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Beginning in 2012, the Department of Health and Human Services (HHS) started adjusting 

payment for specific conditions by 30% for hospitals with 30-day patient readmission rates 

higher than the 75
th

 percentile (HHS.gov, 2011).  Furthermore, starting in 2013, HHS requires 

hospitals to publish their readmission rates (HHS.gov, 2011).  It is also estimated that by 2013, 

healthcare expenditures in the United States will account for 18.7% of the Gross Domestic 

Product (GDP) (Centers of Medicare and Medicaid Services and US Bureau of Census, 2004).  

Yet the US healthcare system still suffers from congestion and rising costs as illustrated by 

hospital congestion.   

 One way to reduce congestion and improve patient flow in the hospital is by modeling 

patient flow.  Using queueing theory, we determined the steady state solution of an open 

queueing network, while accounting for instantaneous and delayed feedback.  We also built a 

discrete event simulation model of patient flow in a network of Intensive Care Units (ICUs), 

while considering instantaneous and delayed readmissions, and validated the model using real 

patient flow data that was collected over four years.  In addition, we compared several statistical 

and data mining techniques in terms of classifying patient status at discharge from the ICU 

(highly imbalanced data) and identify methods that perform the best. 

 Our work has several contributions.  Modeling patient flow while accounting for 

instantaneous and delayed feedback is considered a major contribution, as we are unaware of any 
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patient flow study that has done so.  Validating the discrete event simulation model allows for 

the implementation and application of the model in the real world by unit managers and 

administrators.  The simulation model could be used to test different scenarios of patient flow, 

and to identify optimal resource allocation strategies in terms of number of beds and/or staff 

schedules in order to maximize patient throughput, reduce patient wait time and improve 

patients’ outcome.  Moreover, identifying high risk patients who are more likely to die in the 

ICU ensures that those patients are receiving appropriate and timely care, so their risk of death is 

reduced.   

 

 

 

 



 vi 

TABLE OF CONTENTS 

ACCKNOWLEDGMENTS .................................................................................................... XVI 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 BACKGROUND .................................................................................................. 1 

1.2 PATIENT FLOW ................................................................................................ 3 

1.3 THE INTENSIVE CARE UNIT (ICU).............................................................. 3 

1.3.1 Readmission to ICU ......................................................................................... 5 

1.4 IMBALANCED DATA ....................................................................................... 7 

1.5 OBJECTIVES ...................................................................................................... 7 

1.6 RESEARCH CONTRIBUTIONS .................................................................... 10 

1.7 CHAPTER SUMMARY ................................................................................... 11 

2.0 LITERATURE REVIEW .......................................................................................... 13 

2.1 QUEUEING NETWORKS ............................................................................... 13 

2.2 ANALYSIS OF QUEUEING NETWORKS ................................................... 14 

2.3 QUEUEING NETWORK MODELS ............................................................... 15 

2.4 QUEUEING NETWORKS WITH BLOCKING ............................................ 16 

2.4.1 Decomposition method .................................................................................. 17 

2.5 QUEUEING NETWORKS WITH FEEDBACK FLOWS ............................ 20 



 vii 

2.6 QUEUEING NETWORKS WITH BLOCKING AND FEEDBACK FLOWS

 22 

2.7 QUEUEING NETWORK MODELS IN HEALTHCARE ............................ 23 

2.8 CLASSIFYING IMBALANCED DATA SETS .............................................. 26 

2.9 CHAPTER SUMMARY ................................................................................... 29 

3.0 DATA AND ANALYSES .......................................................................................... 31 

3.1 DATA .................................................................................................................. 31 

3.2 QUEUEING NETWORK WITH FEEDBACK .............................................. 39 

3.2.1 Open queueing network (one M/M/1 node) with instantaneous feedback 39 

3.2.1.1 Solving the open queueing network (one M/M/1 node) with instantaneous 

feedback ...................................................................................................................... 40 

3.2.2 Open queueing network (two M/M/1 nodes) with instantaneous and 

delayed feedback ........................................................................................................ 41 

3.2.2.1 Solving the open queueing network (two M/M/1 nodes) with instantaneous 

and delayed feedback ................................................................................................. 42 

3.3 SIMULATION MODEL ................................................................................... 46 

3.3.1 M/M/s model .................................................................................................. 46 

3.3.1.1 Coronary Care Unit (CCU) ........................................................................... 46 

3.3.1.2 Cardiac Intermediate Care Unit (CICU) ..................................................... 47 

3.3.1.3 Cardiothoracic Surgical Intensive Care Unit (CTSICU) ........................... 47 

3.3.1.4 Neurotrauma Surgical Intensive Care Unit (NTSICU) .............................. 47 

3.3.2 G/M/s model ................................................................................................... 48 

3.3.2.1 Coronary Care Unit (CCU) ........................................................................... 48 



 viii 

3.3.2.2 Cardiac Intermediate Care Unit (CICU) ..................................................... 48 

3.3.2.3 Cardiothoracic Surgical Intensive Care Unit (CTSICU) ........................... 49 

3.3.2.4 Neurotrauma Surgical Intensive Care Unit (NTSICU) .............................. 49 

3.4 CLASSIFYING PATIENTS’ STATUS AT DISCHARGE ........................... 49 

3.4.1 Classification methods ................................................................................... 50 

3.4.2 Classification measures ................................................................................. 51 

3.4.2.1 Specificity, recall, precision and F-measure ................................................ 51 

3.4.2.2 Confusion entropy (CEN) .............................................................................. 51 

3.4.2.3 Hand’s measure .............................................................................................. 53 

3.5 CHAPTER SUMMARY ................................................................................... 55 

4.0 RESULTS ................................................................................................................... 56 

4.1 QUEUEING NETWORK WITH FEEDBACK .............................................. 56 

4.1.1 Local balance approach ................................................................................ 58 

4.2 STEADY STATE SOLUTION FOR A QUEUEING NETWORK WITH 

INSTANTANEOUS FEEDBACK .................................................................................... 58 

4.3 STEADY STATE SOLUTION FOR A QUEUEING NETWORK WITH 

INSTANTANEOUS AND DELAYED FEEDBACK ...................................................... 59 

4.3.1 Numerical example of the steady state solution .......................................... 60 

4.4 SIMULATION MODEL RESULTS ................................................................ 61 

4.4.1 Comparing mean service time ...................................................................... 61 

4.4.2 Comparing mean time between external arrivals ...................................... 62 

4.5 CLASSIFICATION RESULTS ........................................................................ 63 

4.5.1 Logistic regression ......................................................................................... 64 



 ix 

4.5.2 Discriminant analysis .................................................................................... 65 

4.5.3 Classification and Regression Tree (CART) models .................................. 66 

4.5.4 C5 .................................................................................................................... 67 

4.5.5 Support Vector Machine (SVM) .................................................................. 68 

4.5.6 Specificity ....................................................................................................... 69 

4.5.7 Recall............................................................................................................... 70 

4.5.8 Precision ......................................................................................................... 71 

4.5.9 F-measure ....................................................................................................... 72 

4.5.10 Confusion entropy (CEN) ............................................................................ 73 

4.5.11 Hand’s measure ............................................................................................ 74 

4.6 SUMMARY OF CLASSIFICATION RESULTS ........................................... 75 

4.7 CHAPTER SUMMARY ................................................................................... 75 

5.0 CONCLUSIONS AND FUTURE RESEARCH ...................................................... 77 

5.1 CONCLUSIONS ................................................................................................ 77 

5.2 CONTRIBUTIONS AND IMPLICATIONS .................................................. 78 

5.3 FUTURE WORK ............................................................................................... 79 

5.3.1 Non-Markovian queueing network .............................................................. 80 

5.3.2 Patient classes ................................................................................................. 80 

5.3.3 Classifying readmitted patients .................................................................... 82 

5.3.4 Admission/discharge policies ........................................................................ 83 

5.4.4.1 Analytic Hierarchy Process (AHP) ............................................................... 86 

5.4 CHAPTER SUMMARY ................................................................................... 86 

APPENDIX A .............................................................................................................................. 88 



 x 

APPENDIX B .............................................................................................................................. 89 

APPENDIX C .............................................................................................................................. 91 

BIBLIOGRAPHY ....................................................................................................................... 93 



 xi 

LIST OF TABLES 

 

Table 1. Data descriptive statistics ................................................................................................ 32 

Table 2. Transition probability matrix of cardiac patients ............................................................ 34 

Table 3. Mean, standard deviation, squared coefficient of variation (CV
2
) of service time in 

Coronary Care Unit (CCU), Cardiac Intermediate Care Unit (CICU), Cardiothoracic Surgical 

Intensive Care Unit (CTSICU) and Neurotrauma Surgical Intensive Care Unit (NTSICU) ........ 34 

Table 4. Mean, standard deviation, squared coefficient of variation (CV
2
) of time between 

external arrivals to Coronary Care Unit (CCU), Cardiac Intermediate Care Unit (CICU), 

Cardiothoracic Surgical Intensive Care Unit (CTSICU) and Neurotrauma Surgical Intensive Care 

Unit (NTSICU) ............................................................................................................................. 37 

Table 5. Summary table for calculation of specificity, recall and precision ................................. 51 

Table 6. Expected performance of specificity, recall, precision, the F-measure and confusion 

entropy (CEN) as the misclassification cost ratio (MCR) is increased ........................................ 53 

Table 7. Expected performance of Hand’s measure for different choices of Beta distribution 

parameters ..................................................................................................................................... 54 

Table 8. Assigned numerical values for parameters in equations 4.8 and 4.9 .............................. 60 



 xii 

Table 9. Comparison of mean service time in Coronary Care Unit (CCU), Cardiac Intermediate 

Care Unit (CICU), Cardiothoracic Surgical Intensive Care Unit (CTSICU) and Neurotrauma 

Surgical Intensive Care Unit (NTSICU) between actual data and simulation runs ...................... 62 

Table 10. Comparison of mean time between external arrivals to Coronary Care Unit (CCU), 

Cardiac Intermediate Care Unit (CICU), Cardiothoracic Surgical Intensive Care Unit (CTSICU) 

and Neurotrauma Surgical Intensive Care Unit (NTSICU) between actual data and simulation 

runs ................................................................................................................................................ 62 

Table 11. Hand measure values for logistic regression, discriminant analysis, Classification and 

Regression Tree (CART) models, C5 and Support Vector Machine (SVM) using different Beta 

distribution parameters.................................................................................................................. 74 

Table 12. Descriptive statistics of patient classes ......................................................................... 81 

Table 13. Transition probability matrix of class 1 patients .......................................................... 81 

Table 14. Transition probability matrix of class 2 patients .......................................................... 82 



 xiii 

LIST OF FIGURES 

Figure 1. General diagram of patient flow in a hospital (ER=’Emergency Department’, 

OR=’Operating Room’, ICU=’Intensive Care Unit’, PACU=’Post Anesthesia Care Unit’) ....... 33 

Figure 2. Flow diagram of cardiac patients in the queueing network (CCU=’Coronary Care 

Unit’; CICU=’Cardiac Intermediate Care Unit’; CTSICU=’Cardiothoracic Surgical Intensive 

Care Unit’; NTSICU=’Neurotrauma Surgical Intensive Care Unit’; PACU=’Post Anesthesia 

Care Unit’; Wards; CATH=’Cardiac Catheterization Unit’) ........................................................ 33 

Figure 3. Measured distribution of Coronary Care Unit (CCU) service time .............................. 35 

Figure 4. Measured distribution of Cardiac Intermediate Care Unit (CICU) service time ........... 35 

Figure 5. Measured distribution of Cardiothoracic Surgical Intensive Care Unit (CTSICU) 

service time ................................................................................................................................... 36 

Figure 6. Measured distribution of Neurotrauma Surgical Intensive Care Unit (NTSICU) service 

time ............................................................................................................................................... 36 

Figure 7. Measured distribution of time between external arrivals to Coronary Care Unit (CCU)

....................................................................................................................................................... 37 

Figure 8. Measured distribution of time between external arrivals to Cardiac Intermediate Care 

Unit (CICU) .................................................................................................................................. 38 

Figure 9. Measured distribution of time between external arrivals to Cardiothoracic Surgical 

Intensive Care Unit (CTSICU) ..................................................................................................... 38 



 xiv 

Figure 10. Measured distribution of time between external arrivals to Neurotrauma Surgical 

Intensive Care Unit (NTSICU) ..................................................................................................... 39 

Figure 11. Open queueing network with instantaneous feedback ................................................ 40 

Figure 12. Open queueing network with instantaneous and delayed feedback ............................ 42 

Figure 13. Logistic regression’s specificity, recall, precision, the F-measure and confusion 

entropy (CEN) as the misclassification cost ratio (MCR) is increased ........................................ 64 

Figure 14. Discriminant analysis’ specificity, recall, precision, the F-measure and confusion 

entropy (CEN) as the misclassification cost ratio (MCR) is increased ........................................ 65 

Figure 15. Classification and Regression Tree (CART) models’ specificity, recall, precision, the 

F-measure and confusion entropy (CEN) as the misclassification cost ratio (MCR) is increased 66 

Figure 16. C5’s specificity, recall, precision, the F-measure and confusion entropy (CEN) as the 

misclassification cost ratio (MCR) is increased ............................................................................ 67 

Figure 17. Support Vector Machine’s (SVM) specificity, recall, precision, the F-measure and 

confusion entropy (CEN) as the misclassification cost ratio (MCR) is increased ........................ 68 

Figure 18. Specificity of logistic regression, discriminant analysis, Classification and Regression 

Tree (CART) models, C5 and Support Vector Machine (SVM) as the misclassification cost ratio 

(MCR) is increased ....................................................................................................................... 69 

Figure 19. Recall of logistic regression, discriminant analysis, Classification and Regression Tree 

(CART) models, C5 and Support Vector Machine (SVM) as the misclassification cost ratio 

(MCR) is increased ....................................................................................................................... 70 

Figure 20. Precision of logistic regression, discriminant analysis, Classification and Regression 

Tree (CART) models, C5 and Support Vector Machine (SVM) as the misclassification cost ratio 

(MCR) is increased ....................................................................................................................... 71 



 xv 

Figure 21. F-measure of logistic regression, discriminant analysis, Classification and Regression 

Tree (CART) models, C5 and Support Vector Machine (SVM) as the misclassification cost ratio 

(MCR) is increased ....................................................................................................................... 72 

Figure 22. Confusion Entropy (CEN) of logistic regression, discriminant analysis, Classification 

and Regression Tree (CART) models, C5 and Support Vector Machine (SVM) as the 

misclassification cost ratio (MCR) is increased ............................................................................ 73 

Figure 23. Hand’s measure values of logistic regression, discriminant analysis, Classification and 

Regression Tree (CART) models, C5 and Support Vector Machine (SVM) as Beta distribution 

parameters are changed ................................................................................................................. 74 



 xvi 

ACCKNOWLEDGMENTS 

 

I am grateful to Dr. Luis Vargas, my dissertation advisor for all his support and mentorship.  I 

also would like to thank my dissertation committee members, Dr. Jerrold May, Dr. Shang, Dr. 

