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A HAPLOTYPE-BASED PERMUTATION APPROACH IN GENE-BASED TESTING 

Harrison Brand, PhD 

University of Pittsburgh, 2013 

The soaring cost of health care is the biggest public health issue facing our country today. 

Development of strategies that improve the delivery of health care by identifying high risk 

individuals for a disease is a major approach to better utilize limited medical resources. 

Incorporating genomic data into risk stratification models is an essential component for creating 

these diagnostic and treatment strategies. Although initially applied to just small subsets of 

disease, advances in technology are making it economically feasible to utilize a patient's genomic 

data in a wider range of medical disorders. Current genetic association studies are crucial for 

identifying which loci to include in these models.   

Genome Wide Association Studies (GWAS) are a valuable tool for identifying genetic 

variants associated with disease. Commonly, each SNP is initially independently tested in a 

GWAS with a univariate analysis. By combining the effects of multiple alleles, multivariate 

analysis of GWAS may increase power to detect associations and, thus, identify additional risk 

loci. We employ a haplotype block analysis within genes boundaries for a newly developed 

gene-based method, “GeneBlock”. GeneBlock is compared in a power analysis with two 

previously published permutation algorithms (GWiS and Fisher) and a simulation method 

(Vegas). All methods are tested in an Alzheimer Disease GWAS consisting of 1334 cases and 

1475 controls. Results from the Alzheimer’s analysis were subsequently compared with 

haplotype and univariate analysis.
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Power analyses shows both GeneBlock and GWiS as more powerful methods than Vegas 

and Fisher. A combinational approach involving the selection of the lowest p-value from Vegas, 

GWiS, and Geneblock has higher power than any individual method even when controlling for 

the additional multiple comparisons. Fisher and Vegas identify no significant genes in the 

Alzheimer’s GWAS, while GWiS and Geneblock identified four (PRDM16, ARHGEF16, HLA-

DRA, TRAF1) and three (C17orf51, MGC29506, SLC23A1) respectively. The combination 

method is also most powerful in the real GWAS data; it identified all seven of the above 

significant genes. Comparing single, haplotype, and gene level analyses revealed that only about 

1/3 of the top 100 genes are shared, indicating a large variance in results between methods.      
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1.0 INTRODUCTION 

Genome Wide Association Studies (GWAS) are a successful method for detecting genetic 

variation in complex diseases [McCarthy, et al. 2008]. Primarily, GWAS focus on the 

association between single nucleotide polymorphisms (SNPs) and a particular disease or trait. 

According to the National Human Genome Research Institute, around 1500 GWAS have been 

performed on a variety of different diseases and quantitative traits. Thousands of significantly 

associated variants have been identified in these studies. A complete catalog of published GWAS 

results is available at http://www.genome.gov/gwastudies/ (accessed 11/13/2012) [Hindorff, et 

al. 2009]. The majority of identified risk loci show only a small to moderate effect, which can be 

difficult to detect without large sample sizes. Many current studies underestimate the total 

number of SNP associations due to low power. The following dissertation presents a haploblock-

based gene test (GeneBlock), which complements standard SNP analysis in which each SNP is 

tested independently to help identify risk variants previously unnoticed. 

It was believed that GWAS would explain a larger portion of the genetic variation 

observed from familial studies. Unfortunately, the majority of heritability in common disorders 

remains hidden [Eichler, et al. 2010]. While it is likely that part of this unidentified heritability is 

located in other genetic variables such as rare variants, gene-environment interactions, and gene-

gene interactions, GWAS data also still contains unrecognized risk loci [Manolio, et al. 2009].  

Increased genome coverage has been suggested to improve identification of additional risk 
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markers. GWAS density is improved with either imputation or the increasingly large SNP arrays 

which contain millions of markers (HumanOmni5-Quad BeadChip, Illumina) [Marchini and 

Howie 2010]. Albeit there are benefits related to increased genome coverage, a significant 

problem arises when dealing with the many false positives associated with the millions of 

multiple comparisons. To help combat these false positives, a genome wide significant p-value 

threshold is often set around 5X10-8. Such a stringent cut-off greatly decreases the chance of 

false positives, but also prevents identification of many true positives. Several methods exist that 

can reduce the high dimensionality of a GWAS and therefore loosen the stringent significance 

cutoff. These methods generally combine SNPs into larger functional units of the genome such 

as haplotypes, genes, or even biological pathways.  

1.1 FUNCTIONAL UNITS OF GWAS ANALYSIS 

1.1.1 Haplotype Analysis 

Haplotype analysis involves the investigation of a set of variants on the same transmitted 

chromosome. It cannot be directly carried out with GWAS data, since each SNP is genotyped 

independently, and it is unknown to what specific (father, mother) chromosome an allele 

belongs. Multiple algorithms exist to help alleviate this phasing issue [Browning and Browning 

2011]. Rather than calculating a haplotype at a full chromosome level, it is much quicker to 

group SNPs into blocks of high linkage disequilibrium (LD) and phase within those blocks; a 

process known as haplotype blocking (haploblocking) [Gabriel, et al. 2002]. Therefore, GWAS 

data containing millions of markers at the SNP level can be reduced to hundreds of thousands of 
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haplotypes [He, et al. 2011]. Experimental evidence supports this notion; a recent GWAS by 

Lorenz et al. found that the use of haplotype blocking reduced the number of SNPs by 

approximately one-fifth and produced a stronger overall association in the highest observed risk 

loci [Lorenz, et al. 2010]. Besides reducing the number of multiple comparisons, haplotype 

analysis increases also the likelihood of identifying ungenotyped associated SNPs and can 

increase power to pick up multiple disease susceptibility alleles when they are in weak LD 

[Lorenz, et al. 2010; Morris and Kaplan 2002].  

1.1.2 Gene Level    

Biologically, genes are ideal to analyze as they specify protein structure and therefore have 

dramatic bearing on cellular processes. Mutations within coding regions or splice sites of a gene 

account for approximately 85% of known disease-causing mutations despite only accounting for 

~1% of the total genome [Choi, et al. 2009]. It is no coincidence that genes are highly conserved 

across human populations [Neale and Sham 2004]. Gene-based testing has two clear advantages 

over both haplotype and single marker analysis; a dramatic reduction in multiple comparison due 

the relatively small number of genes (~20000) [Stein 2004], and increased power in situations 

where multiple markers are moderately associated with disease [Hibar, et al. 2011].  

A major drawback of gene level analysis of GWAS data is the inability to analyze 

regions located in gene deserts. As a result, the method lacks the whole genome coverage 

available with SNP array data. These deserts are more important than once believed and even 

contain regulatory elements linked to neighboring genes [Ovcharenko, et al. 2005]. Numerous 

GWAS have implicated SNPs located outside genes as associated with a given disease 

[Grisanzio and Freedman 2010; Libioulle, et al. 2007]. Even though these regions likely have a 
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meaningful regulatory effect, interpretation of these peaks is difficult with current annotation 

information. In the future, a better understanding of these deserts may lead to similar multivariate 

analysis as gene-based testing within these areas.       

1.1.3 Pathway Analysis  

Pathway level analysis further reduces multiple comparisons with only around 420 annotated 

pathways in the popular KEGG database (http://www.genome.jp/kegg/docs/statistics.html, 

Accessed 10/27/2012) [Kanehisa and Goto 2000]. Numerous annotation issues currently still 

plague pathway analysis and, although future technology will likely help fill in missing gaps 

[Khatri, et al. 2012], for this reason we currently focus solely on gene-based methods.  

1.2 GENE-BASED ANALYSIS METHODOLOGY 

GWAS analysis with gene-based methods ideally would require a simple statistical test such as 

an omnibus regression to combine all polymorphisms within a gene. Unfortunately a standard 

regression model is often ineffective due to LD between SNPs, since it treats all SNPs as 

independent and therefore the degrees of freedom in the regression test will be over-estimated 

leading to a higher p-value. In order to help address this inherent LD, a variety of multivariate 

methods have been employed including principle component analysis [Gao, et al. 2011; 

Gauderman, et al. 2007], clustering based analysis [Buil, et al. 2009], Simes test [Li, et al. 2011], 

U-statistic [Li 2012], canonical correlation analysis [Tang and Ferreira 2012], and a multivariate 

Hotelling T2 testing [Moskvina, et al. 2012].  
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Although each of the above noted statistical methods handles the lack of independence 

among markers, they come with assumptions of distribution in the data that often are difficult or 

impossible to verify. For example, the Hotelling T2 assumes normality within its data [Mardia 

1975]. Understanding the true distribution of genetic correlation within a gene has been 

attempted with the use of simulation, although it is difficult to elude [Li, et al. 2011].  

Presumably, power to detect gene associations for different types LD structure may differ by 

gene-based method used. Therefore, it has been proposed that combining different statistical 

tests, such as a scaled chi-square and extended Simes’ test, may improve results when applying 

the more powerful method under its optimal genetic structure [Bacanu 2012; Li, et al. 2012]. 

Under most conditions these hybrid approaches show greater power than their parent tests, but 

are still forced to predict an unknown distribution to derive a p-value. An alternative to standard 

parametric statistical tests is using non-parametric analyses, which are distribution free and 

therefore have no bias when handling various LD structures within a gene. Re-sampling based 

permutation testing is a popular non-parametric test since it is extremely flexible in a broad range 

of data [Motsinger-Reif 2008]. In gene-based testing, it is underutilized because it is extremely 

time consuming [Li, et al. 2011; Liu, et al. 2010]. 

1.2.1 Resampling-Based Permutation Testing  

Resampling-based permutation testing is a powerful statistical test that does not require any 

assumptions of distribution since it is estimated through randomization of phenotype labels. By 

redistributing phenotype labels a distribution of observed test statistics is created under the null 

hypothesis of no expected differences between populations [Berger 2006]. An empirical p-value 

can be identified by dividing the number of times the replicate exceeds the true statistic divided 
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by the total number of replicates [Curtis, et al. 2008].  Permutation testing is extremely flexible 

and can be applied to any gene-based statistic or more generally to almost any statistical test. 

Furthermore, it only requires observations to be independent and identically distributed under the 

null hypothesis, both of which are generally accepted in genetic association studies [Phipson and 

Smyth 2010].  

With the current explosive growth of computational power available to geneticists from 

next generation sequencing analysis, permutation testing for gene-based methods is becoming 

more of a realistic possibility at a genome-wide level. Key to this notion is the use of 

parallelization between multiple computers, allowing for nearly linear speeds of increased 

computing time. Software taking advantage of parallel computing is become commonplace in 

genetics [Steiss, et al. 2012; Zheng, et al. 2012]. Furthermore, other statistical methods are 

available to help accelerate these tests. In the vast majority of genetic studies involving hundreds 

to thousands of participants, it is impossible to enumerate all possible permutations. Monte Carlo 

Simulation addresses this issue by randomly selecting a subset of permutations while still 

maintaining similar power [Phipson and Smyth 2010].  

1.2.1.1 Methods for Speeding Up Permutation Sequential Monte Carlo is an extension of a 

standard Monte Carlo simulation, which further decreases computational time by only requiring 

a set number of target test statistic a permuted data sets needs to exceed an observed test statistic 

[Besag and Clifford 1991; Curtis, et al. 2008]. Typically the targeted number of excessive 

replication is set to 10 which leads to an estimated 250-fold speed increase compared to regular 

Monte Carlo testing [Curtis, et al. 2008]. Huang et al. implement an additional step by estimating 

the number of causal SNPs with a Bayesian model selection for each gene and ignoring those 

without predicted risk variants. Therefore, permutations are only run on genes that have an 
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expected significant association [Huang, et al. 2011]. Liu et al. propose an alternative to 

permutation testing for gene level analysis, using a simulation to account for correlation between 

SNPs (see section 2.1.3 for more details) [Liu, et al. 2010]. In cases of a simple combinational 

statistic such as a chi-square test, the simulation method has similar results as a permutation test 

with a dramatic increase in speed. However, because p-values rather than actual genotypes are 

estimated with this method, its application to more complex multivariate methodology seems 

limited.      

1.2.1.2 Issue with Permutation Testing  In theory, permutation testing has the ability to 

control for LD between SNPs and therefore requires only simple methods for combining a 

univariate test statistic. [Curtis, et al. 2008]. However, whether LD structure is correctly 

accounted for solely with permutations remains controversial. A recent simulation by Moskvina 

et al. found a simple Fisher method-based approach failed to treat strongly related LD blocks as a 

single region and inflated the p-values [Moskvina, et al. 2012]. This could bias a genes’ p-value 

in either direction depending on the location of the affected allele. If causative alleles were found 

in a tight LD block, p-values were over-estimated, whereas if non-significant p-values were 

found in a tight LD block, gene p-value tended to be under estimated. Moskvina et al. 

recommend the use of Hotelling’s T2 test instead which has a higher power in simulations and 

predicts more significantly associated genes than a Fisher-based permutation test. Interestingly, a 

study by Potter contradicts this finding and shows that Fisher-based permutation testing has 

comparable or greater power in most situations to detect true disease association compared to 

both Hotelling’s T2 and a U statistic [Potter 2006]. Considering the results from the Potter power 

analysis, we feel confident in permutation testing’s ability to properly handle LD with the 

expectation that any weird LD structure will be identified in the follow up of significant genes.    
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1.2.3 Haplotype Analysis in Gene-Based Testing 

Performing haplotype analyses in a gene-based setting was previously suggested for analysis of 

candidate gene association studies [Chapman, et al. 2003; Neale and Sham 2004]. TagSNPs were 

selected within haplotype blocks, and then haplotypes were phased with this information. A 

simple regression based analysis was carried out on the phased haplotypes to determine gene 

association [Neale and Sham 2004]. While these methods were effective at a candidate gene 

level, they are less appropriate in a GWAS setting since gene coverage varies and phasing is less 

effective when it must cover many SNPs in weak LD [Fallin and Schork 2000].  By 

implementing a blocking stage before phasing of SNPs, we will circumvent issues involving a 

large number of uncorrelated SNPs within a gene. A variety of methods exist to analyze 

haplotypes association within blocks with standard statistics such as chi-square or regression 

[Liu, et al. 2008]. The p-value obtained from one of these methods may then be treated 

identically to those from a single SNP analysis and combined using the Fisher method. 

Permutation testing should then be applied to account for the correlation between haplotype 

blocks (haploblocks), which are not completely independent and therefore violate the major 

assumption of the Fisher method. 
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1.3 CONCLUSION 

I have implemented a haplotype-based permutation test within each gene for GWAS data 

analysis known as GeneBlock. GeneBlock is comprised of two steps.  The first involves 

implementing a haplotype analysis, which can improve ability to find certain disease associated 

alleles compared to single SNP analysis [Lorenz, et al. 2010; Morris and Kaplan 2002]. The 

second step uses Resampling-Based permutation testing to control for correlation between 

haplotype blocks and derive and empirical p-value. This dissertation describes a comparison 

between the proposed GeneBlock method and two established gene-based tests that use 

permutation to account for LD (GWiS and Fisher) [Curtis, et al. 2008; Huang, et al. 2011]. In 

addition, I will compare GeneBlock with a variant of the Fisher method, which uses a 

computationally quicker simulation-based approach for controlling LD (Vegas) [Liu, et al. 

2010]. Power and Type I error analyses are carried out with genes simulated to maintain their LD 

structure (Chapter 4). The simulations are then followed up by analyzing an Alzheimer’s Disease 

(AD) GWAS data set using each method and comparing (Chapter 5).  
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2.0  GENE ANALYSIS METHODOLOGIES IN GWAS 

Gene level analysis is a powerful tool that in conjunction with single SNP testing enhances 

GWAS results. A variety of gene level statistics exist, but since our approach focuses on 

permutation to control LD, we only discuss likewise methods (GWiS and Fisher) or those with a 

similar procedure (Vegas). The following section describes the methodology behind our 

proposed method, GeneBlock, and these other methods. A table highlighting each method is 

available at the end of the chapter (Table 1). Please note that terminology specified throughout 

the rest of this dissertation is specific for the case-control. Also, since most of the statistical 

analysis is carried out in the genetic analysis software  Plink and unless otherwise specified 

please assume that testing occurred with the relevant Plink function [Purcell, et al. 2007b] 

2.1 ESTABLISTED METHODS 

2.1.1 Fisher 

The Fisher method proposed by Curtis et al. is the simplest of all permutation methods [Curtis, et 

al. 2008]. P-values taken from a univiarite SNP analysis are combined using the Fisher method 

(equation 1) [Fisher 1925]. Fisher method derives a chi-square statistic by taking the loge of the 

p-value and multiplying by -2. A combined p-value is then calculated from a chi-square 

distribution with df equal to 2 times the number of p-values.  

 

10 
 



Equation 1. Fisher Method 

 

 

df=2k 

Permutation testing is undertaken with the use of random phenotype labels. For each 

specific permutation a chi-square statistic is calculated using the Fisher method and then 

compared to the actual observed test statistic. Note, the Fisher method is equivalent to simply 

multiplying p-values due to the log multiplication rule and degrees of freedom are irrelevant 

since they stay constant throughout each replicate. As mentioned above, sequential Monte Carlo 

simulation drastically increases computation time and is therefore implemented in this Fisher 

approach [Besag and Clifford 1991]. Phenotype resampling stops when 10 permutated statistics 

exceed an actual test statistic. Once this threshold is achieved a p-value is obtained by dividing 

the 10 replicates (r) by the total permutations (n). In cases where r=0, an empirical p-value is 

derived from ( r+1)/(n+1) so a p-value can never equal zero.   

2.1.2 GWiS 

The Gene-Wide Significant (GWiS) test combines independent effects within a gene with a 

greedy Bayesian model selection algorithm [Huang, et al. 2011]. The algorithm essentially runs 

the best tagging SNP in a regression model. SNPs are selected using a regression model with a 

greedy forward search, which sequentially selects variants that increase the Bayesian model 

likelihood of a model until all remaining SNPs only decrease the likelihood. Bayesian model 

selection picks the subset of SNPs which have the maximum model probability after correction 

for the number of parameters with a Schwariziain Bayesian Information Criterion. In the absence 
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of any association a null model is predicted which is automatically assigned a p-value of 1. The 

resulting test statistic is then permutated to find an empirical p-value.  

2.1.3 Vegas 

A versatile gene-based association study (VEGAS) is a unique method since it does not require 

genotype data, but rather works solely with individual marker p-values [Liu, et al. 2010]. P-

values for each SNP in gene are converted to an upper tail chi-squared statistic and then added 

together to form a single gene chi-square statistics with one degree of freedom. LD between 

markers is accounted by using genotype data from a reference population. An empirical null 

distribution is created from a Monte Carlo simulation on a multivariate normally distributed 

random vector that has a correlation equal to those predicted from the references through a 

Cholesky decomposition matrix. A p-value is obtained as the proportion of simulated test 

statistics that exceed the observed gene-based test statistic. Vegas provides a pre-calculated LD 

matrix based on Hapmap populations (CEU, CHB, JPT, or YRI) [Thorisson, et al. 2005]. 

Reference populations can be assigned from user data sets also, but it is recommended to only 

use 200 randomly selected controls as a larger number of individuals require much more 

computational power with little effect on results.      

2.2 GENEBLOCK 

GeneBlock attempts to improve upon other gene-based test by the inclusion of haplotype blocks, 

which can identify new associations undistinguishable in other analysis. GeneBlock, similar to 
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the other gene-based permutation tests, has the additional advantage of operating with not only 

case-control data, but also familial or quantitative. Intriguingly, GeneBlock is likely more 

powerful within familial data than case-control, since haplotype phasing has better accuracy with 

known relatives [Marchini, et al. 2006]. An overview of the method is available in Figure 1 at the 

end of the chapter.  

2.2.1 Blocking Methods 

After SNPs are assigned to a relevant gene, they must be assigned to haploblocks. Many 

algorithms exist to classify these blocks including those based on information-theory [Anderson 

and Novembre 2003], LD [Gabriel, et al. 2002; Pattaro, et al. 2008], recombination [Wang, et al. 

2002], and diversity of haplotypes [Patil, et al. 2001]. Numerous studies indicate that these 

methods can lead to dissimilar partitions, specifically the diversity-based approach by Patil et al. 

and the LD approach by Gabriel [Indap, et al. 2005; Pattaro, et al. 2008; Schwartz, et al. 2003]. 

The bulk of investigated algorithms in several independent studies seem to confirm the vast 

majority of blocking algorithms are similar to one of these methods [Bush, et al. 2009; Indap, et 

al. 2005; Pattaro, et al. 2008]. We therefore investigate both the LD approach (Gabriel) and 

diversity-based approach (HapBlock) to give an estimate of potential variation due to blocking 

method used. Blocks are assigned from both case and control data in order to prevent an 

additional time consuming step since blocks would have to be recalculated after each new 

random phenotype assignment if solely based on controls. In the power analysis described below 

this seemed to have little effect on SNP assignment to a specific block (results not shown). 
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2.2.1.1 Gabriel The Gabriel method assigns blocks with a confidence interval from 

pairwise D´ values [Gabriel, et al. 2002]. This method defines pairs of SNPs in strong LD if the 

one sided upper 95% confidence bound for D´ is greater than 0.98 and lower bound greater than 

0.7. Anything with an upper bound D´ less than 0.9 is considered a weak LD region. Haplotype 

blocks are areas where less than 5% of comparisons show these weak regions. Overlapping 

blocks can be valid but generally the largest block is selected and then the biggest remaining 

blocks are included as long as they do not overlap with an already declared block. Gabriel et al. 

is the default method in Haploview and therefore widely implemented [Barrett 2009; Barrett, et 

al. 2005]. It is also available in Plink [Barrett, et al. 2005; Purcell, et al. 2007b].  

