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Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in 

severity from the common cold sore to life-threatening encephalitic infection.  During productive 

lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the 

replication of viral genomes and assembly of progeny virions.  Cleavage and packaging of 

replicated, concatemeric viral DNA into newly assembled capsids is critical to virus proliferation 

and requires seven viral genes: UL6, UL15, UL17, UL25, UL28, UL32, and UL33.  Analogy 

with the well-characterized cleavage and packaging systems of double-stranded DNA 

bacteriophage suggests that HSV-1 encodes for a viral terminase complex to perform these 

essential functions, and several studies have indicated that this complex consists of the viral 

UL15, UL28, and UL33 proteins.  However, the inability to purify the terminase proteins has 

hampered biochemical analysis of these proteins.  The goal of the following studies was to 

isolate a functional terminase complex from HSV-1-infected cells by affinity chromatography 

using a virus expressing a UL28-TAP fusion protein. The tandem affinity purification (TAP) 

procedure resulted in the isolation of soluble UL28 complexes containing the UL15 and UL33 

proteins.  Biochemical studies were performed to determine the protein composition and 

stoichiometry of the purified complex, and the associated nuclease activity was examined.  Mass 

spectrometry was utilized to identify viral and cellular proteins that associate with the complex 

during infection.  Finally, mutations or deletions within the nuclease domain of UL15 or the 
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metal-binding domain of UL28 were introduced into the genome of the NTAP-UL28 fusion 

virus.  Characterization of these viruses followed by the isolation of terminase complexes 

revealed that the domain mutations did not preclude complex formation but each virus was 

deficient in viral DNA cleavage, further demonstrating the importance of these domains during 

DNA encapsidation.  The ability to purify the endogenous terminase complex is novel to the 

field and we view these studies as a critical step in understanding how the terminase complex 

functions in the context of productive HSV-1 infection. 
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1.0  INTRODUCTION 

1.1 HSV-1 LINEAGE AND PATHOGENESIS 

1.1.1 The Human herpesviruses 

Herpesviruses are highly prevalent among mammals, to the point that a unique infecting 

herpesvirus has been identified in the majority of studied animal species (168).  Currently, nine 

herpesviruses are known to infect humans and these have been classified, based largely upon 

four architectural features shared between the mature virus particles, into the family 

Herpesviridae (Table 1) (2, 53, 168).  Herpesvirions are typically comprised of i) an inner core 

of linear double-stranded DNA (dsDNA) contained within ii) an icosahedral capsid composed of 

161 capsomers and 125 nm in diameter, which is surrounded by iii) a proteinaceous, asymmetric 

layer called the tegument, and iv) an outer lipid envelope that is studded with glycoproteins.  

Herpesviruses also share the following four biological criterion: i) expression of numerous 

enzymes required for viral processes such as nucleotide metabolism, DNA synthesis, and protein 

processing; ii) nuclear synthesis of viral DNA and capsids, with the final virion maturation steps 

occurring in the cytoplasm; iii) virus proliferation resulting in cell death; and iv) persistence in 

host cells in a latent form that can later reactivate to cause productive infection.  The family 

Herpesviridae is further divided into three specific subfamilies, Alpha-, Beta-, and 
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Gammaherpesvirinae that differ based upon viral characteristics such as host range and 

reproductive cycle length.  Herpes simplex virus type I (HSV-1) is the prototypical 

alphaherpesvirus and like other members of this subfamily, possesses a relatively short 

reproductive cycle (18-20 hr), spreads rapidly in cultured cells, and efficiently destroys infected 

cells (168). 

 

 

1.1.2 Pathogenesis and treatment 

A typical HSV-1 infection begins when the virus comes into contact with mucosal surfaces or 

abraded skin, entering host epithelial cells at these sites (Figure 1).  In the cell, the virus 

Table 1. The human Herpesviridae 
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proliferates resulting in a lytic or productive primary infection that spreads to adjacent sensory 

nerve cells.  Within neurons, the virus will traffic along the axon until it reaches the neuronal cell 

body, typically located within the trigeminal ganglia.  Here, the lytic gene expression cascade is 

repressed resulting in HSV-1 latency, a hallmark of the herpesviruses that allows viral infection 

to persist for the lifetime of the host.  Periodically during latency, numerous internal or external 

factors such as stress, fatigue, or immunosuppression, can trigger the virus to reenter the lytic 

phase resulting in the production of virions.  These viral progeny will traffic back along the 

neuronal axon to the periphery, at or near the site of initial infection, and this process is the basis 

of HSV-1 recurrent infection (71, 259). 

 

 
 

 

The majority of primary HSV-1 infections are asymptomatic; however symptomatic 

recurrences can occur and this depends largely on the immune status of the host (71, 259).  There 

are several clinical manifestations of HSV-1 disease, with the most common form being 

Figure 1. Model of recurrent HSV-1 infection. 
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orolabial lesions or cold sores (57). Ocular herpes, or herpes keratitis, is a leading cause of 

blindness in developed countries, while other less common presentations of HSV-1 disease 

include herpes gladiatorum, herpetic whitlow, and eczema herpeticum (57, 71).  Life-threatening 

infections are rare but include: neonatal herpes, virus transmission from an infected mother to the 

baby during delivery; herpes encephalitis, infection of the brain; and severe infections of 

immunocompromised patients (57).  Infection incidence is lower through adolescence in 

developed countries, but by adulthood the majority (60-80%) of humans worldwide are 

seropositive for HSV-1 (57, 143).  It is also very likely that the incidence rate is much higher due 

to a lack of self-reporting by infected individuals (57).   

Nucleoside analogues represent the standard for treatment of HSV-1 infection and 

include aciclovir, valaciclovir, penciclovir, and famciclovir.  These antiviral agents are 

guanosine analogues that cause inhibition of viral DNA polymerase activity and chain 

termination when added to a replicating viral DNA strand (71).  They exhibit low toxicity 

towards uninfected host cells and are very effective in immunocompetent individuals; however, 

resistant strains have been isolated from bone marrow transplantation recipients at rates as high 

as 14% (57).  In patients with resistant HSV-1, other drugs such as foscarnet and cidofovir may 

be used, but both exhibit significant toxicity toward host cells (71).  With the 

immunocompromised population world-wide expanding due to factors such as aging, cancer, and 

AIDS, there is an increasing demand for novel HSV-1 antivirals that target essential viral 

processes or structures other than viral DNA replication. 
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1.2 THE HSV-1 VIRION 

1.2.1 Virion morphology 

The mature HSV-1 virion is pleiomorphic but largely spherical, with an average diameter of 186 

nm at the base of the envelope that extends to approximately 225 nm when the glycoprotein 

spikes are included (85).  As previously discussed (Section 1.1.1), like all members of the 

Herpesviridae the HSV-1 virion is composed of four main architectural features: envelope, 

tegument, capsid, and core (Figure 2) (168). 

 

 
 

 

 

 

The outer envelope is arranged as a lipid bilayer containing multiple copies of 

approximately eleven viral glycoproteins that protrude externally and a small number of intrinsic 

membrane proteins (68).  Experimental evidence supports that the envelope is obtained from the 

Figure 2. Structure of the HSV-1 virion. The 
diagram depicts the four major structural 
components of the HSV-1 virion: (i) the outer 
envelope studded with various glycoproteins, (ii) 
the proteinaceous tegument layer, and (iii) the 
icosahedral capsid that houses (iv) the dsDNA core. 
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host cell and possesses lipid content similar to that found in the cellular cytoplasmic membrane 

(214, 239).   

The viral tegument layer is located in the space between the envelope and capsid, and 

occupies approximately two-thirds of the volume within the virion.  Cryo-electron tomography 

of the HSV-1 virion revealed that the tegument is asymmetrical in structure; where at one side of 

the virion there is approximately 35 nm of tegument between the envelope and the capsid, and at 

the opposite side the capsid resides in close proximity to the envelope.  These studies also 

showed that the tegument substructure was particulate in appearance and contained short actin-

like filaments (85).  The tegument is largely proteinaceous, containing multiple copies of twenty-

three viral proteins, but has also been shown to contain viral and cellular gene transcripts (126, 

202).  Mass spectrometry analysis of purified virions has also identified several cellular proteins 

that may be tegument components; however these results are yet to be verified (126). 

The structure of the HSV-1 capsid has been described in great detail owing to numerous 

studies utilizing cryo-electron microscopy (cryo-EM) and three-dimensional image 

reconstruction of isolated capsids (26).  The viral capsid is 125 nm in diameter, with its 

component proteins positioned on a T=16 icosahedral lattice (Figure 3) (31, 201, 261).  Each 

capsid is composed of 161 major structural protein subunits termed capsomers, which can be 

divided more specifically into the 150 hexons that constitute the edges and faces of the 

icosahedron, and eleven pentons that reside at all but one vertex of the capsid (155, 261).  

Respectively, the pentamers and hexamers are composed of five and six copies of the major 

capsid protein, VP5 (157).  The unique capsid vertex not occupied by a VP5 pentamer is the site 

of the portal complex through which DNA enters or exits the capsid.  The portal is cylindrical in 

geometry and composed of twelve copies of the UL6 protein (155).  Positioned at the tip of each 
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VP5 protein of every capsid hexamer is one copy of the VP26 protein, which totals 900 copies 

per capsid (24, 157).  Located just above the capsid floor at positions of threefold capsomer 

symmetry is the triplex complex, which functions in linking capsomers during capsid formation 

(157, 234, 279).  There are 320 triplexes per capsid and each is composed of one subunit of 

VP19C and two subunits of VP23 (157).  Recent cryo-EM studies have determined the presence 

of an additional capsid component residing around each vertex, termed the capsid vertex specific 

component (CVSC).  Each CVSC is a heterodimer of the UL25 and UL17 proteins, and is 

thought to stabilize the capsid during and after completion of DNA packaging (41, 45, 229, 232, 

236).  One final capsid component is the VP24 protease, which cleaves the scaffolding proteins 

during capsid maturation; however the precise location and function of this protein within virions 

is not yet known (126, 215). 

 
 

 

 

Figure 3. The capsid structural proteins. The schematic diagram depicts the location 
of the major and minor capsid components. (Top) The UL6 portal situated at a unique 
penton vertex and the location of the CVSC. Of note, CVSC molecules are situated 
between hexons at each capsid vertex but for simplicity are only depicted at a single 
vertex. (Bottom) Position of the pentons (P, blue), hexons (H, orange), VP26 (red 
circles) and triplexes (green triangles) on one face of the T=16 icosahedral lattice. 
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The HSV-1 virion core is located within the viral capsid and contains the linear, dsDNA 

genome (69, 261).  Cryo-EM analysis of purified virions suggests that the packaged DNA resides 

in a liquid-crystalline state as a toroid or spool structure, with strands spaced approximately 2.6 

nm apart (23, 77, 278). 

1.2.2 Genome structure and sequence arrangement 

The linear, dsDNA genome of HSV-1 has been sequenced and totals 152,261 base pairs (bp), 

with a G+C content of 68.3% (66, 110, 131).  This large molecule consists of covalently linked 

long and short regions of unique viral sequence (UL and US respectively) that are both flanked by 

repeated sequences (Figure 4).  The UL component is bracketed by inverted copies of the b 

sequence, which differ in size and sequence arrangement from inverted copies of the c sequence 

that flank the US component (247).  Repeated a sequences are located at the termini of both the 

UL and US components and at the junction between both components, and vary in orientation and 

copy number depending on their position in the genome (125, 188, 189, 247, 248).  The a 

sequences are highly conserved and mediate processes (i.e. cleavage and packaging of viral 

DNA) critical to the research described in the remainder of this document (237).  A detailed 

discussion of a sequence structure and function can be found in section 1.4.5. 

 

 

 
 

 

Figure 4. Structure and sequence arrangement of the HSV-1 genome.  
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An interesting characteristic of the HSV-1 genome is the ability of the long and short 

regions to invert relative to one another.  Genomic DNA isolated from cells infected with wild-

type HSV-1 is observed as four linear, isomeric forms in an equimolar concentration and 

designated as P (prototype), IL (inversion of the long component), IS (inversion of the short 

component), and ISL (inversion of the both components) (61, 87).  Sites within the viral a 

sequences have been shown to be responsible for the recombination events leading to genome 

isomerization, however the physiological significance of these isomers is not known (38, 137, 

209, 210). 

1.3 MOLECULAR BIOLOGY OF HSV-1 LYTIC INFECTION 

1.3.1 Virus entry and capsid transport 

The HSV-1 replication cycle begins with virus entry into the host cell.  This process, although 

not fully understood, has been shown to occur through a series of highly regulated interactions 

between several viral glycoproteins and host cell receptors.  Five viral glycoproteins participate 

in binding and entry and include: gC, gB, gD, gH, and gL (68).  The virion initially attaches to 

heparan sulfate proteoglycans on the host cell surface via gC and/or gB, followed by the 

interaction of gD with one of three cellular receptors; nectin-1, herpesvirus entry mediator, or 3-

O-sulfated heparan sulfate (213).  The gD/receptor interaction initiates a series of protein 

conformational changes and interactions that lead to fusion of the viral and cellular membranes.  

First, gD bound to a cellular receptor interacts with a heterodimer of the gH and gL proteins.  

The gH/gL proteins then bind gB, activating it to a fusogenic form that brings the viral and 
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cellular membranes into close proximity and ultimately results in membrane fusion (68).  It is 

important to note that fusion has been observed to occur at the cell surface or within an endocytic 

vesicle.  However, what determines the specific route of entry is not fully known, but appears to 

be based largely upon the cell type that the virus infects (88). 

Membrane fusion releases the viral capsid and tegument proteins into the host cell 

cytoplasm, where they travel to varying locations within the cell.  Many of the tegument proteins 

remain in the cytoplasm at the cellular membrane while others localize to the nucleus.  Some 

tegument proteins remain associated with the viral capsid which exploits the cellular 

microtubular network for transport to the nucleus (120).  Specifically, the cellular dynein-

dynactin motor complex is recruited to the capsid, where it is thought to interact with the 

remaining components of the inner tegument.  The UL36 and UL37 tegument proteins appear 

most likely to mediate this interaction, while there is also evidence suggesting that the VP26 

capsid protein plays a role in stabilizing this interaction.  The capsid is transported along 

microtubules, in a bidirectional manner, to the cytoplasmic side of the infected cell nucleus, 

where it localizes to a nuclear pore complex.  The capsid binds the nuclear pore, releasing viral 

DNA into the nucleus, and recent evidence suggests that both processes are mediated by the 

UL36 and/or UL25 proteins (65, 120, 161, 177). 

1.3.2 The viral gene expression cascade and genome replication 

Upon entering the nucleus, the host cell recognizes the incoming viral DNA and will begin to 

modify it into condensed chromatin structures.  It is during these early time points that the viral 

“decision” to actively proliferate or establish a latent infection is thought to occur (111).  The 

viral tegument proteins VP16 and VP22 are thought to promote lytic infection by reducing 
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histone association with viral DNA, therefore maintaining active forms of chromatin (89, 240).  

It is important to note that, although interesting, the details surrounding the latent infection 

process are beyond the scope of this manuscript and will not be covered. 

During lytic infection, over 80 HSV-1 genes are coordinately expressed in an ordered 

cascade that is highly regulated by several viral proteins, and involves three expression groups of 

immediate early (IE), early, or late genes (40, 97, 98).  Transcription occurs within the nucleus 

and translation occurs in the cytoplasm, with both processes utilizing viral and cellular 

components.  The viral gene expression cascade coincides with a series of nuclear remodeling 

events that together allow for efficient gene expression, DNA replication, and assembly and 

egress of newly synthesized virus capsids (191), and the details of these processes are described 

below. 

Soon after entering the nucleus and before viral protein synthesis, the input viral DNA is 

thought to circularize (79, 172, 220, 221) and localize to specific nuclear domains termed ND-10 

sites (129).  During this process, the IE or α genes are transcribed by the host RNA polymerase 

II and this expression is stimulated by the viral tegument protein VP16 (8, 27, 50, 174).  The α 

genes are unique compared to the other HSV-1 gene groups in that they require no prior viral 

protein synthesis for expression.  There are five α genes; ICP0, ICP4, ICP22, ICP27, and ICP47, 

and they are expressed approximately 2-4 hpi (97).  The α proteins perform numerous functions 

including the promotion of viral gene expression by inhibiting host transcription, RNA splicing 

and transport, and protein synthesis.  The α proteins also play a large role in the regulation of 

viral gene expression, and with the exception of ICP47, stimulate transcription of the viral early 

genes (98, 130). 
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Expression of the viral early or β gene class is dependent on the presence of functional α 

proteins, especially ICP4, and does not require viral replication (98, 107, 253).  The β genes are 

expressed 4-8 hpi but are further classified as β1 or β2 depending largely on the timing of 

expression within this 4-8 hr period (97, 276).  Expression of β1 genes occurs early in infection 

and very shortly after expression of the α genes, while β2 gene synthesis is delayed after α 

protein expression.  The β gene class encodes proteins that function largely in nucleotide 

metabolism and viral DNA replication, and the synthesis of β2 genes signals the beginning of 

viral DNA synthesis within the host cell nucleus (191). 

Replication of the HSV-1 genome requires seven β proteins; UL30, UL42, UL9, UL29, 

UL5, UL8, and UL52, and their functions during replication are shown in Table 2 (34, 265).  

These proteins localize to viral genomes at ND-10 structures where they assemble onto the 

circular viral DNA molecule to form replication complexes [reviewed in (251)].  The prevailing 

model for HSV-1 DNA synthesis begins with the production of new genomes via a theta 

mechanism.  However the replication machinery quickly converts to a rolling circle mechanism, 

producing the head-to-tail, branched, concatemeric molecules that are typically observed in the 

nuclei of infected cells [reviewed in (20)].  During this process, the replication compartments 

expand to fill the nucleus, coinciding with the condensation and marginalization of host 

chromatin to provide optimal space for viral DNA synthesis (191). 
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Throughout the replication process, numerous host factors and proteins are recruited to 

the replication compartments to perform varying functions (257).  Several host replication 

proteins such as DNA polymerase α and DNA ligase have been observed, and may be required 

for HSV-1 DNA synthesis (58, 260).  During viral genome replication, host DNA repair 

pathways are activated to high levels and several host DNA repair, damage response, and 

recombination proteins have also been shown to localize to replication compartments (121, 262).   

Of note, it is during viral DNA synthesis when recombination occurs between genomes to 

produce the four isomeric genome types (254).  However, the exact mechanism or proteins 

required for this process has not been fully elucidated. 

The final set of HSV-1 genes expressed during lytic infection are the late or γ genes.  The 

γ genes are classified by expression that starts after, and is enhanced by, viral genome replication 

(97).  More specifically, γ gene transcription is stimulated by viral DNA replication, resulting in 

the net effect of greater protein expression (82, 99).  Several α proteins and the β protein ICP8 

also enhance γ gene transcription (78, 162).  As with the β genes, the γ genes are further 

classified as γ1 or γ2 depending on time of, and requirements for, expression.  The γ1 genes, also 

known as early/late or leaky late genes, are expressed relatively early with slight stimulation by 

Table 2. Essential viral replication proteins 
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DNA synthesis, while the γ2, or true late genes, are expressed late and have a more strict 

requirement on DNA replication for expression (44, 48, 94, 107, 175).  At this point in the 

discussion, it is important to note that the β and γ gene groupings are not hard and fast, and 

viewing β2 through γ2 gene expression as more of a continuum, is probably a more realistic 

representation of the events during lytic infection (191). 

The majority of γ genes encode for structural proteins required for the assembly of 

infectious virions, and many of these proteins are needed in large amounts (74).  The extensive 

remodeling events that take place in the host cell nucleus throughout the lytic infection process 

are critical for high efficiency expression of the γ genes.  By the onset of γ gene expression, the 

viral replication compartments have expanded to fill the nucleus, and it is here that high 

efficiency transcription of the γ genes occurs (133). 

1.3.3 Capsid assembly and DNA packaging 

HSV-1 capsid formation and the subsequent packaging of capsids with replicated viral DNA are 

processes that are central to this manuscript and will be covered in greater detail below (Section 

1.4).  Briefly, the proteins required for capsid assembly and DNA encapsidation are synthesized 

with γ gene class kinetics within the cytoplasm, and localize to the infected cell nucleus.  Both 

processes occur within replication compartments at sites near viral DNA replication, and to date, 

have not been shown to require cellular proteins (46).  Capsid formation consists of capsid 

structural proteins assembling around an internal scaffold to produce empty, spherical, precursor 

capsids that are competent for DNA packaging.  Replicated viral DNA concatemers are then 

cleaved into monomeric genomes that are packaged into capsids.  DNA packaging is thought to 
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trigger cleavage of the internal scaffold protein, resulting in the structural transformation of the 

capsid into a mature, polyhedral form.  During encapsidation, additional proteins are added to the 

outer capsid shell that function in stabilization and may also aid in the egress of DNA-filled 

capsids from the nucleus (28, 46). 

1.3.4 Egress and envelopment 

After the completion of DNA packaging, viral nucleocapsids exit the host cell nucleus and 

traverse the cytoplasm to ultimately exit the host cell.  Along the way, the nucleocapsids will 

acquire necessary tegument and envelope components resulting in the assembly of a mature 

infectious HSV-1 virion.  The details surrounding this process have not been fully elucidated and 

the model for HSV-1 egress and envelopment has been contested within the field.  However, a 

model consisting of sequential envelopment, de-envelopment, and re-envelopment steps has 

become more widely accepted and will be described below (reviewed in (106, 134)). 

Initially, completed viral nucleocapsids utilize nuclear actin filaments for transport to the 

inner nuclear membrane (224), where they are thought to interact with a heterodimeric complex 

of the viral UL34 and UL31 proteins (75, 181, 182), termed the nuclear envelopment complex 

(NEC).  The nucleocapsids bud through the inner nuclear membrane, releasing primary-

enveloped virions into the perinuclear space, and during this initial envelopment, the virion 

acquires a small subset of tegument components.  Virions within the perinuclear space possess 

viral glycoproteins on the outer surface of the primary envelope (106).  Glycoproteins gB and gH 

are essential for membrane fusion during virion entry into the host cell (discussed in Section 

1.3.1) and these proteins may also mediate fusion of the primary envelope of perinuclear virions 

with the outer nuclear membrane (70).  Fusion results in the release of de-enveloped 
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nucleocapsids into the cytosol, where they acquire the bulk of the virion tegument proteins.  

Secondary envelopment occurs when the tegument-coated nucleocapsids bud through 

membranes of the trans-Golgi network, producing mature virions that possess a full complement 

of tegument and envelope proteins.  The assembled virions exit the trans-Golgi network within 

vesicles that are transported to, and released from, the plasma membrane via an exocytic 

mechanism; resulting in extracellular HSV-1 virions that can go on to infect additional host cells 

(106, 134). 

Critical to the above model is the NEC, with both the UL34 and UL31 proteins being 

required for primary envelopment at the inner nuclear membrane (37, 181, 192).  The NEC also 

recruits viral and cellular kinases, such as US3, UL13, and protein kinase C that phosphorylate 

components of the nuclear lamina.  Phosphorylation results in disruption of the lamina and 

expansion of the nucleus; effects that aid in the egress of nucleocapsids (19, 118, 127, 140, 141, 

164, 180, 207).   