Strum and Dr. Tjader for all their help and feedback.  I am also grateful to my wife and my 

family for all their support and encouragement throughout my doctoral career.    

 

 



 1 

1.0  INTRODUCTION 

This chapter introduces the problem of congestion and rising costs in the US healthcare system 

as exemplified by hospital congestion.  One of the main reasons for hospital congestion is the 

lack of coordination among the various units within the hospital.  Modeling and studying patient 

flow within the hospital presents a promising solution to this problem.  One particular hospital 

unit that might benefit from studying patient flow is the Intensive Care Unit (ICU).  The chapter 

identifies some of the gaps and limitations in the existing literature on ICUs, and points out the 

importance of studying patient flow in a network of ICUs and accounting for readmissions.  The 

chapter also discusses the problem of classifying imbalanced data sets.  The objectives and 

contributions of our work are specified as well. 

1.1 BACKGROUND 

Healthcare is one of the most important domestic industries in the United States (Cochran et al., 

2006).  In 2002, US healthcare expenditures reached $1.5 trillion (about 15% of Gross Domestic 

Product (GDP)) (Cochran et al., 2006).  By 2013, the percentage is projected to increase to 

18.7% (Centers of Medicare and Medicaid Services and US Bureau of Census, 2004).  

Furthermore, in 2003, total national health expenditures increased at a rate four times the rate of 

inflation (Smith et al., 2005).   
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Despite the above, the US healthcare system still suffers from congestion and rising 

costs.  According to Carter (2002) “in my experience, one of the major causes of inefficiency in 

the healthcare system is what I call ‘localized people.’  People working in the healthcare system 

are very knowledgeable about their own area but have relatively little understanding of what 

goes on in the next department.  Doctors and nurses in the Emergency Department or in 

operating rooms do not really understand or sympathize with the problems faced by ward staff.  

People in hospitals have little appreciation of issues in long-term and home care.  Occasionally, 

there are issues about ‘my work is more important than yours’ or ‘my problems are bigger than 

yours.’  This is where Operational Research professionals can play an important role.” 

One ramification of healthcare system congestion and rising costs is hospital congestion.  

Although about one-third of healthcare expenditures go toward hospitals (Cochran et al., 2006), 

hospital congestion is a common problem in the United States.  More than 60% of hospitals are 

operating “at capacity” or “over capacity” (Managing Patient flow, 2004).  Congestion can be 

attributed to several factors including: efficiency demands at the hospital level; healthcare system 

level and physician practices level; higher expectations from customers; rising costs due to 

medical premiums and lower reimbursement from insurance companies and federal and state 

agencies (Managing Patient Flow, 2004).  

Initially, congestion was considered an emergency department phenomenon, but it is now 

recognized as a system problem (Managing Patient Flow, 2004).  Consequently, hospital 

management has recognized the importance of coordination among the various units within a 

hospital, rather than looking at units independently from one another (Managing Patient Flow, 

2004).  One way to coordinate hospital units is by studying patient flow within the hospital. 
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1.2 PATIENT FLOW 

According to Koo et al. (2010), patient flow is “the movement of patients through a set of 

activities, services, or locations in a healthcare facility.”  During the flow, patients require 

various healthcare resources, such as beds, physicians, and equipment (Koo et al., 2010).  

Clinically, patient flow represents the progress of patient’s health status (Cote, 2000).  Moreover, 

patient flow represents the underlying environment in healthcare, and understanding it is critical 

for the successful implementation of operations management tools and methodologies (Cote, 

2000).   

From a managerial perspective, studying patient flow in the hospital should help 

administrators in better predicting expected demand, and therefore better manage patient 

admissions and scheduling, bed capacity, and staff scheduling (Cote, 2000).  From a clinical 

perspective, studying patient flow should help administrators, healthcare providers and patients 

to better understand the disease progress and recovery process (Cote, 2000).  Consequently, 

hospital throughput should improve, physicians and staff’s idle time and reduce patients’ waiting 

time should.  Hence, hospital costs and negative patient outcomes such as morbidity and 

mortality should be reduced. 

1.3 THE INTENSIVE CARE UNIT (ICU) 

One of the most important units in the hospital is the Intensive Care Unit (ICU).  The ICU is a 

specialized department in the hospital that is exclusively dedicated to critically ill patients.  

Patients are usually monitored continuously and closely by highly trained nurses as well as 
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physicians.  ICUs are usually equipped with very expensive and highly specialized machines.  In 

fact, ICUs account for 15-20% of hospital costs (Gruenberg et al., 2006; Pronovost et al., 2004).  

In terms of size (i.e., number of beds), ICUs vary widely depending on the size of the hospital.  

In some cases, a hospital may have several ICUs, each dedicated to special kinds of patients such 

as a neonatal ICU (NICU) and a surgical ICU (SICU).     

The cost of caring for ICU patients in the United States is estimated to account for 1-2% 

of the gross national product (Gruenberg et al., 2006).  Given the much higher costs for patient 

care in the ICU, ICUs usually operate at a high level of occupancy, which, in turn, leads to 

longer waiting times in the upstream units, and lower patient throughput (KC et al., 2012).  For 

instance, the SICU has been identified as a bottleneck in the cardiac care process (KC et al., 

2012).  High occupancy in the ICU is also associated with increased likelihood of mortality and 

readmission (Chrusch et al., 2009). 

Patients arrive to the ICU from several places.  Some patients are admitted to the ICU 

right after surgery while others arrive from the emergency department (ED) or are directly 

admitted to the ICU (Dobson et al., 2010).  Furthermore, some patients are transferred from 

another hospital that does not have the capability to handle the case (Dobson et al., 2010).  

Therefore, managing patient flow in the ICU is critical, as inadequate capacity in the ICU can 

lead to negative outcomes, such as cancellation of scheduled surgeries, transfer of patients and 

early discharge from the ICU (Green, 2002; Costa et al., 2003).  Clinically, such negative 

outcomes might cause the patient’s health status to deteriorate, and may increase the risk of 

morbidity and/or mortality.  Moreover, if a patient is discharged early from the ICU, his/her 

probability of being readmitted increases (KC et al., 2012). 
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While there are healthcare modeling studies of patient flow, those studies are often 

confined to a single department within the hospital (Cochran et al., 2006; Vanberkel et al., 2009).  

For example, there have been numerous studies of ICUs (Ridge et al., 1998; Kim et al., 1999; 

Kim et al., 2000), but all of those studies looked at the ICU independently, without considering 

other units within the same hospital.  Although helpful, those studies do not provide a 

comprehensive picture of patient flow and throughput in the hospital.  Therefore, studies of 

patient flow in the ICU and ICU-related units (the operating room (OR), the emergency 

department (ED), etc.) are needed, because improving efficiency and patient throughput in the 

ICU should significantly reduce hospital’s costs, and significantly improve hospital’s throughput, 

as well as patient health outcomes. 

1.3.1 Readmission to ICU 

Beginning in 2012, the Department of Health and Human Services (HHS) started adjusting 

payment for specific conditions by 30% for hospitals with 30-day patient readmission rates 

higher than the 75
th

 percentile (HHS.gov, 2011).  Furthermore, starting in 2013, HHS requires 

hospitals to publish their readmission rates (HHS.gov, 2011).  On average, 7% of patients are 

readmitted to the ICU (Rosenberg et al., 2000). 

Readmission is often associated with increased costs and increased risk of morbidity and 

mortality (Alban et al., 2006; Chrusch et al. 2009; Limathe et al., 2009).  As a result, numerous 

studies have attempted to build models for predicting and identifying reasons for readmission to 

the ICU (Rosenberg et al. 2000; Bradell et al., 2003; Alban et al., 2006; Conlon et al., 2008; 

Litmathe et al., 2009).  However, the results from those studies are different from each other, 

and, in some cases, contradicting (Rosenberg et al., 2000).   
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Rosenberg et al. (2000) reviewed eight studies that looked at ICU readmissions.  Despite 

the fact that the readmission rates were relatively similar across the eight studies, predictors of 

readmission to the ICU were not consistent (Rosenberg et al., 2000).  Bardell et al. (2003) 

analyzed reasons for readmission in cardiac patients who underwent Coronary Artery Bypass 

Surgery (CABG), using logistic regression.  The authors found that renal failure and prolonged 

mechanical ventilation were the only predictors of ICU readmission after CABG.  Litmathe et al. 

(2009) also analyzed predictors of readmission to ICU after cardiac surgery.  According to their 

multivariate logistic regression analysis, renal failure, mechanical ventilation (>24 hours), re-

exploration for bleeding and low cardiac output were found to be predictors of ICU readmission. 

Studying patient flow in the ICU while accounting for readmissions presents an 

opportunity to gain better insight about reasons for readmission.  Therefore, it should help in 

lowering the rate of readmissions and in minimizing the negative outcomes associated with 

readmissions. 

As mentioned earlier, poor management of the ICU can lead to negative patient 

outcomes, such as morbidity and mortality.  In order to successfully address and reduce such 

negative outcomes, we should try to identify and characterize high-risk patients.  Therefore, we 

use data mining techniques to identify patients who are more likely to die in the ICU.  Our 

patient status data (alive, deceased) is highly imbalanced, so we discuss the topic of imbalanced 

data in the next section. 
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1.4 IMBALANCED DATA 

Imbalanced data sets, where the class of interest is rare, occur in many fields.  In accounting 

data, fraudulent cases are rare, but their identification is critical (Chawla et al., 2004).  In 

medicine, the early detection of rare but serious diseases and conditions such as cancer is very 

important (Chawla et al., 2004; Qiao et al., 2009).  Other examples include risk management and 

text classification (Chawla et al., 2004, Van Hulse et al., 2009).   

Standard classification techniques do not account for imbalanced data very well (Chawla 

et al., 2004; Van Hulse et al., 2007).  In fact, those techniques assume that training data sets have 

evenly distributed classes, which often leads to under-representation or under-sampling of the 

rare class (Chawla et al., 2004; Yen et al., 2009).  A number of solutions for the imbalanced data 

problem exist at the data level and the algorithmic level (Chawla et al., 2004).  Data level 

strategies modify the information supplied to a general-purpose algorithm so that an approach 

that does not explicitly accommodate different class sizes or differential misclassification costs 

will yield useful results.  Algorithmic level approaches explicitly modify the classification 

method but not the data set. 

1.5 OBJECTIVES 

This dissertation has several objectives.  Given the resemblance between patient flow networks 

and queueing networks, using queueing network models to study and better understand patient 

flow is possible (Cote, 2000; Terwiesch et al., 2011).  Hence, the first objective is to build a 

mathematical model for the steady state analysis of patient flow, while considering feedback 
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flows (i.e. readmissions).  As mentioned earlier, the percentage of readmitted ICU patients is 

significant, so it is important to account for such patients by modeling both instantaneous and 

delayed feedback.  We build a mathematical model for an arbitrary open queueing network 

consisting of two M/M/1 nodes, while accounting for instantaneous and delayed feedbacks, and 

find the steady state solution for the network. 

Because mathematical models cannot reflect real world complexities, as they become 

intractable, we decided to use discrete event simulation.  Therefore, the second objective is to 

build a simulation model of cardiac patient flow in a network of ICUs, using discrete event 

simulation, while accounting for blocking and readmissions.  Simulation models have been 

historically well established as helpful tools for ICU managers (Kim et al., 2002).  According to 

Ferreira et al. (2008), discrete-event simulation is a “computer modeling strategy in which events 

are assumed to take place one at a time, with subsequent events happening exclusively after the 

end of the predecessor.”  It has two main components: a simulation clock and a future event list 

(Au-Yeung, 2007).  The simulation clock gives the current value of time.  The future event list 

gives the list of times of occurrence of pre-determined future events (Au-Yeung, 2007).   

Discrete-event simulation has a number of advantages.  It allows managers and 

administrators to evaluate efficiency and to examine different ‘what if’ scenarios (Jun et al., 

1999).  Moreover, it can be used to forecast the effects of changes in patient flow on resource 

needs (Jun et al., 1999).  In addition, unlike mathematical models, discrete-event simulation can 

model complex patient flow in various healthcare systems (Jun et al., 1999).   

Discrete event simulation has been used in various studies to model patient flow.  A 

number of studies modeled patient flow in an accident and emergency department using discrete 

event simulation (Coats et al., 2001; Connelly et al., 2004).  However, most of those studies 
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lacked sufficient data (Au-Yeung, 2007).  As a result, the studies were either not validated with 

real data, or were validated, but their results did not agree with the actual data (Au-Yeung, 2007).  

Our third objective is to validate our simulation model, using real patient flow data that has been 

collected over four years.  Validation means that our simulation model could be applied in other 

settings such as the operating room (OR) and the emergency room (ER).  Ultimately, modeling 

patient flow in the entire hospital becomes possible.   

While the first three objectives study patient flow mainly from a managerial perspective, 

patient outcomes should be considered in order to better understand patient flow.  Hence, the 

fourth objective is to compare several popular statistical and data mining techniques in 

classifying the discharge status (deceased, alive) of patients from the ICU.  The fact that the 

discharge status data is highly imbalanced (2.5% deceased, 97.5% alive) makes it extremely 

difficult to correctly predict deceased patients.   

We compare the performance of logistic regression, discriminant analysis, Classification 

and Regression Tree (CART) models, C5, and Support Vector Machines (SVM) in predicting the 

discharge status (alive or deceased, with “deceased” being the class of interest) of patients from 

the ICU.  In order to compare the five methods, we use a variety of misclassification cost ratio 

(MCR) values of classifying someone in the minority class of interest (deceased) as being in the 

majority class (alive), to classifying someone who is actually in the majority class as being in the 

minority group.  We use specificity, recall, precision, the F-measure, and confusion entropy 

(CEN) as criteria for evaluating each method’s classification performance.  We also use Hand’s 

measure to compare the five methods.  Being able to correctly classify patients should help in 

identifying high-risk patients who require extra care and resources, and, therefore, reduce their 

risk of morbidity and/or mortality. 
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1.6 RESEARCH CONTRIBUTIONS 

This work has a number of contributions.  From a methodological perspective, it builds a 

queueing network model of patient flow, while accounting for both instantaneous and delayed 

feedback.  This is a major contribution, as no healthcare patient flow study has considered 

feedback flows.  It also builds a queueing network model of a network of ICUs, using discrete 

event simulation.  It validates the findings from the proposed simulation model with real cardiac 

patient flow data that has been collected over four years.  Therefore, given that the findings from 

the model are similar or close to the findings from the real data, our model is valid and 

applicable in other settings.  Compared to existing studies, this is considered a significant 

contribution as most studies done so far have been limited to small data sets (Au-Yeung, 2007).  