2.2.1.2 HapBlock Patil et al. suggests a diversity method that designs blocks according to 

whether haplotypes found in at least 80% of the samples are represented more than once [Patil, et 

al. 2001]. Boundaries are then selected based on the maximum ratio of total SNPs compared to 

the minimal number of SNPs required to discriminate haplotypes within the block. Overlapping 

blocks are then removed and the process runs another iteration until the whole chromosome is 

covered. Unfortunately, the diversity-based method requires phased haplotype information to 

calculate blocks, which is unavailable in many genetic studies. Zhang et al extended this method 

to work for GWAS data by adding a haplotype inference algorithm that combines a haplotype-

based dynamic programming algorithm with the partition-ligation-expectation-maximization 

algorithm to predict haplotypes [Qin, et al. 2002; Zhang, et al. 2002; Zhang, et al. 2004]. This 

expanded method can be found in the software HapBlock. [Zhang, et al. 2005].  
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2.2.2 Regression 

Once the haploblocks within a gene are defined some form of haplotype association analysis 

must be carried out. Two main categories of methodology exist for analyzing case-control 

haplotype data; those comparing the frequency of a haplotype and those based on a regression 

framework [Liu, et al. 2008]. While both of these statistical tests are valid, we focus on 

regression analysis as it allows for the potential of controlling for covariates. Sham et al. 

proposes a haplotype regression based analysis which accounts for the potential ambiguity in 

haplotype phasing, a common criticism among similar methods [Purcell, et al. 2007a; Purcell, et 

al. 2007b; Sham, et al. 2004].  Furthermore, it is already implemented in Plink and works in sync 

with Plink derived blocking files.  

The Sham et al. proposed haplotype analysis is essentially a single omnibus logistic 

regression test with one minus the number of haplotypes degrees of freedom (df). This jointly 

tests the effects of all haplotypes with an estimated frequency greater than 0.01. We selected a 

cut-off of 0.01, because that seems be the cut-off which anything below has dramatically lower 

haplotype phasing accuracy [Fallin and Schork 2000]. Haplotypes are predicted with an E-M 

algorithm, which gives estimated frequencies for each haplotype [Long, et al. 1995]. A posterior 

probability is then found for each haplotype with Bayes theorem and these are used as weights in 

a finite mixture regression model [Sham, et al. 2004]. This gives a likelihood function for each 

individual that can be compared with a Wald test to get a p-value [Purcell, et al. 2007b]. Those 

SNPs that are not assigned to a haploblock, are run with a standard logistic regression (0,1,2) 

with the common allele coded as 0.  
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2.2.3 P-value Combination 

P-values derived from the regression analysis are subsequently combined using the Fisher 

method (equation 1) [Fisher 1925]. The Fisher method performed well in comparisons with other 

combinational methods such as the Tippett method [Tippett 1952], Liptak method [Liptak 1958], 

and Simes test [Simes 1986] in regards to permutation testing [Potter and Griffiths 2006].  

Methodology of the Fisher Method can be found above in section 2.1.1.   

2.2.4 Permutation 

We follow the guidelines established by the Curtis et al. method using resampled case-control 

labels and described in detail in section 2.1.1 [Curtis, et al. 2008]. The empirical p-value 

obtained from this permutation maybe an under-estimate. Recall, a Monte Carlo simulation p-

value is obtained by p=r/n, which r represents the permutated replicates which exceed the test 

statistic and n is the total permutations. Several papers suggest the true empirical p-value from is 

derived from (r+1)/(n+1) [North, et al. 2002; Phipson and Smyth 2010]. This has the advantage 

of never calling a p-value zero, which would be impossible if all possible permutations were 

calculated. Many statisticians however prefer the standard r/n derived p-value [Broman and 

Caffo 2003; Ewens 2003]. Note, the relative difference between these approaches is small and 

we therefore derive the p-value from r/n, as that is more prominent in existing methods [Huang, 

et al. 2011; Liu, et al. 2010]. In cases were r=0, we do use the corrected Monte Carlo p-value 

estimated with (r+1)/(n+1) since an empirical p-value should never equal zero [Phipson and 

Smyth 2010]. Total permutations are limited to 1,000,000 allowing the ability to determine 

significance at even a strict Bonferroni level (0.05/20000= 2.5e-06). In rare situations, the 
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haplotype regression will fail to converge for a certain replicate as the haplotypes in one group 

will become monomorphic and logistic regression is therefore unable to produce a p-value. 

These haplotypes are excluded from analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. GeneBlock Algorithm 

 

1. SNPs assigned to genes 

2. Haplotype blocks created within each gene 
with either HapBlock or Gabriel Method 

3. Regression Analysis run for both 
haploblocks and remaining uncorrelated SNPs 

4.  Combine p-values within each gene with 
the Fisher method 

5. Estimate empirical p-value with 
permutation 

17 
 



Table 1. Summary Info for Gene-Based Methods 

 Vegas Fisher GeneBlock GWiS 
Combination Test 

Statistic Chi-Square Fisher 
Method 

Fisher 
Method Linear Regression 

Method of Deriving P-
value Simulation Permutation Permutation Permutation 

Computational Speed* Fast Slow Slow Fast 

LD Control Simulation Permutation Haploblocks 
Permutation 

Model Selection 
Permutation 

Data Required SNP SNP Haplotype# SNP 
*Direct analysis in Section 3.3 
# Can be estimated from SNP data 
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3.0 COMPUTATIONAL INFORMATION 

3.1 COMPUTER HARDWARE 

Permutation testing is computationally intensive and therefore I used supercomputing to alleviate 

this burden. Computer resources were provided by University of Pittsburgh Center for 

Simulation and Modeling (http://www.sam.pitt.edu/index.php, accessed 11/4/2012). Two 

supercomputing clusters (Frank, Pittgrid) were employed depending on the method. Frank is the 

more powerful of the two supercomputers, but is also in much higher demand and has fewer 

nodes. It is ideal for memory intensive programs. The Pittgrid can run hundreds of low memory 

nodes at the same time allowing for a large number of permutations to be carried out at once. For 

details on each system, see below.   

3.1.1 Frank 

The high-end computational system FRANK consists of 4352 CPU cores distributed over 325 

nodes. It is run with a TORQUE Resource Manager [Staples 2006]. Frank has the ability to use 

up to 256 GB of RAM. As a non-investor (student) user, I can run approximately 48 cores at 

once on the shared memory partition. This could have been slightly increased if I ran on other 

memory partitions, but this was never necessary (http://core.sam.pitt.edu/frank, accessed 

11/4/2012)     
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3.1.2 Pittgrid 

Pittgrid combines the power of idle computers on campus by connecting them through a condor 

grid system [Thain, et al. 2005]. It contains 125 Linux and 300 windows computers. As this 

system requires idle computers, there is much more variability in its availability, since more 

people are using these computers during the day. Also there is a larger deviation in computing 

power between different processors in the computers found on the grid. Analysis time may 

therefore vary due to which computers are assigned to the project. A limit of 1000 jobs is 

recommended per submission. ( http://www.pittgrid.pitt.edu/about.php,accessed 11/4/2012)    

3.2 COMPUTER SOFTWARE 

3.2.1 GeneBlock 

The GeneBlock method with  the Gabriel blocking approach (GeneBlock-Gabriel) was 

implemented in R [R Development Core Team 2012]. I coded the haplotype blocking and 

regression parts of the program for use with Plink. GeneBlock code was designed to work on the 

Pitt Grid condor system. Pittgrid is the better system for GeneBlock since it can run hundreds of 

low memory nodes at once, allowing for a large number of permutations to be carried out.  

Because different computers on the grid have different versions of R, care must be used when 

selecting functions from R packages. Desired functions from MADAM and CaTools packages 

were therefore directly implemented into the code rather than the standard practice of installing 

the full packages.  See Appendix B for code.  
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  GeneBlock-HapBlock code shared much similarity with the GeneBlock-Gabriel code 

except while the Gabriel blocking method is implemented directly in Plink, the diversity based 

blocking of HapBlock is available in a separate software package (HapBlock) [Zhang, et al. 

2005]. Therefore, GeneBlock-HapBlock required a mixture of unix scripts, R code, and 

HapBlock code. See Appendix B for code. A minor bug exists in the HapBlock software that 

leads it to crash, preventing the determination haploblocks. Thankfully this only affected a few 

genes, which were unfortunately forced to be excluded from analysis. Attempts to fix the bug 

were unsuccessful and no apparent pattern links the genes. Multiple nodes were tested for each 

failed gene with no success, indicating the problem likely lies within the HapBlock code.    

3.2.2 Fisher 

No publicly available code existed for the Fisher method. Consequently, I wrote code for this 

algorithm in R. Within this code I still used Plink for single-SNP regression analysis because it is 

computationally faster than R. See Appendix B for code.  

3.2.3 Vegas 

Vegas is implemented in a software package available at ( http://gump.qimr.edu.au/VEGAS/). 

This requires R with packages mvtnorm and corpcor and Plink 1.07 [Purcell, et al. 2007b]. Vegas 

is extremely memory intensive for larger genes and we therefore employ it on the Frank 

computing grid. We greatly reduced necessary memory requirements by only using 200 

randomly selected controls to define LD structure as suggested by the authors [Liu, et al. 2010]. 

See Appendix B for code giving proper input format. Vegas generally worked with 4GB of 
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RAM, but this was inadequate for a few larger genes which required 8GB.  The Vegas software 

will occasionally run the same gene test two times. I was unable to find the cause of the bug, but 

was able to rectify the problematic results by using only the first gene result of the pair.  

3.2.4 GWiS 

GWiS is implemented in the Linux based GWiS v1.1 software package 

(http://128.220.136.46/wiki/baderlab/index.php/GWiS, accessed 11/4/2012).  In addition to 

implementing the GWiS algorithm, it also calculates three other methods (minSNP, minSNP-P, 

BIMBAM). As these methods have already been shown to be of lower power than GWIS, they 

were not used in my analysis [Huang, et al. 2011]. GWiS requires the GNU Scientific Library 

(GSL) (http://www.gnu.org/software/gsl/,accessed 11/4/2012). Most of the linux based pittgrid 

computers did not have GSL installed, so GWiS was run on Frank. See appendix for GWiS input 

settings.GWiS is more rigid than the other software packages since gene borders are hardcoded 

at 20kb and only one chromosome can be run per job submission. With parallel computing this is 

a not a problem as submissions are usually done at a chromosome level. The hg18 list was 

modified ± 5kb to account for the hard coded 20kb instead of the desired 5kb. A potentially 

serious bug exists in GWiS 1.1 when analyzing real GWAS data. GWiS does not handle missing 

data well and excludes any variable with a coded missing value (-9). Therefore, imputation of 

missing values is recommended for GWAS data sets before running GWiS.   
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3.3 COMPUTATIONAL SPEED 

Computational speed of the different software packages is difficult to compare since many 

factors affect speed of analyses. Specifically the number of users present on a given 

supercomputer can greatly impact the number of available nodes and therefore the speed of each 

package. A direct assessment of computational time was made by investigating a single medium 

sized gene (TFAP2E) from a simulated population (section 4.2.1). Results from the comparison 

of CPU time are available in Table 2. GWiS is the fastest method for a low number of 

permutations, while Vegas is easily the quickest method for a large number. In GWAS analysis, 

Vegas is the fastest method due to the increased time GWiS requires for strongly associated 

genes that require many permutations (results not shown). GeneBlock is the slowest method 

since it is dramatically slower in situations requiring a large number of permutations. GeneBlock 

could be optimized for faster run time with more complex programming.         

   

Table 2. Comparison of Computational Speed 

Method 100 Permutations (min) 1000 Permutations 1,000,000 Permutations 
GWiS 0:03 0:06 13:13 
Fisher 0:36 5:13 25:58 

GeneBlock-Gabriel 1:06 6:50 36:32 
GeneBlock-HapBlock 1:13 7:58 37:33 

Vegas 1:23* 1:23* 1:28 
* Using the minimum number of Simulation allowed by Vegas of 100,000 
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4.0 TYPE I ERROR AND POWER ANALYSIS 

4.1 BACKGROUND 

Assessing the accuracy of each gene-based method’s ability to detect true and false positives is 

necessary to determine the most proficient of the given approaches (GeneBlock, GWiS, Fisher, 

and Vegas). In gene-based testing, true and false positives are often assessed with a simulation 

calculating type I error and power. Type I error measures the rate of an erroneous rejection of a 

true null hypothesis leading to a false positive. In terms of gene-based testing, this would imply 

genes which are predicted to be significantly associated with a disease, even though no real 

association exists. Type I error is controlled for through permutation and therefore each method 

provides a corrected type I error. We confirm these gene-based methods capability of controlling 

for type I error in the simulation described below.  

 Power is the probability that a test will observe a difference when in truth there is one 

(true positive). It is defined as 1-type II error rate (false negative). Power analysis in gene-based 

testing, involves the simulation of a genes based on real data insuring realistic LD structure. 

These genes are assigned several “risk” SNPs. The “risk” SNPs strength of effect can be selected 

with two approaches. One assigns these as a percentage of the total disease variation explained 

by a specific gene, [Huang, et al. 2011; Tang and Ferreira 2012] while the other works with a 

simple risk ratio [Gao, et al. 2011; Li, et al. 2011]. Ensuring simulated risk SNPs are independent 

is crucial since two markers in high LD will provide no additional information if both are 

selected as risk alleles. Independence is determined from R2 values [Gao, et al. 2011; Huang, et 

al. 2011] or haplotype blocks [Li, et al. 2011; Moskvina, et al. 2012]. Following this general 
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framework, studies also often attempt to control for additional confounding factors (gene size, 

risk effect, number of risk loci, and LD structure) by investigating multiples genes while varying 

a given factor [Huang, et al. 2011; Li, et al. 2011; Tang and Ferreira 2012]. Results interpreted 

from these analyses reveal how sensitive each method is to the desired factor. Typically 

simulation for power analysis in gene-based testing attempt to account for some of these 

parameters but no consensus exists for which specific confounders should be investigated.   

4.1.1 Terminology 

Because simulation and permutation testing have overlapping terminology, I briefly describe 

here the notation that will be used in the following sections. Each simulation has multiple genes, 

for which data sets are simulated. For example, simulations for GGT1 could use 100 data sets 

with the same GGT1 SNPs but having slightly different genotypes for the individuals in the 

population. When permutations are run, phenotype labels are randomly swapped within each 

data set. Each time this happens a replicate is produced.           

4.1.2 Design       

Designing a simulation to assess power in gene-based permutation tests has difficulties not 

apparent with other parametric gene-based approaches. The heavy computation requirements 

make it extremely demanding to calculate precise p-values in a large number of simulated genes 

across multiple datasets. Two components drive the high computational resources necessary for 

proper power analysis; investigation of many datasets and determining an exact p-value that 

achieves genome-wide significance. Both of these components are important to consider since 
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investigating in a large number of data sets controls for potential variation within data sets of  a 

specific gene, while observing difference of gene-based test at the lower end of the p-value 

distribution provides a more interesting assessment since in real GWAS analysis those are the 

genes of relevance. We therefore spilt our power analysis into two separate tests, which become 

computationally feasible. The first simulation (cross-dataset) calculated power by classifying 

datasets within a specific gene as true positive when there empirical p-value is below a threshold 

of 0.01. The rate of true positives is equivalent to power since each data set is simulated to be 

“disease causing”. Using a threshold of 0.01 allows a cap of 1000 replicates per simulated data 

set, thereby enabling the simulation of 1000 data sets. The second simulation (small p-value) 

focused on the comparative power of the different methods for specific datasets by calculating 

exact empirical p-value using up to 1,000,000 permutation replicates per data set. These p-values 

were much lower than the cross-dataset power analysis. We compared different gene-based 

methods power, by assessing which had the lowest overall p-value. Due to the large number of 

replicates, we only investigated 10 simulated data sets per gene. Additionally, a smaller power 

analysis similar to the above mention cross-data analysis was carried out within the high-

replicate analysis using all the data-sets for every gene with a threshold of p-value=5.75e-5.  

4.1.3 SNP Filter 

SNPs in simulation were filtered to exclude those with minor allele frequency (MAF) < 0.05 

and/or Hardy-Weinberg Equilibrium (HWE) < 0.0001. HWE exact test was used for calculations 

[Wigginton, et al. 2005]. We did consider including rarer alleles (MAF<0.05) since gene testing 

has seen a resurgence for its ability to handle these variants within whole exome data. [Derkach, 

et al. 2012; Madsen and Browning 2009]. While many of the multivariate tests used in GWAS 
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can be applied to rare variant data, the most powerful is based on the collapsing of low-

frequency variants into a single variable. The collapsed variable can then be analyzed with a 

single univariate test. However, collapsing-based approaches remain controversial in GWAS. 

Simulation testing by Kinnamon et al. showed no increase in power when comparing pooling-

based statistics to a single SNP analysis [Kinnamon, et al. 2012]. These findings contradict other 

studies which demonstrate standard techniques as underpowered in detecting rare associated 

markers and indicate a need of increased sample sizes for adequate detection relative to common 

variants [Asimit and Zeggini 2010; De La Vega, et al. 2011]. For this reason, we focus only on 

common variants though the collapsing-based approaches for rare variant analysis certainly 

warrant further inquiry. 

4.1.4 Gene Annotation 

We assign the same gene boundaries for all methods in the simulation to ensure proper 

comparability. Gene boundaries vary depending on annotation information, which is constantly 

being updated. Studies using boundaries from both hg18 and an updated hg19 are found in the 

literature and because these different releases have mismatched gene and SNP locations they can 

produce inconsistent results [Fujita, et al. 2011]. As the majority of SNP arrays still rely on hg18 

annotation, we focused on this version (Illumina, San Diego, CA).  

 Genes were assigned with Plink’s hg18-glist annotations 

(http://pngu.mgh.harvard.edu/~purcell/Plink/res.shtml,accessed 10/30/2012) [Purcell, et al. 

2007b]. Boundaries in this file were determined from the hg18 build in the UCSC table browser 

for all RefSeq genes (http://genome.ucsc.edu/). Hg18-glist included overlapping genes with the 

expectation they would be recognized during analysis when deemed significant, although genes 
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with identical locations were removed from list. Isoforms of a gene were combined to maximize 

the length of the gene. A border of 25 kb both up and downstream of a gene ensured SNPs 

involved with transcription factors and enhancers were not missed. Less than 5% of quantitative 

trait loci for gene expression lie more than 20 kb upstream of the transcription start site. There is 

enrichment within 20 kb downstream of a gene as well [Veyrieras, et al. 2008]. Adding 5 extra 

kb, provides a buffer to ensure no additional relevant SNPs are ignored. In total, We only 

included autosomal genes in the gene-list due to the inherent difficulty of analyzing sex 

chromosomes with GWAS data [Clayton 2009]. 18,870 genes on the 22 autosomal chromosomes 

are included in our annotation list. In certain situations, SNPs from genes with a “–“ character in 

the name are counted multiple times due to an inherent glitch in the unix grep command. As the 

hg18 list contained genes with the “-” character, several instances existed where genes had the 

incorrect number of SNPs. A simple work around of converting “–“ to “_ “ in the gene list fixed 

this bug.     

4.2 CROSS-DATASET POWER ASSESSMENT 

We compared the different gene-based methods with a cross-dataset power analysis based on a 

recent simulation carried out by Li et al. [Li, et al. 2011]. Briefly, in the Li et al study, SNPs 

were situated within LD blocks with three different linkage disequilibrium scenarios (moderate, 

strong, linkage equilibrium). Three different gene sizes were investigated (Genes with 3 SNPs, 

10 SNPs and 30 SNPs), with an arbitrary risk effect of 1.14 assigned to an additive, and 

multiplicative models. A null model with no assigned risk effect tested type I error. Risk alleles 

were assigned based on gene size (1, 2, and 6, respectively). One thousand data sets were 
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generated per gene, which included 1500 cases and 1500 controls. Type I error and power were 

determined for a variety of different gene-based tests (Logistic Regression, a non-permutation 

Fisher test, Simes, Vegas) with each scenario. A gene was viewed as having a significant 

association if the p-value was less than 0.05.  

 We modify this power analysis in several ways. Further investigation of gene sizes in 

both 1000 genome project data and real Alzheimer’s data revealed that gene sizes of 3, 10, and 

30 SNPs are unrealistic, most genes will have far more SNPs on a typical GWAS chip. We 

therefore increased the number of SNPs analyzed in each gene size (see section 4.2.1 below). 

Determining independent markers for the disease allele simulation with haplotype blocks as in 

the Li et al. power analysis would not be appropriate for our specific power analysis since it 

could potentially favor GeneBlocks method of block-regression analysis. As many other 

simulations employ R2 values to determine independence among SNPs, we use Haploview LD 

based tagger to select disease SNPs [Barrett 2009; Barrett, et al. 2005].   

Several additional adjustments were made compared with the Li et al simulation in order 

to save computational resources. We reduced simulated cases and control to 1000 each allow for 

quicker analysis. A valid number in other gene-based testing studies [Li 2008]. Also, rather than 

assessing both a multiplicative and additive model we assigned risk variants solely assuming a 

multiplicative model since the power results were consistent with an additive model in the Li 

simulation [Li, et al. 2011]. We select three disease SNPs as causative, based on results from 

Huang et al. that predicted an average of approximately 3 independent disease alleles for 

significantly associated genes with various electrocardiography measures [Huang, et al. 2011]. In 

the Huang et al. study, gene size (#SNPs) had little effect on the predicted number of disease 

associated alleles, so it was therefore decided to keep the number of disease loci constant at 3 
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regardless of gene size. The overall goal in simulation these genes is to produce one that will 

mimic a true disease associated gene, which would solely be identified by gene-based methods. 

Therefore, rather than arbitrarily setting the strength of a risk allele, a more individualized 

approach was taken. In theory, risk effect per disease allele, could be estimated with a power 

estimating program such as CaTS [Skol, et al. 2006] All that CaTs requires to estimate genotype 

relative risk is a given sample size and SNP MAF. Unfortunately, when implemented into the 

simulation these relative risks often lead to both over and under estimates of association. Risk 

effects were therefore determined with a sensitivity analysis based on investigation of simulated 

p-values with the goal that a risk allele has a p-value around 1E-5. Our last major deviation from 

the Li et al simulation involves using a more stringent cut-off of 0.01 instead of 0.05 since it 

gave a larger range of powers.                

4.2.1 Simulated Data Sets 

Genotype data was simulated with Hapgen2, which allows simulation of disease SNPs within the 

same gene while controlling for LD.[Su, et al. 2011] Hapgen2 simulates genomic regions 

through resampling of haplotypes from a reference population accounting for fine-scale 

recombination rates across the region. Risk alleles in simulated cases are oversampled compared 

to controls leading to increased association with disease. A polymorphism template was provided 

by 1000 Genome Project (August 2009 CEU haplotypes) - NCBI Build 36 (dbSNP b126) 

obtained at the Impute v1 webpage (https://mathgen.stats.ox.ac.uk/impute/impute_v1.html). See 

Appendix for Hapgen2 input info.  

