
HIGH-PERFORMANCE PACKET PROCESSING

ENGINES USING SET-ASSOCIATIVE MEMORY

ARCHITECTURES

by

Michel Hanna

B.S., Cairo University at Fayoum, 1999

M.S., Cairo University, 2004

M.S., University of Pittsburgh, 2009

Submitted to the Graduate Faculty of

The Computer Engineering Program,

Dietrich School of Arts and Sciences

in partial fulfillment

of the requirements for the degree of

Ph.D.

University of Pittsburgh

2013

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Michel Hanna

It was defended on

May 7th, 2013

and approved by

Prof. Rami Melhem, Computer Science Department

Prof. Steven Levitan, Department of Electrical and Computer Engineering

Prof. Prashant Krishnamurthy, School of Information Sciences

Prof. Taieb Znati, Computer Science Department

Dissertation Advisors: Prof. Rami Melhem, Computer Science Department,

Prof. Sangyeun Cho, Computer Science Department

ii

HIGH-PERFORMANCE PACKET PROCESSING ENGINES USING

SET-ASSOCIATIVE MEMORY ARCHITECTURES

Michel Hanna, PhD

University of Pittsburgh, 2013

The emergence of new optical transmission technologies has led to ultra-high Giga bits per

second (Gbps) link speeds. In addition, the switch from 32-bit long IPv4 addresses to the

128-bit long IPv6 addresses is currently progressing. Both factors make it hard for new

Internet routers and firewalls to keep up with wire-speed packet-processing. By packet-

processing we mean three applications: packet forwarding, packet classification and deep

packet inspection.

In packet forwarding (PF), the router has to match the incoming packet’s IP address

against the forwarding table. It then directs each packet to its next hop toward its final

destination. A packet classification (PC) engine examines a packet header by matching it

against a database of rules, or filters, to obtain the best matching rule. Rules are associated

with either an “action” (e.g., firewall) or a “flow ID” (e.g., quality of service or QoS). The

last application is deep packet inspection (DPI) where the firewall has to inspect the actual

packet payload for malware or network attacks. In this case, the payload is scanned against

a database of rules, where each rule is either a plain text string or a regular expression.

In this thesis, we introduce a family of hardware solutions that combine the above re-

quirements. These solutions rely on a set-associative memory architecture that is called

CA-RAM (Content Addressable-Random Access Memory). CA-RAM is a hardware imple-

mentation of hash tables with the property that each bucket of a hash table can be searched

in one memory cycle. However, the classic hashing downsides have to be dealt with, such

as collisions that lead to overflow and worst-case memory access time. The two standard

iii

solutions to the overflow problem are either to use some predefined probing (e.g., linear or

quadratic) or to use multiple hash functions. We present new hash schemes that extend

both aforementioned solutions to tackle the overflow problem efficiently. We show by exper-

imenting with real IP lookup tables, synthetic packet classification rule sets and real DPI

databases that our schemes outperform other previously proposed schemes.

Keywords: Hardware Hashing, Set Associative Memories, IP Lookup, Packet Classification,

Deep Packet Inspection.

iv

TABLE OF CONTENTS

PREFACE . xiv

1.0 INTRODUCTION . 1

2.0 THESIS OUTLINE, MOTIVATION AND CONTRIBUTIONS 5

3.0 BACKGROUND . 8

3.1 General Open Addressing Hash . 8

3.2 Using Single Hash Table vs. Multiple Hash Tables 10

3.3 Hashing With Wildcards . 11

3.4 The Content Addressable-Random Access Memory (CA-RAM) Architecture 12

3.5 Related Work . 16

4.0 OUR DEVELOPED HASHING SCHEMES AND TOOLS 20

4.1 Content-based Hash Probing (CHAP) . 21

4.1.1 The CHAP Setup Algorithm . 23

4.1.2 Search in CHAP . 26

4.1.3 The Incremental Updates Under CHAP 28

4.2 The Progressive Hashing Scheme . 31

4.2.1 The PH Setup Algorithm . 33

4.2.2 Searching in PH . 33

4.2.3 Incremental Updates in PH . 36

4.3 The Independent (I)-Mark Scheme . 37

4.4 Conclusion . 38

5.0 THE PACKET FORWARDING APPLICATION 40

5.1 The CA-RAM Architecture for Packet Forwarding 40

v

5.2 Evaluation Methodology . 43

5.3 The Restricted Hashing-CHAP-based Solution 44

5.4 The Progressive Hashing-based Solution . 47

5.5 Adding CHAP to Progressive Hashing . 48

5.6 Adding The I-Mark Scheme to The Progressive Hashing 50

5.7 Performance Estimation of CHAP and PH 51

5.8 Performance Estimation Using CACTI . 52

5.9 Conclusion . 53

6.0 THE PACKET CLASSIFICATION APPLICATION 54

6.1 The CA-RAM Architecture for Packet Classification Using Progressive Hashing 56

6.2 The PH and The I-Mark Hybrid Solutions 58

6.3 The Dynamic TSS PH Solution . 60

6.3.1 The Setup Algorithm for Dynamic TSS Solution 63

6.3.2 Incremental Updates For The Dynamic TSS Solution 64

6.4 The Two CA-RAM Architecture for Dynamic TSS Solution 66

6.4.1 The Architectural Aspects of The Two CA-RAMs PC Solution 66

6.4.2 Incremental Updates For The Two CA-RAM Solution 70

6.5 The Simulation Results and The Evaluation Methodology For Our PC Solutions 71

6.5.1 Experimental Results for Progressive Hashing and I-Mark Hybrid So-

lution . 72

6.5.2 Experimental Results for Dynamic TSS Solution 74

6.5.3 Results for The Two CA-RAM Memory Architecture Solution 77

6.5.4 The Performance Estimation . 80

6.6 Conclusion . 81

7.0 THE DEEP PACKET INSPECTION APPLICATION 82

7.1 Variable-Length String Matching Support For CA-RAM Architecture 86

7.1.1 The FPGA Synthesis Results . 88

7.2 The Hybrid Dynamic Progressive Hashing and Modified CHAP Solution For

The PM Problem . 90

vi

7.3 The Simulation Results And The Evaluation Methodology For Our DPI So-

lution . 92

7.3.1 Sensitivity Analysis Results . 94

7.3.2 The Dynamic PH and Modified CHAP Results 96

7.3.3 Comparison with TCAM . 98

7.4 Conclusion . 102

8.0 CONCLUSION AND SUMMARY FOR THE THESIS 103

9.0 APPENDIX I . 105

BIBLIOGRAPHY . 106

vii

LIST OF TABLES

1 An example of an 8-bit address space forwarding table. 16

2 The statistics of the IP forwarding tables on January 31st 2009. 44

3 The statistics of the ClassBench’s 30K PC databases, where G0 · · ·G3 represent

the top four groups containing the most rules of each database. 61

4 The nine CA-RAM hardware configurations that we use in validating our PC

solutions. 71

5 The six variable string CA-RAM hardware configurations for DPI application. 93

6 The TCAM equivalent sizes for different widths using Equation 7.1. 93

7 The six optimal groups that we use in our DPI simulations. 95

viii

LIST OF FIGURES

1 A generic router architecture with deep packet inspection capability. 2

2 Splitting the hashing space into groups for (a) PF application, and (b) PC

Application. 12

3 The CA-RAM as an example of set-associative memory architectures. 14

4 A simple key matching circuit for a generic CA-RAM. 15

5 The binary trie representation of the forwarding table given in Table 1. 17

6 The (a) Sliding window example, and (b) Its jumping window equivalent where

w = m = 4. 18

7 The CHAP basic concept. 22

8 The CHAP(3,3). 22

9 The evolution of the PH scheme. 31

10 Applying the PH scheme on PF application. 32

11 The CA-RAM as a packet forwarding engine. 41

12 The CA-RAM prefix matching circuit for packet forwarding application. . . . 42

13 The histogram of the prefixes sharing the first 16 bits. 45

14 The overflow of CHAP(1, m) vs. linear probing(1, m) for table rrc07. 46

15 The (a) Average overflow, and (b) AMAT for CHAP(3,3) vs. RH(6) for fifteen

forwarding tables for C1: {L = 180 , N = 2048} 47

16 The (a) Average overflow, and (b) AMAT of RH(5) vs. GH(5) vs. PH(5) for

fifteen forwarding tables for C1: {180× 2048}. 48

17 The (a) Average overflow, and (b) Average AMAT of CHAP(5,5) vs. PH(5)

vs. PH CHAP(5,5) for three configurations. 49

ix

18 The (a) Average overflow, and (b) AMAT of GH vs. PH vs. PH+I-Mark for

fifteen forwarding tables for C1: {180× 2048}. 50

19 The CACTI results of CA-RAM vs. TCAM, where both has sizes of 2.5MB. . 52

20 The CA-RAM detailed architecture for the packet classification application. . 56

21 The range matching circuit for the CA-RAM PC application. 57

22 The exact matching circuit for the CA-RAM PC application. 58

23 Applying PH on packet classification application. 59

24 The average tuple space representation of the 11 PC databases given in Table 3. 62

25 An example of the TSS representation of ACL530K db of Table 3. 65

26 The two CA-RAM architecture: an overview. 67

27 The two CA-RAM architecture: the main CA-RAM row element format, the

results vector format and the auxiliary CA-RAM row format. 68

28 The auxiliary CA-RAM detailed architecture and its row format. 69

29 The (a) Average overflow of GH(6) vs. PH(6) + I-Mark, and (b) AMAT &

WMAT of PH(6) + I-Mark for the PC databases given in Table 3 for C1 :

{60× 1K}. 73

30 The (a) Average overflow for GH(6) vs. PH(6) + I-Mark, and (b) Average

AMAT of PH(6) + I-Mark for the average PC databases in Table 3 for six

hardware configurations. 74

31 The Average Overflow of PH(6), PH(8) and PH(C) for the PC databases given

in Table 3 for six hardware configurations. 75

32 The Average AMAT of PH(6), PH(8) and PH(C) for the PC databases given

in Table 3 for six hardware configurations. 76

33 The average WMAT of regular PH(6), average PH(8) and custom cuts PH(C)

for the PC databases given in Table 3. 76

34 The regular single CA-RAM architecture vs. the equivalent two CA-RAM

architecture, where L = L1 + L2. 77

35 The overflow of the two CA-RAMs vs. the single CA-RAM architectures for

the PC databases given in Table 3 for two hardware configurations. 78

x

36 The AMAT of the two CA-RAMs vs. the single CA-RAM architectures for

The PC databases given In Table 3 for two hardware configurations. 78

37 The average overflow of single CA-RAM vs. two CA-RAM architectures for

nine hardware configurations. 79

38 The average AMAT of single CA-RAM vs. two CA-RAM architectures for

nine hardware configurations. 79

39 The overview of a DPI engine architecture. 83

40 An example of a SNORT [23] rule. 84

41 The SNORT statistics: percentage of patterns vs. the pattern lengths. 85

42 The modified CA-RAM variable-sized length patterns matching architecture. 86

43 The input shifting circuit2 of Figure 42. 88

44 The modified CHAP scheme example, where H = 4 and P = 2. 90

45 The overflow and the AMAT (using I-Mark) of SNORT for C1 : {512× 256},

H = 3, 4, 5, 6 and Lmax = 8, 16, 36. 94

46 The dynamic PH with I-Mark: (a) Overflow, and (b) AMAT of SNORT for

H = 4 and Lmax = 8, 16, 36. 96

47 The Dynamic PH + I-Mark: (a) Overflow, and (b) AMAT (I-Mark) of SNORT

for H = 5 and Lmax = 8, 16, 36. 97

48 The dynamic PH + modified CHAP(H, P) and I-Mark: (a) Overflow, and (b)

AMAT (I-Mark) of SNORT for H = 5, P = 4 and Lmax = 8, 16, 36. 98

49 The TCAM vs. CA-RAM in terms of: (a) Total time delay, (b) Maximum

operating frequency, (c) Total dynamic power and (d) Total area. 100

xi

LIST OF ALGORITHMS

1 The CHAP(H,H) Setup Algorithm. 24

2 The CHAP Search Algorithm. 26

3 The CHAP Insert Update Algorithm. 29

4 The PH Setup Algorithm. 34

5 The PH Search Algorithm. 35

xii

LIST OF EQUATIONS

3.1 Equation (3.1) . 9

3.2 Equation (3.2) . 9

3.3 Equation (3.3) . 9

4.1 Equation (4.1) . 21

4.2 Equation (4.2) . 22

7.1 Equation (7.1) . 98

7.2 Equation (7.2) . 99

7.3 Equation (7.3) . 99

9.1 Equation (9.1) . 105

xiii

PREFACE

Acknowledgments

To both Dr. Rami Melhem and Dr. Sangyeun Cho, my advisors and also to Dina, Mira and

Matthew, my little beautiful family.

xiv

1.0 INTRODUCTION

A router, as shown in Figure 1, consists of multiple interface cards (egress and ingress), a

switch fabric, a CPU or a network processor (NP) that is attached to a memory module (this

could be a hierarchy of caches [11]), a forwarding engine, and either a deep packet inspection

(DPI) engine (in case the router has a firewall capabilities) or a QoS engine for traffic shaping.

Both the DPI engine and the QoS unit contain a packet filtering (classification) unit.

The router’s main function is to receive data packets and forward them to their correct

destinations. It inspects the packet’s IP (internet protocol) headers and extracts the des-

tination of this packet via looking it up in its forwarding table. High-speed routers have

become very desirable as they facilitate the rapid transfer of packets. In addition to their

basic packet forwarding (PF) functionality, most modern routers also inspect the remaining

packet (e.g., TCP) headers to determine what access rights or what service (bandwidth) this

packet might have. This is called packet classification (PC) functionality.

High-speed Internet routers and firewalls require wire speed packet-processing, while the

sizes of their DPI and PC rule databases and PF tables are increasing at a high rate [31, 53,

54]. In addition, the advancement of optical networks keeps pushing the link rates, which

are already beyond 40 Gbps [43, 54]. In this thesis, we focus on the three main components

of the high-speed Internet router: the packet forwarding engine, the packet filtering engine

and the deep packet inspection engine. We note that these three engines are similar in the

sense that they all rely on search-intensive operations.

In packet forwarding (PF), the destination address of every incoming packet is matched

against a forwarding table to determine the packet’s next hop on the way to its final des-

tination. An entry in the forwarding table, or an IP prefix, is a binary string of a certain

length followed by wildcard (don’t care) bits and an associated port number. The actual

1

Switch Fabric
Forwarding Engine

Pattern Matching ModulePacket Filtering Module
Deep Packet Inspection Engine

InterfaceNetwork ProcessorMain Memory
InterfaceInterfaceInterfaceInterface

Figure 1: A generic router architecture with deep packet inspection capability.

matching requires finding the “Longest Prefix Matching” (LPM) as instructed in the CIDR

protocol [39].

In packet classification (PC), a packet header is matched against a database of rules–or

filters–to obtain the best matching rule. A priority tag is appended to each rule, and the

packet classifier must return the rule with the highest priority as the best-matching rule

in case of multiple matches. Each filter consists of multiple field values. The number of

fields per rule and the number of bits associated with a field are variable and depend on

the application. Typically, filtering is applied to the following fields (tuples [47]): IP source

address, IP destination address, source port, destination port and protocol identifier. Rules

are associated with either an “action” (e.g., in case of firewall) or a “flow ID” (e.g., in case

of QoS).

In deep packet inspection (DPI), the firewall examines the packet’s payload for traces

of either network attacks, such as network intrusion detection system (NIDS) or malware

signatures, such as virus scanning systems [33]. The main components of a DPI engine are

the pattern-matching (PM) unit [59], and the packet filtering unit [33]. The packet pattern-

matching problem is defined as follows: given a set of k patterns {P1, P2, · · · , Pk}, k ≥ 1,

2

and a packet of length n, the goal is to find all the matching patterns in the packet. Note

that each pattern (string) has its own length. If we match one or more of these substrings,

we have a “partial” match and the pattern-matching unit should return the longest matched

substring to the software layer of the firewall for further investigation. In addition to DPI,

content filtering, instant-messenger management, and peer-to-peer identification applications

all use pattern (string) matching for inspection [33]. Throughout this thesis we will refer to

any of a prefix, a PC rule or a DPI pattern as a “key.”

The two main streams of packet-processing research are: algorithmic and architectural.

Many researchers have devised algorithmic solutions that provide space and time complexity

bounds for difficulties arising in packet-processing [19, 18, 26, 47, 15]. Some of these solutions

are feasible for hardware implementations [51, 33, 15]. In general, the algorithm-based

solutions have lower throughput than their hardware counterparts. This motivated the

introduction of architectural solutions that mostly rely on the Ternary Content Addressable

Memory (TCAM) technology [28, 46]. A TCAM is a fully associative memory that can store

binary values, 0s and 1s as well as wildcard (don’t care) bits. TCAMs have been the de

facto standard for packet-processing in industry [31, 53, 33]. However, TCAM comes with

significant inefficiencies: high power consumption, low bit density, poor scalability to long

input keys, and higher cost per bit compared to other memories.

In addition to these two research streams, the industry recently started to adopt em-

bedded DRAM [58] (eDRAM) technology. eDRAM is a capacitor-based dynamic RAM that

is integrated on the same die as the main ASIC (application specific integration circuit)

or processor, which allows the network processor chip to have more memory. This direc-

tion is pioneered by “Huawei” Technologies [6] who call their technology Smart Memory,

“NetLogic” and “Cavium.”

Architectural solutions based on hashing have also been proposed [16, 29, 44, 47, 15].

Hash tables come in two flavors: closed addressing hash (or chaining) and open addressing

hash. A hash table in closed addressing hash has a fixed height (number of buckets), and each

bucket is an infinite size-linked list. In open addressing, a hash table has both a fixed height

and a fixed bucket width. Overflow in open addressing hash is handled through probing [13],

as described in Section 3.1. We define the overflow as being the percentage of keys that did

3

not fit into the main hash table to the total number of keys available for storage. In this

thesis, we assume open addressing hash and our goal is to fit the packet-processing database

in a single fixed-size hash table with minimal overflow, high space utilization and low average

memory access time. The power consumption issue will be addressed almost automatically

by storing this hash table in an efficient SRAM or DRAM memory array.

The remainder of this thesis is organized as follows:

• In Section 3, we give a brief background on: general open addressing hashing, hash-

ing with the presence of wildcards, and finally we illustrate our set-associative memory

architecture.

• In addition, in Section4, we describe our hashing schemes, which are used later as tools

in our packet-processing engines.

• in Sections 5, 6, and 7 we describe our solutions and experimental results to each of

the three packet-processing applications.

• Finally, we give a summary of the thesis in Section 8.

4

2.0 THESIS OUTLINE, MOTIVATION AND CONTRIBUTIONS

In this section, we describe the ‘big picture’ of our thesis. We mentioned that the subjects

of this thesis are the router’s search-intense packet-processing units; namely, the forwarding

engine, the packet filtering engine and the deep packet inspection engine. Since the target

of today’s and future Internet routers and firewalls is to keep up with both IPv6 and new

ultra high link rates, we need to think about packet-processing units designs that have high

throughput and have low power consumption all at the same time. We choose a design that

is based on a set-associative memory hardware realization of hash tables, as it provides a

general homogeneous platform for all the three applications. The actual architecture we are

using is called CA-RAM (Content Addressable-Random Access Memory) and is described

in some detail in section 3.4.

In general, The CA-RAM provides a reliable RAM architecture for search intensive

applications [12]. It allows for concurrent searching through multiple keys. In addition, it is

based on regular RAM technology rather than the expensive TCAM technology. Finally, the

CA-RAM is better than the classical hardware TCAM-based solution in its ability to support

different types of matching. For example, the packet classification application requires three

different types of matching: prefix matching, exact matching and range matching. While

the TCAM naturally supports both exact and prefix matchings, it requires the addition of

special complex hardware to deal with the range matching [46]. On the other hand, CA-

RAM supports all aforementioned types of matching, due to its unique feature of separating

the storage capability from the matching logic.

We believe that such architecture is capable of answering the wire speed and the power

consumption issues much better than other hardware and software solutions. The high

throughput requirement is boosted by using pipelining. For CA-RAM to work efficiently,

5

it needs good hashing schemes to fully utilize its capabilities. For example, in the PC and

PF applications, the keys that are being mapped into the hash table have low entropy and

tend to collide. Also, in the DPI application, some strings are substrings of other strings in

the DPI rule database. Thus CA-RAM needs new, efficient, collision-resolving schemes that

are more efficient than classical linear and quadratic probings. These new hashing schemes

should allow for high space utilization of the CA-RAM. I talk more about probing in the

next section, Section 3.1.

At the same time, CA-RAM also needs to maintain a high throughput, which is achieved

by lowering the memory access time and using pipelining. Thus our proposed hashing

schemes should lower the memory access time for the CA-RAM while resolving the collision

problem, which are two contradictory goals. In addition, in packet-processing applications,

the search engine, in this case the CA-RAM, has to report first the best matching key in

the database. In case of PF, the CA-RAM has to return the longest matching prefix, while

in the DPI, the CA-RAM has to return the longest matching pattern. Thus, our hashing

schemes have to support this property. Finally, since packet-processing applications require

dealing with wildcards, my hashing schemes have to deal with this issue as well.

In this thesis, I am proposing three hash-based schemes (techniques) that enable the

use of the CA-RAM for the three packet-processing applications. These are (in order of

presentation): content-probing pointers, progressive hashing and independent marking (I-

mark). These techniques are fully developed for two applications, namely PF and P,C and

are extended to the DPI application with some additional hardware customization. These

schemes are defined as our building blocks in Section 4. In addition, each scheme will be

optimized for each application, as described in Sections 5, 6 and 7.

My first scheme, the content-hash probing or CHAP, is–as its name indicates–a probing

technique that relies on the actual stored data in the hash table to probe for overflow keys.

This is in contrast to the classical systematic probing techniques (e.g., linear and quadratic)

that are known in the literature, which do not take into account the stored data and its

distribution. The third way to handle probing in open address hashing is double hashing.

My second hashing scheme, progressive hashing, extends double hashing, which is a known

technique for open address hashing (see Section 3.1), by first splitting the keys into different

6

groups. We then assign to each group a unique hash function to reduce the collision prob-

ability. This is different than double, or multiple, hashing where all keys can use all hash

functions that are used by the system. Finally, I propose my third technique, the I-mark,

to take advantage of the fact that some keys can be parts of other keys, like in DPI where

some short strings are substrings of other longer strings. In this technique, I use the fact

that some keys are truly independent or unique (i.e., have no other keys shorter or longer

that are parts of these keys, nor are these keys part of other keys) to store the keys efficiently

inside the CA-RAM. This is so we can insert those unique keys before or after other keys to

lower the chance of collisions.

As I am going to show in the rest of this thesis, the CA-RAM, along with my pro-

posed hashing schemes, outperforms the TCAM. I prove this by conducting a battery of

experiments and simulations to compare both CA-RAM and TCAM in terms of throughput

(speed), power consumption and space area. For example, my modified CA-RAM is esti-

mated to be capable of processing up to 320 Gbps for PF application, and is 160 Gbps for

the PC application, while our CA-RAM speed runs at a clock frequency of 540MHz. While

achieving such high rates of processing in these three application, the CA-RAM power con-

sumption is less than its equivalent size TCAM by 77% for the PF application and 71% for

the DPI application. Moreover, we consider that the CA-RAM is much more scalable than

the TCAM due to the fact that it separates the storage from the matching part.

7

3.0 BACKGROUND

In this chapter, in Section 3.1, I describe open addressing hash from the theoretical point

of view, while in Section 3.2, I address the issue of using single versus multiple hash tables.

This issue stems from the fact that some of the proposed solutions for packet-processing rely

on multiple hash tables. In Section 3.3, I talk about hashing keys with wildcards and how

they can cause collisions. In Section 3.4, I describe in some detail the CA-RAM general

architecture and it advantages over the TCAM. At the end of this chapter, in Section 3.5, I

summarize some of the related work.

3.1 GENERAL OPEN ADDRESSING HASH

Searchable data items, or records, contain two fields: key and data. Given a search key, k,

the goal of searching is to find a record associated with k in the database. Hash schemes

achieve fast searching by providing a simple arithmetic function h(·) (hash function) on k,

so that the location of the associated record is directly determined. The memory containing

the database can be viewed as a two-dimensional memory array of N rows with L records

per row.

It is possible that two (or more) distinct keys ki 6= kj hash to the same value: h(ki) =

h(kj). Such an occurrence is called “collision.” A worst-case (pathological) situation that

restricts the effectiveness of hashing is when all the keys are mapped to the same row. There

are two solutions to the collision problem in this case: 1) Make the row large enough to

hold all the possible colliding prefixes at the cost of a large amount of wasted memory. 2)

Control the row size and handle the overflow prefixes in a different way, such as “probing.”