As a result, those studies are either not validated or are validated using very small datasets (Au-

Yeung, 2007).   

 Our work also demonstrates how the use of the MCR for analyzing imbalanced medical 

data significantly improves the method’s classification performance.  Moreover, it illustrates the 

application of Hand’s measure in a highly imbalanced medical data set.  Unlike other studies that 

use artificial or small real data sets, we use a large, real, imbalanced data set to compare the 

performance of several methods using several measures.  Therefore, the data imbalance issues 

and the difficulties in correctly classifying the minority class in our data should be a more 

accurate reflection of what would be encountered in real problem environments.  Moreover, 

using an algorithmic level approach, which does not modify the data, to deal with the data 

imbalance issue, means that our findings are not data specific, and, hence, may be applicable to a 

significant number of real imbalanced data sets.     
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From a managerial perspective, using simulation-based queueing network models and 

accounting for feedback flows should help administrators in better managing the units’ limited 

capacity by predicting the expected demand more accurately.  This, in turn, will help 

administrators to optimally schedule patients and staff.  Accordingly, hospital efficiency will 

improve and hospital costs will decline.   

Clinically, our study should improve patients’ outcome, as patient waiting time is 

reduced, early discharge is avoided, and risk of morbidity and/or mortality is minimized.  

Moreover, being able to identify patients who are more likely to die will help in providing the 

necessary and timely care to those patients. 

1.7 CHAPTER SUMMARY 

This chapter presented the background on congestion and rising costs in the US healthcare 

system.  In particular, the problem of hospital congestion was discussed.  Studying patient flow 

was suggested as a potential solution to the problem.  In particular, the importance of studying 

patient flow in a network of ICUs, while accounting for feedback flows, was indicated.  The 

problem of classifying highly imbalanced data was also discussed.  The objectives and 

contributions of our work were identified in this chapter as well.   

Our work aims to build a mathematical model, while accounting for instantaneous and 

delayed feedback.  In addition, our work builds a discrete event simulation model of cardiac 

patient flow in a network of ICUs.  We also identify data mining techniques that perform well in 

classifying highly imbalanced data sets.  The major contributions of this work are the 

consideration of feedback flows in the mathematical model, and the validation of the proposed 
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discrete event simulation model using a large real patient flow dataset.  Managerially, the 

proposed model helps administrators in managing the ICUs.  Clinically, our study should 

improve patients’ outcomes, and should help in identifying patients who are at an increased risk 

of death. 
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2.0  LITERATURE REVIEW 

This chapter introduces the concept of queueing networks.  Queueing networks are defined and 

characterized.  Methods used to analyze blocking in queueing networks are described.  

Specifically, the parametric decomposition method is discussed.  The concept of feedback flows 

is introduced as well.  The chapter also summarizes some of the earliest studies, and the existing 

literature on queueing network models.  In addition, it reviews healthcare studies using queueing 

network models to model patient flow.  Moreover, some of the existing literature and methods 

for classifying imbalanced data sets are reviewed.  The purpose of this chapter is to survey the 

existing literature, and to identify gaps or potential areas for further research. 

2.1 QUEUEING NETWORKS 

According to Chao et al. (1999), a queueing network is a “system consisting of a finite number 

of stations that provide services to customers.”  Service stations are usually called nodes (Chao et 

al., 1999).  Airport terminals, highway systems, and hospital emergency departments are all 

examples of queueing networks, where customers (i.e. planes, cars, patients) arrive to the system 

and require some form of service (i.e. plane landing/takeoff, car toll payment, patient triage) and 

leave the system once their service ends (Chao et al., 1999).  
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Queueing networks are usually characterized by: (i) the type of system (open, closed) and  

(ii) the node linkage (tandem, arbitrary with or without feedback flow) (Koizumi, 2002).  In open 

queueing networks, customers arrive to and leave the system, whereas in closed queueing 

networks, there is a constant number of customers in the system (i.e. customers can’t enter or 

leave the system) (Robertazzi, 1990).  In tandem networks, customers flow in a single direction 

with a single entry and a single exit point, whereas in arbitrary networks, customers may skip 

certain nodes, and can leave from multiple nodes.   

Furthermore, each node is characterized according to (i) its inter-arrival time distribution, 

(ii) its service time distribution, (iii) the number of servers, (iv) the node’s maximum capacity 

and (v) the service discipline.  A node’s maximum capacity could include waiting space (i.e., a 

buffer) between consecutive nodes.  In terms of service discipline, there are several kinds 

including First-In-First-Out (FIFO) and Last-In-First-Out (LIFO) (Robertazzi, 1990).  In FIFO, 

customers are served in the order they arrive, whereas in LIFO the most recent arrival is served 

first (Robertazzi, 1990).  Sojourn time, blocking probability, throughput, and other criteria are 

used as performance measures of queueing networks (Chao et al., 1999). 

2.2 ANALYSIS OF QUEUEING NETWORKS 

There are two main methods for analyzing queueing networks: exact and approximation (Osorio 

et al., 2009).  Exact methods include closed form expressions and numerical evaluation of the 

joint stationary distribution (Osorio et al., 2009).  Closed form expressions are difficult to obtain, 

whereas numerical evaluation requires defining all the transition rates within the network (Osorio 
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et al., 2009).  This requirement makes numerical evaluation inflexible, as changes in network 

topology require redefining the transition rates (Osorio et al., 2009).   

Approximation methods include simulation and analytical models (Osorio et al., 2009).  

While large scale simulations have become possible due to major advances in computers, 

simulations are still associated with large costs in terms of time and resources (Chao et al., 

1999).  Moreover, simulations tend to be problem specific, and, therefore, their results may not 

be generalizable to other problems (Chao et al., 1999).  However, simulation models are more 

realistic and more detailed than analytical models (Osorio et al., 2009).   On the other hand, 

analytical models are simpler, more flexible and less data dependent (Osorio et al., 2009).  

Nevertheless, with approximation, a theoretical basis is needed to ensure that the analytical 

model is reasonable and close to the real solution (Chao et al. 1999).  Furthermore, simplifying 

assumptions are sometimes needed to maintain tractability, which, in turn, might make the 

analytical model unrealistic and therefore inapplicable to the real world. 

2.3 QUEUEING NETWORK MODELS 

Jackson’s network (Jackson, 1957; Jackson, 1963) is considered the most significant contribution 

to the development of queueing network models.  Jackson was able to find a product-form steady 

state solution for open and closed queueing network models with a tandem or feed-forward flow 

(Koizumi, 2002).  He showed that for an open network, the joint equilibrium distribution of the 

number of customers in the network is the product of the equilibrium distributions of the number 

of customers at each station in the network (Koizumi, 2002).   
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Using mathematical terminology, if we let si be the number of customers at station Si, 

where i=1,2,3,…k; then 

 (                   )  (     )  
  (    

 
) 
 
   (    

 
) 
 

        (2.1) 

This is true under the following conditions: 

i. Arrivals are Poisson distributed. 

ii. Exponentially distributed service times. 

iii. Infinite capacity queues. 

iv. Stable system (  = 
 

 
 < 1). 

v. Fixed routing probability. 

Since then, several studies have attempted to generalize Jackson’s model.  Melamed 

(1979) showed that the sum of all departure rates from a network has a Poisson distribution, 

while many studies considered blocking (Cohen et al., 1980; Hershey et al., 1981; Weiss et al., 

1987). 

2.4 QUEUEING NETWORKS WITH BLOCKING 

Queueing networks could face blocking due to the finiteness of the buffers (Dallery et al., 1993).  

There are three types of blocking: blocking-after-service (also known as type-1 blocking or 

transfer blocking); blocking-before-service (also known as type-2 blocking or service blocking); 

and repetitive blocking (also known as type-3 blocking or rejection blocking) (Dallery et al., 

1993).  In blocking-after-service, a server is blocked if the destination buffer is full upon service 

completion.  In blocking-before-service, a customer does not start service until there is available 
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space in the destination buffer.  In repetitive blocking, a customer repeatedly receives another 

service until the destination buffer is available (Dallery et al., 1993). 

2.4.1 Decomposition method 

According to Dallery et al. (1993) and Lee et al. (1998), the most commonly used approximation 

method for analyzing queueing networks with blocking is the decomposition method, where the 

network is decomposed into a set of subsystems.  The decomposition method involves three 

steps:  1) characterizing the subsystems, 2) deriving a set of equations to identify the unknown 

parameters in each subsystem, and 3) deriving an algorithm for solving the sets of equations and 

determining the unknown parameters of each subsystem.  This provides an approximation to the 

original system (Dallery et al., 1993).    

In general, a system of S+1 servers is decomposed into S subsystems.  There are two 

ways to represent each subsystem.  One way is to represent the subsystem with a finite queue and 

a server being fed by an external arrival process.  The second way is to represent the subsystem 

by two servers (upstream and downstream), separated by a finite capacity buffer, where the 

upstream server is never starved (Dallery et al., 1993).  As for characterizing the subsystems (the 

second way), the service time distribution of each server can be represented by either an 

exponential distribution or a phase-type (PH) distribution. 

Takahashi et al. (1980) proposed an approximation method for the analysis of open 

restricted queueing networks.  Service time was assumed to be exponential and arrivals were 

assumed to be Poisson.  Because of the large number of nodes and in order to obtain approximate 

node by node decomposition, the authors suggested using “pseudo-arrival rates” and “effective 

service rates.”  Those suggestions are based on the idea that the blocking probability represents 
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inter-dependency among the nodes.  The “pseudo-arrival rate” refers to customers arriving 

during blocked and non-blocked time intervals, with those arriving during blocked intervals 

being lost.  Effective service time includes both the actual service time and the holding time (in 

the case of blocking).  The proposed method was applied to different networks, and its results 

were compared with those obtained from simulation and exact calculations.  Comparisons 

showed that the proposed methodology provides a good approximation to system performance 

measures, such as, the blocking probability. 

Altiok et al. (1987) proposed an algorithm for approximately analyzing open exponential 

queueing networks with blocking.  The topology of the network considered by the authors did 

not consider deadlocks (i.e. no directed cycles in the queueing network).  The proposed 

algorithm decomposes the queueing network into individual queues.  Each individual queue is 

then analyzed independently as an M/PH/1/K queue.  The results of the approximation algorithm 

are given in the form of the marginal probability distribution of number of units in each queue.  

The algorithm was tested in a three-node and four-node queueing network.  When compared to 

exact numerical data, the algorithm’s results had an acceptable level of error. 

Perros et al. (1989) proposed a computationally more efficient version of the algorithm 

proposed by Altiok et al. (1987).  The authors considered an open queueing network with 

blocking-after-service and a feed-forward configuration.  Arrivals were assumed to be Poisson 

and service times were assumed to be exponential.  Only one class of customers was considered.  

Customers were served according to FIFO discipline.  For simplicity, the authors only 

considered the case where external arrivals occur to one particular queue.  The earlier proposed 

algorithm by Altiok et al. (1987) had two main shortcomings.  The first shortcoming is the large 

amount of time required for the accurate construction of phase-type distribution.  The second 
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shortcoming is the large amount of CPU time required.  In order to address those two 

shortcomings, Perros et al. (1989) proposed using a two-phase Coxian distribution.  That 

distribution has a very simple structure and can be easily applied to large networks.  The 

algorithm starts at the last queue, because it is not blocked.  Once the equilibrium probability 

distribution of the last queue is obtained, the blocking delay experienced by earlier queues can be 

represented using a two-phase Coxian distribution.  When compared with the earlier proposed 

algorithm, the new algorithm was found to have comparable accuracy. 

Lee et al. (1990) analyzed a queueing network similar to the one considered by Perros et 

al. (1989).  However, external arrivals could occur at any server.  In order to avoid feedback 

flows, the authors restricted the analyses to acyclic networks.  Using only information from its 

nearest neighbor, the proposed algorithm analyzes each queue separately.  As a result, the 

algorithm can provide marginal steady-state occupancy probability for each queue.  Two 

parameters were considered: clearance time (actual service time and any delay) and effective 

inter-arrival rate.  The algorithm makes several assumptions including Poisson arrivals, 

exponentially distributed clearance time, and no-arrivals to blocked queues.  The algorithm also 

assumes that, upon service completion, units see destination queues in steady state.  According to 

the authors, the proposed algorithm has several advantages.  It is simple yet it can solve large 

networks with general topologies, and it yields accurate results whether the queues with external 

arrivals have finite or infinite buffers, and whether service rates are high or low.  In all of the 

above studies (Takahashi et al., 1980; Altiok et al., 1987; Perros et al., 1989; and Lee et al., 

1990), each subsystem was represented by a finite buffer and a server being fed by an external 

arrival process (Lee et al., 1998). 



 20 

In their paper, Dallery et al. (1993) considered a tandem queueing network with 

blocking-after-service, and utilized the decomposition method to analyze the system.  The 

authors characterized each subsystem according to the second way discussed earlier, where the 

service times of both servers was approximated by an exponential distribution.  After identifying 

the unknown parameters (service rate), the authors considered three algorithms.  Two of the 

proposed algorithms use equations related to the service time of either the downstream or 

upstream server along with the conservation of flow equation.  The third algorithm uses 

equations for both the downstream and upstream servers.  The third algorithm has the advantage 

of offering a symmetrical view of the decomposition, which makes it faster than the other two 

algorithms.  The authors showed that all three algorithms are equivalent and provide a unique 

solution. 

2.5 QUEUEING NETWORKS WITH FEEDBACK FLOWS 

Feedback flows refer to returning to an earlier visited node in the network.  In healthcare, 

feedback flows refer to the return of patients to a unit they already visited.  In other words, 

feedback flows represent readmission to the same unit either immediately (i.e. instantaneously) 

or after a certain period of time (i.e. delayed). 

The concept of feedback flows was first introduced by Finch (1959) and Takacs (1963).  

In his paper, Finch (1959) considered two cases of feedback in a network of m servers in series.   

In the first case, once a customer completes service at a server, it is possible to feedback to an 

earlier server.  Finch referred to such feedback as “terminal feedback.”  In the second case, once 

a customer completes service at a server it is possible to return to the same server with a certain 



 21 

probability. This type of feedback is referred to as “single service feedback.”  In both cases, 

customers were assumed to arrive randomly to the first server only, and service time was 

assumed to be distributed according to the negative exponential distribution.  In addition, an 

upper limit on the number of customers in the system was set.  Finch also made the assumption 

that the probability of feeding back is independent of the state of the system at the time of return 

and of the customer who just completed service.  Moreover, at service completion, there was a 

non-zero probability of leaving the system.  Finch was able to obtain the joint probability 

distribution of the number of customers at each service stage under equilibrium conditions.   