Also of interest is the suggestion that the NEC may preferentially associate with DNA-

containing C-capsids versus other immature capsid forms, thus enhancing infection efficiency 

(106, 190).  One explanation for this phenomenon is the potential interaction of the NEC with the 

CVSC component (UL25/UL17 heterodimer) of viral capsids (106, 236), and it has been shown 

that UL25 is found on all capsid forms but in increasing amounts from procapsids to B-, A-, C-

capsids and virions (149, 204).  Components of the HSV-1 terminase complex have also been 

implicated, as enveloped capsids lacking DNA have been observed in cells infected with viruses 

encoding nonfunctional UL33, UL15, or UL28 proteins (9, 225, 269), and it has been proposed 

that terminase subunits inhibit the NEC/capsid interaction based upon the observation that the 

UL15 and UL28 proteins appear to only transiently associate with immature capsid forms, as 
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they are not observed on C-capsids (11, 15, 16, 194, 204, 274).  On the other hand, the UL33 

terminase subunit, which associates equally well with each capsid type (15, 179, 263), has been 

shown to interact with both UL31 and UL34, and this interaction is conserved in varicella zoster 

virus (VZV), Kaposi sarcoma-associated herpesvirus, Epstein-Barr virus, and murine 

cytomegalovirus (73).  Clearly further experiments need to be performed in order to elucidate the 

importance of the NEC interaction with the capsid surface. 

1.4 HSV-1 CAPSID ASSEMBLY AND DNA ENCAPSIDATION 

1.4.1 Similarities with dsDNA bacteriophage 

HSV-1 capsid formation and DNA encapsidation are vital for virus proliferation, and numerous 

biochemical and electron microscopic studies have provided researchers with a wealth of data 

concerning capsid structure, essential capsid proteins, and the capsid assembly pathway (26, 28, 

46).  Common to many of these studies are the observed similarities between HSV-1 capsid 

structure and formation compared to that seen with tailed dsDNA bacteriophages such as HK97, 

P22, and T4, and it has been proposed that capsids from both families may have descended from 

a common ancestor (13, 28, 115, 216).  Several lines of evidence also suggest that the DNA 

cleavage and packaging reaction is similar between HSV-1 and dsDNA phage (12).  Key 

features shared between these virus families include:  i) utilization of a scaffolding protein for 

capsid formation that is not observed in capsids of the mature virion or phage; ii) a spherical 

procapsid intermediate form that precedes the mature polyhedral form; iii) the incorporation of a 

dodecameric portal protein at a unique capsid vertex through which DNA is packaged in an 



 18 

ATP-dependent manner; iv) endonucleolytic cleavage of DNA concatemers to generate 

individual, unit-length genomes; and v) conformational changes within the capsid that coincide 

with DNA packaging, termed expansion  (12, 28, 46).  These similarities have aided greatly in 

elucidating the roles of the individual HSV-1 subunits during capsid formation and DNA 

encapsidation. 

1.4.2 The four viral capsid forms 

During HSV-1 lytic infection, four types of capsids are formed within the infected cell nucleus.  

Procapsids are a fragile, precursor form of the more stable A-, B-, and C-capsids (80, 151, 186).  

Each capsid type possesses a distinct morphology when viewed by EM, and the A-, B- and C-

capsids can be separated relative to each other by sucrose density gradient ultracentrifugation 

(Figure 5) (80, 151, 158).  The four capsid types share a similar shell structure [detailed in 

Section 1.2.1], but differ in the minor proteins of the capsid exterior and in the contents of the 

capsid cavity (Table 3). 
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Procapsids represent the first completely enclosed structures formed during the capsid 

assembly process, and possess an outer shell that is porous and largely spherical in shape (151-

153, 158, 222).  Procapsids are a precursor form of the other capsid types and have the potential 

to mature into a more angularized form, package DNA, and assemble into infectious virions 

Table 3. Protein components of the four capsid types.  An “X” indicates the protein is not present. 

Figure 5. Isolation and morphology of the four capsid types. 
Schematic representation of capsids isolated by sucrose density 
gradient centrifugation and the salient morphological features 
differentiating the four capsid types. Procapsids are unstable 
and cannot be isolated by gradient centrifugation. The relative 
molecular mass (Mr) of each capsid is shown (157). 
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(Table 4) (39, 90, 176, 234).  A-capsids are essentially hollow, containing very little DNA or 

protein content within the capsids cavity, and are thought to form as a result of unsuccessful 

DNA packaging (23, 80, 201, 205).  The cavity of B-capsids possesses a core largely composed 

of VP22a, the cleaved form of the scaffolding protein, and considerably lower amounts of the 

UL26 gene products, VP21 and VP24 (122, 123, 147).  B-capsids are angularized and thought to 

mature without ever encountering the DNA encapsidation machinery (80, 151).  C-capsids 

represent the products of successful DNA packaging events and contain a single, complete HSV-

1 genome (23, 201).  C-capsids can exit the nucleus for further assembly into infectious virions, 

and are similar, if not identical, to the capsids found within mature virions (23, 80, 170).  Each of 

the four capsid types are assembled in varying quantities during wild-type HSV-1 infection, but a 

specific capsid form will accumulate to higher levels within the infected cell nucleus if a 

particular viral protein(s) is missing or nonfunctional (Table 4) (95, 158).  This observation has 

provided researchers with the ability to isolate relatively large quantities of the individual capsid 

types, which has proven invaluable toward the determination of capsid structure and elucidation 

of the overarching capsid assembly process. 

 

 

 

Table 4. Role of the four capsid types during infection. 
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1.4.3 The internal scaffold and maturational protease 

Viral capsids co-assemble with an internal protein scaffold that is subsequently cleaved and 

expelled from the capsid during, or before, DNA packaging [reviewed in (12)].  The scaffolding 

proteins and protease responsible for scaffold cleavage are gene products of the overlapping 

UL26 and UL26.5 ORFs of HSV-1 (Figure 6).  UL26 encodes the maturational protease, while 

UL26.5 encodes pre-VP22a, the primary scaffolding protein utilized during capsid assembly (56, 

123, 124, 171, 185).  Pre-VP22a is identical in sequence to the C-terminal 329 residues of UL26 

(123).  Therefore, the C-terminus of UL26 can also serve as a scaffold, and both proteins interact 

with the major capsid protein, VP5, during capsid assembly (63, 100, 122, 227, 252). 

 

 

 

 

 

Upon successful assembly of a spherical procapsid, the maturational protease autocleaves 

itself at two specific sites termed R and M (Figure 6).  Cleavage releases the N-terminal VP24 

protease and C-terminal VP21 scaffold domains, leaving the final 25 amino acids at the interface 

Figure 6. Proteolytic processing of the scaffolding proteins by the 
maturational protease. Gene names are underlined, protein names are 
not.  Dashed lines through genes indicate cleavage sites. Numbers indicate 
amino acid residues. 
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with VP5.  Pre-VP22a also contains the C-terminal M-site and is cleaved by the liberated VP24 

protease, releasing the VP22a scaffold domain and leaving the final 25 residues bound to VP5 

(64, 122, 171, 185, 255). 

1.4.4 Assembly of viral capsids 

In vitro assembly assays utilizing HSV-1 capsid proteins expressed by recombinant 

baculoviruses have been critical towards unraveling the mechanism of capsid formation 

[reviewed in (95)].  Using an in vitro assembly system, it was determined that VP5, VP19C, 

VP23, and either pre-VP22a or the maturational protease (UL26 gene product), were the 

minimum proteins required for the formation of morphologically normal capsids (151, 153, 222, 

228).  The in vitro system also identified the formation of intermediate or partial procapsid 

structures during assembly and identified that HSV-1 utilizes a procapsid structure that is similar 

to the empty proheads seen during dsDNA bacteriophage assembly [(151-153, 234), reviewed in 

(32)]. 

Soon after protein synthesis, molecules of VP5, VP23, and VP26, which cannot 

translocate to the nucleus independently, interact with either pre-VP22a or VP19C for nuclear 

localization (62, 159, 184).  Once in the nucleus, capsid formation is thought to initiate around 

the UL6 portal protein (Figure 7A) (150).  Interacting VP5/pre-VP22a subunits will begin to 

assemble around the portal via an interaction between pre-VP22a and UL6 (100, 101, 152, 156, 

227).  Assembly continues as interacting VP5/pre-VP22a subunits interact with other VP5/pre-

VP22a complexes, due to the ability of the pre-VP22a molecules to self-associate (152, 169, 

264).  Triplex proteins are added to the partial procapsid structure, which continues to grow into 

a spherical procapsid (151-153, 222, 228, 234).  Of note, the UL17/UL25 CVSC complex and 
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proposed terminase complex of UL15, UL28, and UL33 have been detected on procapsids, 

suggesting they assemble onto the capsid before the start of DNA encapsidation (204, 230).  At a 

time point before, or coinciding with, DNA packaging the scaffold is cleaved from the procapsid 

interior, resulting in the angularization of the spherical procapsid shell to a mature, icosahedral 

form (Figure 7B) (39, 90, 151, 170).  Procapsids that proceed through this structural 

transformation without encountering the DNA packaging machinery form the B-capsids (151).  

DNA packaging results in the expulsion of the cleaved scaffolding proteins from the capsid 

cavity (80, 185).  However, the cleaved VP24 protease remains within the capsid (56, 80), 

although its function after scaffold cleavage and DNA encapsidation is not known.  Capsids that 

have initiated DNA packaging but are unstable, or abort the packaging process early, release the 

viral DNA resulting in the hollow A-capsid form (205).  Stable capsids containing a complete 

viral genome represent the C-capsids that can egress from the nucleus and assemble into mature 

virions (170). 
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1.4.5 Specific cleavage and packaging sequences within the HSV-1 genome 

HSV-1 DNA replication produces branched, head-to-tail concatemers of viral genomes that must 

be cleaved and packaged into capsids as individual, unit-length monomers.  The specific signals 

for DNA cleavage are located within the repeated a sequences, which contain all of the necessary 

cis-acting sequences for genome maturation (59, 60, 139, 211, 212, 218, 219, 241, 246).  The 

viral a sequences are located within the inverted repeats that flank the UL and US segments of the 

viral genome.  As discussed above (Section 1.2.2), the UL component is flanked by the repeats 

Figure 7. Capsid assembly and DNA packaging. (A) The procapsid assembly pathway. (B) 
Cleavage and packaging of viral DNA results in the formation of A-, B-, and C-capsids 
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ab and b’a’, while the US component is flanked by a’c’ and ca (Figure 8A).  The number of a 

sequence repeats located at the UL terminus and at the junction between the UL and US segments 

vary, while there is only one a sequence at the termini of the US segment (247, 248).  The a 

sequences are highly conserved in structure, but contain many variably repeated elements 

(Figure 8B) (237).  Each a sequence consists of directly repeated elements (DR1) at each end 

that flank unique sequence stretches (UB and UC).  Located between the unique sequences are 

two additional directly repeated elements (DR2 and DR4) that vary widely in their number of 

copies per a sequence.  Due to the variation in copy number of the DR2 and DR4 elements, the 

size of each a sequence can vary from approximately 465-550 bp (55, 138).  In regions of the 

genome containing multiple a sequences (ie. the L-S junction), adjacent a sequences share the 

intervening DR1 element (138). 

 



 26 

 

 

 

The cis-acting signals for DNA cleavage have been mapped to specific domains termed 

pac1 and pac2, located within the UB and UC sequences respectively (Figure 8C) (59, 60, 136, 

144, 241).  The pac1 domain is characterized by two stretches of 5-8 G nucleotides that are 

separated by a 3-7 nucleotide T-rich region, while pac2 contains a conserved CGCCGCG motif 

near a run of 5-10 T nucleotides (59).  Cleavage of the dsDNA occurs at a defined distance from 

Figure 8. Structure and essential cis-acting elements within the viral a sequences. (A) Structure and 
sequence arrangement of the HSV-1 genome.  (B) a sequence elements. (C) Sequence of the pac 
motifs. (D) Cleavage within the shared DR1 element of adjacent a sequences. 
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both the pac1 and pac2 elements (241), making a site-specific cut within DR1 (59).  However, it 

is important to note that although DR1 contains the site of cleavage, the specific sequence is not 

required; only the defined distance from either pac element (241). 

Replication of the viral genome produces concatemers where only the L component 

terminus is exposed.  The S component terminus is covalently bound to the L component of the 

following genome within the concatemer (128, 203, 275).  This observation has led to the 

suggestion that DNA packaging initiates at the L component terminus and completes at the S 

component terminus, and in vitro uncoating assays have demonstrated that the S component 

terminus exits the capsid first (148).  Following this model, it is thought that the initial cleavage 

of the concatemer is directed by pac2, resulting in the terminal a sequence of the L component 

possessing a truncated, beginning DR1 element of 18 base pairs with a 3’ G nucleotide extension 

(Figure 8D).  Cleavage by pac1 results in the terminal a sequence of the S component possessing 

a final truncated DR1 element of one base pair with a 3’ C nucleotide overhang (12, 139).  The 

second pac1-mediated cleavage frees the linear, monomeric genome from the concatemer for 

packaging to complete.  During subsequent rounds of infection, the DR1 overhangs allow for 

circularization of the viral genome for replication (139). 

1.4.6 Essential DNA encapsidation proteins 

Studies utilizing HSV-1 mutants encoding temperature-sensitive or null mutations  have revealed 

that successful encapsidation of HSV-1 DNA requires the protein products of seven viral genes; 

UL6, UL15, UL17, UL25, UL28, UL32, and UL33 (3, 4, 6, 10, 33, 116, 117, 132, 165, 166, 173, 

195, 198, 205, 206, 225, 256, 272).  Six of these proteins are required for viral DNA cleavage 

(UL6, UL15, UL17, UL28, UL32, UL33), and when even one is missing or nonfunctional, 
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concatemeric DNA and B-capsids accumulate within the infected cell nucleus.  In the absence of 

a functional UL25 protein, cleaved viral genomes and A-capsids accumulate within the infected 

cell nucleus, indicating a defect in packaging.  With the exception of UL32, each of the essential 

cleavage and packaging proteins have been identified as minor components of the HSV-1 capsid, 

and interact in varying amounts with each capsid type (15, 16, 84, 132, 165, 194, 204, 230, 263, 

274).  Proposed functions for each protein have been ascribed based upon analogy with essential 

DNA encapsidation proteins utilized by dsDNA bacteriophage (32).  More recently the roles of 

several of the essential HSV-1 cleavage and packaging proteins have been better defined using 

genetic and biochemical methods, along with electron microscopy. 

 Twelve copies of the UL6 protein form the ring-like portal structure through which viral 

DNA enters and exits the capsid (30, 35, 155, 235).  This observation was initially determined 

from immunoelectron microscopy analysis of portal structures from isolated capsids, and EM 

examination of portal structures formed in vitro, using soluble UL6 monomers purified from 

recombinant baculovirus infected cells (155).  The formation of stable portal ring structures has 

been shown to require a putative leucine zipper domain within UL6, and disulfide bond 

formation between UL6 monomers (7, 145).  EM analysis has determined that the HSV-1 portal 

structure is similar to the portals of dsDNA bacteriophage, and that it resides at a single, unique 

capsid vertex (14, 30, 35, 235).  In vitro capsid assembly assays revealed that UL6 interacts 

directly with the pre-VP22a scaffold protein (150, 156), and further studies using deletion 

mutants determined that amino acids 143-151 of the scaffold are required for this interaction 

(102, 208, 266).  The in vitro capsid assembly assays also demonstrated that not only is the 

scaffold/portal interaction required for portal incorporation, but the portal proteins must be 

present when capsid assembly initiates in order to be incorporated into the capsid (150, 156).  
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These results suggest that capsid assembly initiates around the portal and that a regulatory 

mechanism must be in place to ensure that each capsid contains only one portal (30, 35, 150, 

156). 

 The UL25 protein is unique relative to the six other essential DNA encapsidation 

proteins, in that when UL25 is not functional viral DNA concatemers are cleaved and A-capsids 

accumulate within the nucleus (3, 41, 42, 132, 163, 217).  Analysis of replicated viral DNA from 

UL25 mutants revealed that the L terminus was cleaved correctly, while cleavage at the S end of 

the genome was aberrant or did not occur (217).  Taken together, these data suggest that UL25 

plays a role in capsid stabilization during DNA packaging not unlike the “head-completion” 

proteins utilized by dsDNA bacteriophage (32).  The UL25 protein is also observed in increasing 

amounts from procapsids, to B-, A-, then C-capsids, and finally virions, further supporting a role 

in capsid stabilization, with increasing amounts of UL25 protein added as encapsidation 

progresses (132, 149, 204).  Visual confirmation of this role has come from cryo-EM analysis of 

capsids, revealing that UL25 interacts with the capsid surface in a 1:1 heterodimer with a second 

essential encapsidation protein, UL17 (41, 232, 236).  This complex has been observed on A-, B-

, and C-capsids, surrounding the vertices and has been aptly named the capsid vertex specific 

component (CVSC) (41).  The CVSC contacts triplexes and hexons surrounding the pentons, and 

specifically UL25 has been shown to interact with the triplex protein VP19c and the VP5 major 

capsid protein (41, 42, 45, 163, 232, 236).  UL25 also appears to interact directly with the C-

terminus of UL17 (232), supporting previous data demonstrating that UL25 capsid binding is 

greatly enhanced by the presence of UL17 (230).  It is thought that as encapsidation progress, 

conformational changes occur within proteins of the capsid shell, revealing binding sites for 

UL25 (29).  Outside of capsid stabilization, the UL25 protein may play additional roles relating 
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to the capsid tegument.  An HSV-1 strain encoding a temperature-sensitive lesion within UL25 

demonstrated a viral uncoating defect at the nonpermissive temperature early in infection (177).  

Another study revealed an interaction between UL25 and the large tegument protein, UL36, at 

the capsid surface, implicating UL25 in tegumentation of the viral capsid during assembly (43). 

 Although the UL32 protein is essential for cleavage and packaging, its role during this 

process is largely unknown.  In the absence of UL32, capsids do not accumulate within 

replication compartments, but in perinuclear regions near the nuclear membrane, possibly 

suggesting a role in the transport of assembled capsids to sites for DNA encapsidation (36, 116). 

 The remaining three essential DNA encapsidation proteins, UL15, UL28, and UL33, are 

thought to form the viral terminase complex (46).  Analogy with terminase complexes of dsDNA 

bacteriophage suggests that the DNA-binding, cleavage, and translocation activities, required for 

successful cleavage and packaging of viral DNA, are performed by the UL15, UL28, and UL33 

proteins (32).  The following section of this introduction will detail the current state of 

knowledge regarding the HSV-1 terminase complex and propose a model for the cleavage and 

packaging of HSV-1 DNA into capsids. 

1.5 THE HSV-1 TERMINASE COMPLEX 

1.5.1 Evidence for an HSV-1 terminase complex composed of interacting UL15, UL28, 

and UL33 subunits 

Initial evidence suggesting an interaction between the HSV-1 UL28 and UL15 proteins came 

from studies using the closely related herpesviruses, pseudorabies virus (PRV) and human 
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cytomegalovirus (HCMV).  Koslowski et al. (113) utilized cell lines stably expressing the PRV 

UL28 protein to demonstrate that UL28 was predominantly cytoplasmic in the absence of other 

PRV proteins, but entered the nucleus upon PRV infection.  Furthermore, they showed that PRV 

UL28 localized to the nucleus of cells infected with HSV-1 and that the UL15 protein of HSV-1 

enabled this nuclear localization (113).  In studies using HCMV, mutant viruses were isolated 

that were resistant to benzimidazole ribonucleoside antivirals, which inhibit HCMV infection by 

specifically preventing the cleavage of viral DNA concatemers.  The mutations that conferred 

resistance were mapped to the HCMV UL89 and UL56 proteins, which are homologs of the 

HSV-1 UL15 and UL28 proteins respectively, suggesting that these proteins not only interact, 

but play an essential role during DNA encapsidation (114). 

 Koslowski et al. (112) were the first to provide direct evidence that the UL15 and UL28 

proteins interact within HSV-1-infected cells.  Ion-exchange and DNA affinity chromatography 

of infected cell lysates was followed by sucrose gradient centrifugation of the purified proteins.  

Immunoblotting of gradient fractions for UL15 and UL28 revealed that both proteins comigrated 

through the gradient to a position suggestive of a 1:1 heterodimeric complex (112).  It was later 

revealed by coimmunoprecipitation of proteins from HSV-1-infected cells that the UL33 protein 

also interacts with the complex of UL15 and UL28 (17).  Numerous additional experiments have 

corroborated the interaction between the HSV-1 UL15, UL28, and UL33 proteins using a variety 

of methods including immunofluorescence assay to determine protein localization (1, 91, 112, 

179, 258), and coimmunoprecipitation experiments using either proteins expressed by 

recombinant baculoviruses within infected insect cells (1, 17, 258) or proteins from HSV-1-

infected cells (17, 104, 267, 268, 271).  Further confirmation has come from the observed 

interaction between homologues of the HSV-1 UL15, UL28, and UL33 proteins in VZV (243-
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245), HCMV (25, 226, 250), and PRV (76) demonstrating the level of conservation of these 

genes and implied importance during infection (54, 73). 

Proper formation of the UL15/UL28/UL33 protein complex is essential for virus 

replication.  Several studies have demonstrated that in cells infected with HSV-1 recombinant 

viruses encoding mutations that preclude the interaction of these proteins, replicated viral DNA 

is not cleaved or packaged into capsids, suggesting that the UL15/UL28/UL33 complex 

functions as the viral terminase (18, 104, 225, 267, 269).  The most compelling evidence that the 

UL15/UL28 interaction is required for terminase activity came from a study examining a panel 

of recombinant viruses encoding linker-insertion or nonsense mutations within UL28 (104).  One 

particular mutant contained a four amino acid insertion after residue 334 of UL28 that allowed 

terminase complex formation but precluded cleavage and packaging of viral DNA.  Spontaneous 

revertant viruses were isolated that possessed a second-site mutation within UL15 that restored 

the ability of the virus to cleave and package DNA; providing direct genetic evidence of the 

interaction between UL15 and UL28, and demonstrating the importance of this interaction 

during virus replication.  The interaction with UL28 has also been shown to stabilize UL33 from 

degradation (104, 267), while in reverse, UL33 appears to enhance the interaction between UL15 

and UL28, increasing the number of properly formed complexes (104, 267, 269). 

It is important to note that little is known concerning the subunit stoichiometry within the 

HSV-1 terminase complex.  Complexes purified from HSV-1-infected cells were shown to 

migrate through a sucrose gradient to a position corresponding to a 1:1 heterodimeric complex of 

UL15 and UL28 (112).  However, immunoprecipitation experiments have demonstrated that the 

UL15 protein can self-interact (1).  It has also been shown that the amount of UL15 and UL28 

bound to the surface of B-capsids was approximately one and two copies respectively, while A-
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capsids contained less than one copy of UL28 and twelve copies of UL15 (16).  Terminases of 

dsDNA bacteriophage are typically comprised of subunits with higher order stoichiometry (72) 

and the HCMV terminase appears to be composed of oligomeric subunits (197, 199, 226); 

therefore it seems likely that the HSV-1 terminase consists of multiple copies of each subunit, 

but this remains to be elucidated. 