8

When there are too many (≥ L) colliding records, some of those records must be placed

elsewhere in the table by finding, or probing, an empty space in a bucket. For example in

linear probing, the probing sequence used to insert an element into a hash table is given as

follows:

h(k), h(k) + β0, h(k) + β1, · · · , h(k) + βm−1 (3.1)

where each βi is a constant, and m is the maximum number of probes. Linear probing

is simple, but often suffers from what is called “primary key clustering” [13].

Another type of probing is called quadratic probing, where we use a quadratic equation

to determine the next bucket to be probed. The quadratic probing sequence used to insert

an element into a hash table is generated by the following equation:

h(k, i) = (h′(k) + c1 × i + c2 × i2)mod(N), i = 0, 1, · · ·m− 1 (3.2)

where h′(·) is called the auxiliary hash function and both c1 and c2 are constants. Quadratic

probing suffers from another type of clustering, called “secondary key clustering” [13].

Instead of probing, we can apply a second hash function to find an empty bucket, a

procedure know as double hashing [13]. In general, the use of H ≥ 2 hash functions is shown

to be better in reducing the overflow than probing [2]. In this case (which we refer to as

multiple hashing) the probing sequence of inserting a key into the hash table is given as

follows:

h0(k), h1(k), · · · , hH−1(k) (3.3)

where H is the number of hash functions. To achieve high space utilization (or load factor,

which is the ratio between the size of the database and the capacity of the actual RAM used

to store it) we apply multiple hash functions on a single hash table, rather than using a

separate table for each hash function [8].

9

3.2 USING SINGLE HASH TABLE VS. MULTIPLE HASH TABLES

Note that using a different hash table for each hash function in Equation 3.3 is a valid design

option; however, using different hash tables leads to more overflow, Hence results in poor

space utilization [14, 26, 54]. In what follows, we argue that using a single hash table is

better than using multiple hash tables.

Consider the case where we have two identical hash tables, A and B, of size (N × L),

where N = number of rows and L = row width, and the case where we have an equivalent

single hash table, C, of size (N × 2L). Assume that ‘a’ elements are mapped to row i of

table A and ‘b’ elements are mapped to row i of table B, then ‘c’ = (a + b) elements are

mapped to row, i, of table C. The overflow is calculated for tables A, B and C, respectively,

as follows:

overflowA = max{0, (a− L)}

overflowB = max{0, (b− L)}

overflowC = max{0, (c− 2× L)}

It is straightforward to show that if (a > L and b > L) or (a < L and b < L), then:

overflowC = (overflowA + overflowB). If one of ‘a’ or ‘b’ is larger than L and the other

is smaller than L, then overflowC < (overflowA + overflowB). Specifically, if (a = L + x)

and (b = L − y) for some integers x, y > 0, then (overflowA + overflowB = x) while

(overflowC = 0) or (x − y) when (y < x or y > x), respectively. Thus, having more than

one hash table results in larger overflow than having a single hash table.

To achieve high space utilization (load factor) we apply multiple hash functions on a

single hash table. Specifically, a key is inserted in the hash table using any of the H hash

functions in Equation 3.3. Given a database of M records and an N -bucket hash table, the

average number of hash table accesses to find a record is heavily affected by the choice of

h(·), L (the number of slots per bucket), and α, or the load factor, defined as M/(N × L).

With a smaller α, the average number of hash table accesses can be made smaller, however

at the expense of more unused memory space [3].

10

3.3 HASHING WITH WILDCARDS

Applying hash functions in packet-processing applications is very challenging due to the

fact that wildcards, or don’t care bits, are heavily present in the packet-processing en-

gine’s database. Hashing with wildcards requires one of two solutions: restricted hashing or

grouped hashing [20]. In restricted hashing RH, the hash functions are restricted to using

only the non-wildcard bits of the keys. We use RH only for PF application. In grouped

hashing, GH, keys are grouped based on their lengths, then different hash functions are

applied to each group. By length we mean the part of the key that does not contain any

don’t care bits, which we call “specific bits.” For example, the 32-bit IPv4 address can be

split into 5 groups as follows:

- Group S24, containing prefixes with at least 24 specific bits.

- Group S20, containing prefixes of length between 20 and 23 bits.

- Group S18, containing prefixes of length 18 and 19 bits.

- Group S16, containing prefixes of length 16 and 17 bits.

- Group S8, containing prefixes of length between 8 and 15 bits.

Then, each group is associated with a different single hash function as shown in Fig-

ure 2(a). We represent the 32-bit address space with a bold line, where MSb and LSb stand

for most significant bit and least significant bit, respectively.

Grouped hashing can also be applied to PC using the tuple space concept. For example,

a coarse-grained tuple space [45] (we describe this scheme in Section 3.5), where a key is

of the form (source address prefix, destination address prefix), can divide the PC hashing

space (or keys to be hashed) into 7 groups, as shown in Figure 2(b). The filters are split

into 4 groups based on the source and the destination prefix lengths: (S16, S16), (S16, NS),

(NS, S16) and (NS,NS), where “S16” means that the prefix has 16 or more specific bits,

while the “NS” stands for Non-Specific, i.e., the prefix is less than 16 bits. The (NS,NS)

group is split once more into 4 groups: (S8, S8), (S8, S0), (S0, S8) and (S0, S0), where “S0”

includes all prefixes that are less than 8 bits long.

11

32 bits32 bits
S24: S24: 2424 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 3232

MSbMSb LSbLSb

hh00()()
hh11()()
hh22()()
hh33()()
hh44()()

S20: S20: 2020 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 2323

S18: S18: 1818 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1919

S16:S16:1616 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1717

S8:S8:88 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1515

|Prefix| = prefix length|Prefix| = prefix length

(a)

(S16,S16)(S16,S16)hh00()()(NS, S16)(NS, S16)hh22()()
(S16, NS)(S16, NS)hh11()()(S0,S8)(S0,S8)hh55()()(S0,S0)(S0,S0)00 323200

3232

Source Source Prefix Prefix LengthLength

Destinatio
n
Destinatio
n Prefix Prefix Le
ngthLength (S8,S0)(S8,S0)hh44()()(S8,S8)(S8,S8)hh33()()

(b)

Figure 2: Splitting the hashing space into groups for (a) PF application, and (b) PC Appli-

cation.

3.4 THE CONTENT ADDRESSABLE-RANDOM ACCESS MEMORY

(CA-RAM) ARCHITECTURE

We use the CA-RAM as a representative of a number of set-associative memory architectures

proposed for packet-processing [12, 26, 60]. CA-RAM is a specialized, yet generic memory

structure that is proposed to accelerate search operations. The basic idea of CA-RAM is

simple; it implements the well-known hashing technique in hardware. The key features of

12

the CA-RAM are that it separates the matching logic from the storage, allowing for greater

space saving over regular CAMs. At the same time keeping the matching logic near the

memory bulk, allowing for lower I/O bandwidth and lower processing latency [12].

CA-RAM uses high-density memory (i.e., SRAM, DRAM or eDRAM [58]) and a number

of small match logic blocks to provide parallel search capability. Records are pre-classified

and stored in memory so that given a search key, access can be made accurately on the

memory row having the target record. Each match logic block then extracts a record key

from the fetched memory row, usually holding multiple candidate keys, and determines if

the record key under consideration is matched with the given search key.

CA-RAM provides a row-wise search capability comparable to TCAM. More importantly,

the bit-density of CA-RAM is much higher than that of TCAM, up to nearly five times higher

if DRAM is used in the CA-RAM implementation [12]. A CA-RAM takes a search key as

an input, and outputs the result of a lookup. Its main components are: an index generator,

a memory array (SRAM or DRAM), and match processors, as shown in Figure 3. The task

of the index generator is to create an index from an input key. The actual function of the

index generator depends highly on the target application. Depending on the application

requirements, a small degree of programmability in index generation can be implemented

using a set of simple shift functions and multiplexers.

A row may be divided into entries of the form shown at the left corner of Figure 3, where

a CA-RAM entry (cell) stores a key, and its corresponding data. Alternatively, two bits can

be used to store a ternary digit to represent 0, 1 and don’t care, rather than binary (as in

TCAM arrays, except that the comparison hardware in this case is shared among all the

rows in the memory array). Optionally, each row can be augmented with an auxiliary field

to provide information on the status of the associated bucket (e.g., how many keys are stored

in this row). We use the auxiliary field in our hashing schemes as we will see later.

13

RAM
Index

Generator

IG Key

An element is
mapped to this row

MP MP MP MP MP

Matching Processors

Priority Encoder

Result

͙

͙

One Cell

Key Data

Parallel Matching

Figure 3: The CA-RAM as an example of set-associative memory architectures.

Once the index is generated from the input key, the memory array is accessed and L can-

didate keys are fetched simultaneously. The match processors then compare the candidate

keys with the search key in parallel, resulting in constant-time matching. Each match proces-

sor performs comparison quickly using an appropriate hardware comparator. For example, if

we are comparing PC range field, then the matching processor is simply a range comparator,

while when we are comparing either PF prefix field or a DPI string, the matching processor

consists of an exact matching comparator.

Figure 4 shows a simple key matching circuit for a generic CA-RAM. We assume that CA-

RAM is being queried for a certain key (stored key) using another external key. Throughout

my thesis, the external key will be extracted from some IP packet (header or payload). After

the key is fetched from the storage section of the CA-RAM (i.e., RAM), it is stored in a

buffer that we call a “key buffer.” This key is going to be compared against the key part

of the incoming element, which is stored in another buffer, “I/O buffer.” For simplicity, we

assume that this is exact matching where we use just simple XOR gates to make sure that

both the stored key and the external key are identical.

14

External Key Buffer

From CA-RAM:

Key

From I/O:

Key

Key Buffer

Result to

Priority Encoder

Figure 4: A simple key matching circuit for a generic CA-RAM.

A large area saving in CA-RAM comes from decoupling memory cells and match logic.

Unlike conventional CAM, where each individual row in the memory array is coupled with its

own match logic, CA-RAM completely separates the dense memory array from the common

match logic (i.e., match processors). Since the match processors are simple and lightweight,

the overall area cost of CA-RAM will be close to that of the memory array used. At the same

time, by performing a number of candidate key matching operations in parallel, low-latency,

constant-time search performance is achieved.

CA-RAM was compared against TCAM in terms of performance, power and area (cost).

The result obtained in [12] shows that CA-RAM is over 26 times more power-efficient than

the 16T SRAM-based TCAM [30], and over 7 times more than the 6T dynamic TCAM [34].

The CA-RAM cell size is over 12 times smaller than a 16T SRAM-based TCAM cell, and

4.8 times smaller than a state-of-the-art 6T dynamic TCAM cell.

Overall, CA-RAM is performance-competitive with TCAM, in terms of both search la-

tency and bandwidth. The detailed area and power issues are addressed in [12].

15

3.5 RELATED WORK

In this section, we review hash-based solutions that were proposed for each of the packet-

processing applications. Most of the work that is done in hash-based packet-processing uses

closed addressing hash [7, 29, 44, 8]. One of the few solutions that are based on open address

hashing in the PF application is the IPStash [26, 27]. The IPStash architecture is similar to

the CA-RAM architecture [12, 26, 27]. However, IPStash uses a special form of the grouped

hashing scheme as it classifies the prefixes into only three groups according to their lengths,

and uses only 12 bits for hash table indexing. In addition, IPStash uses controlled prefix

expansion (CPE) [48] to expand prefixes of lengths between 8 and 15 bits to 16 bits, and

then choose any 12 bits to index the hash table [27]. In our work [21], we compared our

CA-RAM-based schemes against IPStash and showed that our schemes are superior.

Prefix Port Prefix Port

a 000***** 0 h 1******* 0

b 000101** 1 i 1001**** 0

c 0001111* 2 j 11011*** 2

d 0010**** 0 k 110101** 1

e 00111*** 2 l 111101** 1

f 0110**** 0 m 1111111* 2

g 01111*** 2

Table 1: An example of an 8-bit address space forwarding table.

The most well-known PF algorithm-based solutions use the binary trie data structures.

According to [42], a trie is: “a tree-like data structure allowing the organization of prefixes

on a digital basis by using the bits of prefixes to direct the branching.” Table 1 shows an

example of an IP forwarding table assuming 8-bit addressing. Figure 5 is the equivalent

binary trie of the IP forwarding table shown in Table 1, where a, b, · · · , m are symbols given

to the prefixes for easy identification. The main advantages of trie-based solutions are that

they provide simple time and space bounds. However, with the 128-bit IPv6 prefixes, both

trie height and enumeration become an issue when the prefixes are stored inside the nodes.

16

Root

0

1 h

0

1

0 a

1

0

1 b

1

1 c

1

0 d

1

1

1

0 f

1

0

1 1 j

0

1 k

1

1

0

1 l

1

1

0

0

1 i

1

1 m

1 e

1 g

Figure 5: The binary trie representation of the forwarding table given in Table 1.

For the PC application, the authors in [47] introduce a special hash-based scheme called

Tuple Space Search (TSS). In TSS, the five PC fields are represented by a “tuple,” which

is simply a group of integers substituting the actual fields. A prefix is represented by an

integer that equals the number of its defined bits; each range is converted to two integers

using range encoding, and each protocol is represented by an integer.

The original TSS scheme suffers from having high worst-case search time of O(W 2),

where W is the prefix length in bits. The authors then introduced an optimization called

“markers and computations.” Each tuple has two pointers to two filters; a marker (filer)

and a precomputation filter. During a search for the best matching filter for any incoming

packet, we probe to a tuple Ti, where we have two choices:

• The packet we have matches one of the filters that belong to Ti, in which case we need

to find a more specific filter.

• The packet does not match any filter, in which case we need to find a less specific filter.

A marker filter is a pointer to the less specific filter than the current matching filter in Ti,

while a precomputation filter is a pointer to the more specific filter. Note that the specificity

of a certain filter in the 2D TSS is determined by the length of both prefixes of this filter.

In [32], the authors introduced an optimization to the TSS scheme by introducing a

binary search scheme on 2D tuples space. However, this optimization [32] did not address

17

the practical issues of the TSS such as: how to handle the multiple hash tables, and how to

select the hash functions. The work by Song et al. [45] is the first to show how a practical

TSS system functions by splitting the 2D TSS into coarse clusters, and then assigning

one hash table to each cluster. The work in [29] enhances [45] by using other kinds of

summaries instead of the Bloom filter-based [7]. A Bloom filters (BF) are simple array of

bits used for representing a set to support fast approximate membership queries [7]. The

main disadvantage of BFs is that they make false positive membership queries.

(a) (b)

Figure 6: The (a) Sliding window example, and (b) Its jumping window equivalent where

w = m = 4.

A DPI engine consists of two units: a PC engine and a pattern-matching engine [33].

Some of the DPI patterns are “simple” patterns, meaning they are concatenations of single-

byte ASCII code characters (in which some wildcard bytes could appear in place) while there

other patterns are called “composite” patterns. An example of the composite patterns would

be what is known as “correlated” patterns, where subpatterns appear in specific locations

inside the packet. Throughout our work, we assume only simple patterns and subpatterns.

To process a composite pattern, the PM engine detects all the simple subpatterns that make

that composite pattern and sends them to the network processor for further investigation.

TCAM-based pattern-matching engines perform well for the small-sized pattern databases,

18

but suffer great performance deficiency for large ones [33]. The TCAM width ‘w’ is an im-

portant factor in the design of the pattern-matching unit. In [59], the authors describe a

byte-by-byte scanning TCAM solution, which is referred to as a “sliding window” scheme [49].

In a sliding window scheme, a window of ‘w’ characters of each packet is compared to the

content of the TCAM for a match. The problem with this approach is that the scanning

speed is low, since each time a new character is being added to the window, another is being

dropped, as depicted in Figure 6(a).

The authors in [49] propose an extension to the sliding window that is called “jumping

window,” where at every clock cycle, a window of ‘m’ characters is jumped and a new

window is inspected, as we can see in Figure 6(b). The throughput in this case is claimed

to be multiples of that of the sliding window, however at the cost of replicating the same

patterns m− 1 times, as can be seen in Figure 6(b). In addition to TCAM solutions, a few

closed addressing hash-based solutions are proposed [15].

In addition to these two research streams, there are also the automaton-based ap-

proaches [33, 5, 4]. However, these approaches have an inherent complexity that limits

the total number of Regular Expressions (or complex patterns) that can be detected using

a single chip [4]. There has been a lot of progress in this area through either using the DFA

(Deterministic Finite Automaton) or Non-Deterministic Finite Automaton (NFA) [10].

19

4.0 OUR DEVELOPED HASHING SCHEMES AND TOOLS

As we mentioned earlier in Section 2, classical hash collision resolution schemes are inefficient

for our packet-processing application while using the CA-RAM architecture. On one hand,

the keys tend to have more collisions than the typical hashing of keys that are assumed to

be uniformly distributed, while on the other hand, these schemes do not perform well with

the CA-RAM architecture. For example, if we resolve hash collisions with linear probing,

we might end up searching the entire CA-RAM for a certain key, which is not acceptable.

In this section we describe our proposed hash-based schemes that best suit both the

three packet-processing applications and our main hardware architecture, CA-RAM. All our

schemes are based on open addressing hash methodology; however, they could also be applied

to the closed addressing hash methodology. These are all general schemes that are meant to

work for the three applications. We introduce more specific optimizations in Chapters 5, 6

and 7 that exploit particular features of each application.

In Section 4.1, we describe our first hashing scheme, “Content-based HAsh Probing,”

or CHAP. CHAP is an extension to the hash probing techniques introduced in Section 3.1.

In Section 4.2, we discuss our “Progressive Hashing” scheme, which is an extension to the

grouped hashing introduced in Section 3.1.

Finally, in Section 4.3, we describe our “I-Mark” scheme. The I-Mark is a general scheme

to mark those keys that are unique so that if we find one of them during a matching process,

then we can stop looking for more matches. This helps in reducing the average memory

access time (AMAT) and the overflow at the same time.

20

4.1 CONTENT-BASED HASH PROBING (CHAP)

As we mentioned in the last section, a CA-RAM row stores the elements of a bucket and is

accessed in one memory cycle. Because the architecture is very flexible, we may keep some

bits at the end of each row for auxiliary data; this allows for more efficient probing schemes

with multiple hash functions. In this section, we first present the basic content-based hash

probing scheme, CHAP(1,m), which is a natural evolution of the linear probing scheme

described by Equation (3.1). We then extend this scheme to H hash functions, which we

call CHAP(H,m).

In open addressing hash, some rows may incur overflow, while others have unoccupied

space. While linear probing uses predetermined offsets to solve that problem, as specified by

Equation (3.1), CHAP uses the same probing sequence, but with the constants β0, β1, · · · , βm

determined dynamically for each value of h(k), depending on the distribution of the data

stored in a particular hash table. Specifically, the probing sequence to insert a key “k” is:

h(k), β0[h(k)], β1[h(k)], · · · , βm−1[h(k)] (4.1)

This means that for each row, we associate a group of m pointers to be used if overflow

occurs to point to other rows that have empty spaces. We call these pointers “probing

pointers,” and the overall scheme is called CHAP(1,m) since it has only one hash function

and m probing pointers per row.

Figure 7 shows the basic idea of CHAP when m = 2. To match the overflow excess keys

to specific rows, we need to collect all the overflow elements across all the rows. We achieve

this by counting the excess elements per row, and finding for each row i two rows in which

these overflow elements can fit. These two rows’ indices are recorded in β0[i] and β1[i].

Assume that we are searching for a key k. If the hash function points to row i = h(k) and

it turns out that the input key k is not in this row, we check to see if the probing pointers

at row i are defined or not. If defined, this means that there are other elements that belong

to row i, but that reside in either row β0[i] or in row β1[i] and these elements might contain

k. Consequently, rows β0[i] and β1[i] are accessed in subsequent memory cycles to find the

matching key.

21

Probing Pointers
All elements at this row are matched in parallel

h(.)PacketPacket
To theMatching Processors

… ββββ1ββββ0…
Figure 7: The CHAP basic concept.

The content-based probing can also be applied to the multiple hashing scheme. Specifi-

cally, we refer to CHAP with H hash functions and m probing pointers by CHAP(H,m).

For example, in CHAP(H,H) we have H hash functions and m = H probing pointers. In

this case, the probing sequence for inserting a key, k, can be defined by:

h0(k), h1(k), · · · , hH−1(k), β0[h0(k)], β1[h1(k)], · · · , βm−1[hH−1(k)] (4.2)

Probing PointersMultiple hash functions
h0(.)Packet

To theMatching Processors
… ββββ1[h1()]ββββ0[h0()]

h1(.) …h2(.)
ββββ2[h2()]

Figure 8: The CHAP(3,3).

In essence, we dedicate to each hash function a pointer per row. An example is shown

in Figure 8 for a three hash functions CHAP scheme, or CHAP(3,3), where a key is mapped

22

to three different buckets. In the example, this key will have six different buckets to which

it can be allocated: h0(k), h1(k),h2(k), β0[h0(k)], β1[h1(k)] and β2[h2(k)] in the given order,

where βi[hi(·)] is the probing pointer of hash function hi(·).

There are different ways to organize CHAP(H,m) when m 6= H, depending on whether or

not the probing pointers are shared among the hash functions in a given row. In the example

described above for CHAP(H,H), we assume that one probing pointer is associated with each

hash function. Another organization could share probing pointers among hash functions.

Yet a third organization could assign multiple pointers for each hash function, which is the

only possible organization for CHAP(1,m), when m > 1. In Chapters 5 and 6, we limit our

discussion to CHAP(1,m) and CHAP(H,H) with one pointer for each hash function and with

the probing order given by Equations 4.1 and 4.2 for the two organizations, respectively.

4.1.1 The CHAP Setup Algorithm

The main idea in this section is to prepare the keys and insert them into the CA-RAM hash

table, which we call “setup phase.” Algorithm 1 lays out the setup phase of CHAP. Before

we describe the actual algorithm, we discuss an important issue, which is to reduce the

search time for the CHAP algorithm. To achieve this, we have to stop at the first matching

key during search in the CHAPs search algorithm, Algorithm 2. This is done by storing the

keys according to their specificity (priority) from the most to the least [19]. The priority

(specificity) of a key depends on the key type. In PF application, the key priority is just the

prefix length; the same goes for the strings (signatures 1) of the DPI application. However,

there is a distinct priority value associated with each PC rule.

In Algorithm 1, j = 0, · · · , M −1 is used to index the keys, where M is the total number

of keys in a packet-processing database. Our hash table has 2R = N rows, where R is the

number of bits used to index the hash table. We use i as an index for hash functions and H

as the maximum number of hash functions. An array of counters, HC[] of size N , is used to

count the number of elements that will be mapped to each row of the hash table. We define

a two-dimensional array of counters OC[][] of size N ×H to count the overflow elements for

1Throughout this thesis we will use both terms signature and string interchangeably to present the same
thing.

23

each hash function per row. The maximum value of a single counter in this array is equal

to λ, where λ ≤ L, and L is the number of keys stored per row. This bound comes from the

fact that a hole, or an empty space in any row of the hash table, can never exceed L. The

CHAP setup phase determines if the configuration parameters of the hash table are valid or

not. In other words, do the parameters L, H, λ and N result in a mapping of the M keys

into a single hash table with acceptable overflow or not?

Algorithm 1 The CHAP(H,H) Setup Algorithm.

1: CHAP Setup(packet-processing Database)

2: Sort the keys according to specificity from highest to lowest

3: initialize the arrays HC[] and OC[][] to zeros

4: table overflow = number of keys that will not hashed to the CA-RAM

5: for(j = 0; j < M ; j + +) {

6: inserted = false

7: for(i = 0; i < H; i++) {

8: ri = hi(kj) }

9: for (i = 0; i < H AND inserted == false; i++) {

10: if(HC[ri] < L), then {

11: HC[ri]++

12: inserted = true }

13: }

14: for (i = 0; i < H AND inserted == false; i++) {

15: if(OC[ri][i] < λ), then {

16: OC[ri][i]++

17: inserted = true }

18: }

19: table overflow++

20: }

Algorithm 1 calculates the number of keys to be assigned to each row. By “assigned,”

we mean not only the keys that are hashed to this row, but also the overflow keys that are

supposed to be in this row but that will reside in other rows to which this row’s probing

24

pointers point. It starts by sorting keys from highest priority to lowest priority, then initializ-

ing the two arrays HC and OC to zeros, while the table overflow counter is initialized to the

number of keys that are not going to be inserted in the hash table, because they are shorter

than the minimum length the CA-RAM can handle (lines 1–2). Sorting the keys helps to

stop at the first matching key, as will be proved in Section 4.1.2. The set of hash values

{r0, · · · rH−1} for each key is calculated (lines 6–7). Then, the algorithm updates either HC

or OC as follows: if there is a spot for the current key in HC, then the algorithm increments

HC (lines 8–11); if not, it increments the corresponding OC counter (lines 12–15). In any

case, the algorithm moves on to the next key.