As indicated above, genes of different size were tested. Unfortunately, a reasonable cut-

off for gene size based on number of SNPs was unknown; therefore Chromosome 1 on the 1000 
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genome template (see above) was used to estimate reasonable gene sizes. Chromosome 1 was 

deemed to be sufficient for evaluating gene size but allowed for much quicker estimates 

compared with use of all chromosomes.  The template contained 670,051 SNPs assigned to 

1,946 genes (Figure 2). Based on Figure 2, it was determined that a small gene would be 

considered 1-300 SNPs, a medium gene 300-1000 SNPs, and a large gene 1000 or more SNPs. 

Within the small and medium gene sets, three genes we selected that were closest to the mean of 

the gene range for each size (150 SNPs, 650 SNPs). Large genes were determined to be too 

computationally intensive for the simulation and were therefore excluded.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Gene Size (#SNPs) from Chromosome 1 of 1000 Genome Template 
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After the six genes were selected (3 small, 3 medium), three independent “disease” SNPs 

are chosen in each. Independence between SNPs was determined with haploview tagger, by 

selecting the minimal number of tagging SNPs in a gene given an r2 threshold [Barrett 2009; de 

Bakker, et al. 2005]. In this case, we select an r2 of 0.8 as our threshold for declaring 

independence as this is the haploview default. Also, since SNPs with a smaller MAF tend to have 

a large variation in risk effect during simulation, only SNPs with MAF >0.05 were considered 

for selection. SNP MAF varied with each data set so a “master set” was created for each gene 

consisting of 1,000,000 simulated controls. SNPs with a MAF <0.05 in the master set, were 

excluded as potential disease causing SNPs.  

Data sets simulated for power analysis with Hapgen 2 consisted of 1000 cases and 1000 

controls. Type I error was assessed under a null model which contained 2000 controls of which 

1000 were randomly assigned as “cases.” Under the null model no disease risk effects were 

simulated. As suggested in the SNP filtering section (4.1.3) data sets were filtered at a MAF 0.05 

and HWE 0.0001. Data sets with any remaining SNPs with a p-value less than 1E-7 were 

resimulated as these would guarantee a significant gene p-value regardless of the method used to 

analyze the data. See Table 3 for a complete list of simulated genes with corresponding SNP 

information. Median p-values of all 1000 datasets in an example simulated gene (SYPL2) are 

presented in Figure 3. An outline of the simulation methodology is available in Figure 4. 
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Table 3. Simulated Genes for Large Sample Power Assessment 

GENE Size SNP BP MAF Risk Effect* 

SYPL2 Small 
rs6657193 109803625 0.09 1.6 
rs2787015 109810957 0.14 1.3 
rs41301283 109850980 0.47 1.3 

FOXE3 Small 
SNP_47637243 47637243 0.08 1.65 

rs72686267 47652169 0.09 1.6 
rs6697911 47680191 0.09 1.5 

C1orf92 Small 
rs4147301 155134879 0.09 1.6 

SNP_155145097 155145097 0.07 1.6 
rs17410711 155181833 0.1 1.6 

TMEM51 Medium 
rs72642314 15387636 0.13 1.5 
rs10927721 15407258 0.19 1.4 
rs12734436 15428203 0.23 1.3 

HS2ST1 Medium 
SNP_87226055 87226055 0.09 1.5 
SNP_87286338 87286338 0.14 1.5 

rs1419130 87349069 0.22 1.3 

CACHD1 Medium 
rs305550 64696235 0.07 1.6 
rs6686231 64814449 0.23 1.5 
rs12122465 64945896 0.15 1.5 

 
*Effect size is multiplictive based on number of rare alleles 
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Figure 3. Example of Hapgen2 Simulated Gene with median P-Values 
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Figure 4. Simulation for Large Sample Power Assessment 

 

 

 

 

 

 

1. Three genes of both small and medium size selected 
for simulation from 1000 Genome CEU Chromosome 1 

2. Three independent SNPs with MAF>0.05 selected 
within each gene with Haploview tagger  

3. 1000 data sets simulated based off each gene 
consisting of 1000 cases and 1000 controls 

(Multiplicative model)  

4. 1000 data sets simulated based off each gene 
consisting of 2000 controls (Null Model) 

5. Each method analyzed both null and multiplicative 
data sets  

35 
 



4.2.2 Results 

4.2.2.1 Necessity of Permutation In order to investigate the necessity of permutation testing, 

the GeneBlock-Gabriel method was analyzed with and without permutations. QQ plots were 

created from the simulated SYPL2 null populations under both conditions. Figure 5 clearly 

indicates a wide deviation from the expected distribution for the uncorrected analysis. 

Interpreting these results using the standard p-values would permit many false positives, even 

when correcting for multiple comparisons. At an alpha of 0.05 we would expect 50/1000 

simulated data set to have a p-value equal to or lower than 0.05.  In reality, we find 143, almost 

three times the expected number. By adding permutation, we are able to correct these p-values 

and bring the type I error back to the expected level, with 53/1000 containing a p-value below 

0.05 (Figure 6). By comparing the difference between expected false positives with and without 

permutation, the advantage of permutation testing is evident. Several published methods show 

QQ plots similar to the non-permutated GeneBlock method indicating the need for permutation 

testing to control for type I error with these statistics [Moskvina, et al. 2012; Tang and Ferreira 

2012] 
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Figure 5. QQ Plot with Uncorrected GeneBlock –Gabriel P-Values 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. QQ Plot GeneBlock –Gabriel Permutated P-Values 
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4.2.2.2 Type I Error       Type I Error, measured by the number of null data sets predicted as 

significant (p<0.01) are relatively equivalent for all the methods (Appendix Table A1). Type I 

error ranges from 0.005 to 0.016 giving only a 0.006 difference from the expected error rate of 

0.01. We expected little variation in the Type I error because the p-values are corrected for with 

permutation.       

4.2.2.3 Power       Full results of the power analyses are available in Table A1 in the Appendix 

A. Figure 7 shows a comparison of power (number of data sets with p-value <0.01) for each 

gene. Vegas and the Fisher method have lower power than the other three methods. This is 

clearly more pronounced in the smaller genes, but is still apparent in some of the medium sized 

genes. Due to the similarity in the methodology between the Fisher and Vegas methods it is not 

surprising that they show such similarity in their results. Gabriel, HapBlock, and GWiS all have 

relatively similar powers throughout and each seems effective at detecting significant genes at a 

0.01 level with powers generally greater than 90%. Fisher and Vegas power goes up dramatically 

in the medium sized genes (CACHD, TMEM51, HS2ST1) and are much closer to the power of 

the other methods.  Therefore we can suggest Vegas and Fisher maybe underpowered to detect 

gene level association in smaller genes (1-300 SNPs), but further testing is certainly warranted. 

Note, 1 datasets in CACHD1 had an error in block analysis with the HapBlock algorithm so they 

were automatically counted as false negatives (further details in section 3.2.1)      
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Figure 7. Power Analysis for Large Sample Power Assessment 
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4.3 SMALL P-PVALUE POWER ASSESSMENT 

While the cross-dataset power analysis identifies variation between statistical tests at 

significance levels around p-value=0.01, it fails to gives us the more intriguing information with 

regards to how the methods power compare when detecting associations with extremely low p-

values. These genes are of greater interest, because they have the potential to be statistically 

significant when accounting for the many multiple comparisons in a GWAS. In order to measure 

a minute p-value for a locus of interest permutations must increase dramatically from the 1000 

seen in the cross-data set power analysis. A limit up to 1,000,000 permutations was set in this 

analysis, which has an ability to identify p-values greater than 1E-6. This dramatic increase in 

permutation forces us to focus on fewer data sets, so we reduce the total number of sets 

investigated per gene from the 1000 to 10 and focus on comparative power of the different 

methods for each individual dataset.   

4.3.1 Simulated Data Sets 

Genes were simulated with hapgen2 in the same manner as described above with a few notable 

exceptions. In the cross-dataset power analysis, each gene has 1000 data sets permutated 1000 

times for a total of 1,000,000 replicates. The small p-value power analysis requires 1,000,000 

permutations for 10 data sets for up to 10,000,000 replicates. Generating that many replicates 

with the above mentioned gene sizes, would be a huge resource burden. When selecting gene 

sizes, we had the choice of either estimating based on 1000 genome data, which will better 

represent more dense arrays, or we could estimate size based on the majority of available GWAS 
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data that are much less dense. For this specific analysis, it was decided to use the latter as the 

smaller gene sizes require a more reasonable amount of computing power.  

If genes were randomly selected for analysis, it is likely only smaller genes would be 

analyzed; we therefore used genes of various SNP sizes to ensure proper applicability with a real 

GWAS. The relatively small number of data sets in each gene size (30), gene size though forced 

us to analyze the datasets in aggregate. A histogram of gene size (#SNPs) from the AD GWAS is 

shown in Figure 8.  Based on the observed histogram, genes sizes were broken into three groups 

based on the number of SNPs (0-49, 50-150,>150). Data could not be simulated directly from the 

AD GWAS as hapgen2 requires haplotype and recombination information. Therefore, medians 

were determined for each range and genes with corresponding sizes were selected from a 

chromosome 1 of a 1000 genome template (described above). Small genes had a median number 

of 19 SNPs while medium and large had 71 and 207.5 respectively. Three genes were selected 

closest to each median number of SNPs. Selected genes: small (AMY2A, HIST2H2AA3, 

MARCKSL1), medium (IVNS1ABP, LCE1A, TFAP2E) and large (GJA4, LAX1, SESN2).  

 

 

 

 

 

 

 

 

 

41 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Gene Size (#SNPs) from Alzheimer GWAS 

 

Due to the large variance in simulated risk allele effects, additional filtering was 

implemented. This was not possible in the cross-dataset analysis due to the large number of 

simulated data sets. Datasets that had risk variants with p-values between 5E-4 to 1E-6 were 

selected to ensure only reasonable risk effects drive gene p-values. Those with p-values beneath 

this threshold should already be identified in single-SNP analysis in GWAS negating the 

necessity of gene testing. Due to high LD, potentially a non-risk SNP could have p-value below 

1E-6.  Data sets with this situation were also excluded. Risk effects were estimated with a 

Small 

Medium 

Large 
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sensitivity analysis as mention above (Section 4.2.1). See Table 4 for gene selection. Figure 9 

provides a summary of the algorithm. 

 

Table 4. Simulated Genes for Large Sample Power Assessment 

Gene Size SNP BP MAF Risk Effect 

FAM72A Small 
rs1972478 204286061 0.0797 1.7 

SNP_204341537 204341537 0.0877 1.6 
SNP_204341722 204341722 0.21225 1.5 

AMY2A Small 
SNP_103937608 103937608 0.0861 1.4 
SNP_103960308 103960308 0.1563 1.1 
SNP_103979216 103979216 0.1287 1.2 

GJA4 Large 
rs55757118 35011618 0.0487 1.4 
rs812239 35035363 0.14585 1.3 

SNP_35039105 35039105 0.14995 1.5 

HIST2H2AA3 Small 
rs56192814 148055552 0.05675 1.4 

SNP_148080377 148080377 0.06215 1.3 
SNP_148085185 148085185 0.0546 1.6 

IVNS1ABP Medium 
rs1208517 1183539106 0.4497 1.1 
rs4651251 183564233 0.452 1.15 

SNP_183569003 183569003 0.11775 1.25 

LAX1 Large 
rs34568569 201987636 0.08915 1.4 

SNP_201987667 201987667 0.09255 1.4 
SNP_202030469 202030469 0.27165 1.2 

LCE1A Medium 
rs12094590 151041957 0.09715 1.4 
rs35106590 151047045 0.0893 1.4 

SNP_151084390 151084390 0.19135 1.2 

SESN2 Large 
rs10494394 28446943 0.2198 1.25 
rs34315986 28458963 0.08585 1.3 
rs479144 28480925 0.0633 1.6 

TFAP2E Medium 
rs12082263 35793880 0.0704 1.3 
rs6702475 35809319 0.12025 1.5 

SNP_35840445 35840445 0.1331 1.3 
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Figure 9.  Simulation for Higher Replicate Power Assessment 

 

 

 

 

 

 

 

 

2. Three genes of both small, medium, and large size 
selected for simulation from 1000 Genome CEU 

Chromosome 1 

3. Three independent SNPs with MAF>0.05 selected 
within each gene with Haploview tagger  

4. 10 data sets simulated based off each gene consisting 
of 1000 cases and 1000 controls (Multiplicative model)  

5. Each method analyzed 

1. Gene Sizes estimated from Alzheimer GWAS 
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4.3.2 Results  

We performed a simple comparison of methods with the p-values for each simulated data set. 

Since all of the statistics have correct type I error (as ensured by permutation methods), the 

comparative power of the methods for a specific gene and dataset is directly indicated by the p-

values. Results from this power analysis are in Table A2 in Appendix A. Investigating all 90 data 

sets (9 genes); the best overall method was GWiS, which has the most p-value approximately 

36% of the time when averaging across all datasets in all genes. Both GeneBlock-Gabriel and 

GeneBlock-Hapblock have the lowest p-value around 23% of the time, while Vegas and the 

Fisher method are the top method about 10% of the time. Note, these percentages do not add to 

100 because in some cases methods tied as most effective.  

 Figure 10 shows a comparison of -log10(p-value) means and 95% CI using each method 

for every gene. No method is significantly better than all other methods in any of the genes 

though several methods are stronger compared to other individual methods. A best method, 

which takes the lowest p-value from all methods, is included on this figure to show the potential 

of combining all approaches into a more powerful test. This should not be directly compared 

with the other methods as it involves all 450 p-values rather than 90 for each individual test.  

Therefore, it requires some sort of multiple comparison evaluation that would ideally be obtained 

from additional permutation testing. Results from this small-p value power analysis are in 

agreement with the cross-dataset power analysis in that GWiS, Geneblock-Gabriel, Geneblock-

HapBlock are the top overall methods, with Vegas and Fisher showing substantially lower 

power.    
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Figure 10. Average P-Value for Each Gene Based Method 
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r=0.99 

4.3.2.1 Correlation We assessed correlation by combing all dataset across every gene and 

looking at the relation between the different methods (Figure 12). The top portion of the figure 

gives the correlation coefficient, while the bottom shows the correlation plot of all 90 points for 

each method. Fisher and Vegas are the most correlated with an r=0.67. This was expected due to 

the high methodical similarities between these techniques. Blocking methods are somewhat 

correlated with a r=0.47. GWiS is the least correlated with all other methods with r ≤ 0.3.  

Certainly part of the lack of correlation is expected due to random variation from permutation 

testing. By comparing results from two separate Vegas runs on the same simulated data sets, we 

can measure how much of the missing correlation is due to chance. Figure 11 reveals an 

extremely high correlation with a r=0.99 indicating the lack of correlation is almost completely 

due to difference between the statistics and not the inherent variation in permutation testing.     

 

 

 

 

 

 

Figure 11. Correlation between Separate Vegas Simulations 
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Figure 12. Correlation between Gene Methods  
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4.3.2.2 Comparison of Blocking Methods Block size was evaluated for each algorithm with 

both Gabreil and HapBlock method in all 90 data sets.  Figure 13 and Figure 14 show an 

overlapping histogram of the two methods with all blocks and single SNPs (size 1).  Histograms 

are splits apart in two sizes to get a better view of how blocks are assigned for each method. The 

Gabriel method produced blocks from 2-79 SNPs in length. HapBlock produced blocks of size 2-

39 SNPs. Gabriel did not assign 653 SNPs to a haploblock, while HapBlock skipped 334.  

Hapblock has many more blocks sized 2-15 SNPs, while Gabriel has a higher ratio of blocks 

above 20. Previous studies have contradictory results with some showing the diversity method 

with bigger blocks [Pattaro, et al. 2008] and other agreeing with our results in which Gabriel are 

larger [Indap, et al. 2005; Schwartz, et al. 2003].    
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Figure 13 Gabriel vs HapBlock Block Size <=25 

 

 

 

 

 

 

Figure 14. Gabriel vs HapBlock Block Size >25 
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The GeneBlock statistical test contains two blocking methods, which has the advantage 

of accounting for difference between blocking algorithms. It also has the disadvantage of 

doubling the number of statistical tests and therefore increasing the possibility of type I error. In 

order to determine the better blocking method, we investigated which the power analysis 

investigated with removing one. When the Gabriel method is ignored, the HapBlock method 

gives the lowest p-value 23/90 times. This was far below the top GWiS method, which is best 

39/90 times. When the HapBlock method is ignored, Gabriel did extremely well by being the 

best method (33/90) and is nearly as strong as GWiS (36/90). Based on this simulation, we can 

assume that the Gabriel approach is the stronger of the two blocking methods. 

4.3.2.3 Power Analysis A smaller power analysis similar to the cross-data analysis was 

conducted using a cut off of 1/17553=5.7E-5 estimated from the 17553 autosomal genes 

included in our AD GWAS. Since these are already corrected p-values anything below this value 

could be interpreted as significant even without a Bonferonni correction. Similar to the previous 

power analysis, both GeneBlock methods and GWiS preformed superior to Vegas and Fisher 

with a power of 50%. Fisher has similar power at 48%. Vegas is the weakest, with only a power 

of 39%. We further investigated the potential of a combination approach, which takes the lowest 

p-value from multiple gene-based methods. Taking into account the additional comparisons, we 

find a method combing the lowest p-value from Vegas, Gabriel, and GWiS to have a power that 

exceeds each individual test. This resulted in a power of 61%, which is likely underestimated due 

to the shared correlation among these genes and suggests the need for fewer multiple corrections.  

Vegas was selected over Fisher because they gave the same results and Vegas is much faster. 
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4.4 CONCLUSION 

We performed a power analysis on four gene-based methods (Vegas, GeneBlock, GWiS, Fisher).  

Three of these (GeneBlock, GWiS, Fisher) control for LD between SNPs with random-label 

permutation, while Vegas uses an equivalent simulation-based method. The GeneBlock method 

used two blocking algorithms (Gabriel, HapBlock) for assigning haploblock within a gene. 

Permutation testing is time consuming and therefore power analysis with permutation-based 

methods requires a large amount of computational resources. In order to save computation time 

we devise two power analyses (cross-dataset, low-pvalue). Genes of multiple sizes were 

simulated for each power analysis with hapgen2 with parameters estimated from real data (gene 

size, risk effect, indepence among risk loci) or previously published studies (# risk loci, #genes 

investigated).  

 Cross-dataset power analysis found permutation adequately controlled for type I error in 

all gene-based methods. GeneBlock-Gabriel, GeneBlock-HapBlock, and GWiS all had relatively 

similar powers throughout that cross-dataset analysis, while Vegas and Fisher were significantly 

less, especially in smaller genes. The lowest p-value power analysis revealed GWiS as the top 

method 36% of the time when combing datasets from all genes. Both GeneBlock-Gabriel and 

GeneBlock-Hapblock had the next lowest p-values, 23% of the time, while Vegas and the Fisher  

where the best method 10% of the time. Further investigation of the low-pvalue analysis revealed 

Gabriel as the more effective blocking algorithm. According to the very specific genetic model 

investigated, which does not ever represent a fraction of the true models, GWiS is the most 

powerful gene-based method, though GeneBlock-Gabriel was almost equivalent.       
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5.0 GENE-BASED TESTING OF ALZHEIMER’S GWAS 

Alzheimer’s Disease (AD) is a neurodegenerative disorder common among the elderly. 

Prevalence in individuals 85 years of age and older is shockingly high with estimates ranging 

from 10% to 50% [Evans, et al. 1989; Fratiglioni, et al. 1999]. In 2012, approximately 5.2 

million Americans are afflicted with this disorder [Hebert, et al. 2003]. With an aging population 

this number will grow dramatically over the next few decades as 13.2 Americans million are 

predicted to  suffer from AD by 2050 [Hebert, et al. 2003]. Globally, greater than 24 million 

people suffer from AD with an expected increase to 81.1 million by 2040 [Ferri, et al. 2005].   

The exact pathogenesis of AD is unknown but, extensive evidence supports a strong role 

for amyloid beta depositions in neuronal dysfunction [Ballard, et al. 2011]. A major protein 

involved in the formation of these amyloid plaques is APOE, which converts the monomeric 

form of  amyloid beta into a more toxic oligomer or fibril conformation [Verghese, et al. 2011]. 

Early GWAS of AD identified extremely high peaks within SNPs on chromosome 19 in APOE  

[Bertram and Tanzi 2009]. The APOE association is widely replicated in numerous GWAS in a 

variety of different ethnic populations [Bertram and Tanzi 2009; Chung, et al. 2012; Logue, et al. 

2011]. In addition, the APOE region is strongly associated with age-at-onset in AD [Coon, et al. 

2007; Kamboh, et al. 2011]. Evidence of a role for genetic factors in AD is strong, with twin 

studies estimating heritability at 0.74, but APOE is only predicted to explain approximately 20% 

of this risk.[Gatz, et al. 1997; Slooter, et al. 1998]. Weaker risk variants have been identified but 

replication has not always been consistent [Ballard, et al. 2011; Bertram and Tanzi 2009]. 

Additional contributing genetic variants are likely hidden in these AD GWAS, but are difficult to 

find with such a stringent genome-wide significance driven by the many SNPs tested.  Gene-
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based testing is an effective method to reduce multiple comparisons with GWAS data and 

therefore may find previously unknown risk loci [Liu, et al. 2010].        

Gene level analysis are underutilized in current AD research, with only a handful of 

studies identified [Hibar, et al. 2011; Li, et al. 2008; Velez, et al. 2012]. Instead, pathway-based 

analyses of GWAS data are the preferred approach for handling multiple comparisons [Hong, et 

al. 2010; Lambert, et al. 2010].  As mentioned in the introduction, these pathway-based 

approaches have the disadvantage of relying on inadequate annotation data [Khatri, et al. 2012]. 

In this section, we employ Vegas, GWIS, Fisher, and both GeneBlock methods to existing 

GWAS data in order to identify additional risk loci for AD. Results are compared with a standard 

single SNP and haplotype based analysis to demonstrate the effectiveness of these approaches.   