The results of coimmunoprecipitation and colocalization studies suggest that the complex 

of UL15, UL28 and UL33 proteins forms within the cytoplasm of the infected cell (268).  

Although it was initially thought that all three subunits could directly interact (17), the use of 

UL28 mutants has revealed that the UL15 and UL33 proteins interact indirectly via their direct 

interaction with the C-terminus of UL28 (104, 267).  Specifically the C-terminal 44 amino acids 

of UL28 appear essential for the interaction with both UL15 and UL33 (104).  Recent mutational 

analysis of UL33 has also suggested that residues 51-74 of UL33 mediate the interaction with 

UL28 (18), while residues within the second exon of UL15 may be required for the interaction 

with UL28 and possibly other UL15 subunits (1, 269).   

Once formed, the viral terminase complex is thought to translocate to the infected cell 

nucleus (268).  Initial studies using transiently expressed proteins indicated that a cytoplasmic 

interaction with the UL6 portal protein was required for nuclear import of terminase components 

(258).  However, it was later shown within HSV-1-infected cells that UL15 encodes a canonical 

nuclear localization signal (NLS) (residues 183-189) that is essential for complex nuclear 

localization, and that mutation or deletion of the NLS resulted in the cytoplasmic localization of 

both UL15 and UL28 (268).  Of note, the UL33 protein (~19 kDa) is smaller than the passive 

diffusion size limit (~60 kDa) of the nuclear pore complex and can therefore diffuse freely 

between the nucleus and cytoplasm, making the requirements for UL33 nuclear localization 
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difficult to elucidate.  However, the coimmunoprecipitation of UL33 from cytoplasmic extracts 

of HSV-1-infected cells supports the interaction of UL33 before nuclear localization of the 

terminase (268).  

 Within the nucleus, the terminase is proposed to cleave and package replicated viral DNA 

into capsids and this has been indirectly supported by several studies examining the interaction 

between terminase subunits and the components of viral capsids (15, 16, 179, 194, 196, 204, 223, 

263, 270, 274).  A recent study identified key residues within the UL6 portal protein that mediate 

the interaction of the portal with UL15 and UL28, and demonstrated that these residues are 

essential for cleavage and packaging of viral DNA (270).  This study also determined that 

deletion of these critical UL6 residues resulted in a reduced interaction between the UL15, 

UL28, and UL33 proteins and viral B-capsids (270).  However, UL15, UL28, and UL33 are 

observed on capsids isolated from cells infected with a UL6 deletion mutant, suggesting that the 

terminase can associate with viral capsids independently of the portal (15, 16).  Several studies 

have also indicated that the UL15 and UL28 proteins interact with procapsids and B-capsids, but 

these interactions are diminished with DNA-filled C-capsids (16, 204, 223, 274), and that these 

proteins are not observed to associate with the capsids of virions (126, 223).  This is similar to 

the terminase proteins of dsDNA bacteriophage which display a transient association with 

unpackaged “proheads” (analogous to HSV-1 procapsids), further supporting the role of UL15 

and UL28 during cleavage and packaging of replicated HSV-1 DNA.  The UL33 protein has 

been shown to associate with each of the capsid forms and the deletion of key UL6 residues only 

slightly reduced the association of UL33 with B-capsids compared to the reduction seen in UL15 

and UL28 protein levels (15, 179, 263, 270), suggesting that the role of UL33 during DNA 

encapsidation may differ from that of the UL15 and UL28 terminase subunits. 



 35 

The lack of an HSV-1 in vitro packaging assay has limited the direct biochemical 

analysis of the terminase.  However, genetic experiments utilizing temperature-sensitive mutants, 

or viruses bearing deletions or insertions, have identified several critical protein domains within 

the individual terminase subunits that are essential for complex formation and function (4, 6, 9, 

10, 18, 33, 104, 114, 142, 173, 178, 225, 238, 268, 269, 271-273).  These studies have also been 

aided greatly by the high degree of observed sequence conservation between the terminase 

proteins of the herpesviruses and phage (54, 67).  UL15 is the most highly conserved gene within 

the family Herpesviridae and contains several protein domains that are proposed, or have been 

demonstrated, to be critical for the cleavage and packaging of viral DNA (52, 67, 104, 142, 178, 

238, 268, 269, 271, 273).  The UL15 protein is relatively unique within HSV-1 in that it is 

encoded by two exons and expressed from a spliced transcript (49).  Exon I and the N-terminal 

region of exon II contain conserved amino acid motifs, such as Walker A and B boxes, that are 

typically found in proteins that metabolize ATP, therefore implicating UL15 as the “motor” for 

the translocation of DNA into capsids during packaging (52, 67, 249, 273).  A recombinant 

HSV-1 encoding a point mutation of the conserved glycine residue (G263A) within the Walker 

A box was shown to be deficient in cleavage and packaging, and three additional viruses with 

point mutations within exon I displayed the same phenotype (178, 273).  The UL15 protein in 

each of these mutants still retained the ability to localize to the nucleus and associate with 

capsids suggesting this region functions in cleavage and packaging (178).  Further evidence 

implicating the importance of this region during cleavage and packaging includes: i) HCMV 

isolates resistant to an inhibitor of viral DNA cleavage possessed a single amino acid mutation 

within this region of the UL89 protein (UL15 homolog), and this amino acid is conserved in 

HSV-1 UL15 (238); and ii) a second-site mutation in UL15 that conferred the ability of a UL28 
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mutant virus to cleave and package DNA occurred in this region (104).  Based mainly on studies 

examining the UL15 homolog in HCMV, UL89, exon II of UL15 is implicated to possess 

nuclease activity (142, 199).  The UL89 protein has been shown to possess endonuclease activity 

that is enhanced by the interaction with UL56 (homolog of UL28) (199).  Most recently, Nadal et 

al purified a soluble fragment of exon II of the HCMV UL89 protein and demonstrated that this 

fragment possessed nuclease activity in the presence of manganese (Mn2+) ions (142).  The 

crystal structure of the fragment was solved and identified three Mn2+ coordinating amino acids 

that are conserved within the HSV-1 UL15 protein.  Recently, an interesting UL15 mutant virus 

was generated that encodes a deletion of amino acids 400-420, which are located in a position 

between the proposed ATPase and nuclease domains (271).  Analysis of this virus revealed a 

slight defect in DNA cleavage, but DNA packaging efficiency was drastically reduced.  Taken 

together, this suggests that the DNA translocation function of UL15 is separable from cleavage; 

two processes that have long been considered closely linked.  This also may suggest that the 

terminase can cleave viral DNA in the absence of the portal protein. 

 

 

 
Figure 9. Conserved amino acid domains within the UL15 protein. 
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The UL28 protein has long been implicated as the DNA-binding subunit of the terminase 

complex based on studies performed in HCMV (22).  Strains of HCMV that were resistant to 

DNA cleavage inhibitors were found to encode a single amino acid mutation within a motif 

bearing similarity to a canonical metal-binding domain (114).  Further analysis determined that 

this stretch of amino acids was conserved throughout the family Herpesviridae.  The lone 

biochemical data regarding terminase activity was generated in a set of experiments examining 

the DNA-binding capability of transiently expressed UL28 protein purified from bacteria (5).  

The results demonstrated the interaction of UL28 with specific pac1 sequences of the viral a 

sequence region.  Specifically, UL28 only interacted with one strand of the pac1 motif 

suggesting that during packaging viral DNA may adopt novel structures and extrude single-

stranded regions that are recognized by UL28.  Studies performed with the homolog of UL28 in 

HCMV, UL56, have also demonstrated an interaction with HCMV pac1 sequences (21). 

 

 

 

 

 The role of UL33 in terminase complex formation and function is not well-elucidated and 

it is intriguing why HSV-1 would utilize a three subunit complex when most of the well-studied 

Figure 10. Conserved amino acid domains within the UL28 protein. 
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dsDNA bacteriophages utilize two subunit complexes (32).  However, numerous studies clearly 

indicate that the interaction between UL33 and UL28 is critical for proper terminase function 

(18, 104, 267, 269).  Genetic experiments have identified two regions of UL33 that are essential 

for terminase function (18, 269).  Viruses encoding temperature-sensitive or insertion mutations 

clustered near the center of the protein precluded the interaction with UL28, while mutations at 

the C-terminus allowed complex formation.  However, all of the mutants were deficient in the 

cleavage and packaging of viral DNA suggesting that the C-terminus is critical for a specific 

function early in the encapsidation process.  This is in contrast to a recent report indicating that 

UL33 interacts with the UL31/UL34 complex of the viral tegument and this interaction is highly 

conserved throughout the herpesviruses; suggesting a role for UL33 at later times during 

packaging (73).  However, UL33 has been shown to associate with viral capsids independently 

of UL28 and UL15; therefore it is possible that UL33 performs numerous functions, with 

terminase-associated UL33 functioning in encapsidation, while capsid-associated UL33 

molecules play a role during tegumentation and egress. 

 

 

 
Figure 11. UL33 protein domain 
mutations affecting terminase activity. 
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1.5.2 Model of terminase activity 

Based upon empirical evidence and considering the DNA encapsidation process in dsDNA 

bacteriophage, the following is a model for HSV-1 terminase formation and function.  During 

infection the UL15, UL28, and UL33 proteins are translated within the cytoplasm of the infected 

cell.  An initial interaction occurs between the UL28 and UL33 proteins, protecting UL33 from 

degradation (104, 267).  The UL15 protein then interacts with UL28, and this interaction is 

enhanced by UL33 (104, 267, 269).  The assembled terminase complex of UL15, UL28, and 

UL33 localizes to replication centers within the nucleus via the NLS of UL15 (91, 268).  The 

UL28 protein binds the replicated viral DNA concatemer and scans the DNA for specific 

sequences (5, 22).  Upon encountering a pac2 site in the correct orientation, the endonuclease 

activity of UL15 is triggered and cleaves the DNA within an upstream DR1 element (92, 142, 

199, 241).  This cleavage generates a free L-terminus for packaging that contains a truncated 

DR1 element containing a one nucleotide 3’ overhang (139).  The terminase, with bound viral 

DNA, docks at the UL6 portal of assembled procapsids in an orientation that positions UL15 in 

close proximity to the portal (16, 258, 263, 270).  This interaction activates the DNA 

translocation function of UL15 which begins packaging the free L-terminus into the viral capsid 

in an ATP-dependent manner (51, 148, 273).  DNA packaging also triggers protease activation 

and subsequent cleavage of the scaffold protein, resulting in procapsid maturation to the mature, 

polyhedral form (39, 90, 151, 170).  DNA translocation continues from the L-component, 

through the junction, and into the S-component (148).  As packaging nears completion, single-

stranded regions within the a sequence of the S-component are extruded and the pac1 motif is 

recognized by the UL28 subunit (5).  This triggers the second DNA cleavage by UL15, 

producing an S-terminus containing a single a sequence followed by a one nucleotide extension 
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of the DR1 element (92, 139, 142, 199, 241).  The freed genome end is packaged and the 

terminase components subsequently disassociate from the viral capsid, to possibly act in 

additional rounds of cleavage and packaging (16, 204, 223, 274). 

1.6 SPECIFIC AIMS AND RATIONALE 

The goal of this research is to examine the role of the UL28 protein in the formation and function 

of the HSV-1 terminase complex.  The endogenous terminase will be isolated from HSV-1-

infected cells via tandem affinity purification (TAP) of the UL28 protein to allow for physical 

characterization of the complex and biochemical analysis using in vitro functional assays.  

Genetic analysis of UL28 by deletion and site-directed mutagenesis will elucidate protein 

domains that are critical for biochemical activity, and the interaction with other terminase 

subunits and viral DNA.  TAP of UL28 complexes from cells infected with HSV-1 UL28 

domain mutants followed by in vitro functional assays will determine the effect of these 

mutations on terminase activity.  Completion of this research will further elucidate the protein 

composition and function of the HSV-1 terminase complex. 

1.6.1 Specific aim I: Purification and in vitro analysis of the HSV-1 terminase complex 

Biochemical analysis of the HSV-1 terminase complex has been hampered, due largely to the 

inability to effectively purify the terminase proteins.  In this study, HSV-1 recombinants were 

generated that express a TAP tag fused to the N-terminus of the UL28 protein.  TAP of the UL28 

protein from infected cells demonstrated the successful purification of the UL15 and UL33 
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terminase components.  Isolated complexes were further characterized by sucrose gradient 

centrifugation and mass spectrometry, which identified several novel interacting proteins of viral 

and cellular origin.  Biochemical analysis demonstrated the purified complexes possessed 

sequence-specific nuclease activity that is dependent upon the presence of Mn2+ ions. 

1.6.2 Specific aim II:  Analysis of UL28 protein domains critical in terminase complex 

assembly and function 

The UL28 and UL15 terminase subunits contain amino acid domains that are conserved between 

the herpesviruses and phage, and have been shown to be important for the cleavage and 

packaging of viral DNA.  Using a bacterial artificial chromosome system, a panel of HSV-1 

recombinants were generated that encode site-specific mutations or deletions of the nuclease 

domain of UL15 or the metal-binding domain of UL28, and each virus expresses the NTAP-

UL28 protein under CMV promoter control for purification purposes.  For each recombinant 

virus, phenotypic analysis combined with the identification of terminase complex subunits 

isolated by TAP, revealed those protein domains required for terminase complex assembly, or 

implicated to function during viral DNA cleavage and packaging. 
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2.0  AFFINITY PURIFICATION OF THE HERPES SIMPLEX VIRUS TYPE I 

TERMINASE COMPLEX 

2.1 ABSTRACT 

During productive lytic infection, herpes simplex virus 1 (HSV-1) assembles empty procapsids 

that are subsequently packaged with the viral genome by means of a protein complex called the 

terminase.  Several lines of genetic evidence indicate that the viral UL15, UL28, and UL33 

proteins compose the terminase; however biochemical analysis of these proteins has been 

hampered by the inability to purify the intact complex.  In this study, terminase complexes were 

isolated by tandem affinity purification (TAP) using recombinant viruses expressing either a full-

length NTAP-UL28 fusion protein (vFH476) or a C-terminally truncated NTAP-UL28 fusion 

protein (vFH499).  TAP of UL28 from vFH476-infected cells followed by silver staining, 

Western blotting, and mass spectrometry identified the UL15, UL28, and UL33 subunits, while 

TAP from vFH499-infected cells confirmed previous findings that the C-terminus of UL28 is 

required for the interaction of UL28 with both UL33 and UL15.  Analysis of the purified 

complexes by sucrose density gradient ultracentrifugation revealed that the terminase exists as a 

heterotrimeric complex of the three proteins.  Biochemical assays demonstrated that the complex 

possesses HSV-1 a sequence-specific nuclease activity in the presence of manganese (Mn2+) 

ions.  A proteomics approach was utilized to profile the host and viral protein interactions 
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following TAP from Vero cells infected with the vFH476, vFH499, or KOS viruses.  There were 

198 proteins isolated from the vFH476 and vFH499 TAP samples that were not observed with 

the KOS control.  Of the 198 proteins, 22 were identified as HSV-1 proteins, while the remaining 

176 were of host cell origin, and these were classified into groups based on cellular location or 

function.  Several interactions were confirmed by Western blot analysis including the terminase 

interaction with DNA damage-binding protein 1 (DDB1), which is of particular interest as it has 

been shown to interact with proteins from numerous viruses.  These results demonstrate that 

TAP is an effective method for the purification of the terminase complex, and will allow for 

further biochemical analysis of proposed complex functions such as ATPase and DNA-binding 

activity. 

2.2 INTRODUCTION 

A critical step during productive HSV-1 infection is the cleavage and packaging of replicated, 

concatemeric viral DNA into preformed capsids.  This process has been shown to require the 

products of seven viral genes; UL6, UL15, UL17, UL25, UL28, UL32, and UL33 (3, 4, 6, 10, 

33, 116, 117, 132, 165, 166, 173, 195, 198, 205, 206, 225, 256, 272).  Many of these genes have 

been assigned putative functions based upon similarities between HSV-1 and double-stranded 

DNA (dsDNA) bacteriophage cleavage and packaging systems (32), with many of these assigned 

functions being supported by a growing body of genetic, biochemical, and microscopic evidence.  

The UL6 protein forms a dodecameric complex at one of the twelve capsid vertices and 

functions as a portal through which viral DNA can enter or exit the capsid (30, 35, 155, 235).  

The UL17 and UL25 proteins have recently been shown to form a heterodimeric complex termed 
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the capsid vertex-specific component that functions at each of the penton vertices to stabilize 

DNA-filled capsids (41, 232, 236).  The UL32 protein is not well-characterized, but may play a 

role in localizing capsids to sites of DNA packaging (36, 116).  The UL15, UL28, and UL33 

proteins are thought to form the viral terminase complex, responsible for the initial cleavage of 

the replicated viral DNA concatemer, transportation of the DNA to the capsid portal, DNA 

translocation into the capsid via an ATP-dependent mechanism, and a final DNA cleavage once 

a complete viral genome has been packaged (46).   

Although numerous dsDNA bacteriophage cleavage and packaging systems encode for 

terminase complexes consisting of one large and one small subunit, biochemical and genetic 

studies suggest that HSV-1 encodes a three subunit complex composed of the UL15, UL28, and 

UL33 gene products (1, 17, 32, 91, 104, 112, 179, 258, 267, 268, 271).  UL15 is the most well-

conserved gene among the herpesviruses and contains sequence similarity to the large terminase 

subunit, gp17, of bacteriophage T4 (52, 273).  The UL15 protein possesses conserved Walker A 

and B sequences that are thought to encode for the proposed ATPase activity of the terminase 

complex, and these sequences have been shown to contain key residues required for the cleavage 

and packaging of viral DNA (52, 67, 178, 249, 273).  The UL15 protein also contains a nuclear 

localization signal required for transport of interacting UL28 subunits to the infected cell 

nucleus, and once there, UL15 has been proposed to localize the terminase to sites of DNA 

replication and packaging (91, 268).  Furthermore, a fragment of the UL15 homolog in human 

cytomegalovirus (HCMV), UL89, was shown to possess sequence-specific nuclease activity that 

was dependent on the presence of Mn2+ ions (142).  The crystal structure of this UL89 protein 

fragment was resolved and revealed specific Mn2+ coordinating amino acids that are conserved 

among the herpesviruses.  The UL28 protein has been shown to interact with specific HSV-1 
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DNA sequences that are required for cleavage and packaging of viral DNA (5).  Furthermore, the 

UL28 homolog in HCMV, UL56, has also been shown to possess DNA-binding and nuclease 

activity that is specific for HCMV sequences required for cleavage and packaging of HCMV 

DNA (22).   Interestingly, several small organic molecules have been described that inhibit 

HCMV replication by targeting the UL56 protein (83, 114, 238).  These compounds have been 

shown to block the processing and encapsidation of viral DNA demonstrating the validity of 

targeting the cleavage and packaging complex for therapeutic intervention. The final terminase 

subunit, UL33, is the least well-characterized but may be required for correct assembly of the 

terminase complex, or may act to regulate the enzymatic activity of the other subunits during 

complex function (104, 267, 269).   

Although a great deal of information has been obtained from genetic studies of the HSV-

1 cleavage and packaging genes, these proteins have proven difficult to isolate for biochemical 

and structural studies.  The goal of the following studies was to isolate a functional terminase 

complex from HSV-1-infected cells by affinity chromatography using a virus expressing a 

UL28-TAP fusion protein. The TAP procedure resulted in the isolation of soluble UL28-

complexes containing the UL15 and UL33 proteins.  Isolated complexes were characterized 

using genetic, biochemical, and proteomic approaches to determine the stoichiometry and 

composition of the HSV-1 terminase.  We view these studies as a critical step in understanding 

how the terminase complex functions in the context of productive HSV-1 infection. 
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2.3 MATERIALS AND METHODS 

2.3.1 Cells and Viruses 

African green monkey kidney cells (Vero) were maintained in Dulbecco’s modified Eagle’s 

medium supplemented with 5% newborn calf serum, 100 U penicillin per ml, and 100 µg 

streptomycin per ml (growth medium).  UL28-complementing (CV28) cells were maintained 

exactly as Vero cells but supplemented with 10% newborn calf serum (267). MRC-5 cells 

(ATCC, Manassas, VA) were cultured per ATCC instructions.  The KOS strain of HSV-1 was 

used as the wild-type virus.  The vNTAP-UL25 and vUL17-CTAP viruses were previously 

described (41, 232). 

2.3.2 Construction of recombinant viruses 

The NTAP-UL28 (vFH475) and CMV-NTAP-UL28 (vFH476) mutant viruses were generated by 

recombination of a KOS genome maintained within a bacterial artificial chromosome (BAC) 

(81).  The KOS BAC clone was transferred to GS1783 bacteria (gift from G. Smith) and 

mutagenesis was performed using the two-step bacteriophage Red-mediated homologous 

recombination system (231), as previously described (42). The CMV-NTAP-UL28-741s 

(vFH499) mutant virus was generated by the same methods, but through recombination of a 

vFH476-BAC that was transformed into GS1783 bacteria.  Primers and template plasmid DNA 

used to amplify the kanamycin resistance construct are listed in Table 5.  Plasmids p-EP-TAP-in 

and p-EP-Kan-S were a kind gift from Dr. Paul Kinchington (University of Pittsburgh).  The 

UL28 reverse primer (vFH475, vFH476) was designed in such a way that recombination resulted 
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in the loss of the first 3 nucleotides (start ATG) of the UL28 open reading frame (ORF).  BAC 

DNA was transfected into Vero (vFH475, vFH476) or UL28-complementing CV28 cells 

(vFH499) and recombinant viruses were harvested from cell lysates and plaque purified on Vero 

(vFH475, vFH476) or UL28-complementing CV28 cells (vFH499).  Insertion of the CMV 

promoter and/or TAP tag in recombinant UL28 viruses was confirmed by PCR amplification of 

purified viral DNA using the following primers that flank the UL28 ORF: 5’ – 

GGATGACCCGTTTGGGGAGG – 3’ and 5’ – TTGTACGGGGCGATGTTCTCC – 3’.  The 

3,436 (vFH475), 4,044 (vFH476), and 4056 (vFH499) bp PCR products (vFH475 vFH476, 

respectively) were extracted from agarose gels and used for restriction fragment length 

polymorphism analysis using KpnI and sequencing analysis using the following primers: 5’ – 

GAATAGAGCAGAAACGCA – 3’ (CMV and/or TAP); 5’ – TCTTCTTCGGTTTCGGGT – 3’ 

(CMV and/or TAP); and 5’ – ATACAAGGCTGTTAGAGA – 3’ (vFH499-741s insertion).   

 

 

 

 

Table 5. PCR primers for generation of recombinant viruses 
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2.3.3 TAP 

The TAP protocol was performed by infecting 5 x 108 Vero cells with KOS, vFH476, or vFH499 

virus at an MOI of 10 PFU/cell. The infection was allowed to proceed for 18 h at 37°C, after 

which the cells were harvested and pelleted via centrifugation at 5,000 rpm for 10 min at 4°C. 