When Algorithm 1 exits, table overflow will include the number of keys that could not fit

in either HC or OC (lines 16–17). If this number is not acceptable, then the algorithm can

be repeated with more hash functions, that is with a new H ′ = H + 1. In that setting, the

acceptability of the overflow depends on the capacity of the overflow buffer 2. The progressive

hashing scheme discussed in Section 4.2 may be applied in conjunction with CHAP to further

reduce the overflow.

After completing the setup algorithm, we run a simple best-fit algorithm over the two

arrays OC and HC, where we assign each overflow counter an address to a row that has a

suitable hole that can accommodate the overflow keys. These addresses are what we call

“probing pointers,” and they are one per row per hash function. Finally, we populate the

hash table by simply mapping the keys into their rows using the same hash functions that we

used in Algorithm 1. Once we have overflow for a certain row and a certain hash function,

we use the probing pointer associated with this pair to put the key into a different row. Note

that we are using a small TCAM chip to store the overflow, i.e., “overflow buffer,” where

we us it to store prefixes for PF application, rules for PC application and filters for the

DPI application. We search the overflow buffer after searching the main CA-RAM, which is

covered in the next section, Section 4.1.2.

2Throughout this thesis we use the term “overflow buffer” to represent a small embedded TCAM module
that holds all the keys that will not stored in the CA-RAM.

25

4.1.2 Search in CHAP

In this section I discuss how search for a certain key is done in a CHAP-based hash table.

We call our main hash table “H Table[][],” of size N ×L where N and L are respectively

the number of rows and the row capacity. Each element in H Table[][] consists of the actual

key, H Table[][].key, and a couple of corresponding fields: an ID number, H Table[][].ID

and the priority, H Table[][].pri. The key priority is used to determine the most specific key

(MSK), while the key ID is a unique ID number that is reported back to the control plane

software, which is used for incremental updates of the keys database.

As discussed in Section 3.4, a read operation fetches a full row (bucket) from the hash

table into a buffer and uses a set of comparators to determine, in parallel, the most specific

key in that bucket. A complete search might need to search more than one bucket. To

measure the efficiency of the search in CHAP, we use the “Average Memory Access Time”,

AMAT, which is the average number of rows accessed for successful search.

Algorithm 2 The CHAP Search Algorithm.

Search Hash Table(Key, K) {

1: for(i = 0 ; i < H ; i + +) {

2: ri = hi(K)

3: ri+H = βi[hi(K)] }

4: for(i = 0 ; i < 2H ; i + +) {

5: if(K matches H Table[ri][j].key),

then { /* done in parallel for all values of j */

6: return H Table[ri][j].num }

7: }

8: search the overflow buffer }

The CHAP search algorithm, Algorithm 2, is straightforward. Given a key K, we cal-

culate the row address ri(K) = hi(K) and ri+H = βi[hi(K)], where i = 0, · · · , H − 1 (lines

1–3). For each row of the 2 × H rows, we match the key against all the keys in this row

in parallel, and if we hit at this row, we return the key ID number associated with the key

(lines 4–6). If we do not find a match in these rows, we search the overflow buffer (line 8).

26

In Section 4.1.1, we discussed the importance of storing the keys according to their

priorities to be able to stop at the first matching key during the CHAP search algorithm. In

addition to sorting and inserting the keys according to their priority, we have to maintain

what is called the “hash order” during both insertion and search phases. The hash order

is merely the order of applying the hash functions in addition to the order of accessing the

probing pointers. Theorem 1 proves that these two conditions are enough to find the MSK

first.

Theorem 1. In CHAP, the first matching key is the MSK if:

1. The keys are inserted in order of most specific to least specific.

2. The search’s hash order, which includes both the order of accessing the probing pointers

and the order of applying the hash functions, is the same as the insertion’s hash order.

Proof. In a restricted multiple hashing scheme, all the H hash functions are applied to

all keys. For example, in the PF application, assume that we have M keys to be hashed

and that they are sorted according to their length, from the longest to the shortest. Also,

assume that the hash order during the insertion is as follows: r0(km), · · · , r2H−1(km), where

ri(km) = hi(km) for i = 0, · · ·H − 1 and ri(km) = βi[hi(km)] for i = H, · · · , 2H − 1. In

addition, assume that there exists a packet K that matches two prefixes kX and kY and that

kX is longer than kY . This means that kX is mapped to the hash table before kY .

Without losing the generality, assume that rt(kX) = rt(kY) = rt. We can see that it is

impossible for kY to find a space in row rt if kX could not find a space. This means that if

kX is stored in row ri(kX) = rX and if kY is stored in row rj(kY) = rY , then i < j. Hence,

while searching for a match for K as follows: r0(K), · · · r2H−1(K), we will match kX at row

rX before matching kY at row rY .

Note that if both prefixes kX and kY in Theorem 1 are mapped to the same row, the

matching processors will determine the MSK in this case.

27

4.1.3 The Incremental Updates Under CHAP

An important issue in the packet-processing domain is the incremental updates of the

databases. The number of keys included in a packet forwarding database grows with

time [22, 54]. The updates consist of two basic operations, Insert/Update and Delete a

key. In CHAP, the delete operation is straightforward. For any key deletion operation, we

find the key first, then we delete it by storing all zeros and then decrement the row counter

HC, which is used to keep track of the rows’ populations. Deleting a key from any row does

not require shifting, since the matching processors will ignore the deleted key spot as it will

contain all zeros.

The basic idea of the insert/update operation, which is detailed in Algorithm 3, is to

find the appropriate row that the new key should fit in. In this algorithm, Algorithm 3, we

take into account that we report the most specific key. If we find out that the key already

exists in our CA-RAM, the existing entry will be updated.

Algorithm 3 consists of two functions, CHAP Insert Update() and Insert in Rows().

The first function, CHAP Insert Update(), determines the appropriate rows to insert the new

key Kn (lines 16–21). The second function is where the actual insertion is made, as it take a

new key Kn, then it tries to insert it in a row from a range of rows starting from row index

a all the way to row index b.

In the first function, the row array ri, which has a size of 2 × H, is used to store the

computed values of the hash functions of the new key, Kn, and the corresponding probing

pointers (lines 2–4). Note that ri is a global variable ,because it has to be accessed by the

second function, Insert in Rows(). For each row ri we match Kn against all the keys in this

row and extract both the most specific key, Kl, and the least specific key, Ks, that match Kn

(lines 5–7). We record the rows indices l and s that include Kl and Ks if such matchings are

found. Depending on how specific Kn is related to both Kl and Ks, we try to insert Kn in

one of the 2H rows. This is done through an if − else construct (lines 8–15). The first case

is when neither Kl nor Ks are defined (i.e., no matching), thus we can insert Kn into any

row (lines 8–9). The second case, which is route update [22], is when Kn is equal to either

Kl or Ks in which case we replace either Kl or Ks with Kn (lines 10–12). The third case is

28

Algorithm 3 The CHAP Insert Update Algorithm.

0: define ri as an integer array of 2×H elements

1:CHAP Insert Update (New Key Kn) {

2:for(i = 0; i < H; i + +) {

3: ri = hi(Kn)

4: ri+H = βi[hi(Kn)] }

5:By searching the rows r0, · · · r2H−1, find: {

6: Kl = most specific key matching Kn and l = index of row containing Kl

7: Ks = least specific key matching Kn and s = index of row containing Ks }

8:if(Kl is not defined AND Ks is not defined), then {

9: return(Insert in Rows(Kn, 0 ,(2H − 1))) }

/* insert kn in any of rows r0, · · · , r2H−1 */

10:else if ((|Kn| == |Kl|) OR (|Kn| == |Ks|)), then {

11: Replace Kl or Ks with Kn /*an update operation*/

12: return (true)}

13:else if(|Kn| > |Kl|), then { return(Insert in Rows(Kn, 0, l))}

14:else if(|Kn| < |Ks|), then { return(Insert in Rows(Kn, s, (2H − 1))) }

15:else, return(Insert in Rows(Kn, l, s))

}

16:Insert in Rows (key Kn, a, b) {

/* insert Kn in any of the rows ra, ra+1 · · · , rb */

17:for(i = a; i <= b; i + +) {

18: if(HC[ri] < L), then {

19: insert Kn in ri and HC[ri]++

20: return (true)}

}

21:return (false) }

29

if |Kn|3 is larger than |Kl|, then we try to insert Kn into one of the buckets {r0, · · · , rl} if

there is a space (line 13). In the next case we check to see if |Kn| < |Ks| is true, then we try

to insert Kn in a row among {rs, · · · , r2H−1} (line 14). Finally, if |Ks| < |Kn| < |Kl|, then

we try to put Kn in any row between rl and rs (line 15).

In any case, the functions terminate successfully if we are able to insert Kn. Otherwise, we

try to either insert Kn into the overflow buffer, or use a backtracking scheme like “Cuckoo

hashing” [35] to replace an existing key, say Ky, from the hash table by Kn, then try to

recursively reinsert Ky back into the hash table [14].

The implementation of the incremental updates algorithm is done in the control plane

(which contains a network processor to perform the necessary computations). We propose

that the actual updates are issued as a special case during the idle time of the CA-RAM.

3Throughout this thesis, we use the notation |K| to represent the how specific a key ‘K’ is.

30

4.2 THE PROGRESSIVE HASHING SCHEME

We introduce our Progressive Hashing scheme (PH) as another effective mechanism for reduc-

ing collisions (hence overflow) for keys with wildcards (don’t care bits) using open addressing

hash systems. As we mentioned in Section 3.3, using multiple hash functions is efficient in

reducing collisions in general. In the same section, the two multiple hashing schemes for

dealing with don’t care bits are described. In the restricted hashing scheme (see Figure 9(a))

the hash functions h′
0(), · · · , h′

3() are applied to all the keys in the hashing space, hence all

hash functions are restricted to the specific (not the don’t care) bits. On the other hand, in

the grouped hashing (see Figure 9(b)) we split the hashing space into groups and a single

hash function is associated with each group. In Figure 9(b), functions h0(), · · · , h3() are

associated with groups 0, · · · , 3 respectively.

Restricted Hashing Scheme

Group 0
Group 1
Group 2
Group 3

hh00`(), `(), hh11`(), `(),
hh22`(), `(), hh33`()`()

Grouped Hashing Scheme

Group 0
Group 1
Group 2
Group 3

hh00()()
hh11()()

hh22()()
hh33()()

(a) (b)
Progressive Hashing Scheme

Group 0
Group 1
Group 2
Group 3

hh00(), h(), h11(), (),
hh22(), h(), h33()()hh11(), h(), h22(), (),

hh33()()

hh22(), h(), h33()()
hh33()()

(c)

Figure 9: The evolution of the PH scheme.

31

In progressive hashing, we group the keys based on their lengths, as in the grouped

hashing (GH). Consequently, groups with longer key lengths can use the hash functions of

other groups that have shorter key lengths. For example, in Figure 2, for the PF application,

group S24 can use the hash functions of groups S20 and S16. Motivated by this observation,

we propose to apply the hash functions progressively as illustrated in Figure 10 to give some

keys more chances to be mapped into the hash table, thus reducing the overflow.

The effectiveness of progressive hashing depends mainly on how we select the groups and

their associated hash functions. One important aspect during the grouping of the keys is

to maintain “hashing-specificity hierarchy,” where “hash function specificity” is defined as

follows:

Definition 1. A hash function hi(·) is said to be more specific than another hash function

hj(·) if any bit used in hj(·) is also used in hi(·).

32 bits32 bits
S24: S24: 2424 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 3232

MSbMSb LSbLSb

hh00(), h(), h11(), (),
hh22(), h(), h33(), h(), h44()()

hh11(), h(), h22(), (),
hh33(), h(), h44()()

hh22(), h(), h33(), (),
hh44()()

hh33(), h(), h44()()
hh44()()

S20: S20: 2020 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 2323

S18: S18: 1818 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1919

S16:S16:1616 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1717

S8:S8:88 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1515

|Prefix| = prefix length|Prefix| = prefix length

Figure 10: Applying the PH scheme on PF application.

For example, in Figure 2, the hash function h0(·) is more specific than h1(·), h2(·), h3(·)

and h4(·). Figure 10 demonstrates the PH scheme applied to the same groups in Figure 2.

As an example, group S24, which is assigned to hash function h0(·), can use the less specific

hash functions of groups S20, S18, S16 and S8, as illustrated in Figure 10. In the next two

sections, we show the PH setup and search algorithms.

32

4.2.1 The PH Setup Algorithm

In this section, we introduce the PH setup algorithm, Algorithm 4, where we prepare the

keys to be mapped to the CA-RAM. Before dividing the keys into groups, we sort the keys

according to their priorities from highest to lowest and insert them in that order. In this

algorithm, Algorithm 4, j = 0, · · · , M − 1 is used to index the keys, where M is the total

number of prefixes in an IP routing table. The goal is to map the prefixes into a hash table,

H Table[][] of size N × L, where L = maximum bucket size, N = 2R maximum number of

rows and R is the maximum number of bits used to index the hash table.

As indicated in the last section, each entry in H Table[][] contains the field “key,” which

consists of the actual key (PC rule, PF prefix or DPI string), its length (or mask), the key

ID number and the hash function field (lines 9–12) 4. In the next section, Section 4.2.2,

we show the importance of the “hash function” field. H is the maximum number of hash

functions and an array of counters, HC[] of size N , is used to count the number of elements

that are mapped to each row of the hash table. A counter, table overflow, that records the

number of overflow elements, is initialized by the number of keys that are shorter than the

minimum length to be hashed to the hash table. Group number ‘i’ is represented by Gi.

Algorithm 4 attempts to allocate Kj, (line 6) in the hash table. If the attempt is not

successful, it stores the key in the overflow buffer that is searched after the main hash table.

Note that we apply the hash functions according to their specificity starting from the most

specific to the least specific during the insertion.

4.2.2 Searching in PH

In this section, we show how to find the Most Specific Key (MSK) in the PH scheme. But

since we might find multiple matches, we want to guarantee that the first key that matches

a packet is the best. Unfortunately, Theorem 1 cannot be used for progressive hashing as

some keys have a different insertion’s hash order than their search’s hash order.

For a PF example, if a key K matches two prefixes KX ∈ (S18) and KY ∈ (S16) in

Figure 10(a), then KX is the LPM of K. Assume that during the prefixes mapping, both

4The hash function index is used to store the index of the hash function that is used to store the prefix.

33

Algorithm 4 The PH Setup Algorithm.

PH Setup(Keys Table){

1: Sort the keys from highest to lowest priorities and define the groups

2: Initialize HC[] array to zeros and table overflow = number of keys that will not be

hashed

3: for(j = 0; j < M ; j + +) {

4: inserted = false

5: for(i = 0 ; i < H ; i + +) {

6: if (Kj ∈ Gi), then {

7: ri = hi(Kj)

8: if(HC[ri] < L), then {

9: H Table[ri][HC[ri]].key = Kj

10: H Table[ri][HC[ri]].len = |Kj|

11: H Table[ri][HC[ri]].port = Kj port number

12: H Table[ri][HC[ri]].h = i

13: HC[ri]++, inserted = true }

14: }

15: }

16: if(inserted == false), then

17: Store Kj in overflow buffer, table overflow++ }

18: }

34

Algorithm 5 The PH Search Algorithm.

Search Hash Table(Key K) {

1: for(i = 0 ; i < H ; i + +) {

2: ri = hi(K)

3: if((K matches H Table[ri][j].key) AND (i == H Table[ri][j].h))

,then /* done in parallel for all values of j */

4: return H Table[ri][j].port

5: }

6: search the overflow buffer }

prefixes are stored in two different rows as follows: h2(KX) = rX and h3(KY) = rY . During

the search for P we try all the five hash functions r0 = h0(P), · · · , r4 = h4(P). Assume that

one of the hash functions that were not used to store either KX or KY generates the row rY

when it is applied to K, i.e., r0 = rY or r1 = rY . This means that we search rY before rX ,

thus, we report KY as the LPM instead of KX , which is wrong.

To solve this problem, the hash function that was used to insert KY has to be checked.

In this case it turns out that KY was stored using h3() and not h0(). Hence, KY has to be

skipped as a matching, because there is a better matching, in this case KX . This is why we

store the hash function index in the PH setup algorithm, Algorithm 4, (line 12).

The PH search algorithm is given in Algorithm 5. It works as follows: for each key

K that arrives at the packet-processing unit, we calculate the row index addresses r0 =

h0(K), · · · , rH−1 = hH−1(K) (lines 1 and 2). For each row ri we match K against all the

elements in that row in parallel in a single clock cycle using the matching processors (line

4). The matching processors return the MSK in the bucket if and only if the stored hash

function index “.h” is identical to the hash function index that is used to look up the key

during the search (line 4). If we do not find any match, then we search the overflow buffer

(line 6).

35

4.2.3 Incremental Updates in PH

In Section 4.1.3, we discussed the importance of the incremental updates issue for the packet-

processing engine. In this section, we describe how to perform the incremental updates for

the progressive hashing scheme.

Deleting a certain key is straightforward in PH. It involves locating this key, deleting

it by storing all zeros in its place and adjusting the corresponding HC row counter, as we

do in CHAP 4.1.3. The insert/update operation for the PH scheme is similar to that of

the CHAP scheme that is given in Algorithm 3, except that the rows ri are not defined for

i = H, · · · 2H − 1. Also, we use only the hash functions that are applicable to the key being

inserted. Specifically, we replace lines 1–3 in Algorithm 3 with the following lines:

2: for(i = 0 ; i < H ; i + +) {

3: if (Kn ∈ Gi), then

4: ri = hi(Kn) }

After that, we decide the bucket that should store the new key, Kn, as we did in Al-

gorithm 3. To summarize, Algorithm 3 can be used as an insert/update algorithm for PH

except for the aforementioned modifications.

36

4.3 THE INDEPENDENT (I)-MARK SCHEME

The I-Mark scheme is an optimization that reduces the overflow for the PF application, and

at the same time reduces the AMAT (average memory access time), which is average number

of memory accesses per lookup for both the PC and DPI applications. The unique feature

of this scheme is that it is orthogonal to both CHAP and PH schemes; and hence it can be

applied in conjunction with both.

The I-Mark scheme is motivated by the observation that under the progressive hashing

scheme, some keys can use more hash functions than others. So, if we insert those keys last

(after the others), then we may reduce the collisions and hence the overflow because of the

flexibility of using multiple hash functions. However, this is not simple, since some keys have

to be inserted before other keys because of some “dependence” relationship. Definition 2

formally defines the dependence relationship between keys:

Definition 2. If the key in a packet Pi matches two keys, Ki and Kj, then Ki and Kj are

called dependent keys.

As we discussed earlier, we insert the keys into the hash table according to their priorities,

starting from the highest to the lowest. This helps us find the most specific key first during

searching. Independent keys, however, can be inserted in any order, and not according to

their priority.

Following this observation, we define a binary flag, I-Mark, which is set to 1 if the key

is independent of any other key in the database, and is reset to 0 if not. We call the set

of keys which have I-Mark equal to 1 the “independent” set and the other set of keys the

“dependent” set. To determine if a certain key is independent or not, this key has to be

neither a subkey (e.g., substring in case of DPI database or subprefix in case of PF) of any

other keys, nor a super key (i.e, there are other key(s) that is (are) subkey of this key). In

other words, we run an O(n2) algorithm that compares each key against all other keys in

the database. If there is at least one key that is either a subkey or a superkey of the current

key; we mark this current key’s flag to 0, otherwise we mark it 1.

There are many ways to insert the independent set; one in particular is to insert the

independent keys first before the dependent ones, where we insert the independent keys in a

37

reverse order according to the number of hash functions each key is assigned to. For example,

given the PF example in Figure 10, we insert the independent prefixes that use only the hash

function h4() first; then we insert the independent prefixes that use h3() and h4() second,

and so on. This order can be justified logically, as we try to accommodate those keys that

can be hashed by fewer hash functions before trying to accommodate other keys that can be

hashed by more hash functions.

In addition to allowing key insertions in arbitrary order, we note that once one of the

independent keys is matched during the search; then we can stop the search, since we are

guaranteed that there are no more matches. This helps us reduce the AMAT of the PC and

DPI applications significantly.

4.4 CONCLUSION

In conclusion, I introduced three novel hashing techniques for keys with wildcards. My first

technique, CHAP, is a probing scheme that is more efficient than other non-content-based

classical probing schemes. Instead of searching the subsequent buckets blindly (like in linear

and quadratic probings) for a key that does not exist in a certain bucket, we intelligently

search those buckets that contain the overflow of this bucket. This technique limits the

number of buckets to be searched; hence it lowers both the AMAT and WMAT.

In progressive hashing I introduced a new way of handling the keys with wildcards in

the packet-processing units that use hashing in storing those keys. Instead of using all hash

functions to map all the keys, we split these keys into groups based on the length of the

specific (non-wildcard) part of the keys. Then we assign each group a hash function. Finally,

for these groups that have longer keys than other groups, we allow the former to use the

hash functions of the latter. Our progressive hashing provides a better collision resolution

mechanism than classical restricted hashing, where all hash functions are applied to all keys,

but only on the shortest specific parts of those keys.

As for our last technique, the I-mark, we use the observation that some keys are neither

subkeys nor superkeys of or from other keys. Thus, while searching for a certain key and a

38

key that is I-marked is found, we can stop the search as there is no other key that might be

more specific than this key. This lowers the average memory access time (AMAT).

In addition, I-marked keys can be inserted in any order to reduce the chance of collisions.

This is unlike those keys that are not I-marked where they have to be inserted in a specific

order (longer or most specific first, then shorter or less specific after that) to guarantee finding

the MSK (most specific key) in the first hit during the search. Note that the I-mark scheme

can be applied independently from the hashing scheme (i.e, progressive hashing, restricted

hashing and CHAP).

In the next three chapters, we describe how to make use of these three techniques to

design a CA-RAM-based packet forwarding engine (Chapter 5), packet classification engine

(Chapter 6), and pattern-matching unit for the DPI application (Chapter 7).

39

5.0 THE PACKET FORWARDING APPLICATION

In this chapter, we discuss application of the presented tools discussed in Chapter 4 to the PF

application. We start with Section 5.1 that demonstrates the required CA-RAM hardware

changes to convert it into a packet forwarding engine. Then in Section 5.3 we demonstrate

the effectiveness of our CHAP scheme, when applied to PF. CHAP uses restricted hashing

(RH), where we use only the first 16 bits of the IPv4 prefixes for hashing. Since these 16

bits are not good enough to prevent collisions, and hence overflow, we use multiple hash

functions.

In Section 5.4, we introduce our Progressive Hashing-based PF engine augmented with

the I-Mark scheme. Unlike CHAP, we use more bits in hashing the prefixes in PH, which

effectively reduces the overflow. Section 5.5 combines both PH and CHAP schemes in a

single solution, while in Section 5.6 we combine the PH and I-Mark solutions. Finally, in

both Sections 5.7 and 5.8 we show the performance estimation using state-of-the-art SRAM

technologies and also by using the CACTI [52] memory simulator.

5.1 THE CA-RAM ARCHITECTURE FOR PACKET FORWARDING

In this section, we describe the hardware customization that is needed to enable the CA-

RAM as a packet forwarding engine. In Figure 11 we show a packet forwarding CA-RAM

with two hash functions and two probing pointers. The main difference between the generic

CA-RAM, Figure 3, and the CA-RAM that is enabled for PF, Figure 11, is that the key

part is replaced by the prefix, while the data is replaced by the prefix length (or mask).

In addition, we include one bit for each CA-RAM cell used for the I-Mark field. Another

40

RAM

Hash
functions

h0(.) IP adrs

MP MP MP MP PPB PPB

Matching

Processor

Priority Encoder

Result

͙

͙

One Cell

Prefix P. Len I

h1(.)

ɴ0[] ȕ1[]

Probing Pointers

Probing Pointers

Buffers

Figure 11: The CA-RAM as a packet forwarding engine.

difference is that we dedicate at the end of each row (bucket) extra bits that are used to

store the probing pointers.

During the search process, the probing pointers for each indexed bucket are stored in a

special buffer as shown at the bottom right corner of Figure 11. These buffers are used to

index the RAM part of the CA-RAM during the search and after exhausting the buckets

that are indexed by the hash functions.

The CA-RAM matching processors in this case are actually prefix matching circuits.

Figure 12 shows an example of the prefix matching circuit for the CA-RAM, where we

assume IPv4 IP’s (i.e., 32 bit long).

The main component in the prefix matching circuit is the small RAM-based “prefix mask

table” that is used to store the masks for the IP prefixes. The other alternative to this table

is to directly store the mask alongside the prefix, which leads to almost double the space

required to store any IP lookup table. The prefix mask table consists of 33 entries for IPv4,

where each entry is 32 bits wide for a total size of 132 bytes. For IPv6, the prefix mask

table size is going to be 129 entries, where each entry is 128 bits wide for a total size of 2064

bytes. The remaining architecture is straightforward, where for each incoming IP address;

a mask is applied to this address given the length of the stored IP prefix that we are trying

41

Mask Table

Mask Buffer

IP Address Buffer

From CA-RAM:
Prefix Length

From CA-RAM:
Prefix

From IP Packet
Header: IP Address

Prefix Buffer
Masked Address Buffer

Prefix Buffer

Result

Figure 12: The CA-RAM prefix matching circuit for packet forwarding application.

to match against this IP address. Note that the IP prefix addresses are of different lengths,

because they represent different networks.

