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NON-PARAMETRIC INFERENCE AND REGRESSION ANALYSIS FOR

CUMULATIVE INCIDENCE FUNCTION UNDER TWO-STAGE

RANDOMIZATION

Idil Yavuz, PhD

University of Pittsburgh, 2013

In recent years, personalized medicine and dynamic treatment regimes have drawn consid-

erable attention and two-stage randomization is commonly used to gather data for making

inference on dynamic treatment regimes. Meanwhile, more and more practitioners become

aware of competing risk censoring, where subjects are exposed to more than one possible

failure and the event of interest may be dependently censored by the occurrence of competing

events.

We aim to compare several treatment regimes from a two-stage randomized trial on sur-

vival outcomes that are subject to competing-risk censoring. With the presence of competing

risks, cumulative incidence function (CIF) has been widely used to quantify the cumulative

probability of occurrence of the target event by a specific time point.

In the first part of this dissertation, we propose non-parametric estimators for the CIF

using inverse weighting, and provide inference procedures based on the asymptotic linear

representation to help compare the CIFs from two different treatment regimes. Through

simulation, we show the practicality and advantages of the proposed estimators and apply

them to data from the Cancer and Leukemia Group B (CALGB) trial.

Next, we propose a pattern-mixture type estimator for the CIF. Pattern-mixture models

stratify data according to dropout patterns, make estimates of a certain parameter on each

stratum, and obtain the final estimate by taking a weighted average of these estimates.
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We show that this approach can be borrowed for estimating the CIF under a two-stage

randomization. We investigate its properties using simulation and apply it to the CALGB

data.

In the third part, we focus on regression analysis under a two-stage randomization setting.

Even though extensive research is being carried out by researchers on the regression problem

for dynamic treatment regimes, no research has been done on modeling the CIF when a two-

stage randomization has been carried out. We extend the multi-state (Cheng et al., 1998),

Fine and Gray (1999) and Scheike et al. (2008) regression models for modeling the CIF of

dynamic treatment regimes and provide ways to implement the proposed models in R using

the existing packages. We show the improvement our methods provide by simulation.

Keywords: competing risks, cumulative incidence function, dynamic treatment regime, in-

verse weighting, multi-state model, pattern-mixture models, proportional hazards for

subdistribution, regression analysis, time-varying effects, two-stage randomization.
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1.0 INTRODUCTION

Dynamic treatment regime is a set of rules that guides treatment according to the patients’

needs, observed covariates and intermediate responses. The idea is to find the regime that

in the end produces the best outcome, where the best outcome can be the longest survival

time or the biggest reduction in some pre-specified score. To achieve this goal, two-stage

randomization designs have been used by researchers and have become more popular in

cancer, AIDS and psychiatric studies. Designing such studies and methods for analyzing

data that arise from these designs have been greatly studied in recent years.

In this dissertation, we focus on analyzing the data from two-stage randomization trials

for a survival outcome that is subject to competing-risk censoring. Competing-risk censoring

refers to a situation where subjects in a study are exposed to more than one possible failure

and the specific event of interest may be dependently censored by the occurrence of compet-

ing events. Competing-risk censoring is more natural than assuming the censoring due to

other events is independent, as a result this type of setting is gaining more attention from

practitioners when analyzing time-to-event data (Koller et al., 2012). When a subject is

exposed to more than one risk, we are then interested in the probability of occurrence of the

event of interest at a specific time point, or the cumulative incidence function (CIF). This

quantity is intuitively interpretable and non-parametrically identifiable, hence it has been

commonly used in the competing risks literature (Kalbfleisch and Prentice, 2002). When

competing risks are present and a two-stage randomization design is being used, the objec-

tive then would become finding a regime which results in a reduced probability of occurrence

of the event of interest. Although methods for analyzing time-to-event data that arise from

two-stage randomization designs have been developed when there is only one cause for fail-
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ure, no research has been carried out on how to analyze data from such designs under a

competing risks setting.

In this dissertation, we will first propose inverse weighted estimators that can be used for

estimating the CIF of dynamic treatment regimes. We will then give inference procedures

that can be used for comparing two regimes. Through simulation we will show that the

proposed estimators are unbiased and they all out-perform the standard estimator näıvely

applied to data from subjects consistent with a specific regime.

In the second part of this dissertation, we propose another estimator for the CIF which

can be used when dynamic treatment regimes are of concern, following ideas of pattern-

mixture models. This pattern-mixture estimator is straightforward with a simple explicit

variance estimator. We show the unbiasedness and good performance of this estimator

through simulation.

Finally, we will examine the situation where covariates are involved and when competing

risks are present. It is of practical interest to examine how covariates may affect the CIF

for a specific regime. Although several regression models have been proposed for estimating

the CIF, none can be directly applied in a two-stage randomization design. We will propose

two methods to improve current models and provide extensive simulation results.
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2.0 NON-PARAMETRIC INFERENCE FOR THE CUMULATIVE

INCIDENCE FUNCTION UNDER TWO-STAGE RANDOMIZATION

2.1 INTRODUCTION

In dynamic treatment regimes, the treatment level and type can vary depending on evolving

measurements of subject-specific need for treatment. These regimes are rules that provide

treatment adapted to individual needs, thus they are more cost effective and they improve

patient’s compliance by avoiding over-treatment or under-treatment (Lavori and Dawson,

2000). Different designs of clinical trials can be used for estimating the treatment efficacy

of various treatment regimes. The simplest one is the single stage randomization design

where the patients are randomized to all possible treatment regimes upon entry into the

trial. However, this method is not cost effective and in general requires a larger sample

size. The second way is to conduct multiple separate trials for the first and second stages

but this raises issues about patient comparability between trials. A better design is the so-

called Sequential Multiple Assignment Randomized Trial (SMART) which was considered

by Lavori and Dawson (2000), Lavori and Dawson (2004), Murphy (2005) and Murphy

et al. (2007), where patients are randomized to the initial treatment options at entry and

those continuing to the next stage are randomized to available treatment options based on

their intermediate response to the initial treatment and randomization is continued in this

fashion. For example, in a two-stage randomization design, suppose there are two treatment

options A1 and A2 at the first stage, and two treatment options for both responders and

non-responders namely B1 and B2 and B
′
1 and B

′
2 at the second stage. Using the SMART

strategy the randomization can be carried out as shown in Figure1.
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Figure 1: A two-stage randomization setup

Statistical methods for analyzing data from a SMART design are available in the lit-

erature. For example, Murphy et al. (2001) developed a marginal mean model for the

mean response of a dynamic treatment regime after which they provided a methodology for

constructing an optimal regime (Murphy, 2003). Lunceford et al. (2002) used the inverse

weighting method introduced by Robins et al. (1994) to propose a marginal mean model

(Murphy et al., 2001) for analyzing survival data from a two-stage setting. Later, Guo and

Tsiatis (2005) proposed a weighted risk-set estimator which is a modified Nelson-Aalen esti-

mator (Aalen, 1978). Although it may seem appropriate at first to apply the Kaplan-Meier

estimator (Kaplan and Meier, 1958) to the subgroup of patients following a specific regime,

Wahed and Tsiatis (2006) showed that such an estimator is biased, and to correct for this

bias they proposed a weighted version of the Kaplan-Meier estimator following Lunceford

et al. (2002) and Lokhnygina and Helterbrand (2007). Murphy and Bingham (2009) used

screening experiments to help develop dynamic treatment regimes.

Although the inference for dynamic treatment regimes has been studied in various articles

until now there has been no research on how to estimate the survival time for these regimes

under competing risks settings. Competing-risk censoring is common in practice when there
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are composite outcomes, and it has recently drawn more attention from practitioners (Gooley

et al., 1999; Klein, 2006; Koller et al., 2012). In competing risks settings, the cumulative

incidence function (CIF) is a commonly used quantity which describes the proportion of the

event of interest occurring over time in the presence of competing events (Kalbfleisch and

Prentice, 2002).

In this chapter, we show that the standard non-parametric estimator of the CIF, using

the data from only those subjects who are consistent with the treatment regime of interest,

may be biased. Instead, we propose several estimators of the CIF with various weight

functions, and compare them to the standard non-parametric estimator. After introducing

the necessary notation, defining the new estimators and proposing inference for comparison

of two regimes, we will present the findings from sets of simulations we ran and finally

demonstrate the practicality of the proposed methods by applying them to the CALG-B

data set.

2.2 SET-UP AND NOTATION

The design in Figure 1 would create a total of eight regimes AjBkB
′

l for j,k,l=1,2. Here

AjBkB
′

l stands for the regime where the subject is treated with Aj followed by Bk if the

subject responds to Aj and by B
′

l if not. Let Tjkl denote the survival time of a subject

following the regime AjBkB
′

l . The goal is then to estimate the probability that the event of

interest occurs before a specific time t where the subject may fail from any of the competing

events of failure. The survival distribution of a subject following the regime AjBkB
′

l is

Sjkl(t) = P (Tjkl > t) but estimating this overall survival will not provide detailed information

about the probabilities of interest thus the estimator recommended for this purpose is the

CIF.

Without loss of generality, we consider only the subjects that are assigned to treatment

A1 at first stage and assume there are only two causes of possible failures. It is easy to show

that adding extra layer of weight to account for those subjects who are initially assigned to
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A2 will not change the inference procedure, if the weight does not depend on covariates. For

the case where the weight does depend on covariates, Miyahara and Wahed (2010) pointed

out that there may not be much gain in efficiency in the inference of a survival outcome with

independent censoring, since covariates are most likely balanced due to randomization. In

addition, multiple competing events can be grouped together without affecting the analysis

for the event of interest. Therefore, limiting the number of causes of possible failure does

not affect the inference proposed.

For the ith subject (i = 1, · · · , n), let TRi be the time to intermediate response assessment

since the initial randomization, Ri be the response indicator (Ri=1 if the subject has re-

sponded to A1; 0 otherwise), Z1i be the second treatment assignment indicator for responders

(Z1i = k if subject is assigned to Bk; k = 1, 2), and Z2i be the second treatment assignment

indicator for non-responders (Z2i = l if subject is assigned to B
′

l ; l = 1, 2). Let Ti denote

the time to first event since the initial randomization and εi denote the corresponding event

type (=1, if the first event is the event of interest, =2, if the competing event occurs first).

There may also be independent censoring present which can be written as Ci. Hence the

observed event time is Vi = min (Ti, Ci), and the cause indicator ∆i = εiI(Ci ≥ Ti) takes

on the value of 1 or 2 if the cause 1 or 2 event occurs before censoring, and 0 if no event is

observed before Ci. Then, the ith subject’s data can be represented as {TRi , Ri, RiZ1i, (1 −

Ri)Z2i, Vi,∆i}. Here, Tjkl is only observed for subjects who were on treatment Aj, responded

to it and received Bk or did not respond to Aj and received B
′

l , and not observed for

the others. The randomization probabilities πBk = Pr(Z1i = k | Ri = 1) and πB′
l

=

Pr(Z2i = l | Ri = 0) are assumed to be independent of the observed data prior to the second

randomization except for Ri. In some cases, the time to response may also be censored

but in such cases it is customary to treat the patients with censored response times as

non-responders (Lunceford et al., 2002).
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2.3 THE WEIGHTED ESTIMATORS OF THE CIF

2.3.1 The CIF Estimator with Fixed Weights

To estimate the cause 1 CIF for the regime A1BkB
′

l , k, l = 1, 2, one may näıvely construct a

standard non-parametric estimator using the data only from those subjects whose treatments

are consistent with the regime (i.e., subjects who were on treatment A1, responded to it and

received Bk or did not respond to A1 and received B
′

l). Let t1 < t2 < · · · < tk be the distinct

event times where either the event of interest or the competing event occurs. Let Yi be the

number of subjects at risk, di be the number of subjects with the occurrence of the event

of interest, and ri be the number of subjects with the occurrence of the competing event at

time ti among patients who received Bk or B
′

l as second stage therapy. Then, the cause 1

CIF for the regime A1BkB
′

l would be estimated by

F̂1,A1BkB
′
l
(t) =

∑
ti≤t

di
Yi

{
i−1∏
j=1

(
1− dj + rj

Yj

)}
(2.3.1)

for t1 ≤ t and 0 otherwise. For t1 ≤ t the CIF can be represented as

F̂1,A1BkB
′
l
(t) =

∑
ti≤t

ŜA1BkB
′
l
(ti−)

di
Yi
,

where ŜA1BkB
′
l
(ti−) is the Kaplan-Meier estimator (Kaplan and Meier, 1958) evaluated at

just before time ti. The variance estimator of F̂1,A1BkB
′
l
(t) is given in Klein and Moeschberger

(2003) as

σ̂2
(
F̂1,A1BkB

′
l
(t)
)

=
∑
ti≤t

(
ŜA1BkB

′
l
(ti)

2

{(
F̂1,A1BkB

′
l
(t)− F̂1,A1BkB

′
l
(ti)
)2 ri + di

Y 2
i

}
+ŜA1BkB

′
l
(ti)

2

[{
1− 2

(
F̂1,A1BkB

′
l
(t)− F̂1,A1BkB

′
l
(ti)
)} di

Y 2
i

])
.