All remaining steps were performed at 4°C. The cells were washed in a total volume of 50ml 1 x 

PBS, and the final cell pellet was resuspended in 24 ml of streptavidin binding buffer (SBB) (300 

mM KCl, 40 mM Tris-HCl [pH 7.5], 2 mM EDTA, 0.1% NP-40 substitute, and 5 mM β-

mercaptoethanol) containing protease inhibitors (Roche 1 697 498). The cells were lysed by 

sonication using a probe sonicator. The cell suspension was sonicated 4 times for 10 s each at an 

output of 6 W with chilling on ice between each sonication step. Benzonase (1,500 U; Novagen, 

71205-3) was added to the samples and left at 4°C for 30 min. The extract was then clarified via 

centrifugation at 12,000 rpm in a Sorvall SS-34 rotor for 20 min at 4°C. The supernatant was 

transferred to a new tube, 1.5 ml of streptavidin resin (0.75 ml packed volume) (Pierce, 53117) 

was added, and the samples were rotated at 4°C for 2 h. The resin was pelleted by centrifugation 

at 3,500 rpm for 5 min, and the supernatant was removed. The resin was washed three times by 

being resuspended in 5 ml of SBB followed by centrifugation at 3,500 rpm for 5 min. Protein 

was eluted from the resin by adding 3 ml of streptavidin elution buffer (300 mM KCl, 40 mM 

Tris-HCl [pH 7.5], 2 mM EDTA, 0.1% NP-40 substitute, 5 mM β-mercaptoethanol, 2 mM D-

biotin [Sigma, 47868]) containing Roche protease inhibitors, and the sample was rotated at 4°C 

for 30 min. The protein-resin mixture was spun down at 7,000 rpm in a microcentrifuge for 2 

min, and the supernatant was collected as the streptavidin eluate. Twelve milliliters of 

calmodulin binding buffer (CBB) (150 mM NaCl, 10 mM Tris-HCl [pH 7.5], 1 mM magnesium 
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acetate, 1 mM imidazole, 2 mM CaCl2, 0.1% NP-40 substitute, 10 mM β-mercaptoethanol) 

containing Roche protease inhibitors was added to the streptavidin eluate. An additional 11.25 µl 

of 1 M CaCl2 was added to the mixture along with 1.2 ml of calmodulin resin (0.6 ml packed 

volume) (Agilent Technologies, 214303-52), and samples were rotated at 4°C for 2 h. The resin 

was pelleted by centrifugation at 3,500 rpm for 5 min, and the supernatant was removed. The 

resin was washed three times by resuspension in 5 ml of CBB followed by centrifugation at 

3,500 rpm for 5 min. Protein was eluted from the resin by adding 3 ml of calmodulin elution 

buffer (150 mM NaCl, 10 mM Tris-HCl [pH 7.5], 1 mM magnesium acetate, 1 mM imidazole, 

0.1% NP-40 substitute, 10 mM β-mercaptoethanol, 2 mM EGTA), and the sample was rotated at 

4°C for 30 min.  The protein-resin mixture was spun down at 7,000 rpm in a microcentrifuge for 

2 min, and the supernatant was collected as the final (calmodulin) eluate. 

2.3.4 Sucrose gradient ultracentrifugation 

UL28 protein complexes were purified from vFH476-infected Vero cells by a partial TAP 

procedure whereby proteins were collected after elution from the streptavidin resin.  The eluted 

protein sample was concentrated 10-fold by column centrifugation (Pierce, 89884A).  

Concentrated proteins were separated by centrifugation on 2.5 to 20% sucrose (in 1X PBS) 

gradients (SW50.1 rotor at 35,000 rpm for 18 hr).  Fractions were collected from the bottom to 

the top of the gradient using a Beckman fraction recovery system (Beckman, 34890).  A total of 

33 fractions (130 µL each) were collected and protein was precipitated by adding an equal 

volume of 16% trichloroacetic acid.  Proteins were pelleted by centrifugation at 13,000 rpm for 

10 min and pellets were resuspended in 30 µL 2x PAGE loading buffer (Invitrogen) 
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supplemented with 0.4 M Tris-base.  Odd numbered protein fractions were resolved on a 4 to 

12% SDS-polyacrylamide gel and visualized by Western blot analysis using anti-UL28, UL15, 

or UL33 antibodies.  Molecular weight control proteins, aldolase and BSA (GE Healthcare Life 

Sciences), were processed in the same manner, but were visualized by staining with Imperial 

protein stain (Thermo Scientific, 24615). 

2.3.5 Mass spectrometry 

TAP-purified proteins from vFH476-infected cells were resolved on a 4 to 12% SDS-

polyacrylamide gel and stained with either Imperial protein stain or SYPRO Ruby protein gel 

stain (Invitrogen, S-12000).  Stained gels were sent to Dr. Lisa Jones (Washington University in 

St. Louis, St. Louis, MO) who performed the remaining mass spectrometry analysis by the 

following methods.  The in-gel digest was performed as previously described (154).  Briefly, gel 

plugs were washed with acetonitrile (Sigma, St. Louis, MO) in a 96 well plate and rocked for 10 

min twice. The samples were dried in a speed vac for 10 minutes.  A 0.2 µg/µl stock of trypsin 

(Sigma, St. Louis, MO) was made up in 100 µL of 1 mM triethyl ammoniumbicarbonate pH 8.2.  

Trypsin, 5 µL, was added to each dried gel plug.  The plate was incubated at 58 °C for 30 min. 

After digestion, 1 µL of 1% acetonitrile with 1% formic acid was added to each gel plug.  The 

plate was incubated at 37 °C for 1 hr.  The solution from each well plate was transferred to 

autosampler vials and centrifuged at 10,000 rpm for 40 min. To reduce keratin contamination, 

the in-gel digest was performed in a laminar flow hood.  Digested samples were loaded onto a 

100 µm x 2 cm Acclaim PepMap100 C18 nano trap column (5 µm, 100 Å)  (Thermo Scientific, 

Pittsburgh, PA) with an Ultimate 3000 liquid chromatograph (Thermo Scientific, Pittsburgh, PA) 

at 8 µL/min.  The peptides were separated on a silica capillary column that was custom-packed 
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with C18 reverse phase material (Magic, 0.075 mm x 150 mm, 5µu, 120 Å, Michrom 

Bioresources, Inc., Auburn, CA). The gradient was pumped at 260 nL/min from 0-80% solvent B 

(20% water, 80% acetonitrile, 0.1% formic acid) for 60 min, then to 80% solvent B for 7 min, 

and re-equilibrated to solvent A (water, 0.1% formic acid) for 10 min. The mass spectrometry 

was performed on an LTQ-FT-ICR Ultra (Thermo-Fisher, Pittsburgh, PA).  The mass 

spectrometer was operated in data-dependent acquisition mode controlled by the Xcalbur 2.0.7 

software. Peptide mass spectra were acquired from an m/z range of 350-2000 at high mass 

resolving power.  The top six most abundant multiply charged ions with minimum signal 

intensity at 800 counts were subjected to collision-induced dissociation (CID) in the linear ion 

trap. Charge state rejection of +1 ions was employed. Precursor activation was performed with 

an isolation width of 2 Da and an activation time of 30 ms. The raw data were aligned and 

converted into a centroided peaklist file by Progenesis LC-MS (Nonlinear Dynamics, Durham, 

NC) (167). The files were search using MASCOT 2.2.06 (Matrix Science, London, U.K.). The 

enzyme specificity was set to trypsin with 2 missed cleavages. The mass tolerance for precursor 

and fragment ions was 12 ppm and 0.6 Da, respectively.  Oxidation of methionine was specified 

in Mascot as a variable modification. The data was searched against the NCBI 20120108 

database. A threshold of 5% probability that protein identification is incorrect was implemented. 

Scaffold_3_00_08 (Proteome Software Inc., Portland, OR) was used to validate MS/MS based 

peptide and protein identifications. Peptide identifications were accepted if they could be 

established at greater than 95.0% probability as specified by the Peptide Prophet algorithm (109). 

Protein identifications were accepted if they could be established at greater than 99.0% 

probability and contained at least 2 identified peptides. Protein probabilities were assigned by the 

Protein Prophet algorithm (146).  
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The TAP samples (KOS, vFH476, and vFH499) eluted from the calmodulin resin were 

sent to MS Bioworks (Ann Arbor, MI; www.msbioworks.com) and TCA precipitated according 

to the protocol from Rahim et.al (105).  The pellets were resuspended in 50μL of 1X LDS PAGE 

loading buffer and 25μL per sample was separated approximately1.5cm on a 10% Bis-Tris 

Novex mini-gel (Invitrogen) using the MES buffer system. The gel was stained with Coomassie 

blue and excised into ten equally sized segments. Gel segments were processed using a robot 

(ProGest, DigiLab) with the following protocol.  The gel segments were washed with 25mM 

ammonium bicarbonate followed by acetonitrile and reduced with 10mM dithiothreitol at 60°C 

followed by alkylation with 50mM iodoacetamide at room temperature. The samples were then 

digested with trypsin (Promega) at 37°C for 4h, quenched with formic acid and the supernatant 

was analyzed directly without further processing. Mass spectrometry of each gel digest was 

analyzed by nano LC/MS/MS with a Waters NanoAcquity HPLC system interfaced to a 

ThermoFisher Orbitrap Velos Pro. Peptides were loaded on a trapping column and eluted over a 

75μm analytical column at 350nL/min; both columns were packed with Jupiter Proteo resin 

(Phenomenex). The mass spectrometer was operated in data-dependent mode, with MS 

performed in the Orbitrap at 60,000 FWHM resolution and MS/MS performed in the Velos.  The 

fifteen most abundant ions were selected for MS/MS. The data were analyzed and searched 

against both Uniprot Macaca mulatta + Uniprot HHV1 Strain using Mascot search engines. 

Mascot DAT files were parsed into the Scaffold software for validation, filtering, and to create a 

nonredundant list per sample. Data were filtered using a minimum protein value of 90%, a 

minimum peptide value of 50% (Prophet scores) and requiring at least two unique peptides per 

protein. 
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2.3.6 Western blotting 

Protein samples were separated on a 4 to 12% SDS-polyacrylamide gel, and transferred to 

nitrocellulose. The nitrocellulose was washed twice in Tris-buffered saline (TBS) and incubated 

overnight in Rockland Near Infra-Red blocking buffer (Rockland Immunochemicals, MB-070-

003).  Primary antibodies used (dilution in parenthesis) include: UL28 rabbit polyclonal antibody 

UL28-GST (1:1000) (17), VP5 rabbit polyclonal antibody NC1 (1:5000) (47), rabbit monoclonal 

Anti-Calmodulin Binding Protein Epitope Tag Antibody, clone C16T (1:3000) (Millipore, 05-

932), UL15 rabbit polyclonal antibody UL15-GST(1-104) (1:1000) (196), UL33 rabbit 

polyclonal antibody UL33-GST (1:500) (179), rabbit polyclonal DDB1 Antibody (1:5000) 

(Bethyl Laboratories, Inc., A300-462A), and rabbit monoclonal AIF Antibody (1:2500) (Abgent, 

AJ1021a).  The blocked nitrocellulose was reacted with the diluted antibodies for 2 h at room 

temperature, washed five times in TBS with 0.5% Tween 20, and incubated with IRDye 800-

conjugated goat anti-rabbit secondary antibody (Rockland Immunochemicals) diluted 1:15,000 

in Rockland Near Infra-Red blocking buffer with 0.1% Tween 20. The blots were washed and 

scanned using an Odyssey system (Li-Cor, Lincoln, NE).  Integrated intensity values were 

obtained using Odyssey software, Version 3.0 (Li-Cor, Lincoln, NE). 

2.3.7 Nuclease  assays 

Assays were performed essentially as described by Nadal et al. (142) with the following 

modifications.  Protein complexes purified by TAP were incubated in a reaction mixture 

containing 30mM Tris-HCl (pH8.0), 50mM NaCl, and linearized (HindIII digested) plasmid 

DNA at 37oC for 18 hr.  Metal ion requirement was examined by the addition of CaCl2, MgCl2, 
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or MnCl2 to the reaction mixture (3mM final concentration).  Reactions were stopped by the 

addition of EDTA (pH 8.0) to a final concentration of 30mM.  Samples were resolved on a 1% 

agarose/1X TAE gel containing 1ug/mL ethidium bromide.  The gel was viewed and 

photographed over UV-light. 

2.4 RESULTS 

Existing evidence indicates that the HSV-1 terminase consists of a heterotrimeric complex of the 

proteins encoded by the HSV-1 UL15, UL28, and UL33 genes (46).  In this study, we used 

tandem affinity purification (TAP) to isolate the terminase complex from infected cells.  

Biochemical studies were performed to confirm the protein composition and determine the 

stoichiometry of the complex, and to measure the associated nuclease activity.  Mass 

spectrometry was utilized to identify viral and cellular proteins that associate with the complex 

during infection. 

2.4.1 Characterization of NTAP-UL28 virus 

Previous studies have shown that the amino terminus of UL28 is not essential for virus growth 

and can tolerate the insertion of foreign epitopes (104). Therefore, the TAP tag was inserted at 

the amino terminus of UL28.  The 78 amino acid TAP tag used for these studies has been 

previously described (232), and consists of a streptavidin-binding peptide and a calmodulin-

binding peptide. The TAP-tag was inserted at the N-terminus of the UL28 open reading frame 
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through manipulation of an HSV-1 (KOS) genome maintained within a recombinant bacterial 

artificial chromosome (BAC) (Figure 12). 

 

 

 

 

 

 

The BAC was transfected into Vero cells and the recovered virus, vFH475, was plaque 

purified on Vero cells.  Two additional HSV-1 UL28 recombinant viruses, vFH476 and vFH499, 

were generated in the same manner.  vFH476 expresses an NTAP-UL28 gene under the 

transcriptional control of the cytomegalovirus (CMV) immediate early promoter and vFH499 

expresses a C-terminally truncated NTAP-UL28 protein under CMV promoter control (Figure 

12).  The truncation in vFH499 is the result of an insertion of a linker sequence containing an in-

frame stop codon after amino acid 741 of UL28 and this truncation has been previously shown to 

preclude the interaction of both the UL15 and UL33 proteins with UL28 (104). 

Figure 12. Recombinant UL28 virus constructs. The HSV-1 genome is shown at 
the top with the long and short unique regions represented as UL and US, 
respectively.  The UL28 open reading frame from wild-type KOS or each 
recombinant virus is expanded below, with virus names and protein sizes indicated 
to the left of each construct. Amino acid numbers below each construct indicate 
protein length.  The vFH499 virus contains a nonsense mutation of amino acid 818. 
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The recovered viruses were plaque purified on Vero (vFH475 and vFH476) or UL28-

complementing CV28 (vFH499) cells and virus stocks were prepared and titrated.  The vFH475 

and vFH476 viruses yielded similar titers on Vero and CV28 cells while the vFH499 virus, 

which expresses a nonfunctional UL28 protein, formed plaques only on CV28 cells (Table 6). 

 

 

 

 

Intracellular replication of each recombinant virus was compared to wild-type KOS virus 

by establishing single-step growth curves in Vero and CV28 cells.  Cells were infected with each 

virus at an MOI of 1, harvested at 0, 2, 4, 7, 10, 22, and 30 h postinfection (hpi), and assayed for 

infectious virus by plaque assay on CV28 cells (Figure 13).  When grown on Vero or CV28 cells 

the vFH475 and vFH476 virus titers were reduced (1- to 2-logs) compared to KOS.  The vFH499 

virus failed to produce virus on Vero cells, but grew to near wild-type levels on CV28 cells.  

Taken together, these results demonstrate that the vFH475 and vFH476 viruses grow on 

noncomplementing cells, but addition of the fusion protein and/or expression from the CMV 

promoter reduces the overall virus yield.   

 

Table 6. Viral stock titers: NTAP-UL28 
fusion mutants 
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NTAP-UL28 protein expression was examined for vFH475, vFH476, and vFH499 by 

Western blotting and compared to UL28 protein expression from the wild-type KOS virus.  

Infected Vero cell lysates were isolated at 18 hpi and probed with a UL28 antibody (Figure 14).  

The UL28 protein expressed by KOS resolved in SDS-PAGE with an apparent molecular mass 

of 86 kDa, and each recombinant virus expressed a UL28 protein with mobility corresponding to 

the expected molecular weight.  NTAP-UL28 proteins expressed by vFH475 and vFH476 

exhibited slightly lower mobility compared to KOS, corresponding to the additional 78 amino 

acids (approximately 8.6 kDa) of the TAP-tag, while the NTAP-UL28 protein expressed from 

vFH499 was slightly smaller than from vFH475 and vFH476 due to the truncation of 44 amino 

acids from the UL28 C-terminus. 

 

Figure 13. Recombinant NTAP-UL28 virus single-step growth curves Vero (A) or CV28 (B) cells were infected 
with the indicated HSV-1 recombinant viruses or with wild-type (KOS) virus at an MOI of 1 at 4oC for 1 h 
and incubated at 37oC.  The cultures were harvested at the indicated times post-infection, freeze-thawed, and 
the virus yield at each time point was determined by plaque titer on CV28 cells. 
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Total cell extracts from KOS-, vFH475-, vFH476-, and vFH499-infected Vero cells were 

prepared at various times postinfection, and expression of the UL28 gene product was analyzed 

by Western blot analysis (Figure 15). In KOS-infected Vero cells, the 86 kDa UL28 protein was 

first detected at 8 hpi, and the intensity of this band showed a moderate increase at later times 

postinfection.   The recombinant viruses expressing the 95 kDa (vFH475 and vFH476) and 90 

kDa (vFH499) NTAP-UL28 fusion proteins, showed a similar pattern of expression as the KOS 

UL28 protein.  However, expression of the NTAP-UL28 gene from the CMV promoter (vFH476 

and vFH499) resulted in increased levels of the UL28 fusion protein compared to KOS and 

vFH475.  The blots were stripped and probed for the major capsid protein VP5, demonstrating 

that similar amounts of cell extracts were loaded in each lane.  These results demonstrate that 

Figure 14. Recombinant NTAP-UL28 fusion protein 
expression.  Vero cells were infected with wild-type (KOS) 
virus or the indicated HSV-1 recombinant viruses at an 
MOI of 10.  At 18 h post-infection cell lysates were 
harvested, resolved by SDS-PAGE, and Western blots 
were probed with a UL28 antibody.  
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placing the NTAP-UL28 fusion under CMV promoter control resulted in an increase in UL28 

protein levels without altering the kinetics of expression.  Since the goal of these studies was to 

isolate and characterize the HSV-1 terminase complex via affinity purification of the NTAP-

UL28 protein, the recombinant viruses expressing NTAP-UL28 under CMV promoter control 

were utilized for the remainder of these studies. 

 

 

 

 

 

 

Figure 15. Recombinant NTAP-UL28 fusion protein expression time course. (A) Vero cells were infected 
with the indicated HSV-1 recombinant viruses or with wild-type (KOS) virus at an MOI of 1 at 4oC for 1 h 
and incubated at 37oC.  Infected cell lysates were harvested at the indicated times post-infection, resolved by 
SDS-PAGE, and Western blots were probed with UL28 and VP5 antibodies.  VP5 is the major capsid 
protein and serves to show even loading between samples. (B) Integrated intensity values were obtained for 
each UL28 band in (A) using Odyssey software, Version 3.0 (Li-Cor, Lincoln, NE) and plotted versus time.  
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2.4.2 Tandem affinity purification of NTAP-UL28 protein complexes 

Tandem affinity purification is a dual purification procedure that allows for efficient isolation of 

protein complexes under native conditions (183).  The TAP procedure was utilized to isolate the 

putative HSV-1 terminase complex of UL15, UL28, and UL33 from infected cells via the 

NTAP-UL28 fusion protein.  Vero cells were infected with NTAP-UL28 viruses or KOS at an 

MOI of 10 and cell extracts were harvested at 18 hpi and applied to the TAP procedure (Figure 

16).  The TAP tag utilized in these studies encodes a calmodulin-binding domain and a 

streptavidin-binding domain (Stratagene-Interplay).  Infected cell extracts were incubated with 

streptavidin resin and interacting complexes were eluted with biotin, then incubated with 

calmodulin resin in the presence of calcium, and eluted with EGTA.  Silver stain of the final 

calmodulin-eluted samples revealed a major band at approximately 95 kDa in the vFH476 lane, 

corresponding to the full-length NTAP-UL28 fusion protein, and a band at 90 kDa in the 

vFH499 lane which corresponds to the truncated NTAP-UL28 protein (Figure 16A).  Bands 

observed in the KOS lane represent background proteins that interact nonspecifically throughout 

the TAP procedure.  The additional bands in the vFH476 and vFH499 lanes represent proteins 

that copurify with the tagged complex and were identified by Western blot analysis (Figure 

16B).  The putative terminase subunits, UL15 and UL33, were observed in complexes containing 

the full-length UL28 protein, but as expected, not from complexes containing the UL28-741s 

truncation mutant.  Note that both the UL15 and UL33 proteins were also readily observed by 

silver stain from vFH476-infected cells.  Blots for UL28 and the calmodulin-binding peptide 

confirmed each major band observed by silver stain contained the NTAP-UL28 protein in both 

the vFH476 and vFH499 lanes and additional bands at approximately 63, 50, and 43 kDa were 

observed that may represent cleavage or degradation products of the UL28 protein.  In summary, 
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these results indicate that TAP of the UL28 protein is an effective method for the efficient 

isolation of the putative terminase complex of UL28, UL15, and UL33. 

 

 

 

 

 

2.4.3 Oligomeric state of TAP-purified terminase components 

The oligomeric state of TAP-purified terminase components was examined by sucrose density 

gradient ultracentrifugation (Figure 17).  A partial TAP procedure was performed where UL28 

complexes were isolated from vFH476-infected cells using only the initial streptavidin-binding 

and elution steps.  Purified proteins were separated on 2.5-20% sucrose gradients, and fractions 

were collected from the bottom to the top of the gradient.  A total of 33 fractions were collected 

Figure 16. TAP of NTAP-UL28 fusion proteins. Vero cells were infected with the indicated HSV-1 
recombinant viruses or with wild-type (KOS) virus. (A) After TAP, proteins eluted from the calmodulin 
column were resolved by SDS-PAGE and identified by silver staining. (B)  Immunoblots (antibodies listed 
below each blot) demonstrating the presence of each TAP-tagged protein.  Protein standards (kDa) are 
shown to the left of each gel or blot.   
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and analyzed by SDS-PAGE and Western blotting for the UL15, UL28 and UL33 proteins 

(Figure 17B).  Molecular weight control proteins, aldolase and BSA (158 and 66 kDa 

respectively), were subjected to identical centrifugation and fractionation conditions and their 

relative positions in each gradient were determined by SDS-PAGE and Coomassie staining (data 

not shown).  Immunoblots were analyzed by densitometry and the values obtained for each 

fraction were plotted onto the same graph, revealing three distinct peaks in intensity: i) the 

UL15, UL28, and UL33 proteins in fraction 11, ii) the UL28 and UL33 proteins in fraction 17, 

and iii) the UL33 protein alone in fraction 27 (Figure 17A).  In fraction 11, a protein complex 

composed of the UL15, UL28, and UL33 proteins in a 1:1:1 ratio would be expected to possess a 

molecular mass of approximately 190 kDa, while in fraction 17 a 1:1 complex of UL28 and 

UL33 would be approximately 109 kDa.  The proposed size of each complex is consistent with 

the relative migration of the molecular weight standards.  The observation of the UL33 protein 

alone in fraction 27 may suggest that this protein possesses a weaker affinity for UL28 and 

readily dissociates from the complex.  Taken together, sucrose gradient centrifugation of UL28 

complexes purified by TAP from vFH476-infected cells revealed a complex composed of the 

UL15, UL28 and UL33 proteins. 
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2.4.4 Mass spectrometry analysis of UL28 complexes 

Numerous protein bands were observed that copurify with UL28 complexes by TAP (Figure 16). 

