfies

the conditions of Theorem 4.2, there exists an upper bound for a countably infinite number

of c in which the boundary value problem (4.17)–(4.18) has a solution. Figure 4.7 illustrates

the bifurcation diagram with c as the varying parameter, where the curves represent pairs

of c and ρF for which a solution exists.

Several additional results can be obtained.

Proposition 4.1. Suppose the hypotheses of Theorem 4.2 are satisfied with ρ̂ > 0. Then

there exists a c∗ < ∞ such that any solution of boundary value problem (4.17)–(4.18) with

ρF ∈ [ρ̂, ρ̄) has c(F ) < c∗.

Proof. Let c∗ >
√

2
b

∫ ρ̄
ρ
αp′(α)q(α)dα for all ρ ∈ [ρ̂, ρ̄]. Then the curve

{
y = yF (c) = −cb

p′(ρF )

}
does not intersect yu(ρ, 0) at any ρ ∈ (ρ̂, ρ̄). Furthermore, that curve does not intersect

yu(ρ, c) at any ρ ∈ (ρ̂, ρ̄) for any c ≥ c∗. Solutions of the boundary value problem cannot

exist with c ≥ c∗ for any ρF ∈ (ρ̂, ρ̄). �

Proposition 4.2. If ρ̂ > 0, the number of c(F ) for which the boundary value problem

(4.17)–(4.18) has a solution is countably infinite for all ρF ∈ [ρ̂, ρ̄).

Proof. Let 0 ≤ c < c∗. Let {Zi(c)}∞i=1, where −∞ < Z1(c) < Z2(c) < Z3(c) < · · · ,
be the sequence of values of z at which the unstable manifold intersects the ρ-axis. Let

I1 = (−∞, Z1(c)] and Ii = [Zi−1(c), Zi(c)], for i = 2, 3, . . .. Denote the unstable manifold

for z ∈ Ii as the function yui (ρ, c), for i ∈ N. By properties of the flow, yui (ρ, c) ≥ 0 for i
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Figure 4.6: Cubic growth function (2.9c) is an example of a function that satisfies the
conditions of Theorem 4.2 with logarithmic elasticity function (2.3a). Here, k = 0.838, b = 1,
F = 0.25, ρ̄ = ρ0 = 1 and speed (A) c = 0.266062, (B) c = 0.103310, (C) c = 0.0587513, and
(D) c = 0.0404030. First row: The phase portrait of the system with the unstable and stable

manifolds of the saddle point in blue, the line {ρ = ρF} in orange, the curve
{
y = −cb

p′(ρ)

}
in purple, and the solution trajectory in red. Second row: Respectively, the traveling wave
profile of the solution trajectory in traveling wave coordinate z. cf. Figure 3.4A.
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Figure 4.7: The bifurcation diagram for the cubic growth function (2.9c) with logarithmic
elasticity function (2.3a) and parameters as in Figure 4.6. Values of ρF and c that lie along
the curves result in solutions of the boundary value problem. The number of loops that the
solution trajectory traverses about the stable spiral is labeled. Note that only a portion of the
countably infinite number of curves is shown.

even and yui (ρ, c) ≤ 0 for i odd. For i odd and c sufficiently small, yui (ρF , c) = yF . Hence

the trajectory yu(ρ, c) with z ∈ (−∞, Zi(c)], i odd, terminates at (ρF , yF ) and converges to

(ρ̄, 0) as z → −∞, implying that there exists a countably infinite number of solutions of the

boundary value problem (4.17)–(4.18). �

If ρ̂ = 0 in the statement of Theorem 4.2, the number of solutions of the boundary value

problem (4.17)–(4.18) is no longer countably infinite, but finite. Since ρ is the cell density,

any physically relevant solution requires ρ ≥ 0, and thus solution trajectories cannot traverse

loops about the stable spiral if they cross the y-axis. Hence in this case, for any ρF ∈ (0, ρ̄),

there will be a finite number of speeds c for which the boundary value problem (4.17)–

(4.18) has a solution. If the other fixed point of the system (see (4.21)) is nonpositive,

then there is a unique speed c and there does not exist an upper bound on the speed c for

which there is a solution. Two example growth functions are q(ρ) = (ρ0 − ρ)(ρ0 + 4ρ) and

q(ρ) = −(ρ0 − ρ)(ρ0 − 4ρ).
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Now let us examine how many solutions exist for the case when q has three roots

ρ2 < ρ1 < ρ0, such that in the phase portrait, ρ0 and ρ2 are saddle points and ρ1 is a

stable spiral or node for sufficiently large c. Therefore, ρ̄ may be either ρ0 or ρ2. First

consider 0 < ρ2 < ρ1 < ρ0. There are two possible flavors of phase portraits, one such that a

heteroclinic orbit may exist in the lower half of the yρ-plane and one such that a heteroclinic

orbit may exist in the upper half of the yρ-plane.

If
∫ ρ0
ρ
q(α)dα > 0 for all ρ ∈ (0, ρ0), then there exists a c∗ ∈ R such that a heteroclinic

orbit in the lower half of the yρ-plane connects the two saddle points ρ0 and ρ2. Assuming

ρ̄ = ρ0, there is a finite number of solutions for ρF ∈ (0, ρ0). Assuming ρ̄ = ρ2, for c = 0

there will exist a stationary wave solution if ρF satisfies
∫ ρF
ρ2

q(α)dα = 0. For c > 0, there are

a countably infinite number of solutions for ρF ∈ (ρ2, η) where η satisfies
∫ η
ρ2
q(α)dα = 0. An

example growth function is q(ρ) = (ρ0−ρ)(ρ0−2ρ)(ρ0−4ρ), and Figure 4.8 illustrates some of

its corresponding phase portraits and traveling wave solution profiles. Figure 4.9 illustrates

the bifurcation diagram with c as the varying parameter, where the curves represent pairs

of c and ρF for which a solution exists.

If
∫ ρ0
ρ
q(α)dα < 0 for some ρ ∈ (0, ρ0), then there exists a c∗ ∈ R such that a heteroclinic

orbit in the upper half of the yρ-plane connects the two saddle points ρ0 and ρ2, which cannot

result in a solution assuming c > 0. Assuming ρ̄ = ρ0, there exists a countably infinite

number of solutions for ρF ∈ (η, ρ0) where η satisfies
∫ ρ0
η
q(α)dα = 0, and there exists an

upper bound on the speed c for which there is a solution. Assuming ρ̄ = ρ2, for 0 ≤ c ≤ c∗

there are no solutions, but for c > c∗ there are at most a countably infinite number of

solutions for ρF ∈ (η, ρ0). An example growth function is q(ρ) = (ρ0− ρ)(ρ0− 8ρ)(3ρ0− 5ρ),

and Figures 4.11–4.12 illustrate some of the phase portraits and traveling wave solution

profiles. Figure 4.10 illustrates the bifurcation diagram with c as the varying parameter,

where the curves represent pairs of c and ρF for which a solution exists.

The case when ρ2 < 0 < ρ1 < ρ0 or ρ2 < ρ1 < 0 < ρ0 is similar to the case just described

when 0 < ρ2 < ρ1 < ρ0, except we can no longer have ρ̄ = ρ2. The number of solutions for

these cases with ρ̄ = ρ0 will be less than or equal to the number of solutions for the case

when 0 < ρ2 < ρ1 < ρ0 because physically relevant solutions require ρ ≥ 0 and solution

trajectories cannot cross the y-axis.
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Figure 4.8: Growth function q(ρ) = (ρ0 − ρ)(ρ0 − 2ρ)(ρ0 − 4ρ) with logarithmic elasticity
function (2.3a). Here, k = 2.947, b = 1, F = 2.5, ρ0 = 1, (A) ρ̄ = 1, and (B)–(F) ρ̄ = 1

4
.

Here, speed (A) c = 0.8364, (B) c = 0.274921, (C) c = 0.180012, (D) c = 0.133061, (E)
c = 0.104923, and (F) c = 0.0862904. First row: The phase portrait of the system with the
unstable and stable manifolds of the right saddle point in blue and the left saddle point in cyan,

the line {ρ = ρF} in orange, the curve
{
y = −cb

p′(ρ)

}
in purple, and the solution trajectory in

red. Second row: Respectively, the traveling wave profile of the solution trajectory in traveling
wave coordinate z.
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of curves is shown.
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Figure 4.10: The bifurcation diagram for the function q(ρ) = (ρ0 − ρ)(ρ0 − 8ρ)(3ρ0 − 5ρ),
with logarithmic elasticity function (2.3a). Here, for the curves labeled “right,” ρ̄ = 1, and
for the curves labeled “left,” ρ̄ = 1

8
. Values of ρF and c that lie along the curves result in

solutions of the boundary value problem. The number of loops that the solution trajectory
traverses about the stable spiral is labeled. Note that only a portion of the countably infinite
number of curves is shown.
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Figure 4.11: Growth function q(ρ) = (ρ0 − ρ)(ρ0 − 8ρ)(3ρ0 − 5ρ) with logarithmic elas-
ticity function (2.3a). Here, k = 0.838, b = 1, F = 0.25, ρ0 = 1, ρ̄ = 1, and speed
(A) c = 0.685214, (B) c = 0.347028, (C) c = 0.225201, (D) c = 0.163641, and (E)
c = 0.127442. First row: The phase portrait of the system with the unstable and stable man-
ifolds of the right saddle point in blue and the left saddle point in cyan, the line {ρ = ρF}
in orange, the curve

{
y = −cb

p′(ρ)

}
in purple, and the solution trajectory in red. Second row:

Respectively, the traveling wave profile of the solution trajectory in traveling wave coordinate
z.
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Figure 4.12: Growth function q(ρ) = (ρ0 − ρ)(ρ0 − 8ρ)(3ρ0 − 5ρ) with logarithmic elas-
ticity function (2.3a). Here, k = 0.838, b = 1, F = 0.25, ρ0 = 1, ρ̄ = 1

8
, and speed

(A) c = 0.570056, and (B) c = 0.340016. First row: The phase portrait of the system with
the unstable and stable manifolds of the right saddle point in blue and the left saddle point

in cyan, the line {ρ = ρF} in orange, the curve
{
y = −cb

p′(ρ)

}
in purple, and the solution tra-

jectory in red. Second row: Respectively, the traveling wave profile of the solution trajectory
in traveling wave coordinate z.

Our analysis of the number of possible solutions of the boundary value problem (4.17)–

(4.18) directly extends to the case when the growth function q has four or more simple

roots. These functions will result in phase portraits with alternating saddles and stable

spirals/nodes and the number of possible solutions for a chosen ρF are either none, one, a

finite number, or a countably infinite number. This analysis also extends to the case when

the growth function q has three or more roots with some repeated, with the exception of

ρ̄ which must be a simple root. These growth functions give similar results as simple root

functions of one lower degree.

In a limiting sense, Theorems 4.1 and 4.2 extend to more arbitrary growth functions,

even if the growth functions do not have any roots (noting that our proofs do not directly
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Table 4.1: Speed of the leading edge. The numerical speed is υ(20), the simulated velocity
of the leading edge in the material formulation at t = 20. The analytic speed is the speed c
of the traveling wave solution in the spatial formulation.