5.1 MATERIALS AND METHODS 

5.1.1 Study Population 

Subjects for the AD GWAS were obtained from two different sources: the University Pittsburgh 

Alzheimer Disease Research Center (ADRC) [Kamboh, et al. 2012a; Kamboh, et al. 2012b] and 

an ulcerative colitis and Crohn’s disease cohort [Achkar, et al. 2012]. The ADRC study 

population consists of 1440 Caucasian AD cases and 1000 Caucasian controls. All cases met the 

National Institute of Neurological Disorders and Stroke (NINCDS) and Alzheimer Disease and 

Related Disorders Association, Inc (ADRDA) criteria for probable or definite AD. Age and 

gender matched controls were obtained from the same region as cases, and had no psychiatric or 

neurological disorders including mild cognitive impairment or dementia. All participants gave 
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informed consent and the study received approval from University of Pittsburgh Institutional 

Review Board (IRB).  An additional 508 Caucasian controls were included from the ulcerative 

colitis and Crohn’s disease cohort from Ackbar et al [Achkar, et al. 2012]. Participants for this 

cohort were recruited from either Cleveland Clinic or the University of Pittsburgh. Subject 

recruitment followed each institutes IRB protocol and written informed consent was obtained 

from all participants.  

Table 5 displays demographic information from each group. Only participants with high 

quality DNA (>98% of SNPs called) were included in the table (1334 cases,1475 controls) (see 

section 5.1.3.1). Covariate information was unavailable for 64 participants (43 cases, 21 

controls) of those with high quality DNA. The mean age at enrollment is significantly lower than 

the mean age at enrollment of the ADRC control group (45.8 years versus 75.5 years; 2 sided t-

test p-value<0.00001). This is most likely due to the fact that Achkar et al. enrolled controls age 

20 and older while the ADRC enrolled controls age 58 and older. Since approximately 4% of AD 

is observed in people below 65 and 6% in people 65-74, a combination of these controls 

regardless of age seemed reasonable, because the vast majority of cases are 75 and older  

[AlzheimerAssociation 2012]. The difficulty in collecting healthy controls over 75 forces the 

collection of younger controls, some of whom will be diagnosed with AD later in life. Having 

some potential cases misclassified as controls will weaken the appearance of truly associated 

disease variants in analysis, but with the large sample size of this study this effect should be 

negligible. Gender is also significantly different between control groups with ADRC having 

63.3% women and Ackhar et al. only containing 55.6% (chi-square p-value=0.004).           
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Table 5. Characteristics of the Study Population 

 ADRC Achkar et al. 
 Cases 

(Ntotal=1291) 
Controls 

(Ntotal=958) 
Controls 
(Ntotal=495) 

Age (in years; mean ± sd) 77.3 ± 6.3 75.5 ± 6.3 45.8 ± 13.6 

Age  (median) 77 76 45 
Age Range 59-99 58-97 20-99 

Sex [women; N (%)] 813 (63.0) 606 (63.3) 275 (55.6) 

Mean Age at Onset  (N) 72.8 ± 6.5 (1190)   
 

Median Age at Onset  73   
 

5.1.2 Genotyping 

Genotyping was performed using the Illumina Omni1-Quad chip (San Diego, CA), which 

contains probes for in total 1,016,423 SNPs and/or copy-number variations. All samples were 

genotyped at the Feinstein Institute for Medical Research of the North Shore-Long Island Jewish 

Health System (Manhasset, NY)  

5.1.3 Quality Control 

5.1.3.1 Sample   A total of 106 cases and 34 controls were excluded from analysis due to a 

genotypic failure rate above 2%.  We included all remaining individuals including those with 

missing variables (age, gender) since no covariates were assessed. Therefore 1334 cases and 

1475 controls were included in the analysis.   

5.1.3.2 SNP Testing for Hardy-Weinberg equilibrium using the exact test removed 2,239 SNPs 

with significant deviations from expectation (P≤1E-06) [Wigginton, et al. 2005]. We observed 
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genotypic failure greater than 2%  in 22,385 SNP, which subsequently were excluded. SNPs with 

a minor allele frequency < 5% were also removed (N=269,652) leaving a total of 723,397 SNPs. 

In addition, 16,047 non-autosomal SNPs and 15 duplicate SNPs that mapped to the same 

location as another SNP were excluded. The duplicate SNPs generally had identical genotypes to 

those with a shared location. A total of 707,335 markers were included in the final analysis with 

405,444 SNPs located in or ± 25 kb of a gene in the Plink hg18-list (section 4.1.4).  

5.1.4 Population Stratification  

Population stratification analysis was performed in a previous study with the ADRC population 

using multi-dimensional scaling-based (MDS) methods available in Plink [Kamboh, et al. 

2012b]. The GWiS software does not allow for covariates and thus we could not make use of the 

MDS  population stratification variables. Population stratification by dividing with the genomic 

control (λ) is possible for single-SNP and gene-based method Vegas analysis, but would be 

ineffective for other gene level analysis  [Price, et al. 2010]. We therefore ignored population 

stratification in the current analyses in order to allow a comparison of all methods. This will have 

little effect on the overall rank of the most highly associated SNPs and genes, but it will lead to 

over-estimated p-values at a genome-wide level in these analyses.    

5.1.5 Imputation 

The software package GWiS does not tolerate missing SNP data. Therefore we imputed all SNPs 

with a failed genotype call in Plink using control samples as a reference. Default settings from 

Plink were implemented (Appendix B). Plink imputation works through the phasing of proxy 
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SNPs in a reference panel and then calling of the most likely genotype. Proxy SNPs are selected 

based on LD with the unknown marker. Initially, 2,762,312 (0.1%) genotypes were categorized 

as missing.  After imputation only 6272 (3e-4%) SNP genotypes remained undistinguishable. 

These were assigned as the common allele.          

5.1.6  Analysis 

5.1.6.1 Standard Single-SNP GWAS Analysis All 707,335 SNPs in the 2809 participants 

passing quality control were included in the AD GWAS analysis. We tested individual marker 

associations with logistic regression under an additive model (0,1,2) corresponding to the 

number of minor alleles. Manhattan and QQ-plots were created using R code from the Getting 

Genetics Done Blog. (http://gettinggeneticsdone.blogspot.com/2011/04/annotated-manhattan-

plots-and-qq-plots.html, accessed 12/2/2012). Direct estimation of genome wide significance 

with a Bonferroni correction using all 707,335 SNPs is extremely conserved because many of the 

707,335 SNPs are correlated and therefore should not be considered independent [Bonferroni 

1935]. An effective number of independent markers was estimated through haplotype blocks as 

suggested by Duggal et al. and used to calculate a more accurate genome wide significance with 

a Bonferroni correction at an of α = 0.05 [Duggal, et al. 2008]. Haploblocks were created across 

the genome with the Gabriel method (section 2.2.1.1).     

5.1.6.2 Haplotype Analysis We perform a haplotype analysis on the AD GWAS data. Each of 

the 707,335 SNPs were assigned to haplotype blocks (haploblocks) created with the Gabriel 

algorithm as described in section 2.1.3.1. Haplotype regression within blocks was carried out in 

Plink using the Sham et al. method illustrated in section 2.1.4. Permutation testing within blocks 
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has been suggested to correct haploblock p-values[Purcell, et al. 2007b], but was avoided in this 

situation due the larger number of blocks and the high number of iterations required for smaller 

p-values. A multiple comparison correction for haploblocks was designated in the same manner 

as the single SNP analysis. Theoretically, haploblock analysis is performed after a single SNP 

analysis and therefore it is redundant to investigate SNPs not found in blocks, but since our final 

goal is to compare all methods we assigned the same cut-off for blocking and single SNP in 

order to remove potential bias. By employing the same significant threshold as single SNP 

analysis, haploblock analysis loses its inherent advantage of decreased comparisons. A previous 

study indicates Bonferroni correction with haploblocks is anti-conservative for univariate SNP 

analysis and therefore its significance threshold (p-value) is higher than it should be in reality 

[Johnson, et al. 2010]. We rationalize over-estimating the threshold for the gold standard (single 

SNP) since we want ensure the alternative methods (haplotype, gene-based) are truly better.             

5.1.6.3 Gene Level Analysis    Gene based testing was investigated with all five methods from 

the previous power analysis (GWiS, Fisher, Vegas, GeneBlock-Gabriel, GeneBlock-HapBlock). 

Both GWiS and Vegas were implemented on the Frank computer server. Computation time was 

dramatically decreased by running at a chromosome level in parallel and by only allowing 

1,000,000 total permutations. Fisher and both GeneBlock methods employed an algorithm 

(Figure 15) which maximized the abilities of Pittgrid to allow 1000 submissions at a given time. 

A p-value threshold for significance was determined with a Bonferroni correction at 0.05 level 

based on the total number of genes analyzed. Because correlation exists between p-values of 

nearby genes, this correction is a conservative estimate. Interesting genes were graphed in 

LocusZoom to give a plot with p-values [Pruim, et al. 2010] LD and recombination rates 

visualized within plots is from HapMAP II CEU data [Consortium 2003]. A few non-significant 
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SNPs failed to map to LocusZoom HapMAP II CEU data and therefore were excluded from the 

plots. Haploview LD plots were also generated for some plots to give a more complete 

illustration of LD structure 

 

     

 

 

 

 

 

 

Figure 15. GeneBlock and Fisher Algorithm on PittGrid 

 

 

 

2. Genes with empirical p-value <0.01(10/1000) 
permutated up to 10000 

3. Genes with empirical p-value <0.001(10/10000) 
permutated up to 50000 with 5000 permutations of the 

same gene running in parallel 

4. Remaining genes run individually at 1000 
permutations until 10 successful replicates or 1000000 

limit reached 

1. GWAS data split into 1000 smaller files and 
permutated up to 1000 times 
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5.2 RESULTS 

5.2.1 APOE 

Single-SNP analysis confirmed previous findings of a strong association between APOE and AD  

[Bertram and Tanzi 2009; Kamboh, et al. 2012b]. Twenty-five SNPs in or ±25kb of the APOE 

region were found statistically significant at p< 5e-8. Rs4420638 has the lowest overall p-value 

at 5.38Ee-58. Since APOE is already well established in the literature we excluded it from the 

subsequent analyses to reduce computation burden. High linkage near APOE causes nearby 

genes to demonstrate an artificial association [Li, et al. 2008; Yu, et al. 2007]. Whether these 

genes have an independent association remains controversial, but certainly they are strongly 

driven by APOE’s association in gene level analysis [Cervantes, et al. 2011; Roses, et al. 2010]. 

We therefore exclude all genes within 50kb of APOE (PVRL2, TOMM40, APOC4, APOC2, 

APOC1). Figure 16 gives a gene map of ±200kb for APOE based on hg18 from the software 

LocusZoom [Pruim, et al. 2010]. Note, the Plink provided hg18-list does not include the gene 

APOC1P1 and it was therefore excluded from the gene level analysis.     

     

 

Figure 16. APOE Region (±200kb) 
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5.2.2 Single-SNP Analysis after exclusion of APOE region 

In total, 707,247 SNPs were left after exclusion of the APOE region. Investigation for 

determining a Bonferroni cut-off revealed 119,682 blocks and an additional 90,406 SNPs outside 

block boundaries for a total of 210,088 independent markers.  No SNPs achieved a genome-wide 

significance of 2.3e-7 (0.05/210,088) but a few were highly suggestive. A QQ plot and a 

Manhattan plot of GWAS results are presented in Figures 17 & 18. Table 6 shows a list of the 

top ten SNPs from analysis. QQ plot reveals p-values strongly deviating from expect values 

under a uniform distribution indicating population stratification is likely.      

 

Table 6. Ten SNPs with Lowest P-value 

SNP Chr BP Nearest Gene# P-value OR MAF* 

rs496990 18 74818363 SALL3(-22.9kb) 6.29E-07 1.797 0.06 
rs312834 17 72894656 SEPT9 6.91E-07 0.7552 0.34 

rs10854698 22 35910084 SSTR3(-22kb) 
C1QTNF6 

1.30E-06 0.771 0.45 

rs12616462 2 212198517 ERBB4 1.31E-06 1.484 0.38 
rs2456955 7 113025148 - 1.34E-06 1.45 0.14 
rs1011158 8 9142241 - 1.98E-06 1.297 0.49 
rs93075 17 72882063 SEPT9 2.14E-06 0.7639 0.34 

rs2520297 7 113041997 - 2.79E-06 1.442 0.14 
rs214380 20 53525617 - 3.62E-06 1.287 0.38 

rs17213073 6 9445254 - 3.74E-06 1.34 0.23 
*MAF taken from non-imputed data set 
#Genes annotated with Plink glist-h18 
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Figure 17. QQ Plot of SNPs in Alzheimer GWAS 

 

 

 

 

 

 

 

 

 

 

Figure 18. Manhattan Plot of Alzheimer GWAS
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Rs496990 located upstream of SALL3 (22.9kb) showed the strongest association (p= 

6.29E-07). SALL3 is a strongly conserved zinc finger protein involved in embryonic 

development [Kohlhase, et al. 1999; Sweetman and Munsterberg 2006].  Though no direct link 

between SALL3 and AD currently exists, it is involved in regulation of neurofilament expression 

levels, indicating a strong potential role for pathogenesis [Baba, et al. 2011].  Two of the top ten 

SNPs are located in SEPT9. SEPT9 belongs to the septin family of proteins, which are 

cytoskeleton proteins involved in many cellular processes [Estey, et al. 2011]. SEPT9 is of 

particular interest because mutations within this gene cause hereditary neuralgic amyotrophic 

(HNA) [Kuhlenbaumer, et al. 2005]. HNA is an autosomal dominant neurological disorder 

characterized by weakness and sensory loss in the arm muscle, indicating a potential functional 

role of SEPT9 within the brain [Kuhlenbaumer, et al. 2005]. Both ERBB4 and SSTR3 have 

directly been linked with AD. ERBB4 is a key regulator of Neuregulin-1 which is involved with 

synaptic plasticity in the brain [Woo, et al. 2010]. Furthermore, ERBB4 shows higher expression 

in neurons for Alzheimers cases compared to age-matched controls [Woo, et al. 2011]. SSTR3 

encodes a receptor for the neurotransmitter somatostatin and is overexpressed in the cortex of 

Alzheimer patients [Kumar 2005]. C1QTNF6 is less characterized than the other genes and its 

function remains unknown, though it may play a role in tumor angiogenesis [Takeuchi, et al. 

2011].  

5.2.3 Haplotype Analysis 

Haploblock analysis revealed 119,682 blocks spread across all autosomal chromosomes. 

Independent SNPs not found in blocks were not included in this analysis since they were already 

discussed above. We used the same 2.38e-7 threshold in block analysis as in the single-SNP 
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GWAS analysis. Three blocks contained statistical significant genes with a p-value below 2.38e-

7 (Table 7).  

Table 7. Ten HaploBlocks with Lowest P-value 

NSNP NHAP CHR BP1 BP2 SNP1 SNP2 P Gene 
5 3 17 21375153 21437192 rs11654214 rs6587170 9.64E-16 C17orf51 
9 10 11 49313619 49414631 rs3862342 rs7113075 1.25E-13 LOC729960* 

2 3 4 3211958 3212070 rs362305 rs362304 6.06E-08 HTT 
C4orf44 

3 3 4 69718710 69722553 rs844342 rs861340 2.73E-07 UGT2B10 
2 3 3 12877009 12877199 rs1508758 rs1848466 2.90E-07 RPL32 

8 6 12 90597385 90685105 rs6538290 rs10859200 4.15E-07 
MDN1 

CASP8AP2 
GJA10 

 

10 4 4 85386430 85414739 rs28394162 rs17008469 7.83E-07 - 
108 17 6 32772436 32782203 rs2647012 rs35332745 7.89E-07 - 

2 3 20 59893658 59899889 rs4925308 rs6061883 1.02E-06 CDH4 
14 5 2 238091933 238111907 rs3751109 rs13425580 2.08E-06 LOC93349 

*pseudogene (no coding ability) 

 

A 5 SNP block located in the C17orf51 contains three predicted haplotypes which gives a 

p-value=9.46E-16. C17orf51 is an uncharacterized protein at chromosome 17p11.2. Little is 

known of its effect, but the region has been implicated in linkage analysis with Charcot-Marie-

Tooth neuropathy type 1a, indicating a potential mechanism for increased AD association 

[Raeymaekers, et al. 1991].  After further investigation of haplotypes within this block it is 

becomes clear that a rare haplotype 22122(2-minor allele) is largely driving the association. 

Haplotype 22122 has an estimated frequency of 0.045 in controls and 0.005 in cases indicating a 

protective role.  

A 9 SNP block (p-value=1.25E-13) located on Chr 11 had no known gene in glist-hg18, 

but further review found it located in NADPH oxidase 4 pseudogene (LOC279960). 

Pseudogenes are non-functional therefore the exact mechanism this haplotype remains elusive. 
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Once again a rare haplotype (2122222222) is driving this p-value with a frequency of 0.008 in 

affected and a 0.047 in controls. The final block achieving statistical significance (p-

value=6.06E-8) is composed of 2 SNPs  and located in the 3’UTR of HTT on chromosome 4. 

HTT is the causal gene of Huntington’s disease a severe neurodegenerative disorder [HDCRG 

1993]. Huntington disease and AD share a similar pathogenesis and therefore maybe involved in 

similar biological pathways [Dagmar, et al. 2011].  As with the other two significant blocks, a 

rare haplotype (21) is found to drive the association with 2.9% of the controls containing 21 and 

only 0.007% of the cases. While, this two SNP haplotype is also located within 25kb of C4orf44 

both the location of haplotype (3’UTR of HTT) and the strong relation between Huntington 

disease and AD lead us to believe the true effect lies with HTT.     

5.2.4 Gene Level Analysis 

 For 17,547 genes, genotype data was available for more than one SNP. Accordingly we 

used a Bonferonni cut-off of 2.85e-6 (0.05/17,547) for the gene-based analyses. Gene level 

analysis revealed QQ-plots strongly deviate from expectation regardless of method used (Figure 

19). Population stratification is the likely culprit as permutation testing is not adequate by itself 

to control for this stratification. A major concern in gene level analysis involves the ability to 

properly compare genes of different sizes without bias. Correlation examined between gene-size 

and -log10 (p-value) was small with a correlation coefficient between -0.07 (GeneBlock-Both) 

and -0.03 (GWiS) demonstrating permutation testing was effective at controlling for type I error 

regardless of gene size.   
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Figure 19. QQ Plot of Gene Base Methods on Alzheimer GWAS 

 

5.2.4.1 Vegas and Fisher As anticipated, Vegas and Fisher produced comparable results. 

Nine of the top ten genes for each approach were identical when ranking the genes based on 

lowest p-value, though in slightly different orders (Table 8). However, none of the genes 

achieved a p-value of statistical significance when accounting for multiple comparisons. The top 

five loci found in both methods were the same (different order) and included B4GALT1, MAT1A, 

WDR86, LOC389435, and DNASE1L2. B4GALT encodes an enzyme that catalyzes a reaction to 

create a N-acetyllactosamine moiety [Ramakrishnan, et al. 2012]. While this specific glycan 

moiety has not been associated with AD other glycans have [Varki and Freeze 2009]. MAT1A is 
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an enzyme largely involved with methylation through its catalysis of S-adenosylmethionine 

[Tomasi, et al. 2012]. Mutations within the gene are related to many neurological disorders 

including AD [Furujo, et al. 2012].  A LocusZoom plot ±25kb with LD and recombination 

information is available for B4GALT and MAT1A in Figure 20-21 respectively. Gene plots reveal 

that B4GALT1 is largely driven by a few independent SNPs with p-values around 1E-4, while 

MAT1A’s association seems mostly influenced by a LD cluster centered on rs1143694 (p=6.77E-

06). No previous link was found between the other three shared genes in the top five with AD 

and therefore no further analysis was attempted. 