Takacs (1963) considered a single server with Poisson arrivals and a general service time 

distribution.  Service times were assumed to be mutually independent and identically distributed.  

After service completion, a customer can immediately return with a certain probability to the 

server for more service, or the customer may depart the system.  The probability of feeding back 

was assumed to be independent of any other event.  Takacs was able to obtain the stationary 

distribution of queue size, and the stationary distribution of total time spent by a customer in the 

system. 

Since then, several studies attempted to consider more general cases of feedback flows.  

D’Avignon et al. (1976) considered dependent feedback flows, where feeding back may depend 

on the state of the system or previous feedbacks.  On the other hand, Foley et al. (1983) 

considered delayed feedback, where a customer visits another server before returning to the 

earlier visited server.  In their paper, Foley et al. (1983) described a network consisting of two 

nodes.  The first node has a general service time distribution, while the second node has an 

exponential service time distribution.  The arrival process to the first node was assumed to be 

Poisson, and upon service completion, units may leave the system or enter the second node.  All 



 22 

units in the second node have to go back to the first node.  The authors were able to derive 

properties of the time-dependent queue length process.   

2.6 QUEUEING NETWORKS WITH BLOCKING AND FEEDBACK FLOWS 

While there are numerous studies of queueing networks with blocking, very few of them 

considered feedback flows.  Takahashi et al. (1980), Altiok et al. (1987), Jun et al. (1989), Perros 

et al. (1989) and Lee et al. (1990) all studied open queueing network models with arbitrary 

configurations, but only Jun et al. (1989) took feedback flows into account (Lee et al., 1998).  

This could be attributed to several reasons.  First, according to Disney (1981), it is not 

theoretically appropriate to assume Poisson arrival rates whenever feedback flows exist 

(Koizumi, 2002).  Second, deadlocks could occur, due to feedback flows and, therefore, the 

First-Come-First-Serve (FCFS) queue discipline could be violated when trying to resolve 

deadlocks (Koizumi, 2002). 

In their work, Jun et al. (1989) accounted for blocking and feedback flows by assuming 

that blocked customers are exchanged simultaneously, so that deadlocks are resolved 

instantaneously.  Arrivals were assumed to be Poisson, while service time was characterized by a 

two-phase Coxian distribution.  According to their algorithm, in order for a two-phase Coxian 

distribution to reflect all the possible deadlocks and delays due to blocking, a very complicated 

phase-type distribution should be constructed first.  Then, using a three-moment approximation, 

the phase-type distribution is simplified to the two-phase Coxian distribution.  Although 

accurate, the algorithm is restricted to networks consisting of nodes with no more than two 

directly-linked upstream severs. 
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 Lee et al. (1998) extended their earlier work (Lee et al., 1990) to account for feedback 

flows, and extended Dallery et al.’s (1993) symmetrical approach to open queueing networks 

with arbitrary configurations.  Deadlocks were assumed to be resolved instantaneously by 

simultaneously transferring all the blocked customers.  Using the decomposition method, the 

authors decomposed the network into a set of subsystems, and assumed that service times and 

inter-arrival times are characterized by a generalized exponential distribution.  Each subsystem 

was characterized by one or many upstream servers (never starved) and one downstream server 

(never blocked), separated by a finite buffer.  The authors identified the service rate as the 

unknown parameter.  However, the proposed algorithm did not consider deadlocks, because, 

according to the authors, doing so would make the model too complicated to solve.  Despite that, 

numerical results showed that the algorithm yields accurate results with short execution time, 

even when deadlocks exist, as long as they are not too frequent. 

2.7 QUEUEING NETWORK MODELS IN HEALTHCARE 

Queueing network models have been applied in a variety of healthcare settings to model patient 

flow.  Albin et al. (1990) used a queueing network model to identify causes of delay in a health 

center appointment clinic.  The authors considered an open queueing network with single server 

infinite capacity nodes.  They used QNA, which is a software tool, for analyzing queueing 

networks.  The analysis showed that delays were the result of scheduling problems. 

Koizumi et al. (2005) analyzed patient flow in a mental health system, using a queueing 

network with blocking.  All patients were assumed to be treated equally, and a First-Come-First-

Service (FCFS) queue discipline was considered.  A single-node decomposition method was 
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utilized, and waiting space was assumed to be infinite.  The authors defined total patient time, 

which they refer to as effective time, as the sum of both treatment time and blocking time. The 

number of patients waiting to enter and waiting time were used for performance evaluation.  The 

study showed that congestion was not a cumulative effect of shortages in all facilities, but rather 

it was the result of shortage of beds in a particular facility.  The authors suggested relying more 

on simulation models as they are less restrictive about the distribution of arrivals and service 

time. 

Chaussalet et al. (2006) used a closed queueing network to model patient flow in a 

geriatric department.  The authors assumed that the system is always full, and a bed capacity 

constraint was introduced.  Patient service time was assumed to be exponentially distributed.  

According to the authors, the proposed model should help managers in estimating the long-term 

effect of changes in the current policies. 

Au-Yeung et al. (2007) developed an Approximate Generating Function Analysis 

(AGFA) technique.  Using this technique in queueing networks with class-based priorities, the 

Laplace transform of the probability density function of customer response time was 

approximated.  The first two moments of customer response time were derived from the 

approximated Laplace transform.  The technique was applied to an Accident and Emergency 

department, and its results were compared to those obtained using discrete event simulation.  The 

technique was found to perform well under different priority schemes for mean response time.  

However, some discrepancies appeared when the system was saturated with high workloads.  

Moreover, the technique did not work as well in closed queueing networks. 

Creemers et al. (2007) modeled patient flow in an orthopedic department using 

parametric decomposition and Brownian motion approaches.  Using the Arena software package, 
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discrete-event simulation was used as a validation tool.  Arrivals were assumed to be Poisson and 

service times were assumed to be exponential.  The authors studied the impact of outages 

(between and during job interruptions) on patient flow and on utilization of resources.  The 

results showed that approximations based on decomposition approaches are better than those 

based on Brownian motion. 

Jiang et al. (2008) analyzed the impact of care parallelization on total time spent by a 

patient in an urgent care center.  The authors incorporated fork/join queues into a multi-class 

open queueing network model.  A two-moment parametric decomposition approximation method 

was used.  Unlike other studies, each node was modeled as a GI/G/1 or GI/G/m queue rather than 

as a M/M/1 or a M/M/m queue.  The analysis showed that parallelization did not result in a 

significant reduction of total patient time in the system. 

Litvak et al. (2008) presented a mathematical model for managing the overflow of ICU 

patients.  The model is based on the Equivalent Random Method (ERM), developed for 

analyzing overflow capacity in circuit-switched telephone systems. The basic idea of ERM is to 

use a single Equivalent Random unit, which generates the same first two moments of overflow in 

the original system, to replace several multi-server units.  Once established, the Erlang loss 

formula can be applied.  The model was applied to several hospitals in the Rijnmond Region in 

the Netherlands.  The authors considered the effect of coordination of several ICUs within this 

region on the fraction of regional emergency patients who were not admitted to one of the 

regional ICUs (i.e., blocked or rejected).  Results showed that coordination helped in reducing 

both the fraction of rejected (blocked) regional emergency patients and the fraction of cancelled 

operations. 
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Osorio et al. (2009) studied patient flow in a network of operative and post-operative 

units at a university hospital.  The authors used a finite capacity open queueing network model 

with bufferless queues.  In order to capture between-queue correlation, structural parameters 

were utilized.  The network topology and the queue capacity were considered to be exogenous.  

Blocking was assumed to occur after service, while service time and time between successive 

arrivals were assumed to be exponentially distributed.  The model was solved using a parametric 

decomposition method.  For validation purposes, the proposed method was compared to existing 

methods.  Results were found to be comparable.  The authors applied the proposed model to a 

network of operative and post-operative units in a university hospital.  They were able to identify 

several sources of congestion and to quantify their impact.       

 It is interesting to note that only one study (Osorio et al., 2009) modeled patient flow in 

the ICU.  However, the data set was limited to only one year.  It is also worth noting that none of 

the above studies considered feedback flows.  These findings reaffirm the need for building 

validated models of patient flow in the ICU while accounting for feedback flows. 

In chapter 1, we introduced the topic of “imbalanced data” as our patient status data is 

highly imbalanced (2.5% deceased, 97.5% alive).  In the next section, we review some of the 

existing literature on strategies for classifying imbalanced data sets. 

2.8 CLASSIFYING IMBALANCED DATA SETS 

As mentioned earlier, there are two main strategies to deal with imbalanced data: data level 

strategies and algorithmic level strategies (Chawla et al., 2004).  At the data level, different 

forms of sampling are used, such as over-sampling and random under-sampling (Chawla et al., 
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2004).  Chawla et al. (2002) combined under-sampling of the majority class with over-sampling 

of the minority class to account for imbalanced data.  Unlike other over-sampling methods, their 

method creates synthetic minority class examples.  The AUC and the Receiver Operating 

Characteristic (ROC) convex hull strategy were used to evaluate the performance of the 

proposed methodology, which was tested with C4.5, Ripper, and Naïve Bayes on nine different 

data sets.  The results showed that the proposed methodology performs better than only under-

sampling, or varying the loss ratios in Ripper, or varying the class priors in Naïve Bayes.   

Padmaja et al. (2007) used a hybrid sampling-based model to detect fraud.  Their hybrid 

sampling technique combines under-sampling with over-sampling, using their Synthetic 

Minority Over-sampling Technique (SMOTE).  The new method was tested on an insurance 

dataset using C4.5, Naïve Bayes, Radial Basis Function networks, and k-nearest neighbors (k-

NN).  The optimal classifier was identified by the rates of true positives and true negatives.  The 

results showed that the new method was efficient in detecting fraud. 

Thongkam et al. (2009) proposed a hybrid approach for generating higher quality data 

sets for creating improved breast cancer survival models.  Their approach consists of two steps.  

In the first step, an outlier filtering approach based on C-Support Vector Classification (C-SVC) 

is used to identify and eliminate outlier instances.  In the second step, over-sampling with 

replacement is used to increase the number of instances in the minority class.  Accuracy, 

sensitivity, specificity, the AUC, and the F-measure were used to evaluate the performance of the 

proposed approach and to compare it to other approaches.  The results showed that the proposed 

approach improved the performance of breast cancer survival models significantly.   

Van Hulse et al. (2009) conducted a comprehensive experimental analysis of 35 real-

world imbalanced data sets using 11 different algorithms.  The study used seven different 
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sampling techniques, including random under-sampling, random over-sampling, one-sided 

selection, cluster-based oversampling, Wilson’s editing, SMOTE, and border-line SMOTE.  To 

measure the classification performance of each algorithm, the AUC, the Kolmogorov-Smirnov 

statistic, the geometric mean, the F-measure, accuracy, and the true positive rate were used.  

Analysis of Variance (ANOVA) was used to assess the statistical significance of the results.  

Their results showed that random under-sampling performed the best, followed by random over-

sampling, SMOTE, border-line SMOTE, one sided selection, and cluster-based oversampling. 

Yen et al. (2009) proposed a new under-sampling clustering-based method to increase the 

accuracy of predicting the minority class.  The authors tested their proposed method on real and 

synthetic datasets. Precision, recall rate and the F measure were used to evaluate the 

classification accuracy.  The authors showed that their new method outperforms existing 

methods.   

At the algorithmic level, cost adjustment, among other solutions, is used (Chawla et al., 

2004).  Tan (2005) proposed a neighbor-weighted k-NN algorithm for classifying and 

categorizing text in imbalanced corpora.  In Tan’s study, the proposed algorithm was used to 

assign large weights for the neighbors of the rare class and small weights for the neighbors of the 

large class.  The results showed a significant improvement in the classification performance. 

 Burez et al. (2009) studied customer churn in the service industry.  The authors used cost-

sensitive learning, which, for a two-class problem, assigns a higher misclassification cost for 

false negatives than for false positives.  Basic and advanced sampling methods and boosting 

were used as well.  The authors used six real-life customer churn data sets to evaluate the 

performance of the four methods.  The AUC was used as an evaluation metric.  The results 

showed that under-sampling when evaluated with the AUC leads to better prediction accuracy.    
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Liu et al. (2009) also tackled the problem of imbalanced text data.  The authors used a 

simple probability based term weighting scheme that utilizes relevance indicators.  The new 

method was tested on two data sets and compared with other weighting schemes using Support 

Vector Machines (SVM) and Naïve Bayes.  Using this new approach showed improvement for 

the minority class, while the performance of the majority class was not affected.   

Qiao and Liu (2009) suggested three different weighted learning procedures to account 

for imbalanced data.  One weighting scheme is based on class proportions, while another uses 

class proportion information and within-group misclassification rates information.  The third 

scheme uses adaptive weighted learning.  Using multi-category SVM on simulated and real 

datasets, the results showed that the proposed schemes handled imbalanced data effectively.  

The above literature review shows that a variety of approaches has been suggested to 

handle imbalanced data.  However, it is not clear whether the suggested approaches are problem- 

specific or whether they perform well on other imbalanced data sets and, more specifically, on 

highly imbalanced medical data. 

2.9 CHAPTER SUMMARY 

This chapter introduced queueing networks and described the decomposition method that is used 

for the analysis of blocking in queueing networks.  The concept of feedback flows was 

introduced.  Some of the literature on queueing network models and application of queueing 

network models in the healthcare field was highlighted and reviewed.  In addition, some of the 

literature on the classification of imbalanced data sets was reviewed.   
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From the queueing literature review, it was noted that only one study looked at patient 

flow in the ICU.  Furthermore, the study used only one year of patient flow data.  In addition, 

none of the healthcare studies accounted for feedback flows.  These findings indicate the need 

for studies of patient flow in the ICU, as well as the need for validation of those models and for 

the consideration of feedback flows. 

From the data mining literature review, it was not clear whether the proposed methods 

are applicable to highly imbalanced medical data sets.  Therefore, it is necessary to evaluate the 

performance of several statistical and data mining techniques in terms of classifying highly- 

imbalanced medical data sets.     
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3.0  DATA AND ANALYSES 

This chapter summarizes cardiac patients’ characteristics.  The chapter also provides details 

about the queueing network considered in terms of number of units in the network, the best 

distributional fit for service time at each unit and time between external arrivals to each unit, as 

well as the transition probability matrix.  The mathematical and simulation models are described.  

We also describe the classification methods and measures used to evaluate the methods’ 

performance in classifying patients’ status at discharge. 