Growth Function linear (2.9a) Fisher (2.9b) cubic (2.9c)

Numerical Speed 0.275432 1.13160 0.267114

Analytic Speed 0.274120 1.12652 0.266062

apply to those cases). Recalling the Weierstrass Approximation Theorem, any continuous

function (on a bounded domain) can be approximated by a polynomial and hence could

satisfy the conditions of Theorems 4.1 or 4.2. Thus, a Gaussian function centered at ρ = ρ0

(equivalently at ε = 0) and a piecewise linear function approximating a Gaussian function

(resembling the growth rate function in Stolarska et al. [68]) have traveling wave solutions

that exist in a limiting sense, such that the leading edge of cells moves at a constant, or

slowly increasing, rate.

4.2.3 Stability of Traveling Waves

Especially in the cases of the previous section where there are multiple traveling wave so-

lutions, it is useful to analyze their stability as solutions of the original partial differential

equation. Numerically, we will examine whether the traveling wave persists if it used as

the initial condition. If it does persist, it is called stable, but if deviations from the exact

traveling wave, whether introduced deliberately or due to numerical error, are amplified, it

is called unstable. It is likely that stable traveling waves are the only traveling waves that

could be observed biologically.

In Table 4.1, we list the speed of the leading edge found numerically, which is υ(20), the

simulated velocity of the leading edge in the material formulation at t = 20, and analytically,

which is the speed c of the traveling wave solution in the spatial formulation, for the linear

(2.9a), Fisher (2.9b), and cubic (2.9c) growth functions. The percent error between the two
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Figure 4.13: Stability of traveling waves – material formulation to spatial formulation:
The density profiles at t = 5, 10, 15, 20 hours (in blue) found numerically in the material
formulation converge to the analytic traveling wave solution (in red) found in the spatial
formulation. Here, we have the logarithmic elasticity function (2.3a) and (A) linear growth
function (2.9a), k = 0.838, b = 1, F = 0.25, ρ0 = 1, c = 0.274120, (B) Fisher growth
function (2.9b), k = 2.947, b = 1, F = 2.5, ρ0 = 1, c = 1.12652, and (C) cubic growth
function (2.9c), k = 0.838, b = 1, F = 0.25, ρ0 = 1, c = 0.266062.

speeds is less than 1% for all three growth functions.

4.2.3.1 Material Formulation to Spatial Formulation First, we will examine whether

the density profiles of the numerical solutions of the material formulation converge to the

analytic traveling wave density profile of the spatial formulation. At any specified time, we

can calculate the density of the cell layer from the cell positions x found from a numerical

simulation of the material formulation via equation (2.21), which can also be written as

ρ̃(s, t) = ρ0

(
∂x(s, t)

∂s

)−1
∂ŝ(s, t)

∂s
. (4.26)

We discretize ∂x
∂s

and ∂ŝ
∂s

using centered difference in the interior and forward (backward)

difference on the left (right) boundary. See Figure 4.13 for an illustration of the numerical

density profiles of the material formulation. These numerical density profiles converge to the

analytic traveling wave density profile of the spatial formulation for the linear (2.9a), Fisher

(2.9b), and cubic (2.9c) growth functions with logarithmic elasticity function (2.3a).

64



0 5 10 15 20
0

2

4

6

8

10

x

t

 A
3.3 6.6 9.9 13.2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

υ

20 15 10 5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ŝ
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Figure 4.14: Stability of traveling waves – spatial formulation to material formulation: The
initial cell positions are found using the analytic traveling wave solution shown in Figure 4.13.
Here, we have the logarithmic elasticity function (2.3a) and (A) linear growth function (2.9a),
k = 0.838, b = 1, F = 0.25, ρ0 = 1, and (B) Fisher growth function (2.9b), k = 2.947, b = 1,
F = 2.5, ρ0 = 1.

4.2.3.2 Spatial Formulation to Material Formulation Next, we will use the analytic

traveling wave solution of the spatial formulation as an initial condition for the material

formulation numerical simulations. From the analytic traveling wave density profile, we

calculate s = s(x, t) via equation (2.21) assuming ∂ŝ
∂s

= 1, since ŝ is simply a relabeling of

cell positions. Thus, we numerically solve the ordinary differential equation s′ = ρ with

initial condition s(0) = 0. Then we must invert this solution to find x = x(s, t). Using these

cell positions x and s as an initial state, we calculate the numerical solution to the material

formulation.

Figure 4.14 shows the results for the linear (2.9a) and Fisher (2.9b) growth functions

with logarithmic elasticity function (2.3a). The velocity of the leading edge approximates
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Figure 4.15: Stability of traveling waves – spatial formulation to material formulation:
Cubic growth function (2.9c) with logarithmic elasticity function (2.3a), k = 0.838, b =
1, F = 0.25, and ρ0 = 1. The initial cell positions (red) are found using the analytic
traveling wave solution shown in (A) Figure 4.6A, (B) Figure 4.6B, (C) Figure 4.6C, and (D)
Figure 4.6D. The density profiles at t = 0.625, 1.25, 2.5, 10 hours (blue) found numerically
in the material formulation converge to the analytic traveling wave solution (green) shown
in Figure 4.6A.

the speeds listed in Table 4.1, and the shape of the plot of ε versus ŝ remains unchanged

throughout time, implying that the traveling wave solution persists. The density profiles

from the numerical simulations remain the exact analytic traveling wave density profile

throughout the integration.

Figure 4.15 shows the results for the cubic growth function (2.9c), Figure 4.16 shows the

66



35 30 25 20 15 10 5 0
0

0.2

0.4

0.6

0.8

1

1.2

z

ρ

 A

35 30 25 20 15 10 5 0
0

0.2

0.4

0.6

0.8

1

1.2

z

ρ
0

8

101215

 B

50 40 30 20 10 0
0

0.2

0.4

0.6

0.8

1

1.2

z

ρ

0

8

101215

 C

60 50 40 30 20 10 0
0

0.2

0.4

0.6

0.8

1

1.2

z

ρ

0

8

101215

 D

70 60 50 40 30 20 10 0
0

0.2

0.4

0.6

0.8

1

1.2

z

ρ

0

8

101215

 E

80 70 60 50 40 30 20 10 0
0

0.2

0.4

0.6

0.8

1

1.2

z

ρ

0

8

101215

 F

Figure 4.16: Stability of traveling waves – spatial formulation to material formulation:
Growth function q(ρ) = (ρ0−ρ)(ρ0−2ρ)(ρ0−4ρ) with logarithmic elasticity function (2.3a),
k = 2.947, b = 1, F = 2.5, and ρ0 = 1. The initial cell positions (red) are found using
the analytic traveling wave solution shown in (A) Figure 4.8A, (B) Figure 4.8B, (C) Fig-
ure 4.8C, (D) Figure 4.8D, (E) Figure 4.8E, and (F) Figure 4.8F. The density profiles at
t = 8, 10, 12, 15 hours (blue) found numerically in the material formulation converge to the
analytic traveling wave solution (green) shown in Figure 4.8A.
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Figure 4.17: Stability of traveling waves – spatial formulation to material formulation:
Growth function q(ρ) = (ρ0−ρ)(ρ0−8ρ)(3ρ0−5ρ) with logarithmic elasticity function (2.3a),
k = 2.947, b = 1, F = 2.5, ρ0 = 1, and ρ̄ = 1. The initial cell positions (red) are found
using the analytic traveling wave solution shown in (A) Figure 4.11A, (B) Figure 4.11B,
(C) Figure 4.11C, (D) Figure 4.11D, and (E) Figure 4.11E. The density profiles at t =
0.6125, 0.9, 1, 4 hours (blue) found numerically in the material formulation converge to the
analytic traveling wave solution (green) shown in Figure 4.11A.
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Figure 4.18: Stability of traveling waves – spatial formulation to material formulation:
Growth function q(ρ) = (ρ0 − ρ)(ρ0 − 8ρ)(3ρ0 − 5ρ) with logarithmic elasticity function
(2.3a), k = 2.947, b = 1, F = 2.5, ρ0 = 1, and ρ̄ = 1

8
. The initial cell positions (red)

are found using the analytic traveling wave solution shown in (A) Figure 4.12A, and (B)
Figure 4.12B. The density profiles at (A) t = 2, 5, 8, 10 hours, (B) t = 0.75, 4, 7, 10 hours
(blue) found numerically in the material formulation converge to the analytic traveling wave
solution (green) shown in Figure 4.11A.

results for the growth function q(ρ) = (ρ0−ρ)(ρ0−2ρ)(ρ0−4ρ), and Figures 4.17–4.18 show

the results for the growth function q(ρ) = (ρ0 − ρ)(ρ0 − 8ρ)(3ρ0 − 5ρ), all with logarithmic

elasticity function (2.3a). We observe different behaviors based on how many loops the

solution trajectory in phase space traverses about the stable spiral (see Figures 4.6, 4.8, and

4.11–4.12, respectively). If the solution trajectory traverses no loops about the stable spiral,

we observe the same behavior as for the linear and Fisher growth functions; the traveling

wave solution persists. If the solution trajectory traverses one or more loops about the stable

spiral, we observe that the traveling wave solution does not persist but instead converges to

the traveling wave solution for the trajectory that traverses no loops.

In the cases where there are two saddles, such as in Figures 4.16–4.18, all of the solutions

converge to the traveling wave solution for the trajectory that never crosses the ρ-axis. For

the traveling wave solutions for the saddle on the left (Figures 4.16B–F and 4.18), we see

that there is a “wave within a wave” such that once the solutions converge near the moving
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boundary (z = 0) to the trajectory that never crosses the ρ-axis, there is a traveling wave of

density that moves to the left.

We conclude our study with the following proposition.

Proposition 4.3. The traveling wave solutions of the spatial formulation of one-dimensional

single layer cell migration are stable if the solution trajectory in phase space does not cross

the horizontal ρ-axis.
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5.0 2-D DUAL LAYER CELL MIGRATION MODEL

Thus far, we have discussed continuum mechanical models of one-dimensional single cell

layer migration. These models are applicable to epithelial cell sheet migration where the cell

layer thickness is approximately uniform throughout. However, migrating cells in vivo are

often in much more complex environments, and capturing this complexity in experiments

and models will lead to better understanding of the true processes.

In this chapter, we extend the two-dimensional spatial formulation of Arciero et al. [3],

which we have presented in previous chapters in one dimension, to incorporate two adhering

cell layers. The intent is to study the phenomenon of one migrating cell layer acting as the

substrate of another migrating cell layer. We will apply this model to time-lapse images of

migrating epithelial and mesenchymal cells during gastrulation in Chapter 7.