The standard CIF estimator discards all the information from those subjects who are not

consistent with the regime A1BkB
′

l , hence it loses efficiency and may be biased. To account

for loss of those subjects, we take a similar approach used by Lunceford et al. (2002), Guo

7



and Tsiatis (2005) and Miyahara and Wahed (2010), and propose a weighted cumulative

incidence function (WCIF) estimator

F̂w
1,A1BkB

′
l

(t) =
∑
ti≤t

dwi
Y w
i

{
i−1∏
j=1

(
1−

dwj + rwj
Y w
j

)}
, (2.3.2)

for t1 ≤ t and 0 otherwise, where dwi =
∑n

j=1 I(Vj = ti,∆j = 1)QA1BkB
′
l ,j

, rwi =
∑n

j=1 I(Vj =

ti,∆j = 2)QA1BkB
′
l ,j

and Y w
i =

∑n
j=1 I(Vj ≥ ti)QA1BkB

′
l ,j

for QA1BkB
′
l ,j

= RjI{Z1j =

k}/πBk + (1 − Rj)I{Z2j = l}/πB′
l
. Recall that Z1j is the second treatment assignment

indicator for responders (Z1j = k if subject j is assigned to Bk; k = 1, 2), Z2j is the second

treatment assignment indicator for non-responders (Z2j = l if subject j is assigned to B
′

l ;

l = 1, 2), πBk = P (Z1j = k | Rj = 1) and πB′
l

= P (Z2j = l | Rj = 0). The CIF estima-

tor in (2.3.2) is similar to the standard estimator except that those subjects following the

regime are inversely weighted by the probability of being allocated to a specific treatment

option during the second stage to compensate for those subjects who have been assigned to

alternative treatments but could have been consistent with the regime if there had been no

second randomization.

To estimate the variance of F̂w
1,A1BkB

′
l

, the following counting process formulation was

used. For subject j, define the weighted cause specific event processes Nw
1j(s) = I(Vj ≤

s,∆j = 1)QA1BkB
′
l ,j

and Nw
2j(s) = I(Vj ≤ s,∆j = 2)QA1BkB

′
l ,j

, and the overall event pro-

cess Nw
j (s) = Nw

1j(s) + Nw
2j(s). Also define the weighted at-risk process Y w

j (s) = I(Vj ≥

s)QA1BkB
′
l ,j

. Summing over all subjects, we have Y w
. (s) =

∑n
j=1 Y

w
j (s), Nw

1. (s) =
∑n

j=1N
w
1j(s)

similarly Nw
2. (s), and Nw

. (s) = Nw
1. (s) + Nw

2. (s). Let Λ1(s) =
∫ s

0
λ1(u)du, where λk(u) =

limh→0
P (u≤V <u+h,∆=k|V≥u)

h
is the cause-specific hazard function for event k, and Λ(s) =∫ s

0
λ(u)du, where λ(u) = limh→0

P (u≤V <u+h|V≥u)
h

is the all-cause hazard. Let Mw
j (s) =

Nw
j (s) −

∫ s
0
Y w
j (u)dΛ(u). One can show that Mw

j ’s are martingales and so is Mw
. (s) =

Nw
. (s)−

∫ s
0
Y w
. (u)dΛ(u). Similarly, Mw

1. (s) = Nw
1. (s)−

∫ s
0
Y w
. (u)dΛ1(u) is also a martingale.

Using the counting process notation the weighted survival and the WCIF estimator can be

represented as follows:

Ŝw
A1BkB

′
l

(t) =
∏
s≤t

{
1− ∆Nw

. (s)

Y w
. (s)

}
,
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F̂w
1,A1BkB

′
l

(t) =

∫ t

0

Ŝw
A1BkB

′
l

(s−)dΛ̂w
1 (s),

where ∆Nw
. (s) = Nw

. (s)−Nw
. (s−), and Λ̂w

1 (s) =
∫ s

0

dNw
1.(s)

Y w. (s)
.

To simplify the notation in what follows, we will temporarily drop the regime from the

notation by letting F̂w
1,A1BkB

′
l

= F̂w
1 and let Ŝw

A1BkB
′
l

= Ŝw. To derive the variance of the

WCIF estimator, we write
√
n(F̂w

1 (t)− F1(t))

=
√
n

{∫ t

0

Ŝw(s−)dΛ̂1(s)−
∫ t

0

S(s−)dΛ1(s)

}
=
√
n

{∫ t

0

Ŝw(s−)
dNw

1. (s)

Y w
. (s)

−
∫ t

0

Ŝw(s−)dΛ1(s) +

∫ t

0

(Ŝw(s−)− S(s−))dΛ1(s)

}
.(2.3.3)

Following Theorem 3.2.3 in Fleming and Harrington (1991) the ratio of the weighted survival

function and the survival function can be derived as follows:

Ŝw(t)

S(t)
=

Ŝw(0)

S(0)
−
∫ t

0

Ŝw(s−)

S(s)S(s−)
dS(s) +

∫ t

0

1

S(s)
dŜw(s)

= 1 +

∫ t

0

Ŝw(s−)

S(s)
dΛ(s)−

∫ t

0

Ŝw(s−)

S(s)
dΛ̂(s)

= 1−
∫ t

0

Ŝw(s−)

S(s)

{
dNw

. (s)

Y w
. (s)

− dΛ(s)

}
.

This can be used to obtain the difference between the weighted estimator and the survival

function as Ŝw(t)− S(t) = −S(t)
∫ t

0
Ŝw(s−)
S(s)

{
dNw

. (s)
Y w. (s)

− dΛ(s)
}
. Plugging this into (2.3.3), we

can write
√
n(F̂w

1 (t)− F1(t))

=
√
n

∫ t

0

Ŝw(s−)
1

Y w
. (s)

{dNw
1. (s)− Y w

. (s)dΛ1(s)}

−
√
n

∫ t

0

S(s)

{∫ s

0

Ŝw(u−)

S(u)

1

Y w
. (u)

dMw
. (u)

}
dΛ1(s)

=
√
n

∫ t

0

Ŝw(s−)
1∑n
i=1Qi

1
Y w. (s)∑n
i=1Qi

{dNw
1. (s)− Y w

. (s)dΛ1(s)}

−
√
n

∫ t

0

S(s)

{∫ s

0

Ŝw(u−)

S(u)

1∑n
i=1Qi

1
Y w. (u)∑n
i=1Qi

dMw
. (u)

}
dΛ1(s)

=
1√
n

∫ t

0

n∑n
i=1 Qi

Ŝw(s−)
1

Ȳ w(s)
[dNw

1. (s)− Y w
. (s)dΛ1(s)]

− 1√
n

∫ t

0

n∑n
i=1Qi

S(s)

{∫ s

0

Ŝw(u−)

S(u)

1

Ȳ w(s)
dMw

. (u)

}
dΛ1(s), (2.3.4)
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where Ȳ w(s) = Y w(s)∑n
i=1Qi

. Using Taylor’s expansion on 1
Ȳ w(s)

, we can replace it with 1
S(s−)

plus

a smaller order term. The first term in (2.3.4) can be written as

1√
n

n∑
j=1

∫ t

0

Ŝw(s−)
1

S(s−)
[dNw

1j(s)− Y w
j (s)dΛ1(s)] + op(1) =

1√
n

n∑
j=1

I1j(t) + op(1).

Following a similar approach the second term in (2.3.4) can be written as

1√
n

n∑
j=1

∫ t

0

S(s)

[∫ s

0

Ŝw(u−)

S(u)

1

S(u−)
(dNw

j (u)− Y w
j (u)dΛ(u))

]
dΛ1(s) + op(1)

=
1√
n

n∑
j=1

I2j(t) + op(1).

Thus,
√
n(F̂w

1 (t) − F1(t)) = 1√
n

∑n
j=1 Ij(t) + op(1) where Ij(t) = I1j(t) − I2j(t). As a

result we obtain the following variance estimator for the weighted CIF estimator:

σ̂2(F̂w
1 (t)) =

1

n2

n∑
j=1

Î2
j (t),

where Îj(t) = Î1j(t)− Î2j(t) with

Î1j(t) =

∫ t

0

dNw
1j(s)− Y w

j (s)dΛ1(s)

= Qj

∑
tm≤t

[
I(Vj = tm,∆j = 1)− I(Vj ≥ tm)

dwm
Y w
m

]

and

Î2j(t) =

∫ t

0

Ŝw(s)

[∫ s

0

1

Ŝw(u)
(dNw

j (u)− Y w
j (u)dΛ(u))

]
dΛ1(s)

= Qj

∑
tm≤t

Ŝw(tm)

[∑
td≤tm

1

Ŝw(td)

(
I(Vj = td)− I(Vj ≥ td)

dwd + rwd
Y w
d

)]
dwm
Y w
m

.
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2.3.2 The CIF Estimator with Estimated Fixed Weights

In practice, due to randomization, the proportion of subjects who responded to the initial

treatment A1 and were randomized to Bk may not be exactly the same as πBk . Similarly,

the proportion of subjects receiving B
′

l could be different from πB′
l
. In some situations it

may be necessary to estimate the randomization probabilities for the second stage or the

sample proportion may provide better information about the randomization process than

the intended assignment probabilities. For these reasons, we also propose a weighted CIF

estimator where the weights are estimated using the sample proportions instead of true

probabilities:

F̂ ew
1,A1BkB

′
l

(t) =
∑
ti≤t

dewi
Y ew
i

{
i−1∏
j=1

(
1−

dewj + rewj
Y ew
j

)}
, (2.3.5)

for t1 ≤ t and 0 otherwise, where dewi =
∑n

j=1 I(∆j = 1)I(Vj = ti)Q̂A1BkB
′
l ,j

, rewi =∑n
j=1 I(∆j = 2)I(Vj = ti)Q̂A1BkB

′
l ,j

and Y ew
i =

∑n
j=1 I(Vj ≥ ti)Q̂A1BkB

′
lj

for Q̂A1BkB
′
l ,j

=

RjI{Z1j = k}/π̂Bk + (1 − Rj)I{Z2j = l}/π̂B′
l
. The variance of this estimator can be esti-

mated by replacing the weights with their estimated values in the formula derived for the

CI with fixed weights.

2.3.3 The CIF Estimators with Time-Dependent Weights

The proposed cumulative incidence functions with fixed weights and estimated fixed weights

can be improved in a way so that more subjects provide information for the estimation of

the cumulative incidence for a given regime. To do this, following the ideas from Guo and

Tsiatis (2005), subjects can be given weights of 1 until their response status are observed

because they remain consistent with all of the regimes. Once the response status is known

and the second randomization is carried out, the patients receive weights according to the

regimes they follow. The weights evaluated at time t can be written as below:

QA1BkB
′
l ,j

(t) =


1, if TRj > t,

RjI{Z1j=k}
πBk

+
(1−Rj)I{Z2j=l}

π
B
′
l

, if TRj ≤ t.
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Using the time-dependent weights the cumulative incidence for a specific regime can be

estimated as

F̂ tw
A1BkB

′
l

(t) =
∑
ti≤t

dtwi
Y tw
i

{
i−1∏
j=1

(
1−

dtwj + rtwj
Y tw
j

)}
. (2.3.6)

Here F̂ tw
A1BkB

′
l

denotes the estimated CIF with time-dependent weights and

dtwi =
n∑
j=1

I(∆j = 1)I(Vj = ti)QA1BkB
′
l ,j

(ti),

rtwi =
n∑
j=1

I(∆j = 2)I(Vj = ti)QA1BkB
′
l ,j

(ti),

Y tw
i =

n∑
j=1

I(Vj ≥ ti)QA1BkB
′
l ,j

(ti).

The associated influence function can be obtained by a slight modification of the previous

influence function and the new variance estimator can be obtained just by replacing the two

parts of the influence function with the ones below:

Î tw1j (t) = Qj(t)
∑
tm≤t

[
I(Vj = tm,∆j = 1)− I(Vj ≥ tm)

dtwm
Y tw
m

]

Î tw2j (t) = Qj(t)
∑
tm≤t

Ŝtw(tm)

[∑
td≤tm

1

Ŝtw(td)

(
I(Vj = td)− I(Vj ≥ td)

dtwd + rtwd
Y tw
d

)]
dtwm
Y tw
m

.

The CIF estimator with estimated time-dependent weights F̂ tew
A1BkB

′
l

and its variance

estimator can be obtained by replacing the weights in F̂ tw
A1BkB

′
l

and its variance with the

estimated ones.
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2.4 COMPARING TWO REGIMES

2.4.1 Confidence Intervals and Confidence Bands

Suppose we are interested in comparing the two regimes A1B1B
′
1 and A1B1B

′
2 which share

some common path. We would then be interested in the difference D(t) = F1,A1B1B
′
1
(t) −

F1,A1B1B
′
2
(t). It can be consistently estimated by the difference between the two estimated

CIFs with time-dependent weights of the respective regimes, i.e., D̂tw(t) = F̂ tw
1,A1B1B

′
1

(t) −

F̂ tw
1,A1B1B

′
2

(t). If we denote the influence function for the two regimes respectively as I
(1)
j (t)

and I
(2)
j (t), we can write:

√
n(D̂tw(t)−D(t)) =

1√
n

n∑
j=1

{
I

(1)
j (t)− I(2)

j (t)
}

+ op(1)

=
1√
n

n∑
j=1

IDj (t) + op(1).