One goal of this study was to characterize the viral (and possibly cellular) proteins that 

participate in terminase complex assembly and function during the course of infection.  In order 

to identify those proteins, TAP-purified UL28 complexes were resolved by SDS-PAGE, stained, 

Figure 17. Sedimentation velocity analysis of TAP-purified UL28 complexes. Complexes 
from vFH476-infected Vero cells were purified through the initial streptavidin column, 
layered onto a 2.5-20% sucrose gradient, and centrifuged at 35K RPM at 4oC for 18 hours.  
The gradient was fractionated and individual fractions were resolved by SDS-PAGE, 
followed by immunoblotting (antibodies listed beside each blot) (B) and densitometry (A).  
Integrated intensity values (A) were obtained for each band using Odyssey software, 
Version 3.0 (Li-Cor, Lincoln, NE).  Control proteins, aldolase and BSA, were subjected to 
identical centrifugation and fractionation conditions and their relative positions in each 
gradient , indicated in (A), were determined by SDS-PAGE and staining (data not shown).  
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and bands were analyzed by LC/MS/MS by two distinct approaches, as described in Materials 

and Methods.   

In the first approach, specific protein bands of particular interest were isolated and 

examined.  UL28 complexes were purified from vFH476-infected Vero cells or MRC-5 cells, a 

human epithelial lung cell line.  The MRC-5 cell line was utilized to examine terminase subunits 

isolated from a physiologically relevant human cell line.  The purified protein complexes were 

resolved by SDS-PAGE, stained, and bands corresponding to the NTAP-UL28, UL15, and UL33 

proteins were isolated and confirmed by LC/MS/MS (Figure 18, Table 7).  Also of particular 

interest were those bands corresponding to sizes of approximately 150, 63, and 50 kDa 

(unknowns 1-3 respectively) which were also observed as predominant bands by silver staining 

in Figure 16.  In both cell types, LC/MS/MS analysis determined unknown 1 to be the VP5 

major capsid protein while unknowns 2 and 3 consisted of peptides from UL28.  Due to the 

interaction between the terminase and capsid during the encapsidation process (15, 16, 204, 274), 

it is not surprising that some VP5 copurifies with UL28 during TAP.  However, it is interesting 

that unknowns 2 and 3 consisted mainly of peptides from UL28, and this result may suggest that 

the UL28 protein is cleaved during encapsidation.  However whether these fragments represent 

degraded proteins or specific cleavages that play a vital function during encapsidation remains to 

be elucidated.   
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A second LC/MS/MS analysis consisted of purifying UL28 complexes from Vero cells 

infected with vFH476, vFH499, or KOS viruses.  The isolated proteins were resolved by SDS-

PAGE, stained, and the entire lane, containing all isolated proteins, was analyzed by LC/MS/MS 

for each sample.  This approach, although less specific, was more comprehensive in that 

comparison of the identified proteins between each virus allowed for the elimination of 

background proteins (KOS vs. vFH476 and vFH499) and the identification of proteins requiring 

the C-terminal 44 amino acids of UL28 for interaction (vFH476 vs. vFH499).  A total of 888 

Macaca mulatta plus HHV1 Strain 17 proteins were detected (across all three samples).  The 

criteria used to determine if a protein specifically interacted with NTAP-UL28 proteins were: i) 

the protein had at least 5 spectral counts in the vFH476 or vFH499 samples; ii) the protein was 

Figure 18. NTAP-UL28 fusion complexes isolated 
from primate and human cell lines. Vero or 
MRC-5 cells were infected with vFH476 and at 18 
hpi, UL28 complexes were purified by TAP.  
Isolated complexes were resolved by SDS-PAGE 
and stained using either Imperial stain (Vero) or 
SYPRO Ruby stain (MRC-5). 

Table 7. Mass spectrometry confirmation and 
analysis of specific interacting proteins 
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not detected in the control KOS sample; or iii) the protein was detected with a 4-fold or more 

increase based on dividing the spectral count values.  Based on these criteria, it was found that 

198 proteins were unique or four-fold higher in both the vFH476 and vFH499 samples compared 

to the KOS control.  Of the 198 proteins, 22 were identified as HSV-1 proteins (Table 8 and 

Appendix A, Table 12), while the remaining 176 were of host cell origin (Table 9 and Appendix 

A, Table 13). 

 

 

 
 

 
 

Examination of the identified viral proteins further confirmed that the UL15, UL28 and 

UL33 proteins were purified by TAP from cells infected with the full-length NTAP-UL28 fusion 

(vFH476) (Table 8).  Interestingly, peptides identified as UL15 were associated with complexes 

isolated using the UL28 C-terminal truncation mutant, vFH499.  This may suggest that the UL15 

Table 8. HSV-1 interacting proteins 
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protein possesses additional UL28 interaction domains, or is indirectly associating with UL28 

through another protein such as VP5.  On the other hand, the UL33 protein was not copurified 

with vFH499 further confirming that UL33 requires the C-terminus of UL28 for interaction.  The 

major capsid protein, VP5, was also identified further supporting the previous mass spectrometry 

analysis of unknown 1 (Figure 18, Table 7). 

Examination of the 176 potential interacting cellular proteins (see Appendix A, Table 13) 

led to their classification into groups based largely upon cellular location or function (Table 9).  

Of these groups, there are several that we find to be of particular interest including proteins of 

the cytoskeleton.  It is well-established that HSV-1 relies heavily upon the host cytoskeleton for 

capsid transport during its initial travel to the nucleus and final egress and envelopment stages 

(65, 135, 187).  Therefore it is not surprising that proteins such as dynein and tubulin were 

identified, and typically with very high spectral count values.  Of further interest are those 

proteins that function in DNA repair.  HSV-1 DNA is replicated as a branched concatemer and 

successful encapsidation requires the resolution of these branched structures into linear 

molecules (246).  Therefore, DNA repair proteins functioning in such processes as 

recombination or endonuclease cleavage appear as likely targets to be utilized by HSV-1 during 

productive infection.  One such protein identified by LC/MS/MS was DNA damage-binding 

protein 1 (DDB1) (Table 9).  In uninfected cells, DDB1 functions as a component of numerous 

multiprotein complexes that are typically involved in various aspects of DNA repair (103).  

However, DDB1 has also been shown to interact with viral proteins from numerous viruses 

including hepatitis B and C viruses, human immunodeficiency virus, murine cytomegalovirus, 

and the closely related alphaherpesvirus, bovine herpesvirus type 1 (93, 108, 193, 233, 242). 
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In order to confirm the proposed interaction of DDB1 with purified UL28 complexes, 

proteins were isolated by TAP from KOS-, vFH476-, or vFH499-infected cells, resolved by 

Table 9. Interacting cellular proteins 
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SDS-PAGE, and Western blot analysis was performed using anti-DDB1 antibodies (Figure 19).  

The approximately125 kDa DDB1 protein was clearly detected in uninfected Vero cells and cells 

infected with KOS or each recombinant virus.  However, DDB1 was not observed in TAP-

purified eluates from KOS-infected cells, but found in eluates from vFH476-infected cells, 

confirming the LC/MS/MS data (Table 9).  DDB1 is also seen in TAP-purified eluates from 

vFH499-infected cells but diminished in signal compared to vFH476, which correlates well with 

the number of spectral counts determined by LC/MS/MS from each purified sample (Table 9).   

Apoptosis-inducing factor-1 (AIF-1), a known effector of caspase-independent apoptosis (86, 

160), was also confirmed to interact by Western blot analysis (Figure 19).  Several other 

potential interacting proteins of interest remain to be confirmed by Western blot analysis, and 

although we have confirmed the interactions of DDB1 and AIF-1; that they play a role critical to 

the proper assembly or functioning of the terminase during the course of productive HSV-1 

infection remains to be elucidated. 

 

 

 

 

 

 

Figure 19. Confirmation of associated cellular proteins. Vero 
cells were infected with the indicated HSV-1 recombinant 
viruses or with wild-type (KOS) virus, harvested, and UL28 
complexes were purified by TAP. Infected cell lysates or 
purified proteins were resolved by SDS-PAGE and analyzed by 
Western using anti-DDB1 or anti-AIF-1 antibodies.  Protein 
standards (kDa) are shown to the left of each gel or blot.  
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2.4.5 Nuclease activity of the purified terminase complex 

The UL15 subunit of the viral terminase is thought to encode for complex nuclease activity and 

contains a conserved ATPase domain that is required for cleavage and packaging of HSV-1 

DNA.  It has also been shown that a purified C-terminal fragment of UL89, the UL15 homolog 

in HCMV, possesses nuclease activity that is dependent upon the presence of Mn2+ ions.  In 

order to determine if UL28 complexes isolated by TAP possess nuclease activity, an in vitro 

assay was performed.  Purified proteins from vFH476-infected Vero cells were incubated with 

linearized plasmid DNA and CaCl2, MgCl2, or MnCl2 was added to each reaction to determine if 

metal ions were required for activity (Figure 20A).  The plasmid DNAs used either contained 

HSV-1 a sequence DNA, specific viral sequences that are essential for the cleavage and 

packaging of DNA, or did not contain specific sequences.  When incubated with either plasmid 

DNA, purified UL28 complexes showed robust nuclease activity in the presence of Mn2+ ions.  

Complexes also possessed activity in magnesium (Mg2+) that was more pronounced with a 

sequence specific DNA versus nonspecific plasmid sequences.  In calcium, complexes showed 

only slight activity with a sequence-containing DNA and little to no activity with nonspecific 

DNA.  Comparison of nuclease activity from proteins purified from KOS-infected cells to input 

plasmid DNA indicated that little to no DNA degradation was due to contaminating nucleases 

purified by TAP.   
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The observed DNA specificity was further tested by incubation of complexes purified 

from vFH476- and vFH499-infected cells with equal amounts of a sequence-containing and 

nonspecific linear plasmid DNA in the presence or absence of Mn2+ ions (Figure 20B).  

Complexes isolated using full-length UL28 (vFH476) again showed increased activity for a 

sequence-containing DNA but only in presence of Mn2+.  Surprisingly however, complexes 

isolated using the UL28 C-terminal truncation mutant (vFH499) also showed nuclease activity 

that was specific for a sequence DNA and only with Mn2+, possibly suggesting that UL28 alone 

possesses nuclease activity.  However, mass spectrometry analysis indicated that the UL15 

Figure 20. Nuclease activity of purified UL28 complexes. Complexes purified by TAP 
from each of the indicated viruses were incubated in a reaction mixture containing 
30mM Tris-HCl (pH8.0), 50mM NaCl, the indicated metal ion (3mM), and the indicated 
linearized plasmid DNA(s) at 37oC for 18 h, and then resolved by agarose gel 
electrophoresis.  Each assay demonstrates (A) metal ion requirements, (B) DNA sequence 
specificity, or (C) protein specificity.  
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subunit could still interact with the UL28 C-terminal truncation mutant, although in greatly 

decreased amounts, therefore this interaction may be the basis for the existing nuclease activity 

displayed by these complexes. 

In order to demonstrate that nuclease activity was specific for terminase components, 

protein complexes were purified by TAP from an NTAP-UL25 virus (vFH469) and a CTAP-

UL17 virus (vFH493).  Both viruses have been previously described and encode tagged proteins 

that are essential for HSV-1 cleavage and packaging but are not implicated to possess nuclease 

activity (41, 232).  Protein complexes were incubated with either a sequence-containing DNA or 

nonspecific DNA in the presence of Mn2+ ions (Figure 20C).  Complexes purified from both 

vFH476- and vFH499-infected cells again displayed increased activity in the presence of a 

sequence-containing DNA.  However, complexes purified from KOS-, vFH469-, or vFH493-

infected cells did not display nuclease activity supporting that the observed activity seen with 

UL28 complexes is due to terminase components.  Taken together, the data suggests that the 

isolated UL28 complexes possess a robust nuclease activity in the presence of Mn2+ and Mg2+ 

ions that is specific for viral a sequence DNA, and appears to be encoded by terminase complex 

subunits. 

2.5 DISCUSSION 

A productive HSV-1 infection requires the UL28, UL15, and UL33 gene products for cleavage 

and packaging of replicated, concatemeric viral DNA into capsids, and it has long been proposed 

that these proteins comprise a viral terminase complex similar in function to those utilized by 

dsDNA bacteriophage (32, 46).  However, biochemical analysis of the terminase has proven 
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difficult due to the inability to purify the terminase complex subunits, particularly UL15 and 

UL28.  In this study, we have demonstrated the effective purification of the terminase complex 

from cells infected with HSV-1 recombinants expressing the UL28 protein fused to an N-

terminal tandem affinity purification tag.  The isolation of endogenous complexes allowed for 

the analysis of complex stoichiometry, characterization by proteomic methods, and preliminary 

biochemical analysis of complex nuclease activity. 

Addition of the TAP tag to the N-terminus of UL28 (vFH475) did not alter UL28 protein 

expression kinetics, but reduced virus growth by approximately 1 log compared to wild-type 

KOS virus.  Western blot of vFH475-infected cell lysates revealed relatively low level UL28 

protein expression similar to that observed with wild-type KOS virus.  Therefore, a second 

recombinant virus, vFH476, was constructed which expresses the NTAP-UL28 fusion protein 

under the transcriptional control of the human cytomegalovirus (CMV) immediate-early gene 

promoter in order to increase UL28 expression levels for higher yield purification.  Compared to 

vFH475 or wild-type KOS, the vFH476 virus expressed NTAP-UL28 fusion proteins in 

sufficiently larger amounts, more suitable for downstream biochemical and proteomic analysis.  

One consideration was that the overexpression of UL28 may result in a deleterious effect on 

HSV-1 proliferation, possibly through the formation of a large subset of terminase complexes 

with improper stoichiometry (i.e. UL28 complexes lacking UL15, UL33, or both subunits).  

However, single-step growth curve analysis of vFH476 revealed a small decrease in virus titer 

(approximately 1 log) versus wild-type KOS, similar to that observed with vFH475, suggesting 

that the reduction in growth was due only to the addition of the TAP tag and that the CMV 

promoter caused no observable growth defect.  It is not known why the addition of the TAP tag 

reduced growth of vFH475 and vFH476 relative to KOS virus growth, although it is possible that 
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the addition of 78 amino acids to the N-terminus of UL28 (the TAP tag) results in a steric 

hindrance to complex assembly or function (i.e. the terminase interaction with replicated viral 

DNA).  The final generated recombinant virus, vFH499, is identical to vFH476 but encodes a 

nonsense mutation within UL28 resulting in the expression of a protein missing the C-terminal 

44 amino acids.  These amino acids have been previously shown to be essential for the 

interaction of UL15 and UL33 with UL28 (104, 267), and as expected, this virus only replicated 

to high titers on a UL28-complementing cell line.    

TAP of UL28 complexes from vFH476- or vFH499-infected cells followed by Western 

blotting confirmed that the UL33 and UL15 proteins were only copurified in the presence of the 

full-length UL28 protein.  Mass spectrometry analysis of specific SDS-PAGE bands confirmed 

the presence of the UL15, UL28, and UL33 proteins in purified UL28 complexes from vFH476-

infected cells.  This analysis also revealed that two unknown proteins, migrating in SDS-PAGE 

at approximately 63 and 50 kDa respectively, were composed of UL28 peptides.  These bands 

were also detected by Western blot of TAP-purified complexes from vFH476- and vFH499-

infected cells using antibodies against UL28 and the calmodulin-binding domain located within 

the N-terminal TAP tag of UL28, suggesting the missing amino acids are from the C-terminus.  

Furthermore, the truncated bands seen with vFH476 are identical in size to those observed with 

vFH499; indicating that the amino acids must be removed from the C-terminus.  This is the first 

report of truncated forms of UL28, and it is unclear whether these proteins represent specific 

cleavage products that play a function during infection or are degraded proteins that arise during 

the TAP procedure. 

Silver stain analysis of purified complexes revealed the presence of several unknown 

proteins that interact with the full-length and/or truncated forms of UL28.  A comprehensive 
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proteomic analysis was performed using complexes purified from vFH476-, vFH499-, or wild-

type KOS-infected cells.  Mass spectrometry analysis identified 198 proteins unique to the 

vFH476 and vFH499 TAP samples compared to the KOS control.  Of the 198 proteins, 22 were 

identified as HSV-1 proteins, while the remaining 176 were of host cell origin, and these were 

classified into groups based on cellular location or function.  It is important to note that although 

the current mass spectrometry approach allowed for the elimination of nonspecific interactors 

(proteins identified in KOS sample), a large number of proteins (198) were identified as 

significantly interacting with UL28 complexes.  This may be due to the purification of entire 

capsids by TAP, as the terminase associates with capsids during the DNA encapsidation process 

(46).  The identification of the major capsid protein, VP5, in complexes from both recombinant 

viruses supports this notion and may also explain the identification of several tegument and 

envelope proteins which would likely copurify with the VP5 capsid surface to which they are 

indirectly (or directly) associated.  Therefore it is likely that many of the 198 identified proteins 

interact indirectly with the viral terminase and do not represent complex components that play a 

role in terminase assembly or function during the cleavage and packaging of viral DNA, and 

additional rounds of mass spectrometry analysis will need to be performed in order to further 

validate each of the proposed interactions. 

Examination of the interacting viral proteins further confirmed the association of the 

UL28, UL15 and UL33 subunits and the importance of the C-terminal 44 amino acids of UL28 

for the association of these proteins.  Interestingly, the UL15 protein was identified in the sample 

expressing the C-terminally truncated UL28 (vFH499), albeit at significantly lower counts 

compared to amounts copurified with the full-length UL28 protein (vFH476), while the UL33 

protein was only copurified with the full-length UL28 protein.  These results suggest that UL15 
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can either interact with a domain outside of the C-terminal 44 amino acids of UL28 or can 

interact indirectly with UL28 via another protein (i.e. VP5).   

Examination of the interacting cellular proteins allowed for their classification into 

groups based upon cellular location and/or function, revealing several interesting observations.  

Numerous protein components of the host cytoskeleton were identified and displayed high 

spectral counts.  Studies have indicated that HSV-1 utilizes microtubule-based transport during 

viral entry and egress (65, 135, 187) and the current data may suggest that once formed in the 

cytoplasm, the terminase utilizes host cytoskeletal elements for localization to the nucleus.  

Other proteins of interest include those involved in host DNA repair and recombination, which 

could possibly be utilized during HSV-1 infection for the resolution of branched, concatemeric 

viral DNA structures during the cleavage and packaging process.  The interactions of apoptosis-

inducing factor 1 (AIF-1) and DNA damage-binding protein 1 (DDB1) with UL28 complexes 

purified from vFH476- or vFH499-infected cells were confirmed by Western blotting using 

antibodies against AIF-1 or DDB1.  Within uninfected cells DDB1 acts as a component of 

several multiprotein complexes that function in processes including DNA repair, transcriptional 

regulation, and protein ubiquitination (103), while AIF-1 functions as a mitochondrial protein but 

in times of stress, can cause caspase-independent apoptosis (86, 160).   DDB1 has also been 

shown to perform a range of essential functions during the infectious cycle of several viruses (93, 

108, 119, 193), and has recently been determined to interact with the VP8 protein (HSV-1 

VP13/14 homolog) of the closely related alphaherpesvirus, bovine herpesvirus-1 (242).  In the 

current study, the HSV-1 VP13/14 tegument proteins were not identified by mass spectrometry 

analysis suggesting that DDB1 does not indirectly interact with UL28 through an interaction 

with VP13/14.  AIF-1 has been shown to translocate to the nucleus of HSV-1 infected cells but 
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apoptosis was not observed to occur (277), and the results of the current analysis may suggest 

that UL28 or another component the terminase complex bind AIF-1 before it can effectively 

initiate apoptosis.  Overall, that AIF-1 and DDB1 were copurified with the viral terminase 

complex is intriguing because no host cell proteins have been implicated in the cleavage and 

packaging process.  Clearly, further experimentation is required to determine if these proteins 

play a functional role during HSV-1 infection. 

Purification of NTAP-UL28 complexes allowed for the further characterization of 

terminase complex stoichiometry.  Sucrose density gradient ultracentrifugation of purified 

complexes followed by fractionation and Western blotting for the UL28, UL15, and the UL33 

proteins revealed significant amounts of each protein comigrating in a gradient fraction 

corresponding to a size range greater than 158 kDa.  This size range is consistent with a 1:1:1 

complex of UL28, UL15, and UL33 and possessing an approximate molecular mass of 190 kDa.  

This data is in agreement with a previous study demonstrating that interacting UL15 and UL28 

subunits purified from HSV-1 infected cells comigrate through a sucrose gradient to a position 

consistent with a 1:1 heterodimer of both proteins (112).  It is important to note that, at the time 

of this study the UL33 protein was not yet implicated as a terminase subunit and therefore was 

not blotted for.  Without immunoblot confirmation, the presence or absence of UL33 (Mr ~19 

kDa) is not easily distinguished by size estimations based upon complex migration relative to 

standard proteins; therefore the association of UL33 in this study cannot be ruled out.  Two 

additional gradient fractions of interest were determined to contain UL28 and UL33, or the UL33 

protein alone.   This observation combined with the lack of complexes containing only UL15 and 

UL28 lend support to previous studies suggesting that the UL28/UL33 interaction enhances the 

interaction of UL15 with UL28 and increases the number of properly formed complexes (104, 
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267, 269).  Taken together these results may suggest that within infected cells terminase complex 

formation occurs in an ordered fashion, with the UL28 and UL33 proteins interacting before 

UL15 is added to the complex.  Furthermore, the UL15 subunit encodes the signal for terminase 

nuclear translocation; therefore, the addition of UL15 as the final subunit may serve to prevent 

premature nuclear localization of incomplete complexes.  The observation of monomeric UL33 

may indicate that the UL28/UL33 interaction is of low affinity and the identification of far fewer 

UL33 peptides, relative to UL15 peptides, by mass spectrometry is consistent with this notion.  

Although the results of this study clearly demonstrate the interaction between the UL15, 

UL28, and UL33 terminase subunits, the oligomeric status of the terminase is not known.  

Terminase complexes utilized by dsDNA bacteriophage consist of interacting small and large 

subunits and the functional terminase holoenzyme is a multimeric complex of these proteins 

(72).  Therefore, it appears likely that the HSV-1 terminase complex would also form a higher-

order structure at the capsid portal, although further experiments must be performed to validate 

this proposition.   