 

Table 8. Top 10 Genes with Fisher and Vegas Methods 

Chr Start-BP Stop-BP Gene SNPs Vegas P (rank) Fisher P (rank) 
9 33100638 33157356 B4GALT1 32 7.40E-05 (1) 0.000102 (2) 
10 82021555 82039414 MAT1A 38 0.000101 (2) 7.22E-05 (1) 
7 150709139 150738057 WDR86 36 0.000116 (3) 0.000154 (3) 
6 153645074 153645586 LOC389435 15 0.00016 (4) 0.000166 (4) 
16 2226468 2228713 DNASE1L2 16 0.000193 (5) 0.000185 (5) 
8 67948883 67976568 C8orf45 3 0.000197 (6) 0.000272 (9) 
4 88790482 88804534 DMP1 14 0.000205 (7) 0.000263 (8) 
13 26723691 26728702 RPL21 14 0.000214 (8) 0.000369 (15) 
14 94727617 94855955 CLMN 56 0.000243 (9) 0.000218 (6) 
8 27373194 27392730 CHRNA2 49 0.000284(10) 0.000302 (10) 
16 2213567 2225744 E4F1 22 0.000311(11) 0.000232 (7) 
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Figure 20. B4GALT1 P-value Plot 

 

Figure 21. MAT1A P-value Plot 
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5.2.4.2 GWiS    GWiS identified four genes with p-values below the suggested Bonferroni cut-

off of 2.85e-6 (Table 9). PRDM16 encodes a zinc finger protein identified as an important 

regulator for the development of brown adipocytes [Fruhbeck, et al. 2009]. A recent study 

indicates an additional role in protection of neural cells from oxidative stress, demonstrating a 

potential mechanism for association with AD [Chuikov, et al. 2010]. ARHGEF16 is located next 

to PRDM16, but upon further investigation the SNP rs1537404, located in the 3’UTR of 

PRDM16 seems to be driving the association (Figure 22). We therefore speculate ARHGEF16 is 

not related to AD but happens to be in close proximity to an unrelated strong risk variant. HLA-

DRA is located in the MHC and is strongly associated with the immune system. Polymorphisms 

in this gene have already been associated with Parkinson’s disease signifying strong potential for 

a plausible AD relationship [Hamza, et al. 2010; Hill-Burns, et al. 2011]. TRAF1 encodes a 

tumor necrosis factor (TRF) receptor, which regulates TNF-alpha [Culpan, et al. 2009]. TNF-

alpha is a pro-inflammatory cytokine which plays a pivitol role in many cellular process [Idriss 

and Naismith 2000]. TNF-alpha and its receptors are both widely implicated for their 

involvement with AD [Culpan, et al. 2009; Perry, et al. 2001; Swardfager, et al. 2010]. Figur 23-

25 reveals gene plots for each significantly associated gene. Contrary to the Fisher and Vegas 

methods, GWiS is largely driven by a single strongly associated SNP, which is apparent in the 

gene plots and the large number of the top ten genes overlapping (4) with the six top genes 

(Table 6) found in the standard GWAs analysis.       
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Table 9. Top 10 genes with GWiS Method 

Chr Start-BP Stop-BP Gene SNPs Causal Effects P-Value  
1 2975603 3345045 PRDM16 156 2 9.99E-07 
1 3361006 3387537 ARHGEF16 26 2 9.99E-07* 
6 32515624 32520802 HLA-DRA 254 4 9.99E-07 
9 122704492 122728994 TRAF1 105 2 9.99E-07 
18 74841262 74859181 SALL3 12 1 4.00E-06 
17 72789086 73008273 SEPT9 81 1 2.35E-05 
22 35932190 35938299 SSTR3 51 1 3.32E-05 
22 35906151 35914276 C1QTNF6 46 1 4.61E-05 
1 227633615 227636466 ACTA1 17 1 8.76E-05 
1 227643666 227710711 NUP133 25 1 8.76E-05 

*Likely driven by proximity to PRDM16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. ARHGEF16 P-value Plot 
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Figure 23. PRDM16  P-value Plot 

 

 

 

 

 

 

Figure 24. HLA-DRA P-value Plot 
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Figure 25. TRAF1 P-value Plot 

5.2.4.3 GeneBlock Despite different algorithms for assigning boundaries, the two GeneBlock 

methods detected the same top three genes. After the top three genes this concordance 

disappeared and the rest of the ten highest ranked genes are different. GeneBlock-HapBlock 

failed to assign block (section 3.2.1) in thirty genes, though none were of significance when 

compared with GeneBlock-Gabriel. See Table 10 for the top five genes from each method. All 

genes show fairly strong associations in both methods except NBEAL2 which is the 4987 ranked 

gene when using the Gabriel algorithm compared to 4th with the HapBlock. Investigation of the 

NBEAL2 haploblocks revealed Gabriel containing one eight SNP block covering the whole gene, 

where HapBlock has two blocks of four SNPs each. When examining a Haploview LD plot of 

NBEAL2 (Figure 26-27) the basis for differing block boundaries becomes apparent, since a tight 
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LD block is found with the D’ method, but when looking at r2 the second block is not 

distinguishable [Barrett 2009; Barrett, et al. 2005]. Haplotype regression indicates a p-value of 

0.163 for the Gabriel block, while deriving p-values of 0.06 and 4.26e-006 with the HapBlock 

algorithm. NBEAL2 is a clear example of how different blocking methods can give varying 

results.  

Table 10. Top 5 Genes in GeneBlock Method   

    
Chr 

Start-BP Stop-BP Gene SNPs Gabriel P 
(rank) 

HapBlock P 
(rank) 

17 21376454 21395500 C17orf51 9 9.99E-07 (1) 9.99E-07  (1) 
5 138751155 138753504 MGC29506 10 9.99E-07 (1) 3.0E-06 (2) 
5 138730787 138746900 SLC23A1 7 3.0E-06 (3) 8.0E-06 (3) 
2 73022672 73152473 SFXN5 33 1.18E-05 (4) 1.8E-04 (21) 
3 95264544 95328320 NSUN3 11 3.11E-05 (5) 0.001 (96) 
3 46996176 47026197 NBEAL2 8 0.19 (4987) 2.78E-05 (4) 
19 58988666 59019460 NLRP12 27 4.7E-04(33) 3.47E-05 (5) 

 

 

 

 

 

 

 

 

 

 

Figure 26. LD (r2) Plot of NBEAL2 with HapBlock Boundaries 
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Figure 27. LD (D’) Plot of NBEAL2 with Gabriel Boundaries 

 

 It is encouraging that the top three genes were identical for both blocking approaches, but 

only C17orf51 was statistically significant in all. C17orf51 has already been described in section 

5.2.3 (HaploBlock Analysis) as an uncharacterized protein with some interesting potential 

linkage associations. The other two genes (MGC29506, SLC23A1) are located next to each other 

on chromosome 5 and it is difficult to elucidate which gene is driving the signal (Figure 28).  

MGC29506 aka MZB1 codes for a protein which is innate-like B cells involved with calcium 

storage in the spleen [Flach, et al. 2010]. The effect of this gene in the brain remains elusive. 

SLC23A1 encodes for the protein SVCT, which is a key transporter of L-ascorbic acid (vitamin 

C) throughout the body [Timpson, et al. 2010]. SLC23A1 is potentially mediating risk through 

the vitamin C pathway since vitamin C reduces the risk of AD [Morris, et al. 1998; Zandi, et al. 

2004]. Further investigation is certainly warranted.  Gene plots are available in Figure 28-29. 
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The gene plots show several genes with no strongly associated SNPs, but when investigating 

haplotypes these signals become much stronger. Justification therefore exists for GeneBlock 

method compared to non-blocking analysis. GeneBlock p-values are largely driven by rare 

haplotype frequencies, similar to results found in the haploblocking method signifying the 

necessity for replication. Similar with single rare allele analysis, GWAS does not always have 

adequate power to detect or confirm rare haplotypes associations.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. SLC23A1 P-value Plot 
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Figure 29. MGC29506 P-value Plot 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. C1orf51 P-value Plot 
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5.2.3.4 Comparison of Method Investigation comparing all genes reveals unsurprisingly 

that Fisher and Vegas seemed highly correlated, while GeneBlock-Gabriel and GeneBlock-

HapBlock are also similar. These methods seem to produce almost completely different result 

when compared with each other. Though Vegas and Fisher method did not find any significant 

genes, their top genes still seemed interesting since they had many moderate (1E-6<p-

value<1E_4) associations relative to either GWiS or GeneBlock largely driven by single 

associations. This brings up an important point that just because a gene-based test  produces a 

lower p-value, it is not necessarily better at identifying truly intriguing genes.           

 We performed a rank test to compare how similar the top genes among each method and 

which genes is best when you combined them. Three dissimilar methods (Vegas, GWiS, 

GeneBlock-Gabriel) were selected for the analysis. Genes were ranked based on lowest p-value 

for the three methods and an average was taken. No gene was shared among the top 10 between 

any of the three methods. This is because each method appears to highlight different 

associations. Vegas finds genes with many moderately associated p-values, some which are not 

in high LD.  GWiS seems to find genes with solely one strong association. GeneBlock-Gabriel is 

largely driven by rare haplotype association.    

 Combing these methods produced interesting results since they each find unique gene 

structures significant, any gene that is strong in all three methods is worth knowing. See Table 11 

for genes with lowest p-value from the three selected gene-based methods. Since GWiS only 

assigns p-values to 369 genes, all others were equally considered with a rank of 370. Six genes 

are ranked relatively close with average ranks ranging from 12.33-17.67. Each of these genes 

were ranked in the top ten of at least one gene-based method. SEPT9 was the highest ranked 

gene when combing methods and has previously been described in 5.2.2 as encoding for a 
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cytoskeleton protein with mutations linked to a neurological disorder. C8orf45 is an 

uncharacterized protein or chromosome 8 with an unknown function. COL18A1 encodes a 

collagen protein crucial for neural tube closure among other functions [Sertie, et al. 2000]. 

RPL21 encodes a ribosomal protein in the 60S subunit of L21. It is highly conserved and 

considered crucial for protein synthesis within a cell, though no clear mechanism relating with 

Alzheimer exists [Zhou, et al. 2011]. USP12 is a histone deubiquitaneses and therefore is 

involved in a variety of cellular process [Joo, et al. 2011]. USP12 has never been directly 

associated with AD, but many other members of the ubiquitine proteasome system have been 

indicated in neurodegenerative diseases [Dennissen, et al. 2012]. The final gene located in the 

top cluster belonged to MAT1A already described in 5.2.3.1 as being involved in methylation 

with mutations related to many neurological disorders. Gene plots for these top ranked genes are 

in Figure 31-34 and Figure 21 (MAT1A)          

 A combination based on p-values was also undertaken by selecting the lowest p-value 

from Gabriel, Vegas and GWiS (section 4.2.4). The combinational method leads to the most 

significant genes even when accounting for additional multiple comparisons though the direct 

Bonferroni correction leads to a threshold of 9.5E -7. Since we only create up to 1,000,000 

permutation replicates the minimum p-value produced is 9.99E-7. We therefore assume these are 

equivalent with an understanding that the Bonferroni correction used in this situation is 

extremely conservative. 
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Table 11. Top Ranked Genes when Comparing Methods 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. SEPT9 P-value Plot 

Gene Chr SNP Start End Gene Rank (P) 
Vegas GWiS GeneBlock 

Gabriel 
Avg 

SEPT9 17 81 72789086 73008273 12 (2.9E-4) 6 (2.4E-5) 19 (3.2E-4) 12.3 
C8orf45 8 3 67948883 67976568 6 (2.0E-4) 12 (1.8E-4) 22 (3.9E-4) 13.3 

COL18A1 21 86 45649524 45758062 18 (3.9E-4) 21 (3.2E-4) 8 (9.1E-5) 15.7 
RPL21 13 14 26723691 26728702 8 (2.1E-4) 24 (3.9E-4) 18 (2.7E-4) 16.7 
USP12 13 30 26540435 26644029 16 (3.7E-4) 29 (5.9E-4) 6 (5.5E-5) 17 
MAT1A 10 38 82021555 82039414 2 (1.0E-4) 11 (1.4E-4) 40 (5.2E-4) 17.7 
PROS1 3 8 95074588 95175615 38 (8.6E-4) 43 (1.0E-3) 26 (4.3E-4) 35.7 
DMP1 4 14 88790482 88804534 7 (2.1E-4) 56 (1.2E-3) 47 (5.8E-4) 36.7 

CRYGN 7 18 150757988 150768032 20 (5.0E-4) 91 (2.0E-3) 39 (5.2E-4) 50 
NELL1 11 393 20647711 21553577 110 (2.6E-3) 22 (3.7E-4) 21 (3.7E-4) 51 
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Figure 32. COL18A1 P-value Plot 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. RPL21 P-value Plot  

81 
 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 34.  USP12 P-value Plot 

5.2.5 Comparison of SNP, Haplotype, and Gene Level Analysis 

We explored relationships between the different levels of analysis (single-SNP, haplotype, gene) 

by examining the top 100 ranked genes from each method. Only one gene (SEPT9) is shared 

among the top ten of the single SNP analysis, haploblock, and gene level analysis (combination 

method).  About one-third of the top 100 genes are shared among all three methods. Figure 35 

shows a Venn diagram comparing the gene lists from the three methods.  Single SNP analysis 

contained 102 genes since there was a tie for the top 100 genes.  Interestingly almost all of the 

genes shared between two methods are present when comparing all three suggesting these genes 

are likely by the same risk variant(s). This analysis finds that about two-thirds of the top 100 

genes are unique to that specific level of analysis indicating the value of investigating each.    

   

82 
 



 

 

 

 

 

 

 

  

 

 

 

 

Figure 35. Venn Diagram Comparing Different Levels of GWAS Analysis 

5.3 SUMMARY 

We investigated an AD GWAS consisting of 1334 cases and 1475 controls.  The GWAS was 

analyzed with a standard single SNP approach, a haplotype (Gabriel) based analysis, and 4 gene-

based methods (Vegas, Fisher, GeneBlock,GWiS). The APOE region on chromosome 19 was 

excluded from analysis since it is already well established in previous literature and would take 

considerable computational resources in the gene-based permutation testing [Coon, et al. 2007; 

Yu, et al. 2007]. A total of 707,335 markers were included in the final analysis. Single SNP 

testing found no significant genes.  QQ plots of SNPs in the AD GWAS p-values showed likely 

population stratification, which could not be controlled for with the standard principal 
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component approach because GWiS does not allow for covariates in its analysis. Haplotype 

analysis found three block achieving genome-wide significance (p< below 2.38e-7). Two of 

these are in genes with no predicted relation to AD (LOC729960, C170rf51), but a 2 SNP 

haploblock located in the 3’UTR of HTT has potential for a biological meaningful association. 

Gene-Level analysis found 7 genes which achieved genome-wide significance. Fisher and Vegas 

identify no significant genes in the AD GWAS, while GWiS and Geneblock identified four 

(PRDM16, ARHGEF16, HLA-DRA, TRAF1) and three (C17orf51, MGC29506, SLC23A1) 

respectively. A combination of the lowest p-values for each gene from Vegas, GeneBlock-

Gabriel, and GWiS identified all seven genes at a genome-wide significant level even when 

considering additional multiple comparisons. PRDM16, HLA-DRA, TRAF1, and SLC23A1 are all 

involved in pathways associated with AD. Examination of the top 100 genes between the 

different levels of analysis (single-SNP, haplotype, gene) found about 1/3 are shared, likely 

driven by the same risk variants 
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6.0 DISCUSSION AND CONCLUSION 

6.1 DISSERTATION CONCLUSION 

Investigation of GeneBlock found it performed well compared with other methods in power 

analysis though it was slightly less powerful than GWiS. When GeneBlock was applied to the 

AD GWAS it detected several unique genes (C17orf51, MGC29506, SLC23A1), achieved 

genome-wide significance. A combinational approach involving GeneBlock and two other 

methods (Vegas, GWiS) found four more genes (PRDM16, ARHGEF16, HLA-DRA, TRAF1), 

which achieved Bonferroni corrected significance even when accounting for additional testing. 

Comparisons between gene-based testing, single SNP, and haplotype analysis found about two-

thirds of the top 100 genes from each level of analysis map uniquely, indicating additional value 

in running not only gene-level, but haplotype level analysis in GWAS. We therefore recommend 

the use of GeneBlock for gene level analysis by itself or in conjunction with other methods.     

6.2 LIMITATIONS 

The power analysis presented in this paper was well planned, but in my opinion, completely 

inapplicable to real GWAS data. Too many potential genetic models exist to truly get an accurate 

assessment of each models true power. We make estimates about gene size, risk effect, number 

of risk loci, and correlation among disease SNPs, any of which could drastically alter results if 

changed.  For example, we assume three independent disease causing SNPs per gene because of 
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the Huang et, al study predicts that many in disease genes, but certainly not all disease genes 

have three independent risk loci [Huang, et al. 2011]. Our study is not designed to handle 

deviations from these set parameters, as it is extremely time consuming to just look at the given 

situation.  This is not specific to our power analysis, but a general statement about all gene-based 

power analyses. I therefore take the results from the power analysis very lightly and understand 

that the results only apply to a very select set subset of true genetic models. In the AD GWAS, 

we include 495 controls with significantly lower age and a smaller percentage of females. We 

justify this by the additional power they bring to the analysis, but because they are not matched 

like the other controls they could also increase the chances of confounding.     

6.3 FUTURE WORK 

GeneBlock is a novel method with many potential avenues for optimization. In order to improve 

the power of the GeneBlock test statistic, I suggest investigating a truncated approach for the 

Fisher method, which shows higher power when a small number of the overall p-values are 

significant within the test [Neuhauser and Bretz 2005; Zaykin, et al. 2002]. Both a top n%  or 

using a significant p-value threshold have been suggested for gene-based testing, but neither has 

been directly compared allowing for multiple potential avenues for truncation [Liu, et al. 2010; 

Purcell, et al. 2007b]. In theory, implementation of a truncation approach is simple since all of 

the above GeneBlock code can be reused with a simple filter step.  

 Currently, GeneBlock is computationally slow, but it could be modified to work on the 

sample multivariate normal distribution simulation as proposed by Vegas [Liu, et al. 2010]. The 

largest obstacle is determining correlation between blocks. Certainly a method could be derived 

86 
 



to directly determine relation between all SNPs within each block, but a more efficient procedure 

involves the use of selecting the top tagging SNPs within each block [Zhang, et al. 2005]. 

TagSNPs already have defined measures of LD, and correlation between block can be assessed 

by investigation LD between each tagSNP. GeneBlock could be easily modified to work directly 

in Vegas for this situation by assigning a given haploblock p-value to its corresponding tagged 

SNP.        

GeneBlock may have additional advantages in analyzing imputed GWAS data. 

Imputation allows for the estimation of ungenotyped SNPs in a study population from a 

genotyped haplotypes within a reference population [Howie, et al. 2012]. Imputed datasets can 

increase the number of SNPs from hundreds of thousands to millions. Undertaking gene-based 

testing in imputated data is difficult because it is heavily influenced by the haplotype reference 

population haplotypes, and therefore LD measures within a gene will be biased. Investigating a 

haploblock level as proposed in GeneBlock, could eliminate much of this bias since a single p-

value is produced within each haploblock. A simulation would be derived to test this hypothesis.       
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APPENDIX A 

TABLES AND FIGURES 

Table A1. Large Sample Power Analysis Results 

TEST Gene Type I Error Power 
Gabriel SYPL2 0.012 0.99 

Hapblock SYPL2 0.005 0.968 
Fisher SYPL2 0.01 0.426 
GWIS SYPL2 0.07 0.989 

VEGAS SYPL2 0.09 0.445 
Gabriel C1orf92 0.013 0.933 

Hapblock C1orf92 0.008 0.89 
Fisher C1orf92 0.016 0.607 
GWIS C1orf92 0.01 0.957 

VEGAS C1orf92 0.013 0.655 
Gabriel FOXE3 0.007 0.97 

Hapblock FOXE3 0.009 0.976 
Fisher FOXE3 0.012 0.865 
GWIS FOXE3 0.01 0.93 

VEGAS FOXE3 0.012 0.865 
Gabriel CACHD1 0.011 0.929 

Hapblock CACHD1 0.009 0.952 
Fisher CACHD1 0.014 0.901 
GWIS CACHD1 0.015 0.989 

VEGAS CACHD1 0.011 0.9 
Gabriel TMEM51 0.07 0.922 

Hapblock TMEM51 0.013 0.86 
Fisher TMEM51 0.014 0.826 
GWIS TMEM51 0.011 0.906 

VEGAS TMEM51 0.016 0.856 
Gabriel HS2ST1 0.01 0.959 

Hapblock HS2ST1 0.009 0.994 
Fisher HS2ST1 0.011 0.977 
GWIS HS2ST1 0.009 0.985 

VEGAS HS2ST1 0.012 0.979 
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Table A2. Higher Replicate Power Assessment Results 

Method 
Gene VEGAS GWIS Fisher Gabriel Hapblock Top Method 

SESN2 

1 1.00E-04 5.00E-06 5E-05 1.81371E-05 8.523E-05 GWIS 
2 0.00234 4.93E-05 6.17E-05 8.61104E-05 0.0008576 GWIS 
3 0.000386 1.00E-06 1.49E-05 0.000007 0.000008 GWIS 
4 0.000873 0.000388 0.000472 7.99399E-05 0.0007241 Gabriel 
5 0.000705 3.00E-06 1.95E-05 0.000009 2.616E-05 GWIS 
6 0.00206 4.17E-05 1.14E-05 2.34166E-05 0.0007096 Fisher 
7 0.000142 0.000384 6.63E-05 6.19909E-05 1.885E-05 Hapblock 
8 0.000215 1.36E-05 0.000151 9.0689E-05 0.0002394 GWIS 
9 4.50E-05 2.00E-06 1.81E-05 7.1425E-05 2.2E-05 GWIS 

10 0.00109 2.70E-05 3.32E-05 0.000131968 9.882E-05 GWIS 

GJA4 

1 6.00E-06 9.82E-05 5.57E-05 1.72286E-05 0.000007 Hapblock 
2 1.20E-05 1.08E-05 7.47E-05 0.000002 0.000001 Hapblock 
3 0.00519 0.001417 2.35E-05 0.000282574 0.0001576 Fisher 
4 1.90E-05 9.00E-06 0.000275 0.000003 9.99e-07 Hapblock 
5 0.000103 2.46E-05 1.75E-05 0.000169239 2.726E-05 Fisher 
6 0.000159 8.00E-06 1.17E-05 0.000004 0.0004266 Gabriel 
7 5.50E-05 0.000111 9.09E-05 0.000004 0.000003 Hapblock 
8 7.00E-06 2.97E-05 0.000209 0.000607128 0.000001 Hapblock 
9 0.000267 9.47E-05 2.31E-05 5.4484E-05 0.0001511 Fisher 

10 0.000654 4.37E-05 2.02E-05 7.83165E-05 0.0002389 Fisher 

LAX1 

1 0.001418 0.000423 0.000759 0.000244469 0.0008895 Gabriel 
2 0.00967 0.000132 0.017606 9.18628E-05 0.0006617 Gabriel 
3 0.00704 0.001601 0.008985 0.002025522 0.0043029 GWIS 
4 0.001035 3.88E-05 0.000958 0.008097166 0.0012118 GWIS 
5 0.000178 0.000193 0.000172 0.000781739 4.464E-05 Hapblock 
6 5.70E-05 4.20E-05 5.78E-05 6.44371E-05 3.274E-05 Hapblock 
7 0.000207 0.000898 0.000226 0.000129564 5.969E-05 Hapblock 
8 0.0111 0.00247 0.012422 0.003544842 0.003296 GWIS 
9 0.00246 0.00013 0.001196 0.002688172 0.0009792 GWIS 

10 0.000733 1.18E-05 0.000372 0.000988631 0.0008646 GWIS 

FAM7Y2A 

1 4.50E-05 9.99e-07 2.6E-05 0.000005 0.000005 GWIS 
2 7.60E-05 1.00E-06 5.67E-05 3.07115E-05 6.987E-05 GWIS 
3 0.000108 1.00E-06 0.00012 2.40331E-05 0.000003 GWIS 
4 0.000209 1.00E-06 0.000111 7.46007E-05 0.000007 GWIS 
5 9.40E-05 1.00E-06 6.19E-05 1.9854E-05 3.225E-05 GWIS 
6 9.99e-07 9.99e-07 0.000001 0.000002 0.000001 GWIS/VEGAS 
7 1.20E-05 1 1.2E-05 1.86507E-05 5.498E-05 Vegas 
8 0.000175 2.00E-06 0.000129 0.000585995 3.153E-05 GWIS 
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9 0.000102 9.99e-07 9.14E-05 0.000007 0.0014368 GWIS 
10 6.90E-05 9.99e-07 3.62E-05 0.000132772 0.000001 GWIS 