Since IDj (t) can be easily estimated by ÎDj (t) = Î
(1)
j (t) − Î(2)

j (t) and the variance of D̂tw

can be estimated as σ̂2
D̂(t)

= 1
n2

∑n
j=1

{
ÎDj (t)

}2

, the 100(1−α)% confidence interval for D(t)

is {
F̂ tw

1,A1B1B
′
1
(t)− F̂ tw

1,A1B1B
′
2
(t)
}
± Zα/2σ̂D̂(t),

where P (N(0, 1) ≥ Zα/2) = α/2.

In addition to point-wise confidence intervals, confidence bands are often constructed for

functions of D(t) to determine the time regions where the two CIFs differ. We adapt Lin’s

re-sampling technique (Lin et al., 1994; Lin, 1997) following the guidelines of Zhang and Fine

(2008). More specifically, we consider a general transformation G(F1,A1B1B
′
1
(t), F1,A1B1B

′
2
(t)).

Let G(1)(u, v) = ∂G(u, v)/∂u and G(2)(u, v) = ∂G(u, v)/∂v be first-order partial derivatives

of G, and n1 and n2 be the numbers of subjects who are consistent with the regimes A1B1B
′
1

and A1B1B
′
2. We assume that ni/(n1 +n2)→ ρi as n1 +n2 →∞, where 0 < ρi < 1, i = 1, 2.
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Then the functional delta method gives that

√
n[G(F̂ tw

1,A1B1B
′
1
(t), F̂ tw

1,A1B1B
′
2
(t))−G(F1,A1B1B

′
1
(t), F1,A1B1B

′
2
(t))]

=
2∑
i=1

ni∑
j=1

ρ
−1/2
i G(i)(F1,A1B1B

′
1
(t), F1,A1B1B

′
2
(t))n

−1/2
i I

(i)
j (t) + oP (1)

=
√
n

2∑
i=1

ni∑
j=1

I
(i)G
j + oP (1),

where I
(i)G
j can be estimated by Î

(i)G
j = G(i)(F̂ tw

1,A1B1B
′
1

(t), F̂ tw
1,A1B1B

′
2

(t))Î
(i)
j (t)/ni.

Thus,
√
n[G(F̂ tw

1,A1B1B
′
1

(t), F̂ tw
1,A1B1B

′
2

(t)) − G(F1,A1B1B
′
1
(t), F1,A1B1B

′
2
(t)]) converges weakly

to a Gaussian process with a variance consistently estimated by:

Σ̂G(t) = n
2∑
i=1

ni∑
j=1

{Î(i)G
j (t)}2.

Let Z
(b)
ij , i = 1, 2, j = 1, . . . , ni, b = 1, . . . , N be independent standard normal variates. Then

the simulated process

Ĵ (b)(t) =
√
n

2∑
i=1

ni∑
j=1

G(i)(F̂ tw
1,A1B1B

′
1
(t), F̂ tw

1,A1B1B
′
2
(t))Î

(i)
j (t)Z

(b)
ij /ni

has the same limiting process as:

√
n[G(F̂ tw

1,A1B1B
′
1
(t), F̂ tw

1,A1B1B
′
2
(t))−G(F1,A1B1B

′
1
(t), F1,A1B1B

′
2
(t))].

Let Cα be 100(1− α)th percentile of

J̄ (b) = sup
tε[τl,τu]

|Ĵ (b)(t)|,

for b = 1, . . . , N and [τl, τu] ⊂ [0, τ ]. Then 100(1 − α)% confidence bands for the transfor-

mation G(F1,A1B1B
′
1
(t), F1,A1B1B

′
2
(t)) are:

G(F̂ tw
1,A1B1B

′
1
(t), F̂ tw

1,A1B1B
′
2
(t))± Cα

√
Σ̂G(t)/n. (2.4.1)

In the simple case where G(u, v) = u− v the simulated process Ĵ (b) can be written as:

Ĵ (b) =
1√
n

n∑
j=1

{
Î

(1)
j Z

(b)
1j − Î

(2)
j Z

(b)
2j

}
and the variance estimator is Σ̂G(t) = 1

n

∑n
j=1

(
Î

(1)
j − Î

(2)
j

)2

. Now, the confidence bands can

be computed as in (2.4.1).
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2.4.2 Time-averaged Differences

In practice, one is often interested in summarizing the difference between two CIFs over

time to obtain a global measure of the difference between two treatment regimes. Let G

be some general distance measure. To combine information in G{F1,A1B1B
′
1
(t), F1,A1B1B

′
2
(t)}

over time, Zhang and Fine (2008) proposed weighted average summaries:

GM =

∫ τu

τl

G{F1,A1B1B
′
1
(t), F1,A1B1B

′
2
(t)}dW (t),

where W (t) > 0 is a deterministic weight function and
∫ τu
τl
dW (t) = 1. Following the ideas of

the weighted log-rank tests for censored survival data, one may consider the class of weights

based on the CIF calculated by pooling the data from both regimes. The estimator for the

time-averaged difference is:

ĜM =

∫ τu

τl

G{F̂ tw
1,A1B1B

′
1
(t), F̂ tw

1,A1B1B
′
2
(t)}dW (t).

Then
√
n(ĜM −GM) can be expressed as

=
√
n

∫ τu

τl

[G{F̂ tw
1,A1B1B

′
1
(t), F̂ tw

1,A1B1B
′
2
(t)} −G{F1,A1B1B

′
1
(t), F1,A1B1B

′
2
(t)}]dW (t)

=
√
n

2∑
i=1

ni∑
j=1

Î
(i)GM
j + op(1),

where Î
(i)GM
j =

∫ τu
τl
Î

(i)G
j (t)dW (t). The asymptotic variance can then be estimated by Σ̂GM =

n
∑2

i=1

∑ni
j=1{Î

(i)GM
j }2. For the case where G(u, v) = u− v, Î

(1)G
j (t) = Î

(1)
j /n and Î

(2)G
j (t) =

−Î(2)
j /n. Inference can easily be carried out based on these influence functions.
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2.5 SIMULATION

Simulation studies were carried out to compare the proposed estimator to the standard

estimator under different conditions. In all simulations the study design explained in Figure

1 was used. Only the subjects who received the initial treatment A1 were considered since

the data obtained from these subjects is independent of the data obtained from the subjects

that were assigned to the other initial treatment A2. The comparisons were made under three

different scenarios. Namely, the data were generated at which 1) Z1i ∼ 2 − Bernoulli(0.5)

and Z2i ∼ 2 − Bernoulli(0.5), 2) Z1i ∼ 2 − Bernoulli(0.3) and Z2i ∼ 2 − Bernoulli(0.3)

(i.e. Z1i = 1 with probability 0.3 and Z1i = 2 with probability 0.7), and 3) Z1i = 1

and Z2i ∼ 2 − Bernoulli(0.5). Every model was repeated for n = 300, 700 and for cases

Ri ∼ Bernoulli(0.4) and Ri ∼ Bernoulli(0.7) and 4000 data sets were generated for each

setting.

For each combination, {(TRi , Ri, Z1i, Z2i, Vi,∆i), i = 1, . . . , n} were generated. More

specifically, TRi , the times to response, were generated from Exponential (0.20) and restricted

at 1 year. The times to death from the second randomization (T ∗A1Bki
or T ∗

A1B
′
li

, k, l = 1, 2)

were drawn from different exponential distributions with the parameter values of 1 for the

sequence of treatments A1B1, 0.75 for the A1B2, 0.50 for the A1B
′
1 and 0.25 for the A1B

′
2

treatments. Following Miyahara and Wahed (2010), we then defined the overall survival

time for subject i as Ti = TRi +Ri{I(Z1i = 1)T ∗A1B1i
+ I(Z1i = 2)T ∗A1B2i

}+ (1−Ri){I(Z2i =

1)T ∗
A1B

′
1i

+ I(Z2i = 2)T ∗
A1B

′
2i

}. The times to censoring Ci were generated from a Uni-

form (1.5, 2) which resulted in 9% censoring for P (R = 1) = 0.4 and 13% censoring for

P (R = 1) = 0.7. Only the results for the regimes A1B1B
′
1 and A1B1B

′
2 were given since the

results for other regimes were similar.

In the following tables, CI(t) stands for the näıve estimate of the CIF in (2.3.1) evaluated

at time t, WCI(t) stands for the proposed estimate of the CIF with fixed weights in (2.3.2)

and WCI2(t) is the proposed weighted CIF estimate with estimated fixed weights in (2.3.5),

TWCI(t) is the estimate of the CIF with time-dependent weights in (2.3.6) and TWCI2(t)

is the CIF estimate with estimated time-dependent weights.
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It is worth noting that although one might think of the simulated sample sizes as large,

because only the data from a specific regime were used in the estimation process, the sample

used in the estimation of the CIF for a particular regime is significantly smaller than the

entire sample.

Table 1 shows the simulation results for Scenario-1. It can be seen that all methods pro-

duce comparable results to the standard estimator under both response rates. The coverage

rates for all estimators improve and get closer to the desired value 95% as n gets larger. The

results for the two regimes are similar. This is not surprising, as when πB1 = πB′
1

= 0.5, the

responders receiving A1B1 and non-responders receiving A1B
′
1 are assigned approximately

equal weights in all the weighting schemes. The pseudo sample after weighting has roughly

the same mixture of responders and non-responders as the original sample. Therefore, the

weighted methods produce similar estimates to the näıve estimator.

The simulation results for the second scenario can be seen in Table 2. Under the second

scenario, for the first regime A1B1B
′
1 the näıve and weighted methods perform similarly due

to the fact that πB1 = πB′
1

= 0.3. This is again not surprising, as when πB1 = πB′
1

= 0.3, the

responders receiving A1B1 and non-responders receiving A1B
′
1 are assigned approximately

equal weight. As a result, the pseudo sample created for the first regime after weighting

has roughly the same mixture of responders and non-responders as the original sample.

Therefore, the weighted methods produce similar estimates to the näıve estimator. However,

for the second regime A1B1B
′
2, the näıve CIF estimator produces biased results. The näıve

estimate is obtained based on the data from about 30% of responders who actually received

A1B1 and about 70% of non-responders who actually received A1B
′
2. However, the remaining

responders and non-responders could be equally qualified for receiving this treatment regime

if there were no second-stage randomization. The weighted methods roughly generate a

pseudo sample that represents all responders and non-responders, which in turn produce

more accurate estimates of the true CIF than the näıve estimator. The coverage rates from

the proposed weighted methods improve as the sample size is increased unlike the standard

estimator. TWCI2 performs slightly better compared to the other proposed methods.

The results from the third scenario can be seen in Table 3. It can be clearly seen that
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Table 1: Inverse weighting- Scenario-1: specific time point (t), probability of response (pr), true
cumulative incidence (True), mean of estimates (Mean), empirical standard deviation (σ), mean of
estimated standard deviations (σ̂), coverage rate of 95% confidence intervals (Cov)

A1B1B
′
1 A1B1B

′
2

n t pr Method True Mean σ σ̂ Cov True Mean σ σ̂ Cov

300 0.5 0.4 CI 0.185 0.185 0.032 0.032 0.941 0.248 0.248 0.036 0.036 0.946
WCI 0.185 0.032 0.031 0.938 0.248 0.036 0.035 0.940
WCI2 0.185 0.032 0.031 0.939 0.248 0.036 0.035 0.940
TWCI 0.185 0.031 0.031 0.939 0.248 0.035 0.035 0.940
TWCI2 0.185 0.031 0.031 0.941 0.248 0.035 0.035 0.940

0.7 CI 0.158 0.158 0.030 0.030 0.942 0.190 0.189 0.032 0.032 0.946
WCI 0.158 0.030 0.029 0.940 0.189 0.032 0.032 0.942
WCI2 0.158 0.030 0.029 0.939 0.189 0.032 0.031 0.943
TWCI 0.158 0.030 0.029 0.940 0.189 0.032 0.031 0.943
TWCI2 0.158 0.030 0.029 0.941 0.189 0.032 0.031 0.943

1 0.4 CI 0.342 0.342 0.038 0.041 0.960 0.389 0.389 0.041 0.042 0.961
WCI 0.342 0.038 0.038 0.948 0.389 0.041 0.039 0.942
WCI2 0.342 0.038 0.038 0.950 0.389 0.040 0.039 0.942
TWCI 0.342 0.038 0.039 0.950 0.389 0.040 0.040 0.946
TWCI2 0.342 0.038 0.039 0.951 0.389 0.040 0.040 0.947

0.7 CI 0.306 0.307 0.038 0.039 0.956 0.330 0.330 0.038 0.040 0.961
WCI 0.307 0.038 0.037 0.948 0.330 0.038 0.038 0.952
WCI2 0.307 0.038 0.037 0.947 0.330 0.037 0.038 0.953
TWCI 0.307 0.038 0.037 0.950 0.330 0.038 0.038 0.953
TWCI2 0.307 0.038 0.037 0.948 0.330 0.038 0.038 0.956