UL28 complexes isolated by TAP were shown to possess sequence-specific nuclease 

activity in the presence of Mn2+ ions, similar to the activity observed with a purified fragment of 

the UL89 protein (UL15 homolog) of HCMV (142).  Interestingly, complexes purified using the 

C-terminally truncated NTAP-UL28 fusion (vFH499), which precludes the interaction of the 

UL15 and UL33 subunits, displayed nuclease activity similar to that observed with complete 

terminase complexes (vFH476).  This may suggest that the UL28 protein encodes for nuclease 

activity, and previous reports have demonstrated that the UL28 homolog in HCMV, UL56, can 

cleave HCMV DNA (22).  However, mass spectrometry revealed that small amounts of UL15 

are copurified from vFH499-infected cells, which may suggest that UL28 does not necessarily 
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possess nuclease activity.  It is also interesting that the observed nuclease activity resulted in 

DNA degradation as opposed to a single (or possibly double) cleavage that is thought to generate 

free genome ends during DNA packaging within infected cells.  This degradation has also been 

observed in nuclease assays examining the purified UL89 protein (UL15 homolog) of HCMV 

(142, 199), and may suggest that terminase nuclease activity in vitro is nonspecific.  The 

observed specificity for a sequence-containing DNA may be due to UL28 preferentially 

interacting with a region of the viral a sequence in a manner consistent with the proposed DNA-

binding function of UL28 during packaging.  However, once bound the terminase nuclease 

activity may not be specific, and one possible explanation is that complex stoichiometry affects 

specificity.  As mentioned previously, analogy with terminase complexes of dsDNA 

bacteriophage suggests that the HSV-1 terminase functions as a multimeric complex at the portal 

vertex of capsids.  It is possible that the terminase complexes isolated and examined in this study 

are not complete multimeric complexes and/or are not assembled at the capsid portal, and in the 

absence of these protein interactions regulation of nuclease activity is absent, resulting in 

terminase DNA degradation as opposed to specific cleavage events.    

The results of these studies have demonstrated that TAP is an effective method for the 

purification of UL28 complexes from HSV-1-infected cells.  This method will allow for further 

biochemical analysis of purified complexes and demonstration of the proposed cleavage and 

packaging functions.  The ability to purify endogenous terminase complexes is novel to the field 

and represents a critical step toward establishing an in vitro HSV-1 cleavage and packaging 

system. 
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3.0  MUTATIONAL ANALYSIS OF ESSENTIAL RESIDUES WITHIN THE HERPES 

SIMPLEX VIRUS TYPE I UL15 AND UL28 TERMINASE SUBUNITS   

3.1 ABSTRACT 

Productive infection with herpes simplex virus type 1 (HSV-1) requires the cleavage of 

replicated viral DNA concatemers into linear, monomeric genomes that are packaged into 

preformed viral capsids.  Analogy with the cleavage and packaging systems of double-stranded 

DNA bacteriophage, combined with limited empirical evidence, suggests that the HSV-1 UL15, 

UL28, and UL33 proteins form the viral terminase complex that performs the essential cleavage 

and packaging functions.  The UL15 and UL28 proteins contain conserved amino acid residues 

that have been shown to be critical for terminase activity in the closely related herpesvirus, 

human cytomegalovirus.  In order to assess the importance of these residues, recombinant 

viruses encoding either a deletion of the putative metal-binding domain of UL28 (vFH505) or 

mutation of amino acids within the proposed UL15 nuclease domain (vFH506, vFH507) were 

generated.  Mutations were introduced into the genome of an HSV-1 virus (vFH476) that 

expressed a tandem affinity purification (TAP) tagged protein.  The TAP tag fused to the N-

terminus of UL28 (NTAP-UL28) allowed for the direct assessment of purified terminase 

complexes encoding domain mutations.  A final virus (vFH510) was generated by deletion of the 

putative UL28 metal-binding domain within the genome of a previously described HSV-1 
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recombinant (vFH499) encoding an NTAP-UL28 fusion protein with a C-terminal truncation of 

44 amino acids required for terminase complex formation.  Each domain mutant virus replicated 

to high titers only on complementing cell lines and produced only B-capsids, indicating that each 

mutated protein was nonfunctional.  TAP of UL28 complexes from cells infected with each 

domain mutant followed by immunoblotting for the terminase subunits revealed that only 

vFH510 did not copurify UL15 or UL33, due to the C-terminal truncation of UL28.  Viral DNA 

replication levels were not significantly affected in cells infected with vFH505, vFH506, or 

vFH507 but each virus was deficient in the cleavage and packaging of replicated viral DNA.  

Taken together, these results suggest that the putative UL28 metal-binding domain and 

conserved amino acids within the UL15 nuclease domain are not essential for terminase complex 

formation, but are required for the cleavage and packaging functions of the viral terminase. 

3.2 INTRODUCTION 

HSV-1 proliferation requires the cleavage of replicated, concatemeric viral DNA into linear, 

monomeric genomes that are subsequently packaged into preformed capsids for further viral 

assembly.  Numerous studies have identified seven viral proteins that are essential for the DNA 

cleavage and encapsidation process: UL6, UL15, UL17, UL25, UL28, UL32, and UL33 (3, 4, 6, 

10, 33, 116, 117, 132, 165, 166, 173, 195, 198, 205, 206, 225, 256, 272).  At a unique vertex of 

the capsid, twelve copies of the UL6 protein form the portal through which DNA enters and exits 

the capsid (30, 35, 155, 235).  Recent cryo-electron microscopy (cryo-EM) experiments have 

revealed that the UL17 and UL25 proteins form a heterodimeric complex that assembles around 

the capsid vertices, termed the capsid vertex specific component, that is thought to stabilize the 
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capsid during and after DNA packaging (41, 232, 236).  The function of the UL32 protein is 

largely unknown but it may play a role in the transport of assembled capsids to sites for DNA 

encapsidation (36, 116).  The remaining three proteins, UL15, UL28, and UL33, form a complex 

within infected cells that is thought to function as the viral terminase (46). 

By analogy to double-stranded DNA (dsDNA) bacteriophage systems, it is thought that 

the HSV-1 terminase binds replicated viral DNA concatemers, cleaves the DNA into unit length 

monomers, transports the DNA to preformed procapsids, docks at the portal complex, packages 

the DNA into capsid, makes a final cleavage upon packaging a complete genome, and dissociates 

from the capsid (32).  Difficulties with the purification of the terminase proteins and the lack of 

an in vitro cleavage and packaging system in HSV-1 has hampered studies on the role of the 

UL15, UL28, and UL33 proteins in the DNA packaging reaction.  However, cryo-EM and 

genetic studies have provided several lines of evidence demonstrating that these proteins 

function as the HSV-1 terminase.  These include studies demonstrating that: i) viral DNA is not 

cleaved in HSV-1 mutants encoding mutations that preclude the interaction of UL15 or UL33 

with UL28 (18, 104, 225, 267, 269); ii) HSV-1 recombinants with mutations in the UL6 portal 

that interfere with the terminase/portal interaction are also deficient in cleavage and packaging of 

replicated viral DNA (270);  iii) the transient association of UL15 and UL28 with viral capsids is 

also observed with dsDNA bacteriophage terminases (16, 32, 204, 223, 274); iv)  human 

cytomegalovirus (HCMV) strains displaying resistance to inhibitors of viral DNA cleavage 

possess mutations within protein homologs of UL15 and UL28 (114, 238); and v) the UL15 and 

UL28 proteins encode multiple conserved domains that are essential for cleavage and packaging 

of viral DNA (4, 9, 10, 33, 104, 114, 142, 173, 178, 225, 238, 268, 269, 271-273). 
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UL15 is the most conserved gene within the family Herpesviridae and expresses a 

protein encoded within two exons of a spliced transcript (49).  Exon I and the N-terminal region 

of exon II contain domains typically encoded by proteins that function in ATP metabolism, 

suggesting these regions provide the motor function for DNA translocation into the capsid (52, 

67, 249, 273).  Specifically the Walker A and B box motifs are conserved in homologs of the 

UL15 protein found in dsDNA bacteriophages, and are essential for viral DNA cleavage and 

packaging (52, 178, 249, 273).  A recent study demonstrated that a purified, soluble fragment of 

exon II of the HCMV UL89 protein (UL15 homolog) possessed nuclease activity in the presence 

of manganese (Mn2+) ions (142).  The crystal structure of this fragment was resolved and 

identified three Mn2+ coordinating amino acids that are conserved within exon II of the HSV-1 

UL15 protein.  The UL28 protein has been shown to bind specific HSV-1 DNA sequences which 

are required for cleavage and packaging and this function has also been observed within HCMV 

(5, 22).  Furthermore, UL28 encodes a putative metal-binding domain which was discovered in 

HCMV and shown to contain residues that are conserved among the herpesviruses (114).  

HCMV strains that were resistant to an inhibitor of viral DNA cleavage possessed a one-residue 

mutation within this domain, suggesting its importance in mediating terminase function. 
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Previously (Section 2.0 ), we have demonstrated a method for the efficient purification of 

terminase complexes from HSV-1-infected cells by TAP of the UL28 protein encoding an N-

terminal TAP tag fusion.  In this chapter, mutations or deletions within the nuclease domain of 

UL15 or the metal-binding domain of UL28 were introduced into the genome of the NTAP-

UL28 fusion virus.  Characterization of these viruses followed by the isolation of terminase 

complexes revealed that the domain mutations did not preclude complex formation but each 

virus was deficient in viral DNA cleavage. 

 

Figure 21. Conserved amino acid domains within the (A) UL15 and (B) UL28 proteins.
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3.3 MATERIALS AND METHODS 

3.3.1 Cells and Viruses 

African green monkey kidney (Vero) and UL15-complementing (C2) cell lines were maintained 

in Dulbecco’s modified Eagle’s medium supplemented with 5% newborn calf serum, 100 U 

penicillin per ml, and 100 µg streptomycin per ml (growth medium) (272).  UL28-

complementing (CV28) cells were maintained exactly as Vero cells but supplemented with 10% 

newborn calf serum (267).  The KOS strain of HSV-1 was used as the wild-type virus.  The 

NTAP-UL28 (vFH475), CMV-NTAP-UL28 (vFH476), and CMV-NTAP-UL28-741s (vFH499) 

mutant viruses were described previously (Section 2.3.2).  The GCB virus, containing a 1881 bp 

deletion within the UL28 open reading frame, was described previously (225).   

3.3.2 Construction of recombinant viruses 

The CMV-NTAP-UL28(∆197-225) (vFH505),  CMV-NTAP-UL28, UL15(D706A, D707A) 

(vFH506), and CMV-NTAP-UL28, UL15(D509A) (vFH507) viruses were generated by 

recombination of a vFH476 (Section 2.3.2) genome maintained within a bacterial artificial 

chromosome (BAC) (81).  The vFH476 BAC clone was transferred to GS1783 bacteria (gift 

from G. Smith) and mutagenesis was performed using the two-step bacteriophage Red-mediated 

homologous recombination system (231), as previously described (42). The CMV-NTAP-

UL28(∆197-225)-741s (vFH510) mutant virus was generated by the same methods, but through 

recombination of a vFH499-BAC (Section 2.3.2) that was transformed into GS1783 bacteria.  

Primers and template plasmid DNA used to amplify the kanamycin resistance construct are listed 
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in Table 10.  Plasmid p-EP-Kan-S was a kind gift from Dr. Paul Kinchington (University of 

Pittsburgh).  BAC DNA was transfected into Vero and UL15-complementing C2 (vFH506, 

vFH507) or UL28-complementing CV28 (vFH505, vFH510) cells and recombinant viruses were 

harvested from cell lysates and plaque purified on C2 (vFH506, vFH507) or CV28 (vFH505, 

vFH510) cells.  Base pair changes in the UL15 ORF of vFH506 and vFH507 were confirmed by 

PCR amplification of purified viral DNA using the following primers that flank the UL15 ORF: 

5’ – TCACGAGACGCGTGTGATAGG – 3’ and 5’ – 

AACGTTATCCGAGGCCAGGACTTTAAC – 3’.  The 1182 bp PCR products were extracted 

from agarose gels and used for restriction fragment length polymorphism analysis using NarI 

(vFH506) or BamHI (vFH507) and sequencing analysis using the following primers: 5’ – 

TCACGAGACGCGTGTGATAGG – 3’ (vFH506) and 5’ – AGTGCTCCAGGGCGAAGATG – 

3’ (vFH507).  Deletion of the metal-binding domain from the UL28 ORF of vFH505 and 

vFH510 was confirmed by PCR amplification of purified viral DNA using the following primers 

that flank the UL28 ORF: 5’ – TTTCTCACCCCGCTGTCGG – 3’ and 5’ – 

AACAGCGCCAGTTCCACG – 3’.  The 764 bp PCR products were extracted from agarose gels 

and used for restriction fragment length polymorphism analysis using PvuI and sequencing 

analysis using the following primer: 5’ – ATGAAGCAGCTAAACTACTGCCACCTC – 3’ 

(vFH505 and vFH510).  
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3.3.3 Capsid purification 

Capsids were purified by sucrose gradient centrifugation as previously described (42).  Briefly, 

Vero cells (1.5 x 108) were infected at an MOI of 5 PFU/cell and incubated at 37°C. At 18 h pot-

infection the infected cells were harvested by scraping, rinsed with phosphate-buffered saline 

(PBS), resuspended in 20 mM Tris (pH 7.5) containing protease inhibitors (Roche), adjusted to 

1% Triton X-100, and incubated for 30 min on ice. The resulting isolated nuclei were harvested 

by low-speed centrifugation, resuspended in 10 ml of TNE buffer (500 mM NaCl, 10 mM Tris, 1 

mM EDTA [pH 7.5]), and sonicated to lyse the nuclei. The nuclear lysate was then resolved by 

low-speed centrifugation, and the supernatant was layered onto the top of 20 to 50% sucrose (in 

TNE buffer) gradients.  Centrifugation was performed in an SW41 rotor at 24,000 rpm for 1 h. 

Table 10. PCR primers for generation of recombinant domain mutant viruses 
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The positions of A, B, and C capsids were observed as light-scattering bands, with A capsids 

found at a higher position (least dense) on the gradients and C capsids being found at a lower 

position (most dense) on the gradients. 

3.3.4 TAP 

The TAP protocol was performed by infecting 5 x 108 Vero cells with virus at an MOI of 10 

PFU/cell. The infection was allowed to proceed for 18 h at 37°C, after which the cells were 

harvested and pelleted via centrifugation at 5,000 rpm for 10 min at 4°C. All remaining steps 

were performed at 4°C. The cells were washed in a total volume of 50ml 1 x PBS, and the final 

cell pellet was resuspended in 24 ml of streptavidin binding buffer (SBB) (300 mM KCl, 40 mM 

Tris-HCl [pH 7.5], 2 mM EDTA, 0.1% NP-40 substitute, and 5 mM β-mercaptoethanol) 

containing protease inhibitors (Roche 1 697 498). The cells were lysed by sonication using a 

probe sonicator. The cell suspension was sonicated 4 times for 10 s each at an output of 6 W with 

chilling on ice between each sonication step. Benzonase (1,500 U; Novagen, 71205-3) was added 

to the samples and left at 4°C for 30 min. The extract was then clarified via centrifugation at 

12,000 rpm in a Sorvall SS-34 rotor for 20 min at 4°C. The supernatant was transferred to a new 

tube, 1.5 ml of streptavidin resin (0.75 ml packed volume) (Pierce, 53117) was added, and the 

samples were rotated at 4°C for 2 h. The resin was pelleted by centrifugation at 3,500 rpm for 5 

min, and the supernatant was removed. The resin was washed three times by being resuspended 

in 5 ml of SBB followed by centrifugation at 3,500 rpm for 5 min. Protein was eluted from the 

resin by adding 3 ml of streptavidin elution buffer (300 mM KCl, 40 mM Tris-HCl [pH 7.5], 2 

mM EDTA, 0.1% NP-40 substitute, 5 mM β-mercaptoethanol, 2 mM D-biotin [Sigma, 47868]) 

containing Roche protease inhibitors, and the sample was rotated at 4°C for 30 min. The protein-
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resin mixture was spun down at 7,000 rpm in a microcentrifuge for 2 min, and the supernatant 

was collected as the streptavidin eluate. Twelve milliliters of calmodulin binding buffer (CBB) 

(150 mM NaCl, 10 mM Tris-HCl [pH 7.5], 1 mM magnesium acetate, 1 mM imidazole, 2 mM 

CaCl2, 0.1% NP-40 substitute, 10 mM β-mercaptoethanol) containing Roche protease inhibitors 

was added to the streptavidin eluate. An additional 11.25 µl of 1 M CaCl2 was added to the 

mixture along with 1.2 ml of calmodulin resin (0.6 ml packed volume) (Agilent Technologies, 

214303-52), and samples were rotated at 4°C for 2 h. The resin was pelleted by centrifugation at 

3,500 rpm for 5 min, and the supernatant was removed. The resin was washed three times by 

resuspension in 5 ml of CBB followed by centrifugation at 3,500 rpm for 5 min. Protein was 

eluted from the resin by adding 3 ml of calmodulin elution buffer (150 mM NaCl, 10 mM Tris-

HCl [pH 7.5], 1 mM magnesium acetate, 1 mM imidazole, 0.1% NP-40 substitute, 10 mM β-

mercaptoethanol, 2 mM EGTA), and the sample was rotated at 4°C for 30 min.  The protein-

resin mixture was spun down at 7,000 rpm in a microcentrifuge for 2 min, and the supernatant 

was collected as the final (calmodulin) eluate. 

3.3.5 Western blotting 

Protein samples were separated on a 4 to 12% SDS-polyacrylamide gel, and transferred to 

nitrocellulose. The nitrocellulose was washed twice in Tris-buffered saline (TBS) and incubated 

overnight in Rockland Near Infra-Red blocking buffer (Rockland Immunochemicals, MB-070-

003).  Primary antibodies used (dilution in parenthesis) include: UL28 rabbit polyclonal antibody 

UL28-GST (1:1000) (17), rabbit monoclonal Anti-Calmodulin Binding Protein Epitope Tag 

Antibody, clone C16T (1:3000) (Millipore, 05-932), UL15 rabbit polyclonal antibody UL15-

GST(1-104) (1:1000) (196), and UL33 rabbit polyclonal antibody UL33-GST (1:500) (179).  
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The blocked nitrocellulose was reacted with the diluted antibodies for 2 h at room temperature, 

washed five times in TBS with 0.5% Tween 20, and incubated with IRDye 800-conjugated goat 

anti-rabbit secondary antibody (Rockland Immunochemicals) diluted 1:15,000 in Rockland Near 

Infra-Red blocking buffer with 0.1% Tween 20. The blots were washed and scanned using an 

Odyssey system (Li-Cor, Lincoln, NE). 

3.3.6 Southern blotting 

T-175 flasks (3 x107 cells per flask) of Vero, CV28, or C2 cells were infected with virus at an 

MOI of 5 PFU per cell. At 18 h postinfection, the medium was removed and the cells were 

washed in 1 X phosphate-buffered saline.  Cells were harvested by scraping from the plate and 

pelleted. The cells were lysed and total cell DNA or DNase-resistant DNA samples were 

prepared as previously described (96, 217).  The final DNA was digested with BamHI to assess 

the cleavage of viral DNA.  DNA was separated by agarose gel electrophoreses, transferred to a 

nylon membrane, and hybridized as previously described (96). Southern blots were scanned with 

a Storm 840 PhosphorImager. 

3.3.7 Real-time PCR  

60 mm plates (4 x106 cells per plate) of Vero, CV28, or C2 cells were infected with virus at an 

MOI of 5 PFU per cell.  Each infection was performed in triplicate.  At 18 h postinfection, the 

medium was removed and the cells were washed in 1 X phosphate-buffered saline.  Cells were 

harvested by scraping from the plate and pelleted. The cells were lysed and total cell DNA was 

prepared as previously described (96).  Each reaction was set up such that the PCR mixture 
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contained 7.5 μl 2 X Power SYBR Green PCR Master Mix (Applied Biosystems, 4367659), 

0.375 μl of each primer (stock concentration, 10 μM, see below), and 3 μl isolated DNA in a 

total volume of 12 μl.  Purified KOS virus DNA was also included in each plate in a standard 

curve of 1:10 dilutions from 3 x 107 to 30 copies per well, which covers the threshold cycle 

values for the DNA samples tested.  Each reaction for the standard curve was performed in 

triplicate. The reactions were carried out in a Step One Plus real-time PCR machine from 

Applied Biosystems under the following conditions: 95°C for 10 min, followed by 40 cycles of 

95°C for 15 s and 60°C for 1 min. A melt curve was also included under the following 

conditions: 95°C for 15 s and 60°C for 1 min, followed by +0.3°C to 95°C for 15 min. The 

results were analyzed using the SDS 2.3 software from Applied Biosystems.  Each isolated DNA 

sample was amplified using primers for the viral TK gene (forward: 5’ – 

ACCCGCTTAACAGCGTCAACA – 3’; reverse: 5’ – CCAAAGAGGTGCGGGAGTTT – 3’) 

to measure genome copies, and primers for the cellular GAPDH gene (forward: 5’ – 

TTCGACAGTCAGCCGCATCTTCTT – 3’; reverse: 5’ – 

CAGGCGCCCAATACGACCAAATC – 3’) for normalization of cell number.  The KOS 

standard curve was amplified only with viral TK primers. 



 92 

3.4 RESULTS 

3.4.1 Characterization of NTAP-UL28 viruses possessing UL15 and UL28 domain 

mutations 

Previous studies (Section 2.0 ) have demonstrated that the terminase complex of UL15, UL28, 

and UL33 can be isolated from cells infected with a recombinant HSV-1 expressing an NTAP-

UL28 fusion protein under cytomegalovirus (CMV) promoter control.  The recombinant virus 

used in these studies, vFH476, was generated through manipulation of an HSV-1 (KOS) genome 

maintained within a recombinant bacterial artificial chromosome (BAC).  In order to utilize TAP 

for the isolation of terminase complexes possessing mutations within the nuclease domain of the 

UL15 subunit or the putative metal-binding domain of the UL28 subunit, mutations were 

introduced into the genome of the vFH476 BAC (Figure 22). 

 

 

 



 93 

 

 

 

 

 

The putative UL28 metal-binding domain, located at residues 197-228 of the UL28 ORF, 

was deleted from the vFH476 BAC.  The resulting vFH505 BAC (NTAP-UL28(∆197-225)) was 

transfected into Vero and UL28-complementing CV28 cells.  Virus was recovered only on the 

complementing cell line, indicating that the mutated UL28 protein was nonfunctional.  Two 

additional viruses with site-specific mutations of conserved amino acids within the UL15 

nuclease domain were generated in the same manner.  vFH506 (NTAP-UL28, UL15(D706A, 

D707A)) contains the mutation of a conserved aspartic acid residue at position 707 to alanine 

and a second aspartic acid to alanine mutation at residue 706, while vFH507 (NTAP-UL28, 

UL15(D509A)) contains the mutation of a conserved aspartic acid at position 509 to alanine.  