TFAP2E 

1 3.80E-05 2.00E-06 6.84E-05 0.00216544 0.0001326 GWIS 
2 9.10E-05 2.00E-06 4.46E-05 9.99e-07 2.503E-05 Gabriel 
3 2.30E-05 1.00E-06 0.000004 0.000001 3.841E-05 Gabriel/GWIS 
4 0.000361 9.99e-07 0.000297 0.000004 3.652E-05 GWIS 
5 5.30E-05 9.00E-06 1.84E-05 0.00001 5.666E-05 Gabriel 
6 1.50E-05 9.99e-07 1.83E-05 8.55044E-05 0.000006 GWIS 
7 7.70E-05 1.35E-05 0.00014 0.000105545 3.201E-05 GWIS 
8 0.000306 0.000107 0.000169 0.000595628 7.498E-05 Hapblock 
9 2.30E-05 4.77E-05 2.95E-05 0.000001 0.000003 Gabriel 

10 3.20E-05 1.00E-06 2.23E-05 0.000001 0.000004 Gabriel/GWIS 

LCE1A 

1 0.000122 0.000761 8.08E-05 1.0982E-05 8.988E-05 Gabriel 
2 0.000193 0.000542 0.000237 0.000005 7.007E-05 Gabriel 
3 0.00014 0.000336 1.53E-05 3.554E-05 6.346E-05 Fisher 
4 0.000716 0.000538 9.86E-05 0.000700378 3.746E-05 Hapblock 
5 8.30E-05 0.000545 7.7E-05 3.42543E-05 7.242E-05 Gabriel 
6 8.40E-05 0.000257 5.89E-05 1.56711E-05 0.000003 Hapblock 
7 5.00E-06 1.94E-05 0.00002 9.99e-07 3.198E-05 Gabriel 
8 2.40E-05 0.000175 1.03E-05 0.000001 0.0001457 Gabriel 
9 0.000199 0.000385 0.000471 5.3508E-05 0.000002 Hapblock 

10 9.00E-05 0.000341 0.00015 1.69653E-05 0.000007 Hapblock 

HISTH2AA 

1 9.00E-06 4.00E-06 3.72E-05 3.36655E-05 0.0006538 GWIS 
2 2.10E-05 0.00011 2.35E-05 0.000003 0.000125 Gabriel 
3 5.40E-05 1.63E-05 5.35E-05 0.000140136 2.605E-05 GWIS 
4 4.00E-06 0.001382 3.5E-05 0.000528849 0.0002 Vegas 
5 2.30E-05 0.000464 4.67E-05 1.21463E-05 0.0001617 Gabriel 
6 1.70E-05 0.000138 1.58E-05 0.000004 6.633E-05 Gabriel 
7 2.60E-05 5.00E-06 7.54E-05 7.82356E-05 0.000001 Hapblock 
8 0.000147 7.00E-06 0.000477 0.000124888 0.0010508 GWIS 
9 9.10E-05 1.00E-06 0.000202 0.000103931 0.0028027 GWIS 

10 6.00E-06 4.06E-05 1.52E-05 0.000004 0.0001089 Gabriel 

AMY2A 

1 2.30E-05 2.56E-05 2.6E-05 1.41992E-05 2.954E-05 Gabriel 
2 2.80E-05 7.75E-05 2.03E-05 0.000165292 2.59E-05 Fisher 
3 3.00E-06 0.000276 0.000004 0.000005 1.325E-05 Vegas 
4 0.001626 0.000226 0.001396 0.000213968 0.000276 Gabriel 
5 0.000524 6.88E-05 0.00065 2.43759E-05 2.09E-05 Hapblock 
6 0.000162 7.43E-05 0.000335 0.000502614 0.0015506 GWIS 
7 1.00E-06 2.03E-05 0.000002 0.000003 0.000002 Vegas 
8 1.20E-05 0.000411 1.28E-05 1.46924E-05 1.403E-05 Vegas 
9 0.000143 0.003343 6.03E-05 0.000163396 0.0004624 Fisher 
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10 7.80E-05 0.000116 0.000235 0.000162462 7.552E-05 Hapblock 

IVNS1ABP 

1 0.000184 0.000195 0.00039 0.000137186 0.0007445 Gabriel 
2 1.10E-05 0.000306 1.3E-05 0.001121202 7.543E-05 Vegas 
3 9.00E-05 0.000636 9.54E-05 8.57449E-05 0.0006682 Gabriel 
4 3.80E-05 0.000195 2.25E-05 0.003685957 0.0001661 Fisher 
5 5.30E-05 1.51E-05 5.15E-05 0.000004 0.000001 Hapblock 
6 9.10E-05 0.000287 0.000101 0.000409082 3.981E-05 Hapblock 
7 8.00E-05 0.000536 7.97E-05 0.000930665 0.0004065 Fisher 
8 1.60E-05 0.000247 2.14E-05 4.47912E-05 1.558E-05 Hapblock 
9 0.000187 0.000708 0.000404 0.00024567 0.000794 Vegas 

10 1.50E-05 0.000125 1.74E-05 5.50334E-05 1.566E-05 Vegas 
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APPENDIX B 

COMPUTER CODE 

###Code for all Gene-Based Methods is shown for both real data and simulation data assuming 

analysis of one gene. This can be easily modified to work with many necessary genes###  

3.2  Code for Gene-Based Methods 

3.2.1 GeneBlock-Gabriel 

###Condor Code to submit to grid### 

universe = vanilla 
Executable =  Rscript.bat 
requirements   = (Arch=="INTEL" || Arch=="X86_64")  && (OpSys == "WINNT51" || OpSys 
== "WINNT60" ||OpSys == "WINNT61") && HasR == TRUE 
should_transfer_files = YES 
when_to_transfer_output = on_exit_or_evict 
arguments = gene2.r 
transfer_input_files = gabriel.r, gene.ped, gene.map ,plink.exe 
log = gabriel.log 
error = gabriel.error 
output= gabriel.out 
Notification = Complete 
notify_user =  
queue 
 
##Gabriel.r### 
unlink("pop.*") 
l<-list.files() 
z<-grep(".map",l,value=TRUE) 
z1<-sub(".map","",z) 
  
v<-grep("number",l,value=TRUE) 
 
###Two R functions taken from MADAM and caTools respectively### 
 

92 
 



fishersum<-function (P) 
{ 
    return(sum(-2 * log(P))) 
} 
sample.split<-function (Y, SplitRatio = 2/3, group = NULL) 
{ 
    nSamp = length(Y) 
    nGroup = length(group) 
    if (nGroup > 0 && nGroup != nSamp) 
        stop("Error in sample.split: Vectors 'Y' and 'group' have to have the same length") 
    BinOne = logical(nSamp) 
    SplitRatio = abs(SplitRatio) 
    if (SplitRatio >= nSamp) 
        stop("Error in sample.split: 'SplitRatio' parameter has to be i [0, 1] range or [1, length(Y)] 
range") 
    U = unique(Y) 
    nU = length(U) 
    if (2 * nU > nSamp | nU == 1) { 
        n = if (SplitRatio >= 1) 
            SplitRatio 
        else SplitRatio * nSamp 
        rnd = runif(nSamp) 
        if (nGroup) 
            split(rnd, group) <- lapply(split(rnd, group), mean) 
        ord = order(rnd) 
        BinOne[ord[1:n]] = TRUE 
    } 
    else { 
        rat = if (SplitRatio >= 1) 
            SplitRatio/nSamp 
        else SplitRatio 
        for (iU in 1:nU) { 
            idx = which(Y == U[iU]) 
            idx = which(Y == U[iU]) 
            n = round(length(idx) * rat) 
            rnd = runif(length(idx)) 
            if (nGroup) { 
                grp = group[idx] 
                split(rnd, grp) <- lapply(split(rnd, grp), mean) 
            } 
            ord = order(rnd) 
            BinOne[idx[ord[1:n]]] = TRUE 
        } 
    } 
    if (SplitRatio >= 1) { 
        n = sum(BinOne) - SplitRatio 
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        if (n > 0) 
            BinOne[sample(which(BinOne), n)] = FALSE 
        else if (n < 0) 
            BinOne[sample(which(!BinOne), -n)] = TRUE 
    } 
    return(BinOne) 
} 
###Need to establish base cutoff for real population in which simulation is greater###  
l1<-paste("plink --file",z1," --logistic --out logistic") 
system(l1) 
r1<-read.table("logistic.assoc.logistic",header=TRUE) 
s<-dim(r1)[1] 
l2<-paste("plink --file",z1," --blocks --out data1") 
system(l2) 
if (length(readLines("data1.blocks"))>0){ 
r2<-read.table("data1.blocks",fill=TRUE,row.names=NULL) 
r2<-r2[,-1] 
r2a<-c(as.matrix(r2)) 
r3<-r2a[which(r2a!="")] 
r3a<-as.matrix(r1[,2]) 
r3b<-match(r3,r3a) 
r3c<-r3a[-r3b] 
length(r3c) 
write.table(r3a[-r3b],"notinhaplo.txt",row.names = FALSE,col.names = FALSE,quote=FALSE) 
l3<-paste("plink --file",z1," --hap data1.blocks --hap-logistic --hap-omnibus") 
} else { 
write.table(r1[,2],"notinhaplo.txt",row.names = FALSE,col.names = FALSE,quote=FALSE)  
r3c<-1 
} 
if (length(r3c)>0){ 
l4<-paste("plink --file",z1," --logistic --extract notinhaplo.txt --out notinhaplo.txt") 
system(l4) 
r4<-read.table("notinhaplo.txt.assoc.logistic",header=TRUE) 
if (length(readLines("data1.blocks"))==0) 
{ 
p<-r4[,9] 
} 
else{ 
system(l3) 
r5<-read.table("plink.assoc.hap.logistic",header=TRUE) 
p<-c(r4[,9],r5[,9])} 
}  
if (length(r3c)==0){ 
system(l3) 
r5<-read.table("plink.assoc.hap.logistic",header=TRUE) 
p<-c(r5[,9]) 
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} 
 
##Take fishersum of the real population### 
if (length(na.omit(p))==0){ 
pval<-noquote(cbind(z1,s,"NA","NA",1)) 
write.table(pval,paste(z1,".genepval",sep=""),row.names = FALSE,col.names =  
FALSE,quote=FALSE,append=TRUE) 
stop() 
}else{ 
g1<-fishersum(na.omit(p)) 
} 
###Create ped file for simulation### 
l5<-paste("plink --file",z1,"--recode --out pop") 
system(l5) 
r<-read.table(paste("count",z1,".txt",sep="")) 
n<-read.table(v) 
j=n+999 
p<-read.table("pop.ped",colClasses="character") 
###run actual simulation### 
while (n<=j & r<=9) 
 { 
###Randomly assign disease status to population### 
p1<-sample.split(p[,1],SplitRatio = .5) 
p1[which(p1=="TRUE")]<-"1" 
p1[which(p1=="FALSE")]<-"2" 
p3<-as.numeric(p1) 
p2<-cbind(p[,1:5],p3,p[,7:dim(p)[2]]) 
write.table(p2,"pop.ped",row.names = FALSE,col.names = FALSE,quote=FALSE) 
###Run new population### 
l3<-paste("plink --file pop --hap data1.blocks --hap-logistic --hap-omnibus") 
if (length(r3c)>0){ 
l4<-paste("plink --file pop --logistic --extract notinhaplo.txt --out notinhaplo.txt") 
system(l4) 
r4<-read.table("notinhaplo.txt.assoc.logistic",header=TRUE) 
if (length(readLines("data1.blocks"))>0) { 
system(l3) 
r5<-read.table("plink.assoc.hap.logistic",header=TRUE) 
d<-c(r4[,9],r5[,9]) 
} 
else 
{ 
d<-r4[,9] 
} 
g2<-fishersum(na.omit(d)) 
}  
if (length(r3c)==0) 
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{ 
l3<-paste("plink --file pop --hap data1.blocks --hap-logistic --hap-omnibus") 
system(l3) 
r5<-read.table("plink.assoc.hap.logistic",header=TRUE) 
d<-c(r5[,9]) 
g2<-fishersum(na.omit(d)) 
} 
###Count if higher than real fisher sum### 
if(g2>g1) 
{ 
r=r+1 
t=n+1 
write.table(t,paste(z1,".hits",n,sep=""),row.names = FALSE,col.names =  
FALSE,quote=FALSE,append=TRUE) 
} 
n=n+1 
} 
pval<-noquote(cbind(z1,s,r,n,r/n)) 
write.table(pval,paste(z1,".genepval",n,sep=""),row.names = FALSE,col.names =  
FALSE,quote=FALSE,append=TRUE) 
unlink("pop.*") 
unlink("snplist.txt") 
unlink("*.map") 
 

3.2.1 GeneBlock-HapBlock 

####HapBlock Code for blocking### 

###Convert files to proper format for hapblock blocking program### 

#! /bin/bash 
chmod a+x plinkINTEL.exe 
./plinkINTEL.exe --file gene --recode --maf .05 --hwe .0001 
./plinkINTEL.exe --file plink --logistic --hwe .0001 --maf .05 
fgrep -v "CHR" plink.assoc.logistic>p.txt 
awk '{if ($9<=1) print $2}' p.txt>snplist$i.txt 
rm p.txt 
rm plink.assoc.logistic 
./plinkINTEL.exe --file gene --recode12 --extract snplist$i.txt --hwe .0001 --maf .05 
echo $(cat plink.map|wc -l)>b.txt 
awk '{print $2 " " $4}' plink.map>b1.txt 
cat b.txt b1.txt>snpgene.pos 
echo "1000 " $(cat plink.map|wc -l)>b2.txt 
cut -d ' ' -f2,7- plink.ped>b3.txt 
cat b2.txt b3.txt>snpgene.ped 
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##Submit to hapblock blocking program### 

universe = vanilla 
Executable = /u/hab45/hapblock/hapblock/HapBlock.exe 
requirements   = (Arch=="INTEL" || Arch=="X86_64")  && (OpSys == "WINNT51" || OpSys 
== "WINNT60" ||OpSys == "WINNT61" ||OpSys == "WINDOWS") 
should_transfer_files = YES 
when_to_transfer_output = on_exit_or_evict 
arguments = hapblock.txt 
transfer_input_files = hapblock.txt,snpgene.pos,snpgene.ped 
log = random.log 
error = random.error 
output= random.out 
Notification = Complete 
notify_user = 
queue 
 

###HapBlock Input### 

2809 ###Number of Samples## 
1670 ###Maximum Number of Markers###  
1670 ###Maximum Length of Blocks ### 
3 1670 snpgene.pos ##Block partionting method for tagSNP selection (Ignored)#### 
3 snpgene.ped block_outgene.dat ###Input data and output data ### 
1 .80 .099 ##Diversity Method , Percent of haplotype to be a block, Minor haplotype frequency# 
1 .80  ###Method for Tag Selection (ignored)## 
2 ###Specific tagSNPs (none)### 
2 ##Permutations (no)### 
 

 

 

###Hapblock.r Gene Test Submit Code### 

universe = vanilla 
Executable =  Rscript.bat 
requirements   = (Arch=="INTEL" || Arch=="X86_64")  && (OpSys == "WINNT51" || OpSys 
== "WINNT60" ||OpSys == "WINNT61" ||OpSys == "WINDOWS") && HasR == TRUE 
should_transfer_files = YES 
when_to_transfer_output = on_exit_or_evict 
arguments = hapblock.r 
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transfer_input_files = 
hapblock.r,gene.ped,plink.exe,gene.map,/u/hab45/GWAS/combined.blocksC17orf51,/u/hab45/G
WAS/snpgeneh/number100000.txt 
log = gene.log 
error = gene.error 
output= gene.out 
Notification = Complete 
notify_user =  
queue 
 

###Hapblock.r#### 

unlink("new*") 
unlink("pop.map") 
z<-list.files(pattern=".map", full.names=TRUE) 
z1<-sub(".map","",z) 
z3<-sub("./","",z1) 
z2<-paste("hapblock",z3,".txt",sep="") 
 
c<-paste("plink --file",z3," --recode --hwe .0001 --maf .05 --out new") 
system(c) 
 
fishersum<-function (P) 
{ 
    return(sum(-2 * log(P))) 
} 
sample.split<-function (Y, SplitRatio = 2/3, group = NULL) 
{ 
    nSamp = length(Y) 
    nGroup = length(group) 
    if (nGroup > 0 && nGroup != nSamp) 
        stop("Error in sample.split: Vectors 'Y' and 'group' have to have the same length") 
    BinOne = logical(nSamp) 
    SplitRatio = abs(SplitRatio) 
    if (SplitRatio >= nSamp) 
        stop("Error in sample.split: 'SplitRatio' parameter has to be i [0, 1] range or [1, length(Y)] 
range") 
    U = unique(Y) 
    nU = length(U) 
    if (2 * nU > nSamp | nU == 1) { 
        n = if (SplitRatio >= 1) 
            SplitRatio 
        else SplitRatio * nSamp 
        rnd = runif(nSamp) 
        if (nGroup) 
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            split(rnd, group) <- lapply(split(rnd, group), mean) 
        ord = order(rnd) 
        BinOne[ord[1:n]] = TRUE 
    } 
    else { 
        rat = if (SplitRatio >= 1) 
            SplitRatio/nSamp 
        else SplitRatio 
        for (iU in 1:nU) { 
            idx = which(Y == U[iU]) 
            idx = which(Y == U[iU]) 
            n = round(length(idx) * rat) 
            rnd = runif(length(idx)) 
            if (nGroup) { 
                grp = group[idx] 
                split(rnd, grp) <- lapply(split(rnd, grp), mean) 
            } 
            ord = order(rnd) 
            BinOne[idx[ord[1:n]]] = TRUE 
        } 
    } 
    if (SplitRatio >= 1) { 
        n = sum(BinOne) - SplitRatio 
        if (n > 0) 
            BinOne[sample(which(BinOne), n)] = FALSE 
        else if (n < 0) 
            BinOne[sample(which(!BinOne), -n)] = TRUE 
    } 
    return(BinOne) 
} 
###Need to establish base cutoff for real population in which simulation is greater###  
l1<-paste("plink --file new --logistic --hwe .0001 --maf .05 --out logistic") 
system(l1) 
r1<-read.table("logistic.assoc.logistic",header=TRUE) 
s<-dim(r1)[1] 
###Two R functions taken from MADAM and caTools respectively### 
t2<-paste("combined.blocks",z3,sep="") 
file.copy(t2,"data1.blocks",overwrite=TRUE) 
if (length(readLines("data1.blocks"))>0){ 
r2<-read.table("data1.blocks",fill=TRUE,row.names=NULL) 
r2<-r2[,-1] 
r2a<-c(as.matrix(r2)) 
r3<-r2a[which(r2a!="")] 
r3a<-as.matrix(r1[,2]) 
r3b<-match(r3,r3a) 
r3c<-r3a[-r3b] 
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length(r3c) 
write.table(r3a[-r3b],"notinhaplo.txt",row.names = FALSE,col.names = FALSE,quote=FALSE) 
l3<-paste("plink --file new --hap data1.blocks --hap-logistic --hap-omnibus") 
} else { 
write.table(r1[,2],"notinhaplo.txt",row.names = FALSE,col.names = FALSE,quote=FALSE)  
r3c<-1 
} 
if (length(r3c)>0){ 
l4<-paste("plink --file new --logistic --extract notinhaplo.txt --hwe .0001 --maf .05 --out 
notinhaplo.txt") 
system(l4) 
r4<-read.table("notinhaplo.txt.assoc.logistic",header=TRUE) 
if (length(readLines("data1.blocks"))==0) 
{ 
p<-r4[,9] 
} 
else{ 
system(l3) 
r5<-read.table("plink.assoc.hap.logistic",header=TRUE) 
p<-c(r4[,9],r5[,9])} 
}  
if (length(r3c)==0){ 
system(l3) 
r5<-read.table("plink.assoc.hap.logistic",header=TRUE) 
p<-c(r5[,9]) 
} 
 
##Take fishersum of the real population### 
if (length(na.omit(p))==0){ 
pval<-noquote(cbind(z1,s,"NA","NA",1)) 
write.table(pval,paste(z1,".genepval",sep=""),row.names = FALSE,col.names =  
FALSE,quote=FALSE,append=TRUE) 
stop() 
}else{ 
g1<-fishersum(na.omit(p)) 
} 
###Create ped file for simulation### 
l5<-paste("plink --file new --recode --hwe .0001 --maf .05 --out pop") 
system(l5) 
r=0 
n<-0 
j=n+9999 
p<-read.table("pop.ped",colClasses="character") 
###run actual simulation### 
while (n<=j & r<=9) 
 { 
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###Randomly assign disease status to population### 
p1<-sample.split(p[,1],SplitRatio = .5) 
p1[which(p1=="TRUE")]<-"1" 
p1[which(p1=="FALSE")]<-"2" 
p3<-as.numeric(p1) 
p2<-cbind(p[,1:5],p3,p[,7:dim(p)[2]]) 
write.table(p2,"pop.ped",row.names = FALSE,col.names = FALSE,quote=FALSE) 
###Run new population### 
l3<-paste("plink --file pop --hap data1.blocks --hap-logistic --hap-omnibus") 
if (length(r3c)>0){ 
l4<-paste("plink --file pop --logistic --extract notinhaplo.txt --out notinhaplo.txt") 
system(l4) 
r4<-read.table("notinhaplo.txt.assoc.logistic",header=TRUE) 
if (length(readLines("data1.blocks"))>0) { 
system(l3) 
r5<-read.table("plink.assoc.hap.logistic",header=TRUE) 
d<-c(r4[,9],r5[,9]) 
} 
else 
{ 
d<-r4[,9] 
} 
g2<-fishersum(na.omit(d)) 
}  
if (length(r3c)==0) 
{ 
l3<-paste("plink --file pop --hap data1.blocks --hap-logistic --hap-omnibus") 
system(l3) 
r5<-read.table("plink.assoc.hap.logistic",header=TRUE) 
d<-c(r5[,9]) 
g2<-fishersum(na.omit(d)) 
} 
###Count if higher than real fisher sum### 
if(g2>g1) 
{ 
r=r+1 
t=n+1 
} 
n=n+1 
} 
pval<-noquote(cbind(z1,s,r,n,r/n)) 
write.table(pval,paste(z3,".genepval",sep=""),row.names = FALSE,col.names =  
FALSE,quote=FALSE,append=TRUE) 
unlink("snplist.txt") 
unlink("*.map") 
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3.2.2 Fisher 