700 0.5 0.4 CI 0.185 0.185 0.031 0.032 0.946 0.248 0.248 0.035 0.036 0.949
WCI 0.185 0.031 0.031 0.944 0.248 0.035 0.035 0.942
WCI2 0.185 0.031 0.031 0.944 0.248 0.035 0.035 0.939
TWCI 0.185 0.031 0.031 0.944 0.248 0.035 0.035 0.941
TWCI2 0.185 0.031 0.031 0.946 0.248 0.035 0.035 0.942

0.7 CI 0.157 0.157 0.030 0.030 0.940 0.190 0.189 0.032 0.032 0.942
WCI 0.157 0.030 0.029 0.936 0.189 0.032 0.032 0.939
WCI2 0.157 0.030 0.029 0.935 0.189 0.032 0.032 0.940
TWCI 0.157 0.030 0.029 0.936 0.189 0.032 0.031 0.941
TWCI2 0.157 0.030 0.029 0.938 0.189 0.032 0.031 0.938

1 0.4 CI 0.342 0.342 0.038 0.041 0.964 0.389 0.389 0.040 0.043 0.962
WCI 0.342 0.038 0.038 0.952 0.389 0.040 0.039 0.944
WCI2 0.342 0.038 0.038 0.952 0.389 0.039 0.039 0.947
TWCI 0.342 0.038 0.039 0.956 0.389 0.040 0.040 0.949
TWCI2 0.342 0.038 0.039 0.955 0.389 0.039 0.040 0.952

0.7 CI 0.306 0.306 0.037 0.039 0.958 0.330 0.330 0.038 0.040 0.963
WCI 0.306 0.037 0.037 0.948 0.330 0.038 0.038 0.948
WCI2 0.306 0.037 0.037 0.949 0.330 0.038 0.038 0.948
TWCI 0.306 0.037 0.037 0.951 0.330 0.038 0.038 0.951
TWCI2 0.306 0.037 0.037 0.952 0.330 0.038 0.038 0.952
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Table 2: Inverse weighting- Scenario-2: specific time point (t), probability of response (pr), true
cumulative incidence (True), mean of estimates (Mean), empirical standard deviation (σ), mean of
estimated standard deviations (σ̂), coverage rate of 95% confidence intervals (Cov)

A1B1B
′
1 A1B1B

′
2

n t pr Method True Mean σ σ̂ Cov True Mean σ σ̂ Cov

300 0.5 0.4 CI 0.185 0.185 0.041 0.041 0.939 0.248 0.283 0.036 0.036 0.863
WCI 0.185 0.041 0.040 0.934 0.248 0.035 0.034 0.937
WCI2 0.185 0.041 0.040 0.934 0.248 0.035 0.034 0.940
TWCI 0.185 0.041 0.040 0.940 0.248 0.035 0.034 0.942
TWCI2 0.185 0.041 0.040 0.938 0.248 0.035 0.034 0.942

0.7 CI 0.158 0.158 0.038 0.038 0.943 0.190 0.229 0.038 0.038 0.846
WCI 0.158 0.038 0.038 0.938 0.190 0.036 0.035 0.935
WCI2 0.158 0.038 0.038 0.939 0.190 0.036 0.035 0.937
TWCI 0.158 0.038 0.037 0.940 0.190 0.035 0.034 0.936
TWCI2 0.158 0.038 0.038 0.940 0.190 0.035 0.035 0.936

1 0.4 CI 0.342 0.343 0.051 0.052 0.950 0.389 0.425 0.039 0.042 0.891
WCI 0.343 0.051 0.049 0.938 0.390 0.041 0.040 0.944
WCI2 0.343 0.051 0.049 0.941 0.390 0.041 0.040 0.946
TWCI 0.343 0.051 0.050 0.942 0.390 0.041 0.041 0.954
TWCI2 0.343 0.051 0.050 0.946 0.390 0.040 0.041 0.954

0.7 CI 0.306 0.307 0.049 0.050 0.947 0.330 0.370 0.043 0.043 0.882
WCI 0.307 0.049 0.048 0.934 0.331 0.045 0.043 0.938
WCI2 0.307 0.049 0.048 0.937 0.331 0.044 0.043 0.939
TWCI 0.307 0.049 0.048 0.940 0.331 0.044 0.044 0.943
TWCI2 0.307 0.049 0.048 0.942 0.330 0.044 0.044 0.943

700 0.5 0.4 CI 0.185 0.186 0.042 0.041 0.936 0.248 0.283 0.035 0.036 0.865
WCI 0.186 0.042 0.040 0.929 0.249 0.035 0.034 0.945
WCI2 0.186 0.042 0.040 0.930 0.249 0.034 0.034 0.948
TWCI 0.186 0.041 0.040 0.932 0.249 0.034 0.034 0.947
TWCI2 0.186 0.041 0.040 0.932 0.249 0.034 0.034 0.947

0.7 CI 0.158 0.158 0.039 0.038 0.931 0.190 0.228 0.037 0.038 0.858
WCI 0.158 0.039 0.038 0.924 0.190 0.035 0.035 0.938
WCI2 0.158 0.039 0.038 0.926 0.190 0.035 0.035 0.940
TWCI 0.158 0.039 0.037 0.932 0.189 0.035 0.034 0.938
TWCI2 0.158 0.039 0.037 0.930 0.189 0.035 0.035 0.938

1 0.4 CI 0.342 0.343 0.051 0.052 0.954 0.389 0.425 0.039 0.042 0.902
WCI 0.343 0.051 0.049 0.941 0.390 0.041 0.040 0.942
WCI2 0.343 0.051 0.049 0.940 0.390 0.041 0.040 0.944
TWCI 0.342 0.051 0.050 0.945 0.390 0.041 0.041 0.949
TWCI2 0.343 0.050 0.050 0.943 0.390 0.040 0.041 0.951

0.7 CI 0.306 0.306 0.049 0.050 0.954 0.330 0.369 0.043 0.045 0.898
WCI 0.306 0.049 0.048 0.942 0.330 0.044 0.043 0.938
WCI2 0.306 0.049 0.048 0.944 0.330 0.044 0.043 0.937
TWCI 0.306 0.049 0.048 0.945 0.330 0.043 0.044 0.943
TWCI2 0.306 0.049 0.048 0.948 0.329 0.043 0.044 0.944
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Table 3: Inverse weighting- Scenario-3: specific time point (t), probability of response (pr), true
cumulative incidence (True), mean of estimates (Mean), empirical standard deviation (σ), mean of
estimated standard deviations (σ̂), coverage rate of 95% confidence intervals (Cov)

A1B1B
′
1 A1B1B

′
2

n t pr Method True Mean σ σ̂ Cov True Mean σ σ̂ Cov

300 0.5 0.4 CI 0.185 0.170 0.026 0.026 0.883 0.248 0.215 0.028 0.029 0.779
WCI 0.185 0.029 0.029 0.939 0.248 0.032 0.032 0.946
WCI2 0.185 0.029 0.029 0.940 0.249 0.032 0.032 0.949
TWCI 0.185 0.029 0.029 0.939 0.248 0.032 0.032 0.942
TWCI2 0.185 0.029 0.029 0.940 0.248 0.032 0.032 0.948

0.7 CI 0.158 0.147 0.022 0.022 0.905 0.190 0.166 0.023 0.023 0.811
WCI 0.158 0.025 0.025 0.935 0.190 0.027 0.027 0.939
WCI2 0.158 0.025 0.025 0.936 0.190 0.027 0.027 0.939
TWCI 0.158 0.025 0.025 0.938 0.190 0.027 0.027 0.939
TWCI2 0.158 0.025 0.025 0.938 0.190 0.027 0.027 0.941

1 0.4 CI 0.342 0.322 0.032 0.034 0.905 0.389 0.356 0.033 0.035 0.838
WCI 0.342 0.035 0.035 0.946 0.389 0.036 0.036 0.946
WCI2 0.342 0.035 0.035 0.946 0.389 0.036 0.036 0.948
TWCI 0.342 0.035 0.035 0.946 0.389 0.036 0.036 0.946
TWCI2 0.342 0.035 0.035 0.947 0.389 0.036 0.036 0.949

0.7 CI 0.306 0.292 0.028 0.029 0.924 0.330 0.306 0.028 0.030 0.881
WCI 0.307 0.031 0.031 0.945 0.330 0.031 0.031 0.950
WCI2 0.307 0.031 0.031 0.944 0.330 0.031 0.031 0.949
TWCI 0.307 0.031 0.031 0.945 0.330 0.031 0.031 0.948
TWCI2 0.307 0.031 0.031 0.946 0.330 0.031 0.031 0.950

700 0.5 0.4 CI 0.185 0.170 0.026 0.026 0.886 0.248 0.215 0.028 0.029 0.772
WCI 0.185 0.029 0.029 0.938 0.248 0.033 0.032 0.943
WCI2 0.185 0.029 0.029 0.940 0.248 0.033 0.032 0.944
TWCI 0.185 0.029 0.029 0.938 0.248 0.033 0.032 0.942
TWCI2 0.185 0.029 0.029 0.938 0.248 0.032 0.032 0.946

0.7 CI 0.158 0.147 0.022 0.022 0.899 0.190 0.166 0.023 0.023 0.802
WCI 0.158 0.025 0.025 0.940 0.190 0.028 0.027 0.939
WCI2 0.158 0.025 0.025 0.942 0.190 0.027 0.027 0.940
TWCI 0.158 0.025 0.025 0.940 0.190 0.028 0.027 0.936
TWCI2 0.158 0.025 0.025 0.942 0.190 0.027 0.027 0.940

1 0.4 CI 0.342 0.322 0.033 0.034 0.902 0.389 0.356 0.034 0.035 0.836
WCI 0.342 0.036 0.035 0.945 0.389 0.037 0.036 0.940
WCI2 0.342 0.036 0.035 0.945 0.389 0.036 0.036 0.941
TWCI 0.342 0.036 0.035 0.946 0.389 0.037 0.036 0.942
TWCI2 0.342 0.036 0.035 0.945 0.389 0.036 0.036 0.944

0.7 CI 0.306 0.292 0.029 0.029 0.914 0.330 0.306 0.029 0.030 0.874
WCI 0.307 0.031 0.031 0.942 0.331 0.032 0.031 0.942
WCI2 0.307 0.031 0.031 0.942 0.331 0.032 0.031 0.944
TWCI 0.307 0.032 0.031 0.943 0.331 0.032 0.031 0.941
TWCI2 0.307 0.031 0.031 0.945 0.331 0.032 0.031 0.942
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the näıve estimator consistently produces biased estimates for both regimes. In contrast,

all proposed weighted methods are unbiased for both response rates and both regimes. The

coverage rates for the proposed methods are much better especially for the second regime

where the näıve estimator coverage rate could go as low as 0.772 compared to TWCI2

achieving 0.946 under the same conditions.

2.6 DATA ANALYSIS

The proposed methods were applied to the data set from the Cancer and Leukemia Group

B (CALGB) trial which was a two-stage randomized trial conducted to evaluate the ef-

fects of adding granulocyte-macrophage colony-stimulating factor (GM-CSF) to standard

chemotherapy on elderly patients with leukemia (Stone et al., 1995). A total of 388 elderly

patients with acute myelogenous leukemia were enrolled and the study was double-blinded

and placebo-controlled. Upon entrance to the study 193 patients were randomized to the ini-

tial treatment where they received GM-CSF (A1) in addition to the standard chemotherapy

and 195 were randomized to the Chemo (A2) group where they received placebo in addition

to the standard chemotherapy. Response for this trial was defined as complete remission.

Responders were randomized so that at the second stage 37 GM-CSF and 45 Chemo respon-

ders received the maintenance therapy 1 (B1) and 42 GM-CSF and 45 Chemo responders

were randomized to the maintenance therapy 2 (B2). The non-responders were not random-

ized at the second stage. Therefore, there are a total of four regimes in this study A1B1,

A1B2, A2B1 and A2B2, where AkBl, k, l = 1, 2 denotes the treatment policy that a subject

started with Ak, and then received Bl if the subject responded and no further treatment if

the subject did not respond. Here, the fixed weight function for the regime A1Bk can be

written as

QA1Bki =
RiI(Z1i = k)

πBk
+ (1−Ri), k = 1, 2.
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Here πB1 = πB2 = 0.5 and the time-dependent weight function can be written as

QA1Bki(t) =

1, if I(TRi > t) = 1,

RiI(Z1i=k)
πBk

+ (1−Ri), if I(TRi > t) = 0,

for k = 1, 2.

Although data were available to these authors for only one type of failure, for those who

experienced an event and were not censored, we created a pseudo event type that was set

equal to 1 or 2 with probability 0.5 for the purpose of demonstrating the proposed methods.

We calculated the standard CIF estimator (CI), the CIF estimator with fixed weights (WCI)

and the CIF estimator with time-dependent weights (TWCI) for the cause 1 event of these

four regimes. The results are shown in Figure 2.