5.1 DERIVATION OF MODEL EQUATIONS

We start by deriving the equations for an arbitrary number of cell layers that are situated

precisely on top of one another (like a layer cake), where we denote the bottom layer as layer

1 and the top layer as layer N . Each cell layer is represented as a compressible fluid, like

in the single layer model derived in Section 2.2. The variable ρn(x, y, t) describes the cell

density of layer n as a function of the spatial position x = (x, y) and time t. Conservation

of cell number (mass) for each layer implies

∂ρn
∂t

= −∇ ·
(
ρnvn

)
+ q(ρn), n = 1, . . . , N, (5.1)
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where vn = ((υn)x, (υn)y) is the velocity of cell layer n, and q is the cell proliferation/apoptosis

term as in Section 2.2. In modeling gastrulation, proliferation is not an important factor, so

we set q = 0 for all layers.

Conservation of linear momentum implies

ρn
∂vn
∂t

+ ρn(vn · ∇)vn = Bn +∇ ·Tn, n = 1, . . . , N, (5.2)

where Bn accounts for the force of adhesion to adjacent layers, i.e. the negative of traction

force, and Tn represents stresses within cell layer n. Assuming that acceleration is negligible

since the cells do not move very fast, (5.2) becomes

0 = Bn +∇ ·Tn, n = 1, . . . , N. (5.3)

We assume that all layers behave as compressible inviscid fluids with the constitutitive

equation

Tn = −p(ρn)I, n = 1, . . . , N, (5.4)

where p is the pressure within the cell layer as in Section 2.2. Assuming the force of adhesion

is negatively proportional to the relative velocity of the cell layer, then

bottom layer: B1 = −b1v1 + b2(v2 − v1), (5.5a)

middle layers: Bn = −bn(vn − vn−1) + bn+1(vn+1 − vn), (5.5b)

top layer: BN = −bN(vN − vN−1), (5.5c)

where the adhesion constant bn describes the adhesion between the (n− 1)st and nth layers.

The adhesion constant b1 describes the adhesion between the substrate and the bottom layer.

Substituting (5.4) and (5.5) into the conservation of linear momentum equation (5.3),

simplifying to the case of only two layers, and solving for the velocities, we obtain

v1 = − 1

b1

p′(ρ1)∇ρ1 −
1

b1

p′(ρ2)∇ρ2, (5.6a)

v2 = − 1

b1

p′(ρ1)∇ρ1 −
(

1

b1

+
1

b2

)
p′(ρ2)∇ρ2. (5.6b)
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Then substituting these velocities into the conservation of mass equation (5.1), we obtain

the following governing equations that describe the evolution of cell density,

∂ρ1

∂t
=

1

b1

∇ · (p′(ρ1)∇ρ1) +
1

b1

∇ · (p′(ρ2)∇ρ2), (5.7a)

∂ρ2

∂t
=

1

b1

∇ · (p′(ρ1)∇ρ1) +

(
1

b1

+
1

b2

)
∇ · (p′(ρ2)∇ρ2). (5.7b)

We assume the constitutive equation for the pressure is

p(ρn) = kn ln

(
ρn
ρ0n

)
, n = 1, 2, (5.8)

where kn is the residual stretching modulus of cell layer n after cytoskeleton relaxation and

ρ0n is the constant density of the relaxed (unstressed) cell layer n. Other choices are possible,

such as Hooke’s law and the ideal gas law as studied in previous chapters. We choose the

logarithmic relation for the dual layer model because it allows for an infinite magnitude of

stress for both ρ → 0 and ρ → ∞, giving an appropriate behavior at both large and small

densities. The governing equation (5.7) becomes

∂ρ1

∂t
=
k1

b1

∆ρ1 +
k2

b1

∆ρ2, (5.9a)

∂ρ2

∂t
=
k1

b1

∆ρ1 +

(
k2

b1

+
k2

b2

)
∆ρ2. (5.9b)

We remove the assumption that the cell layers are situated precisely on top of one another,

and instead assume that the bottom layer extends further than the top layer. Also, we

assume that the top layer can never extend further than the bottom layer. In light of these

assumptions, a schematic of the problem is illustrated in Figure 5.1. Therefore, our governing

equations are

∂ρ1

∂t
=
k1

b1

∆ρ1, in Ωt
1 \ Ωt

2, (5.10a)

∂ρ1

∂t
=
k1

b1

∆ρ1 +
k2

b1

∆ρ2, in Ωt
1 ∩ Ωt

2, (5.10b)

∂ρ2

∂t
=
k1

b1

∆ρ1 +

(
k2

b1

+
k2

b2

)
∆ρ2, in Ωt

1 ∩ Ωt
2, (5.10c)

where we see that there is a single uncoupled equation in the domain Ωt
1 \ Ωt

2 and a system

of coupled equations in the domain Ωt
1 ∩ Ωt

2.
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Top layer

Bottom layer

Figure 5.1: Schematic representation of the 2-D dual layer problem as if looking at the cell
layers from above. The blue area Ωt

1 represents the bottom cell layer and the red hatched area
Ωt

2 represents the top cell layer. The single uncoupled equation (5.10a) is valid in the domain
Ωt

1 \ Ωt
2 and the system of coupled equations (5.10b)-(5.10c) is valid in the domain Ωt

1 ∩ Ωt
2.

The boundaries of the two cell layers are labeled ∂Ωt
1 (bottom layer) and ∂Ωt

2 (top layer).

At the boundaries, we assume for layer n that the lamellipodia exert a constant force per

unit length Fn that is equal in magnitude to that of cells in the interior, i.e. p(ρn) = −Fn,

and thus we have Dirichlet boundary conditions

ρ1 = ρ01e
−F1/k1 , on ∂Ωt

1, (5.11a)

ρ2 = ρ02e
−F2/k2 , on ∂Ωt

2. (5.11b)

We also have a condition on the velocity of the boundary which comes from (5.6),

v1 = −k1

b1

1

ρ01

eF1/k1∇ρ1, on ∂Ωt
1, (5.12a)

v2 = −k1

b1

1

ρ1

∇ρ1 −
(
k2

b1

+
k2

b2

)
1

ρ02

eF2/k2∇ρ2, on ∂Ωt
2, (5.12b)
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that reduces to the Stefan condition

v1 · n1 =

(
−k1

b1

1

ρ01

eF1/k1∇ρ1

)
· n1, on ∂Ωt

1, (5.13a)

v2 · n2 =

(
−k1

b1

1

ρ1

∇ρ1 −
(
k2

b1

+
k2

b2

)
1

ρ02

eF2/k2∇ρ2

)
· n2, on ∂Ωt

2, (5.13b)

where nn is the outward normal to ∂Ωt
n.

An interface condition on ∂Ωt
2 comes from a balance of forces. On the boundary ∂Ωt

2,

T1

∣∣
Ωt

1 ∩ Ωt
2

+ T2 = T1

∣∣
Ωt

1 \ Ωt
2

=⇒ −p
(
ρ1

∣∣
Ωt

1 ∩ Ωt
2

)
+ F2 = −p

(
ρ1

∣∣
Ωt

1 \ Ωt
2

)
, (5.14)

and thus with the constitutive equation (5.8), the interface condition is

ρ1

∣∣
Ωt

1 ∩ Ωt
2

= eF2/k1ρ1

∣∣
Ωt

1 \ Ωt
2

, on ∂Ωt
2. (5.15)

Initially, we assume that the density of each cell layer is equal to the density of a stretched

layer, i.e. p(ρn) = Fn, and the bottom layer is uniformly dense, and thus we obtain

ρ1 = ρ01e
F1/k1 , in Ω0

1, (5.16a)

ρ2 = ρ02e
F2/k2 , in Ω0

2. (5.16b)

The two-dimensional dual layer free boundary problem is characterized by the governing

equations (5.10), boundary conditions (5.11), Stefan conditions (5.13), interface condition

(5.15), and initial conditions (5.16). In summary, these equations, conditions, variables, and

parameters are as follows.

Model 3. 2-D Dual Layer Cell Migration

Governing Equations

∂ρ1

∂t
=
k1

b1

∆ρ1, in Ωt
1 \ Ωt

2

∂ρ1

∂t
=
k1

b1

∆ρ1 +
k2

b1

∆ρ2, in Ωt
1 ∩ Ωt

2

∂ρ2

∂t
=
k1

b1

∆ρ1 +

(
k2

b1

+
k2

b2

)
∆ρ2, in Ωt

1 ∩ Ωt
2
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Initial Conditions

ρ1 = ρ01e
F1/k1 , in Ω0

1

ρ2 = ρ02e
F2/k2 , in Ω0

2

Boundary Conditions

ρ1 = ρ01e
−F1/k1 , on ∂Ωt

1

ρ2 = ρ02e
−F2/k2 , on ∂Ωt

2

Stefan Conditions

v1 · n1 =

(
−k1

b1

1

ρ01

eF1/k1∇ρ1

)
· n1, on ∂Ωt

1

v2 · n2 =

(
−k1

b1

1

ρ1

∇ρ1 −
(
k2

b1

+
k2

b2

)
1

ρ02

eF2/k2∇ρ2

)
· n2, on ∂Ωt

2

Interface Condition

ρ1

∣∣
Ωt

1 ∩ Ωt
2

= eF2/k1ρ1

∣∣
Ωt

1 \ Ωt
2

, on ∂Ωt
2

Variables

• t = time

• x = (x, y) = spatial position of cells

• v1 = velocity of the bottom layer

• v2 = velocity of the top layer

• n1 = outward unit normal to ∂Ωt
1

• n2 = outward unit normal to ∂Ωt
2

• ρ1(x, y, t) = cell density of the bottom layer

• ρ2(x, t) = cell density of the top layer

Parameters

• b1 = adhesion constant between the bottom cell layer and the substrate

• b2 = adhesion constant between the bottom and top cell layers

76



• F1 = net external force that develops as a result of lamellipodia formation in the

bottom layer

• F2 = net external force that develops as a result of lamellipodia formation in the

top layer

• k1 = residual stretching modulus of the bottom layer after cytoskeleton relaxation

• k1 = residual stretching modulus of the top layer after cytoskeleton relaxation

• ρ01 = constant density of the initial relaxed (unstressed) bottom cell layer

• ρ02 = constant density of the initial relaxed (unstressed) top cell layer
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6.0 NUMERICAL SOLUTIONS OF 2-D DUAL LAYER MODEL

A numerical solution of the spatial formulation of the two-dimensional dual layer cell migra-

tion model (Model 3) presented in the previous chapter for given initial cell layer geometries

and parameters k1, k2, b1, b2, F1, F2, ρ01, and ρ02 can be found using a level set method,

as described in Section 6.1. Parameter values used in this chapter were chosen based on

estimates from Arciero et al. [3].

For all of our simulations, we observe a jump in density in the bottom layer on ∂Ωt
2, the

boundary of the top layer. Since the lamellipodia of the cells in the top layer physically pull

back the cells directly below, the density of the bottom layer just inside of ∂Ωt
2 is larger,

compared to the density of the bottom layer a bit further to the inside of ∂Ωt
2. Due to a

balance of forces, the density of cells directly in front of the cells that were physically pulled

back will decrease. Thus, the density of the bottom layer just outside of ∂Ωt
2 is smaller,

compared to the density of the bottom layer a bit further to the outside of ∂Ωt
2. As the top

layer reaches equilibrium and slows its movement, the jump in density in the bottom layer

on ∂Ωt
2 persists, but just inside of ∂Ωt

2, the slope of the density does not significantly change.