Then, the masked IP address is XORed with the stored prefix to see if both matched

or not. If there are multiple matchings on the same row, we use the priority encoder in

Figure 11 to determine which prefix is the LPM. In this case, we assume that the entire

process is pipelined into the following stages:

• Once the packet arrives, the router extracts its destination IP address.

• Next, this IP address is fed to the CA-RAM to calculate the hash index that is used to

access the specific row.

• At the same time, the same IP is fed to each of the matching processors of the CA-RAM.

• Once a row is indexed, it is fetched from the RAM part of the CA-RAM and fed to the

matching processors.

• Each matching processor will access its mask table for the mask that is indexed by the

stored prefix length field.

• In the next step, the MP will AND the incoming IP address with the fetched mask,

creating the masked address.

• The PM then XORs the masked incoming IP address with the stored prefix.

42

• The final step is to see if we have a match or not, which is done by having a NAND gate

to sum all XOR gates output.

• If the result is zero, then we have a match, otherwise, we do not.

In the next section we describe our evaluation methodology for our CA-RAM-based PF

engine. The actual results are depicted in the sections that are after this section.

5.2 EVALUATION METHODOLOGY

In this section, I start by describing the evaluation methodology of my PF solution. The

reason is that we want to show that we are using real-life data and to define the configuration

of our experiments, , as well as to define the metrics that we will use later to describe the

effectiveness of our solution against other solutions.

For evaluation purposes, we used C++ to build our own simulation environment that

allows us to choose and arrange different types of hash functions. The hash functions used

in our experiments are from three different hashing families: bit-selecting, CRC-based, and

H3 [38] hashing families which are simple and easily realized in hardware. For the evaluation,

we collected 15 tables from the Border Gateway Protocol (BGP) Internet core routers of the

routing information service project [41] on January 31, 2009. Table 2 lists the 15 routing

tables, their sizes, and the percentage of prefixes, which we call “Short prefixes,” that are

shorter than 16 bits long. To measure the average search time, we generate uniformly

distributed synthetic traces using the same tables. For a given hardware implementation,

the number of rows, N , and the number of entries per row, L, are fixed. We define a

“configuration” by specifying both N and L.

We generally use two metrics: overflow percentage and the AMAT. The overflow is

defined as the ratio of the prefixes that overflowed to the total number of prefixes of a

routing table. The AMAT (average memory access time) is the average number of memory

lookups to find the longest prefix match (LPM) for all the packets in a given trace.

43

IP Table Size % Short prefixes IP Table % Short prefixes Size

rrc00 292,717 0.78 rrc10 0.82 276,912

rrc01 276,224 0.82 rrc11 0.82 275,903

rrc02 272,743 0.79 rrc12 0.82 277,132

rrc03 283,147 0.80 rrc13 0.81 280,961

rrc04 283,075 0.81 rrc14 0.82 274,824

rrc05 301,383 0.77 rrc15 0.82 275,828

rrc06 277,555 0.81 rrc16 0.81 280,744

rrc07 274,479 0.83 Average 0.81 280,242

Table 2: The statistics of the IP forwarding tables on January 31st 2009.

5.3 THE RESTRICTED HASHING-CHAP-BASED SOLUTION

We discuss our first PF engine design, where we used the restricted hashing (RH) in addition

to our CHAP probing technique to accommodate all the prefixes in a single CA-RAM chip.

Although we later show that RH is in general less effective than the GH hashing scheme, here

we want to demonstrate our content-based probing is very effective in reducing the overflow.

Here we show some of the obtained results 1.

Before we evaluate the CHAP, we shed some light on the restricted hashing. Figure 13

shows a histogram of how many prefixes share the most significant 16 bits for 15 real IP

tables given in Table 2. The number of prefixes that are shorter than 16 is less than 2% of

the lookup table population, and these are ignored in the figure.

1More results can be found in our work [19].

44

0100020003000400050006000700080009000

1 2-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 > 100f(x) = number of P
SC-16 sets of size
'x'

x = size of the PSC-16 set
Figure 13: The histogram of the prefixes sharing the first 16 bits.

To explain the figure, we define PSC-16 (Prefix Set with Common 16 bits) as a set that

contains prefixes from the same IP forwarding table having an identical 16 first bits (sharing

a common 16-bit prefix). The size of a PSC-16 set is the number of prefixes in that set. We

then define f(x) as the number of PSC-16 sets of size x averaged over the 15 tables and plot

f(x) for different ranges of x. For example, the point (1, 8920) in the figure indicates that

there are, on average, 8920 PSC-16 sets of size 1. In other words, there are, on average, 8920

unique prefixes per table. The next point, (2–10, 7000), indicates that there are on average

7000 PSC-16 sets per table, each containing between 2 and 10 prefixes that share the first 16

bits. The last point, (> 100, 247), is an aggregation of the PSC-16 sets that contain more

than 100 prefixes.

The maximum size of a PSC-16 set is 1552 (table rrc04) with an average of 532 over the

15 tables. That is, on average, there may be as many as 532 prefixes per table having an

identical first 16 bits. These prefixes will definitely collide if a single hash function is used.

Using multiple hash functions alleviates this problem.

In Figure 14, we compare CHAP against a simple linear probing (LP) technique.

45

010203040506070
1 2 3 4 5 6 7 8 9 10Overflow %

Number of Probing Steps or Pointers
LP(1,m)CHAP(1,m)

(a) {L=200 , N=1024}

010203040506070
1 2 3 4 5 6 7 8 9 10Overflow %

Number of Probing Steps or Pointers
LP(1,m)CHAP(1,m)

(b) {L=100 , N=2048}

Figure 14: The overflow of CHAP(1, m) vs. linear probing(1, m) for table rrc07.

Figure 14 shows that for the same number of probing steps, overflow in CHAP(1,m) is

less than that in linear probing. In fact, CHAP achieves 72.4% more overflow reduction

than linear probing on average. Next we compare our CHAP(H,H) against RH(2H). We plot

in Figure 15 (a) the overflow and (b) the average memory access time of both schemes for

one configuration C1:{L = 180, N = 2048}. We increased the bucket size by one prefix for

RH(2H) to compensate for the CHAP overhead, as we discussed previously.

As we can see, CHAP(3, 3) is better than RH(6) for all files in terms of both the AMAT

and the overflow. In fact CHAP(3, 3) reduces the overflow by 90% and at the same time

improves the AMAT by 12.2% for this configuration. The details of evaluating CHAP

performance under other configurations can be found in [19, 21].

46

0

2

4

6

8

10

12

rr
c0

0
rr

c0
1

rr
c0

2
rr

c0
3

rr
c0

4
rr

c0
5

rr
c0

6
rr

c0
7

rr
c1

0
rr

c1
1

rr
c1

2
rr

c1
3

rr
c1

4
rr

c1
5

rr
c1

6
A

V
E

.

O
ve

rf
lo

w
 %

Overflow for C1: 180 x 2048

RH(6) CHAP(3,3)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

rr
c0

0
rr

c0
1

rr
c0

2
rr

c0
3

rr
c0

4
rr

c0
5

rr
c0

6
rr

c0
7

rr
c1

0

rr
c1

1
rr

c1
2

rr
c1

3
rr

c1
4

rr
c1

5
rr

c1
6

A
V

E
.

A
M

A
T

AMAT for C1: 180 x 2048

RH(6) CHAP(3,3)

(b)

Figure 15: The (a) Average overflow, and (b) AMAT for CHAP(3,3) vs. RH(6) for fifteen

forwarding tables for C1: {L = 180 , N = 2048}

5.4 THE PROGRESSIVE HASHING-BASED SOLUTION

In this section, we show some results 2 where we used the progressive hashing for the PF

application. In Figure 16(a) we show the overflow percentage for all 15 routing tables for

configuration C1:{L = 180, N = 2048}, for the three schemes: RH, GH and PH. On average,

PH reduces the overflow by 86.5% compared to RH and by 66.9% compared to GH. At the

same time, the AMAT (Figure 16(b)) of PH is improved by 22.0% over RH and 3.4% over

GH. Note that the overflow prefixes are usually added to the overflow buffer that is always

2More results can be fond in our work [20].

47

searched after exhausting all possible buckets in the CA-RAM [20, 21].

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

rr
c0

0

rr
c0

1
rr

c0
2

rr
c0

3
rr

c0
4

rr
c0

5

rr
c0

6
rr

c0
7

rr
c1

0

rr
c1

1
rr

c1
2

rr
c1

3

rr
c1

4
rr

c1
5

rr
c1

6
A

V
E

.

O
ve

rf
lo

w
 %

Overflow for C1: 180 x 2048

RH(5) GH(5) PH(5)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

rr
c0

0
rr

c0
1

rr
c0

2
rr

c0
3

rr
c0

4
rr

c0
5

rr
c0

6
rr

c0
7

rr
c1

0
rr

c1
1

rr
c1

2
rr

c1
3

rr
c1

4
rr

c1
5

rr
c1

6
A

V
E

.

A
M

A
T

AMAT for C1: 180 x 2048

RH(5) GH(5) PH(5)

(b)

Figure 16: The (a) Average overflow, and (b) AMAT of RH(5) vs. GH(5) vs. PH(5) for

fifteen forwarding tables for C1: {180× 2048}.

5.5 ADDING CHAP TO PROGRESSIVE HASHING

In this section, we combine both PH and CHAP schemes into a third hybrid scheme that

we call PH CHAP(H,H) 3. In essence, after applying PH to the prefixes, we add probing

pointers to radically reduce the overflow. As described before, CHAP uses restricted hashing

where the hash functions use only the most significant 16 bits of all the prefixes. However,

we use PH instead of RH to get better performance than either scheme.

3For more about this please refer to our work in [20, 21].

48

0

1

2

3

4

5

6

C1: 180 x 2048C2: 90 x 4096 C3: 45 x 8192
O

ve
rf

lo
w

 %

CHAP(5,5)

PH(5)

PH_
CHAP(5,5)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C1: 180 x 2048C2: 90 x 4096 C3: 45 x 8192

A
M

A
T

CHAP(5,5)

PH(5)

PH_
CHAP(5,5)

(b)

Figure 17: The (a) Average overflow, and (b) Average AMAT of CHAP(5,5) vs. PH(5) vs.

PH CHAP(5,5) for three configurations.

In Figure 17(a) we show the average overflow of CHAP(5,5), PH(5) and PH CHAP(5,5)

for the same three configurations C1 : {L = 180, N = 2048}, C2 : {L = 90, N = 4096} and

C3 : {L = 45, N = 8192}. The largest average overflow belongs to PH(5) with 3.38% and

the lowest average overflow is 0.3% for PH CHAP(5,5) over the 3 configurations. The first

two configurations, C1 and C2, have zero overflow for PH CHAP(5,5) with a reduction of

100%. For the third configuration, C3, PH CHAP(5,5) reduced the overflow by 86.9% over

PH(5) and by 23.6% over CHAP(5,5). At the same time, we note that PH CHAP(5,5) has

a lower AMAT (Figure 17(b)) than CHAP(5,5) and PH(5) with average of 19.7% and 2.3%

improvements.

49

5.6 ADDING THE I-MARK SCHEME TO THE PROGRESSIVE HASHING

Now, we apply the I-mark scheme in addition to PH on the stored prefixes. This enables us

to insert some of those prefixes (the I-marked ones) in any order, which will also reduce the

overflow. In addition, it also reduces the AMAT during the search; if we find any of those

prefixes that are I-marked, we terminate the search, as we will not find any longer prefix

that matches the same IP address. In Figure 18(a) we show the overflow of the 15 routing

tables for the same configuration, C1 : {L = 180, N = 2048} and for three schemes: GH,

PH and PH + I-Mark.

On average, the PH reduces the overflow by 66.7% compared to the GH scheme. At the

same time, the AMAT (Figure 18(b)) of the modified PH is decreased by 62.6% over the

GH scheme, which has a constant AMAT of 5. The PH + I-Mark reduces the overflow by

72.8%, and decreases the AMAT by 62.4% over the GH scheme.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

rr
c0
0

rr
c0
1

rr
c0
2

rr
c0
3

rr
c0
4

rr
c0
5

rr
c0
6

rr
c0
7

rr
c1
0

rr
c1
1

rr
c1
2

rr
c1
3

rr
c1
4

rr
c1
5

rr
c1
6

AV
E.

O
ve
rf
lo
w
 %

Overflow for C1: 180 x 2048

GH

PH

PH + I-
Mark

(a)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

rrc00 rrc01 rrc02 rrc03 rrc04 rrc05 rrc06 rrc07 rrc10 rrc11 rrc12 rrc13 rrc14 rrc15 rrc16 AVE.

AM
AT

AMAT for C1: 180 x 2048

PH

PH + I-
Mark

(b)

Figure 18: The (a) Average overflow, and (b) AMAT of GH vs. PH vs. PH+I-Mark for

fifteen forwarding tables for C1: {180× 2048}.
50

5.7 PERFORMANCE ESTIMATION OF CHAP AND PH

We estimate both the average and the minimum throughput of our hybrid “PH CHAP(H,H)”

scheme using two different SRAM memory architectures. The first memory architecture

that we use is the 500MHz QDR III SRAM [37]. This is the latest architecture among the

famous Quad Data Rate (QDR) SRAM family, soon to be commercially available soon. The

QDR is an SRAM architecture that can transfer up to four words of data in each clock

cycle [37]. The other memory architecture is a state-of-the-art CMOS technology SRAM

memory design [55], which reports an experimental single chip of 36.375 MB that runs at

4.0GHz. Since our scheme depends on a set-associative RAM, we conservatively assume that

the original RAM clock rate is halved. This will take care of the delay for the hash functions

computation and the matching logic.

Assuming an AMAT of ∼2.0, if the clock rates are 250 MHz and 2.0GHz for the afore-

mentioned architectures, then we have a forwarding throughput of 125 mega packets per

second and 1.0 giga packets per second. In other words, 40 Gbps and 320 Gbps for the

minimum packet size of 40 bytes.

In addition to the AMAT, we use another throughput metric, which is the worst-case

memory access time (WMAT). The WMAT of the hybrid PH CHAP(5,5) scheme is 10+1 =

11 (2×H + searching the overflow buffer). Thus, the worst-case throughput is slightly less

than 20% of the AMAT throughput. Note that all these estimated rates are for a single

CA-RAM chip.

To increase both throughputs (AMAT-based and WMAT-based), we can use multiple

CA-RAM chips per line card as described in [25, 24]. In addition, a typical router has

multiple line cards [11]. The aggregate throughput of a router is calculated as the sum of

throughputs of the line cards.

51

5.8 PERFORMANCE ESTIMATION USING CACTI

In addition to the above estimations, we use “CACTI” (version 5.3) the cache simulator [52]

to estimate the throughput in addition to the area and the power requirements of our PH-

CHAP(5,5) scheme. CACTI is a standard cache simulator that takes in the following input

parameters: cache (memory) capacity, cache block size (also known as cache line size), cache

associativity, technology generation, number of ports, and number of independent banks (not

sharing address and data lines). CACTI produces the cache (memory) configuration that

minimizes delay, along with its power and area characteristics. In addition to cache, CACTI

also simulates different SRAM and DRAM memories [52].

We estimate a total memory of 2.25MB (actually CACTI takes only the total amount

of memory as a power of 2) and that the row width is 512 bytes. Note that this memory is

enough to store the largest IP table (rrc05), which has over 301K IPv4 prefixes. Since we

propose to build our schemes as high-performance hardware ASIC chip; we use the High Per-

formance International Technology Roadmap for Semiconductors SRAM 45nm technology

model (ITRS-HP).

There is a special version of CACTI that is modified to simulate TCAMs [1], which we

call TCAM-CACTI. We assume that the TCAM chip should be able to store the maximum

IP table from Table 2, and that each IPv4 prefix needs 4 bytes plus 4 bytes for the next hop

address. Thus the total TCAM capacity is 301, 383× 8 = 2.29MB.

 Total Power (nJ) Total Delay (nS) Max Freq. (MHz) Total Area (mm^2)

CARAM 2252.30 86.34 423.98 17.86

TCAM 9948.01 382.86 24.90 58.85

Figure 19: The CACTI results of CA-RAM vs. TCAM, where both has sizes of 2.5MB.

In Figure 19, we show the CACTI results for both the TCAM and CA-RAM. Note that

we simulated 2.5MB as both CACTI simulators use power-of-two numbers for the rows and

their widths. In terms of total dynamic power, the CA-RAM consumes about 22.6% of

the TCAM. The total delay (access time) represents the amount of time in which a packet

traverses a chip from end to end. Our CA-RAM has a lower access time than the equivalent

TCAM configurations by 77.4%. The maximum frequency is the frequency of the smallest

52

pipelining stage, where CA-RAM has a maximum frequency 94% greater than the TCAM.

Finally, the CA-RAM has an area of 30.3% that of the TCAM.

5.9 CONCLUSION

In this chapter, I introduced multiple architectures for a CA-RAM-based packet forwarding

engine. These architectures are based on the three schemes that I introduced earlier in

Chapter 4, namely the CHAP, the progressive hashing and the I-Mark scheme.

We showed that by the addition of CHAP to restricted hashing, though restricted hashing

is less effective than progressive hashing in reducing hash collisions, we achieve considerable

overflow reduction. The CHAP achieves more than 72% overflow reduction over the equiva-

lent linear probing, where both schemes have exactly the same WMAT. Also, CHAP reduces

the overflow by 90% over the RH, while CHAP achieves more than 12% reduction in the

AMAT over the PH.

The overall results of PH against both the equivalent GH and RH CA-RAMs are as fol-

lows: PH reduces the overflow by more than 85% and 66% over RH and GH respectively. At

the same time, PH has improved the AMAT by 22% and 3.4% over RH and GH respectively.

I also added these schemes in conjunction with each other (e.g., CHAP with PH, PH

with I-Mark) to improve the overall performance of our CA-RAM PF engine. For example,

the CHAP plus PH hybrid scheme (PH CHAP) improved the overflow reduction by 100%

over both individual PH and CHAP schemes (for two out of three configurations). At the

same time, PH CHAP reduces the AMAT by more than 19% and 2% over CHAP and PH

schemes respectively.

I used the I-Mark with the PH, which reduced the overflow by 95% and 66% over both

RH and GH schemes, while reducing the AMAT. Finally, I showed that my schemes can have

an average forwarding speed of 320 Gbps if using future SRAM technology and 40 Gbps with

the standard QDR III SRAM, where we used less than 2.5MB of RAM to store, 301K IPv4

prefixes. The CACTI simulator shows that CA-RAM can run on a frequency of 423MHz

while maintaining a moderate area and power versus the TCAM.

53

6.0 THE PACKET CLASSIFICATION APPLICATION

In this chapter, we discuss how to use our hash-based algorithmic tools with the CA-RAM

memory architecture to solve the packet classification problem. Because of the fact that

some packet classification rules have all wildcard bits in one or two of the source or the

destination prefixes fields, we will not be able to apply the restricted hashing scheme to

the PC application. Instead, we consider both the grouped hashing and its extension the

progressive hashing scheme. As we mentioned in Section 1, for the PC application, we use a

special type of hashing that is called Tuple Space Search (TSS).

The original TSS is a 2D space where one dimension represents the source prefix length

and the second dimension is the destination prefix length as shown in Figure 2-b. Each

dimension starts from 0 and runs till 32, which is the maximum length of the IPv4 address.

Thus, the TSS has 33 × 33 = 1089 cells, where each cell originally is an independent hash

table that is augmented with special data structures that are called “markers and precom-

putations” [47]. Note that our TSS is different from the original TSS in that we store all the

rules inside one big hash table, CA-RAM, but we use the same notion of splitting rules into

a 2D space, then use hashing.

The markers and precomputations of the original TSS scheme are tools to find the best

matching rule out of multiple rules. Each cell has a “marker” that points to the next cell

where the best matching rule may exist in case no match is found at the present cell. In

addition, a cell has a “pre-computed” cell address marking the next best cell to search for

a match, in case a match is found at the current cell. The main problem with the original

TSS scheme is that many of the hash tables are empty [54, 45]. In addition, finding the

optimal (best or most cost efficient) matching rule presents a problem, since we may have to

search the entire TSS to find it. In other words, the original TSS has a high average memory

54

access time that is not practical (i.e., searching 1089 hash tables). This problem has been

tackled by the introduction of markers and precomputations [32], which represent extra-high

preprocessing overhead [45].

One solution to the original TSS is to group multiple cells into a single cell, or in other

words, to merge multiple hash tables into one hash table, called “coarse-grained TSS” [45].

This solution eliminates the TSS problem by augmenting the 2D TSS into multiple seg-

ments and merging all the hash tables in each segment (partition) into a single hash table.

However, coarse-grained TSS still suffers from the overhead of computing the markers and

precomputations, in addition to space fragmentation due to the use of multiple hash tables.

We introduce three different hash-based TSS solutions in this chapter. The three solu-

tions are based on our version of the coarse-grained TSS optimization and the progressive

hashing. We either use a single CA-RAM (hash table) or two CA-RAMs to store our ver-

sion of the TSS. Moreover, we avoid using markers and precomputations via applying our

I-Mark scheme [20, 21]. We note that the I-mark overhead computation algorithm is O(N2),

where N is the number of filters, while each of the markers and the precomputations require

O(W d), where W is the number of bits in one dimension of the TSS and d is the number of

dimensions where 2 ≤ d ≤ 5.

We start in Section 6.1, where we discuss in general the special hardware requirements

for utilizing our CA-RAM as a packet classification engine. In Section 6.2, we show our

first scheme, which uses the progressive hashing in addition to the I-Mark. It also serves

as a baseline for our subsequent schemes as it simply adds all the PC rules into a single

hash table (CA-RAM). Section 6.3 is our second PC solution, where instead of using the

same coarse-grained 2D TSS we use a dynamic partitioning scheme to split the TSS. Our

main goals in this solution are to: enhance the space utilization, reduce the average memory

lookup time, and hence, reduce use of power. Then, in Section 6.4, we show our two CA-

RAMs PC solution, where we use the fact that some PC databases have non-unique pairs

of source and destination prefixes of their rules. We use one CA-RAM to store the source

and destination prefixes of the PC rules; while the second CA-RAM is used to store the rest

of the rules. Finally, in Section 6.5, we discuss the simulation results and the performance

estimation of our three PC CA-RAM-based solutions.

55

RAMRAM

Hash Hash
FunctionFunction

h(.)h(.)IP Packet HeaderIP Packet Header

……

One FilterOne Filter

SP/SP/lenlen SPortSPort Row BufferDPortDPort ProtProtDP/DP/lenlen RIDRID PriPri AFAF
MPMP MPMP MPMP MPMP MPMP

Priority EncoderPriority Encoder
……

SP/SP/lenlen SPortSPort Row BufferDPortDPort ProtProtDP/DP/lenlen RIDRID PriPri

Prefix
Match
Prefix
Match

Range
Match
Range
Match

Exact
Match
Exact

Match

RIDRID

Final ResultFinal Result
PriPri

AFAF

To NPTo NP

Figure 20: The CA-RAM detailed architecture for the packet classification application.

6.1 THE CA-RAM ARCHITECTURE FOR PACKET CLASSIFICATION

USING PROGRESSIVE HASHING

In addition to the algorithmic part of our solutions, there is an important architectural part

that has to be added to the original CA-RAM architecture in order for it to be capable of

handling the packet classification process. In addition to the prefix matching function, the

matching processors (at the bottom of Figure 3) also have to support exact matching for the

protocol field and range matching for the source and destination ports. Figure 20 shows the

details of the CA-RAM architecture that has been enabled (modified) for PC application.

Each cell in the RAM part of the CA-RAM in Figure 20 consists of the following fields:

• Source Prefix (SP)

• Destination Prefix (DP)

• Source Port Range (SPort)

• Destination Port Range (DPort)

56

Subtractor

From CA-RAM:
Lower Port Range

From IP Packet
Header: Port Number

Subtractor

From CA-RAM:
Higher Port Range

Result

Figure 21: The range matching circuit for the CA-RAM PC application.

• Rule ID (RID)

• Priority (Pri)

• Auxiliary Field (AF)

Thus each cell represents one PC filter (or rule). The rule ID, RID, is a unique 16-bit

number to distinguish between different rules, while the priority filed, Pri, is to determine

the best matching rule in case of multiple matches and it ranges from 4 to 16 bits long.