It can be seen from Figure 2 that the standard CIF estimator generally produces higher

estimates for the CIF and the two weighted estimators produce very similar results. If there

existed a type-1 event as we had simulated, we could then choose the regime that produces

the lowest probability of occurrence for type-1 event by comparing the CIF values for the

four regimes using the proposed weighted estimators. Since no such distinction exists in

failure types in this data, to recommend a treatment regime, survival probabilities must be

examined. We can obtain a weighted estimate for the overall survival function based on the

estimated cause 1 and cause 2 CIFs. That is,

ŜwAkBl(t) = 1− F̂w
1,AkBl

(t)− F̂w
2,AkBl

(t),

for k, l = 1, 2. The survival probabilities for the four regimes calculated using the above

formula are plotted in Figure 3. As it can be seen from this figure none of the regimes

clearly out-perform the others, which are consistent with the results from the weighted

survival estimates in Miyahara and Wahed (2010).
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Figure 2: Inverse weighted and näıve CIF estimators for the four regimes.

23



0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Time(Years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

GM−CSF, MT−1
GM−CSF, MT−2
Chemo, MT−1
Chemo, MT−2
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2.7 SUMMARY

In this chapter we proposed and compared different inverse weighted estimators of the CIF

which can be used when a two-stage randomization is carried out. The weighted methods

are easy to implement with explicit variance estimators. Therefore, we were able to provide

inference procedures to compare two treatment regimes and methods to obtain confidence

intervals and bands. We showed that the proposed estimators produce unbiased estimates

of the CIF with good coverage rates where the näıve estimator fails to do so. In general,

the CIF estimator with estimated time-dependent weights produces slightly better results so

it should be preferred when possible. Since dynamic treatment regimes are widely used in

treating diseases that require complex treatment and competing-risk censoring is common in

studies with multiple endpoints, the proposed methods provide useful inferential tools that

will help advocate research in personalized medicine.
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3.0 A PATTERN-MIXTURE TYPE ESTIMATOR FOR THE

CUMULATIVE INCIDENCE FUNCTION UNDER TWO-STAGE

RANDOMIZATION

3.1 INTRODUCTION

Pattern-mixture models (Little, 1993) are widely used in longitudinal data analysis when

there are informative dropouts. The models yield a parameter estimate by first separat-

ing the data into different sections according to their dropout patterns, estimating the pa-

rameter on each section, and then combining these estimates as a weighted average. In

causal inference literature this approach where the overall parameter estimate is obtained

by first estimating the distribution of observed intermediate outcomes is referred to as the

G-computation algorithm (Robins, 1986, 1987). This algorithm was borrowed by Thall et al.

(2000) and Lavori and Dawson (2004) where they applied it to the analysis of data from

sequentially randomized trials. Later Wahed (2010) developed inference procedures for mean

survival times of two-stage adaptive treatment strategies using mixture distributions. Daw-

son and Lavori (2010) adapted the pattern-mixture models to sample size calculations for

the purpose of evaluating treatment policies when a mean-response was of concern. Wahed

and Tang (2013) utilized the pattern-mixture models to develop a Nelson-Aalen type esti-

mator for survival. They proposed parametric models for the survival functions of treatment

regimes, and tested for differences among these regimes.

In this chapter, we use similar ideas and propose a pattern-mixture type estimator for

the CIF to evaluate the effect of a two-stage treatment regime. We derive the explicit form

of its variance estimator and investigate the practical performance of this pattern-mixture
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estimator using simulation. The first set of simulations are similar to those in Section 2.5,

while the second set of simulations represent a case where the allocation probabilities may

depend on some pre-determined covariate. We compare the performance of the proposed

method to those of the inverse weighted and näıve approaches.

3.2 A PATTERN-MIXTURE TYPE ESTIMATOR

Here we assume the same set-up as described in Section 2.2, where we focus on the four

treatment regimes that start with the initial treatment A1, namely A1BkB
′

l , k, l = 1, 2. The

notation remains the same as before. If we think about the cause 1 CIF for the regime

A1BkB
′

l as the conditional probability of a patient experiencing a type-1 event given the

patient following the specific regime, then it can be decomposed into the following two parts

based on the fact that the patient must have received either A1Bk, if the initial treatment

was working, or A1B
′

l , otherwise.

F1,A1BkB
′
l
(t) = P (T ≤ t, ε = 1|A1BkB

′

l)

= P (R = 1)P (T ≤ t, ε = 1|A1Bk) + {1− P (R = 1)}P (T ≤ t, ε = 1|A1B
′

l)

= P (R = 1)F1,A1Bk(t) + {1− P (R = 1)}F1,A1B
′
l
(t), (3.2.1)

where F1,A1Bk and F1,A1B
′
l

are the CIFs for treatment sequences of A1Bk and A1B
′

l , which

can be estimated directly based on the subjects who received these treatment combinations.

That is, to estimate F1,A1Bk , the standard non-parametric estimator of the CIF can be

constructed using only the subjects who received A1, responded to it and then received Bk.

Suppose there are M distinct event times for these subjects, t1 < t2 < · · · < tM . Let Yi

be the number of subjects at risk, di be the number of subjects with the occurrence of the

event of interest, and ri be the number of subjects having the competing event at time ti,
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i = 1, . . . ,M . Then the standard non-parametric estimator of the CIF is:

F̂1,A1Bk(t) =
∑
ti≤t

di
Yi

{
i−1∏
j=1

(
1− dj + rj

Yj

)}

=
∑
ti≤t

ŜA1Bk(ti−)
di
Yi
,

for t1 ≤ t and 0 otherwise, where Ŝ is the standard Kaplan-Meier estimator of the survival

function for time to first event, either cause 1 or cause 2. F̂1,A1B
′
l
(t) can be constructed

similarly.

For simplicity, we denote P (R = 1) = pr. This probability can easily be estimated by

the sample proportion, p̂r, which is the ratio of the number of responders to the number of

subjects who were initially assigned to A1. Plugging p̂r into the decomposition in (3.2.1)

gives rise to the following estimator of the CIF for the treatment regime A1BkB
′

l :

F̂ pm

1,A1BkB
′
l

(t) = p̂rF̂1,A1Bk(t) + (1− p̂r)F̂1,A1B
′
l
(t), (3.2.2)

which is referred to as the pattern-mixture estimator of CIF (PMCIF) in the sequel. Esti-

mating the variance of F̂ pm

1,A1BkB
′
l

(t) is straightforward because the standard non-parametric

estimators for F̂1,A1Bk(t) and F̂1,A1B
′
l
(t) have explicit variance estimators and F̂ pm

1,A1BkB
′
l

(t) is

simply a linear combination of the two independent estimators. The estimated variance of

F̂1,A1Bk(t) is given in Klein and Moeschberger (2003) as

σ̂2
(
F̂1,A1Bk(t)

)
=

∑
ti≤t

(
ŜA1Bk(ti)

2

{(
F̂1,A1Bk(t)− F̂1,A1Bk(ti)

)2 ri + di
Y 2
i

}
+ŜA1Bk(ti)

2

[{
1− 2

(
F̂1,A1Bk(t)− F̂1,A1Bk(ti)

)} di
Y 2
i

])
.

The variance estimator of F̂1,A1B
′
l
(t) follows similarly. Therefore, the variance of F̂ pm

1,A1BkB
′
l

can be estimated as follows:

σ̂2
(
F̂ pm

1,A1BkB
′
l

(t)
)

= p̂r2σ̂2
(
F̂1,A1Bk(t)

)
+ (1− p̂r)2σ̂2

(
F̂1,A1B

′
l
(t)
)
. (3.2.3)

It is worthwhile to note that the proposed pattern-mixture approach and inverse weight-

ing approaches are equivalent for a continuous outcome Y without censoring. To demonstrate
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this, assume we are interested in the mean of this outcome for a specific dynamic treatment

regime A1BkB
′

l . Then, the pattern-mixture approach would suggest we estimate this mean

outcome as:

Ȳ pm = p̂r
1

nA1Bk

∑
iεA1Bk

Yi + (1− p̂r) 1

nA1B
′
l

∑
iεA1B

′
l

Yi

= p̂r
1

np̂rπ̂Bk

∑
iεA1Bk

Yi + (1− p̂r) 1

n(1− p̂r)π̂B′
l

∑
iεA1B

′
l

Yi

=
1

n

 ∑
iεA1Bk

Yi
π̂Bk

+
∑
iεA1B

′
l

Yi
π̂B′

l

 = Ȳ ew,

where n, nA1Bk and nA1B
′
l

are the number of subjects receiving A1, A1Bk and A1B
′

l and

Ȳ pm and Ȳ ew represent the mean outcomes calculated using the pattern mixture approach

and inverse weighting respectively. However, the equivalence of the two approaches can

not be established analytically for time-to-event data where the event time is exposed to

competing risks. In the following section, we will show that the two approaches generate

almost equivalent results under various settings.

3.3 SIMULATION

3.3.1 A Simple Two Stage Randomization

Simulation studies were carried out to compare the proposed estimator to the näıve estimator

and the inverse weighted estimators under different conditions. Again, only the subjects who

received the initial treatment A1 were considered since the data obtained from these subjects

are independent of the data obtained from the subjects that were assigned to the other initial

treatment A2. The comparisons were made under scenarios 2 and 3 as in Section 2.5, namely,

the data were generated at which 2) Z1i ∼ 2−Bernoulli(0.3) and Z2i ∼ 2−Bernoulli(0.3),

and 3) Z1i = 1 and Z2i ∼ 2 − Bernoulli(0.5). Every model was repeated for n = 300 and

for cases Ri ∼ Bernoulli(0.4) and Ri ∼ Bernoulli(0.7) and 4000 data sets were generated

for each setting.
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For each combination {(TRi , Ri, Z1i, Z2i, Vi,∆i), i = 1, . . . , n} were generated using the

same set-up as in Section 2.5 and only the results for the regimes A1B1B
′
1 and A1B1B

′
2 are

given since the results for other regimes were similar.

In the following tables CI(t) stands for the näıve estimate of the CIF evaluated at time

t, WCI(t) stands for the inverse probability weighted estimate of the CIF with fixed weights

and WCI2(t) is the inverse weighted CIF estimate with estimated fixed weights , TWCI(t)

is the estimate of the CIF with time-dependent weights, TWCI2(t) is the CIF estimate with

estimated time-dependent weights, and PMCIF(t) is the pattern-mixture CIF estimate given

in (3.2.2).

Table 4 shows the simulation results for Scenario-2 and Scenario-3 with sample size

n = 300. For Scenario-2 all the estimators perform similarly for the first regime A1B1B
′
1

where they all produce unbiased estimates for the CIF at given times and they all have

coverage rates close to the desired value of 95%. For the PMCIF estimator it can be seen

that the straightforward variance estimator is working perfectly for both response rates. The

similarity of all estimators including the näıve one is expected under this scenario due to

the randomization probabilities being equal, i.e. πB1 = πB′
1

= 0.3. For the second regime

A1B1B
′
2, the näıve estimator produces highly biased estimates which result in poor coverage

rates where all the other estimators are still unbiased and have desirable coverage rates for

both time points and both response rates.

For Scenario-3, the difference of the näıve estimator versus the inverse weighted and

pattern-mixture estimators can be seen for both regimes at both time points. The näıve

estimator stays biased with poor coverage rates under all conditions, while the pattern-

mixture estimator is unbiased with coverage rates close to 95% just like the inverse probability

weighted estimators.