3.1 DATA 

Our data includes 4232 cardiac patients from a university hospital with 12,468 transfers over a 

period of four years (June, 2006 thru May, 2010).  The average age of patients at admission was 

68.18 (standard deviation = 14.98) with 60% males.  In terms of complications, 4.96% had an 

infection, 7.61% had pneumonia and 10.11% had renal failure.  Table 1 provides a summary of 

the descriptive statistics of the data. 
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Table 1. Data descriptive statistics 

Variable N = 4232 

Age at admission (years) 68.18 + 14.98 

Gender n (%) 

Male 2539 (60%) 

Female 1692 (40%) 

Complications  

Infection 207 (4.90%) 

Pneumonia 322 (7.61%) 

Renal failure 428 (10.11%) 

 

The queueing network we are considering includes seven units: a Coronary Care Unit 

(CCU), a Cardiac Intermediate Care Unit (CICU), a Cardiothoracic Surgical Intensive Care Unit 

(CTSICU), a Neurotrauma Surgical Intensive Care Unit (NTSICU), a Post Anesthesia Care Unit 

(PACU), the Wards and a Cardiac Catheterization Unit (CATH).  In our network, the four 

intensive care units (the CCU, the CICU, the CTSICU and the NTSICU) are considered the 

internal units.  The PACU, Wards, and CATH are considered the external units.  Therefore, 

arrivals from the PACU, the Wards and the CATH are considered external arrivals.  Arrivals 

from other ICUs are considered internal arrivals.  Figure 1 shows a typical hospital flow 

diagram, where patients can enter the system through the emergency department (ER), or they 

might be referred directly for a specific service at a particular unit in the hospital.   The dashed 

ellipse indicates the network, shown in more detail in Figure 2, which we are interested in 

modeling within the hospital. 
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Figure 1. General diagram of patient flow in a hospital (ER=’Emergency Department’, OR=’Operating 

Room’, ICU=’Intensive Care Unit’, PACU=’Post Anesthesia Care Unit’) 

 

Figure 2 shows the flow diagram of the queueing network we are modeling.   The dashed 

rectangle indicates the internal units that we are interested in modeling.  A two-headed arrow 

indicates that patient flow is possible in either direction between the two units, and a curved 

arrow indicates instantaneous feedback.  Appendix A shows a diagram of sample patient flow 

data. 

 

Figure 2. Flow diagram of cardiac patients in the queueing network (CCU=’Coronary Care Unit’; 

CICU=’Cardiac Intermediate Care Unit’; CTSICU=’Cardiothoracic Surgical Intensive Care Unit’; 

NTSICU=’Neurotrauma Surgical Intensive Care Unit’; PACU=’Post Anesthesia Care Unit’; Wards; 

CATH=’Cardiac Catheterization Unit’) 
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Table 2 summarizes the transition probability matrix of cardiac patients in the queueing 

network.  For example, the probability of a patient going from the CICU to the PACU is 36.5%, 

and the probability of a patient going from the NTSICU to the CTSICU is 7.7%. 

Table 2. Transition probability matrix of cardiac patients 

From/To CCU CICU CTSICU NTSICU PACU Wards CATH 

CCU 2.9% 32.5% 4.4% 0.2% 36.5% 2.2% 0.9% 

CICU 9.6% 16.2% 2.9% 0% 36.5% 0.9% 8.9% 

CTSICU 0.6% 0.9% 8.1% 1.7% 1.0% 65.1% 0.2% 

NTSICU 0.6% 0% 7.7% 9.8% 3.7% 61.9% 0.4% 

PACU 0.3% 0.3% 94.2% 5.2% - - - 

Wards 4.0% 4.4% 82.6% 9.0% - - - 

CATH 57.4% 37.4% 5.2% 0% - - - 

 

  

In order to check the distribution of service time in each of the four internal units, we 

measured the mean, standard deviation and squared coefficient of variation (CV
2
) of service time 

in each unit.  Table 3 provides the mean, standard deviation and squared coefficient of variation 

of service time in the CCU, the CICU, the CTSICU, and the NTSICU.  It is interesting that the 

service time distribution in all the units could be approximated using the exponential distribution 

(CV
2
 very close to 1). 

Table 3. Mean, standard deviation, squared coefficient of variation (CV
2
) of service time in Coronary Care Unit 

(CCU), Cardiac Intermediate Care Unit (CICU), Cardiothoracic Surgical Intensive Care Unit (CTSICU) and 

Neurotrauma Surgical Intensive Care Unit (NTSICU) 

 

 

Unit 

Service Time (hours) 

Mean 

(μ) 

Standard deviation 

(σ) 

Squared coefficient of 

Variation (CV
2
) 

CCU 118.63 123.95 1.09 

CICU 134.20 140.0 1.09 

CTSICU 89.01 97.19 1.19 

NTSICU 86.04 89.80 1.09 
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We also plotted the measured distribution of service time of each internal unit.  Figures 3, 

4, 5 and 6 show measured distribution of service time in the CCU, the CICU, the CTSICU, and 

the NTSICU, respectively. 

 

Figure 3. Measured distribution of Coronary Care Unit (CCU) service time 

 

Figure 4. Measured distribution of Cardiac Intermediate Care Unit (CICU) service time 
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Figure 5. Measured distribution of Cardiothoracic Surgical Intensive Care Unit (CTSICU) service time 

 

Figure 6. Measured distribution of Neurotrauma Surgical Intensive Care Unit (NTSICU) service time 
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distributions, only the time between external arrivals distributions to the CCU could be 
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obtain the best distribution fit.  Accordingly, the best distribution fit for the CICU, the CTSICU, 

and the NTSICU was the Gamma distribution.  

Table 4. Mean, standard deviation, squared coefficient of variation (CV
2
) of time between external arrivals to 

Coronary Care Unit (CCU), Cardiac Intermediate Care Unit (CICU), Cardiothoracic Surgical Intensive Care Unit 

(CTSICU) and Neurotrauma Surgical Intensive Care Unit (NTSICU) 

 

Unit Time between external arrivals (hours) 

 Mean 

(µ) 

Standard Deviation 

(σ) 

Squared Coefficient 

of Variation (CV
2
) 

CCU 189.85 201.55 1.13 

CICU 271.43 366.73 1.83 

CTSICU 8.11 13.63 2.83 

NTSICU 128.13 468.23 13.35 

 

The measured distribution of time between external arrivals to each of the four internal 

units was plotted as well.  Figures 7, 8, 9 and 10 show the measured distribution of time between 

external arrivals to the CCU, the CICU, the CTSICU, and the NTSICU respectively. 

 

Figure 7. Measured distribution of time between external arrivals to Coronary Care Unit (CCU) 
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Figure 8. Measured distribution of time between external arrivals to Cardiac Intermediate Care Unit (CICU) 

 
 

Figure 9. Measured distribution of time between external arrivals to Cardiothoracic Surgical Intensive Care Unit 

(CTSICU) 
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Figure 10. Measured distribution of time between external arrivals to Neurotrauma Surgical Intensive Care Unit 

(NTSICU) 

3.2 QUEUEING NETWORK WITH FEEDBACK 
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Serve (FCFS) basis.   After service completion, a patient may come back immediately to the unit 

with probability p (instantaneous feedback) or leave the system with probability 1-p.  Our main 

objective is to find the steady state probability of having n patients in the system (denoted pn).   

 

Figure 11. Open queueing network with instantaneous feedback 

3.2.1.1 Solving the open queueing network (one M/M/1 node) with instantaneous feedback 

In order to find the steady state solution for the queueing network in Figure 11, we first define 

the difference equations for pn(t).  Then we find the differential-difference equations for pn(t), 

and we calculate the steady state solution for pn. 

In order to write the difference equations for pn(t), we consider all possible ways that the 

system can get to state En (i.e. n patients in the system) at time t + ∆t while assuming that inter-

arrival times and service times are both independent of each other and of the state at time t. 

For n > 1:     

  (    )    ( )         ( )         ( )            ( )  (   )         ( )  

                                                                      ( )   (  )                                     (3.1) 

For n = 0:  

                     (    )    ( )         ( )   (   )       ( )   (  )                         (3.2) 
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Dividing the difference equations (3.1 and 3.2) by ∆t and taking the limit as ∆t → 0 results in the 

following differential-difference equations:                 

 
   ( )

  
  (  μ)           (   )                     (n > 1)                      (3.3) 

        
   ( )

  
       (   )                            (n = 0)                       (3.4) 

In order to get the steady state solution for pn(t), we take the limit as t → ∞ which yields: 

  (  μ)           (   )                         (n > 1)                       (3.5) 

and                                            (   )                                                                     (3.6) 

The steady state solution is shown in Chapter 4, section 4.2. 

3.2.2 Open queueing network (two M/M/1 nodes) with instantaneous and delayed 

feedback 

Next, we consider an arbitrary open queueing network consisting of two single server nodes 

(node 1 and node 2, respectively) (Figure 12).  Each node has external Poisson arrivals (r1 and r2, 

respectively) and exponential service time (µ1 and µ2, respectively).  We also assume that there is 

an infinite waiting space capacity for each node, a single class of patients, and that patients are 

served on a First-Come-First Serve (FCFS) basis.  Each node has instantaneous feedback with 

probabilities p11 and p22, respectively.  P12 is the transfer probability from node 1 to node 2.  P10 

is the probability of leaving the system from node 1.  P20 is the probability of leaving the system 

from node 2 and p21 is the transfer probability from node 2 to node 1.   

There is also delayed feedback where a patient goes from node 1 to node 2 with 

probability p12 and then feeds back to node 1 with probability p21, or a patient may externally 

arrive to node 2, go to node 1 with probability p21, and then go from node 1 to node 2 with 
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probability p12.  Both types of feedback are assumed to be independent of the state of the system 

and of any previous feedback.  Our main objective is to find the steady state solution of having 

n1 patients in node 1 and n2 patients in node 2 (denoted pn1,n2).  

 

Figure 12. Open queueing network with instantaneous and delayed feedback 

3.2.2.1 Solving the open queueing network (two M/M/1 nodes) with instantaneous and 

delayed feedback 

In order to find the steady state solution for the queueing network in Figure 12, we first define 

the difference equations for pn1,n2(t).  Then we find the differential-difference equations for 

pn1,n2(t) and calculate the steady state solution for pn1,n2. 

In order to write the difference equations for pn1,n2(t), we consider all possible ways that 

the system can get to state En1,n2 (i.e. n1 patients in node 1 and n2 patient in node 2) at time t + ∆t, 

assuming that inter-arrival times and service times are both independent of each other and of the 

state at time t. 

  



 43 

For n1 > 1, n2 > 1: 

      (    )        ( )              ( )               ( )               ( )  

                                              ( )                  ( )                  ( )  

                                                    ( )                 ( )  

                                                ( )                      ( )                      ( )  

                                                   ( )            (3.7)        

For n1 > 1, n2 = 0: 

     (    )       ( )  (                )        ( )                 ( )  

                   ( )                ( )                   ( )  

    (3.8)         

For n1 = 0, n2 > 1: 

     (    )       ( )  (                )        ( )                 ( )  

                   ( )                ( )                   ( )  

  (3.9)    

For n1 = 0, n2 = 0: 

    (    )      ( )            ( )             ( )                ( )                  ( )

               ( )  

  (3.10)         
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Dividing the difference equations (3.7, 3.9, 3.10 and 3.11) by ∆t and taking the limit as  

∆t → 0 results in the following differential-difference equations: 

 

       ( )

  
  (                             )                               

                                                          

(n1 > 1, n2 > 1) 

(3.11) 

      ( )

  
  (                 )                                       

              

                                 (n1 > 1, n2 = 0) 

  

(3.12) 

      ( )

  
  (                 )                                       

              

(n1 = 0, n2 > 1) 

             (3.13) 

     ( )

  
                                    

(n1 = 0, n2 = 0) 

    (3.14) 
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In order to get the steady state solution for pn1,n2(t), we take the limit as t → ∞, which 

yields: 

 

 (                             )                                          

                                                 

(n1 > 1, n2 > 1) 

              (3.15) 

 (                 )                                                          

                                 (n1 > 1, n2 = 0) 

 

(3.16)  

 (                 )                                                       

(n1 = 0, n2 > 1) 

           

 (3.17) 

                                     

             (3.18) 

The steady state solution is shown in Chapter 4, section 4.3. 

Because mathematical models cannot account for real-world complexities, as they 

become too complicated and intractable, we built a discrete event simulation model that 

considers both blocking and feedback flows (section 3.3).   
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3.3 SIMULATION MODEL 

For the second and third objectives, we built a discrete event simulation model representing the 

queueing network shown in Figure 2 using Arena 13.90.  The model has seven units: a CCU, a 

CICU, a CTSICU, a NTSICU, a PACU, Wards, and a CATH.  The capacity of each unit was set 

according to the number beds in each unit.  The transfer probability from one unit to another was 

set equal to the transition probabilities in Table 2.  Blocking-after-service was considered, where 

a patient does not leave his/her current unit until a bed becomes available in the next unit.  No 

blocking was assumed to occur if a patient is discharged. 

 The simulation model was run for 100,000 days with a warm-up period of 50,000 days.  

The warm-up period is necessary to ensure that the system reaches steady state before any 

statistics are recorded.  We ran the model twice.  In the first run we assumed Markovian arrivals 

and service times (M/M/s) for each unit.  In the second run, we assumed generally distributed 

inter-arrival times and exponential service times (G/M/s) for each unit.  In order to validate the 

simulation model, we compared the results from each run to the actual patient flow data. 

3.3.1 M/M/s model 

3.3.1.1 Coronary Care Unit (CCU) 

In the first simulation run, the CCU was assumed to have Markovian arrivals and service times.  

The average time between external arrivals (from all three external units combined) to the CCU 

was 189.85 hours.  The average service time in CCU was 118.63 hours (Exp(0.005), Exp(0.008) 

respectively).  The capacity in the CCU was set equal to 12 beds.  Patients leaving the CCU to 

the CICU, the CTSICU, the NTSICU, the PACU, the Wards or the CATH were assumed to face 
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blocking-after-service, where a patient remains in his/her bed until a bed becomes available at 

the next destination.  Discharged patients were assumed to face no blocking, as bed capacity was 

set to infinity. 

3.3.1.2 Cardiac Intermediate Care Unit (CICU) 

For the CICU, we assumed an exponential distribution with an average of 271.43 hours 

(Exp(0.004)) for time between external arrivals, and an exponential distribution with an average 

of 134.20 hours (Exp(0.007)) for service time in the CICU.  Bed capacity was set at 30.  

Blocking-after-service was assumed when patients leave the CICU to the CCU, the CTSICU, the 

PACU, the Wards, or the CATH.  No blocking was assumed if a patient is discharged. 

3.3.1.3 Cardiothoracic Surgical Intensive Care Unit (CTSICU) 

For the CTSICU, the time between external arrivals was assumed to be exponentially distributed 

with an average of 8.11 hours (Exp(0.123)).  The CTSICU service time was assumed to be 

exponentially distributed with an average of 89.01 hours (Exp(0.011)).  We set bed capacity 

equal to 18 with patients facing blocking-after-service when leaving to the CCU, the CICU, the 

NTSICU, the PACU, the Wards, or the CATH. 