###Condor Code to submit to grid### 

universe = vanilla 
Executable =  Rscript.bat 
requirements   = (Arch=="INTEL" || Arch=="X86_64")  && (OpSys == "WINNT51" || OpSys 
== "WINNT60" ||OpSys == "WINNT61") && HasR == TRUE 
should_transfer_files = YES 
when_to_transfer_output = on_exit_or_evict 
arguments = fisher.r 
transfer_input_files=fisher.r,gene.map,gene.ped,plink.exe 
log = fisher.log 
error = fisher.error 
output= fisher.out 
Notification = Complete 
notify_user =  
queue 

###Fisher Code written for R, includes Plink Code### 

###Remove any previous simulated genes that could be left over### 
unlink("pop.*") 
###Pull out proper file names## 
l<-list.files() 
z<-grep(".map",l,value=TRUE) 
z1<-sub(".map","",z) 
v<-grep("number",l,value=TRUE) 
 
###Two R functions taken from MADAM and caTools respectively### 
fishersum<-function (P) 
{ 
    return(sum(-2 * log(P))) 
} 
sample.split<-function (Y, SplitRatio = 2/3, group = NULL) 
{ 
    nSamp = length(Y) 
    nGroup = length(group) 
    if (nGroup > 0 && nGroup != nSamp) 
        stop("Error in sample.split: Vectors 'Y' and 'group' have to have the same length") 
    BinOne = logical(nSamp) 
    SplitRatio = abs(SplitRatio) 
    if (SplitRatio >= nSamp) 
        stop("Error in sample.split: 'SplitRatio' parameter has to be i [0, 1] range or [1, length(Y)] 
range") 
    U = unique(Y) 
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    nU = length(U) 
    if (2 * nU > nSamp | nU == 1) { 
        n = if (SplitRatio >= 1) 
            SplitRatio 
        else SplitRatio * nSamp 
        rnd = runif(nSamp) 
        if (nGroup) 
            split(rnd, group) <- lapply(split(rnd, group), mean) 
        ord = order(rnd) 
        BinOne[ord[1:n]] = TRUE 
    } 
    else { 
        rat = if (SplitRatio >= 1) 
            SplitRatio/nSamp 
        else SplitRatio 
        for (iU in 1:nU) { 
            idx = which(Y == U[iU]) 
            idx = which(Y == U[iU]) 
            n = round(length(idx) * rat) 
            rnd = runif(length(idx)) 
            if (nGroup) { 
                grp = group[idx] 
                split(rnd, grp) <- lapply(split(rnd, grp), mean) 
            } 
            ord = order(rnd) 
            BinOne[idx[ord[1:n]]] = TRUE 
        } 
    } 
    if (SplitRatio >= 1) { 
        n = sum(BinOne) - SplitRatio 
        if (n > 0) 
            BinOne[sample(which(BinOne), n)] = FALSE 
        else if (n < 0) 
            BinOne[sample(which(!BinOne), -n)] = TRUE 
    } 
    return(BinOne) 
} 
###Need to establish base cutoff for real population in which simulation is greater###  
l1<-paste("plink --file",z1," --logistic --out logistic") 
system(l1) 
r1<-read.table("logistic.assoc.logistic",header=TRUE) 
s<-dim(r1)[1] 
p<-r1[,9] 
 
##Take fishersum of the real population### 
if (length(na.omit(p))==0){ 
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pval<-noquote(cbind(z1,s,"NA","NA",1)) 
write.table(pval,paste(z1,".genepval",sep=""),row.names = FALSE,col.names =  
FALSE,quote=FALSE,append=TRUE) 
stop() 
}else{ 
g1<-fishersum(na.omit(p)) 
} 
 
###Create ped file for simulation### 
l5<-paste("plink --file",z1,"--recode --out pop") 
system(l5) 
r<-read.table(paste("count",z1,".txt",sep="")) 
n<-read.table(v) 
j=n+999 
p<-read.table("pop.ped",colClasses="character") 
###run actual simulation### 
while (n<=j & r<=9) 
 { 
###Randomly assign disease status to population### 
p1<-sample.split(p[,1],SplitRatio = .5) 
p1[which(p1=="TRUE")]<-"1" 
p1[which(p1=="FALSE")]<-"2" 
p3<-as.numeric(p1) 
p2<-cbind(p[,1:5],p3,p[,7:dim(p)[2]]) 
write.table(p2,"pop.ped",row.names = FALSE,col.names = FALSE,quote=FALSE) 
###Run new population### 
l6<-paste("plink --file pop --logistic --out pop") 
system(l6) 
r2<-read.table("pop.assoc.logistic",header=TRUE) 
###Two R functions taken from MADAM and caTools respectively### 
p4<-r2[,9] 
if (length(na.omit(p4))==0){ 
g2<-1 
}else{ 
g2<-fishersum(na.omit(p4)) 
} 
###Count if higher than real fisher sum### 
if(g2>g1) 
{ 
r=r+1 
t=n+1 
write.table(t,paste(z1,t,".hits",sep=""),row.names = FALSE,col.names =  
FALSE,quote=FALSE,append=FALSE) 
} 
n=n+1 
} 
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pval<-noquote(cbind(z1,s,r,n,r/n)) 
write.table(pval,paste(z1,n,".genepval",sep=""),row.names = FALSE,col.names =  
FALSE,quote=FALSE,append=TRUE) 
unlink("pop.*") 
unlink("snplist.txt") 
unlink("*.map") 
          

3.2.3 Vegas Code 

###Frank Submission Code## 

#!/bin/bash 
#PBS -m e 
#PBS -M hab45@pitt.edu 
#PBS -j oe 
#PBS -q shared 
#PBS -N vegas21 
#PBS -l nodes=1:ppn=1 
#PBS -l walltime=23:00:00 
#PBS -l vmem=4GB 
#PBS -S /bin/bash 
 
###Vegas Code### 
cd /home/bdiergaarde/hab45/Vegas 
module load r 
module load perl 
###Random controls are 200 randomly selected controls### 
plink --bfile data --make-bed --keep randomcontrols.txt --out controls 21  
plink --bfile data --logistic --chr 21 --out alz.p21 
awk '{print $2,$NF}' alz.p21.assoc.logistic|tail -n +2>alz.p21 
./vegas alz.p21 -custom controls21 -chr 21 -out alz21test 
 

 

3.2.4 GWiS Code 

###Frank Submission Code## 

#!/bin/bash 
#PBS -m e 
#PBS -M hab45@pitt.edu 
#PBS -j oe 
#PBS -q shared 
#PBS -N gwis9 
#PBS -l nodes=1:ppn=1 
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#PBS -l walltime=23:00:00 
#PBS -l vmem=4GB 
#PBS -S /bin/bash 
 

##GWiS Code### 

cd /home/bdiergaarde/hab45/GWIS/1.1 
module load gsl 
cd sample 
 
##Format into GWIS format### 
plink --bfile gene --chr 9 --make-bed --out pop9 
 
awk '{print $2,$1,$4,$4}' pop9.bim>./chr9.snp.info 
 
plink --bfile gene  --noweb --recodeA --chr 9 --out chr9 
 
sed '1,1d' chr9.raw|cut -d ' ' -f7->p9.raw 
python -c "import sys; print('\n'.join(' '.join(c) for c in zip(*(l.split() for l in sys.stdin.readlines() if 
l.strip()))))" < p9.raw > plink9.raw 
 
cat plink9.raw|tr ' ' '\t'>chr9.tped 
 
cd .. 
 
rm ./sample/p9.raw 
rm ./sample/plink9.raw 
rm ./sample/chr9.raw 
 
###Run GWiS input### 
./runsample9.sh 
fgrep -w SUMMARY ./result/chr9.result.GWiS.Pval.txt>>results9.txt 
 

##runsample9.sh### 

#!/bin/bash  
NPERM=100000 
export NPERM 
./GWiS sample/ chr9 plink ./result/ 2707  
###2707 is the randomly selected seed number### 

4.0 Power Analysis 

4.2.1 & 4.3.1 Simulation of data sets for both Power Analysis 
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###plink32 is simply plink v1.07 for 32 bit linux### 
##Alzheimer’s file binary file is stored under name data### 
###See paper for description of gene list (glist.txt)###  
#! /bin/bash 
chmod a+x plink32.exe 
###Plink requires association file to annotate SNPs### 
./plink32.exe --bfile data --assoc 
./plink32.exe --annotate plink.assoc ranges=glist.txt --border 20 
awk '{print $2}' plink.annot|sed '1,1d'>snps.txt 
awk '{print $NF}' plink.annot|sed '1,1d'>genelist.txt 
sed -e 's/([^()]*)//g' genelist.txt |tr '|' ' '>genel.txt 
paste -d " " snps.txt genel.txt>genelist.txt 
cut -d ' ' -f2- genelist.txt|sed '1,1d'>g.txt 
tr ' ' '\n' <g.txt|sort -u|fgrep -wv .>genes.txt 
for l in $(cat genes.txt) 
do 
echo $l $(fgrep -w $l genelist.txt|awk '{print $1}'|tr '\n' ' ') 
done >>genesnp.txt 
awk '{print $1 "  " NF-1}' genesnp.txt>genecount.txt 
###Rcode ### 
data<-read.table("genecount.txt") 
###For graph convert all gene with lots of SNPs into something that will show up### 
r<-data 
r[which(r[,2]>150),2]<-151 
jpeg(file="GeneCount.jpeg") 
hist(r[,2],main= "SNP Count for Gene in Alzheimer’s Data Set ",xlab= "Gene Size ") 
dev.off() 
 
###Establish Gene size as <50,50-150,>150### 
##Find Median in Each Group### 
 
median(data[which(data[,2]<50),2]) 
##22## 
median(data[which(data[,2]>=50 & data[,2]<=150),2]) 
##71### 
median(data[which(data[,2]>150),2]) 
##208## 
 
###Gene Count for Simulation Chr 1 in hapgen 2### 
###Simulate Chr 1, Risk effect and disease locus makes no difference but is required## 
mkdir Simulation 
./hapgen2 -m ./haplotype+legend_files_CEU_r24/genetic_map_chr1_CEU_b36.txt -l 
./haplotype+legend_files_CEU_r24/chr1.ceu.r24.legend -h 
./haplotype+legend_files_CEU_r24/hapmap_r24_b36_fwd.consensus.qc.poly.chr1_ceu.phased -
o ./Simulation/chr.out -dl 554636 0 1.2 2.4 -n 25 25 
###Convert to plink ### 

107 
 



./gtool -G --g ./Simulation/chr.out.cases.tags.gen --s ./Simulation/chr.out.cases.sample --ped 

./Simulation/out.ped --map ./Simulation/out.map 

./gtool -G --g ./Simulation/chr.out.controls.tags.gen --s ./Simulation/chr.out.controls.sample --
ped ./Simulation/out1.ped --map ./Simulation/out1.map 
awk '{print $1 " " $2 " " $3 " " $4 " " 1 " " 2}' ./Simulation/out.ped>./Simulation/outa.ped 
cat ./Simulation/out.ped|tr '\t' ' '|cut -d ' ' -f7- >./Simulation/outb.ped 
paste ./Simulation/outa.ped ./Simulation/outb.ped>./Simulation/out2.ped 
cat ./Simulation/out.map>./Simulation/out4.map 
awk  -v var=$i '{print 1 " " "SNP"var " " 0 " " $4}' ./Simulation/out.map>./Simulation/out4.map 
awk '{print $1 " " $2 " " $3 " " $4 " " 1 " " 1}' ./Simulation/out1.ped>./Simulation/out3a.ped 
cat ./Simulation/out1.ped|tr '\t' ' '|cut -d ' ' -f7- >./Simulation/out3b.ped 
paste ./Simulation/out3a.ped ./Simulation/out3b.ped>./Simulation/out3.ped 
cat ./Simulation/out2.ped ./Simulation/out3.ped>./Simulation/out4.ped 
./plink --file ./Simulation/out4 –make-bed  --out ./Simulation/allchr1 --noweb 
 
###Gene Count## 
plink --bfile allchr1 --assoc --noweb  
plink --annotate plink.assoc ranges=glist.txt --noweb  --border 25 
awk '{print $2}' plink.annot|sed '1,1d'>snps.txt 
awk '{print $NF}' plink.annot|sed '1,1d'>genelist.txt 
sed -e 's/([^()]*)//g' genelist.txt |tr '|' ' '>genel.txt 
paste -d " " snps.txt genel.txt>genelist.txt 
cut -d ' ' -f2- genelist.txt|sed '1,1d'>g.txt 
tr ' ' '\n' <g.txt|sort -u|fgrep -wv .>genes.txt 
for l in $(cat genes.txt) 
do 
echo $l $(fgrep -w $l genelist.txt|awk '{print $1}'|tr '\n' ' ') 
done >>genesnp.txt 
awk '{print $1 "  " NF-1}' genesnp.txt>genecount.txt 
 
###Gene Simulation-Only one as example (MARCKSL1)### 
fgrep -w MARCKSL1  genelist1.txt|awk '{print $1}'>snplist.txt 
fgrep -wf snplist.txt plink.assoc|awk '{print $3}'>positionlist.txt 
h=$(fgrep -w $(head -n 1 positionlist.txt) ./CEU.0908.impute.files/CEU.0908.chr1.legend|awk 
'{print $2}') 
z=$(fgrep -w $(tail -n 1 positionlist.txt) ./CEU.0908.impute.files/CEU.0908.chr1.legend|awk 
'{print $2}') 
k=`echo $h 100000 | awk '{ print $1-$2}'` 
l=`echo $z 100000 | awk '{ print $1+$2}'` 
awk -v var=$k -v var1=$l '{if ($2>=var  && $2<=var1) print $0 }' 
./CEU.0908.impute.files/CEU.0908.chr1.legend>./CEU.0908.impute.files/MARCKSL1.legend 
awk -v var=$k -v var1=$l '{if ($1>=var && $1<=var1) print $0 }' 
./CEU.0908.impute.files/genetic_map_chr1_combined_b36.txt>./CEU.0908.impute.files/MARC
KSL1.map 
c=$(fgrep -wn $(head -n 1 ./CEU.0908.impute.files/MARCKSL1.legend|awk '{print $1}') 
./CEU.0908.impute.files/CEU.0908.chr1.legend|awk -F: '{print $1-1}') 
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c1=$(fgrep -wn $(tail -n 1 ./CEU.0908.impute.files/MARCKSL1.legend|awk '{print $1}') 
./CEU.0908.impute.files/CEU.0908.chr1.legend|awk -F: '{print $1-1}') 
 
###subtract one because of header not in hap file but in legend file. Check to make fgrep did not 
pick up anything weird, numbers used in for loop### 
for (( i=$(echo $c); i<=$(echo $c1); i++ )); 
do 
awk -v var=$i 'NR==var{print $0}' 
./CEU.0908.impute.files/CEU.0908.chr1.hap>>./CEU.0908.impute.files/MARCKSL1.hap  
done 
 
echo 'ID pos allele0 allele1'>z.txt 
cat z.txt ./CEU.0908.impute.files/MARCKSL1.legend>z1.txt 
cat z1.txt>./CEU.0908.impute.files/MARCKSL1.legend 
 
####MUST change DL###### 
c=$(head ./CEU.0908.impute.files/MARCKSL1.legend|awk 'NR==3{print $2}') 
z=$(head -n 1 snplist.txt) 
z1=$(tail -n 1 snplist.txt) 
 
m=0 
n=0 
for i in {1..1000} 
do 
while [ $m -eq $n ] 
do 
./hapgen2 -m ./CEU.0908.impute.files/MARCKSL1.map -l 
./CEU.0908.impute.files/MARCKSL1.legend -h ./CEU.0908.impute.files/MARCKSL1.hap -o 
./Simulation/single$i.out  -no_haps_output -dl $(echo $c) 1 1.2 1.4 -n 1000 1000|fgrep 
"seed"|awk '{print $5}'>c.txt 
cat c.txt>>seed.txt 
m=$(cat c.txt|tr -d '.' |tr -d 'e' |tr -d '-') 
done 
n=$m 
./gtool -G --g ./Simulation/single$i.out.cases.gen --s ./Simulation/single$i.out.cases.sample --ped 
./Simulation/out.ped --map ./Simulation/out.map 
./gtool -G --g ./Simulation/single$i.out.controls.gen --s ./Simulation/single$i.out.controls.sample 
--ped ./Simulation/out1.ped --map ./Simulation/out1.map 
awk '{print $1 " " $2 " " $3 " " $4 " " 1 " " 2}' ./Simulation/out.ped>./Simulation/outa.ped 
cat ./Simulation/out.ped|tr '\t' ' '|cut -d ' ' -f7- >./Simulation/outb.ped 
paste ./Simulation/outa.ped ./Simulation/outb.ped>./Simulation/out2.ped 
cat ./Simulation/out.map>./Simulation/out4.map 
awk  -v var=$i '{print 1 " " $2 " " 0 " " $4}' ./Simulation/out.map>./Simulation/out4.map 
awk '{print $1 " " $2 " " $3 " " $4 " " 1 " " 1}' ./Simulation/out1.ped>./Simulation/out3a.ped 
cat ./Simulation/out1.ped|tr '\t' ' '|cut -d ' ' -f7- >./Simulation/out3b.ped 
paste ./Simulation/out3a.ped ./Simulation/out3b.ped>./Simulation/out3.ped 
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cat ./Simulation/out2.ped ./Simulation/out3.ped>./Simulation/out4.ped 
x=$(fgrep -w $(fgrep -w $(echo $z) plink.assoc|awk 'NR==1{print $3}') 
./Simulation/out4.map|awk '{print $2}') 
x1=$(fgrep -w $(fgrep -w $(echo $z1) plink.assoc|awk 'NR==1{print $3}') 
./Simulation/out4.map|awk '{print $2}') 
./plink --file ./Simulation/out4 --recode --transpose --out ./Simulation/sample$i --noweb --from 
$(echo $x) --to $(echo $x1)  
rm ./Simulation/*.summary 
rm ./Simulation/single* 
 
done 
 
cat ./Simulation/sample*.tped>./Simulation/all.tped 
cat ./Simulation/sample1.tfam>./Simulation/all.tfam 
plink --tfile ./Simulation/all --assoc --out ./Simulation/plink --noweb 
sed '1d;1d' ./Simulation/plink.assoc>./Simulation/p.assoc 
rm ./Simulation/plink.assoc 
rm ./Simulation/sample* 
rm ./Simulation/all.* 
 
awk '{print $2 " " $3}' ./Simulation/p.assoc|sort -u >./Simulation/p2.assoc 
rm ./Simulation/p3.assoc 
 
for (( c=1; c<=$(cat ./Simulation/p2.assoc|wc -l); c++ )) 
do 
j=$(awk -v var=$c 'NR==var{print $1}' ./Simulation/p2.assoc) 
w=$(awk -v var=$c 'NR==var{print $2}' ./Simulation/p2.assoc) 
echo $w $(awk -v var=$j '{if ($2==var) sum+=$6;if ($2==var) count++} END {print 
sum/count}' ./Simulation/p.assoc) >>./Simulation/p3.assoc 
done 
 
 
awk '{if ($2>=.05) print $1}' ./Simulation/p3.assoc>maf05.txt 
 
c=$(head ./CEU.0908.impute.files/MARCKSL1.legend|awk 'NR==3{print $2}') 
 
./hapgen2 -m ./CEU.0908.impute.files/MARCKSL1.map -l 
./CEU.0908.impute.files/MARCKSL1.legend -h ./CEU.0908.impute.files/MARCKSL1.hap -o 
./Simulation/hapmap.out -no_haps_output -dl $(echo $c)  1 1.2 1.4 -n 10000 10 
fgrep -wf maf05.txt ./Simulation/hapmap.out.controls.gen>hapmap.out 
 
./gtool -G --g ./hapmap.out --s ./Simulation/hapmap.out.controls.sample --ped 
./Simulation/hapmapout.ped --map ./Simulation/hapmapout.map 
 
 
###Convert to haploview format### 
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awk '{print $2 " " $4}' ./Simulation/hapmapout.map>marker.txt 
cat ./Simulation/hapmapout.ped|tr '\t' ' '|cut -d ' ' -f-4 >outc.ped 
awk '{print $1 " " $2 " " $3 " " $4 " " 1 " " 1}' outc.ped>outa.ped 
cat ./Simulation/hapmapout.ped|tr '\t' ' '|cut -d ' ' -f7- >outb.ped 
paste outa.ped outb.ped>out2.ped 
java -jar Haploview.jar -pedfile out2.ped -info marker.txt -pairwiseTagging -nogui -out 
MARCKSL1 
 
###Actual lists### 
y=$(cat MARCKSL1.TESTS|wc -l) 
k=`echo $y 10 | awk '{ print $1/$2}'|awk '{print int($1+0.5)}'` 
k=3   
x=0  
while [ $x -lt $k ] 
do 
echo $((1 + RANDOM%($y)))>>z1.list  
x=$(sort -u z1.list|wc -l) 
done 
sort -u z1.list>z.list 
rm z1.list  
rm MARCKSL1.snps 
 
for (( c=1; c<=$(cat z.list|wc -l); c++ )) 
do 
z=$(awk -v var=$c '{ if (NR==var) print $0 }' z.list) 
awk -v var=$z '{ if (NR==var) print $0 }' MARCKSL1.TESTS>>MARCKSL1.snps 
done 
 
 
fgrep -wf MARCKSL1.snps ./Simulation/hapmap.out.controls.gen |awk '{print 
$3}'>MARCKSL1.list 
 