The auxiliary field, AF , consists of 4-bit hash function index (we talk about this field in

Section 6.2) and a 1-bit I-Mark. The matching logic is shown in the bottom of Figure 20,

where there are three types of matching circuits plus the priority encoder to find the best

matching rule in a certain row.

The hardware implementation of the prefix matching circuit is covered in detail in Sec-

tion 5.1. In Figure 21, we show an example of the range matching circuit for the CA-RAM

matching processors. The main component is what in Figure 21 we call “Range Compara-

tor”, which is basically a subtractor. The range compactor idea is simple: to store the port

range in the CA-RAM, high range and low range, and subtracts the input port from both

the high range and the low range. If the port lies in the stored range, both subtractors will

have a zero carry (borrow) and hence the NAND gate will generate ‘1’ indicating a match,

and 0 otherwise.

57

The exact matching circuit is made out of comparators which are implemented using

“XOR” gates plus “NAND” gates, as shown in Figure 22. We use the exact matching circuit

for both the port matching and the hash function ID matching. The XOR gates will make

sure that the stored protocol and the input protocol in this example are identical. Finally,

the NAND gate will generate ‘1’ if we have a match and ‘0’ otherwise. This same circuit can

be used to check the hash function ID and the I-Mark bit to stop the search, as we describe

in the next section, Section refsec:PC:phimark.

Input Protocol Buffer

From CA-RAM:
Protocol

From IP Packet
Header: Protocol

Stored Protocol Buffer

Result

Figure 22: The exact matching circuit for the CA-RAM PC application.

6.2 THE PH AND THE I-MARK HYBRID SOLUTIONS

We start by showing Figure 23, which is the progressive hashing equivalent of the grouped

hashing for TSS shown in Figure 2-(b). We call Figure 23 a “partitions plan” or simply a

partition. By a “partition” we mean the actual groups we make out of the tuple space, which

includes both their numbers (number of groups) and their associated physical boundaries

(which bits are used from the source and destination addresses to define the group). In the

next section, Section 6.3, we are going to add one more metric to the partitions and that is

the number of hash functions that are associated with each partition (group). However in

this section we use one-to-one mapping between groups and hash functions as we did with

58

(S16,S16)(S16,S16)hh00(), h(), h11(), h(), h22(),(),hh33(), h(), h44(), h(), h55()()(NS, S16)(NS, S16)hh22(), h(), h55()()
(S16, NS)(S16, NS)hh11(), h(), h44()()(S0,S8)(S0,S8)hh55()()(S0,S0)(S0,S0)00 323200

3232

Source Source Prefix Prefix LengthLength

Destinatio
n
Destinatio
n Prefix Prefix Le
ngthLength (S8,S0)(S8,S0)hh44()()(S8,S8)(S8,S8)hh33(), (), hh44(), (), hh55()()

Figure 23: Applying PH on packet classification application.

the packet forwarding application.

Since we want to reduce the average memory-access time (AMAT) we would like to find

the best matching filter first. However, this is not possible, because there is no strict order

priority among the filters. Unlike the PF application, where the longer the prefix, the higher

its priority, there are cases in the PC application where this is not applicable due to the

nature of the PC filters. For example, consider a packet that matches two different filters:

f1 from group (S16, NS) and f2 from group (NS, S16) of Table 3. Which filter is the best

match is actually up to the explicit priority tag field of the filters.

To tackle this problem, we use the I-Mark scheme. The idea is simple; we mark those

filters that are independent of other filters, hence called independent filters, by setting their

I-Mark bit to 1. The definition of independent filters follows the same concept that is

introduced in Definition 2 in Section 4.3. We insert the independent filters first in the hash

table, followed by the dependent filters. Thus, we are guaranteed to find the independent

filters first.

However, and due to the nature of the progressive hashing where some keys are using

59

some hash functions and not all the hash functions, we need an extra caution before we

decide to stop at the first independent matching filter. Here is an example: assume there is

a packet PX that matches filter KX ∈ (NS, S16) and filter KY ∈ (S16, NS) from Figure 23,

and that KX has a higher priority than KY . Assume that during the filter mapping, the two

filters are stored in two different rows as follows: h2(KX) = X and h4(KY) = Y . During the

search for PX we try all the six hash functions h0() to h5(). Assume that one of the hash

functions was not used to store either KX or KY generates the row Y when it is applied to

PX , i.e., h0(PX) = Y or h1(PX) = Y . This means that we will search row Y before row X;

thus, we incorrectly report KY as the best match filter instead of KX .

To solve the above problem, the hash function that was used to insert KY has to be

checked. In this case it turns out that KY was stored using h4() and not h0() or h1(), hence

KY has to be skipped as a match as there might be a better match, KX in this case. In

Section 6.5.1 we compare between grouped hashing scheme and progressive hashing with the

I-Mark scheme.

6.3 THE DYNAMIC TSS PH SOLUTION

In the last section, Section 6.2, we used only a single grouping strategy to split all the

databases according to the partition plan shown in Figure 23. As we are going to learn

from the experiment section, Section 6.5.1, our first solution, will not work efficiently for

large data sets, or in other words, is not scalable. Hence, instead of using exactly the same

partitions for all the files, we use different partitions for different files. In other words, we

vary the number of groups per partition along with the physical boundaries that we use for

each PC database. Moreover, we assign multiple hash functions for each group and use the

probing pointers to eventually eliminate the overflow. For example, if one of the database

groups (NS, S16) has more rules than other groups, we will assign two or more hash functions

to this group.

Table 3 lists the 11 PC databases (each is 30K+ rules) that we generate using the

ClassBench [50] tool. In this table, we show the detailed stats of the near-optimal partitions

60

plan for each of the 11 files. In the next subsection, we talk about how we generated such

partitions.

The idea stemmed from the observation that not all PC databases that we experiment

with responded well, in terms of overflow, using the initial partitions shown in Figure 23.

Figure 24 shows this observation, where the X-axis represents the destination prefix length

and the Y-axis is the source prefix length. This figure represents the average number of PC

rules that belong to each tuple based on the PC databases shown in Table 3. In this figure,

each cell, ci,j, represents the average number of rules that have at least i bits source prefix

and j bits destination prefix. For example, c16,16 has 34 rules and c0,32 has 2032 rules on

average. We use light gray shades for the boundary cells in Figure 24 to show our original

partitions shown in Figure 23.

We notice that more than 75% of the tuples are empty (exactly 819 out of 1089 tuples).

Also that most of the rules are concentrated in the lower right-hand side and that, in general,

the rules are not evenly distributed among any group of the groups marked in gray. The

main observation is that groups (S8, S8), (NS, S8) and (S8, NS) are almost empty, hence

there is no need to assign those cells distinct groups.

Table
Size G0 % G1 % G2 % G3 %

Non-unique
Name S8&D∗ Pairs %

ACL130K 30,072 S8,NS 99 NS,S8 93 S30,S22 74 S23,S24 72 0.34
ACL230K 30,609 NS,S8 89 NS,S12 86 S12,NS 78 S8,NS 69 0.58
ACL330K 30,990 S8,NS 83 NS,S20 80 S21,NS 67 S12,S24 63 20.67
ACL430K 30,533 S8,NS 85 NS,S8 83 NS, S20 79 S12,S8 68 26.01
ACL530K 30,482 S8,S27 100 S16,S27 92 S24,S27 68 S8,S32 62 48.58
FW130K 30,021 NS,S27 64 NS,S32 60 S8,NS 46 S16,NS 44 0.76
FW230K 30,174 S16,NS 88 S24,Ns 65 NS,S24 26 S16,S24 14 0.00
FW330K 30,513 NS,S32 65 S8,NS 35 S16,NS 33 S21,NS 31 1.10
FW430K 30,251 NS,S8 67 NS,S23 66 NS,S24 57 S8,Ns 49 2.81
IPC130K 30,211 NS,S16 87 S16,NS 83 NS,S24 73 S16,S16 71 4.97
IPC230K 30,000 NS,S32 89 S22,S32 47 S32,NS 36 S32,S32 25 0.00

Ave all30K 30,351 NS,S8 78 NS,S16 76 S8,NS 72 NS,S24 70 9.62

Table 3: The statistics of the ClassBench’s 30K PC databases, where G0 · · ·G3 represent

the top four groups containing the most rules of each database.

61

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0 164 0 0 0 0 0 0 0 26 0 0 0 41 1 0 0 113 0 0 0 5 15 13 259 1558 95 34 72 8 3 3 18 5850
1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 117 0 0 0 0 0 0 0 7 13 0 66 55 0 0 0 92

9 0

10 0

11 4 0 6 2 0 0 0 25

12 101 0 0 0 0 0 0 0 35 0 0 0 11 0 0 0 0 0 0 0 7 0 7 75 5 0 13 1 0 2 0 266

13 23 0 28 11 0 0 0 94

14 4 0 4 1 0 0 0 15

15 8 0 10 4 6 0 0 35

Destination Prefixes Lengths

S
o

u
rc

e
 P

re
fi

x
e

s
 L

e
n

g
th

s

(NS,NS) (S8,NS)

(NS,S8) (S8,S8)

(S16,NS)

15 8 0 10 4 6 0 0 35

16 794 29 27 34 7 3 6 168 13 10 133 126 1 2 836
17 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 3 2 25 2 4 8 10 0 0 0 30

18 0 7 7 0 0 0 23

19 6 0 17 16 0 0 0 119

20 12 8 0 0 0 62

21 471 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 6 0 0 0 0 0 0 0 0 0 0 6 5 0 0 0 81

22 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 3 30 4 6 8 11 0 0 0 55

23 506 23 18 19 18 18 17 16 17 0 0 0 8 0 0 15 177 0 0 0 0 0 8 5 111 15 23 24 81 0 1 23 674
24 1999 0 0 0 0 0 0 0 8 0 0 46 123 0 0 0 260 4 0 0 0 0 4 16 370 13 39 67 65 0 1 6 1135
25 3 0 0 0 0 0 0 0 15 0 0 0 6 0 0 0 18 0 0 0 0 0 2 1 14 0 1 0 6 0 0 13 80

26 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 5 5 4 41 1 7 8 14 0 0 32 178

27 151 0 9 0 23 0 37 144 0 0 1 63 297

28 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 9 3 11 0 7 0 0 3 105

29 36 0 4 2 11 40

30 79 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 104 0 0 0 0 0 0 0 0 3 115

31 2 0 42 0 5 0 0 0 0 2 4 11 161

32 2032 0 0 0 0 0 0 0 0 0 0 11 68 1 0 0 173 0 0 0 4 221 251 6 358 10 23 235 397 1 68 61 5659

S
o

u
rc

e
 P

re
fi

x
e

s
 L

e
n

g
th

s

(NS,S16)

(S16,S16)

Figure 24: The average tuple space representation of the 11 PC databases given in Table 3.

62

6.3.1 The Setup Algorithm for Dynamic TSS Solution

In this section, we describe how to process the rules in a PC database for our dynamic TSS

solution. The main idea is to show how to select the best TSS partitions for each file we

have. By TSS partitions we mean the following variables: C = number of groups, H =

total number of hash functions. Our classical progressive hashing has both of these variables

constant at 6, where each group has only one hash function. In general, 1 ≤ C ≤ 1089,

where 1089 = 33× 33 and 33 represents the length of the IPv4 prefixes from 0 up to 32.

Our algorithm is a heuristic to find the partitions that lead to the minimal overflow for a

given PC database. We start our algorithm by assuming a constant number of groups, and

for each group we assign initially one hash function. Note that if we increase the number of

groups and the number of hash functions per group, the worst-case memory access time will

also be increased. Usually, we use the classical progressive hashing partitions as initialization

for each database.

Next, we calculate the overflow by running multiple iterations of the progressive hashing

setup algorithm, Algorithm 4. After each iteration, we store the overflow in a variable, OFi,

where the subscript i represents the iteration number. We try to adjust (fine tune) the

partition for each iteration so that the overflow is reduced by doing the following steps:

• We first adjust the partitions boundaries according to the TSS representation of the

current PC database. For example, if the first group was S22, S16 for a ceratin PC

database, we can make it S24, S16 if the overflow will be lower in this case.

• Second, if needed, we may merge two or more groups into one group or split a large

group with two or more smaller groups. For example, group S8, S8 has more than 90%

of the rules; we may consider replacing it by S8, NS and NS, S8.

• Finally, if needed, we add more hash functions to any of the groups that have more rules

than can be handled by a single hash function.

Not all the files have to go through the last two steps; i.e., some files do not have to

have more hash functions per group or more groups, but all files have to go through at least

one boundary reform. For example, file ACL530K has 6 groups: (S32, S32), (S32, S27),

(S24, S27), (S16, S27), (S8, 32) and (S8, S27) as shown in Figure 25. We notice that the

63

rules are again concentrated at the bottom-left corner and that most of the groups we choose

in Figure 23.

So, instead of using the old groups, we ended up the six new groups we mentioned earlier.

In this example, group (S32, S32) has two hash functions while the other groups have only

one hash function. This is because this group has 43% of the entire database, which means

that it needs more hash functions than other groups that have fewer rules.

6.3.2 Incremental Updates For The Dynamic TSS Solution

Since the only significant difference between this scheme and our progressive scheme is that

the partitions and number of hashing functions are chosen differently for each file, then the

basic incremental updates scheme for progressive hashing will work for dynamic TSS. This

is true for the basic dynamic TSS solution.

64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

1

2

3

4

5

6

7

8 725 600 1014

9

10

11

12

13

14

15

Destination Lengths

S
o

u
rc

e
 L

e
n

g
th

s

15

16 1144 1346 2417

17 93 92 216

18 82 80 215

19 135 173 367

20 66 65 189

21 65 56 181

22 37 52 187

23

24 235 353 806

25

26

27 463

28

29

30

31

32 2351 3696 12981

S
o

u
rc

e
 L

e
n

g
th

s

Figure 25: An example of the TSS representation of ACL530K db of Table 3.

65

6.4 THE TWO CA-RAM ARCHITECTURE FOR DYNAMIC TSS

SOLUTION

In this section, we describe an alternative CA-RAM architecture in case we want to take

advantage of the fact that some PC databases have non-unique pairs of source and destination

prefixes. Also, we want to make sure that the width of our CA-RAM hash table is physically

feasible, which is very important as the PC filters are very wide (roughly 160 bits per filter).

Figure 26 shows the overview of this architecture.

Throughout this thesis, we call the first CA-RAM the “main” CA-RAM and the second

CA-RAM the “auxiliary” CA-RAM. The main idea is to split the PC rule storage between

two CA-RAMs, where for a certain PC rule we store the IP prefix pair in the main CA-RAM

and the remaining of the tuples (e.g., source and destination ports, protocol, flags, etc) are

stored in the auxiliary CA-RAM. After finding the right pair of prefixes in the first CA-RAM,

we use pipelining to search the second CA-RAM for the rest of the rule. This split allows us

to store the unique prefix pair only once to save space and to reduce the collisions. In this

solutions, we use dynamic TSS with progressive hashing and I-Mark as we did in the last

PC solution, Section 6.3, to store the PC rules. Thus, this solution does not need special

algorithms adjustment as it uses the same algorithms as the previous one-CA-RAM solution.

In the next section, Section 6.4.1, we show the architectural details of this solution.

6.4.1 The Architectural Aspects of The Two CA-RAMs PC Solution

Figure 27 shows more details of the two CA-RAMs PC solution architecture. We start by

describing the main CA-RAM architecture, which is similar to the PC CA-RAM shown in

Figure 20 that is used for the PH+I-Mark and dynamic TSS PC solutions. The left part

of Figure 27 shows a sample element from the main CA-RAM row, which consists of the

following fields:

• Unique source and destination prefix (SP and DP) pair.

• Rule ID (RID), which is used to uniquely identify each PC rule.

• Rule priority (Pri) which is used in case we want to report the best matching rule.

66

CA-RAM
1

CA-RAM
2

store source & store source &

destination

prefixes

(use PH + Dyn
TSS)

store source &

destination port

ranges &

protocol (direct
lookup)

throughput

use

pipelining to

boost

throughput

Figure 26: The two CA-RAM architecture: an overview.

• Multiple bit (m), to indicate if the source and destination pair is unique or not.

The differences between the main CA-RAM of Figure 27 and that of Figure 20 are that

the matching processors of the main CA-RAM contain only prefix matching, while the CA-

RAM of Figure 20 has three types of matching circuits. In addition, the main CA-RAM

stores source and destination prefix pair, not the entire PC rule. In order to identify if a

prefix pair is unique or not, we use a single bit, m, to indicate this fact. This bit is set to 1

if this pair of prefixes is shared among more than one rule and is reset to 0 otherwise.

During the setup phase, when we try to insert a new rule to a specific row, r, we first

check to see if this rule’s source and destination prefix pair are already stored at r or not. If

the pair is already stored, we set its m bit to one, and store the remainder of the rule at the

associated row in the auxiliary CA-RAM. Note that we associate one row of the auxiliary

CA-RAM to each row of the main CA-RAM (i.e., one-to-one mapping). If the prefix pair

is new, we store it at r if it has space, while initializing its m bit to 0, and then store the

remainder of its rule in the auxiliary CA-RAM. Each unique pair of prefixes is stored with

a single rule ID. This rule ID is the first rule that has that prefix pair and we use it as a

unique identifier to all the rules that share this pair. This identifier is also used to generate

an index to the auxiliary CA-RAM row that contains a list of all the rules that share this

67

Main
CA-RAM

Auxiliary
CA-RAM

h(.)

IP Packet Header Packet Payload
SA DA S&D Ports Pro & Flags

N, RID1, RID2, …, RIDN Results Vector

{RID1, SPort1, DPort1, Prot1, Flg1, Pri1, Prot1}, …, {RIDR, SPortR, DPortR, ProtR, FlgR, PriR, ProtR}

SP, DP, RID, Pri, m

Next

Figure 27: The two CA-RAM architecture: the main CA-RAM row element format, the

results vector format and the auxiliary CA-RAM row format.

prefix pair, as shown in Figure 28.

Once we receive an IP packet header, we use the source and destination addresses to

generate the main CA-RAM row(s) index/indices. In this phase, we match only the source

and destination addresses to the source and destination prefixes stored at each row. If we

find a match, or multiple matches, we record each rule ID that has been matched in a data

structure that we call the “results vector.” For each main CA-RAM row that is matched,

we generate a single results vector.

In the next phase, we use pipelining to submit the current results vector to the auxiliary

CA-RAM to finalize the match. Note that the main CA-RAM matching is a partial matching,

as we match only the source and destination prefixes, while the final “full” matching happens

only at the auxiliary CA-RAM. At the same time, we continue searching the main CA-RAM

using the progressive hashing search algorithm, Algorithm 5.

Figure 28 shows the details of the auxiliary CA-RAM, which is a bit more complicated

than the main CA-RAM. In addition, the bottom part of Figure 28 shows the details of each

row of the auxiliary CA-RAM. Each row consists of multiple elements, where each element

contains the following fields:

68

{RID1, SPort1, DPort1, Prot1, Pri1}, … , {RIDR, SPortR, DPortR, ProtR, PriR}RIDa Next

{RID1, SPort1, DPort1, Prot1, Pri1}, … , {RIDR, SPortR, DPortR, ProtR, PriR}-- Next

1
2

N
{N

, R
ID

1, R
ID

2, …
, R

ID
N
} .

.

.
{RID1, SPort1, DPort1, Prot1, Pri1}, … , {RIDR, SPortR, DPortR, ProtR, PriR}RIDxx Next

RAM

IP Packet Header
SA DA S&D Ports Pro & Flags

Packet Payload

h(.)

{RID1, SPort1, DPort1, Prot1, Pri1}, … , {RIDR, SPortR, DPortR, ProtR, PriR}-- Next{N
, R

ID
{RID1, SPort1, DPort1, Prot1, Pri1}, … , {RIDR, SPortR, DPortR, ProtR, PriR}RIDxx Next

MPMP MP

Row BufferResults
Vector

Priority Encoder
Partial Matching Rules ID Vector

Final RID(s)

Figure 28: The auxiliary CA-RAM detailed architecture and its row format.

• Rule ID (RID), used to uniquely identify each PC rule.

• Source and Destination Ports (SPort & DPort).

• Protocol (Prot) field.

• Flags (Flg) field.

• Rule priority (Pri), used when we want to report the best matching rule.

Each row of the auxiliary CA-RAM is indexed by a unique rule ID and at the end of each

row there is a pointer to the next row. The idea is to store only the ports protocol and flags

of all the rules that share the same prefix pair but differ in the rest of the fields in a single

row. In case a single row does not fit all these rules, we use its “NEXT” pointer which

points to another row that contains the remainder of the rules. These NEXT pointer values

are set almost exactly the same way we set the probing pointers for our CHAP algorithm

(Algorithm 1 in Section 4.1), where we use the best fit algorithm to find a row that can hold

the excess (overflow) for each overflowing row. Thus, these pointers depend on the content

of each PC database that is being stored in the CA-RAM.

69

For each matching vector received, the auxiliary CA-RAM calculates a series of row

indices from the RIDs of the matching vector. Since each rule ID is 16 bits, we use a simple

hash index generator to extract the required row index. The auxiliary CA-RAM starts

processing each row trying to find a match.

The full PC matching is done once we match the rest of the tuples of a certain rule

that has an I-Mark flag equal to 1. The matching is also terminated if we search all the

possible rows and find multiple rules that match the current IP packet header, but with no

I-Mark flag set. In this case we choose the rule with the highest priority through the priority

encoder shown in the bottom of Figure 28. Next, we discuss the incremental updates of this

PC solution.

6.4.2 Incremental Updates For The Two CA-RAM Solution

In this section, we discuss the incremental updates for our third PC solution, the two CA-

RAM architecture. In the case of using a two CA-RAM architecture, as in Figure 26, the

basic progressive hashing incremental updates scheme does not work directly. First, we have

to find where the updated rule is stored, in the main and auxiliary CA-RAMs, or only in

the auxiliary CA-RAM. The rule might be stored only in the auxiliary CA-RAM as it might

share the same source and destination prefix pair with another rule. In any case, the control

plane software should have a full data structure keeping track of where each rule is stored.

In the case where the rule is stored in the auxiliary CA-RAM only, the incremental

update will be straightforward: delete the rule or update its priority or action. The other

case is when the updated rule is stored in both CA-RAMs. If the update operation is to

delete or modify this rule, then we have to make sure that such a rule does not share its

prefixes with other rules. If this is the case, we go ahead and remove or modify the rule from

both CA-RAMs while updating the counters of each CA-RAM. In the other case, we keep

this rule content in the main CA-RAM, but delete or modify the appropriate part of this

rule in the auxiliary CA-RAM.

There is one final case that should be considered when the rule does not already exist;

i.e., a new rule is inserted. In this case, we check to see if this new rule shares its prefix

70

pair with an already stored rule. If so, we store the new rule in the auxiliary CA-RAM by

finding an empty space in the row that shares the same prefix pair. If not, we apply the

basic incremental update scheme for progressive hashing, Section 4.2.3, since the new rule

has a unique prefix pair.

6.5 THE SIMULATION RESULTS AND THE EVALUATION

METHODOLOGY FOR OUR PC SOLUTIONS

We used C++ to build our own simulation environment that is similar to the one given in

Section 5. The ClassBench tool [50] was used to provide synthetic PC databases, as well

as traces, from real databases. There are three families of PC applications defined in the

ClassBench: 1- IPC, which is a legacy version of firewalls format, 2- ACL, which is an Access

Control List format and 3- FW, which is a modern version of firewalls format. We generated

11 synthetic databases and their traces using ClassBench and their statistics are given in

Table 3, where all the tables have more than 30K . In Table 3 we show the first four groups

that have most of the PC rules.

In addition to the fact that most of the PC databases need different partitions, Table 3

shows the number of non-unique source and destination pairs. On average, the number of

repeated source and destination prefix pairs is a little less than 10%. This is a very misleading

ratio as some files (two to be exact) have 0% repeated prefixes, while others have between

20% and 48% (ACL330K , ACL430K and ACL530K).
As we did for the PF application (Section 5.2), we define a hardware configuration, Ci,

by the number of rows, N and the number of entries per row, L. In this section, we define
our hardware configurations in Table 4:

C1 : {60× 1K} C2 : {40× 1K} C3 : {32× 1K}

C4 : {30× 2K} C5 : {20× 2K} C6 : {16× 2K}

C7 : {15× 4K} C8 : {10× 4K} C9 : {8× 4K}

Table 4: The nine CA-RAM hardware configurations that we use in validating our PC

solutions.

These configurations are split into three sub-configurations: three 1K configurations ,

71

three 2K configurations, and three 4K configurations. Note that the configurations 1K×60,

2K × 30 and 4K × 15 all share the same loading factor of 49%, while 1K × 40, 2K × 20 and

4K × 10 have a loading factor of 73% and finally, 1K × 32, 2K × 16 and 4K × 8 have 89%

loading factor. The higher the loading factor, the better the RAM space utilization is. The

configurations 1K × 60, 2K × 30 and 4K × 15 which have less than 50% loading factor are

very important for the industry, as they represent the trend of having two data structures:

one online for the lookup process, and one standby for the control plane to incorporate the

incremental updates. After a certain time period, usually a few milliseconds, the network

processor switches the two copies to reflect the most recent packet-processing database.