3.3.2 Two Stage Randomization with Covariate Dependent Allocation

In practice, there may be information available suggesting that some treatment options

are more effective in treating certain diseases for certain subgroups of patients. If such

information is available, researchers may be inclined to design their experiments taking this

30



Table 4: Pattern-mixture- Scenario-2 and Scenario-3 with n=300: specific time point (t), probability
of response (pr), true cumulative incidence (True), mean of estimates (Mean), empirical standard
deviation (σ), mean of estimated standard deviations (σ̂), coverage rate of 95% confidence intervals
(Cov)

A1B1B
′
1 A1B1B

′
2

Scenario t pr Method True Mean σ σ̂ Cov True Mean σ σ̂ Cov

2 0.5 0.4 CI 0.185 0.185 0.041 0.041 0.939 0.248 0.283 0.036 0.036 0.863
WCI 0.185 0.041 0.040 0.934 0.248 0.035 0.034 0.937
WCI2 0.185 0.041 0.040 0.934 0.248 0.035 0.034 0.940
TWCI 0.185 0.041 0.040 0.940 0.248 0.035 0.034 0.942
TWCI2 0.185 0.041 0.040 0.938 0.248 0.035 0.034 0.942
PMCIF 0.185 0.041 0.040 0.937 0.248 0.035 0.034 0.940

0.7 CI 0.158 0.158 0.038 0.038 0.943 0.190 0.229 0.038 0.038 0.844
WCI 0.158 0.038 0.038 0.938 0.190 0.036 0.035 0.935
WCI2 0.158 0.038 0.038 0.938 0.190 0.036 0.035 0.938
TWCI 0.158 0.038 0.037 0.940 0.190 0.035 0.034 0.936
TWCI2 0.158 0.038 0.038 0.940 0.190 0.035 0.035 0.937
PMCIF 0.158 0.038 0.038 0.939 0.190 0.035 0.035 0.937

1 0.4 CI 0.342 0.343 0.051 0.052 0.950 0.389 0.425 0.039 0.042 0.891
WCI 0.343 0.051 0.049 0.938 0.390 0.041 0.040 0.944
WCI2 0.343 0.051 0.049 0.941 0.390 0.041 0.040 0.946
TWCI 0.343 0.051 0.050 0.942 0.390 0.041 0.041 0.954
TWCI2 0.343 0.051 0.050 0.946 0.390 0.040 0.041 0.954
PMCIF 0.343 0.051 0.051 0.950 0.390 0.040 0.042 0.957

0.7 CI 0.306 0.307 0.049 0.050 0.947 0.330 0.370 0.043 0.045 0.882
WCI 0.307 0.049 0.048 0.934 0.331 0.045 0.043 0.937
WCI2 0.307 0.049 0.048 0.937 0.331 0.044 0.043 0.939
TWCI 0.307 0.049 0.048 0.940 0.331 0.044 0.044 0.942
TWCI2 0.307 0.049 0.048 0.942 0.330 0.044 0.044 0.943
PMCIF 0.307 0.049 0.049 0.944 0.331 0.044 0.045 0.948

3 0.5 0.4 CI 0.185 0.170 0.026 0.026 0.883 0.248 0.215 0.028 0.029 0.779
WCI 0.185 0.029 0.029 0.939 0.248 0.032 0.032 0.946
WCI2 0.185 0.029 0.029 0.940 0.249 0.032 0.032 0.949
TWCI 0.185 0.029 0.029 0.939 0.248 0.032 0.032 0.942
TWCI2 0.185 0.029 0.029 0.940 0.248 0.032 0.032 0.948
PMCIF 0.185 0.030 0.029 0.942 0.248 0.032 0.033 0.952

0.7 CI 0.157 0.147 0.022 0.022 0.908 0.190 0.166 0.023 0.023 0.816
WCI 0.158 0.025 0.025 0.935 0.190 0.027 0.027 0.940
WCI2 0.158 0.025 0.025 0.935 0.190 0.027 0.027 0.940
TWCI 0.158 0.025 0.025 0.938 0.190 0.027 0.027 0.939
TWCI2 0.158 0.025 0.025 0.939 0.190 0.027 0.027 0.941
PMCIF 0.158 0.025 0.025 0.936 0.190 0.027 0.027 0.941

1 0.4 CI 0.342 0.322 0.032 0.034 0.905 0.389 0.356 0.033 0.035 0.838
WCI 0.342 0.035 0.035 0.946 0.389 0.036 0.036 0.946
WCI2 0.342 0.035 0.035 0.946 0.389 0.036 0.036 0.948
TWCI 0.342 0.035 0.035 0.946 0.389 0.036 0.036 0.946
TWCI2 0.342 0.035 0.035 0.947 0.389 0.036 0.036 0.949
PMCIF 0.342 0.035 0.037 0.958 0.389 0.036 0.038 0.960

0.7 CI 0.306 0.292 0.028 0.029 0.925 0.330 0.306 0.028 0.030 0.880
WCI 0.307 0.031 0.031 0.945 0.330 0.031 0.031 0.950
WCI2 0.307 0.031 0.031 0.944 0.330 0.031 0.031 0.949
TWCI 0.307 0.031 0.031 0.945 0.330 0.031 0.031 0.948
TWCI2 0.307 0.031 0.031 0.946 0.330 0.031 0.031 0.950
PMCIF 0.307 0.031 0.032 0.953 0.330 0.031 0.032 0.956
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information into account and randomizing patients into treatments which they may be more

likely to benefit from. To investigate the performance of the proposed estimator under

such a setting, a covariate X was generated from a Bernoulli(0.5) to represent the gender

of a patient. As in previous section only the subjects who received the initial treatment

A1 were considered and all simulations were repeated 4000 times for cases n = 300 and

Ri ∼ Bernoulli(0.4) and Ri ∼ Bernoulli(0.7). Comparisons then were made under two

different scenarios.

For scenario-A, treatments B1 and B
′
1 are assumed to have higher chances of success for

females. For this reason, the females were given higher probabilities of being assigned to

these treatments depending on their response status. For men, the allocation was carried

out randomly with equal probability since no such information was available. If we let Z1f

and Z2f be the assignment indicators for females and Z1m and Z2m assignment indicators

for males, the randomization was carried out using Z1f ∼ 2 − Bernoulli(0.75), Z2f ∼

2−Bernoulli(0.75) and Z1m ∼ 2−Bernoulli(0.5), Z2m ∼ 2−Bernoulli(0.5).

The times to response, TRi , were generated from Exponential (0.20) and restricted at

1 year. The times to death from the second randomization (T ∗A1Bki
or T ∗

A1B
′
li

, k, l = 1, 2)

were drawn from exponential distributions with different parameter values for females and

males. For females, the times to death were generated from exponential distributions with

parameter values of 1.25 for the sequence of treatments A1B1, 0.75 for the A1B2, 0.65 for

the A1B
′
1 and 0.25 for the A1B

′
2 treatments. For males, the times to death was generated

from exponential distributions with parameter values of 0.90 for the sequence of treatments

A1B1, 0.70 for the A1B2, 0.50 for the A1B
′
1 and 0.40 for the A1B

′
2 treatments. Censoring

time was generated from Uniform(1.5, 2) which resulted in approximately 12% censoring

for P (R = 1) = 0.4 and 16% censoring for P (R = 1) = 0.7 and the overall survival time was

calculated as given in Section 2.5 for each subject i.

For scenario-B, it is assumed that B1 works better for female responders than B2, and

B
′
2 works better for female non-responders than B

′
1, while the only information on males

is that B
′
2 works better for male non-responders than B

′
1. Therefore females were assigned

to B1 and B2
′ and males were assigned to B2

′ with higher probabilities. More specifically
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Z1f ∼ 2 − Bernoulli(0.75), Z2f ∼ 2 − Bernoulli(0.30) and Z1m ∼ 2 − Bernoulli(0.50),

Z2m ∼ 2−Bernoulli(0.30).

The times to response, TRi , were generated from Exponential (0.20) and restricted at 1

years. The times to death from the second randomization were again drawn from different

exponential distributions with different the parameter values for females and males. For

females, the times to death were generated from exponential distributions with parameter

values of 1.25 for the sequence of treatments A1B1, 0.75 for the A1B2, 0.25 for the A1B
′
1 and

0.65 for the A1B
′
2 treatments. For males, the times to death was generated from exponential

distributions with parameter values of 0.90 for the sequence of treatments A1B1, 0.70 for the

A1B2, 0.30 for the A1B
′
1 and 0.70 for the A1B

′
2 treatments. Censoring time was generated

from Uniform(1.5, 2) which resulted in approximately 13% censoring for P (R = 1) = 0.4

and 17% censoring for P (R = 1) = 0.7 and the overall survival time was calculated as given

in Section 2.5 for each subject i.

Table 5 shows the simulation results for Scenario-A and Scenario-B with sample size

n = 300. For Scenario-A, the näıve estimator produces biased estimates for both regimes

under both response rates, performing worse for the second regime. The inverse probability

weighted estimators and the pattern-mixture estimator all perform as desired under all cases

and for both time points. For Scenario-B even though the näıve estimator is unbiased for the

second regime, it still produces biased estimates for the first one. The proposed estimators

are again all unbiased and have much better coverage rates. In general, it can be seen

that under some cases, the variance estimator of the pattern-mixture estimator may tend to

slightly under-estimate the true variance, resulting in slightly lower coverage rates compared

to the inverse-weighted methods but overall the proposed methods are all highly preferable

to the näıve approach.
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Table 5: Pattern-mixture- Scenario-A and Scenario-B with n=300, covariate dependent allocation:
specific time point (t), probability of response (pr), true cumulative incidence (True), mean of
estimates (Mean), empirical standard deviation (σ), mean of estimated standard deviations (σ̂),
coverage rate of 95% confidence intervals (Cov)

A1B1B
′
1 A1B1B

′
2

Scenario t pr Method True Mean σ σ̂ Cov True Mean σ σ̂ Cov

A 0.5 0.4 CI 0.172 0.168 0.028 0.027 0.934 0.224 0.196 0.033 0.033 0.837
WCI 0.171 0.029 0.028 0.937 0.224 0.039 0.039 0.942
WCI2 0.171 0.029 0.028 0.938 0.224 0.039 0.039 0.942
TWCI 0.171 0.029 0.028 0.940 0.223 0.039 0.038 0.940
TWCI2 0.171 0.029 0.028 0.940 0.223 0.039 0.039 0.941
PMCIF 0.171 0.029 0.028 0.938 0.224 0.039 0.039 0.940

0.7 CI 0.149 0.145 0.025 0.026 0.938 0.175 0.155 0.028 0.028 0.860
WCI 0.149 0.027 0.026 0.940 0.175 0.034 0.033 0.935
WCI2 0.149 0.027 0.026 0.940 0.175 0.034 0.033 0.936
TWCI 0.148 0.026 0.026 0.940 0.175 0.034 0.033 0.934
TWCI2 0.148 0.026 0.026 0.940 0.175 0.033 0.033 0.935
PMCIF 0.149 0.027 0.026 0.940 0.175 0.034 0.031 0.922

1 0.4 CI 0.325 0.321 0.035 0.036 0.954 0.371 0.341 0.041 0.042 0.875
WCI 0.326 0.036 0.035 0.945 0.370 0.045 0.043 0.936
WCI2 0.326 0.036 0.035 0.946 0.370 0.045 0.044 0.937
TWCI 0.326 0.035 0.035 0.948 0.370 0.045 0.044 0.941
TWCI2 0.326 0.035 0.035 0.950 0.370 0.045 0.044 0.940
PMCIF 0.326 0.036 0.036 0.951 0.371 0.045 0.044 0.943

0.7 CI 0.293 0.288 0.033 0.034 0.952 0.316 0.293 0.035 0.037 0.896
WCI 0.293 0.034 0.034 0.947 0.316 0.039 0.039 0.944
WCI2 0.293 0.034 0.034 0.947 0.316 0.039 0.039 0.943
TWCI 0.293 0.034 0.034 0.946 0.316 0.040 0.039 0.942
TWCI2 0.293 0.034 0.034 0.948 0.316 0.039 0.039 0.944
PMCIF 0.293 0.034 0.034 0.949 0.316 0.039 0.038 0.932

B 0.5 0.4 CI 0.238 0.202 0.035 0.034 0.806 0.158 0.158 0.026 0.026 0.946
WCI 0.238 0.041 0.041 0.941 0.158 0.026 0.026 0.945
WCI2 0.238 0.041 0.041 0.939 0.158 0.026 0.026 0.944
TWCI 0.237 0.041 0.041 0.939 0.158 0.026 0.026 0.945
TWCI2 0.237 0.041 0.041 0.940 0.158 0.026 0.026 0.945
PMCIF 0.238 0.042 0.041 0.937 0.158 0.026 0.026 0.942

0.7 CI 0.182 0.155 0.028 0.029 0.816 0.142 0.141 0.025 0.025 0.939
WCI 0.182 0.034 0.034 0.946 0.142 0.025 0.025 0.937
WCI2 0.182 0.034 0.034 0.944 0.142 0.025 0.025 0.939
TWCI 0.182 0.034 0.034 0.942 0.142 0.025 0.025 0.938
TWCI2 0.182 0.034 0.034 0.944 0.142 0.025 0.025 0.942
PMCIF 0.182 0.034 0.033 0.931 0.142 0.025 0.025 0.938

1 0.4 CI 0.381 0.341 0.042 0.044 0.844 0.309 0.308 0.033 0.034 0.953
WCI 0.380 0.047 0.045 0.940 0.308 0.033 0.033 0.944
WCI2 0.382 0.047 0.046 0.939 0.308 0.033 0.033 0.943
TWCI 0.379 0.047 0.046 0.942 0.308 0.033 0.033 0.946
TWCI2 0.379 0.047 0.046 0.944 0.308 0.033 0.033 0.945
PMCIF 0.380 0.047 0.046 0.941 0.308 0.033 0.033 0.949

0.7 CI 0.321 0.291 0.035 0.037 0.866 0.285 0.283 0.031 0.033 0.957
WCI 0.321 0.040 0.040 0.948 0.285 0.032 0.033 0.952
WCI2 0.321 0.039 0.040 0.950 0.285 0.032 0.033 0.953
TWCI 0.321 0.040 0.040 0.949 0.285 0.032 0.033 0.952
TWCI2 0.321 0.040 0.040 0.952 0.285 0.032 0.033 0.953
PMCIF 0.321 0.040 0.039 0.941 0.285 0.032 0.033 0.954
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3.4 DATA ANALYSIS

The proposed pattern-mixture type estimator was applied to the data set from the Cancer

and Leukemia Group B (CALGB) trial (Stone et al., 1995) which was explained in Section

2.7. The pseudo event types created in Section 2.7 were recorded and for the purpose of

demonstrating this method and comparing it to the inverse weighted and the näıve methods,

the same pseudo event type values were used. We calculated the standard CIF estimator (CI),

the CIF estimator with fixed weights (WCI) and the pattern-mixture type CIF estimator

(PMCIF) for the cause 1 event of the four regimes. The results are shown in Figure 4.