The behavior is similar for just outside of ∂Ωt
2.

Figures 6.1–6.3 show the evolution of two cell layers in the case where each layer has

the same mechanical properties, i.e. the same parameters, and the initial areas are the same

for different initial geometries, which include circles, ellipses, an annulus and circle, two

separated circles, two small circles inside a large circle, rectangles, a diamond and square,

astroids, and roses.

The average instantaneous normal velocity of the cells at the edge decreases over time

(see Figure 6.4) for all the different initial geometry cases, and if the simulations were allowed

to run long enough, an equilibrium state would be reached in which the cells move no further.
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Figure 6.1: Numerical solution of the dual layer model for (A) circles, (B) ellipses, and (C)

an annulus and a circle. Here, F1

k1
= F2

k2
= F2

k1
= 0.5 (dimensionless), k1

b1
= k2

b2
= k2

b1
= 5000µm

2

h
,

and ρ01 = ρ02 = 0.0005 cells
µm2 . The top layer is in red and the bottom layer is in blue. The

shaded regions indicate where the cells are initially seeded, and the initial area of the bottom
layer is 2.25×106π µm2 and the initial area of the top layer is 5.625×105π µm2. The curves
are drawn at every 2 hours from 2 to 10 hours, where the lightest curve is at t = 2 and the
darkest curve is at t = 10. The first column shows the position of the leading edge of the
migrating cell layers as seen from above, and the second column shows the density profile of
the cell layers as a cross-section through the x-axis.
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Figure 6.2: Numerical solution of the dual layer model for (A) two separated circles, (B)
two small circles inside a large circle, and (C) rectangles. Parameters, initial areas, and
color scheme are the same as in Figure 6.1. The first column shows the position of the
leading edge of the migrating cell layers as seen from above, and the second column shows
the density profile of the cell layers as a cross-section through (A)–(B) the line y = x, and
(C) the x-axis.
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Figure 6.3: Numerical solution of the dual layer model for (A) a diamond and square,
(B) astroids, and (C) roses. Parameters, initial areas, and color scheme are the same as
in Figure 6.1. The first column shows the position of the leading edge of the migrating cell
layers as seen from above, and the second column shows the density profile of the cell layers
as a cross-section through the x-axis.
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Figure 6.4: Average instantaneous normal velocity of the edge (in the first row) and area
(in the second row) of the 2-D dual layer numerical solutions for the bottom and top layers
where the initial geometries are circles (Figure 6.1A), ellipses (Figure 6.1B), an annulus
and circle (Figure 6.1C), two separated circles (Figure 6.2A), two small circles inside a large
circle (Figure 6.2B), rectangles (Figure 6.2C), a diamond and square (Figure 6.3A), astroids
(Figure 6.3B), and roses (Figure 6.3C).
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Table 6.1: Relative change in area of the 2-D dual layer numerical solutions for the bottom
and top layers in the simulations where the initial area for the bottom layer is 2.25×106π µm2

and for the top layer is 5.625× 105π µm2. The relative change, in units of µm2, is compared
between t = 0 hours and t = 10 hours. cf. Figures 6.1–6.4.

Simulation Bottom Layer Top Layer

circles 0.3890 0.9087

ellipses 0.3082 0.7831

annulus and circle 0.3313 0.7821

two separated circles 0.3069 1.0980

two small circles inside a large circle 0.3153 0.9182

rectangles 0.3351 0.9333

diamond and square 0.5409 0.9011

astroids 0.3035 0.9392

roses 0.4010 1.0419

This is due to the absence of cell proliferation within the cell layers. If cells were allowed to

proliferate in the simulations, it is likely that the cells would continue to spread.

Figure 6.4 also shows the change in area of both layers for all the different initial geometry

cases and Table 6.1 lists the relative change in area between t = 0 hours and t = 10 hours.

The relative change in area of the bottom layer was very similar for all the simulations.

However, it appears that the less cusps and edges the initial shape has, the less relative

change in area. We obtain different results for the top layer since the leading edge is affected

by the behavior of the bottom layer. The initial geometries with the largest relative change

in area are the two separated circles and rose, and the initial geometries with the smallest

relative change in area are the ellipse and annulus. The initial geometries that evolve into a

single circle or ellipse shape the soonest, the less relative change in area.

The next series of figures shows the evolution of two cell layers in the case where the

83



2 1 0 1 2
2

1

0

1

2

mm

m
m

2 1 0 1 2
200

400

600

800

1000

1200

radial position (mm)

d
e
n
s
it

y
(c

e
ll

s
/
m

m
2
)

Figure 6.5: Numerical solution of the dual layer model for varying parameters (control

case). Here, F1

k1
= F2

k2
= F2

k1
= 0.5 (dimensionless), k1

b1
= k2

b2
= k2

b1
= 5000µm

2

h
, and ρ01 =

ρ02 = 0.0005 cells
µm2 . The top layer is in red and the bottom layer is in blue. The shaded regions

indicate where the cells are initially seeded. The curves are at drawn every 2 hours from 2
to 10 hours, where the lightest curve is at t = 2 and the darkest curve is at t = 10. The first
column shows the position of the leading edge of the migrating cell layers as seen from above,
and the second column shows the density profile of the cell layers as a cross-section through
the x-axis.

layers have differing mechanical properties, but the same initial geometry. Figure 6.5 shows

the control case in which the two layers have the same parameters, i.e. F1

k1
= F2

k2
= F2

k1
,

k1
b1

= k2
b2

= k2
b1

, and ρ01 = ρ02. For each comparison simulation, we increase or decrease only

one of the parameters, except ρ01 or ρ02. Any asymmetry in the simulations shown is due to

numerical error. The main differences in the simulations compared to the control case are

as follows.

In Figure 6.6 we halve and double the net external force due to lamellipodia formation of

the bottom layer, F1. Halving the force F1 appears to cause the bottom layer to equilibrate

sooner, while doubling F1 causes the bottom layer to migrate faster and the top layer slower

than in the control case.
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Figure 6.6: Numerical solution of the 2-D dual layer model for varying parameters. The
color scheme is the same but F1 is half or double that as in Figure 6.5 while the other
parameters remain fixed, such that, respectively, (A) F1

k1
= 0.25, and (B) F1

k1
= 1.
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In Figure 6.7 we halve and double the net external force due to lamellipodia formation

of the top layer, F2. Halving the force F2 appears to cause the top layer to migrate slower,

while doubling F2 causes the top layer to migrate faster and the bottom layer to have a

larger density gradient near ∂Ωt
2 compared to the control case.

In Figure 6.8 we halve and double the stretching modulus of the bottom layer, k1. If

k1 is halved so that the bottom layer is less stiff (more flexible), the bottom layer migrates

faster and has a larger density gradient near ∂Ωt
2, while if k1 is doubled so that the bottom

layer is stiffer (more rigid), the bottom layer migrates slower compared to the control case.

In Figure 6.9 we halve and double the stretching modulus of the top layer, k2. If k2

is halved so that the top layer is less stiff (more flexible), the top layer appears to migrate

faster, while if k2 is doubled so that the top layer is stiffer (more rigid), the top layer migrates

slower than in the control case.

In Figure 6.10 we halve and double the adhesion constant between the bottom layer and

substrate, b1. Halving the adhesion b1 causes the density in the interior of both layers to

decrease faster, while doubling the adhesion b1 causes the density in the interior of both

layers to decrease slower compared to the control case.

In Figure 6.11 we halve and double the adhesion constant between the two layers, b2.

Halving the adhesion b2 causes the density in the interior of the top layer to decrease faster,

while doubling the adhesion b2 causes the density in the interior of the top layer to decrease

slower compared to the control case.

We list the final area and relative difference in area compared to the control case in

Table 6.2. We deduce that the parameters that have the largest influence in behavior for

either the top or bottom layer are F1, F2, k1, and k2, and the parameters that have the

smallest influence in behavior are b1 and b2. Hence, from this study we conclude that the net

external force due to lamellipodia formation and stiffness of both layers plays a substantial

role in the amount of spreading of dual cell layers while the adhesion between the bottom

layer and the substrate and the adhesion between the two layers does not affect migration

as much.
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Figure 6.7: Numerical solution of the 2-D dual layer model for varying parameters. The
color scheme is the same but F2 is half or double that as in Figure 6.5 while the other
parameters remain fixed, such that, respectively, (A) F2

k1
= F2

k2
= 0.25, and (B) F2

k1
= F2

k2
= 1.
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Figure 6.8: Numerical solution of the 2-D dual layer model for varying parameters. The
color scheme is the same but k1 is half or double that as in Figure 6.5 while the other
parameters remain fixed, such that, respectively, (A) F1

k1
= F2

k1
= 1, k1

b1
= 2500µm

2

h
, and

(B) F1

k1
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k1
= 0.25, k1
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= 10000µm
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Figure 6.9: Numerical solution of the 2-D dual layer model for varying parameters. The
color scheme is the same but k2 is half or double that as in Figure 6.5 while the other
parameters remain fixed, such that, respectively, (A) F2

k2
= 1, k2

b1
= k2

b2
= 2500µm
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, and

(B) F2
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Figure 6.10: Numerical solution of the 2-D dual layer model for varying parameters. The
color scheme is the same but b1 is half or double that as in Figure 6.5 while the other
parameters remain fixed, such that, respectively, (A) k1

b1
= k2

b1
= 10000µm
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, and (B) k1
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Figure 6.11: Numerical solution of the 2-D dual layer model for varying parameters. The
color scheme is the same but b2 is half or double that as in Figure 6.5 while the other
parameters remain fixed, such that, respectively, (A) k2

b2
= 10000µm
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, and (B) k2
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Table 6.2: Relative difference in area of the 2-D dual layer numerical solutions for the
bottom and top layers in the simulations with the same initial geometry but different pa-
rameters. The parameters for the control case are F1

k1
= F2

k2
= F2

k1
= 0.5 (dimensionless),

k1
b1

= k2
b2

= k2
b1

= 5000µm
2

h
, and ρ01 = ρ02 = 500 cells

µm2 . The relative difference between the
control case and the other simulations is calculated at t = 10 hours. All values are in units
of µm2. cf. Figures 6.5–6.11.