6.5.1 Experimental Results for Progressive Hashing and I-Mark Hybrid Solu-

tion

Our first PC solution uses PH in addition to I-Mark optimization. This solution is going to

serve mainly as a proof of concept and we use the results obtained here to describe the other

two solutions. In a previous paper [20] we used different benchmarks in terms of sizes to test

this solution, where the average number of rules per benchmark was around 8K. However,

the benchmarks used in [20] are generated from the same seeds that we used to generate our

benchmarks in Table 3. In this chapter, we use similar benchmarks, but with an average of

30K rules per database, which is three times as large as the benchmarks used in [20].

Figure 29 shows a comparison between the GH scheme versus the PH scheme with

the I-Mark optimization (to stop at the first match) for all the 11 PC databases for one

configuration: C1 : {60×1K}. We chose this configuration as an example of the overflow and

AMAT performance of our progressive hashing solution. In addition, we use the notation

GH(X) or PH(X) to indicate how many groups each scheme is using. PH with I-Mark

reduces the overflow (Figure 29(a)) by 80% on average compared to GH. For PH with I-

Mark, the AMAT is lower than the Worst-case Memory Access Time (WMAT), which is 7,

by 61%. We do not show the AMAT of GH since it has a constant AMAT of 7 (6 groups

plus 1 to search the overflow buffer 1).

1Refer to Chapter 4 for more information about overflow buffer.

72

0

5

10

15

20

25

30

35

A
ve

ra
ge

A
C

L1
_

3
0

K

A
C

L2
_

3
0

K

A
C

L3
_

3
0

K

A
C

L4
_

3
0

K

A
C

L5
_

3
0

K

FW
1

_3
0

K

FW
2

_3
0

K

FW
3

_3
0

K

FW
4

_3
0

K

IP
C

1
_3

0
K

IP
C

2
_3

0
K

A
M

A
T

PC Databases

GH(6) PH(6)

(a)

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

A
C

L1
_

3
0

K

A
C

L2
_

3
0

K

A
C

L3
_

3
0

K

A
C

L4
_

3
0

K

A
C

L5
_

3
0

K

FW
1

_3
0

K

FW
2

_3
0

K

FW
3

_3
0

K

FW
4

_3
0

K

IP
C

1
_3

0
K

IP
C

2
_3

0
K

O
ve

rf
lo

w
 %

PC Databases

AMAT WMAT

(b)

Figure 29: The (a) Average overflow of GH(6) vs. PH(6) + I-Mark, and (b) AMAT &

WMAT of PH(6) + I-Mark for the PC databases given in Table 3 for C1 : {60× 1K}.

Instead of showing all the 11 files for different configurations, we show only in the next

figure, Figure 30, the average of both overflow and AMAT for six of the nine configurations.

These configurations are: C1 : {60× 1K}, C2 : {40× 1K}, C4 : {30× 2K}, C5 : {20× 2K},

C7 : {15 × 4K}, and C8 : {10 × 4K}. From Figure 30(a) we can see that PH with I-Mark

optimization outperforms GH in terms of overflow reduction and AMAT. The PH(6) with

I-Mark achieves the following overflow reduction percentages over the GH(6) for each con-

figuration: 69%, 38%, 62%, 37%, 51% and 32%. Similarly, the AMAT reduction percentages

for the same 6 configurations over the GH(6) are: 61%, 55%, 58%, 51%, 53% and 47%.

Note though, that PH achieved a good reduction overflow; it did not reduce the overflow

to zero in any case. These results are unlike the results we got in [20] where 5 out of the 11

benchmarks we used had a zero overflow under PH(6). This is why we proposed our other

two solutions, the dynamic TSS and the two CA-RAM architecture. The main reason why

the other two solutions will have better results is that they have better space utilization as

73

the two CA-RAM solution eliminates the redundancy of the rules, while the dynamic TSS

solution uses a better partitioning plan for each database file.

0

5

10

15

20

25

30

1K x 60 1K x 40 2K x 30 2K x 20 4K x 15 4K x 10

O
ve

rf
lo

w
 %

CA-RAM Configurations

GH(6) PH(6)

(a)

0

1

2

3

4

5

6

7

8

1K x 60 1K x 40 2K x 30 2K x 20 4K x 15 4K x 10

M
e

m
o

ry
 A

cc
e

ss
 T

im
e

CA-RAM Configurations

AMAT WMAT

(b)

Figure 30: The (a) Average overflow for GH(6) vs. PH(6) + I-Mark, and (b) Average AMAT

of PH(6) + I-Mark for the average PC databases in Table 3 for six hardware configurations.

6.5.2 Experimental Results for Dynamic TSS Solution

Recall that the partitions variables are: C = number of groups and H = total number of

hash functions. In our experiments, we varied C between five and ten while assigning one to

three hash functions per group. Any group boundaries have to be always more than eight

and less than or equal to 32, which are the minimum and maximum IPv4 prefix lengths.

Overall, our algorithm runs in a polynomial time with O(C × n2 × I), where 1 ≤ n ≤ 33,

5 ≤ C ≤ 10 and 1 ≤ I ≤ C and I is the number of iterations we enforce for choosing the

boundary for each group.

The average partition PH(8) is chosen to be the one that produces the least average

total overflow over all files. It has eight groups, namely: (S24, S24), (S24, NS), (NS, S24),

74

(S16, S16), (S16, NS), (NS, S16), (S8, NS), and (NS, S8). We use this partition plan to

show that a single partition plan cannot outperform the custom partitions for each file.

Each group has its own hash function, h0() for group (S24, S24), · · · h7() for group

(NS, S8). As we mentioned in the beginning of this dynamic TSS solution, we use the

progressive hashing idea. So, hash function h7() of group (NS, S8) can be used by other

groups such as (S24, S24), (NS, S24), (S16, S16), and (NS, S16). The same goes for all

other hash functions that can be used by other groups.

In Figure 31, we show the overflow of three different partitions: 1- the original progressive

partitions, or PH(6), 2- an average partition plan over all the files, or PH(8) and 3- custom

partitions for each of the 11 files given in Table 3, or PH(C). One can see that any static

partitions over all files (like PH(6) and PH(8)) produce higher overflow than the custom

partitions (i.e., PH(C)).

0

2

4

6

8

10

12

14

16

18

20

1K x 60 1K x 40 2K x 30 2K x 20 4K x 15 4K x 10

O
ve

rf
lo

w
 %

CA-RAM Configurations

PH(6) PH(8) PH(C)

Figure 31: The Average Overflow of PH(6), PH(8) and PH(C) for the PC databases given

in Table 3 for six hardware configurations.

After investigating the overflow, in Figure 32 we show the average memory access time of

the same three schemes: PH(6), PH(8) and PH(C) for the same six hardware configurations.

The PH(6) scheme has the lowest AMAT among the three schemes but at the price of

having the most overflow among them too. Our PH(C) has on average 16% more AMAT

than PH(6), and at the same time PH(C) reduced the overflow by 82% on average as well. On

the other hand, PH(C) reduced the overflow by 84% on average over PH(8) while increasing

the AMAT by only 6%.

75

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1024 x 60 1024 x 40 2048 x 30 2048 x 20 4096 x 15 4096 x 10
A

M
A

T

CA-RAM Configurations

PH(6) PH(8) PH(C)

Figure 32: The Average AMAT of PH(6), PH(8) and PH(C) for the PC databases given in

Table 3 for six hardware configurations.

In addition to the AMAT, we investigate the worst-case access memory time (WMAT)

in Figure 33, where we show the worst-case memory access time of the same three schemes.

PH(6) has a fixed WMAT of seven, the average partition (PH(8)) also has a fixed WMAT

of nine, and finally, each one of the 11 files of Table 3 has a different WMAT range from

seven to ten with an average of 8.09. Note that we increase the WMAT by one for accessing

the overflow buffer. Though the WMAT is larger in PH(C) by 16%, the overflow is reduced

(on average) by 82% over PH(6).

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

A
C

L1
_3

0
K

A
C

L2
_3

0
K

A
C

L3
_3

0
K

A
C

L4
_3

0
K

A
C

L5
_3

0
K

FW
1

_3
0

K

FW
2

_3
0

K

FW
3

_3
0

K

FW
4

_3
0

K

IP
C

1
_

3
0

K

IP
C

2
_

3
0

K

W
M

A
T

PC Databases

PH(6) PH(8) PH(C)

Figure 33: The average WMAT of regular PH(6), average PH(8) and custom cuts PH(C)

for the PC databases given in Table 3.

In case we adopt a fully pipelined architecture, like many state-of-the-art NP [6, 40], we

then should not pay much attention to the AMAT, but rather the WMAT. I witnessed two

ASIC-based algorithmic packet-processing solutions during my industrial internship. These

two solutions use deep pipelining (between 20 and 30 stages) to split the lookup process into

76

a smaller number of pipelined actions (including reading the input packet header and output

rule ID). So, our solutions should be acceptable, since we have at most 10 stages.

6.5.3 Results for The Two CA-RAM Memory Architecture Solution

In this section, we present the two CA-RAM architecture results discussed in Section 6.4.

We compare our 2 CA-RAM architecture with the single CA-RAM architecture, which is

similar to the one used in Section 6.3. In Figure 34, we show the basic single CA-RAM

architecture v.s. the equivalent two CA-RAM architecture.

Main Auxiliary

L2L1

The

L
The Equivalent 2 CA-RAM Arch.The Single CA-RAM Arch.

Main
CA-RAM

Auxiliary
CA-RAM

The
CA-RAM

N N N

Figure 34: The regular single CA-RAM architecture vs. the equivalent two CA-RAM archi-

tecture, where L = L1 + L2.

The main reason for the comparison is to find a good practical width for the CA-RAM in

addition to making use of the fact that some rules share the same prefix pair. The single CA-

RAM has an aspect ratio of L rows times N bytes. We split the single CA-RAM vertically

into two CA-RAMs each having the same number of rows, N , but with different row width,

L1 and L2, where L = L1 + L2. Thus, both architectures are the same in terms of memory

capacity.

Figure 35 shows overflow for the 11 PC files given in Table 3 for two architectures: 1-

single CA-RAM architecture, where all the five fields (tuples) of the PC rule are kept in the

same CA-RAM, and 2- two CA-RAM architecture, where the source and destination prefixes

of each PC rule are stored in the main CA-RAM in Figure 26, and the rest of the tuples are

kept in the auxiliary CA-RAM. We calculate the overflow for the two CA-RAM architecture

using the same methodology for the single CA-RAM architecture, i.e., the number of keys

77

that were not inserted into the CA-RAM (the main CA-RAM) divided by the total number

of keys.

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

A
C

L1
_

3
0

K

A
C

L2
_

3
0

K

A
C

L3
_

3
0

K

A
C

L4
_

3
0

K

A
C

L5
_

3
0

K

FW
1

_3
0

K

FW
2

_3
0

K

FW
3

_3
0

K

FW
4

_3
0

K

IP
C

1
_3

0
K

IP
C

2
_3

0
K

O
ve

rf
lo

w
 %

1K x 60 for 2 CA-RAM's 1K x 60 for 1 CA-RAM

1K x 32 for 2 CA-RAM's 1K x 32 for 1 CA-RAM

PC Databases

Figure 35: The overflow of the two CA-RAMs vs. the single CA-RAM architectures for the

PC databases given in Table 3 for two hardware configurations.

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

A
C

L1
_

3
0

K

A
C

L2
_

3
0

K

A
C

L3
_

3
0

K

A
C

L4
_

3
0

K

A
C

L5
_

3
0

K

FW
1

_3
0

K

FW
2

_3
0

K

FW
3

_3
0

K

FW
4

_3
0

K

IP
C

1
_3

0
K

IP
C

2
_3

0
K

A
M

A
T

1K x 60 for 2 CA-RAM's 1K x 60 for 1 CA-RAM
1K x 32 for 2 CA-RAM's 1K x 32 for 1 CA-RAM

PC Databases

Figure 36: The AMAT of the two CA-RAMs vs. the single CA-RAM architectures for The

PC databases given In Table 3 for two hardware configurations.

In this experiment, we used only two hardware configurations: C1 : 1K × 60 and C3 :

1K×32. On average, our two CA-RAM architecture eliminates 61.4% of the overflow over the

single CA-RAM architecture. In some cases we were able to totally eliminate the overflow

(e.g., like ACL130K , ACL230K , Fw230K , and Fw330K). The AMAT results for the same

experiments are shown in Figure 36, where the AMAT of the two CA-RAM architecture is

higher than that of the single CA-RAM architecture by 31%, 37% and 40% (with an average

of 36%). In the next couple of paragraphs we analyze the reason for this increase.

We repeat the same experiments but with all the nine different memory configurations

78

0

2

4

6

8

10

12

14

Average 1K x 60 1K x 40 1K x 32 2K x 30 2K x 20 2K x 16 4K x 15 4K x 10 4K x 8

O
ve

rf
lo

w
 %

2 CA-RAM's 1 CA-RAM

CA-RAM Configurations

Figure 37: The average overflow of single CA-RAM vs. two CA-RAM architectures for nine

hardware configurations.

that are given in Section 6.5 and the results are shown in Figure 37. The results in Figure 37

show an improvement in the overflow for all configurations. The 4K configurations have

73%, 74% and 73% average overflow reduction of the two CA-RAM architecture versus the

single CA-RAM architecture. The same goes for the 2K configurations which have 66%, 70%

and 69% overflow reduction. Finally, the three 1K configurations have the lowest overflow

reduction of 65%, 70%, and 50%. We notice that as the number of rows is increasing, the

overflow reduction percentage is also increasing. This stems from the fact that the single

CA-RAM architecture has more overflow for a large number of rows.

0

1

2

3

4

5

6

7

8

Average 1K x 60 1K x 40 1K x 32 2K x 30 2K x 20 2K x 16 4K x 15 4K x 10 4K x 8

A
M

A
T

2 CA-RAM's 1 CA-RAM

CA-RAM Configurations

Figure 38: The average AMAT of single CA-RAM vs. two CA-RAM architectures for nine

hardware configurations.

In addition to the overflow, in Figure 38 we show the AMAT of both architectures.

79

Though we may expect that the AMAT of the two CA-RAM is much higher (around two

times higher), the data in Figure 38 show that on average the two CA-RAM architecture

AMAT is only 37% higher than that of the single CA-RAM architecture. This comes from

the fact that we use pipelining; hence, on average the AMAT should rise by only ‘1’, which

represents the auxiliary CA-RAM access. However, in some cases, the AMAT for the two

CA-RAM architecture is slightly higher because of the need to access more than one row in

the auxiliary CA-RAM, as one row might not be enough to store all rule ports and protocol

tuples. In other words, the AMAT is higher because of the use of the “NEXT” pointers.

Note that the maximum number of these NEXT pointers is two per row according to our

simulation results.

6.5.4 The Performance Estimation

In this section, we approximate the actual processing rate of the PH packet-processing engine

using sound approximations. We estimate the memory requirements for two configurations

C1 for the PF and C1 for the PC. The configuration C2 : {40 × 1K} requires 40K entries,

where an entry is represented by 2 × 5 bytes for prefixes plus 2 × 5 bits prefix length plus

4× 2 bytes for port ranges plus 1 byte protocol and other fields encoding plus 1 bit for the

I-Mark plus 3 bits for the hash function flag, which is 166 bits, and there is 1 byte per row

for the row counter. The total memory requirement for this PC configuration is ∼ 850.92MB

or roughly 1MB.

A state-of-the-art CMOS technology SRAM memory design [55] reports of a single chip

of 36.375 MB that runs on 4.0GHz. Since our scheme depends on a set-associative RAM, we

conservatively assume that the clock rate is 2.0GHz. If we assume AMAT of ∼ 4.0, according

to Figure 32, then we have a filtering speed of 0.5 Giga packets per second or 160 Gbps for

the minimum packet size of 40 bytes. Since we assume that we use pipelining for the two

CA-RAM solution, then it is safe to assume that the same performance can be obtained for

this solution as well.

80

6.6 CONCLUSION

In this chapter, we presented three main CA-RAM based solutions for the packet classifi-

cation problem. In the first solution, progressive hashing, we showed how the progressive

hashing with the I-Mark schemes can be used to solve the PC problem for a relatively low

number of rules per database, around 10K. We then concluded that we need better and

dynamic partitions (groups) for each individual file. We also concluded that we may need

to increase the number of groups given larger rule set sizes, 30K.

This leads to our second solution, which we call “dynamic tuple space search,” where we

vary the number of groups, the number of hash functions assigned to each group, and the

group borders. Though we vary the groups and their numbers, we have to meet the system

worst-case memory access time. On average we were able to reduce the overflow by 82%

for the dynamic TSS solution over the regular TSS solution for nine CA-RAM hardware

configurations. Our results indicated that such a scheme can reduce the overflow by almost

100% in some cases. However, we have increased the average memory access time by 6%,

mitigated by the fact that we use pipelining.

Our final scheme is based on the idea that some packet classification databases have the

same source and destination prefix pair appearing in multiple rules. Since we use this pair in

hashing, this leads to more collisions, which is the main reason for overflow. This is why we

devised a two CA-RAM architecture where the first (main) CA-RAM is to store the source

and destination prefixes and the auxiliary (second) CA-RAM is to store the rest of the PC

rule. Though the AMAT is larger in this case, for the same amount of memory, we were

able to reduce the overflow by 62% on average over the single CA-RAM architecture. In this

case, the AMAT is raised only by 36% on average. Finally, we predicted that our solutions

can achieve throughput up to 0.5 Giga packets per second or 160 Gbps for the minimum

packet size of 40 bytes.

81

7.0 THE DEEP PACKET INSPECTION APPLICATION

As we discussed in Chapter 1, the deep packet inspection (DPI) function allows the firewall to

examine the packet content for either network attacks or malware signatures or strings [33] 1.

In the deep packet inspection problem, packets content are matched against a database of

signatures or “rules.” These rules consist of fixed-length strings and regular expressions,

where these two are called “the payload part,” in addition to the 5 tuples of the IP headers 6,

or “the headers part.” Overall, one can consider the DPI rules mainly as regular expressions.

In this chapter, I describe my PM (pattern-matching) solution using the CA-RAM mem-

ory architecture. The packet pattern-matching problem is defined as follows: given a set

of k patterns {P1, P2, · · · , Pk}, k ≥ 1, and a packet of length n, the goal is to find all the

matching patterns in the packet. Note that we extract these strings from the DPI rules and

each string has its own length (i.e., they vary in length). If we match one or more of these

substrings, we say that we have a “partial” matching. Usually, the PM unit returns the

longest matched substring to the DPI software of the firewall which takes an action (either

drop or forward the packet).

Figure 39 shows that the DPI engine consists of three smaller engines: 1- pattern-

matching (PM) engine, which stores and matches the static strings, 2- packet classification

(PC) engine, which processes the incoming IP packet headers, and 3- regular expression

(RE) engine, which is responsible for matching variable size regular expressions parts of the

rule. To accelerate the pattern-matching in a typical DPI system, a TCAM chip is used to

store all the patterns (mostly ASCII characters), which works as a pattern-matching (PM)

engine. I propose using the CA-RAM for the main component of a DPI engine, which is the

1Throughout this chapter we will use the terms signature and string interchangeably to present the same
thing.

82

Reg. Exp. Engine Reg. Exp. Engine

PM Engine PM Engine

PC Engine PC Engine

IP Packet
Header Packet Payload

SA DA S&D Ports Pro & Flags

Data Bus

Control Bus

Control Bus

To

N
e

tw
o

rk

P
ro

ce
ss

o
r

Data Bus

To

N
e

tw
o

rk

P
ro

ce
ss

o
r

Figure 39: The overview of a DPI engine architecture.

pattern-matching (PM) unit [59]. In other words, my solution is to replace the TCAM-based

PM engine with a more efficient CA-RAM.

In this chapter, we use the SNORT DPI rule database, described in Section 7.3, to

evaluate our pattern-matching CA-RAM-based solution. SNORT is an open source network

intrusion prevention and detection system (IDS/IPS) developed by Sourcefire. Combining

the benefits of signature, protocol, and anomaly-based inspection, Snort is the most widely

deployed IDS/IPS technology worldwide [23]. The SNORT rules are regular expressions,

each having the following form:

“alert — rule header information — static string — regular expression (encoded

in PCRE scripting language) — static string”

, where ‘—’ is the string concatenation operator.

Figure 40 shows an example of a real SNORT rule. Any SNORT rule starts with the

keyword “alert”. Among the header fields that the PC engine checks: destination & sources

IP addresses, protocol, destination & sources port numbers, protocol flags, · · · , etc. These

fields are identified by reserved keywords such as “tcp” (i.e., TCP protocol), “any” for

any port number, while the destination and source addresses are defined by the variables,

$EXTERNAL NET and $HOME NET in this example.

83

alert ip $HOME_NET 8002 -> $EXTERNAL_NET any
(msg:"ATTACK-RESPONSES id check returned userid ";
content:"uid="; nocase; pcre:"/uid=\d{1,5}\S+\s+gid=\d{1,5}/smi";
content:" gid="; distance:8;)

Header Part

Payload Part

Figure 40: An example of a SNORT [23] rule.

The reserved keyword “msg” indicates the warning message that is displayed once the en-

tire rule is matched. The payload part of the rule is defined by the two keywords: “content”

for a static string, and “pcre” for regular expression. By “static string” we mean a consecu-

tive group of ASCII characters that have certain order and maybe ceratin case (upper, lower

or mixed). Note that a regular expression may contain more static strings that we extract

and store in our simulations. The PCRE stands for Perl Compatible Regular Expression

and it is a scripting language that describes regular expressions. There are some keyword

modifiers that describe the static strings such as “nocase,” which means that the string

characters can be in either upper case or lower case, and “distance,” which tells the NIDS

system the index of the first character of the string.

To summarize, the rule in Figure 40 indicates a PC filter on the source IP address 8002

and for all destination IP addresses. In the payload part of the rule, there are two static

strings (patterns) in this rule: “uid” and “gid,” in addition to the regular expression that is

given after the pcre keyword.

The main feature of our CA-RAM so far is that it is storing fixed-length keys (e.g., IP

prefixes and PC rules). However, the PM problem of the DPI application has variable-sized

keys (strings). Figure 41 shows the histogram of the compiled SNORT rules lengths. Note

that we only included the static strings of the SNORT rules in addition to these static strings

that exist inside some regular expressions. From this figure we can see that almost 90% of

the rules have a length of 36 characters or less. In addition, we note that percentage-wise,

there is a variety of rule lengths from one character up to 64 characters.

84

0.01.02.03.04.05.06.07.08.09.0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 >= 64

Percentage %
Pattern' Lengths in Chars

5.6%5.2%(36 < & >64)89.2% (>= 36)

Figure 41: The SNORT statistics: percentage of patterns vs. the pattern lengths.

Note that the DPI engine will perform pattern-matching and RE matching if and only if

the header part has been positively matched first by the PC engine. The regular expression

function is either realized in FPGA hardware or is performed by the network processor [33].

In this thesis we only focus on the PM engine.

Our main motivation in this chapter is to replace the usually used TCAM chip with our

CA-RAM solution, which both consumes less power and has higher storage density than

the TCAM. In addition, our solution is capable of storing variable-sized strings unlike the

TCAM which stores only strings of the same size.

Our DPI CA-RAM solution has two main components: 1- an architectural part, and 2-

an algorithmic part. The architecture part is described in Section 7.1, where I talk about

the implementation of the variable length string matching capability inside the CA-RAM

architecture. In Section 7.2, I describe the algorithmic part of the solution, which relies

on two of my three hash-based schemes, namely the progressive hashing and the CHAP. In

Section 7.3, I describe the simulations performed to show the superiority of my proposed

solution over the TCAM. Finally, in Section 7.4 I conclude with observations and results.

85

7.1 VARIABLE-LENGTH STRING MATCHING SUPPORT FOR CA-RAM

ARCHITECTURE

Since the PM problem requires matching different pattern lengths, we need to adjust the

CA-RAM architecture to support this feature. One possible solution is to fix the rule length

to a certain length. However, this requires the padding of all short patterns by don’t care

bits, hence the need to use ternary logic. Another drawback is that the CA-RAM space

waste will increase.

CA-RAM

Priority Encoder Priority Encoder

Rule ID Rule ID

͙

h(.)

Matching Processor0 Matching Processor0

Matching Processor1 Matching Processor1

Matching Processor3 Matching Processor3

Matching Processor2 Matching Processor2

Packet Payload

To Network

Processor

Shared Input

Bus

Internal Row Bus

P2 P3 P1

Patterns Length

Counters

Input Shifting Circuit0 Input Shifting Circuit0

Input Shifting Circuit1 Input Shifting Circuit1

Input Shifting Circuit2 Input Shifting Circuit2

Input Shifting Circuit3 Input Shifting Circuit3

Input Register Input Register

W

L

3 3 2 2 0 0 4 4

Figure 42: The modified CA-RAM variable-sized length patterns matching architecture.