Both viruses could only be recovered on UL15-complementing C2 cells, suggesting that the 

amino acid changes resulted in expression of nonfunctional UL15 proteins.  A final recombinant 

Figure 22. Recombinant UL28 and UL15 virus constructs.  The HSV-1 genome is shown at the top with the 
long and short unique regions represented as UL and US, respectively.  The expressed UL28 (A) or UL15 (B) 
protein from wild-type HSV-1 KOS or each recombinant virus is expanded below, with virus names and 
protein sizes indicated to the left of each construct. Amino acid numbers below each construct indicate:  
deletion of the indicated amino acids (Δ), a nonsense mutation of the indicated amino acid (s), and mutation 
of the indicated amino acid (ie. D509A), or protein length (number alone) 
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virus was created through manipulation of the previously described vFH499 BAC, which 

encodes a C-terminally truncated NTAP-UL28 gene under CMV promoter control (Figure 22, 

see also Section 2.0 ).  The UL28 protein expressed by vFH499 is missing the C-terminal 44 

amino acids which are required for the interaction of UL15 and UL33 with UL28 (104).  The 

putative UL28 metal-binding domain was also deleted in the vFH499 BAC and the resulting 

virus, vFH510 (NTAP-UL28(∆197-225)-741s), was recovered only on UL28-complementing 

CV28 cells.     

The recovered viruses were plaque purified on UL28-complementing CV28 (vFH505, 

vFH510) cells or UL15-complementing C2 (vFH506, vFH507) cells and virus stocks were 

prepared and titrated.  Each of the recombinant viruses only grew to high titers on the respective 

complementing cell line, suggesting that each recombinant virus expressed a nonfunctional 

UL15 or UL28 protein (Table 11). 

 

 

 

 

Viral capsids were isolated from cells infected with wild-type KOS virus, the parental 

vFH476 or vFH499 viruses, or each domain mutant virus at 18hpi (Figure 23).  The results 

Table 11. Viral stock titers: UL15 and UL28 domain mutants. 



 95 

clearly show that only KOS and the vFH476 virus, which encodes a full-length UL28 protein, 

produce viral C-capsids.  As expected vFH499 virus produced only B-capsids, as did each 

domain mutant virus.  These results further suggest that each domain mutant virus expresses a 

nonfunctional UL15 or UL28 protein. 

 

 

 

 

 

3.4.2 TAP of UL28 protein complexes from cells infected with UL15 and UL28 domain 

mutant viruses 

The TAP tag used for these studies has been previously described (232), and consists of a 

streptavidin-, and calmodulin-binding peptide (Stratagene-Interplay) which allows for the dual 

purification of protein complexes eluted under native conditions (183).  Vero cells were infected 

with either the wild-type KOS virus, the parental NTAP-UL28 viruses (vFH476, vFH499), or the 

UL28 (vFH505, vFH510) and UL15 (vFH506, vFH507) domain mutant viruses at an MOI of 10.  

At 18 hpi, cell extracts were harvested and applied to the TAP procedure (Figure 24).  Infected 

Figure 23. Capsid formation by UL15 and UL28 domain mutant viruses. 
Viral capsids were isolated from the nuclei of cells infected with the 
indicated viruses.  Capsids were layered onto a 20-50% sucrose gradient, 
and centrifuged at 24K RPM at 4oC for 1 h. The positions of A-, B-, and 
C-capsid bands observed by light-scattering are indicated. A-capsids are 
the least dense and found at a higher position on the gradients, while C-
capsids are the densest and migrate to a lower gradient position. 
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cell extracts were first incubated with streptavidin resin and interacting complexes were eluted 

with biotin.  In the second purification the eluted complexes were incubated with calmodulin 

resin in the presence of calcium and eluted with EGTA.  Western blot of the final calmodulin-

eluted samples using antibodies against UL28 revealed the full-length 95 kDa NTAP-UL28 

protein in lanes containing the NTAP-UL28 virus (vFH476) and the UL15 domain mutants 

(vFH506, vFH507), which also express a full-length NTAP-UL28 protein (Figure 24).  The 

viruses expressing mutated forms of the UL28 protein revealed proteins of the expected size at 

90, 92, and 87 kDa, corresponding to the C-terminal truncated NTAP-UL28 (vFH499), deletion 

of the putative metal-binding domain of NTAP-UL28 (vFH505), and combined C-terminal 

truncation and metal-binding domain deletion of NTAP-UL28 (vFH510) within UL28, 

respectively.  Blots were also probed for the UL15 and UL33 proteins to determine if the domain 

mutations affected terminase complex formation.  As previously observed (Section 2.4.2), both 

UL15 and UL33 were copurified using the full-length NTAP-UL28 virus (vFH476) but were not 

isolated by TAP using the C-terminally truncated NTAP-UL28 fusion virus (vFH499)  The 

mutated UL15 proteins encoded by vFH506 and vFH507 were shown to copurify with UL28 

complexes, as well as the UL33 protein.  The UL15 and UL33 proteins were also associated with 

purified complexes containing the deletion of the putative metal-binding domain within the 

NTAP-UL28 fusion (vFH505).  As observed with the C-terminally truncated NTAP-UL28 

fusion virus (vFH499), UL15 and UL33 were not associated with the NTAP-UL28 mutant 

encoding both the truncation and metal-binding domain deletion (vFH510).  Also of note, no 

terminase subunits were purified from lysates of KOS-infected cells, confirming the specificity 

of the TAP procedure.  These results determined that each recombinant virus expresses a 

mutated UL15 or UL28 protein of expected molecular weight.  It was also demonstrated that the 
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UL15 and UL33 proteins copurify with UL28 in all samples except for those where the NTAP-

UL28 fusion protein lacks the final 44 amino acids; suggesting that the mutations introduced 

within the nuclease domain of UL15 or the metal-binding domain of UL28 do not affect 

terminase complex formation.  

 

 

 

 

Previously, Western blot analysis of UL28 complexes purified by TAP revealed the 

purification of several truncated forms of UL28 (Section 2.4.2), and mass spectrometry 

confirmed that fragments migrating in SDS-PAGE at approximately 63 and 50 kDa were 

composed of UL28 peptides (Section 2.4.4).  In the current analysis, blotting for UL28 or the 

Figure 24. TAP and immunoblot of UL28 complexes purified from UL15 and UL28 domain mutant viruses. 
Vero cells were infected with the indicated HSV-1 recombinant viruses or with wild-type (KOS) virus. After 
TAP, proteins eluted from the calmodulin column were resolved by SDS-PAGE and identified by Western 
blot (antibodies listed below each blot). Protein standards (kDa) are shown to the left of each blot 
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calmodulin-binding peptide demonstrated the presence of the same truncated forms of the 

NTAP-UL28 protein with the viruses expressing altered UL15 proteins (vFH506, vFH507).  In 

contrast, the vFH505 and vFH510 viruses express smaller truncated NTAP-UL28 proteins of 

approximately 60 kDa due to the 29 amino acid deletion of the putative metal-binding domain of 

UL28.  The detection of these proteins in each sample using the calmodulin-binding antibody 

demonstrated that the 63 and 60 kDa NTAP-UL28 proteins are the result of the loss of 

approximately 30-35 kDa (~300 amino acids) from the C-terminus of UL28.   

3.4.3 UL15 and UL28 domain mutations preclude cleavage and packaging of replicated 

viral DNA in infected cells 

The UL15 nuclease domain mutant viruses (vFH506, vFH507) and the UL28 metal-binding 

domain deletion virus (vFH505) were not deficient in terminase complex formation; therefore, in 

order to determine if these mutations affected terminase complex function, the ability of each 

domain mutant virus to cleave and package viral DNA during infection was examined.  

Replicated viral DNA concatemers are essentially endless, containing relatively few free genome 

ends, while cleaved and packaged viral DNA contains free L and S component termini.  

Southern blot analysis of infected cell DNA digested with BamHI can differentiate cleaved 

genomic termini from “endless” concatemeric DNA.  The BamHI K fragment spans the junction 

linking the L and S components of the viral genome, while DNA cleavage generates BamHI S 

and Q fragments representing the free L and S genome termini respectively (Figure 25).  

Therefore, a Southern blot BamHI K fragment probe detects only L-S junctions within uncleaved 

DNA, but will detect the Q and S terminal fragments and L-S junction of cleaved monomeric 

genomes. 



 99 

Vero cells were infected with the UL15 nuclease domain mutants (vFH506 or vFH507), 

the UL28 metal-binding domain mutants (vFH505 or vFH510), the full-length NTAP-UL28 

fusion (vFH476), or the C-terminally truncated NTAP-UL28 fusion (vFH499) viruses.  Infection 

with wild-type KOS virus served as a positive control, while GCB, a previously described UL28-

null virus deficient in cleavage and packaging (225), served as the negative control.  Cell lysates 

were treated with DNaseI before DNA isolation, in order to degrade any unpackaged viral and 

cellular DNA.  Southern blot analysis of DNaseI-protected DNA digested with BamHI and 

probed with the BamHI K or Q fragments revealed that only the wild-type KOS virus and the 

full-length NTAP-UL28 fusion virus were capable of successfully cleaving and packaging viral 

DNA into capsids, as indicated by the detection of the joint (K) and terminal (Q and S) DNA 

fragments (Figure 25).  Infection of UL15-complementing C2 cells (vFH506, vFH507) or UL28-

complementing CV28 cells (GCB, vFH499, vFH505, vFH510) restored the ability of each 

recombinant virus to cleave and package viral DNA, indicating that the observed defects in DNA 

cleavage and packaging are due to the mutations within UL15 or UL28.  Specifically, deletion of 

the putative metal-binding domain of UL28 (vFH505) or mutation of amino acids within the 

UL15 nuclease domain (vFH506, vFH507) was not shown to preclude terminase complex 

formation, but these viruses were deficient in cleavage and packaging, indicating that the 

putative metal-binding domain of UL28 and amino acids 509, and 706-707 of UL15 are required 

for the cleavage and packaging functions of the viral terminase. 
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3.4.4 UL15 and UL28 domain mutations do not affect viral genome replication 

Southern blots demonstrating the cleavage and packaging activity of the UL15 and UL28 domain 

mutant viruses on UL15- or UL28-complementing cell lines also revealed that the overall levels 

of viral DNA appeared to be significantly lower in the domain mutant viruses compared to wild-

type KOS virus.  Quantitative real-time PCR (qRT-PCR) was utilized to measure viral genome 

replication levels in cells infected with the UL15 nuclease domain mutants (vFH506 or vFH507), 

the UL28 metal-binding domain mutants (vFH505 or vFH510), the full-length or C-terminally 

truncated NTAP-UL28 fusion viruses (vFH476 or vFH499), or the UL28-null GCB virus.  For 

all viruses, viral genome replication was measured in noncomplementing Vero cells and UL15-

complementing C2 cells (vFH506, vFH507) or UL28-complementing CV28 cells (GCB, 

Figure 25. Analysis of viral DNA packaging. Vero, CV28, or C2 cells were infected with the indicated virus at 
an MOI of 5 PFU per cell. At 18 hpi, DNaseI-protected, total infected cell DNA was isolated, digested with 
BamHI, and subjected to Southern blot analysis using the (A) BamHI K fragment (32P labeled) or (B) 
BamHI Q fragment (32P labeled) as a probe (C) The locations of the BamHI K joint-spanning fragment and 
the two end fragments, BamHI-Q and -S, in the HSV-1 genome. 
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vFH499, vFH505, vFH510) and compared to replication by wild-type KOS virus.   The results 

indicate that each recombinant virus did not replicate viral genomes as well as wild-type KOS, 

but the difference only appears significant (greater than 1 log) with vFH510 replication in Vero 

and CV28 cells, and GCB replication in UL28-complementing CV28 cells.  However, a 

comparison of replication levels between KOS and vFH510-infected Vero cells over time did not 

reveal a significant difference in the number of genomes produced by both viruses at any specific 

time point (Figure 27).  Taken together, these results suggest that deletion of the putative metal-

binding domain of UL28 (vFH505) or mutation of amino acids within the UL15 nuclease domain 

(vFH506, vFH507) does not significantly reduce viral genome replication relative to what is 

observed during wild-type KOS infection.   

 

 

 

 

 

Figure 26. qRT-PCR analysis of viral genome replication. Genome isolation and qRT-PCR for the viral TK 
gene were performed as described in Materials and Methods. The procedure for creating standard curves for 
quantification is also described in Materials and Methods. The graphs indicate the number of viral DNA 
genomes per 15ng DNA at 18 hpi in Vero, CV28, or C2 cells. Numbers at the base of each bar indicate 
amplification (Ct) of the cellular GAPDH gene to ensure equal amounts of cells were examined. The error 
bars represent standard deviations from triplicate experiments. 



 102 

 

 

 

3.5 DISCUSSION 

Similar to double-stranded DNA bacteriophage, HSV-1 is thought to encode for a viral terminase 

complex that cleaves and packages replicated viral DNA into capsids; a process required for 

productive lytic HSV-1 infection (32).  Numerous studies have indicated that the UL15, UL28, 

and UL33 proteins form the proposed HSV-1 terminase complex and homologs of these proteins 

appear to form terminases in several other herpesviruses such as HCMV and varicella zoster 

virus (25, 46, 226, 243-245, 250).  Several amino acid domains implicated to mediate terminase 

complex formation and function(s) have been identified within the UL15 and UL28 subunits and 

these domains are conserved across the herpesviruses (52, 54, 114, 142).  This study was 

Figure 27. Time course comparing wild-type KOS and vFH510 viral genome replication. 
Genome isolation and qRT-PCR for the viral TK gene were performed as described in 
Materials and Methods. The procedure for creating standard curves for quantification is 
also described in Materials and Methods. The graph indicates the number of viral DNA 
genomes per 15ng DNA at the indicate time (hpi) in Vero cells. Numbers above or below 
each time point indicate amplification (Ct) of the cellular GAPDH gene to ensure equal 
amounts of cells were examined. Each time point was performed in triplicate. 
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performed to analyze the effect of mutations introduced within a conserved putative metal-

binding motif of UL28 or within the nuclease domain of UL15, in order to determine the 

importance of these regions in terminase complex formation and function during HSV-1 

infection.  

Previous studies (Section 2.0 ) have determined that the HSV-1 terminase complex of 

interacting UL15, UL28, and UL33 subunits can be isolated by tandem affinity purification 

(TAP) via fusion of the TAP tag to the N-terminus of UL28.  In order to examine the effect of 

domain mutations on purified terminase complexes, amino acid changes were introduced into the 

genome of the full-length NTAP-UL28 fusion virus (vFH476) or a second, previously described, 

NTAP-UL28 fusion virus (vFH499, Section 2.0 ) that encodes a truncated UL28 protein lacking 

C-terminal residues required for the interaction of UL15 and UL33 with UL28.  A deletion of the 

putative UL28 metal-binding domain, located at residues 197-228 of the UL28 ORF, was 

introduced into the genomes of the full-length and C-terminally truncated NTAP-UL28 fusion 

viruses, generating vFH505 and vFH510 respectively.  Site-specific mutations of conserved 

amino acids within the UL15 nuclease domain were introduced into the genome of the full-

length NTAP-UL28 fusion virus, to generate two additional viruses.  vFH506 contains the 

mutation of a conserved aspartic acid residue at position 707 to alanine and a second aspartic 

acid to alanine mutation at residue 706, while vFH507 also contains the mutation of a conserved 

aspartic acid at position 509 to alanine.  Each of the recombinant domain mutant viruses grew 

only on UL28- or UL15-complementing cell lines indicating that each mutation resulted in the 

expression of a nonfunctional UL15 or UL28 protein.  Furthermore, only viral B-capsids could 

be isolated from infected cells suggesting that these proteins were deficient in some aspect of the 

cleavage and packaging pathway.   



 104 

TAP of UL28 complexes from cells infected with each of the domain mutant viruses, 

followed by immunoblotting for the terminase subunits revealed several interesting results.  First, 

only vFH510, which encodes for the deletion of the putative UL28 metal-binding domain and a 

truncation of the UL28 C-terminus, did not copurify the UL33 protein or significant amounts of 

the UL15 protein.  These results provide further support that the C-terminus of UL28 is essential 

for terminase complex formation (104, 267), and suggest that the domain mutations within 

vFH505, vFH506, and vFH507 affect an aspect of terminase complex function.  Second, the 

observation of low level UL15 copurification in vFH510-infected cells supports previous mass 

spectrometry results, which identified a small number UL15 peptides in complexes purified from 

cells infected with the C-terminally truncated NTAP-UL28 fusion virus (vFH499), and may 

suggest that UL15 can interact at a second location internal to the C-terminal 44 amino acids of 

UL28, but this interaction appears to be of much lower affinity.  Finally, previously observed 

truncated forms of UL28 were observed to copurify with UL28 complexes isolated from cells 

infected with each of the domain mutant viruses.  Also as seen previously, each truncated band 

was detected when blots were probed with an antibody against the calmodulin-binding peptide 

located within the N-terminal TAP tag, suggesting that amino acids are missing from the C-

terminus of UL28.  Further confirmation of a loss of C-terminal amino acids is observed when 

comparing the mutants encoding the UL28 metal-binding domain deletion (vFH505 and 

vFH510).  Compared to all other virus lanes, the truncated UL28 bands for vFH505 and vFH510 

are approximately 3 kDa smaller due to the domain deletion, but when directly compared, the 

truncated bands are of equal size even though vFH510 also encodes for a 44 amino acid 

truncation of UL28, and this phenomenon is also observed with vFH499 (NTAP-UL28-741s).  It 

is not known whether these bands are indicative of protein degradation during purification or are 



 105 

specific cleavage events that perform a viral function.  However, it is possible that cleavage of 

the UL28 C-terminus may function in the dissociation of the terminase from viral capsids upon 

the completion of packaging.  The UL28 and UL15 proteins are not observed to associate with 

packaged viral capsids or mature virions (16, 126, 204, 223, 274), whereas UL33 associates with 

each capsid type independently of UL15 or UL28 (15, 179).  Therefore, once packaging has 

completed, cleavage of a large region of the UL28 C-terminus, which is essential for the 

interaction of UL15 and UL33 with UL28 (104, 267), may function to disrupt the terminase 

complex or liberate the UL15 and UL28 subunits from UL33 which remains capsid associated. 

Southern blot analysis of DNaseI-protected DNA revealed that the UL28 and UL15 

mutations resulted in a block in viral DNA cleavage and packaging during the infection of 

noncomplementing Vero cells. Successful cleavage and packaging of replicated viral DNA was 

restored within UL15- or UL28-complementing cell lines, indicating that the defect in cleavage 

and packaging is due to the specific domain mutation.  The levels of DNA isolated from each 

mutant appeared to be lower than with wild-type KOS infection, possibly suggesting lower 

packaging efficiency or lower levels of viral DNA replication by the mutant viruses.  Real-time 

PCR measurement of viral DNA replication determined that although each recombinant virus did 

not replicate to wild-type KOS virus levels on noncomplementing or complementing cell lines, 

the difference was not significant; suggesting that the lower levels of packaged DNA observed 

with the mutant viruses are not due to a defect in viral DNA replication. 

It is important to note that very little is known regarding the oligomeric status of the 

HSV-1 terminase complex at the capsid portal during the cleavage and packaging process.  The 

functional terminase holoenzyme of dsDNA bacteriophages is a multimer of interacting small 

and large terminase subunits (72); therefore it appears likely that the HSV-1 terminase would 
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also function as a multimer.  Considering this, it is difficult to exclude the possibility that the 

UL28 metal-binding domain and UL15 nuclease domain mutations examined in the current study 

affect the formation of higher order complexes at the capsid portal.  However, the observation of 

what may be reduced DNA packaging efficiency with each of the domain mutant viruses within 

complementing cell lines may argue that complex formation is occurring.  It is possible that each 

domain mutation results in a dominant-negative effect, with nonfunctional oligomeric terminase 

complexes forming at the capsid portal that contain mutated and wild-type terminase proteins, 

although this remains to be further elucidated. 

Taken together the results presented in this study suggest that the putative metal-binding 

domain of UL28 and amino acids 509, and 706-707 of UL15 are not required for terminase 

complex formation, but are essential for the cleavage and packaging functions of the viral 

terminase.  That deletion of the putative UL28 metal-binding domain alone (vFH505) did not 

affect complex formation, but precluded viral DNA cleavage and packaging is in agreement with 

a previous study demonstrating the same phenotype with recombinant viruses possessing amino 

acid insertions within this domain (104).  A previous mutational analysis of the conserved amino 

acids within the UL15 nuclease domain was performed with the UL15 homolog in HCMV, 

UL89 (142).  This study demonstrated that these conserved amino acids coordinated an 

interaction with Mn2+ ions that is essential for in vitro nuclease activity of UL89, and that 

mutation of the residues to alanine abolished nuclease activity.  Therefore it seems highly likely 

that both UL15 domain mutant viruses used in this study (vFH506 and vFH507) are specifically 

deficient in nuclease activity, and further experiments will include examining the in vitro 

nuclease activity of purified complexes.  Furthermore, these results indicate that the TAP 

procedure can effectively purify terminase complexes encoding mutations within specific 
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domains, which will allow for the direct biochemical assessment of the role that each conserved 

domain may play during HSV-1 infection. 
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4.0  SUMMARY AND CONCLUSIONS 

Productive herpes simplex virus type 1 (HSV-1) infection requires the cleavage of branched, 

replicated viral DNA concatemers into linear, monomeric genomes that are subsequently 

packaged into preformed capsids.  Gene products of the viral UL6, UL15, UL17, UL25, UL28, 

UL32, and UL33 genes are essential for DNA encapsidation, and viruses expressing a 

nonfunctional protein from any of these seven genes are deficient in growth; accumulating 

replicated concatemeric viral DNA and unpackaged capsid forms within the infected cell nucleus 

(3, 4, 6, 10, 33, 116, 117, 132, 165, 166, 173, 195, 198, 205, 206, 225, 256, 272).  The UL15, 

UL28, and UL33 proteins form a complex within infected cells that is thought to function 

similarly to the terminase complexes of double-stranded DNA (dsDNA) bacteriophage (46).  The 

proposed functions of the HSV-1 terminase include: i) binding to replicated viral DNA; ii) 

cleavage of replicated DNA concatemers into linear, genome-length monomers; iii) association 

with the immature capsids at a unique portal vertex; and iv) translocation of cleaved, replicated 

viral DNA into the capsid.   

In vitro demonstration of the proposed terminase functions has been hampered by the 

inability to purify the UL15 and UL28 subunits.  However, several genetic and electron 

microscopy experiments have provided indirect evidence suggesting that the complex of UL15, 

UL28, and UL33 functions as the HSV-1 terminase (46).  Studies have determined that complex 

formation is essential for function, as viruses encoding mutations that preclude the interaction 
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UL28 with UL15 or UL33 do not cleave or package replicated viral DNA during infection (18, 

104, 225, 267, 269).  Cleavage and packaging is also deficient during infection with recombinant 

viruses encoding mutations within the UL6 portal protein that preclude the interaction of the 

terminase with the portal complex (270).  Studies have shown that the UL15 and UL28 proteins 

are not associated with packaged C-capsids but are observed on the other capsid forms; 

suggesting a transient association with unpackaged capsids that is similar to what is observed 

with terminases of dsDNA bacteriophage (16, 32, 204, 223, 274).  Evidence has also come from 

closely related herpesviruses such as human cytomegalovirus, where strains displaying resistance 

to inhibitors of viral DNA cleavage were shown to possess mutations within UL89 and UL56, 

homologs of the HSV-1 UL15 and UL28 proteins respectively (114, 238).   