Parameters Bottom Layer Top Layer

Final Area Rel. Diff. Final Area Rel. Diff.

control 0.9188× 107 4.8364× 106

F1 halved 0.8065× 107 0.1223 4.9477× 106 0.0230

F1 doubled 1.1253× 107 0.2247 4.6229× 106 0.0441

F2 halved 0.9235× 107 0.0051 4.1167× 106 0.1488

F2 doubled 0.9136× 107 0.0056 5.7008× 106 0.1787

k1 halved 0.9947× 107 0.0825 4.7328× 106 0.0214

k1 doubled 0.8377× 107 0.0883 4.9909× 106 0.0319

k2 halved 0.9173× 107 0.0016 5.3116× 106 0.0983

k2 doubled 0.9204× 107 0.0017 4.4102× 106 0.0881

b1 halved 0.9905× 107 0.0780 4.8847× 106 0.0100

b1 doubled 0.8606× 107 0.0634 4.7895× 106 0.0097

b2 halved 0.9170× 107 0.0020 5.2465× 106 0.0848

b2 doubled 0.9199× 107 0.0011 4.5526× 106 0.0587

6.1 LEVEL SET METHOD

The level set method was first introduced by Osher and Sethian [49] and applied to Stefan

problems by Chen et al. [11], among others. Arciero et al. [3] based their numerical method

for solving the two-dimensional spatial formulation of single cell layer migration on the

method of Javierre et al. [33]. We extend this numerical method to include two adhering
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cell layers to solve the two-dimensional dual layer model equations (Model 3) by employing

a domain decomposition method to account for where the migrating cells in each layer are

located.

The level set method tracks a moving boundary, which is represented as the zero level

set of a smooth function, on a fixed grid. Recalling the schematic in Figure 5.1, the moving

boundaries are ∂Ωt
1 and ∂Ωt

2 and we denote their corresponding level set functions as Φ1

and Φ2, respectively. Initially these level set functions describe the signed distance d from

each grid point to the boundary, where the functions are positive if there are cells in that

location, zero on the boundary, or negative otherwise. In other words,

Φ1(x, 0) =


d(x, ∂Ω0

1), x ∈ Ω0
1

0, x ∈ ∂Ω0
1

−d(x, ∂Ω0
1), x /∈ Ω0

1

, Φ2(x, 0) =


d(x, ∂Ω0

2), x ∈ Ω0
2

0, x ∈ ∂Ω0
2

−d(x, ∂Ω0
2), x /∈ Ω0

2

. (6.1)

Examples of level set functions are listed in Table 6.3. If the initial boundary is specified

in terms of position coordinates, then the distance from any grid node to a boundary is

calculated as the minimum Euclidean distance from the grid node position to all the position

coordinates. Due to the existence of an interface condition but not a boundary condition for

the bottom layer on ∂Ωt
2, in our simulations we cannot have Φ2(x, 0) = 0 on any of the grid

nodes.

We note, for clarity later in this section, that there is an expression for the distance from

the moving boundary to neighboring grid nodes that depends on the level set function. For

example, assume xf = (xf , j∆y), for some integer j, is a point on ∂Ωt
1 or ∂Ωt

2. The distances

between xf and the two neighboring grid nodes in the x-direction xi,j and xi+1,j, such that

xi < xf < xi+1, are calculated by

xi+1 − xf =

(
Φi+1,j

Φi+1,j − Φi,j

)
∆x, (6.2a)

xf − xi = −
(

Φi,j

Φi+1,j − Φi,j

)
∆x. (6.2b)

We take the initial domain to be rectangular with a uniform mesh. Let nx be the number

of grid nodes and ∆x the grid spacing in the x-direction, and let ny be the number of grid
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Table 6.3: Examples of level set functions Φ for various initial geometries in the case of
cell colony growth. For wound healing, use −Φ. Here, x = (x, y) is the coordinate position
of a grid node and (x0, y0) denotes the coordinate position of the center of the shape.

Shape Φ(x, y) Meaning of Variables

circle r −
√

(x− x0)2 + (y − y0)2 r = radius

annulus rout−rin
2
−
∣∣∣√(x− x0)2 + (y − y0)2 − rout−rin

2

∣∣∣ rin = inner radius
rout = outer radius

ellipse
rx −

√
(x− x0)2 +

(
rx
ry

)2

(y − y0)2
rx = radius in x-direction
ry = radius in y-direction

rectangle −max
{
|x− x0| − `x

2
, |y − y0| − `y

2

}
`x = length in x-direction
`y = length in y-direction

astroid r2/3 −
(
(x− x0)2/3 + (y − y0)2/3

)
r = radius

p-norm ball r − (|x− x0|p + |y − y0|p)1/p r = radius

rose A cos
(
k arctan

(
y
x

))
+ z

−
√

(x− x0)2 + (y − y0)2

A = petal amplitude
k = number of petals
z = inner petal distance

nodes and ∆y the grid spacing in the y-direction. We denote the time step as ∆t, which is

adaptive, and we assume that the top layer of cells never migrates past the bottom layer of

cells.

The first step of the algorithm involves moving the level set functions Φ1 and Φ2 with

velocity determined by the Stefan conditions (5.13). Recall that the Stefan conditions are

expressions for the velocity of only the moving boundaries. The velocity v = (υx, υy, υη, υζ)

for each boundary is computed, respectively, in the standard Cartesian coordinates x, y and

the 45◦-rotated coordinates η, ζ, since the four coordinate directions reduce grid orientation

effects (Chen et al. [11]). The algorithm for the discretization of υx, for example, is as follows.

If cells from only one layer are located at grid node (i, j), then

• If Φi,j−1 < 0 and Φi,j+1 < 0, let r1 =
Φi,j

Φi,j−Φi,j−1
and r2 =

−Φi,j

Φi,j+1−Φi,j
.

� If r1 = 0, then υxi,j−1 = 0, else υxi,j−1 = D
Br1∆x

(B − ρi,j).
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� If r2 = 0, then υxi,j+1 = 0, else υxi,j+1 = D
Br2∆x

(ρi,j −B).

� If r1 < r2, then υxi,j = υxi,j−1, else υxi,j = υxi,j+1.

• Else if Φi,j−1 < 0, let r =
Φi,j

Φi,j−Φi,j−1
.

� If r ≤ TOL, then υxi,j = D
B(1+r)∆x

(B − ρi,j+1), else υxi,j = D
Br∆x

(B − ρi,j).
� Set υxi,j−1 = υxi,j.

• Else if Φi,j+1 < 0, let r =
−Φi,j

Φi,j+1−Φi,j
.

� If r ≤ TOL, then υxi,j = D
B(1+r)∆x

(ρi,j−1 −B), else υxi,j = D
Br∆x

(ρi,j −B).

� Set υxi,j+1 = υxi,j.

If we are calculating the velocity of the boundary of the bottom layer, then D = k1
b1

and

B = ρ01e
−F1/k1 (see Equation (5.11a)). If we are calculating the velocity of the boundary of

the top layer, then D = k2
b1

+ k2
b2

and B = ρ02e
−F2/k2 (see Equation (5.11b)). TOL is a small

value, less than ∆x, that specifies a different discretization depending on how close the grid

node (i, j) is to the boundary to reduce numerical error.

However, if cells from both layers are located at grid node (i, j), then

• If Φi,j−1 < 0 and Φi,j+1 < 0, let r1 =
Φi,j

Φi,j−Φi,j−1
, R1 = 2r1−∆x

2r1+∆x
, r2 =

−Φi,j

Φi,j+1−Φi,j
, and

R2 = 2r2+∆x
2r2−∆x

.

� If r1 = 0, then υxi,j−1 = 0, else

υxi,j−1 = D
Br1∆x

(B − ρi,j) + D̂
ρ̂i,j

(
E

(1−R1)∆x
ρ̂i,j−1 − (1 +R1)ρ̂i,j +R1Eρ̂i,j+1

)
.

� If r2 = 0, then υxi,j+1 = 0, else

υxi,j+1 = D
Br2∆x

(ρi,j −B) + D̂
ρ̂i,j

(
E

(1−R2)∆x
ρ̂i,j−1 − (1 +R2)ρ̂i,j +R2Eρ̂i,j+1

)
.

� If r1 < r2, then υxi,j = υxi,j−1, else υxi,j = υxi,j+1.

• Else if Φi,j−1 < 0, let r =
Φi,j

Φi,j−Φi,j−1
and R = 2r−∆x

2r+∆x
.

� If r ≤ TOL, then

υxi,j = D
B(1+r)∆x

(B − ρi,j+1) + D̂
ρ̂i,j

(
E

(1−R)∆x
ρ̂i,j−1 − (1 +R)ρ̂i,j +Rρ̂i,j+1

)
, else

υxi,j = D
Br∆x

(B − ρi,j) + D̂
ρ̂i,j

(
E

(1−R)∆x
ρ̂i,j−1 − (1 +R)ρ̂i,j +Rρ̂i,j+1

)
� Set υxi,j−1 = υxi,j.

• Else if Φi,j+1 < 0, let r =
−Φi,j

Φi,j+1−Φi,j
and R = 2r+∆x

2r−∆x
.
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� If r ≤ TOL, then

υxi,j = D
B(1+r)∆x

(ρi,j−1 −B) + D̂
ρ̂i,j

(
1

(1−R)∆x
ρ̂i,j−1 − (1 +R)ρ̂i,j +REρ̂i,j+1

)
, else

υxi,j = D
Br∆x

(ρi,j −B) + D̂
ρ̂i,j

(
1

(1−R)∆x
ρ̂i,j−1 − (1 +R)ρ̂i,j +REρ̂i,j+1

)
.

� Set υxi,j+1 = υxi,j.

Here, ρ̂ is the density of the other layer, and D, B, and TOL are as above. If we are

calculating the velocity of the boundary the bottom layer, then D̂ = k2
b1

+ k2
b2

and E = e−F2/k2

(see Equation (5.15)). If we are calculating the velocity of the boundary of the top layer,

then D̂ = k1
b1

and E = eF2/k2 (see Equation (5.15)).

Note that for the discretizations of υy, υη, and υζ , the following substitutions from the

discretization of υx are made.

υy : ∆x 7→ ∆y, (i, j − 1) 7→ (i− 1, j), (i, j + 1) 7→ (i+ 1, j)

υη : ∆x 7→
√

(∆x)2 + (∆y)2, (i, j − 1) 7→ (i− 1, j − 1), (i, j + 1) 7→ (i+ 1, j + 1)

υζ : ∆x 7→
√

(∆x)2 + (∆y)2, (i, j − 1) 7→ (i+ 1, j − 1), (i, j + 1) 7→ (i− 1, j + 1)

The velocity components are then continuously extended off the boundary to the entire

domain for each layer via the advection equations

∂υx

∂τ
+ sign(ΦΦx)

∂υx

∂x
= 0, (6.3a)

∂υy

∂τ
+ sign(ΦΦy)

∂υy

∂y
= 0, (6.3b)

∂υη

∂τ
+ sign(ΦΦη)

∂υη

∂η
= 0, (6.3c)

∂υζ

∂τ
+ sign(ΦΦζ)

∂υζ

∂ζ
= 0, (6.3d)

where τ is a pseudo-time. These equations are discretized with a first-order upwind scheme.

The time step ∆τ is arbitrary and independent of the main time step ∆t, but it must

satisfy the Courant-Friedrichs-Lewy (CFL) condition ∆τ
min{∆x,∆y} ≤ 1. A fixed number of

pseudo-time iterations is carried out to reduce computational cost.