The importance of supporting variable-length string matching stems from the fact that

patterns that are fully detected need less processing from the Network Processor (NP), which

is translated to higher throughput. To support storing variable length strings, we modify

the CA-RAM basic architecture, Figure 3, to the one depicted in Figure 42. We also use

pipelining to achieve an ultra-high throughput.

As depicted in Figure 42, we allow each rule to have its own length that ranges between

a minimum length, Lmin, and a maximum length, Lmax, where we assume a CA-RAM

configuration of N rows (buckets) each having L bytes. Thus, the maximum number of

patterns per bucket equals nmax = d L
Lmin

e. For each row, there are nmax counters, each

containing the length of each rule, as shown in the upper part of Figure 42. The CA-RAM

86

in Figure 42 stores the strings of the pattern-matching engine, but the supporting matching

circuit is different from that of the basic circuit shown in Figure 3. Note that there could

be more than one hash function, but for simplicity we show only one hash function in this

figure, where we hash the first Lmin characters of each of the patterns to generate the index.

My main idea here is that the input string goes through a shifting circuit that creates

multiple copies, nmax, of the string, and at the same time aligns these copies to be compared

with each of the stored strings (patterns). Each shifting circuit, which is shown in Figure 43,

has nmax = 4 input string buffers (input registers) that store the input payload string.

These input registers have a unified size of L characters and their outputs are fed to the

nmax shifting circuits. In the first clock cycle, the PM engine fetches an input window

(string) of W characters, where L > W , from the currently inspected packet payload and

feeds it to the array of input string registers. Then, in the next clock cycle, a new window is

created by simply by adding a new character from the payload to the right-hand side of the

old window. At the same time, we shift the rest of the characters one position to the left,

thus dropping the leftmost character of the previous window [49]. Note that we assume in

Figure 43 that the input string is placed at the rightmost position of the input registers and

that the remaining, L - W bytes, of each input string register contains zeros. At the same

time, the same input string is fed to the hashing function, h(·), to calculate the CA-RAMs

row index that stores the patterns that will be matched against this input window.

In the next clock cycle, each input shifting circuit calculates the offset used for the left

shift according to the pattern string counters, as shown in Figure 43. Note that the pattern

string counters are stored at the end of each row along with the probing pointers, as we will

see next. Figure 43 shows the second input shifting circuit of Figure 42. We propose to use

Barrel shifter [17] circuits to shift the input multiple position in a single clock cycle [17]. The

output of the shifting circuit is stored in the L bytes shifted input register, which is used as

an input to its associated string matching processor circuit.

After shifting the input string, the shifted string copies are matched against the patterns

stored in the CA-RAM row using string matching processors (MPs). Matching results are

then reported to the NP (network processor), as a pattern ID 2. In case we have multiple

2We assume in this thesis that each pattern is associated with a unique ID that can be identified by the

87

Barrel Shifter

Patterns Length Counters

Adder
Register

Shared Input Bus

Clk

Clk

4 bits

To Next Stage

Input String Register

Shifted Input Register

To
 T

h
e

M
a

tch
in

g

P
ro

ce
sso

r

reset

Figure 43: The input shifting circuit2 of Figure 42.

matches, we use a priority encoder to select the best matching (which is the longest matching

as well). Sometimes, the NP software requires that we report all the matches for further

processing. In this case, instead of reporting the best matching pattern ID, our CA-RAM

reports all the matched patterns IDs by encoding them in a single vector (to be sent to the

NP). In fact, reporting multiple matches comes for free in CA-RAM, as they co-exist on the

same bucket(s).

In case we store the longest pattern first, the priority encoder circuit is going to be very

simple. The idea of this simple circuit is that once a matching processor finds a match, it

blocks the results of the next matching processors. This is done by compiling the result of

each matching processor into an enabling signal to the next matching processors, starting

from left to right. In Section 7.1.1 we describe our FPGA synthesis model and we show in

detail how these sub-circuits are implemented.

7.1.1 The FPGA Synthesis Results

The research team also did an experiment with Xilinx FPGA kit [56] to demonstrate a proof

of concept. We want to emphasis that such a variable-sized string matching circuit can be

NPs control and data planes software.

88

implemented in hardware. Our design is implemented using the Xilinx ISE Design Suite.

A combination of VHDL and schematic design is used to instantiate the pattern-matching

CA-RAM circuit that is described in Section 7.1.

The characteristics of the design are defined, as previously discussed, by CA-RAM bucket

width, L, minimum pattern length, Lmin and maximum pattern length, Lmax. These deter-

mine the maximum number of patterns per bucket , nmax = d L
Lmin

e. Pattern length counters

are used to dynamically generate and use a set of up to nmax masks on L bytes of CA-

RAM row data, which is then compared with the input string. A priority encoder can then

determine the highest quality match for further processing.

The gate counts required for each component of the matching circuit scale linearly with

nmax. Gate width is related linearly to L, but either intelligent CA-RAM packing or an

addition index stored (akin to a pattern length counter) could allow gate widths to be

greatly reduced and separate portions of a large CA-RAM bucket width to be processed

separately in parallel (4 sets of nmax/4 gates of L/4 width instead of one set of nmax gates

of L width). Much more detailed gate analysis has been performed, relating abstract gate

counts to these parameters. The matching logic required is independent of the overall CA-

RAM size, and only depends on the width of an individual bucket. CA-RAM size can be

adjusted by increasing row count without the need for additional matching logic.

The parameters for the simulations are as follows: L = 16 bytes, Lmin = 4 bytes, Lmax = 8

bytes and nmax = 4. This design was placed and routed for a Spartan6 XC6SLX75T FPGA.

The maximum clock frequency at the speed grade used in our simulation is 270 MHz [57].

Pipeline implementations allows for increased throughput as well, as next generation FPGA.

At this frequency, our design has an estimated power draw of 94.59 mW, or 0.0352 nJ. Given

the worst-case linear scaling of match logic size with nmax, it can be seen that the overall

power draw will remain reasonable under more realistic packet filtering conditions (L = 256

bytes, Lmin = 8 bytes, Lmax = 36 bytes, nmax = 32). Assuming linear scaling, power draw

under these conditions would be 756.7 mW.

89

h0(.)PacketPacket …

ββββ1[h1()]ββββ0[h0()]

h1(.)
…

Modified Probing
Pointers

Multiple hash
functions To the

Matching Processors

…
h2(.)

h3(.)

Figure 44: The modified CHAP scheme example, where H = 4 and P = 2.

7.2 THE HYBRID DYNAMIC PROGRESSIVE HASHING AND

MODIFIED CHAP SOLUTION FOR THE PM PROBLEM

In this section, we describe the algorithmic part of our CA-RAM DPI solution. We use the

hash tools that we introduced in Chapter 4. Specifically, we use the progressive hashing and

a modified version of our CHAP scheme to reduce the overflow and the I-Mark scheme to

reduce the average memory access time (AMAT) of the CA-RAM.

First we modify our CHAP(H, H) algorithm, where H represents both the number of

hash functions and the number of probing pointers per row (refer to Chapter 4.1). Instead of

using one probing pointer for each hash function per row for all hash functions, we choose P

hash functions to have probing pointers, where H ≥ P , while the other hash functions will

not have any. We call this algorithm CHAP(H, P), and Figure 44 is an example in which

H = 4 and P = 2. This allows us to reduce both the AMAT and the WMAT. The WMAT

in this case is equal to WAMTDPI = H + P + 1, where the extra one is to count in the

overflow buffer, as we discussed earlier for the PF and PC applications.

Moreover, these ‘P ’ hash functions will be the last P hash functions. The reason is that

the pattern groups that use these hash functions are smallest in length among the other

groups. Hence, these groups tend to have more overflow than the other groups; also, these

functions are used by all the groups as we are using progressive hashing (refer to Chapter 4.2).

90

Next, we propose an iterative dynamic algorithm that selects a near-optimal “partition

plan” in terms of overflow, and memory access time. By a partition, we mean the number

of hashing groups and their associated physical boundaries. The groups’ boundaries are

simply the minimum length of string for each group. The best, near-optimal partition plan

is the one that has the lowest overflow for a given hashing space. If there are multiple of

these plans, we select the plan with the lowest AMAT and WMAT.

To find the near-optimal partition, we impose a goal, or an upper limit, OLmax, on the

overflow. This limit depends on a system parameter, which is the capacity of the embedded

overflow TCAM buffer. In the DPI application, the overflow buffer stores the patterns that

are shorter than Lmin, where Lmin is the minimum pattern length that we store in the

CA-RAM, in addition to the actual overflow (collided) strings.

We propose an algorithm that is complementary to our original PH algorithm by choosing

the groups dynamically based on the database distribution, similar to what we did for the

PC solution in Section 6.3. The idea is first to study the PM database distribution to select

the hashing parameters, which are the number of groups and their boundaries. Figure 41

shows the string length distribution for the SNORT database. The next step is to decide

what constitutes the maximum number of groups, H, based on the memory access time

budget that is entitled to the PM unit. Since most of the modern NPs are deeply pipelined

and have between 30 to 40 stages [11], we can assume in this chapter that 8 ≤ H ≤ 15

cycles.

We start by defining OL[i] as a linear array that contains the overflow percentage of

iteration ‘i’, where 1 ≤ i ≤ Imax and Imax is the maximum number of iterations of our

algorithm. Next, we use a simple heuristic algorithm that dictates how to find a good

partition, group, by minimizing the overflow, OL[i], given H, H ≤ WMAT , which is the

number of groups. We reserve OL[0] for the percentage of the strings that have length

less than minimum string length, Lmin. The algorithm, starts by sorting the patterns from

longest to shortest length, then partitioning them into H1 groups based on their length,

where each group has one hash function. As we already know, this sorting is useful in

finding the longest pattern during the insertion of the actual strings into the hash table.

The algorithm then simulates the mapping of the patterns into the hash table using a

91

progressive hashing scheme. For each iteration, ‘i’, we calculate the overflow OL[i] of the

iteration, by adding OL[0] to the percentage of the collided patterns. If OL[i] ≤ OLmax,

we stop and report both the number of groups, Hi, and their lengthes. If not, then we

iterate one more time by changing the hashing parameters. This is done by splitting the

groups that generated the most collisions each to two groups. We keep iterating until Imax.

If OL[Imax] > OLmax, then we use the modified CHAP(Hi, P) algorithm for the last hash

P functions where Hi is the number of groups for the best partition plan. This modified

CHAP(H, P) setup algorithm is the same CHAP(H, H) set algorithm, Algorithm 1, but with

P probing pointers instead of H.

The exact mapping of the signatures into the CA-RAM hash table is as follows: We first

use our I-mark technique, Chapter 4.3, to mark these strings that are not substrings of other

strings. After that, we have two clusters of strings, those that are I-marked and those that

are not. We insert the I-marked cluster from shortest to longest strings since the shortest

have a lower chance of being mapped to the hash table. The non-independent strings are

then inserted from longest to shortest (to enable finding the longest matching string first).

The search algorithm for this dynamic PH + modified CHAP(H, P) scheme is identical

to that of the progressive hashing algorithm, Algorithm 5 while, its incremental update

algorithm is identical to the CHAP(H, H) Algorithm 3, but with P probing pointers rather

than H.

7.3 THE SIMULATION RESULTS AND THE EVALUATION

METHODOLOGY FOR OUR DPI SOLUTION

In this section, we describe our software simulation results, in Section 7.3.1 and Section 7.3.2

to evaluate the effectiveness of our solution. Finally, Section 7.3.3 compares our CA-RAM

solution against the equivalent TCAM solutions using two CACTI [1, 52] simulators.

For evaluation purposes, we used C++ to build our own simulation environment that

allows us to choose and arrange different types of hash functions. The hash functions used

in our experiments are from three different hashing families: bit-selecting, CRC-based, and

92

H3 [38] hashing families that are simple and easily realized in hardware. We used the SNORT

database for evaluation [23].

In all our experiments we set Lmin = 2, where all the patterns that are one character

long are stored in the overflow buffer. We assume that we use a small TCAM chip as the

overflow buffer. Also, this overflow buffer can work as a temporary buffer for the incremental

updates (if any).

Configuration Li Ni Size (KB)

C1 512 256 128

C2 1024 256 256

C3 2048 256 512

C4 512 512 256

C5 1024 512 512

C6 2048 512 1024

Table 5: The six variable string CA-RAM hardware configurations for DPI application.

In our simulations we use six hardware configurations that are defined in Table 5. Namely,

Ci = Li ×Ni, where Li = row width in bytes and Ni = number of rows. The sizes of these

six configurations range from 128 KB all the way up to 1 MB, as shown in the last column

of Table 5. Since our goal is to replace the TCAM chip that is used as the pattern-matching

engine, we need our CA-RAM configurations to have sizes compatible with the TCAM chip

sizes. In Table 6, we show the TCAM chip sizes, in binary KB RAM.

Lmax 8 16 36

TAMsize (KB) 128 256 1024

Table 6: The TCAM equivalent sizes for different widths using Equation 7.1.

93

7.3.1 Sensitivity Analysis Results

We start our simulations by running some sensitivity analysis to find the best partitions

in terms of minimizing both the overflow and the AMAT. Searching for these partitions

includes finding the number of hash functions, H, as well as their boundaries. We use a very

simple heuristic, as we described in Section 7.2, that calculates the partitions by running

the progressive hashing setup algorithm, Algorithm 4, with different partitions, till we find

the partition with the smallest overflow percentage for a given number of hash functions.

Figure 45-(a) shows the overflow of C1 for four numbers of hash functions H = 3, 4, 5, 6, and

for three different Lmax = 8, 16, 36. Note that we not only needed to change the number of

hash functions, but also to see the effect of changing Lmax.

0

1

2

3

4

5

6

7

8

9

10

H = 3 H = 4 H = 5 H = 6

O
ve

rf
lo

w
 %

Num# Hash Functions

Lmax = 8 Lmax = 16 Lmax = 36Lmax = 8 Lmax = 16 Lmax = 36

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

H = 3 H = 4 H = 5 H = 6

A
M

A
T

Num# Hash Functions

Lmax = 8 Lmax = 16 Lmax = 36Lmax = 8 Lmax = 16 Lmax = 36

(b)

Figure 45: The overflow and the AMAT (using I-Mark) of SNORT for C1 : {512 × 256},

H = 3, 4, 5, 6 and Lmax = 8, 16, 36.

We can see that the overflow is reduced by 81%, 91% and 100% as we linearly increase

the number of hash functions from 3 to 6 for Lmax = 8. At the same time, the AMAT is

94

increased by 12% and 25% for increasing H from 3 to 4 and 5 respectively. For Lmax =

36, the decrease in overflow is 12%, 59% and 68% for increasing H from 3 to 4, 5 and 6

respectively, while the increase in AMAT is 16%, 45 and 49%. It is obvious that regardless

of increasing the number of hash functions for Lmax = 36, the overflow reduction is minimal

at best, as it cannot be eliminated at all. This is due to the fact that longer strings require

larger (wider) bucket sizes. Given all these facts, we use H = 5 and 6 in the following

experiments.

Groups G0 G1 G2 G3

Number of Chars 16 8 4 2

Table 7: The six optimal groups that we use in our DPI simulations.

Before we go ahead and show results for these two numbers of hash functions, we shed

some light on how we choose the partitions. We varied the number of groups and their

boundaries (the smallest string in the group) till we found the partition that gives the

minimal (optimal) overflow for the given number of hash functions. In Table 7 we show

the resultant optimal four groups that we obtained, where each cell equals the number of

characters that each group has. At the same time, these characters are the characters that

each hash function is using in hashing. For example, group G0 has 16-character-long strings

and its hash function, H0(), uses these 16 characters to calculate the hash index. Note that

for any string that is longer than Lmax, we store only its first “Lmax” characters. Once this

string is reported as a (partial) match to the DPI software, it will try to find the full match in

this case. This is due to the fact that the DPI software stores the entire full length pattern.

Note that for the configurations where Lmax = 8, we can only use up to eight characters.

So in this case we simply do not use G0. We use the dynamic progressive hashing that we

introduced in Section 7.2, where we can assign more than one hash function to each group.

For both groups, G2 and G3, we assign two hash functions each. Thus, we can have up to

six hash functions in total.

95

7.3.2 The Dynamic PH and Modified CHAP Results

In Figures 46-(a) and 47-(a), we show the overflow when using H = 4&5 both for Lmax =

8, 16, 36 characters. For H = 5 and Lmax = 36, the maximum overflow is almost 6.3% for

C4, while the minimum overflow is around 0% for 4 configurations, with an overall average of

1.45%. On the other hand, for H = 4 and Lmax = 36, the maximum overflow is almost 12%

for C1, while the minimum overflow is also 0% for four configurations. The overall average

overflow is 2.6% in this case.

0

2

4

6

8

10

12

14

16

18

C1 C2 C3 C4 C5 C6

O
ve

rf
lo

w
 %

CA-RAM Configurations

L = 8 L = 16 L = 36Lmax = 8 Lmax = 16 Lmax = 36

C1 C2 C3 C4 C5 C6

(a)

0

0.5

1

1.5

2

2.5

3

C1 C2 C3 C4 C5 C6

A
M

A
T

CA-RAM Configurations

L = 8 L = 16 L = 36Lmax = 8 Lmax = 16 Lmax = 36

C1 C2 C3 C4 C5 C6

(b)

Figure 46: The dynamic PH with I-Mark: (a) Overflow, and (b) AMAT of SNORT for H = 4

and Lmax = 8, 16, 36.

To calculate the AMAT we used the I-mark scheme where we found that 76.6% of the

SNORT signatures are independent (i.e., I-marked). The average memory access time for

H = 4, which is shown in Figure 47-(b), ranges between 1.7 (C3 and Lmax = 8) and 2.7 (C1

and Lmax = 36). The AMAT overall average of the six CA-RAM configurations is 2.0 for

H = 4, while the WMAT is 5. As for H = 5, the AMAT, which is shown in Figure 47-(b),

ranges between 1.9 (C3 and Lmax = 8) and 3.0 (C1 and Lmax = 36). We note that the overall

96

AMAT average of the six CA-RAM configurations is 2.2 for H = 5, while the WMAT is 6.

0

2

4

6

8

10

12

C1 C2 C3 C4 C5 C6

O
ve

rf
lo

w
 %

CA-RAM Configurations

L = 8 L = 16 L = 36Lmax = 8 Lmax = 16 Lmax = 36

C1 C2 C3 C4 C5 C6

(a)

0

0.5

1

1.5

2

2.5

3

3.5

C1 C2 C3 C4 C5 C6

A
M

A
T

CA-RAM Configurations

L = 8 L = 16 L = 36Lmax = 8 Lmax = 16 Lmax = 36

C1 C2 C3 C4 C5 C6

(b)

Figure 47: The Dynamic PH + I-Mark: (a) Overflow, and (b) AMAT (I-Mark) of SNORT

for H = 5 and Lmax = 8, 16, 36.

Finally, we show in Figure 48 the overflow and the AMAT for H = 5 of the hybrid

dynamic progressive with I-mark and the modified CHAP with four probing pointers (i.e.,

P = 4). The four probing pointers we use are accessed at the last hash function, H4(). Thus

the total WMAT = 5 + 4 + 1 = 10 in this case.

For the six configurations, the overall average overflow is just 0.8% while the average

AMAT is around 3.8%. We notice that in each configuration there is at least one case where

overflow is zero. This is achieved at the price of having 33.8% larger AMAT than when

H = 5.

97

0

2

4

6

8

10

12

C1 C2 C3 C4 C5 C6
O

ve
rf

lo
w

 %

CA-RAM Configurations

L = 8 L = 16 L = 36Lmax = 8 Lmax = 16 Lmax = 36

C1 C2 C3 C4 C5 C6

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C1 C2 C3 C4 C5 C6

L = 8 L = 16 L = 36Lmax = 8 Lmax = 16 Lmax = 36

C1 C2 C3 C4 C5 C6

(b)

Figure 48: The dynamic PH + modified CHAP(H, P) and I-Mark: (a) Overflow, and (b)

AMAT (I-Mark) of SNORT for H = 5, P = 4 and Lmax = 8, 16, 36.

7.3.3 Comparison with TCAM

Next, we compare several CA-RAM configurations against their equivalent TCAM configura-

tion in terms of power, delay, and frequency (throughput). The TCAM chip size is calculated

via a simple equation, Equation 7.1, that first calculates the size of the TCAM in number

of ternary cells, then multiplies it by a scaling factor to convert it to binary RAM cell.

TCAMsize =⇑ ((⇑ Patterns Number ⇑ × ⇑ Lmax ⇑)× TCAM Cellsize

RAM Cellsize

) ⇑ (7.1)

Note that in Equation 7.1 we use the Uparrow to represent the next power of two of an

integer number. We approximate to the next power of two to find: the suitable number of

98

TCAM rows, the equivalent binary width and the overall TCAM chip size. Note that most

of the TCAM commercial chips have a width between four and up to 16 characters.

In case of SRAM the scaling factor is 16
6

where 16 is the number of transistors per TCAM

cell and six is the number of transistors per SRAM cell. If we use a DRAM technology, then

the scaling factor is going to be 16
1
, where one is the number of transistors per DRAM cell.

The size of the TCAM chip depends on two variables: 1- the number of patterns to be

stored, and 2- the TCAM width, ‘W ’. It is clear that we should pick W = Lmax, as shown

in Equation 7.1, since Lmax represents the maximum length of the stored patterns.

The CA-RAM storage part can be simulated using the standard CACTI [52] memory

simulation tool. However, there is a special version of the CACTI tool that simulates TCAM

memories [1]. We assume 90nm technology for both TCAM and SRAM simulations in

CACTI. The SRAM template we used is the “ITRS-HP,” which stands for International

Technology Roadmap for Semiconductors, a high performance cell. We compare the three

TCAM configurations in Table 6 with their equivalent CA-RAM configurations that are

given in Table 5.

Note that the RAM CACTI just gives the power for the SRAM part of the CA-RAM. In

addition to CACTI, we had to approximate the matching part of our CA-RAM simply by

extrapolating from the CACTI results of both the SRAM and TCAM. First, we define the

total CA-RAM power as follows:

PCA−RAM = PRAM + Pmatch + Ppri.encoder (7.2)

The TCAM CACTI tool splits the total power into the following components:

PTCAM = Pread + Pwrite + Psearch + Ppri.encoder (7.3)

It is obvious that we can use the same priority encoder power component from the TCAM

in the CA-RAM. Based on [12], the authors calculated that the matching component in the

CA-RAM is around 7% of the total RAM component. In this work, our team simulated and

synthesized a CA-RAM-based IP-lookup engine prototype with a single hash function while

using linear probing to resolve hash collisions for 130nm technology. However, for our more

complicated DPI solution we had to compare the number of transistors, the TCAM memory

cell size, the SRAM memory cell size, and the overall power in order to extrapolate the

99

matching part of the variable-length string matching CA-RAM solution. We estimate that

for the three CA-RAM configurations, the matching circuit overhead (component) represents

about 40% of the RAM component, on average.

Access Time (nS)

0

50

100

150

200

128KB 256KB 1024KB

TCAM CA-RAM
nS

0

100

200

300

400

500

600

128KB 256KB 1024KB

TCAM CA-RAM
MHz

Frequency (MHz)

(a) (b)

Dynamic Power (nJ)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

128KB 256KB 1024KB

TCAM CA-RAM
nJ

Area (mm2)

0

20

40

60

80

100

120

140

160

128KB 256KB 1024KB

TCAM CA-RAMmm2

(c) (d)

Figure 49: The TCAM vs. CA-RAM in terms of: (a) Total time delay, (b) Maximum

operating frequency, (c) Total dynamic power and (d) Total area.

In Figure 49-(a) we compare both the CA-RAM and the TCAM in terms of access time,

which can be an indicator for the total delay. On average, over the three configurations, the

CA-RAM has a lower access time than the equivalent TCAM configurations by 78%. The

average TCAM max frequency, Figure 49-(b), for the three configurations is 94% lower than

that of the equivalent CA-RAM configurations. While TCAM provides the result in one

clock cycle, our CA-RAM requires multiple (up to 9 or 10 cycles) to provide the same result.

However, if we use pipelining, CA-RAM can achieve the same throughput as TCAM.

100

In terms of the dynamic power, Figure 49-(c), the CA-RAM uses 71% less dynamic power

than the TCAM on average for the three configurations. The CA-RAM has, on average,

82.4% smaller area than the TCAM according to Figure 49-(d). Finally, on average, The

CA-RAM has an access time of 1.83ns per stage, while the TCAM has 15.18ns access time.

101

7.4 CONCLUSION

In this chapter we described our CA-RAM-based solution for the pattern-matching problem.