3.3.1.4 Neurotrauma Surgical Intensive Care Unit (NTSICU) 

For the NTSICU, the time between external arrivals was assumed to be exponential with an 

average of 128.13 hours (Exp(0.008)).  Service time was assumed to be exponential with an 
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average of 86.04 hours (Exp(0.012)).  Bed capacity was set at 14 and after-service-blocking was 

assumed to occur when patients leave to the CCU, the CTSICU, the PACU, the Wards, or the 

CATH. 

3.3.2 G/M/s model 

3.3.2.1 Coronary Care Unit (CCU) 

For the overall time between external arrivals (from the PACU, the Wards and the CATH 

combined) to the CCU, using “Easyfit”, we assumed a Gamma distribution with parameters α = 

0.89 and β = 213.97 (Gamma(213.97, 0.89)).  For the service time distribution in the CCU we 

assumed an exponential distribution with an average service time of 118.63 hours (Exp(0.008)).  

The capacity in the CCU was set at 12 beds.  Patients leaving the the CCU may face blocking 

when going to the CICU, the CTSICU, the NTSICU, the PACU, the Wards, or the CATH.   

3.3.2.2 Cardiac Intermediate Care Unit (CICU) 

We assumed an exponential distribution with an average of 134.20 hours (Exp(0.007)) for 

service time in the CICU.  For combined external arrivals from all three external units to the 

CICU, we assumed a Gamma distribution with parameters α = 0.55 and β = 495.52 

(Gamma(495.52, 0.55)).  Bed capacity was set at 30.  Blocking-after-service was assumed when 

patients leave the CICU to the CCU, the CTSICU, the PACU, the Wards, or the CATH.  No 

blocking was assumed to occur if a patient is discharged. 
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3.3.2.3 Cardiothoracic Surgical Intensive Care Unit (CTSICU) 

Using “Easyfit”, we assumed a Gamma distribution for the combined time between external 

arrivals to CTSICU (Gamma(22.92, 0.35)).  Service time in CTSICU was assumed to be 

exponentially distributed with an average of 89.01 hours (Exp(0.011)).  We set bed capacity 

equal to 18 with patients facing blocking-after-service when leaving to the CCU, the CICU, the 

NTSICU, the PACU, the Wards, or the CATH. 

3.3.2.4 Neurotrauma Surgical Intensive Care Unit (NTSICU) 

As with the other units, the NTSICU time between external arrivals distribution was assumed to 

be Gamma with parameters α = 0.07  and β = 1711 (Gamma(1711, 0.07)).  The NTSICU’ service 

time was assumed to be exponential with average 86.04 hours (Exp(86.04)).  Bed capacity was 

set at 14.  After-service-blocking was assumed to occur when patients leave to the CCU, the 

CTSICU, the PACU, the Wards, or the CATH. 

For the first three objectives, we modeled and studied patient flow mainly from a 

managerial perspective.  However, in order to better understand patient flow, patients’ clinical 

outcomes such as mortality should be considered. 

3.4 CLASSIFYING PATIENTS’ STATUS AT DISCHARGE 

For the fourth objective, we compared several statistical and data mining techniques (logistic 

regression, discriminant analysis, Classification and Regression Tree (CART) models, C5, and 
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Support Vector Machines (SVM)) in terms of classifying ICU patients’ status at discharge as 

either alive or deceased.  For the purposes of our study, patients who died in the ICU, the 

minority class, constitute the group of interest, and are the “positives.”  Patients who were alive 

at the time of discharge, the majority class, are the “negatives”. 

We used specificity, recall, precision, the F-measure, and confusion entropy (CEN) as 

criteria for evaluating each method’s performance.  We used a variety of misclassification cost 

ratios (MCRs) for classifying someone in the minority class of interest (deceased) as being in the 

majority class (alive), to classifying someone who is actually in the majority class as being in the 

minority group.  We used cross-validation to assess the classification performance of each 

method for each MCR.  Using a high MCR should force a classification technique to identify the 

rare cases correctly more often, by making it more costly to misclassify them.  We also used 

Hand’s measure to compare the five methods.  

3.4.1 Classification methods 

Logistic regression is a mathematical modeling technique used to describe the probability of 

occurrence of one of two possible outcomes of the dependent variable and its relation to a set of 

predictor variables (Kleinbaum et al., 1998).  Discriminant analysis is a technique used to find 

linear combinations of features that separate two or more groups of events (Johnson et al., 2007).  

CART and C5 are tree-based methods, in which the feature space is partitioned into a set of 

regions bounded by hyper-planes parallel to the axes and a simple model is then fit into each one.  

They differ in the way they grow and prune the trees (Hastie et al., 2001; Linoff et al., 2004).  

SVM constructs linear boundaries in a transformed version of the feature space (Linoff et al., 

2004). 
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3.4.2 Classification measures 

3.4.2.1 Specificity, recall, precision and F-measure 

Specificity measures the proportion of actual negatives that are correctly specified.  Recall (also 

known as sensitivity) measures the proportion of actual positives that are correctly specified.  

Precision is the proportion of identified positives that are correctly classified.  The F-measure is a 

combination of recall and precision calculated as     
                

                
.  Table 5 shows the 

calculation of specificity, recall and precision. 

Table 5. Summary table for calculation of specificity, recall and precision 

  Test Result  

 

 

Actual 

 Alive  

(-) 

Deceased  

(+) 

 

Alive  

(-) 

True Negative 

(TN) 

False Positive 

(FP) 

Specificity = 

TN/(TN+FP) 

Deceased  

(+) 

False Negative 

(FN) 

True Positive 

(TP) 

Recall = 

TP/(TP+FN) 

   Precision = 

TP/(TP+FP) 

 

3.4.2.2 Confusion entropy (CEN) 

CEN only considers the misclassified samples.  The smaller the number of incorrectly classified 

samples, the smaller the CEN value (Wei et al., 2010).  The CEN of a dataset is obtained as 

follows.  First, the misclassification probability of each class is calculated:    
∑       ∑      

 ∑        
  

where i=1,2,…, j=1,2,…, Ci,j is the number of samples from class i classified to class j (Wei et 

al., 2010).  Second, the CEN of each class is calculated, so the CEN of class j is 

      ∑     
 
         

    
        ∑     

    
            

 
 where N is the number of classes, 
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 = 

   

∑ (         )
   
   

  is the misclassification probability of classifying the samples of class j to other 

classes i subject to class j and     
 
 is the misclassification probability of classifying other classes i 

to class j subject to class j (Wei et al., 2010).  Then the overall CEN is calculated as the sum of 

the products of misclassification probabilities and the CEN of each class in the dataset (Wei et 

al., 2010).  Appendix B shows step-by-step calculation of CEN for a data set that includes 208 

patients (203 alive, 5 deceased) that was classified using SVM at MCR 1:1 and 100:1. 

Even though a lower CEN value is better, because our data is highly imbalanced, CEN is 

expected to increase as MCR increases because even though increasing the MCR increases the 

number of correctly classified deceased patients, the number of misclassified alive patients also 

increases.  There are many more alive patients than deceased ones.  As a result, the total number 

of misclassified samples increases, hence the value of the CEN measure increases.  Thus, we 

state the following hypothesis: 

Hypothesis 1: For logistic regression, discriminant analysis, CART, C5  

and SVM, as MCR increases, recall, precision, the F-measure, and CEN  

are expected to increase, while specificity is expected to decrease. 

Table 6 summarizes the expected performance of each measure as the MCR is increased. 

Increasing the MCR increases the penalty for misclassifying a positive, relative to the cost of 

misclassifying a negative, so that recall, precision, the F-measure, and CEN are expected to 

increase as MCR is increased, while specificity is expected to decrease as MCR is increased. 
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Table 6. Expected performance of specificity, recall, precision, the F-measure and confusion 

entropy (CEN) as the misclassification cost ratio (MCR) is increased 

 

Measure Expected Performance 

Specificity Decrease 

Recall Increase 

F measure Increase 

Confusion entropy (CEN) Increase 

3.4.2.3 Hand’s measure 

A major disadvantage of the Area under the Receiver Operating Characteristic curve (AUC) is 

that it uses different misclassification cost distributions for different classifiers (Hand, 2009).  In 

other words, using the AUC is equivalent to saying that the severity of misclassifying a class is 

different using different classifiers (Hand, 2010).  Hand’s measure was developed as an 

alternative to the AUC (Hand, 2009; Hand, 2010).  Instead of specifying a particular value for 

the relative severity of misclassifications, Hand’s measure specifies a distribution (Hand, 2009; 

Hand, 2010).  Hand’s measure values range from zero to one, where higher values represent 

better performance (Hand, 2009; Hand, 2010).     

Hand proposed using the Beta distribution (Beta(α,β)) for the relative severity of 

misclassifications (Hand, 2009).  Using the Beta distribution ensures that different researchers 

would get the same results for the same data set, while accounting for the different severities of 

misclassifying one class compared to misclassifying another, by varying the values of its 

parameters α and β (Hand, 2009).  The default α=β=2 indicates that the severity is the same for 

misclassifying either class (Hand, 2009). 

For Hand’s measure, we used Beta (2, 40), Beta (40, 2) and Beta (2, 2).  The choice of 

the Beta parameters is based on the number of deceased patients with respect to overall sample 

size (52/2080=0.025) which corresponds to a Beta mode of 1/40 when α = 2 and β = 40; the 
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mode of a Beta distribution is (α-1)/(α+β-2).  For comparison purposes, we also chose Beta (40, 

2) and Beta (2, 2).  Choosing a Beta distribution with α=40 and β=2 resembles an MCR of 1:100.  

For those values, the cost of misclassifying a minority class is low, so that Hand’s measure value 

is likely to be close to zero, because there is little penalty for predicting all cases as being in the 

majority class.  That situation is also true when α=2 and β=2, which is comparable to an MCR of 

1:1.  When α=2 and β=40, comparable to an MCR of 100:1, the penalty for misclassifying a 

minority class example is high, so that actual positives are likely to be predicted to be positives, 

and we expect Hand’s measure values to be higher, and close to 0.5. 

For the expected performance of Hand’s measure as the α and β values of the Beta 

distribution are varied, we state the following hypothesis: 

Hypothesis 2: For logistic regression, discriminant analysis, CART, C5  

and SVM, as α decreases and β increases, Hand’s measure value is  

expected to increase 

Table 7 summarizes the expected performance of Hand’s measure for three different Beta 

distribution parameter choices.   

Table 7. Expected performance of Hand’s measure for different choices of Beta distribution parameters 

Beta (α, β) Expected Performance 

(40, 2) ~ 0 

(2, 2) ~ 0 

(2, 40) ~ 0.5 
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3.5 CHAPTER SUMMARY 

This chapter provides a summary of cardiac patient flow data.  The network being studied was 

described in detail in terms of its transition probability matrix and the best distributional fits for 

the time between external arrivals and for the service times for each unit.  The mathematical 

model was introduced, and the steps for finding the steady state solution were shown. The 

simulation model was described, as well.  Moreover, the classification methods and measures 

used to classify patients’ status at discharge were explained.  The expected performance of each 

method under each measure was stated as a hypothesis, and summarized in tabular form. 
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4.0  RESULTS 

This chapter presents the results of the two queueing networks we introduced in Chapter 3.  The 

steady state solution for the first queueing network is compared with the published results, and a 

numerical example of the steady state solution of the second queueing network is provided.  The 

results of the two discrete event simulation runs are presented and compared with the actual flow 

data.  This allows for the validation of the simulation model.  We also present the classification 

results for the discharge status of ICU patients. 

4.1 QUEUEING NETWORK WITH FEEDBACK 

The two queueing networks we introduced in Chapter 3 are considered “special cases” of a 

Jackson network.  We have external Poisson arrivals, exponential service times, infinite capacity 

queues, an FCFS discipline, and fixed routing probabilities between servers.  However, the 

presence of feedback loops makes the total arrival process into the server non-Poisson.  We 

cannot make the assumption that each server is an independent M/M/1, as we would with a 

Jackson network.  Poisson arrival processes (external and internal) are not independent Poisson 

processes, so their merge is not a Poisson process (Harchol-Balter, 2012).  However, Harchol-

Balter (2012) showed in Theorem 17.1 that a product form solution still exists for cyclic 
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queueing networks that fit the Jackson network and that such networks can be analyzed using the 

balance equation approach.   

The balance equation for each state is “the rate of jobs leaving the state equals the rate of 

job entering the state” (Harchol-Balter, 2012).  For example (Harchol-Balter, 2012), consider a 

system in state (n1, n2, n3 ,...,nk), where n1, n2, … nk represent the number of jobs at server j 

(j=1,2,…,k).  The system leaves its current state (n1, n2, n3 ,...,nk) if there is an external arrival (ri) 

or if there is a service completion in one of the servers without returning to the same server (μi(1-

pii)).  The rate of jobs leaving the state (n1, n2, n3 ,...,nk) is:  

             [∑   ∑  (     )

 

   

 

   

] 

On the other hand, the system can enter the state (n1, n2, n3 ,...,nk) if there is an external 

arrival (ri), a departure to the outside (μipi,out) or an internal transition (μjpij).  So the rate of jobs 

entering the state (n1, n2, n3 ,...,nk)  is:  
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Therefore, for (n1, n2, n3,...,nk) state, the balance equation is: 
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The above balance equation is only for one particular state (n1, n2, n3 ,...,nk), so we still need to 

consider the balance equation for all other possible states (Harchol-Balter, 2012). 
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4.1.1 Local balance approach 

The local balance approach was suggested to simplify the large number of balance equations.  

The suggestion is driven by the fact that dealing with the local balance equations is much easier 

because they are much simpler than the global equation. Therefore, it is easier to check that a 

solution satisfies the equations (Harchol-Balter, 2012).   

The approach works by breaking down the left and right hand sides of the balance 

equations into k + 1 matching components.  Once you find a solution that maintains the equality 

for each matching component (local balance), it is also a solution for the whole equation (global 

balance) (Harchol-Balter, 2012). 

4.2 STEADY STATE SOLUTION FOR A QUEUEING NETWORK WITH 

INSTANTANEOUS FEEDBACK 

Using the local balance approach, we can define the total arrival rate to each node as: 

      ∑      
 
    , 

where    is the total arrival rate to node i,    is the external arrival rate to node i, 

∑      
 
    is the internal transition to node i from all other nodes j (j=1,…k) and     is the 

probability of going from node j to node i.  For the total arrival rate to the node 1 we get: 

                                  (4.1) 

Solving for λ we get:     
 

   
              (4.2) 
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According to Jackson’s result (2.1), we get the following steady state solution for the 

queueing network model with instantaneous feedback: 

   (
 

 
)
 

(  
 

 
) 

                               (
 

 (   )
)
 

(  
 

 (   )
)                (4.3) 

These results confirm the results found by Burke (1976). 