Once the components of the (now continuously extended) velocity v for each layer have

been obtained, we propagate each level set function via

∂Φ

∂t
+ v‖∇Φ‖ = 0, (6.4)
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which is solved using a forward Euler discretization in time and weighted essentially non-

oscillatory (WENO) approximations to the spatial derivatives. This discretization leads to

a CFL condition on the main time step

∆t max
layer 1, layer 2

{
‖υx‖∞

∆x
+
‖υy‖∞

∆y
+

‖υη‖∞√
∆x2 + ∆y2

+
‖υζ‖∞√

∆x2 + ∆y2

}
< 1, (6.5)

where we define ‖ · ‖∞ as the maximum norm and we take the maximum sum over both

layers. The main time step ∆t is updated each iteration based on this condition.

The level set functions in general cease to be exact distance functions, i.e. ‖∇Φ‖ 6= 1,

even after one time step (Sussman et al. [70]). To avoid steep or flat gradients in Φ near the

moving boundaries, the level set functions are reinitialized to be exact distance functions

from the moving boundary at every time step. Given a function Φ0 that is not an exact

distance function, we can evolve it into an exact distance function by iterating the following

to steady state

∂Φ

∂τ
= sign(Φ0)(1− ‖∇Φ‖), (6.6a)

Φ(x, 0) = Φ0(x). (6.6b)

Here, τ is a pseudo-time and sign is the smooth sign function sign(x) = x√
x2+ε2

. The equation

is discretized using Godunov’s method in pseudo-time, a third-order Runge-Kutta scheme

in real time, and fifth-order WENO approximations for the spatial gradient. Only 3–10

iterations are needed for sufficient accuracy to evolve Φ to an exact distance function (Javierre

et al. [33]). At this point we verify that the top layer does not extend further than the bottom

layer to satisfy our model assumptions, otherwise the program is exited.

After the level set functions Φ1 and Φ2 have moved the correct velocity at the moving

boundary and been reinitialized as exact distance functions, we solve (5.10) for the density

of each cell layer over the entire domain using a finite difference scheme with adjustments

for grid nodes near the boundary. We also use domain decomposition to solve the governing

equations separately on the two disjoint nonoverlapping domains Ωt
1 ∩ Ωt

2, where there is a

system of two coupled equations, and Ωt
1 \ Ωt

2, where there is a single uncoupled equation

(see Figure 6.12).
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Figure 6.12: Domain decomposition of the 2-D dual layer problem: Since there is a system
of two coupled equations in the domain Ωt

1∩Ωt
2 but a single uncoupled equation in the domain

Ωt
1\Ωt

2, we decompose the entire domain into these two disjoint nonoverlapping domains and
solve the governing equations independently on each domain.

We first create matrices representing the discrete Laplacians for k1
b1

∆ρ1, k2
b1

∆ρ2, and(
k2
b1

+ k2
b2

)
∆ρ1 using the standard 5-point stencil scheme (Chen et al. [11]), but we update the

rows that correspond to grid nodes near the moving boundary or outside of the actual domain.

A cut-cell method is used to adapt the grid to the location of the domains by “cutting” grid

nodes that are not located within the domain (Javierre et al. [33]). In practice, this means

setting equal to zero those rows of the discretized Laplacian matrix that correspond to any

grid node not in the domain.

For grid nodes that border the moving boundaries, the standard 5-point stencil scheme

is adjusted using interpolating polynomials and one-sided differencing with values of Φ near

the interface, the boundary conditions (5.11), and the interface condition (5.15) (Chen

et al. [11]). To incorporate the interface condition (5.15) into the discretization, we use

the additive Schwarz method for Dirichlet conditions with one iteration (Quarteroni [54],

Geiser [24], Toselli and Widlund [76]). For example, for discretization in the domain Ωt
1∩Ωt

2, if

xf = (xf , j∆y), for some integer j, is a point on ∂Ωt
2 and cells in the top layer are located

at the grid node xi,j but not the grid node xi+1,j, such that xi < xf < xi+1, then the value

of the density of the bottom layer on the boundary ∂Ωt
2 is calculated as eF2/k1ρi+1,j, where

ρ is from the previous time step. Correspondingly, for discretization in the domain Ωt
1 \ Ωt

2,
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the value of the density of the bottom layer on the boundary ∂Ωt
2 is calculated as e−F2/k1ρi,j,

where ρ is from the previous time step. We note that, unlike in the discretization of the

velocity of the level sets, we use the same discretization no matter how close a grid node is

to the moving boundary.

Using the backward Euler method for time integration, we obtain two linear systems,

one which solves the two coupled equations on Ωt
1 ∩ Ωt

2 for ρ1|Ωt
1∩Ωt

2
and ρ2, and one which

solves the single uncoupled equation on Ωt
1 \Ωt

2 for ρ1|Ωt
1\Ωt

2
. The density of the bottom layer

is obtained by simply adding together ρ1|Ωt
1∩Ωt

2
+ ρ1|Ωt

1\Ωt
2
.

6.1.1 Analysis of the Numerical Method

One of largest issues with the level set method we presented is mesh refinement. If the mesh

is too coarse, blow up can occur near the moving boundary. However, computer limitations

restrict how fine a mesh may be.

Our numerical code is written in MATLAB, which has limits on memory allotment and

maximum allowed array size. For example, with MATLAB Version 7.4 (R2007A), the largest

number of elements in a real double array is bounded by approximately 2 × 108 for 32-bit

Windows XP or Vista, or Mac OS X running 32-bit MATLAB; 3×108 for 32-bit Linux, 64-bit

Linux running 32-bit MATLAB, or 64-bit Windows XP running 32-bit MATLAB; 4×108 for

Solaris running 32-bit MATLAB; 2× 109 for 64-bit Windows XP, Linux, or Solaris running

64-bit MATLAB Version 7.4 and earlier; and 3 × 1014 for 64-bit Windows XP, Linux, or

Solaris running 64-bit MATLAB Version 7.5 and later (MathWorks [41]). Note that these

values depend primarily on the total amount of memory MATLAB has available for all of

the variables in the workspace, and additional random-access memory (RAM) installed on a

machine with a 32-bit operating system or 32-bit version of MATLAB will not increase the

total amount of available memory.

If our grid size is ny×nx, then the discrete Laplacian matrices are size nxny×nxny, and

thus they have (nxny)
2 elements. If (nxny)

2 is larger than the maximum allowed array size,

then our mesh cannot be refined to be ny × nx.

However, refining the mesh may not be viable due to the computational time. Table 6.4
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Table 6.4: Elapsed CPU time for numerical solutions of the 2-D dual layer model for
varying mesh sizes. Simulations on a 5000µm × 5000µm domain are compared for various
grid sizes which correspond to the grid spacings ∆x and ∆y, which are equal in this case. cf.
Figures 6.13–6.14.

Grid Size Grid Spacing (µm) CPU Time

25× 25 208.3333 3.6 sec

50× 50 102.0408 6.1 sec

100× 100 50.5051 24.6 sec

200× 200 25.1256 2.7 min

300× 300 16.7224 10.5 min

400× 400 12.5313 30.4 min

500× 500 10.0200 1.2 hr

600× 600 8.3472 2.9 hr

700× 700 7.1531 5.6 hr

lists the elapsed central processing unit (CPU) time on a Dell Precision T3500 Workstation

with quad-core 2.66GHz processor and 12 GB memory, running 64-bit Ubuntu 12.04 LTS

and 64-bit MATLAB Version R2012a for various mesh sizes. The results of the simulations

for a portion of the respective mesh sizes are shown in Figures 6.13–6.14. It is clear that for

mesh sizes too small, the solution may not stay bounded, as in Figure 6.13A. As the mesh is

refined, the solution becomes more smooth. However, the solution in the most refined mesh

shown in Figure 6.14C still has some roughness to its boundaries upon very close examination

on a magnified scale, but refining the mesh more would require more than 6 hours of elapsed

CPU time, which is not very practical. On average, a grid size of 200× 200 appears to give

the most reliable results for the least amount of elapsed CPU time, and furthermore the size

of the discrete Laplacians remain less than the maximum array size on almost all operating

systems and MATLAB versions.
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Figure 6.13: Numerical solution of the 2-D dual layer model for varying mesh sizes. Here,
F1

k1
= F2

k2
= F2

k1
= 0.5 (dimensionless), k1

b1
= k2

b2
= k2

b1
= 5000µm

2

h
, and ρ01 = ρ02 = 0.0005 cells

µm2 .
The top layer is in red and the bottom layer is in blue. The shaded regions indicate where the
cells are initially seeded. The curves are drawn at every 2 hours from 2 to 10 hours, where
the lightest curve is at t = 2 and the darkest curve is at t = 10. The first column shows the
position of the leading edge of the migrating cell layers as seen from above, and the second
column shows the density profile of the cell layers as a cross-section through the x-axis. Grid
sizes are (A) 25× 25, (B) 50× 50, and (C) 100× 100.
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Figure 6.14: Numerical solution of the 2-D dual layer model for varying mesh sizes. Pa-
rameters and color scheme are the same as in Figure 6.13. Grid sizes are (A) 200 × 200,
(B) 400× 400, and (C) 700× 700.
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7.0 ESTIMATING MODEL PARAMETERS FROM EXPERIMENTAL

DATA

Now that we have developed a model of cell migration for two adhering layers of cells (Model

3) and a way to (numerically) solve the equations (see Section 6.1), we can apply the model

to experimental data. Doing so allows us to determine properties of the cell layers that

we may not be able to directly measure otherwise. Since the parameters in our continuum

mechanical model correspond to physical properties, by estimating model parameter values

that best represent the behavior of an experiment, we can deduce the material properties of

the cell layers.

We note that not all of the model parameters k1, k2 (stretching moduli), b1, b2 (adhesion

constants), F1, F2 (net external forces), and ρ01, ρ02 (density of the unstressed cell layers)

are identifiable. In other words, since the first six parameters in the list appear in the model

equations only as the ratios F1

k1
, F2

k2
, F2

k1
, b1
k1

, b2
k2

, and b2
k1

, we will not be able to reliably determine

k1, k2, b1, b2, F1, and F2 separately. Hence, we optimize the values of F1

k1
, F2

k2
, F2

k1
, b1
k1

, b2
k2

,

b2
k1

, ρ01, and ρ02 to determine the material properties of the cell layers. Optimal values are

found by minimizing the sum of the mean-squared difference between the experimental and

predicted cell layer edge positions and the mean-squared difference between the experimental

and predicted densities.

7.1 EXPERIMENTAL SETUP

The data to which we apply our continuum mechanical model of single and dual cell layer

migration was provided by the Davidson Lab at the University of Pittsburgh, and we briefly
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describe their experimental setup in this section. The lab maintains a colony of African

claw-toed frogs, Xenopus laevis, under the Institutional Animal Care and Use Committee

(IACUC) of the University of Pittsburgh (Protocol #12020250). Eggs are obtained and

fertilized through standard methods, and then fertilized eggs are cultured in standard media

until they reach gastrula stages (Sive et al. [67]). Select embryos are transferred to explant

culture media. Desired tissue explants, consisting of an outer epithelial layer and one in-

ner mesenchymal layer, are microsurgically isolated and then transferred to custom culture

chambers such that the mesenchymal cells contact a glass coverslip surface that has been

coated with fibronectin for live time-lapse imaging (Kim and Davidson [35]). Detergent is

used to cleave the epithelial cells in a microfluidic channel in the dual layer experiments

shown in Section 7.3.