The UL15, UL28, and UL33 proteins are members of a group of approximately 40 genes 

that are conserved throughout the family Herpesviridae (54), and within these proteins several 

conserved domains have been identified that are implicated in terminase activity (4, 6, 9, 10, 18, 

33, 104, 114, 142, 173, 178, 225, 238, 268, 269, 271-273).  UL15 is the most highly conserved 

gene throughout the herpesviruses and is implicated to encode for the nuclease and ATPase 

activities of the terminase complex (52, 67, 104, 142, 178, 238, 268, 269, 271, 273).  The amino 

acid sequence of UL15 contains Walker A and B box motifs typically found in proteins that 

metabolize ATP and these residues are conserved within the large terminase subunit of 

bacteriophage T4 (52, 67, 249, 273).  Mutations within, or in close proximity to, these domains 

preclude cleavage and packaging of viral DNA during infection (178, 273).  A C-terminal 

fragment of the UL15 homolog in human cytomegalovirus (HCMV), UL89, was shown to 

possess sequence-specific nuclease activity that was dependent on manganese (Mn2+) ions (142).  

Analysis of the crystal structure of this C-terminal UL89 fragment revealed three amino acid 
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residues that coordinate Mn2+ within the active site that are conserved among the herpesviruses.  

Further studies using HCMV determined that a mutation within UL56, the homolog of HSV-1 

UL28, provided resistance to an inhibitor of viral DNA cleavage (114).  This mutation occurred 

within a stretch of amino acids conserved throughout the Herpesviridae and resembles a 

canonical metal-binding domain.   

As previously mentioned, there is limited biochemical data regarding the proposed 

activities of the terminase subunits.  In the only study for HSV-1, the UL28 protein was purified 

from E. coli and shown to specifically bind pac1-sequence-containing DNA, which was 

manipulated to adopt novel confirmations and single-stranded regions.  Slightly, more data has 

been generated using the HCMV UL89 and UL56 terminase subunits (UL15 and UL28 

homologs respectively).  The UL89 protein has been demonstrated to possess sequence-specific 

nuclease activity that is enhanced upon the interaction with UL56 (142, 199), while UL56 has 

been shown to bind specific HCMV DNA sequences (22), and unlike UL28, also encodes for 

ATPase activity (200). 

Fusion of a tandem affinity purification (TAP) tag to the N-terminus of UL28 allows 

for the isolation of terminase complexes composed of interacting UL15, UL28, and UL33 

subunits that are suitable for downstream biochemical analysis.  In order to purify 

endogenous HSV-1 terminase complexes from infected cells, a recombinant virus, vFH475, was 

generated that expresses a UL28 protein fused to an N-terminal TAP tag (NTAP-UL28).  The 

addition of the TAP tag to the N-terminus of UL28 resulted in a decrease in virus growth of 

approximately 1 log compared to wild-type KOS virus.  The vFH475 virus expressed an NTAP-

UL28 protein of expected size but the expression levels, although identical to wild-type KOS, 

were deemed too low for purification purposes.  Therefore a recombinant virus, vFH476, was 
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created that expresses the NTAP-UL28 fusion under the transcriptional control of the 

cytomegalovirus (CMV) immediate early promoter.  Growth of vFH476 was decreased 

approximately 1 log compared to KOS, similar to vFH475, indicating that the addition of the 

CMV promoter did not affect virus growth.  The NTAP-UL28 protein of vFH476 was expressed 

with similar kinetics as the wild-type UL28 protein but expression levels were significantly 

increased validating CMV promoter use. 

TAP of UL28 complexes from vFH476-infected cells followed by immunoblotting for 

the terminase subunits resulted in the purification of NTAP-UL28 and the copurification of the 

UL15 and UL33 proteins, while no terminase subunits were purified by TAP when cells were 

infected with wild-type KOS virus.  Furthermore, mass spectrometry analysis of specific SDS-

PAGE bands confirmed the purification of each terminase subunit in the vFH476 sample.  Silver 

staining of vFH476-purified complexes revealed the presence of several unidentified proteins 

copurifying with UL28 complexes that represent potential novel terminase components of viral 

or cellular origin.  These results demonstrate that TAP of an NTAP-UL28 fusion protein from 

HSV-1-infected cells is an effective method for the purification of endogenous HSV-1 terminase 

complexes. 

Sucrose gradient ultracentrifugation of complexes purified from vFH476-infected cells 

revealed three significant regions of the gradient.  The first contained significant amounts of the 

UL15, UL28, and UL33 proteins comigrating at a size range of approximately 190 kDa and 

consistent with a 1:1:1 heterotrimeric complex of the three proteins.  The second was consistent 

with a 1:1 heterodimer of UL28 and UL33, while the final region contained UL33 alone.  It is 

interesting that no regions contained comigrating UL15 and UL28 subunits, although not entirely 

surprising.  Previous studies have suggested that one role for UL33 may be to enhance the 
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interaction between UL28 and UL15 during complex formation, and it has been shown that in 

the absence of UL33, the number of interacting UL15 and UL28 subunits is reduced (104, 267, 

269).  Taken together these results may suggest that terminase complex formation is an ordered 

process, with UL33 first interacting with UL28, and UL15 binding last.  Furthermore, complex 

formation in this fashion could act to prevent premature nuclear localization of incomplete 

terminase complexes, as the signal for translocation to the nucleus resides within UL15 (268).    

Previous studies have determined that the C-terminus of UL28 is essential for the 

interaction of the UL15 and UL33 proteins with UL28 (104, 267).  The vFH499 virus was 

generated, which expresses a C-terminally truncated NTAP-UL28 protein under CMV promoter 

control.  The truncation in vFH499 is the result of the insertion of a linker sequence containing 

an in-frame stop codon after amino acid 741 of UL28, previously shown to preclude the 

interaction of UL15 and UL33 with UL28 (104).  vFH499 replicated to high titers only on a 

UL28-complementing cell line, and Western blot analysis of proteins isolated by TAP did not 

detect UL15 or UL33, further confirming that the C-terminus of UL28 is essential for terminase 

complex formation and function.  However, mass spectrometry analysis did identify a small set 

of peptides copurifying in the vFH499 sample that corresponded to UL15, possibly suggesting 

that UL15 can interact at a position internal to the C-terminal 44 amino acids of UL28, but that 

this interaction is of low affinity.   

Interestingly, immunoblotting of purified complexes from vFH476 and vFH499-infected 

cells revealed several truncated forms of UL28.  Proteins of approximately 63 and 50 kDa were 

confirmed to contain UL28 peptides by mass spectrometry, and these truncated proteins were 

detected by Western blot using an antibody directed against the calmodulin-binding peptide 

within the N-terminal TAP tag of UL28, indicating that the missing amino acids must be C-
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terminal.  In order to generate the observed proteins of roughly 63 and 50 kDa, approximately 

300 or 400 amino acids, respectively, must be removed from the C-terminus of UL28.   This is 

the first report of truncated forms of UL28 and it is unknown whether they represent byproducts 

of protein degradation or specific cleavage fragments that function during HSV-1 infection.  

Previous studies indicate that UL15 and UL28 are not associated with packaged capsids and as 

mentioned above, the C-terminus of UL28 is required for terminase complex formation (16, 104, 

204, 223, 267, 274).  Therefore, removal of a large segment of the UL28 C-terminus may 

function to dissociate the terminase from the portal complex after packaging has completed.  

Inherent in this proposed mechanism is that each terminase complex could only package one 

viral genome before being disrupted, and this is in contrast to terminases of dsDNA 

bacteriophage, which are thought to perform several rounds of DNA packaging (72).     

A comprehensive proteomic analysis was performed using complexes purified from 

vFH476, vFH499, or wild-type KOS-infected cells, and mass spectrometry identified 198 

proteins unique to the vFH476 and vFH499 TAP samples compared to the KOS control.  Of the 

198 proteins, 22 were identified as HSV-1 proteins, while the remaining 176 were of host cell 

origin, and these were classified into groups based on cellular location or function.  Examination 

of the interacting viral proteins confirmed the interaction of the UL15, UL28, and, UL33 

subunits.  Of the remaining viral proteins, none were copurified in amounts significant enough to 

warrant consideration as components of the viral terminase.  Furthermore, several of these 

proteins are known components of the viral tegument and envelope layers and may be indirectly 

associated with the viral terminase through the isolation of viral capsids by the TAP procedure.  

The interacting cellular proteins were classified into groups based upon cellular location and/or 

function and the results indicated that protein components of the host cytoskeleton displayed the 
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highest spectral count values of any group, possibly suggesting that the terminase complex 

utilizes host cytoskeletal elements for localization during viral infection.  Two cellular proteins 

were confirmed to interact by Western blot, apoptosis-inducing factor 1 (AIF-1) and DNA 

damage-binding protein 1 (DDB1).  DDB1 functions as a component of host cell repair pathways 

and previous studies have shown that DDB1 interacts with proteins of several viruses, including 

herpesviruses, to perform essential functions during viral infection (93, 103, 108, 193, 233).  

Recently, DDB1 has been shown to interact with the VP8 tegument protein (HSV-1 VP13/14 

homolog) of bovine herpesvirus type-1 (BHV), and initial data suggests the monoubiquitination 

of VP8 by DDB1 (242).  Mass spectrometry did not identify the interaction of VP13/14 with 

UL28 complexes; therefore it appears likely that DDB1 performs a function different from that 

in BHV.  AIF-1 is an essential mitochondrial protein that can translocate to the nucleus and 

cause caspase-independent apoptosis in times of stress (86, 160).  Within HSV-1-infected cells, 

AIF-1 was shown to translocate to the nucleus, however apoptosis was not observed to occur 

(277).  The results of the current analysis may suggest that UL28 or another component the 

terminase complex bind AIF-1 before it can effectively initiate apoptosis.  Overall, the 

interaction of host cell components with the viral terminase complex is intriguing as cellular 

proteins are implicated in the cleavage and packaging process, and further analysis will help to 

elucidate the potential role of these proteins during HSV-1 infection. 

UL28 complexes isolated by TAP were shown to possess nuclease activity in the 

presence of Mn2+ ions that was specific for HSV-1 a sequences, similar to the activity seen with 

a purified fragment of the HCMV UL89 protein (UL15 homolog) (142).  Interestingly, 

complexes purified using the C-terminally truncated NTAP-UL28 fusion (vFH499), which 

precludes the interaction of the UL15 and UL33 subunits, displayed nuclease activity similar to 
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that observed with complete terminase complexes (vFH476).  These results suggest that the 

UL28 protein encodes for nuclease activity, and are supported by previous studies demonstrating 

that the HCMV UL56 terminase subunit possesses nuclease activity (UL28 homolog) (22).  

However as previously mentioned, mass spectrometry revealed small amounts of UL15 

copurifying with the C-terminal NTAP-UL28 protein, which may indicate that UL28 does not 

possess nuclease activity.  Also interesting is that the observed nuclease activity resulted in DNA 

degradation similar to that observed in nuclease assays examining the purified UL89 protein 

(UL15 homolog) of HCMV (142, 199), and may suggest that terminase nuclease activity in vitro 

is nonspecific, possibly due to complex stoichiometry.  The terminase complexes isolated and 

examined in this study may not possess the correct stoichiometry and/or may not be properly 

assembled at the capsid portal, resulting in terminase DNA degradation as opposed to specific 

cleavage events. 

Mutations within the putative metal-binding domain of UL28 or the nuclease 

domain of UL15 do not preclude terminase complex formation but are essential for 

terminase activity.  Four HSV-1 recombinant viruses were generated that express the NTAP-

UL28 protein under CMV promoter control and also encode for mutations within the putative 

metal-binding domain of UL28 or nuclease domain of UL15.  The vFH505 and vFH510 viruses 

contain a deletion of the UL28 putative metal-binding domain (residues 197-225), and vFH510 

also contains an insertion mutation resulting in the expression of a UL28 truncation of the C-

terminal 44 amino acids required for UL15 and UL33 binding.  The vFH506 and vFH507 viruses 

encode site-specific mutations of conserved amino acids within the UL15 nuclease domain.  

vFH506 contains the mutation of a conserved aspartic acid residue at position 707 to alanine and 

a second aspartic acid to alanine mutation at residue 706, while vFH507 contains the mutation of 
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a conserved aspartic acid at position 509 to alanine.  Each virus grew to high titers only on UL15 

or UL28 complementing cell lines and produced only viral B-capsids during infection, indicating 

that each mutated UL15 or UL28 protein was nonfunctional.   

TAP and Western blotting demonstrated that complexes consisting of interacting UL15, 

UL28, and UL33 subunits were isolated from cells infected with each mutant virus except for 

vFH510, which is missing the C-terminal UL28 residues essential for complex formation.  These 

results suggested that for the remaining three viruses, (vFH505-vFH507) the observed defect in 

virus growth was not due to a defect in terminase complex formation.  Western blots also 

revealed the previously observed truncated forms of UL28.  Also as seen previously, the 

approximately 60 and 50 kDa fragments were detected for each mutant virus (bands were shifted 

down by ~3 kDa in vFH505 and vFH510 due to the metal-binding domain deletion) using an 

antibody against the calmodulin-binding peptide of the N-terminal UL28 TAP tag, indicating 

that amino acids were removed from the C-terminus of UL28. 

Southern blot analysis of DNaseI-protected viral DNA isolated from infected cells 

demonstrated that each domain mutant virus was deficient in cleavage and packaging of 

replicated viral DNA.  Infection of UL15 or UL28 complementing cells restored the ability of 

each mutant virus to cleave and package DNA, although the amount of packaged DNA was 

reduced compared to wild-type KOS.  Real time PCR measurement of viral genomes replicated 

during infection of complementing or noncomplementing cells revealed that although replication 

was not as efficient with each mutant virus as with wild-type KOS, the observed reduction was 

not significant.  These results suggest that the putative metal-binding domain of UL28 and amino 

acids 509, and 706-707 of UL15 are not required for terminase complex formation, but are 

essential for the cleavage and packaging functions of the viral terminase. 
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Ongoing experiments and future directions.  The results of the experiments presented 

herein raise several additional questions regarding the assembly and function of the HSV-1 

terminase complex during viral infection.  The mass spectrometry, sucrose density gradient 

centrifugation, and Western blotting analysis all support that the HSV-1 terminase complex 

consists of interacting UL15, UL28, and UL33 subunits.  However, there is the overlying 

question of complex stoichiometry and whether a multimeric terminase complex is required for 

biochemical activity.  Future experiments could involve attempting to visualize the terminase 

complex at the portal vertex of isolated capsids by electron microscopy and 3D image 

reconstruction.  However, the difficulty in this method would lie in determining and aligning the 

portal-containing vertexes of each capsid, which would be required for accurate 3D image 

reconstruction.  It may also be possible to glean information regarding complex stoichiometry 

from a comparative analysis of terminase protein subunit levels found associated with isolated 

A-, B-, and C-capsids by Western blot analysis.  The use of a standard protein, such as the VP5 

major capsid protein, would allow for the quantitation and estimation of terminase subunit levels 

associated with each capsid type, and this information could be utilized to estimate the copy 

number of each terminase subunit per capsid relative to the known amount of VP5 that composes 

each HSV-1 capsid.  Critical to this procedure is the purity of the isolated A-, B-, and C-capsid 

samples, and it is also essential that the terminase subunits are not stripped or dissociate from 

capsids during the capsid isolation procedure.  It would also be interesting to examine isolated A-

, B-, and C-capsids by Western blot for the C-terminally truncated forms of the UL28 protein, as 

the presence or absence of these peptides may provide insight into their potential function during 

HSV-1 infection.   
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In discussing the capsid association of the terminase, it should also be noted that it is 

largely unknown which amino acids of the terminase subunits mediate this interaction(s).  

Therefore, the association of the terminase subunits with isolated viral A-, B-, and C- capsids 

should be examined by Western blot for each of the recombinant viruses generated in this study.  

These results would be of particular interest in regards to the UL28 metal-binding domain 

mutants (vFH505, vFH510) and the UL15 nuclease domain mutants (vFH506, vFH507) which 

were deficient in cleavage and packaging of viral DNA.  It may be that these mutations preclude 

or diminish the association of the terminase with the capsid, which would also preclude the DNA 

encapsidation process. 

The mass spectrometry analysis performed in these studies identified the novel 

interaction of the cellular AIF-1 and DDB1 proteins with the viral terminase, and future 

experiments will aim to elucidate the role of these proteins during viral infection.  Currently 

experiments are in progress that will examine the effect of siRNA-knockdown of AIF-1 or 

DDB1 on HSV-1 proliferation.  It may also be of benefit to further confirm the interaction 

between these proteins by colocalization assays performed at various times post-infection.    

Mass spectrometry analysis also resulted in the identification of several viral and cellular 

proteins interpreted to be nonspecific or indirectly interacting proteins.  Future mass 

spectrometry experiments could take advantage of recombinant viruses for the further 

elimination of nonspecific interactors.  For example, the inclusion of a virus that encodes a 

deleted UL15 nuclear localization signal (previously generated in {Yang, 2007 #9}) would allow 

for the identification and/or elimination of proteins that only interact with the terminase complex 

in the cytoplasm of the host cell.  Another example would be to utilize a virus that is deficient or 
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diminished in the interaction of the terminase with the viral capsid, which may help to identify 

and reduce the number of nonspecific tegument and envelope interactions.     

The research presented herein has demonstrated that TAP of an NTAP-UL28 fusion 

protein can be utilized to isolate the endogenous terminase complex from HSV-1-infected cells, 

greatly expanding the number of biochemical assays available for the study of the terminase 

proteins.  Specifically, it is now possible to examine those biochemical activities attributed to the 

HSV-1 terminase by analogy with the terminase complexes of dsDNA bacteriophage, such as 

nuclease, ATPase, and DNA-binding activity.  These results have also demonstrated the ability 

to purify terminase complexes from cells infected with recombinant viruses that encode deletions 

or mutations of specific conserved amino acids within the terminase subunits, allowing further 

elucidation of those domains that are essential for terminase complex assembly and function 

during the context of viral infection.  Future experiments will include examining the UL28 

metal-binding domain mutants (vFH505, vFH510) and the UL15 nuclease domain mutants 

(vFH506, vFH507) in the nuclease activity assay to determine those residues of UL15 or UL28 

that are required for activity.  Current work in the laboratory is focused on generating 

recombinant viruses that encode site-specific mutations of the conserved histidine and/or 

cysteine residues within the putative UL28 metal-binding domain.  Each recombinant virus could 

then be utilized in ATPase, DNA-binding, and nuclease assays to examine the effect/importance 

of these residues during viral DNA cleavage and packaging.  Finally, these results suggest that it 

is now theoretically possible to attempt to recapitulate DNA packaging in vitro by combining 

isolated UL28 complexes, capsids, viral DNA, and ATP and performing Southern blot analysis 

on each sample for the presence of DNaseI protected DNA. 



 120 

Model for terminase activity.  In conclusion the findings of this study shed new light 

onto the mechanism of terminase complex formation and function during HSV-1 lytic infection.  

Based upon these results and previous findings from numerous studies, we propose the following 

model for terminase activity during DNA encapsidation.  Within the cytoplasm of the infected 

cell the UL28 and UL33 proteins initially interact, then UL15 is added to the complex last.  This 

ordered terminase assembly may serve three functions: i) to protect UL33 from degradation (104, 

267); ii) to enhance the interaction between UL15 and UL28 (104, 267, 269); and iii) to prevent 

the premature nuclear localization of complexes.  The assembled complex localizes to replication 

compartments within the nucleus via the nuclear localization signal (NLS) of UL15 (91, 268), 

where UL28 binds the replicated viral DNA concatemer and scans for specific sequences (5, 22).  

Recognition of a pac2 site in the correct orientation activates the endonuclease activity of UL15, 

resulting in DNA cleavage within an upstream DR1 element and generating a free L-terminus for 

packaging (92, 142, 199, 241).  The terminase, with bound viral DNA, docks at the UL6 portal 

of assembled procapsids in an orientation that positions UL15 in close proximity to the portal 

(16, 258, 263, 270).  This interaction activates the ATP-dependent DNA translocation activity of 

UL15 (51, 148, 273), and DNA packaging triggers protease activation, resulting in scaffold 

cleavage and procapsid maturation to the icosahedral form (39, 90, 151, 170).  DNA 

translocation begins at the L-component, and continues through the junction and into the S-

component (148).  As packaging nears completion, UL28 recognizes single-stranded pac1 

sequences within the a sequence of the S-component (5),  and the second UL15-mediated 

cleavage occurs (92, 142, 199, 241).  Cleavage frees the genome from the concatemer and 

packaging completes.  The terminase components subsequently disassociate from the viral capsid 

(16, 204, 223, 274), possibly through cleavage of a large C-terminal region of UL28. 
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Taken together, the results of these studies have demonstrated that TAP of a UL28 fusion 

protein is an effective method for the purification of the endogenous HSV-1 terminase complex 

Figure 28. Model of terminase formation and function during HSV-1 infection. (A) Complex formation 
occurs in the cytoplasm of the infected cell in an ordered fashion with UL28 and UL33 interacting first and 
UL15 added last. The complex translocates to the nucleus via an NLS within UL15. (B) In the nucleus UL28 
binds replicated viral DNA, and when a pac2 motif is encountered, UL15 cleaves the DNA within an 
upstream DR1 element, generating a free L-terminus for packaging. (C) The terminase complex with bound 
DNA docks at the UL6 portal of a procapsid, triggering UL15-mediated DNA translocation that proceeds 
directionally from the L terminus and into the S component of the viral genome. DNA packaging results in 
scaffold cleavage and capsid maturation. (D) Upon encountering a pac1 motif within the S terminus, a second 
cleavage occurs, and packaging completes.  The terminase then dissociates from the portal, possibly through 
cleavage of the UL28 protein   
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from infected cells.  Purification of endogenous terminase complexes is novel to the field and 

greatly expands the number of available experiments for the analysis of terminase complex 

formation and function during HSV-1 infection.  Most importantly, this method should allow for 

the direct biochemical analysis of purified complexes and the demonstration of each of the 

proposed terminase activities which include ATPase, nuclease, and DNA-binding activity.  

Elucidation of the requirements for each of these activities will greatly aid in the production of 

novel antivirals to inhibit these terminase functions.  Furthermore, the large degree of protein 

sequence conservation between the herpesviruses suggests that these results should provide data 

relevant to the treatment of other, more life-threatening, herpesvirus infections, such as those 

observed with HCMV. 
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SUPPLEMENTARY DATA 

 

 

Table 12. Interacting HSV-1 protein (complete) 
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Table 13. Interacting cellular proteins (complete) 
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Table 13. (continued) 
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Table 13. (continued) 
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Table 13. (continued) 
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Table 13. (continued) 
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