 
###Stop Here### 
fgrep -wf MARCKSL1.list ./Simulation/p3.assoc 
  
awk '{ if (NR==1) print $0 " " 1" " 1.5 " " 1.5*1.5}' MARCKSL1.list>>MARCKSL1.dl 
awk '{ if (NR==2) print $0 " " 1" " 1.6 " " 1.6*1.6}' MARCKSL1.list>>MARCKSL1.dl 
awk '{ if (NR==3) print $0 " " 1" " 1.7 " " 1.7*1.7}' MARCKSL1.list>>MARCKSL1.dl  
  
  
cat MARCKSL1.dl|tr "\n" " ">list.txt 
rm MARCKSL1.dl 
cat MARCKSL1.snps>fox.txt   
cat fox.txt>MARCKSL1.snps 
cat list.txt>MARCKSL1.effects 

111 
 



 
rm ./Simulation/p3.assoc 
 
###Simulation### 
fgrep -w MARCKSL1 genelist1.txt|awk '{print $1}'>snplist.txt 
z=$(head -n 1 snplist.txt) 
z1=$(tail -n 1 snplist.txt) 
 
for i in {1..10} 
do 
t=$(cat MARCKSL1.effects) 
m=0 
n=0 
c=3 
f=2 
v=0 
r=1 
while [ $c -gt $f ] 
do 
while [ $m -eq $n ] 
do 
./hapgen2 -m ./CEU.0908.impute.files/MARCKSL1.map -l 
./CEU.0908.impute.files/MARCKSL1.legend -h ./CEU.0908.impute.files/MARCKSL1.hap -o 
./Simulation/single$i.out  -no_haps_output -dl $t -n 1000 1000|fgrep "seed"|awk '{print 
$5}'>c.txt 
cat c.txt>>seed.txt 
m=$(cat c.txt|tr -d '.' |tr -d 'e' |tr -d '-') 
done 
n=$m 
./gtool -G --g ./Simulation/single$i.out.cases.gen --s ./Simulation/single$i.out.cases.sample --ped 
./Simulation/out.ped --map ./Simulation/out.map 
./gtool -G --g ./Simulation/single$i.out.controls.gen --s ./Simulation/single$i.out.controls.sample 
--ped ./Simulation/out1.ped --map ./Simulation/out1.map 
awk '{print $1 " " $2 " " $3 " " $4 " " 1 " " 2}' ./Simulation/out.ped>./Simulation/outa.ped 
cat ./Simulation/out.ped|tr '\t' ' '|cut -d ' ' -f7- >./Simulation/outb.ped 
paste ./Simulation/outa.ped ./Simulation/outb.ped>./Simulation/out2.ped 
cat ./Simulation/out.map>./Simulation/out4.map 
awk  -v var=$i '{print 1 " " $2 " " 0 " " $4}' ./Simulation/out.map>./Simulation/out4.map 
awk '{print $1 " " $2 " " $3 " " $4 " " 1 " " 1}' ./Simulation/out1.ped>./Simulation/out3a.ped 
cat ./Simulation/out1.ped|tr '\t' ' '|cut -d ' ' -f7- >./Simulation/out3b.ped 
paste ./Simulation/out3a.ped ./Simulation/out3b.ped>./Simulation/out3.ped 
cat ./Simulation/out2.ped ./Simulation/out3.ped>./Simulation/out4.ped 
cat ./Simulation/out4.ped>./Simulation/b.ped 
cat ./Simulation/out4.map>./Simulation/b.map 
x=$(fgrep -w $(fgrep -w $(echo $z) plink.assoc|awk 'NR==1{print $3}') 
./Simulation/out4.map|awk '{print $2}') 

112 
 



x1=$(fgrep -w $(fgrep -w $(echo $z1) plink.assoc|awk 'NR==1{print $3}') 
./Simulation/out4.map|awk '{print $2}') 
plink --file ./Simulation/b --recode --from $(echo $x) --to $(echo $x1) --out ./Simulation/pop$i --
noweb 
plink --file ./Simulation/pop$i --logistic --extract MARCKSL1.snps --noweb    
plink --file ./Simulation/pop$i --logistic --noweb --maf .05 --hwe    .0001 --from $(echo $x) --to 
$(echo $x1)  
r=$(awk '{if ($9<.00001) print $0}' plink.assoc.logistic|wc -l) 
if [ $v -lt $r ]; then 
f=0 
else 
f=$(fgrep -wf MARCKSL1.snps plink.assoc.logistic|awk '{if ($9>.00001 && $9<.0005) print 
$0}'|wc -l)   
fi 
fgrep -wf MARCKSL1.snps plink.assoc.logistic 
rm ./Simulation/plink.assoc.logistic 
rm ./Simulation/sample* 
rm ./Simulation/*.summary 
rm ./Simulation/single* 
rm ./Simulation/pop*.log 
done 
done 
zip MARCKSL1.zip ./Simulation/pop* 
 
###Gene Plot### 
###pop indicates one of 1000 data sets for gene### 
###Made for gene SYPL2### 
###Create a matrix of all p-values for each marker### 
plink --file pop1 --maf .05 --hwe .0001 --logistic --noweb  
awk '{print $2  "," $NF }' plink.assoc.logistic|sed '1,1d'|sort>p.txt 
 
for i in {2..10};  
do  
plink --file pop$i --logistic --maf .05 --hwe .0001  
awk '{print $2 "," $NF}' plink.assoc.logistic|sed '1,1d'|sort>p1.txt 
join -t, -a1 -a2 p.txt p1.txt>p2.txt 
cat p2.txt>p.txt 
done 
 
for i in {1..10};  
do  
cat pop$i.map>>all.map 
done 
 
sort -u all.map>all1.map 
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cat p.txt|cut -d ',' -f2->p1.txt 
 
awk -F, '{print NF}' p1.txt>s.txt 
paste s.txt p.txt|sort -r -n|cut -f2->pvalue.csv 
 
###R-code to make plot### 
setwd("C:/Users/Harrison/Documents/Genebasedmethod/Results/Newgenes/SYPL2/Simulation"
) 
r<-read.csv("pvalue.csv",header=FALSE) 
n<-dim(r)[2] 
b <- sapply(r[,2:n],function(x)as.numeric(as.character(x))) 
ap<-apply(b,1,median,na.rm=TRUE) 
###install.packages("ggplot2")### 
library(ggplot2) 
###Manhattan plot from Getting Genetic Done Blog### 
manhattan <- function(dataframe, colors=c("gray10", "gray50"), ymax="max", 
limitchromosomes=1:23, suggestiveline=0, genomewideline=0, 
annotate=NULL,annotate1=NULL,...) { 
 
    d=dataframe 
    if (!("CHR" %in% names(d) & "BP" %in% names(d) & "P" %in% names(d))) stop("Make 
sure your data frame contains columns CHR, BP, and P") 
     
    if (any(limitchromosomes)) d=d[d$CHR %in% limitchromosomes, ] 
    d=subset(na.omit(d[order(d$CHR, d$BP), ]), (P>0 & P<=1)) # remove na's, sort, and keep 
only 0<P<=1 
    d$logp = -log10(d$P) 
    d$pos=NA 
    ticks=NULL 
    lastbase=0 
    colors <- rep(colors,max(d$CHR))[1:max(d$CHR)] 
    if (ymax=="max") ymax<-ceiling(max(d$logp)) 
    if (ymax<5) ymax<-5 
     
    numchroms=length(unique(d$CHR)) 
    if (numchroms==1) { 
        d$pos=d$BP 
        ticks=floor(length(d$pos))/2+1 
    } else { 
        for (i in unique(d$CHR)) { 
          if (i==1) { 
       d[d$CHR==i, ]$pos=d[d$CHR==i, ]$BP 
      } else { 
       lastbase=lastbase+tail(subset(d,CHR==i-1)$BP, 1) 
       d[d$CHR==i, ]$pos=d[d$CHR==i, ]$BP+lastbase 
      } 
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      ticks=c(ticks, d[d$CHR==i, ]$pos[floor(length(d[d$CHR==i, ]$pos)/2)+1]) 
     } 
    } 
     
    if (numchroms==1) { 
        with(d, plot(pos, logp, ylim=c(0,ymax), ylab=expression(-log[10](italic(p))), 
xlab=paste("Chromosome",unique(d$CHR),"position"),...)) 
 } else { 
        with(d, plot(pos, logp, ylim=c(0,ymax), ylab=expression(-log[10](italic(p))), 
xlab="Chromosome", xaxt="n", type="n", ...)) 
        axis(1, at=ticks, lab=unique(d$CHR), ...) 
        icol=1 
        for (i in unique(d$CHR)) { 
            with(d[d$CHR==i, ],points(pos, logp, col=colors[icol], ...)) 
            icol=icol+1 
     } 
    } 
     
    if (!is.null(annotate)) { 
        d.annotate=d[which(d$SNP %in% annotate), ] 
        with(d.annotate, points(pos, logp, col="blue3", ...))  
    } 
     if (!is.null(annotate1)) { 
        d.annotate=d[which(d$SNP %in% annotate1), ] 
        with(d.annotate, points(pos, logp, col="red3", ...))  
    } 
    if (suggestiveline) abline(h=suggestiveline, col="blue") 
    if (genomewideline) abline(h=genomewideline, col="red") 
} 
 
r1<-read.table("all1.map") 
r2<-cbind(r[,1:2],ap) 
library(gdata) 
colnames(r2)<-c("V2","V","P") 
m<-merge(trim(r1),trim(r2),by="V2") 
r3<-cbind(m[,1:2],1,m[,4],m[,6]) 
r3<-r3[,-2] 
colnames(r3)<-c("SNP","CHR","BP","P") 
l1<-c(35793880,35809319,35840445) 
f<-as.character(r1[r1[,4]%in%as.numeric(l1),2]) 
jpeg(file="SYPL2.jpeg") 
manhattan(data.frame(r3),annotate1=f) 
title("SYPL2 Gene Plot") 
dev.off() 
 
4.2.2.1 Necessity of Permutation 
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###Q-Q plot### 
QQ plot taken from getting genetics done blog for use in R 
http://gettinggeneticsdone.blogspot.com/2011/04/annotated-manhattan-plots-and-qq-plots.html 
###code source### 
source("http://people.virginia.edu/~sdt5z/0STABLE/qqman.r") 
 
4.2.2.3 Power 
###power.csv contains p-values for each method### 
###code written for R### 
r<-read.csv("power.csv",header=FALSE) 
plot(r[which(r[,1]=="Gabriel"),4],type="o", col="blue", ylim=c(0,1),axes=FALSE,ann=FALSE ) 
axis(2, las=1, at=c(0,.25,.5,.75,1)) 
box() 
lines(r[which(r[,1]=="HapBlock"),4], type="o", pch=21, lty=1,col="red") 
lines(r[which(r[,1]=="GWIS"),4], type="o", pch=21, lty=1,col="orange") 
lines(r[which(r[,1]=="Fisher"),4], type="o", pch=21, lty=1,col="purple") 
lines(r[which(r[,1]=="Vegas"),4], type="o", pch=21, lty=1,col="black") 
title(xlab= "Genes") 
title(ylab= "Power") 
axis(1, at=1:6, lab=c("SYPL2", "C1orf92", "FOXE3", "CACHD1", "TMEM51","HS2ST1")) 
legend("bottomright",1,unique(r[,1]), cex=0.8, col=c("red","orange","purple","black"),pch=21, 
lty=1); 
 
4.3.2 Small P-value Power Assessment Results 
 
4.3.2.1 Power Plot Code 
##Power Plot### 
###SummarySE taken from cookbook for r### 
###http://wiki.stdout.org/rcookbook/Manipulating%20data/Summarizing%20data/### 
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE, 
conf.interval=.95, .drop=TRUE) { 
    require(plyr) 
 
    # New version of length which can handle NA's: if na.rm==T, don't count them 
    length2 <- function (x, na.rm=FALSE) { 
        if (na.rm) sum(!is.na(x)) 
        else       length(x) 
    } 
 
    # This is does the summary; it's not easy to understand... 
    datac <- ddply(data, groupvars, .drop=.drop, 
                   .fun= function(xx, col, na.rm) { 
                           c( N    = length2(xx[,col], na.rm=na.rm), 
                              mean = mean   (xx[,col], na.rm=na.rm), 
                              sd   = sd     (xx[,col], na.rm=na.rm) 
                              ) 
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                          }, 
                    measurevar, 
                    na.rm 
             ) 
 
    # Rename the "mean" column     
    datac <- rename(datac, c("mean"=measurevar)) 
 
    datac$se <- datac$sd / sqrt(datac$N)  # Calculate standard error of the mean 
 
    # Confidence interval multiplier for standard error 
    # Calculate t-statistic for confidence interval:  
    # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1 
    ciMult <- qt(conf.interval/2 + .5, datac$N-1) 
    datac$ci <- datac$se * ciMult 
 
    return(datac) 
} 
 
 
r1<-read.csv("correlationplot1.csv") 
 
colnames(r1)<-c("Method","Gene","-log10(P)") 
 
library(ggplot2) 
dfc <- summarySE(r1, measurevar="-log10(P)", groupvars=c("Method","Gene")) 
 
pd <- position_dodge(.5) 
ggplot(dfc, aes(x=Gene, y=dfc[,4], colour=Method)) +  
    geom_errorbar(aes(ymin=dfc[,4]-ci, ymax=dfc[,4]+ci), width=.1, position=pd) + 
 geom_line(position=pd) + 
    geom_point(position=pd)+ ylab("-log10(P)") 
 
 
4.3.2.1 Correlation Plot 
##correlation plot is the specified format for pairs command### 
linear<-function(x,y){ 
 points(x,y) 
 res=lm(y~x) 
 abline(res) 
 } 
 
panel.cor <- function(x, y, digits=2, prefix="", cex.cor) 
{ 
    usr <- par("usr"); on.exit(par(usr)) 
    par(usr = c(0, 1, 0, 1)) 
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    r <- abs(cor(x, y)) 
    txt <- format(c(r, 0.123456789), digits=digits)[1] 
    txt <- paste(prefix, txt, sep="") 
    if(missing(cex.cor)) cex <- 0.8/strwidth(txt) 
    text(0.5, 0.5, txt, cex = cex) 
} 
 
r<-read.csv("correlationplot.csv") 
 
pairs(r, lower.panel=linear, upper.panel=panel.cor) 
 
4.3.2.2 Comparison of Blocking Methods 
##Counts represent the number of blocks of a give size for Gabriel(G) and Hapblock Method### 
##R-Code## 
r<-read.table("countG.txt") 
r1<-read.table("countH.txt") 
h<-hist(as.matrix(r[which(r<26),])) 
h1<-hist(as.matrix(r1[which(r1<26),])) 
ha<-hist(as.matrix(r[which(r>25),],)) 
h1a<-hist(as.matrix(r1[which(r1>25),]),breaks=seq(25,80,by=5)) 
plot( h, col=rgb(0,0,1,1/4),xlim=c(0,25),ylim=c(0,1000))  # first histogram 
plot( h1, col=rgb(1,0,0,1/4), xlim=c(0,25),add=T) 
 
jpeg(file = "blockcompare25.jpeg") 
plot( h, col=rgb(0,0,1,1/4),xlim=c(0,25),ylim=c(0,1000),main="Gabriel vs HapBlock Block Size 
<= 25",xlab="Block Size (#SNPs)")  # first histogram 
plot( h1, col=rgb(1,0,0,1/4), xlim=c(0,25),add=T) 
legend('topright',c('HapBlock','Gabriel'), fill = rgb(1:0,0,0:1,0.4), bty = 'n', border = NA) 
dev.off() 
 
jpeg(file = "blockcompare80.jpeg") 
plot( ha, col=rgb(0,0,1,1/4),xlim=c(25,80),ylim=c(0,25),main="Gabriel vs HapBlock Block Size 
>25",xlab="Block Size (#SNPs)")  # first histogram 
plot( h1a, col=rgb(1,0,0,1/4),xlim=c(25,80),add=T) 
legend('topright',c('HapBlock','Gabriel'), fill = rgb(1:0,0,0:1,0.4), bty = 'n', border = NA) 
dev.off() 
 
5.0 Gene-Based Testing of Alzheimer’s GWAS 
 
5.1.5 Imputation 
###Example Chromosome### 
###Frank Submit### 
#!/bin/bash 
#PBS -m e 
#PBS -M hab45@pitt.edu 
#PBS -j oe 

118 
 



#PBS -q shared 
#PBS -N impute1 
#PBS -l nodes=1:ppn=1 
#PBS -l walltime=44:00:00 
#PBS -l vmem=2GB 
#PBS -S /bin/bash 
cd /home/bdiergaarde/hab45/GWIS/1.1 
 
###Plink command; Merged data set is comprised of ALZ GWAS and additionally all controls 
coded to be imputation reference ### 
plink --bfile merged --proxy-impute all --make-bed --out imputed1 --noweb --chr 1 --proxy-
impute-threshold 0 
 
5.1.6.1 Standard Single-SNP GWAS Analysis 
 
###Single SNP analysis## 
###plink command## 
plink --bfile alz --hwe .000001 –maf .05  
###Manhattan and Q-Q Plot### 
##From getting Genetics Done Blog## 
## http://gettinggeneticsdone.blogspot.com/2011/04/annotated-manhattan-plots-and-qq-
plots.html### 
setwd("/Users/hab45/Desktop/GWIS/ALZ") 
source("http://people.virginia.edu/~sdt5z/0STABLE/qqman.r") 
r<-read.csv("noapoe.csv",header=TRUE) 
###change really large pvalues to 1E-10 so it graphs nicer### 
jpeg('manhattan.jpg') 
dev.new(width=23, height=5) 
manhattan(r,colors=c("black","#666666","#CC6600"),genomewideline=F,suggestiveline=2.38e-
7) 
dev.off() 
jpeg('qq.jpg') 
qq(r$P) 
dev.off() 
 
5.1.6.2 Haplotype Analysis 
###On Frank## 
###For all chromosome### 
for i in {1..22} 
do 
echo " #!/bin/bash 
#PBS -m e 
#PBS -M hab45@pitt.edu 
#PBS -j oe 
#PBS -q shared 
#PBS -N gwis$i 
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#PBS -l nodes=1:ppn=1 
#PBS -l walltime=23:00:00 
#PBS -l vmem=4GB 
#PBS -S /bin/bash 
cd /home/bdiergaarde/hab45/GWIS/ 
 
plink --bfile ./1.1/data1 --blocks --chr $i --out block$i 
plink --bfile ./1.1/data1 --hap block$i.blocks --hap-logistic --hap-omnibus --out chr$i 
plink --bfile ./1.1/data1 --hap block$i.blocks --hap-logistic --hap-omnibus --out hap$i 
">blocks$i.txt 
done 
 
##Submit### 
for i in {1..22} 
do 
qsub blocks$i.txt 
done 
 
 
5.1.6.3 Gene Level Analysis 
 
###Annotation of GWAS data; example of chromosome $1### 
#! /bin/bash 
chmod a+x plink.exe 
./plink.exe --bfile data --assoc --chr $1 
./plink.exe --annotate plink.assoc ranges=glist.txt --border 25 --out plink$1 
awk '{print $2}' plink$1.annot|sed '1,1d'>snps.txt 
awk '{print $NF}' plink$1.annot|sed '1,1d'>genelist.txt 
sed -e 's/([^()]*)//g' genelist.txt |tr '|' ' '>genel.txt 
paste -d " " snps.txt genel.txt>genelist$1.txt 
cut -d ' ' -f2- genelist$1.txt>g.txt 
tr ' ' '\n' <g.txt|sort -u|fgrep -wv .>genes$1.txt 
rm genelist.txt 
cat genelist*.txt>all.genelist 
cat genes*.txt>all.gene.txt 
c=$(wc -l all.gene.txt|awk '{print $1/1000}'|awk '{printf "%.0f\n", $1}') 
split -a 3 --lines=$c all.gene.txt ./genelist/x 
cd genelist 
ls -l x*|awk '{print $NF}'>names.txt 
cd .. 
for (( c=1; c<=$(cat ./genelist/names.txt|wc -l); c++ )) 
do 
i=$(awk -v var=$c 'NR==var{print $0}' ./genelist/names.txt) 
fgrep -wf ./genelist/$i all.genelist|awk '{print $1}'>./snplist/snplist$i.txt 
done 
for (( c=1; c<=$(cat ./genelist/names.txt|wc -l); c++ )) 
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do 
i=$(awk -v var=$c 'NR==var{print $0}' ./genelist/names.txt) 
for (( k=1; k<=$(cat ./genelist/$i|wc -l); k++ )) 
do 
j=$(awk -v var=$k 'NR==var{print $0}' ./genelist/$i) 
fgrep -w $j all.genelist|awk -v var=$j '{print var " " $1}'>>./snplist/genesnps$i.txt 
done 
done 
###Any gene name can be subsisted for example###  
plink --bfile data --recode --extract snplistexample.txt --out example 
 
###See above sections for each gene-based methods code###  
###Modified Q-Q plot with each gene written in R### 
###Combine p-values from each gene based method### 
r<-read.csv("vegasfinal.csv",header=TRUE) 
r1<-read.table("fishernoAPOE.txt") 
r2<-read.table("gabrielall.txt") 
r3<-read.table("hapblockall.p") 
r4<-read.table("gwisalzresultsqq.txt") 
m<-m <- matrix(seq(1:17547)) 
r5<-apply(as.matrix(1:17547),1,function(x) x/17547) 
 
jpeg('qqall.jpg') 
qqplot(-log10(r5[1:length(sort(r2[,5]))]),-log10(sort(r2[,5])),xlab="Expected -
log10(p)",ylab="Observed -log10(p)") 
abline(0,1) 
points(-log10(r5),-log10(sort(r1[,5])),col="blue") 
points(-log10(r5),-log10(sort(r[,8])),col="red") 
points(-log10(r5[1:length(sort(r3[,5]))]),-log10(sort(r3[,5])),col="green4") 
points(-log10(r5[1:length(sort(r4[,20]))]),-log10(sort(r4[,20])),col="purple") 
legend("topleft", c("GeneBlock-Gabriel","GeneBlock-HapBlock", 
"Vegas","Fisher","GWiS"),pch=1 ,col=c("black","green4","red","blue","purple")) 
dev.off() 
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