Time-lapse images of migrating animal cap explants are collected using a multi-position

stage (Ludl XY stage and MAC 2000 controller, Ludl Electronic Products Ltd., Hawthorne,

NY) and a stereomicroscope with a video port (Stemi 2000, Carl Zeiss Microscopy, LLC,

Thornwood, NY) equipped with a CCD camera (CFW-1312M, Scion Corporation, Frederick,

MD) under the control of automated image acquisition software, the Micro-Manager software

plugin for ImageJ (Schneider et al. [60], Stuurman et al. [69], Rueden and Eliceiri [58]).

Details regarding the extraction of data from the images are in the subsequent section.

While the images do not report thicknesses of the cells or tissues within the experimental

samples, the samples do not change volume over the course of the experiment. Thus our

assumption of uniform thickness of both cell layers in the model equations is reasonable.

7.2 PARAMETER OPTIMIZATION METHOD

We extract both the cell layer edge position and density data from time-lapse images of cell

migration using the software ImageJ and Fiji (Schneider et al. [60], Schindelin et al. [59]). The

edge position data is extracted from the images in one of two ways. Either the edge positions

are extracted using the Fiji software plugin Level Sets, which is an image segmentation

technique based on partial differential equations, or by eye. The error is expected to be less
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than 5 pixels.

To calculate the difference between the experimental and computational edge positions

for each cell layer, the minimum difference from each experimental point to every line segment

along the computational edge is found for the jth image in the time-lapse sequence and

denoted d1,j for the bottom cell layer and d2,j for the top cell layer. The square root of the

average of the squares of these minimum distances is calculated and denoted Di,j, where for

each cell layer i = 1, 2,

Di,j =

√√√√ N∑
n=1

d2
i,j

N
, (7.1)

where index n denotes the experimental points counted along the edge and N is the total

number of these points. Summing over all time points and cell layers gives

zd =
2∑
i=1

tend∑
j=1

Di,j. (7.2)

Extracting the density data is more complicated. We use a method that involves calcu-

lating the strain, or local deformation, from one still image to the subsequent still image in

the time-lapse sequence. Let us first review some definitions from mechanics.

Let X = (X1,X2) be the initial (x, y)-coordinate positions, i.e. the material coordinates,

and x = (x1,x2) be the current (x, y)-coordinate positions, i.e. the spatial coordinates. The

conservation of mass equation can be written as

ρ =
ρ0

det F
, (7.3)

where ρ is the current density, ρ0 is the constant density of the relaxed (unstressed) cell

layer, and F is the deformation gradient defined as

F(X, t) =


∂x1(X, t)

∂X1

∂x1(X, t)

∂X2

∂x2(X, t)

∂X1

∂x2(X, t)

∂X2

 . (7.4)

The deformation gradient is related to the displacement vector

u(X, t) = x(X, t)−X, (7.5)
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in the following way. Since the displacement gradient is defined as

∇u =


∂u1

∂X1

∂u1

∂X2

∂u2

∂X1

∂u2

∂X2

 =


∂x1

∂X1

∂x1

∂X2

∂x2

∂X1

∂x2

∂X2

− I, (7.6)

where I is the identity matrix, this implies that

F = ∇u + I. (7.7)

Since the cells in the experiments we analyze are pigmented, we use a texture mapping

strategy with the ImageJ software plugin bUnwarpJ, which is used for elastic and consistent

image registration, to extract the strains (Arganda-Carreras et al. [4]). If our set of time-

lapse images have width n pixels and height m pixels, then we can represent properties of

each pixel by an entry in m× n matrices. For each pair of consecutive images from a time-

lapse sequence, let X = (X1,X2) be the (x, y)-coordinate positions in the first still image,

in pixels, and x = (x1,x2) be the (x, y)-coordinate positions in the second still image, in

pixels. The top left corner of an image is the origin, and x increases from left to right and

y increases from top to bottom. The entries of X are therefore defined by

X1(i, j) = j − 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (7.8a)

X2(i, j) = i− 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m. (7.8b)

We mask the two consecutive images so that registration occurs only in the actual location

of cells. We then initialize bUnwarpJ to calculate the coefficients of the cubic B-spline map β

that defines the transformation (X1,X2)
β−→ (x1,x2). Initializing bUnwarpJ again, we apply

β to X by converting the transformation to “raw” data. We obtain x, the mapped position

of each pixel from the first image to its position in the second image, in pixels. Note that

pixels outside of the mask will be mapped as well, but we remove this extraneous data after

we have obtained the strains. Next, we calculate the displacement vector u by

u1(i, j) = x1(i, j)−X1(i, j), i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (7.9a)

u2(i, j) = x2(i, j)−X2(i, j), i = 1, 2, . . . , n, j = 1, 2, . . . ,m. (7.9b)
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It is at this step that we obtain the strains. The engineering, or Cauchy, strain is defined

as

ε =
∆L

L0

=
L− L0

L0

, (7.10)

where ∆L is the change in length, L0 is the original length, and L is the current length. u

is converted into x-strain, y-strain, xy-strain, and yx-strain by

εxx(i, j) =
u1(i, j)− u1(i− 1, j)

X1(i, j)−X1(i− 1, j)
, i = 2, 3, . . . , n, j = 1, 2, . . . ,m, (7.11a)

εxy(i, j) =
u1(i, j)− u1(i, j − 1)

X2(i, j)−X2(i, j − 1)
, i = 1, 2, . . . , n, j = 2, 3, . . . ,m, (7.11b)

εyx(i, j) =
u2(i, j)− u2(i− 1, j)

X1(i, j)−X1(i− 1, j)
, i = 2, 3, . . . , n, j = 1, 2, . . . ,m, (7.11c)

εyy(i, j) =
u2(i, j)− u2(i, j − 1)

X2(i, j)−X2(i, j − 1)
, i = 1, 2, . . . , n, j = 2, 3, . . . ,m. (7.11d)

Note that all of the denominators above equal 1 pixel. We can numerically approximate the

displacement gradient at each pixel as

∇u(i, j) =

εxx(i, j) εxy(i, j)

εyx(i, j) εyy(i, j),

 , i = 2, 3, . . . , n, j = 2, 3, . . . ,m, (7.12)

and thus we have an approximation for the deformation gradient at each pixel,

F(i, j) =

εxx(i, j) εxy(i, j)

εyx(i, j) εyy(i, j),

+ I, i = 2, 3, . . . , n, j = 2, 3, . . . ,m. (7.13)

At each pixel, we approximate the experimental density, denoted as ρexp,j, from (7.3)

with the deformation gradient (7.13) for the jth image in the time-lapse sequence. However,

we do not multiply by ρ0 since ρ01 and ρ02 are parameters we are trying to optimize. We

also do not differentiate between the cell layers since we cannot determine the density of the

bottom layer if the top layer is located at the same position from our method. Since the

size of the matrix ρexp,j may not be the same size as the computational grid, we first linearly

interpolate the density values at the computational grid nodes. The computational densities

ρcomp,1,j and ρcomp,2,j are modified so that if cells from both the top layer and bottom layer are
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located at a point, only the top layer density is represented. The square root of the average

of the squares of the differences between the experimental and computational densities is

Pj =

√√√√√ L1∑
`1=1

L2∑
`2=1

((
ρcomp,1,j − ρ01ρexp,j

)∣∣
Ωt

1 \ Ωt
2

+
(
ρcomp,2,j − ρ02ρexp,j

)∣∣
Ωt

1 ∩ Ωt
2

)2

L1L2

, (7.14)

where ρcomp,1,j, ρcomp,2,j, and ρexp,j are all evaluated at (`1, `2), and the size of the computa-

tional grid is L2 × L1. Summing over all time points gives

zρ =

tend∑
j=1

Pj. (7.15)

To optimize according to both edge position and density, we minimize the value of

z = ωzd + zρ, (7.16)

where ω is a weighting factor, usually ω = 105. The minimization is done using the MATLAB

command fminsearch, which uses the simplex search method of Lagarias et al. [37]. A

penalty is imposed within the minimization procedure if any of the parameters are negative

or if any simulation results in the top layer of cells migrating past the bottom layer.

7.3 RESULTS

In this section, we present preliminary results on fitting the density and cell layer edge

positions of model predictions with available data. The data includes time-lapse images

of adhering epithelial and mesenchymal cell layers, only the epithelial layer, and only the

mesenchymal layer. For single cell layers, we use the two-dimensional single layer model

of Arciero et al. [3], and for dual cell layers, we use the two-dimensional dual layer model

(Model 3) presented in Chapter 5.
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Figures 7.1–7.2 show the predicted edge positions of an epithelial cell layer as a single

layer, denoted by solid yellow curves, compared with the experimental edge positions, de-

noted by dotted cyan curves. The optimal parameters for the epithelial layer by itself are

F

k
= 0.20413,

k

b
= 1464.3

µm2

h
, ρ0 = 0.0020361

cells

µm2
, (7.17)

which were optimized using the data from Figure 7.1. We expect ρ0, the constant density

of the initial relaxed (unstressed) cell layer, to be on the order of 0.002 cells
µm2 , depending on

the stage of development of the cells, so our estimate is physiologically relevant (J. Shawky,

D. Vijayraghavan, and L. A. Davidson, unpublished data). The epithelial layer does not

spread far on its own.

Figures 7.3–7.4 show the predicted edge positions of a mesenchymal cell layer as a sin-

gle layer, denoted by solid yellow curves, compared with the experimental edge positions,

denoted by dotted cyan curves. The optimal parameters for the epithelial layer by itself are

F

k
= 0.19031,

k

b
= 16442

µm2

h
, ρ0 = 0.0012202

cells

µm2
, (7.18)

which were optimized using the data from Figure 7.3. Since the cell colony does not move

radially outwards overall, our model cannot capture the behavior in the best manner possible

which might imply that there may be phenomena we are missing in the single layer model,

which was originally developed for epithelial cell sheets. However, it does capture where

density is the highest. We expect ρ0 for the mesenchymal cell layer to be approximately

half of ρ0 for the epithelial cell layer due to the differing sizes of each of the cell types. We

also do not expect the stiffness of each layer to be starkly different, so our results imply the

force due to lamellipodia formation F is approximately the same for both layers. However,

the stretching modulus to adhesion constant ratio k
b

is much larger for the mesenchymal cell

layer. This likely implies that mesenchymal cell layers, which are not as tightly connected

as epithelial cell layers because mesenchymal cells have less adherens junctions, adhere less

strongly to the substrate compared to epithelial layers.