4.3 STEADY STATE SOLUTION FOR A QUEUEING NETWORK WITH 

INSTANTANEOUS AND DELAYED FEEDBACK 

Again, using the local balance approach, we can define the total arrival rate to each node as 

follows: 

For node 1:                                                         (4.4) 

and for node 2:                             (4.5) 

Solving (4.4) for    we get:        
        

     
             (4.6) 

Solving (4.5) for    we get:        
        

     
                    (4.7) 

Plugging (4.7) in (4.6) we get:        
  (     )      

(     )(     )       
         (4.8) 

Plugging (4.8) in (4.7) we get: 

   
  [(     )(     )       ]    [  (     )      ]

[(     )(     )       ](     )
                  (4.9) 
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According to Jackson’s result (2.1), we get the following steady state solution for the 

queueing network model with instantaneous and delayed feedback: 
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                                   (4.10) 

4.3.1 Numerical example of the steady state solution 

We assigned numerical values for the parameters in 4.8 and 4.9 and solved for λ1 and λ2.  Table 8 

shows the numerical values assigned for each parameter in equations 4.8 and 4.9. 

Table 8. Assigned numerical values for parameters in equations 4.8 and 4.9 

Parameter Assigned Value 

r1 0.2 

r2 0.25 

µ1 0.6 

µ2 0.5 

p11 0.25 

p12 0.15 

p21 0.35 

p22 0.1 

 

 

Solving for λ1 and λ2, we get 0.43 and 0.35 respectively.  Then, using discrete event 

simulation we built a model similar to the network we considered in Figure 12.  We assumed 
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infinite waiting capacity at each node, an FCFS discipline, Poisson external arrivals, exponential 

service time at each node, and fixed routing probabilities between the two nodes.  We used the 

same  parameter values that as were assigned in equations 4.8 and 4.9.  The model was run for 

100,000 simulated days with a warm-up period of 50,000 days to ensure that the system reached 

steady state before any statistics were collected.  The simulation model run results were 

compared with the numerical solution.  They were identical.  Appendix C shows a diagram of the 

simulation model, built in the Arena software package. 

4.4 SIMULATION MODEL RESULTS 

We ran two simulation models.  In the first model, we assumed Markovian arrivals and service 

times (M/M/s) for each unit.  In the second model, we assumed generally distributed inter- 

arrival times and exponential service times (G/M/s) for each unit. 

4.4.1 Comparing mean service time 

Table 9 compares the results from both simulation runs with the actual data in terms of mean 

service time (hours).  The results of the simulation runs were compared with actual data and they 

were found not to be statistically significantly different (p-value < 0.05). 
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Table 9. Comparison of mean service time in Coronary Care Unit (CCU), Cardiac Intermediate Care Unit (CICU), 

Cardiothoracic Surgical Intensive Care Unit (CTSICU) and Neurotrauma Surgical Intensive Care Unit (NTSICU) 

between actual data and simulation runs 

 

Unit Actual Data  

Mean service time 

(hours) 

M/M/s  

Mean service time 

(hours) 

G/M/s  

Mean service 

time (hours) 

CCU 118.63 118.17 116.44 

CICU 134.20 133.65 134.15 

CTSICU 89.01 89.02 88.99 

NTSICU 86.04 84.79 85.51 

4.4.2 Comparing mean time between external arrivals 

Table 10 compares the results from both simulation runs with the actual data in terms of mean 

time between external arrivals (hours).  Again, no statistically significant differences were found 

between each of simulation run results and actual data (p-value < 0.05). 

Table 10. Comparison of mean time between external arrivals to Coronary Care Unit (CCU), Cardiac Intermediate 

Care Unit (CICU), Cardiothoracic Surgical Intensive Care Unit (CTSICU) and Neurotrauma Surgical Intensive Care 

Unit (NTSICU) between actual data and simulation runs 

 

Unit Actual Data  

Mean time between 

external arrivals 

(hours) 

M/M/s  

Mean time between 

external arrivals 

(hours) 

G/M/s  

Mean time between 

external arrivals 

(hours) 

CCU 189.95 195.97 194.36 

CICU 271.41 272.53 270.65 

CTSICU 8.11 8.07 8.09 

NTSICU 128.13 126.96 125.73 

 

 Given the above results, our simulation model is considered to be validated, and we can 

use it to check different “what if” scenarios.  For example, we could test how changing the 

transition probabilities or arrival rates influence the mean service time or other metrics, such as 

utilization. 
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4.5 CLASSIFICATION RESULTS 

Each of the five methods compared was adjusted for the following variables: age at admission to 

the ICU, gender, ICD-9 (International Classification of Diseases-9
th

 edition/revision) code, 

surgeon code, hours of ventilation in the ICU, total time for each visit to the ICU (a patient might 

make multiple visits to the ICU during a single hospital stay), time between successive visits to 

the ICU, and reported complications while in the ICU (renal, pulmonary, vascular, infections, 

neurological, surgical, other).  The outcome variable is a binary variable indicating the patient’s 

status at ICU discharge (deceased=1, alive=0).   

We chose the following set of MCRs for classifying a minority class member as being in 

the majority class to classifying someone in the majority class as being in the minority: 1:1, 5:1, 

10:1, 15:1, 25:1, 40:1, 50:1, 75:1, and 100:1.  We were primarily interested in determining if the 

misclassification of the minority (deceased) group decreased as the MCR was increased, and 

which method had the best improvement in correctly classifying the deceased group as a function 

of the MCR.   

Specificity, recall, precision, the F-measure, and the CEN were calculated for each 

method for each MCR.  The five measures were compared for each method as the MCR was 

increased.  Figures 13 through 17 show the performance of each method for all measures as the 

MCR was increased. 
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4.5.1 Logistic regression 

For logistic regression, specificity was inversely related to MCR, while recall was directly 

related to it.  Both precision and the F-measure initially increased with the MCR, but then 

leveled off.  CEN steadily increased as MCR increased, which is sensible because even though 

increasing the MCR increases the number of correctly classified deceased patients, the number of 

misclassified alive patients also increases.  As a result, the total number of misclassified samples 

increases and hence the value of the CEN measure increases.  Overall, using a high MCR 

appears to improve logistic regression’s ability to correctly classify the minority (deceased) 

group. 

 

Figure 13. Logistic regression’s specificity, recall, precision, the F-measure and confusion entropy (CEN) as the 

misclassification cost ratio (MCR) is increased 
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4.5.2 Discriminant analysis 

Discriminant analysis had similar trends to those in logistic regression.  Specificity decreased as 

MCR increased, while recall increased.  An MCR of 50 results in a high specificity and recall 

(~0.78).  Both precision and the F-measure increased initially with increasing MCR, and then 

decreased.  CEN increased steadily as MCR increased.  A high value for MCR appears to 

improve discriminant analysis’ ability to identify the minority group correctly more often. 

 

Figure 14. Discriminant analysis’ specificity, recall, precision, the F-measure and confusion entropy (CEN) as the 

misclassification cost ratio (MCR) is increased 
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4.5.3 Classification and Regression Tree (CART) models 

For CART, the results are not as clear-cut.  Specificity remained high as MCR was increased. 

Recall increased initially, leveled off, and then decreased.  The same was true for precision and 

the F-measure.  The CEN increased initially and then decreased.  Unlike logistic regression and 

discriminant analysis, increasing MCR does not appear to increase CART’s ability to correctly 

classify cases in the minority class. 

 
 

Figure 15. Classification and Regression Tree (CART) models’ specificity, recall, precision, the F-measure and 

confusion entropy (CEN) as the misclassification cost ratio (MCR) is increased 
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4.5.4 C5 

C5’s recall increased and its specificity decreased as the MCR increased, consistent with 

expectations. An MCR of 40 results in a relatively high specificity and recall (~0.75).  Both 

precision and the F-measure increased initially with the MCR, but then leveled off.  CEN 

steadily increased as MCR increased.  The behavior of C5 as shown in Figure 16 supports the 

contention that setting a sufficiently high value for the MCR substantially improves a method’s 

classification of the minority group. 

 

Figure 16. C5’s specificity, recall, precision, the F-measure and confusion entropy (CEN) as the misclassification 

cost ratio (MCR) is increased 

  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 5 10 15 25 40 50 75 100

P
ro

p
o

rt
io

n
 

Misclassification Cost Ratio 

C5 

Specificity

Recall

Precision

F measure

CEN



 68 

4.5.5 Support Vector Machine (SVM) 

SVM’s behavior as the MCR increases is similar to that of logistic regression, discriminant 

analysis, and C5. 

 

Figure 17. Support Vector Machine’s (SVM) specificity, recall, precision, the F-measure and confusion entropy 

(CEN) as the misclassification cost ratio (MCR) is increased 

 

Figures 13, 14, 15, 16, 17 show that for most of the algorithms, using a large value of the 

MCR results in the desired improvement in the classification of the minority cateogry.  That 

finding is consistent across four methods (logistic regression, discriminant analysis, C5, and 

SVM) as indicated by the five measures (specificity, recall, precision, the F measure and CEN).  

Therefore, misclassification costs help standard classification techniques to better account for 

imbalanced data, by identifying the minority group correctly more often.  

Figures 13 through 17 display the results for all measures for each method, permitting an 
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all methods for each measure, permitting an analysis of the behavior of each measure. 
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4.5.6 Specificity 

Using specificity, the positive effect of MCR on the correct classification of the deceased group 

is consistent across the various methods (except for CART).  Specificity decreased as the MCR 

was increased. 

 

Figure 18. Specificity of logistic regression, discriminant analysis, Classification and Regression Tree (CART) 

models, C5 and Support Vector Machine (SVM) as the misclassification cost ratio (MCR) is increased 
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4.5.7 Recall 

The effectiveness of the MCR in driving a method to correctly predict the minority category is 

evident as well in Figure 19.  Recall values improved as the MCR was increased.  At an MCR 

value of 100, recall was highest for C5.  For CART, the trend was not the same – recall increased 

until MCR reached 50, after which it decreased. 

 

 

Figure 19. Recall of logistic regression, discriminant analysis, Classification and Regression Tree (CART) models, 

C5 and Support Vector Machine (SVM) as the misclassification cost ratio (MCR) is increased 
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4.5.8 Precision 

All methods have generally similar trends for precision as the MCR increases.  Precision initially 

increases, levels off, and then decreases.  Discriminant analysis had the highest initial precision; 

CART and SVM had the highest precision overall.  It appears that increasing the MCR beyond 

five or ten does not improve any method’s precision.  If precision is the measure of interest, then 

the effectiveness of increasing the MCR in improving minority group classification is not clear. 

 

Figure 20. Precision of logistic regression, discriminant analysis, Classification and Regression Tree (CART) 

models, C5 and Support Vector Machine (SVM) as the misclassification cost ratio (MCR) is increased 
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4.5.9 F-measure 

All the methods appear to have similar trends (initially increasing, leveling off, then decreasing) 

in their F-measures as the MCR increases.  An MCR of five or ten results in the highest F-

measure values across all methods.  The results here are similar to those using precision. 

 

Figure 21. F-measure of logistic regression, discriminant analysis, Classification and Regression Tree (CART) 

models, C5 and Support Vector Machine (SVM) as the misclassification cost ratio (MCR) is increased 
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4.5.10 Confusion entropy (CEN) 

Because a lower CEN is better, Figure 22 shows that CART provides the best CEN value for all 

values of the MCR.  All methods except for CART show a steady deterioration in CEN with 

increasing MCR with the gap between CART and the best of the other methods increasing with 

increasing MCR.  

 

Figure 22. Confusion Entropy (CEN) of logistic regression, discriminant analysis, Classification and 

Regression Tree (CART) models, C5 and Support Vector Machine (SVM) as the misclassification cost 

ratio (MCR) is increased 
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4.5.11 Hand’s measure 

Larger values of Hand’s measure are preferred to smaller ones.  Figure 23 shows that logistic 

regression and discriminant analysis are the better performing methods when Hand’s measure is 

the criterion of interest, and that their performance is virtually the same.   

 
 

Figure 23. Hand’s measure values of logistic regression, discriminant analysis, Classification and Regression Tree 

(CART) models, C5 and Support Vector Machine (SVM) as Beta distribution parameters are changed 
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4.6 SUMMARY OF CLASSIFICATION RESULTS 

Because there did not seem to be a significant relationship between the MCR and either precision 

or the F-measure, those two measures were not used to determine the best method.  CART did 

not appear to show any clear trends in its performance measures as the MCR changed.  Using 

specificity, recall, and CEN as criteria for comparing model performance, C5 and SVM appear to 

be superior to the others.  At an MCR value of 100, C5 had the highest recall, while SVM had 

the highest specificity and lowest CEN.  Using Hand’s measure as a criterion for comparing each 

method’s performance, logistic regression performed the best, with a Hand’s measure value of 

0.4606 using a Beta distribution with α = 2 and β = 40. 

4.7 CHAPTER SUMMARY 

The steady state solutions for the two queueing networks discussed in Chapter 3 are presented.  

For the first queueing network with instantaneous feedback, our results match those already 

published in the literature.  For the second queueing network with instantaneous and delayed 

feedback, we used the local balance approach to find the steady state solution of having n1 and n2 

patients in nodes 1 and 2 respectively.  We provided a numerical example of the steady state 

solution for the second queueing network.   

As far as the discrete event simulation model, we compared the results, in terms of time 

between external arrivals to each node and service times at each node, from both simulation runs 

(M/M/s and G/M/s) to actual patient flow data.  The simulation results were very similar and 

were found not to be statistically significantly different from the actual data.  
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 We also presented the classification results of patient status at discharge from the ICU.  

Using MCR and specificity, recall, and CEN as criteria, C5 and SVM performed the best.  When 

using Hand’s measure as a criterion, logistic regression was found to be the best method. 
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5.0  CONCLUSIONS AND FUTURE RESEARCH 

In this chapter, we conclude our work, and provide an overall summary of the dissertation.  We 

reiterate the objectives that we set in Chapter 1, and point out what we found and accomplished.  

We also highlight the contributions and implications (research and practical) of our work.  In 

addition, we provide ideas and directions for extending our work, and for future research.     

5.1 CONCLUSIONS 

In Chapter 1, we set out to achieve four main objectives.  One, building a mathematical model of 

a queueing network with both instantaneous and delayed feedback flows, and finding the steady 

state solution.  Two, building a discrete event simulation model of cardiac patient flow in a 

network of ICUs.  Three, validating the discrete event simulation model using real patient flow 

data.  Four, comparing several statistical and data mining techniques in classifying patients’ 

discharge status from the ICU. 