The most interesting feature of our solution is that, unlike the TCAM, which can only

store single-sized patterns, it can store variable-length patterns. Our solution stored all the

SNORT patterns from 2 to 36 characters.

We also introduced a new, dynamic progressive hashing algorithm that took into account

the data distribution while calculating the groups and their number. At the same time, we

allowed some groups to have more than one hash function.

Moreover, we introduced a modified flexible CHAP algorithm where we varied the number

of probing pointers, P which is not equal to H, the number of hash functions used. This

modified CHAP algorithm allowed us to reduce both AMAT and WMAT. Finally, we allowed

these probing pointers to be accessed only from certain hash functions (i.e., modified CHAP).

So, the overall CA-RAM with the dynamic PH + modified CHAP has an average overflow

that is less than one percent and an average AMAT that is four percent less than PH +

I-mark.

We showed by both simulations and syntheses that a variable-length pattern-matching

CA-RAM is feasible. Moreover, we showed that our CA-RAM is superior to the TCAM

solution in terms of power consumption, area, and maximum operating frequency. For

example, the CA-RAM has 71% lower dynamic power and 82% smaller area on average

than does the TCAM. The only disadvantage is that the TCAM evaluates the answer in a

single clock cycle, while with our CA-RAM we have to use pipelining to achieve the same

performance, but the cycle time is much smaller (i.e., higher frequency).

102

8.0 CONCLUSION AND SUMMARY FOR THE THESIS

Achieving scalability and low power consumption are our strongest motivations for this

thesis. In the packet-processing area, very few solutions combine these two motivations

without overshooting the maximum time delay a packet has to incur while traveling across a

router or a firewall. This is why we chose set-associative memory architectures (CA-RAM) to

pursue this thesis. In addition, the CA-RAM keeps the packet-processing engine computation

(i.e., matching logic) close to the stored database (forwarding tables, classification rules, · · · ,

etc.), which allows for higher processing rates and lower I/O latency.

In this thesis, we discussed our fully developed hash-based schemes, which are the

content-based hash probing (CHAP), the progressive hashing (PH) and the independent

mark technique (I-Mark). Note that most of our developed schemes are for the multiple

hashing domain with emphasis on open address hashing; but at the same time they could be

applied to closed address hashing. We verified these tools for the following packet-processing

engines:

• CHAP-based IP packet forwarding engine,

• Progressive Hashing-based (with and without I-Mark) IP packet forwarding engine,

• Progressive Hashing-based (with and without I-Mark) IP packet classification engine,

• Hybrid CHAP plus PH-based (with and without I-Mark) IP packet forwarding Engine.

We used both synthetic simulation tools and software simulation to prove that CA-RAM

is superior to TCAM in these three areas. The CA-RAM for PF application is estimated to

have an average forwarding speed of 320 Gbps with future SRAM technology and 40 Gbps

with the standard QDR III SRAM, while storing 301K prefixes in approximately 2.5MB of

RAM. For the same application, the standard CACTI memory simulator showed that such

103

architecture can run on a frequency of 423MHz, which is 94% more than the equivalent

TCAM, while maintaining a moderate area and power requirements.

For the PC application, we introduced two CA-RAM architectures. In the first architec-

ture, we use a single CA-RAM with dynamic PH to store on average 30K packet classification

filters, while on the second architecture we used two CA-RAMs and split the rule between

them.

The main reason for introducing the two CA-RAM solution is to take advantage of the

fact that many rules share their two IP (source and destination) prefixes. Though in this

case, the AMAT is larger by 36% on average over the single CA-RAM solution, but for

the same amount of memory, we were able to reduce the overflow by 62% on average. We

estimated that our solutions can achieve a throughput of up to 0.5 Giga packets per second

or 160 Gbps for the IPv4 minimum packet size of 40 bytes.

Finally, for the DPI application, we introduced a variable-length CA-RAM for pattern-

matching. We used SNORT database, which is an open source network intrusion prevention

and detection system from Sourcefire, to evaluate our pattern-matching engine. In compar-

ison to the TCAM, we estimated through the use of CACTI that the CA-RAM has 71%

lower dynamic power and approximately 82% smaller area than the TCAM on average. Our

CA-RAM can have a clock cycle of roughly 540MHz while the same sized TCAM can run

roughly on a 70MHz clock.

104

9.0 APPENDIX I

In this appendix, I discuss the hash functions that I used in my experiments. The important

property of these hash functions is that they must be easy to be implemented in hardware.

The hash functions that I used in my experiments in Sections 5.2, and 6.5 are from three

different hashing families: bit-selecting, CRC-based and H3 [38] [9] hashing families. By bitt-

selecting, we mean selection of the specific bits, randomly, out of the given keys to construct

the hash index. These families have the advantage of being simple, and efficient to realize

in hardware. We found that most of those functions perform quite well in both overflow

elimination and distribution of the keys uniformly among the table rows. Moreover, we

found that direct bit selection and random selection are also good hash functions especially

in both PF and PC applications. The authors in [61] came to the same conclusion.

The H3 families of hash functions were first reported by Carter et al. in [9]. Let Q denote

the set of all possible i× j Boolean matrices, where the hashing function is selecting j bits

out of the i bits of the key. For a given q ∈ Q, let q(k) be the bit string which is the kth row

of the matrix q, and let x(k) denote the kth bit of x. The hashing function hq(x) : A → B

is defined as:
hq(x) = x(1)× q(1)⊕ x(2)× q(2)⊕ · · · ⊕ x(i)× q(i) (9.1)

, where ⊕ denotes XOR operation and × denotes AND operation on the bit-level.

I used general-purpose string-based hash functions from an open-source library [36] for

the DPI application. In addition to the string hash functions from [36], I used the CRC-based

and the H3 for the experiments in Section 7.3.

105

BIBLIOGRAPHY

[1] B. Agrawal and T. Sherwood. Modeling TCAM Power for Next Generation Network
Devices. In Proc. of IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), March 2006.

[2] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced Allocations. pages 593–602.
ACM SOC, 1994.

[3] F. Baboescu, D. M. Tullse, G. Rosu, and S. Singh. A Tree Based Router Search En-
gine Architecture with Single Port Memories. ACM SIGARCH Comput. Archit. News,
33(2):123–133, 2005.

[4] M. Bando, S. Artan, and J. Chao. Lafa: lookahead finite automata for scalable regular
expression detection. In Proceedings of the 5th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS, pages 40–49, 2009.

[5] M. Becchi, C. Wiseman, and P. Crowley. Evaluating regular expression matching engines
on network and general purpose processors. In Proceedings of the 5th ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems, ANCS, pages
30–39, 2009.

[6] Bill Lynch and Sailesh Kumar. Smart Memory for High Performance Packet Processing.
In The Proceedings of the IEEE Symposium on High performance Chips, HotChips,
August 2010.

[7] B. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communica-
tions of the ACM, 13(7):422–426, 1970.

[8] A. Broder and M. Mitzenmacher. Using Multiple Hash Functions to Improve IP
Lookups. pages 1454–1463. IEEE Infocom, 2001.

[9] J. Carter and M. Wegman. Universal Classes of Hash Functions. J. of Computer Science,
10(2):143–154, 1979.

[10] N. Cascarano, P. Rolando, F. Risso, and R. Sisto. infant: Nfa pattern matching on
gpgpu devices. SIGCOMM Comput. Commun. Rev., 40:20–26.

106

[11] H. J. Chao and B. Liu. High Performance Switches and Routers. Wiley-IEEE Press,
1st edition, 2007.

[12] S. Cho, J. Martin, , and R. Melhem. CA-RAM: A High-Performance Memory Substrate
for Search-Intensive Applications. pages 230–241. ISPASS, 2007.

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stien. Introdcution to Algorithms. McGraw
Hill, 2003.

[14] S. Demetriades, M. Hanna, S. Cho, and R. Melhem. An Efficient Hardware-based
Multi-hash Scheme for High Speed IP Lookup. pages 103–110. IEEE HOTi, 2008.

[15] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep Packet In-
spection using Parallel Bloom Filters. IEEE Micro, 24:52–61, 2004.

[16] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood. Fast Ppacket Classification
Using Bloom Filters. In ACM/IEEE ANCS, pages 61–70, 2006.

[17] P. Gigliotti. Implementing Barrel Shifters Using Multipliers.
http://www.xilinx.com/support/documentation/application notes/xapp195.pdf, 2004.
Xilinx Application Note.

[18] P. Gupta and N. Mckeown. Packet Classification using Hierarchical Intelligent Cuttings.
In IEEE Hoti, pages 34–41, 1999.

[19] M. Hanna, S. Demetriades, S. Cho, and R. Melhem. CHAP: Enabling Efficient
Hardware-based Multiple Hash Schemes for IP Lookup. IFIP Networking, IFIP, 2009.

[20] M. Hanna, S. Demetriades, S. Cho, and R. Melhem. Progressive Hashing for Packet
Processing Using Set Associative Memory. IEEE/ACM ANCS, ANCS, 2009.

[21] M. Hanna, S. Demetriades, S. Cho, and R. Melhem. Advanced Hashing Schemes for
Packet Forwarding Using Set-Associative Memory Architectures. Journal of Distributed
and Parallel Computing (JPDC), Elsiver, 71:1–15, 2011.

[22] G. Huston. Analyzing the Internet’s BGP Routing Table. The Internet Pro. J., 2001.

[23] B. S. Inc. SNORT - Users Manual. https://www.snort.org/assets/156/snort manual.pdf,
2010.

[24] W. Jiang and V. Prasanna. Multi-terabit ip lookup using parallel bidirectional pipelines.
pages 241–250, May 2008.

[25] W. Jiang and V. Prasanna. Reducing dynamic power dissipation in pipelined forwarding
engines. pages 144–149. IEEE ICCD, October 2009.

[26] S. Kaxiras and G. Keramidas. IPStash: A Power-Efficient Memory Architecture for
IP-Lookup. pages 361–373. IEEE Micro, 2003.

107

[27] S. Kaxiras and G. Keramidas. IPStash: A Set-Associative Memory Approach for Effi-
cient IP-Lookup. pages 992–1001. IEEE Infocom, 2005.

[28] R. A. Kempke and A. J. McAuley. Ternary CAM Memory Architecture and Method-
ology. http://www.freepatentsonline.com/5841874.html, 1998. United States Patent
5841874.

[29] A. Kirsch and M. Mitzenmacher. Simple Summaries for Hashing with Multiple Choices.
IEEE/ACM Transactions on Networking, 16:218–213, 2008.

[30] H. N. K. I. H. J. M. T. Koide and K. Arimoto. A Cost-Efficient Dynamic Ternary
CAM in 130nm CMOS Technology with Planar Complementary Capacitors and TSR
Architecture. Proc. Int’l Symp. VLSI Circuits, 2003.

[31] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary. Algorithms for Advanced
Packet Classification with Ternary CAMs. pages 193–204. ACM Sigcomm, 2005.

[32] F.-Y. Lee and S. Shieh. Packet classification using diagonal-based tuple space search.
Elsevier Computer Networks, 50:1406–1423, June 2006.

[33] P.-C. Lin, Y.-D. Lin, Y.-C. Lai, and T.-H. Lee. Using String Matching for Deep Packet
Inspection. IEEE Computer Society, 41:23–28, 2008.

[34] H. Noda and et al. A Cost-Efficient High-Performance Dynamic TCAM With Pipelined
Hierarchical Searching and Shift Redundancy Architecture. IEEE J. Solid-State Cir-
cuits, 40(1):245–253, 2005.

[35] R. Pagh and F. Rodler. Cuckoo Hashing. Lec. Notes in Comp. Sci., pages 121–133,
2001.

[36] A. Partow. General Purpose Hash Function Algorithms Library.
http://www.partow.net/programming/hashfunctions/index.html.

[37] M. Pearson. Qdrtmiii: Next generation sram for networking.
http://www.qdrconsortium.org/.

[38] M. Ramakrishna and et Al. Efficient Hardware Hashing Functions for High Performance
Computers. IEEE Trans. on Comp., 46(12):1378–1381, 1997.

[39] Y. Rekhter and T. Li. An Architecure for IP Address Allocation with CIDR. RFC,
1993.

[40] Rick Merritt. Huawei Describes Smart Memory Chip. EE Times, August 2010.

[41] RIS. Routing Information Service. http://www.ripe.net/ris/, 2009.

[42] M. Ruiz-snchez, E. Biersack, and W. Dabbous. Survey and Taxonomy of IP Address
Lookup Algorithms. IEEE Network, 15(2):8–23, March 2001.

108

[43] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet Classification Using Multidi-
mensional Cutting. pages 213–224. ACM Sigcomm, 2003.

[44] H. Song and et Al. Fast Hash Table Lookup using Extended Bloom Filter: An Aid to
Network Processing. pages 181–192. ACM Sigcomm, 2005.

[45] H. Song, J. Turner, and S. Dharmapurikar. Packet Classification Using Coarse-Grained
Tuple Spaces. In IEEE/ACM ANCS, pages 41–50, 2006.

[46] E. Spitznagel, D. Taylor, and J. Turner. Packet Classification Using Extended TCAMs.
IEEE ICNP, 2003.

[47] V. Srinivasan, S. Suri, and G. Varghese. Packet Classification Using Tuple Space Search.
In ACM Sigcomm, pages 135–146, 1999.

[48] V. Srinivasan and G. Varghese. Fast Address Lookups Using Controlled Prefix Expan-
sion. ACM Trans. Comput. Syst., 17(1):1–40, 1999.

[49] J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, and B.-T. Kim. A Multi-Gigabit Rate
Deep Packet Inspection Algorithm using TCAM. pages 453–457. IEEE Globecom, 2005.

[50] D. Taylor and J. Turner. Classbench: A packet classification benchmark. In IEEE
INFOCOM, volume 15, pages 499–511, 2007.

[51] D. E. Taylor and J. S. Turner. Scalable packet classification using distributed crosspro-
ducing of field labels. volume 1, pages 269–280. IEEE Infocom, 2005.

[52] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1: An Inte-
grated Cache Timing, Power, and Area Model. Technical report, HP Labs.

[53] D. E. Turner. Survey and Taxonomy of Packet Classification Techniques. ACM Com-
puting Surveys, 37(3):238–275, 2005.

[54] G. Varghese. Network Algorithmics: An Interdisciplinary Approach to Designing Fast
Networked Devices. Morgan Kaufmann, 2005.

[55] Y. Wang, U. Bhattacharya, F. Hamzaoglu, P. Kolar, Y. Ng, L. Wei, Y. Zhang, K. Zhang,
and M. Bohr. A 4.0 GHz 291 Mb Voltage-Scalable SRAM Design in 32nm High-k Metal-
Gate CMOS with Integrated Power Management. In IEEE ISSCC, pages 456–457, 2009.

[56] Xilinx. ISim Hardware Co-Simulation Tutorial: Interacting
with Spartan-6 Memory Controller and On-Board DDR2 Memory.
http://www.xilinx.com/support/documentation/.../ug818 ddr2 mem tutorial.pdf,
March 2011. Xilinx Free Tutorials.

[57] Xilinx. Spartan-6 FPGA Data Sheet:DC and Switching Characteristics.
http://www.xilinx.com/support/documentation/data sheets/ds162.pdf, October
2011. Xilinx Free Tutorials.

109

[58] A. Yamazaki, N. Okumura, K. Dosaka, and M. Kumanoya. A fully synchronous circuit
design for embedded dram. In The Proceedings of the 22nd European Solid-State Circuits
Conference, ESSCIRC, September 1996.

[59] F. Yu, R. Katz, and T. Lakshman. Gigabit rate packet pattern-matching using tcam.
pages 174–183. IEEE ICNP, 2004.

[60] S. Yun. Hardware-Based IP Lookup Using n-Way Set Associative Memory and LPM
Comparator. Lecture Notes in Computer Science (LNCS), Springer, 4017:406–414, 2006.

[61] F. Zane, G. Narlikar, and A. Basu. CoolCAMs: Power-Efficient TCAMs for Forwarding
Engines. pages 42–52. IEEE Infocom, 2003.

110

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. An example of an 8-bit address space forwarding table.
	2. The statistics of the IP forwarding tables on January 31st 2009.
	3. The statistics of the ClassBench's 30K PC databases, where G0 @let@token G3 represent the top four groups containing the most rules of each database.
	4. The nine CA-RAM hardware configurations that we use in validating our PC solutions.
	5. The six variable string CA-RAM hardware configurations for DPI application.
	6. The TCAM equivalent sizes for different widths using Equation 7.1.
	7. The six optimal groups that we use in our DPI simulations.

	LIST OF FIGURES
	1. A generic router architecture with deep packet inspection capability.
	2. Splitting the hashing space into groups for (a) PF application, and (b) PC Application.
	3. The CA-RAM as an example of set-associative memory architectures.
	4. A simple key matching circuit for a generic CA-RAM.
	5. The binary trie representation of the forwarding table given in Table 1.
	6. The (a) Sliding window example, and (b) Its jumping window equivalent where w = m = 4.
	(a).
	(b).
	7. The CHAP basic concept.
	8. The CHAP(3,3).
	9. The evolution of the PH scheme.
	10. Applying the PH scheme on PF application.
	11. The CA-RAM as a packet forwarding engine.
	12. The CA-RAM prefix matching circuit for packet forwarding application.
	13. The histogram of the prefixes sharing the first 16 bits.
	14. The overflow of CHAP(1, m) vs. linear probing(1, m) for table rrc07.
	15. The (a) Average overflow, and (b) AMAT for CHAP(3,3) vs. RH(6) for fifteen forwarding tables for C1: {L = 180 , N = 2048}
	16. The (a) Average overflow, and (b) AMAT of RH(5) vs. GH(5) vs. PH(5) for fifteen forwarding tables for C1: {180 2048}.
	17. The (a) Average overflow, and (b) Average AMAT of CHAP(5,5) vs. PH(5) vs. PH_CHAP(5,5) for three configurations.
	18. The (a) Average overflow, and (b) AMAT of GH vs. PH vs. PH+I-Mark for fifteen forwarding tables for C1: {180 2048}.
	19. The CACTI results of CA-RAM vs. TCAM, where both has sizes of 2.5MB.
	20. The CA-RAM detailed architecture for the packet classification application.
	21. The range matching circuit for the CA-RAM PC application.
	22. The exact matching circuit for the CA-RAM PC application.
	23. Applying PH on packet classification application.
	24. The average tuple space representation of the 11 PC databases given in Table 3.
	25. An example of the TSS representation of ACL530K db of Table 3.
	26. The two CA-RAM architecture: an overview.
	27. The two CA-RAM architecture: the main CA-RAM row element format, the results vector format and the auxiliary CA-RAM row format.
	28. The auxiliary CA-RAM detailed architecture and its row format.
	29. The (a) Average overflow of GH(6) vs. PH(6) + I-Mark, and (b) AMAT & WMAT of PH(6) + I-Mark for the PC databases given in Table 3 for C1: {60 1K}.
	30. The (a) Average overflow for GH(6) vs. PH(6) + I-Mark, and (b) Average AMAT of PH(6) + I-Mark for the average PC databases in Table 3 for six hardware configurations.
	31. The Average Overflow of PH(6), PH(8) and PH(C) for the PC databases given in Table 3 for six hardware configurations.
	32. The Average AMAT of PH(6), PH(8) and PH(C) for the PC databases given in Table 3 for six hardware configurations.
	33. The average WMAT of regular PH(6), average PH(8) and custom cuts PH(C) for the PC databases given in Table 3.
	34. The regular single CA-RAM architecture vs. the equivalent two CA-RAM architecture, where L = L1 + L2.
	35. The overflow of the two CA-RAMs vs. the single CA-RAM architectures for the PC databases given in Table 3 for two hardware configurations.
	36. The AMAT of the two CA-RAMs vs. the single CA-RAM architectures for The PC databases given In Table 3 for two hardware configurations.
	37. The average overflow of single CA-RAM vs. two CA-RAM architectures for nine hardware configurations.
	38. The average AMAT of single CA-RAM vs. two CA-RAM architectures for nine hardware configurations.
	39. The overview of a DPI engine architecture.
	40. An example of a SNORT snort rule.
	41. The SNORT statistics: percentage of patterns vs. the pattern lengths.
	42. The modified CA-RAM variable-sized length patterns matching architecture.
	43. The input shifting circuit2 of Figure 42.
	44. The modified CHAP scheme example, where H = 4 and P = 2.
	45. The overflow and the AMAT (using I-Mark) of SNORT for C1: {512 256}, H = 3, 4, 5, 6 and Lmax = 8, 16, 36.
	46. The dynamic PH with I-Mark: (a) Overflow, and (b) AMAT of SNORT for H = 4 and Lmax = 8, 16, 36.
	47. The Dynamic PH + I-Mark: (a) Overflow, and (b) AMAT (I-Mark) of SNORT for H = 5 and Lmax = 8, 16, 36.
	48. The dynamic PH + modified CHAP(H, P) and I-Mark: (a) Overflow, and (b) AMAT (I-Mark) of SNORT for H = 5, P = 4 and Lmax = 8, 16, 36.
	49. The TCAM vs. CA-RAM in terms of: (a) Total time delay, (b) Maximum operating frequency, (c) Total dynamic power and (d) Total area.

	LIST OF ALGORITHMS
	1. The CHAP(H,H) Setup Algorithm.
	2. The CHAP Search Algorithm.
	3. The CHAP Insert Update Algorithm.
	4. The PH Setup Algorithm.
	5. The PH Search Algorithm.

	LIST OF EQUATIONS
	3.1. Equation (3.1)
	3.2. Equation (3.2)
	3.3. Equation (3.3)
	4.1. Equation (4.1)
	4.2. Equation (4.2)
	7.1. Equation (7.1)
	7.2. Equation (7.2)
	7.3. Equation (7.3)
	9.1. Equation (9.1)

	PREFACE
	1.0 INTRODUCTION
	2.0 THESIS OUTLINE, MOTIVATION AND CONTRIBUTIONS
	3.0 BACKGROUND
	3.1 General Open Addressing Hash
	3.2 Using Single Hash Table vs. Multiple Hash Tables
	3.3 Hashing With Wildcards
	3.4 The Content Addressable-Random Access Memory (CA-RAM) Architecture
	3.5 Related Work

	4.0 OUR DEVELOPED HASHING SCHEMES AND TOOLS
	4.1 Content-based Hash Probing (CHAP)
	4.1.1 The CHAP Setup Algorithm
	4.1.2 Search in CHAP
	4.1.3 The Incremental Updates Under CHAP

	4.2 The Progressive Hashing Scheme
	4.2.1 The PH Setup Algorithm
	4.2.2 Searching in PH
	4.2.3 Incremental Updates in PH

	4.3 The Independent (I)-Mark Scheme
	4.4 Conclusion

	5.0 THE PACKET FORWARDING APPLICATION
	5.1 The CA-RAM Architecture for Packet Forwarding
	5.2 Evaluation Methodology
	5.3 The Restricted Hashing-CHAP-based Solution
	5.4 The Progressive Hashing-based Solution
	5.5 Adding CHAP to Progressive Hashing
	5.6 Adding The I-Mark Scheme to The Progressive Hashing
	5.7 Performance Estimation of CHAP and PH
	5.8 Performance Estimation Using CACTI
	5.9 Conclusion

	6.0 THE PACKET CLASSIFICATION APPLICATION
	6.1 The CA-RAM Architecture for Packet Classification Using Progressive Hashing
	6.2 The PH and The I-Mark Hybrid Solutions
	6.3 The Dynamic TSS PH Solution
	6.3.1 The Setup Algorithm for Dynamic TSS Solution
	6.3.2 Incremental Updates For The Dynamic TSS Solution

	6.4 The Two CA-RAM Architecture for Dynamic TSS Solution
	6.4.1 The Architectural Aspects of The Two CA-RAMs PC Solution
	6.4.2 Incremental Updates For The Two CA-RAM Solution

	6.5 The Simulation Results and The Evaluation Methodology For Our PC Solutions
	6.5.1 Experimental Results for Progressive Hashing and I-Mark Hybrid Solution
	6.5.2 Experimental Results for Dynamic TSS Solution
	6.5.3 Results for The Two CA-RAM Memory Architecture Solution
	6.5.4 The Performance Estimation

	6.6 Conclusion

	7.0 THE DEEP PACKET INSPECTION APPLICATION
	7.1 Variable-Length String Matching Support For CA-RAM Architecture
	7.1.1 The FPGA Synthesis Results

	7.2 The Hybrid Dynamic Progressive Hashing and Modified CHAP Solution For The PM Problem
	7.3 The Simulation Results And The Evaluation Methodology For Our DPI Solution
	7.3.1 Sensitivity Analysis Results
	7.3.2 The Dynamic PH and Modified CHAP Results
	7.3.3 Comparison with TCAM

	7.4 Conclusion

	8.0 CONCLUSION AND SUMMARY FOR THE THESIS
	9.0 APPENDIX I
	BIBLIOGRAPHY