It can be seen from Figure 4 that the standard CIF estimator generally produces higher

estimates for the CIF and the inverse weighted estimator and the pattern-mixture estimator

produce very similar results. We can also obtain a weighted estimate for the overall survival

function based on the estimated cause-1 and cause-2 PMCIFs. That is,

ŜpmAkBl(t) = 1− F̂ pm
1,AkBl

(t)− F̂ pm
2,AkBl

(t),

for k, l = 1, 2. The survival probabilities for the four regimes calculated using the above

formula are plotted in Figure 5. It can be seen that the estimated survival probabilities

using the pattern-mixture approach are quite similar to the survival probabilities obtained

using the inverse weighting approach which are plotted in Figure 3. As before, none of the

treatment regimes clearly out perform the others.

3.5 SUMMARY

In this chapter, we proposed a pattern-mixture type estimator for the CIF which can be

used when a two-stage randomization is carried out and the outcome of interest is subject

to competing-risk censoring. The application of the proposed method is straightforward

using existing packages in R and it has an explicit variance estimator making inference

simple. We showed that the proposed estimator produces unbiased estimates for the CIF
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Figure 4: Pattern-mixture, inverse weighted and näıve CIF estimators for the four regimes.
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with good coverage rates where the näıve estimator fails to do so. In general, it can be

seen that the pattern-mixture estimator produces very similar results to those obtained by

inverse weighting even when a covariate is involved in the allocation process. One possible

limitation of this method is that the sample size needs to be sufficiently large within each

stratum, as in any stratified data analysis technique. When there are only a few subjects

in a stratified group, the estimation of the CIF may not be possible or might produce an

unreliable result. However, if the sample size within each stratum is sufficient, it is clearly

seen that the pattern-mixture approach provides a good alternative to the inversely weighted

methods and it will be useful in estimation of the CIF when dynamic treatment regimes are

involved.
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4.0 REGRESSION ANALYSIS FOR THE CUMULATIVE INCIDENCE

FUNCTION UNDER TWO-STAGE RANDOMIZATION

4.1 INTRODUCTION

When practitioners deal with time-to-event data, it is always of interest to model or control

for the covariate effects when they are present. Methods that are used for such modeling

purposes have been greatly studied by researchers. The Cox regression model (Cox, 1972)

and the accelerated failure model (Wei et al., 1990; Jin et al., 2003, among others) are two

popular methods of modeling covariate effects on survival outcomes.

Over the years, competing risks became more recognized by practitioners and new meth-

ods were developed to deal with such time-to-event data where the event time is dependently

censored by some competing events. Fine and Gray (1999) extended the Cox regression

model to handle competing risks. They proposed a proportional hazard model for hazard

of sub-distribution which is more commonly called “cumulative incidence function (CIF).”

Fine (2001) proposed a semi-parametric regression for CIF extending the standard log-linear

regression model to competing risks settings. Klein and Andersen (2005) proposed a dif-

ferent model which is based on pseudo values of CIF. Jeong and Fine (2007) introduced a

parametric regression model for CIF using the two-parameter Gompertz model as baseline

CIF. Shi et al. (2013) later developed a modified three-parameter logistic regression model

that outperforms the Gompertz model especially when CIF curves have sigmoidal shapes.

Scheike et al. (2008) extended the Fine and Gray model using direct binomial regression so

that it can handle time-varying coefficients. There is also extensive work on regression anal-

ysis of competing risks data based on the cause-specific hazard functions (Korn and Dorey,
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1992; Cheng et al., 1998; Andersen et al., 2002; Hyun et al., 2009). In this chapter, we focus

on modeling the CIF, since it has a nice probability interpretation and is more appealing to

practitioners.

Although the regression models for time-to-event data have been studied in detail for both

regular and competing-risk censoring, there has not been much research for the two-stage

randomization setting. Murphy (2003) used experimental or observational data to estimate

the best regime that results in a maximal mean response. Zhao et al. (2009) developed a

learning method utilizing Q-learning to choose an optimal policy from a single training data

set. Henderson et al. (2010) proposed a modeling and estimation strategy that incorporates

the regret functions of Murphy (2003) into a regression model for observed responses. More

recently, Goldberg and Kosorok (2012) proposed a method that used survival as an outcome

and focused on finding the treatment policy that maximized the survival function. These

methods focus on choosing the best available treatment regime that will give rise to the best

outcome for an individual with certain characteristics, rather than modeling the effects of

covariates on the survival function or in our case the CIF for a specific treatment regime.

The latter is also of great practical interest, since when a patient is recommended to follow

a specific regime, she may wonder how likely she would have the desirable outcome (e.g.,

no recurrence of breast cancer in five years), given her clinical characteristics. The question

can be addressed by performing regression analysis using the data from the current two-

stage randomization trial. The former endeavors of searching the best treatment regime are

usually based on historical data. Another line of research on regression analysis for dynamic

treatment regimes is to extend the Cox model (Cox, 1972) to two-stage randomization designs

for comparisons of multiple treatment regimes (Lokhnygina and Helterbrand, 2007) which

takes different treatment regimes as a single categorical covariate.

We focus on the approach of directly modeling covariate effects on a survival outcome.

To our best knowledge, there has not been any publications modeling covariate effects on the

CIFs of specific regimes in a two-stage randomized trial. Hence, in this chapter we will carry

out various regression analyses to model covariate effects on the CIF of a specific treatment

regime. More specifically, we will extend the multi-state (Cheng et al., 1998; Andersen et al.,

40



2002), Fine and Gray (1999) and Scheike et al. (2008) models for dynamic treatment regimes

using inverse weighting and the pattern-mixture approach and provide detailed simulation

results.

Throughout the chapter we assume there are only two causes of failure, cause 1 event is

the event of interest, and a two-stage randomized trial is being carried out as in Section 2.2.

Also, we assume only patients who are assigned to treatment A1 in the initial assignment are

being considered. In addition to the notation given in Section 2.2, in the following sections,

let X be a covariate vector associated with the occurrence of type 1 event. We define the

conditional CIF given X for treatment regime A1BkB
′

l as F1,A1BkB
′
l
(t; X) = P (T ≤ t,∆ =

1|X, regime = A1BkB
′

l).

4.2 THE MULTI-STATE MODEL

4.2.1 The Existing Model

When competing risks are present, the cause-specific CIF can be estimated using the multi-

state model (Cheng et al., 1998; Andersen et al., 2002). More specifically, the Cox model is

applied to evaluate the covariate effects on the cause-specific hazard function. The cause-k

(k = 1, 2) hazard function can be written as

λk(t) = lim
h→0

1

h
P (t ≤ T < t+ h,∆ = k|T ≥ t).

Under the multi-state model it is assumed

λk(t; X) = λ0k(t) exp(β
′

kX), (4.2.1)

where βk is a vector of unknown regression parameters and λ0k(.) is a nonnegative but

otherwise unspecified baseline function for the cause k event. The regression coefficients βk

can be estimated using a partial likelihood principle by treating all the non cause-k failures
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as censored observations. Let Nki(t) = I(Vi ≤ t,∆i = k) and Yi(t) = I(Vi ≥ t). Then the

partial likelihood for βk can be written as

L(βk) =
∏
t

n∏
i=1

(
exp(β

′

kXi)∑n
j=1 exp(β

′
kXj)Yj(t)

)∆Nki(t)

, (4.2.2)

where the first product is over all distinct event times and the second product is over all

subjects. Maximizing this likelihood, it is straightforward to obtain estimates for the re-

gression coefficients. If we let β̂k be the maximum partial likelihood estimates and Λ̂k(t) be

the Breslow (Breslow, 1974) estimate for the cumulative cause-k hazard function, then the

cause-1 CIF can be estimated by:

F̂1(t; X) =

∫ t

0

Ŝ(u; X)dΛ̂1(u; X) =
n∑
i=1

Ŝ(Vi; X)I(Vi ≤ t,∆i = 1) exp(β̂
′
1X)∑n

j=1 I(Vi ≤ Vj) exp(β̂
′
1Xj)

, (4.2.3)

where Ŝ(u; X) = exp{−
∑2

k=1 Λ̂k(u; X)}, Λ̂k(u;x) = Λ̂0k(u) exp(β̂
′

kX) and

Λ̂0k(t) =

∑n
i=1 I(Vi ≤ t,∆i = k)∑n

j=1 I(Vi ≤ Vj) exp(β̂
′
kXj)

.

4.2.2 Extension Using Inverse Weighting

The above likelihood is constructed under the assumption that all the subjects who failed

from cause-1 should contribute to the estimation process equally, independent of the treat-

ment sequence they receive. Under a two-stage randomization setting, when estimating the

regression coefficients for a specific regime, subjects should contribute to this likelihood pro-

portional to their inverse probability weights as in Chapter 2. For this reason, for regime

A1BkB
′

l we propose maximizing the below likelihood for estimating the regression coefficients

associated with cause-1:

LA1BkB
′
l
(β1) =

∏
t

n∏
i=1

(
exp(β

′
1Xi)∑n

j=1 exp(β
′
1Xj)Y w

j (t)

)∆Nw
1i(t)

, (4.2.4)

where Nw
1i(t) = I(Vi ≤ t,∆i = 1)Q̂A1BkB

′
l ,i

, Y w
i (t) = I(Vi ≥ t)Q̂A1BkB

′
l ,i

and Q̂A1BkB
′
l ,i

=

RiI(Z1i = k)/π̂Bk +(1−Ri)I(Z2i = l)/π̂B′
l

as in Chapter 2. Denote the regression coefficients
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obtained by maximizing this weighted likelihood by β̂w1 . Then, the CIF for regime A1BkB
′

l

can be estimated by

F̂w
1 (t; X) =

∫ t

0

Ŝw(u; X)dΛ̂w
1 (u; X), (4.2.5)

where Ŝw(u; X) = exp{−
∑2

k=1 Λ̂w
k (u; X)}, Λ̂w

k (u; X) = Λ̂w
0k(u) exp(β̂w

′

k X) and

Λ̂w
0k(t) =

∑n
i=1 I(Vi ≤ t,∆i = k)∑n

j=1 I(Vi ≤ Vj) exp(β̂w
′

k Xj)
.

The implementation of our approach is straightforward using existing R functions. The

estimation of the regression coefficients is carried out by the function “coxph” in the survival

package and the estimated CIF values are obtained with the help of the function “msfit” in

the mstate package. Note that the difference between (4.2.2) and (4.2.4) is the additional

layer of weighting Q̂A1BkB
′
l ,i

. If we use the fixed weights as discussed in Sections 2.3.1 and

2.3.2, those who responded to the initial treatment A1 and were assigned to the subsequent

treatment Bk would receive the same weight, for example 3.3, while those who did not

respond to A1 and were assigned to B
′

l would receive another weight, say 2. Based on these

weights, we create an augmented data set by repeating each of the subjects consistent with

A1Bk 33 times and each of the subjects receiving A1B
′

l 20 times. The R function “coxph” is

applied to analyze the augmented data, and the resulting standard deviations are adjusted

by the squared root of the ratio of the number of subjects in the augmented data to the

number of subjects who were initially assigned to A1. However, for time-varying weights,

the trick may not work. One can write down the likelihood function similar as (4.2.4) with

time-varying weights, and obtain the maximum likelihood estimators using some numerical

methods such as “multiroot” in R.

4.2.3 Pattern-mixture Extension

It is also possible to extend the pattern-mixture approach discussed in Chapter 3 to regression

settings. Recall that the CIF of the regime A1BkB
′

l can be thought of as a linear combination
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of two separate models for patients who followed A1Bk and patients who followed A1B
′

l .

Similar to the decomposition in (3.2.1), we can write:

F1,A1BkB
′
l
(t; X) = P (R = 1)F1,A1Bk(t; X) + {1− P (R = 1)}F1,A1B

′
l
(t; X). (4.2.6)

Let β̂1k be the regression coefficient estimates for treatment combination A1Bk ob-

tained by maximizing the likelihood in (4.2.2) for only subjects who received A1Bk and

let F̂1,A1Bk(t; X) be the CIF estimate calculated using only the same subset of subjects by

plugging β̂1k in (4.2.3). Likewise let β̂1l′ be the regression coefficient estimates for treatment

combination A1B
′

l obtained by maximizing the likelihood in (4.2.2) for only subjects who

received A1B
′

l and let F̂1,A1B
′
l
(t; X) be the CIF estimate calculated using only the same sub-

set of subjects by plugging β̂1l′ in (4.2.3). Then we propose the regime-specific CIF can be

estimated as a linear combination of these two estimates:

F̂1,A1BkB
′
l
(t; X) = p̂rF̂1,A1Bk(t; X) + (1− p̂r)F̂1,A1B

′
l
(t; X), (4.2.7)

where p̂r is simply the estimated response probability. The analysis in R can be carried out

simply by dividing the data into two parts, the patients who received A1Bk and the patients

who received A1B
′

l , and using the functions “coxph” and “msfit.” After this, the resulting

CIF estimates can be combined as in (4.2.7) and the variance estimates can be combined as

in (3.2.3) to obtain the final results for the regime A1BkB
′

l .