 As far as the first objective, we were able to successfully find a steady state solution for 

the number of patients in nodes 1 and 2, respectively, in a two M/M/1 node open queueing 

network with instantaneous and delayed feedback.  The solution was validated numerically and 

with discrete event simulation.   
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For the second and third objectives, we built two discrete event simulation models 

(M/M/s and G/M/s) and validated our results, the time between external arrivals to each unit and 

the service time at each unit, by comparing them to the actual patient flow data.  The network we 

considered includes four internal units (a CCU, a CICU, a CTSICU, and a NTSICU) and three 

external units (a PACU, Wards, and a CATH).  Comparisons showed that there were no 

statistically significant differences between our simulation model results and the actual data. 

For the fourth and final objective, we were able to improve the classification performance 

(patient status at discharge) of several statistical and data mining techniques by using different 

MCR values, and we were able to identify the methods that performed the best according to 

several measures.       

5.2 CONTRIBUTIONS AND IMPLICATIONS 

Building a mathematical model and finding a steady state solution for a queueing network while 

accounting for instantaneous and delayed feedback is considered a major contribution, as we are 

unaware of any patient flow study that has accounted for both instantaneous and delayed 

feedback.  Our data indicate the existence of both instantaneous and delayed feedback.  

Therefore, the problem we are studying is realistic which makes our results relevant and 

applicable to the real world.   

Moreover, building and validating a discrete event simulation model for patient flow in a 

network of ICUs is also considered a major contribution, as most patient flow models have not 

been validated or have been validated, with small data sets.  This validation provides the 

opportunity for managers and administrators to analyze the capacity and throughput of their units 
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and to identify bottlenecks.  In addition, having a validated simulation model allows the 

managers/administrators to test the effects of changes in patients’ arrival rate on the overall 

system performance, and to be better able to meet demand by optimally scheduling patients, 

staff, and resources.  This, in turn, should improve patients’ status by reducing wait time, risk of 

morbidity and/or mortality and probability of readmission, by ensuring that patients are receiving 

appropriate and timely care. 

Furthermore, the ability to correctly classify patients who are more likely to die will help 

administrators and clinicians in identifying high risk patients who require extra care and 

attention, and therefore reduce the likelihood of mortality in the ICU.   

5.3 FUTURE WORK 

Our work could be extended along several directions (methodologically and practically).  

Considering the non-Markovian case of queueing networks while accounting for instantaneous 

and delayed feedback is one possibility.  Assuming different patient classes is another 

possibility.  We could also try to classify readmitted patients, as we did with patients’ discharge 

status.  Another extension that we discuss in the next few sections is using the Analytic 

Hierarchy Process (AHP) to come up with optimal admission and/or discharge policies from the 

ICU.    
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5.3.1 Non-Markovian queueing network 

The mathematical model we built was Markovian in terms of both time between external arrivals 

and service time.  Upon checking our data, we found out that service times are indeed 

exponentially distributed in the four internal units we considered.  Time between external 

arrivals was non-Markovian.  Given that non-Markovian networks are more common, we should 

consider building a non-Markovian network, accounting for both instantaneous and delayed 

feedback.  We could compare the results from the Markovian and non-Markovian queueing 

networks to measure the effect of considering the more realistic case of non-Markovian inter-

arrival times and service times. 

5.3.2 Patient classes 

In both the mathematical model and discrete event simulation models we built, we assumed that 

all patients belong to a single class.  It would be interesting to consider or assume different 

classes of patients.   

According to our data, we can identify two main groups of patients based on the type of 

procedure they are undergoing.  We have two main classes of patients based on the International 

Classification of Diseases 9
th

 revision (ICD-9) code.  The first class of patients (class 1) are those 

who underwent operations on the valve and septa of the heart (ICD-9 codes 35.0 thru 35.9) and 

the second class of patients (class 2) are those who underwent all other types of operations.  The 

first class of patients includes 2294 patients (54.2%) and the second class of patients includes 

1938 patients (45.8%).  Table 12 shows some descriptive statistics for the two patient classes.  It 
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is evident that the two classes are statistically significantly different in terms of mean age, mean 

service time and status at discharge. 

Table 12. Descriptive statistics of patient classes 

Variable Class 1 

(N=2294) 

Class 2 

(N=1938) 

p-value 

Age at admission 69.85 + 14.90 65.92 + 14.81 < 0.0001 

Gender (Male) 1402 (61.1%) 1134 (58.5%) 0.089 

Status at discharge 

(Alive) 

2162 (94.2%) 1757 (90.7%) < 0.0001 

Service time (hour) 26.23 + 61.41 22.41 + 46.32 0.025 

 

We also checked the routing probabilities within the network we considered in Figure 2. 

We were able to find differences in the routing probabilities between the two classes.  For 

example, the probabilities of going from the NTSICU to the PACU are 6% and 2% for patient 

classes 1 and 2, respectively.  The probabilities of going from the NTSICU to the CTSICU are 

12% and 4% in classes 1 and 2, respectively.  Tables 13 and 14 show the transition probability 

matrices for patient classes 1 and 2, respectively. 

Table 13. Transition probability matrix of class 1 patients 

From/To CCU CICU CTSICU NTSICU PACU Wards CATH 

CCU 3.0% 32.0% 4.0% 0% 36.0% 2.0% 1.0% 

CICU 10.0% 17.0% 2.0% 0% 37.0% 1.0% 8.0% 

CTSICU 1.0% 1.0% 9.0% 2.0% 1.0% 65.0% 0% 

NTSICU 0% 0% 12.0% 10.0% 6.0% 60.0% 0% 

PACU 0% 0% 95.0% 5.0% - - - 

Wards 4.0% 4.0% 84.0% 8.0% - - - 

CATH 57.0% 37.0% 6.0% 0% - - - 
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Table 14. Transition probability matrix of class 2 patients 

From/To CCU CICU CTSICU NTSICU PACU Wards CATH 

CCU 2.0% 33.0% 5.0% 0% 37.0% 2.0% 1.0% 

CICU 9.0% 15.0% 4.0% 0% 36.0% 1.0% 10.0% 

CTSICU 1.0% 1.0% 7.0% 2.0% 1.0% 65.0% 0% 

NTSICU 1.0% 0% 4.0% 10.0% 2.0% 64.0% 1.0% 

PACU 0% 0% 93.0% 0% - - - 

Wards 4.0% 5.0% 81.0% 0% - - - 

CATH 58.0% 38.0% 4.0% 0% - - - 

 

Building both a mathematical model and a discrete event simulation model with both 

instantaneous and delayed feedback while considering the two patient classes that we just 

identified could be worthwhile.  It would be interesting to compare our current results to those 

obtained while assuming different patient classes to see how decisions regarding capacity 

allocations or scheduling change.  We might be able to identify one particular class of patients 

that is causing the bottleneck so instead of adding more beds to a specific unit, we can assign a 

specific number of beds to these patients without the need for extra beds or staff. 

5.3.3 Classifying readmitted patients 

Readmission rates have become a gold standard for assessing hospital quality improvement.  

Moreover, hospital readmissions have been getting a lot of attention from the HHS, as 

demonstrated by requiring hospitals to publish their readmission rates starting in 2013.   

It is worth noting that all the readmission studies we reviewed in section 1.3.1 used 

logistic regression to predict readmissions to the ICU.  Given that the results were not found to 

be consistent across the different studies, it would be interesting to use other methodologies, such 

as data mining techniques, to try to identify patients who are more likely to be readmitted.  It is 

possible that data mining techniques will be better able to identify common causes of 
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readmission.  Because we are dealing with imbalanced readmission data (about 7% of ICU 

patients are readmitted), we can apply our results from the classification of patients’ discharge 

status to the readmission data, and check whether the same identified methods would perform the 

best in this setting.   

We believe that data mining has the potential to make a significant impact in the 

healthcare field.   Data mining can be used to discover factors relevant to mortalities, 

readmissions, or other adverse patient outcomes that are likely to have an impact on hospital 

quality processes. 

5.3.4 Admission/discharge policies 

There have been numerous studies trying to address the various difficulties often faced when 

managing an ICU.  Some studies are from a purely clinical perspective.  Such studies usually try 

to characterize patients who are in the ICU, with the goal of better serving and eventually curing 

them (Henning et al. 1987, Ranucci et al. 2007).  Other studies are from a managerial or 

operations perspective.  Some researchers are interested in better understanding the ICU system 

as a whole in order to optimally manage the ICU by minimizing costs and ensuring the efficient 

use of resources (Kim et al. 1999, Kim et al. 2000, Ridge et al. 1998).  Other researchers are 

interested in finding the optimal discharge policy, in order to accommodate the maximum 

number of patients while ensuring the well-being of those discharged patients (Chan et al. 2010, 

KC et al. 2012). 

In their work “Maximizing throughput of hospital ICU with patient readmissions” Chan 

et al. (2010) attempted to come up with an optimal policy for deciding which patients to 

discharge from ICU due to capacity limitations, in order to accommodate more critical patients.  
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The goal of such a policy would be to maximize the number of patients entering, benefiting 

from, and exiting the ICU.  The article had several contributions.  The authors calibrated the 

suggested model empirically, which supports its applicability.  The authors also demonstrated 

that the suggested policy is robust.  Moreover, the authors showed that the suggested policy 

incurs a readmission load that is close to the readmission load incurred under an optimal policy.  

Furthermore, the article had a number of practical benefits.  The suggested policy made effective 

and efficient use of ICU resources, and could be used to determine staffing levels.  

The authors proposed a greedy heuristic to solve a complicated dynamic programming 

problem.  The discharge policy that they came up with is based on discharging patients who have 

the lowest expected readmission load, in order to accommodate more critical patients.  The 

authors theoretically showed that under this greedy heuristic, the readmission load incurred is 

close to the readmission load that would have been incurred had an optimal discharge policy 

been used.  The authors then analyzed real empirical data from seven different private hospitals. 

They compared the performance of the suggested policy to other existing policies and showed 

that it consistently performs better than existing policies under different assumptions. 

In “An econometric analysis of patient flows in the cardiac ICU” KC and Terwiesch 

(2012) developed an econometric model, based on data from a large US teaching hospital.  The 

model considered patient recovery, discharge from, and potential readmission to, the ICU.  The 

authors considered the tradeoffs often faced by decision makers in the ICU when the ICU is full. 

That is, whether to discharge a patient early or to cancel surgeries.  

The paper had several contributions, including the estimation of the impact of ICU 

occupancy on patient’s ICU length of stay.  In particular, the authors found that, on average, a 

patient who is discharged from a busy ICU will have a length of stay 18% shorter than that of a 
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patient with similar medical conditions who is discharged from a less busy ICU.  The authors 

also found that being discharged early increases the likelihood of readmission to the ICU within 

the same hospital stay, and leads to longer lengths of stay on subsequent visits.  Moreover, the 

authors demonstrated that an aggressive discharge policy frees up capacity only for low-risk 

patients.  Finally, the authors established that an aggressive discharge policy increases revenue 

per bed-day for low-risk patients who are discharged from a busy ICU, but decreases it for high- 

risk patients who are discharged from a busy ICU. 

From these two articles, it is interesting to see the different approaches that the authors 

utilized in order to decide on an optimal discharge policy.  Unlike all the other articles, the first 

article (Chan et al. 2010) used empirical data from seven different hospitals to calibrate the 

suggested model.  This is a major strength for the study as it increases the validity and 

generalizability of its results.  However, while the proposed discharge policies proved to be 

effective from a managerial perspective, it is unclear whether the policies would be acceptable 

by the decision makers at the ICU.   

Several issues should be taken into account when discharging patients such as patient 

conditions, hospital regulations, and hospital policies.  While the proposed discharge policies 

take patient’s conditions into account, we are not sure whether the policies can be justified.  

Therefore, we suggest accounting for other factors when proposing a discharge policy, in order 

to make such a policy easily implementable as well as acceptable.  One tool that might prove 

effective is the Analytic Hierarchy Process (AHP). 
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5.4.4.1 Analytic Hierarchy Process (AHP) 

Using the Analytic Hierarchy Process (AHP) for group decision making might prove extremely 

valuable when studying the management of the ICU.  Such methods allow you to consider the 

opinions of the various parties involved and affected by these decisions at the same time. 

Therefore, reaching a decision that is acceptable by all sides becomes easier. 

The application of AHP in healthcare is not new. It has been used extensively in a variety 

of healthcare related issues, including medical diagnosis and organ transplantation eligibility 

(Liberatore et al. 2008).  AHP has also been used to measure the operational performance of 

ICUs (Dey et al., 2006).  However, AHP has not been used for coming up with an optimal 

discharge policy for patients in the ICU.  AHP could be used to address the limited capacity 

issues of the ICU.  The AHP model can consider the guidelines for ICU discharge, as well as 

patients’ characteristics and the opinions of all the parties involved.  Such a model should help 

the administrators in making well-informed decisions that ensure the efficient use of the limited 

ICU resources and the well-being of all patients.   

5.4 CHAPTER SUMMARY 

In this chapter we summarized the objectives, accomplishments and contributions of this 

dissertation.  We were able to successfully find the steady state solution of an open queueing 

network, accounting for instantaneous and delayed feedback.  The steady state solution was 

validated numerically and using simulation.  We were also able to build a discrete event 

simulation model of patient flow in a network of ICUs, and to validate the model using real 
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patient flow data that was collected over four years.  This validation allows for the application of 

our model in the real world.  In addition, we were able to improve the classification performance 

of several statistical and data mining techniques in terms of correctly identifying patients who are 

more likely to die in the ICU.  Again, this should help clinicians and administrators in providing 

the necessary, appropriate and timely care to high-risk patients and reduce the risk of mortality. 

This dissertation is an ongoing process as highlighted by the several directions and ideas 

we have for future research.  There are still a lot of opportunities to extend this work and 

contribute on the research level and in practice.   On the research level, finding a steady state 

solution for a non-Markovian queueing network while accounting for instantaneous and delayed 

feedback, and/or assuming different classes of patients, both represent significant opportunities 

and contributions.   

On the practical level, incorporating different patient classes, identifying patients who are 

more likely to be readmitted, and establishing guidelines for admitting and/or discharging 

patients represent opportunities that should have a significant and positive impact in the real 

world.   
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APPENDIX A 

SAMPLE PATIENT FLOW DATA 
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APPENDIX B 

CONFUSION ENTROPY (CEN) CALCULATION 

 

Support Vector Machine (SVM) classification results  

for Misclassification Cost Ratio (MCR) 1:1 
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Support Vector Machine (SVM) classification results  
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Confusion Entropy (CEN) calculation 
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APPENDIX C 

DISCRETE EVENT SIMULATION MODEL 

 

 

A diagram of a simple discrete event simulation model is 

shown on the next page 
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