Figures 7.5–7.6 show adhering epithelial and mesenchymal cell layers. The predicted

edge positions are denoted by solid yellow curves for the mesenchymal layer and solid green

curves for the epithelial layer. The experimental edge is denoted by the dotted cyan curves
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Figure 7.1: Comparison of model predictions with experimental edge: epithelial layer only.
The computed edge is represented by the solid yellow curves and the experimental edge is
represented by the dotted cyan curves. Optimized parameters are given in (7.17). The images
are 275 × 275 pixels. (A)–(I) The progression of experimental cell migration at 50 minute
time intervals using the estimated parameters.
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Figure 7.2: Comparison of model predictions with experimental edge: epithelial layer only.
The computed edge is represented by the solid yellow curves and the experimental edge is
represented by the dotted cyan curves. The parameters used are the ones optimized for Fig-
ure 7.1, which are given in (7.17). The images are 275×275 pixels. (A)–(I) The progression
of experimental cell migration at 50 minute time intervals using the estimated parameters.
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Figure 7.3: Comparison of model predictions with experimental edge: mesenchymal layer
only. The computed edge is represented by the solid yellow curves and the experimental edge
is represented by the dotted cyan curves. Optimized parameters are given in (7.18). The
images are 400 × 400 pixels. (A)–(I) The progression of experimental cell migration at 50
minute time intervals using the estimated parameters.
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Figure 7.4: Comparison of model predictions with experimental edge: mesenchymal layer
only. The computed edge is represented by the solid yellow curves and the experimental
edge is represented by the dotted cyan curves. The parameters used are the ones optimized
for Figure 7.3, which are given in (7.18). The images are 400 × 400 pixels. (A)–(I) The
progression of experimental cell migration at 50 minute time intervals using the estimated
parameters.
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Figure 7.5: Comparison of model predictions with experimental edge: epithelial and mes-
enchymal layers. The computed edge is represented by the solid yellow curves for the mes-
enchymal layer and solid green curves for the epithelial layer. The experimental edge is
represented by the dotted cyan curves for the mesenchymal layer and dotted magenta curves
for the epithelial layer. Optimized parameters are given by (7.19). The images are 800×800
pixels. (A)–(I) The progression of experimental cell migration at 35 minute time intervals
using the estimated parameters.
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Figure 7.6: Comparison of model predictions with experimental edge: epithelial and mes-
enchymal layers. The computed edge is represented by the solid yellow curves for the mes-
enchymal layer and solid green curves for the epithelial layer. The experimental edge is
represented by the dotted cyan curves for the mesenchymal layer and dotted magenta curves
for the epithelial layer. The parameters used are the ones optimized for Figure 7.5, which are
given by (7.19). The images are 800 × 800 pixels. (A)–(I) The progression of experimental
cell migration at 70 minute time intervals using the estimated parameters.
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for the mesenchymal layer and dotted magenta curves for the epithelial layer. We set

ρ01 = 0.0012202 cells
µm2 (see (7.18)) and ρ02 = 0.0020361 cells

µm2 (see (7.17)) and estimate the

remaining parameters. The optimal parameters for the epithelial and mesenchymal layers

together are

F1

k1

= 0.0069062,
F2

k1

= 1.8098,
F2

k2

= 0.017547,

k1

b1

= 259.44
µm2

h
,

k2

b1

= 202.57
µm2

h
,

k2

b2

= 2296.7
µm2

h
, (7.19)

which were optimized using the data from Figure 7.5. We see that F1

k1
is on the order of 10−2

times smaller than the optimized F
k

for the mesenchymal layer in (7.18) and F2

k2
is on the

order of 10−1 times smaller than the optimized F
k

for the epithelial layer in (7.17). Further,

k1
b1

is also on the order of 10−2 times smaller than the optimized k
b

for the mesenchymal layer

in (7.18) and k2
b2

is also on the order of 10−1 times smaller than the optimized k
b

for the

epithelial layer in (7.17).

In Figures 7.5–7.6, the computed edges do not seem to capture the experimental behavior

of the cell layers throughout the time-lapse sequences. This likely means that the optimal

parameters (7.19) correspond to a local minimum instead of a global minimum or we may be

missing features corresponding to adhering epithelial and mesenchymal cell layer migration

in our model. To obtain a global minima, we should explore more of the parameter space,

keeping in mind that the elapsed CPU time for the parameter estimation procedure (on the

same machine as described in Section 6.1.1) is on the order of days.

Since we do not allow the top epithelial layer to migrate ahead of the bottom mesenchymal

layer in our numerical code, the points along the initial boundary of the top layer are set

slightly inside its actual boundary if they coincide with points along the initial boundary of

the bottom layer. This partly explains why the computed edge of the top layer in Figure 7.5

does not capture the merging of the two portions of the epithelial layer very well. One solution

to this issue is to refine the mesh so that the difference in the actual initial boundary of the

top layer and the initial boundary used in simulations can be minimized, noting that this

will cause the elapsed CPU time for the parameter estimation procedure to increase.

Our preliminary study of fitting model predictions with experimental data is promising.

Parameter space needs to be further explored to find global minima so that we can perform
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a full comparison between the case when the epithelial or mesenchymal cell layer is treated

as a single layer and the case when the epithelial and mesenchymal cell layers are adhering

together while migrating.
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8.0 DISCUSSION

In the first portion of this dissertation, we reviewed the one-dimensional elastic continuum

model of cell layer migration of Mi et al. [43] and extended it to include stretch-dependent

proliferation, as a cell layer that is stretched may be more likely to reproduce than a com-

pressed, crowded cell layer. The majority of growth functions discussed in this dissertation

are physiologically relevant because they indicate proliferation when cells are stretched and

decay when cells are compressed while the others are more theoretical in nature. The mate-

rial formulation is equivalent to the spatial formulation of Arciero et al. [3], which we showed

through point-particle interchangeability.

The material formulation with stretch-dependent growth is numerically solved using an

adaptive finite difference method, which is much simpler, in terms of the number of lines of

programming code and computational expense, than the level set method used to numerically

solve the spatial formulation. It is also more reliable than the transverse method of lines

method presented, which becomes stiff as the time step tends to 0. The velocity of the leading

edge found in numerical simulations of the material formulation was used to determine

whether traveling wave solutions might exist for certain cell proliferation rates and cell layer

elasticity functions. However, analysis of the existence of traveling wave solutions was more

amenable in the spatial formulation. For various nonzero cell proliferation rates and cell layer

elasticity functions, we proved that traveling wave solutions with constant wave speed exist

in the spatial formulation. The velocity of the leading edge found numerically approximated

the analytic wave speed. Stability of the traveling wave was determined numerically; the

traveling wave is stable if the corresponding trajectory in phase space does not cross the

horizontal ρ-axis. For the model equations in the absence of proliferation, similarity solutions

under scaling exist with certain conditions on the constitutive equation for elasticity.
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The governing equation of the spatial formulation with logarithmic elasticity function

(2.26a) and Fisher growth (2.35b) becomes the classical Fisher-Kolmogorov equation. The

typical method of proving the existence of traveling wave solutions for the Fisher-Kolmogorov

equation on an infinite domain is to show the existence of a heteroclinic orbit connecting

two equilibrium points. The set of admissible traveling wave speeds is bounded below (Mur-

ray [45]). Our model includes a Stefan condition on a moving boundary, and the traveling

wave solution is solved on a semi-infinite domain instead of on an infinite domain. The

necessary phase space trajectory that identifies a traveling wave solution is no longer a het-

eroclinic orbit, but a portion of an unstable manifold. We find that, in the cases described

here, there is either a unique admissible traveling wave speed, a finite number of admissible

traveling wave speeds, or a countably infinite number of admissible traveling wave speeds.

For all of our numerical simulations and analysis for the one-dimensional single layer cell

migration model, we found that different constitutive functions for the cell proliferation rate

and cell layer elasticity do not result in very dissimilar traveling wave speeds. Since choices of

cell proliferation rates and cell layer elasticity functions that result in traveling wave solutions

more accurately describe the material properties of the cell layer, our studies imply that the

inference of material properties from the existence and speed of traveling waves is difficult.

Most cell migration experiments tend to calculate the velocity of the wound edge and wound

closure time, and we would be able to match this data with various constitutive functions.

We suggest that the density of the cell layer should be calculated in future experiments to

elucidate which constitutive functions are the most realistic, though we also hypothesize that

the fitting of this data will not be starkly different for many constitutive functions. In sum,

our approach of analyzing the existence of traveling waves verifies experimental results and

models that utilize reaction-diffusion equations by showing that the leading edge of a cell

layer gap moves with constant speed. However, more data and further analysis is needed

to determine accurate constitutive assumptions for the cell proliferation rate and cell layer

elasticity for epithelial sheet migration.

In the second portion of this dissertation, we studied the migration of two adhering cell

layers by extending the two-dimensional spatial formulation of Arciero et al. [3]. Each layer

is treated as if it were a single layer like in the model of Arciero et al. [3], and the layers are
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coupled together through adhesion. We studied only the case when there was an absence

of cell proliferation. The resulting system of equations can be separated onto two disjoint

domains with an interface condition.

The dual layer model is numerically solved using a level set method for free boundary

problems with a domain decomposition method to account for where the migrating cells

in each layer are located since extending the material formulation adaptive finite difference

method proved to be complicated. The numerical code is flexible for inputing any initial cell

layer geometry one desires, while the elapsed central processing unit (CPU) time can greatly

vary depending on the model parameters and grid size. The cell layers reached equilibrium

if simulations were allowed to run long enough, and studies were performed to compare how

different initial geometries, parameters, and grid sizes affected the simulations.

Experimental data of epithelial and mesenchymal cell layer migration during gastrulation

from animal cap explants of Xenopus laevis embryos was used to estimate model parameters.

The data extraction method utilized involves determining the edge positions and density

of the cell layers. The density was not directly extracted from experimental time-lapse

images but was computed using relations involving the strain, which was directly extracted.

Preliminary results showed that the computational edge predictions from simulations with

the optimized parameters for single epithelial layers appeared to match the experimental

data better than the optimized parameters for single mesenchymal layers. Since the single

layer model was developed for epithelial cell sheets, it may be missing features that correctly

capture the behavior of mesenchymal cell sheets.

Preliminary results for adhering epithelial and mesenchymal cell layers show that we may

also be missing features in our dual layer migration model. Possible model enhancements

include treating one or both layers as viscoplastic materials instead of elastic materials or as

heterogeneous materials instead of homogeneous materials and incorporating the elasticity of

the substrate. Refinement of the mesh and adding constraints on the parameter optimization

method will also lead to more accurate optimal parameters.

Our study focused on the mechanical aspects of collective cell migration and the apparent

interactions between migrating cells. We used a novel approach to infer material properties

from continuum mechanical models based on biomechanical principles by using sophisticated
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mathematical analysis, namely traveling wave analysis, to determine a stress-strain relation-

ship and a cell proliferation rate for a single layer of cells. For dual cell layers, specifically

adhering epithelial and mesenchymal cell layers, we fit model predictions with experimental

strain data, which was innovatively used to calculate the density, and edge position data to

find optimal model parameters. Gradually adding complexity to our models, more detailed

data, and finding numerical and analytical solutions will continue to aid in our understanding

of the mechanisms of collective cell migration.
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