4.3 THE FINE AND GRAY MODEL

4.3.1 The Existing Model

Another popular regression model for a survival outcome subject to competing-risk censoring

was proposed by Fine and Gray (1999) which assumed:

g{F1(t; X)} = h0(t) + β
′
X, (4.3.1)
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where g is some fixed transformation function, h0(t) is an invertible and monotonically

increasing function, and β is a parameter vector.

To directly infer the effects of covariates on the CIF, Fine and Gray (1999) considered

the transformation g(u) = log{− log(1−u)} which has a proportional hazards interpretation

for sub-distribution. Define

λ∗1(t; X) = lim
h→0

1

h
P{t ≤ T ≤ t+ h,∆ = 1|T ≥ t ∪ (T ≤ t ∩∆ 6= 1),X}

=
dF1(t; X)/dt

1− F1(t; X)
= −d log{1− F1(t; X)}

dt
, (4.3.2)

which is called the hazard of sub-distribution in Gray (1988). λ∗1 can be thought of as the

hazard function of the improper variable T ∗ = I(∆ = 1)T + (1 − I(∆ = 1))∞. The risk

set associated with this hazard function contains both the subjects who have already failed

from cause 2 event before time t and those who have never failed from any event by t.

When right censoring is present, Fine and Gray (1999) adopted inverse probability cen-

soring weighting (IPCW) in order to obtain an unbiased estimating function. They assumed

censoring time C was independent of T , ε and X, and P (C ≥ t) = G(t). For subject i, they

defined the vital status as ri(t) = I{Ci ≥ (Ti ∧ t)}, where Ti ∧ t = min(Ti, t), and the weight

wi(t) = ri(t)Ĝ(t)

Ĝ(Vi∧t)
, where Ĝ is the Kaplan-Meier estimator for the censoring survival time.

Letting N1i(t) = I(Ti ≤ t,∆i = 1) and Y ∗i (t) = 1 − N1i(t−), they proposed the following

weighted score function for the censored data:

U(β) =
n∑
i=1

∫ ∞
0

[
Xi −

∑
j wj(s)Y

∗
j (s)Xj exp(β

′
Xj)∑

j wj(s)Y
∗
j (s) exp(β ′Xj)

]
wi(s)dN1i(s). (4.3.3)

4.3.2 Extensions Using Inverse Weighting and the Pattern-mixture Approach

When fitting the above regression model under a two-stage randomization setting, we propose

that the individuals should contribute to the partial likelihood function proportional to their

inverse probability weights defined as in Chapter 2 of this dissertation, therefore another
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layer of weighting is required. Below is the formal representation of the proposed score

function for the regime A1BkB
′

l :

UA1BkB
′
l
(β) =

n∑
i=1

∫ ∞
0

[
Xi −

∑
j wj(s)Y

∗w
j (s)Xj exp(β

′
Xj)∑

j wj(s)Y
∗w
j (s) exp(β ′Xj)

]
wi(s)dN

w
1i(s), (4.3.4)

where Nw
1i(t) = I(Ti ≤ t,∆i = 1)Q̂A1BkB

′
l ,i

, Y ∗wi (t) = {1 − I(Ti ≤ t,∆i = 1)}Q̂A1BkB
′
l ,i

and

Q̂A1BkB
′
l ,i

are as defined in Chapter 2.

The implementation of our approach is again straightforward using an existing R func-

tion, “crr” in the cmprsk package. Note that the difference between (4.3.3) and (4.3.4) is

just the additional layer of weighting Q̂A1BkB
′
l ,i

. Based on these weights, we again create an

augmented data set by repeating each of the subjects consistent with A1Bk and each of the

subjects receiving A1B
′

l proportional to their weights. The R function “crr” is then applied

to analyze the augmented data to obtain estimates for the regression coefficients and the

CIF. The variance for the CIF estimate is achieved by bootstrapping.

We can also assume the Fine and Gray model for both treatment sequences A1Bk and

A1B
′

l . Then, the CIF estimates for a specific regime can be obtained by splitting the data

consistent with the regime into two parts depending on the treatment combinations they

received and then fitting the Fine and Gray model to each subset of data. Then the estimates

from these two models can be combined as in (4.2.7) to get the pattern-mixture CIF estimate

for the regime. Variance estimates from bootstrapping can also be combined as in (3.2.3) to

obtain a final variance estimate.

4.4 THE SCHEIKE ET AL. MODEL

4.4.1 The Existing Model

Our extensions to the Fine and Gray model are natural when we think about the data

structure of a two-stage randomization setting. However, the proportionality assumption

for sub-distribution hazards in the Fine and Gray model may be too restrictive for a two-

stage randomized trial. During the course of follow-up, the treatment assignment is changed
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depending on a subject’s response to the initial treatment. As a result, the covariate effects

on the CIF may also change. The following generalized model proposed in Scheike et al.

(2008) may be more desirable for the two-stage randomization setting:

g{F1(t; X)} = X
′

1α(t) + h(X2,γ, t),

where g and h are known link functions, α(t) are time-varying coefficients for a sub-vector of

covariates X1, and X2 are the remaining covariates in X with time-independent coefficients

γ. This model allows for time-varying effects for some covariates and is more flexible than

the Fine and Gray model.

The estimation of the time-independent and time-varying coefficients can be obtained

based on direct binomial regression (Scheike et al., 2008). Let η(t) = (α(t)T ,γT )T , Dη =

∂F1(t; X)/∂η(t) and w(t,X) is some possibly random weight function. Scheike et al. (2008)

proposed the following estimating equation:

U∗(η)(t) =
n∑
i=1

DT
η (t; Xi)w(t,Xi)

{
ri(t)N1i(t)

Ĝ(Ti|Xi)
− F1(t; Xi)

}
, (4.4.1)

where Ĝ, ri(t) and N1i are the Kaplan-Meier estimator of the survival function for the

censoring, the vital status indicator, and the cause 1 counting process as defined for the Fine

and Gray model.

4.4.2 Extensions Using Inverse Weighting and the Pattern-Mixture Approach

When the survival data come from a two-stage randomized trial, the subjects who are consis-

tent with the regime of interest should again be weighted to account for those who could have

been consistent with the treatment regime but received different treatment due to the second

stage randomization. Similar to the extension for the Fine and Gray model, we replace N1i

with Nw
1i in the estimating equation (4.4.1) which is equivalent to creating an augmented

data set as discussed before. The implementation of this weighted method is immediate by

using the R function “comp.risk” in the package timereg for the Scheike et al. (2008) model

on the augmented data. However, obtaining an estimated variance for the CIF is not that
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straightforward in this case. Due to the complexity of the model based variance, it is not

possible to correct the estimated variance obtained by using the augmented data set. It is

also not feasible to use bootstrapping to get an estimated variance for the CIF due to Scheike

et al. (2008) model’s convergence issues. For these reasons, the simulation results for the

inverse weighted Scheike et al. (2008) model will be provided without coverage rates.

We can also think about this model for a two-stage randomized trial as we did in (4.2.6).

Then, the CIF estimates for a specific regime can be obtained by splitting the data consistent

with the regime into two parts depending on the treatment combinations they received and

then fitting the Scheike et al. model to each subset of data using the function “comp.risk” in

R package timereg. Combining the estimates from these two models as in (4.2.7) will give

us the pattern-mixture CIF estimate for the regime of interest. Variance estimates can also

be combined as before to obtain a final variance estimate.

4.5 SIMULATION STUDIES

4.5.1 Simulations under the Fine and Gray Model

We conduct simulation studies to compare the performance of our proposed methods and

the näıve models in evaluating the covariate effects on the CIFs for two specific regimes

A1B1B
′
1 and A1B1B

′
2. Since it is not possible to directly simulate the data such that the

cause-1 CIFs for both regimes satisfy the proportional hazards model for sub-distribution

in (4.3.1) simultaneously, for the covariates X = (X1, X2) where X1 ∼ Normal(0, 1) and

X2 ∼ Bernoulli(0.5), we assume the following model for the type 1 CIF:

F1(t; X;R;Z1;Z2) = 1− [1− p{1− exp(−t)}]exp(γ1X1+γ2X2), (4.5.1)

where γ1 = R{Z1β11 + (1−Z1)β13}+ (1−R){Z2β12 + (1−Z2)β14} and γ2 = R{Z1β21 + (1−

Z1)β23}+(1−R){Z2β22 +(1−Z2)β24}. In other words when patients are treated with A1B1,

A1B
′
1, A1B2 and A1B

′
2, their CIFs satisfy the Fine and Gray model, and are associated with

(X1, X2) by (β11, β21), (β12, β22), (β13, β23) and (β14, β24) respectively.
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For all sets of simulations, data samples of n = 400 were generated for 2000 times. For the

two regimes, we followed the probabilities of response and subsequent assignments as specified

in scenarios 2 and 3 in Section 2.5. In each setting and each run , first, the two covariates were

generated. Then, the response indicator (R), the second assignment indicator for responders

(Z1) and the second assignment indicator for non-responders (Z2) were generated. Now that

it is known which subject receives which treatment after they receive A1, i.e. B1, B2, B
′
1

or B
′
2, the inversion of the CIFs can be carried out accordingly to obtain event times and

event types as described below. For all settings, the regression coefficients were assumed

to be (β11, β12, β13, β14) = (0.3, 0.7, 0.5, 1.0) and (β21, β22, β23, β24) = (0.2, 0.6, 0.4, 0.9), and

p = 0.4.

Now we describe how to generate event times T and event types ε in detail. Based on

n and the simulated R,Z1 and Z2, we calculated the numbers of subjects in all treatment

options, nA1B1 , nA1B2 , nA1B
′
1

and nA1B
′
2
. For A1B1, we generated two vectors of uniform

random variables U and V of length nA1B1 . Similar vectors of uniform random variables

were generated for other treatment options. The inverse of the CIF given in (4.5.1) for A1B1

is

F−1
1,A1B1

(u; X) = − log

[
1− 1− (1− u)exp(−β11X1−β21X2)

p

]
.

For subjects who were treated with A1B1, tmp = 1− (1−U)exp(−β11X1−β21X2) was calculated

and when tmp < p the event time was calculated as T = F−1
1,A1B1

(U ; X) and the event type

was set equal to 1. When tmp ≥ p, the above inverse function did not exist, implying that

the type 2 event occurs before the type 1 event. The conditional distribution of T , given

covariates X and type-2 event occurring first, was modeled as:

P (T ≤ t|ε = 2,X) = 1− exp{−t exp(β11X1 + β21X2)},

so when tmp ≥ p the event time was calculated as T = − log
{

(1− V )exp(−β11X1−β21X2)
}

and

event type was set equal to 2. This algorithm has been used in Cheng (2009) and Cheng and

Fine (2012), among others. The event times and types for the remaining treatment options

were also simulated with their respective uniform random variables and regression coeffi-

cients, following the same simulation strategy. Independent censoring was also introduced
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to the data set. The censoring time was generated from a Uniform(2, 5) distribution which

resulted in ∼ 7% censoring when P (R = 1) = 0.4 and ∼ 6% censoring when P (R = 1) = 0.7.

The observed event time V was then set equal to min(T,C) and the final event type indicator

∆ was set equal to I(T < C)ε.

Since we assumed the proportional sub-distribution hazards model for the CIFs of A1B1,

A1B2, A1B
′
1, and A1B

′
2, the proportional sub-distribution hazards assumption would not hold

if we look at the CIFs for the treatment regimes A1B1B
′
1 and A1B1B

′
2. However, the prior

work by Shi et al. (2013) suggested that the Fine and Gray model can still provide reliable

prediction of the CIF even when the model is misspecified. Hence, in the following tables we

list the average values of the estimated CIFs using the methods described in Sections 4.2,

4.3 and 4.4, evaluated at times 0.5 and 1 for (X1, X2) = (1.5, 1). Let MS, WMS and PMMS

represent the näıve multi-state, inverse weighted multi-state and pattern-mixture multi-state

models; FG, WFG and PMFG represent the original Fine and Gray, inverse weighted Fine

and Gray and pattern-mixture Fine and Gray models; and SC, WSC and PMSC represent

the Scheike et al., inverse weighted Scheike et al. and pattern-mixture Scheike et al. models.

Table 6 contains the results derived from the data sets generated under scenario 2

with n = 400. For the first regime, it can be seen that the näıve, inverse weighted and

pattern-mixture approaches all perform similarly as expected for both event times and both

response rates. However, for the second regime the performance of the näıve approach drops

drastically for all three models. The inverse-weighted and the pattern-mixture extension

models still perform as desired and provide unbiased estimates of the CIF under all cases.

Overall, it can be seen that the WFG and PMFG models perform slightly better than the

respective multi-state and Scheike et al. models under this simulation setting. Also, when

the inverse-weighted and the pattern-mixture approaches are compared, it can be seen that

the pattern-mixture extensions provide slightly better estimates.

Table 7 contains the results derived from the data sets generated under scenario 3 with

n = 400. For both regimes, the näıve models produce biased estimates of the CIFs at both

response rates and both event times. This results in low coverage rates. On the other hand,

inverse weighting and pattern-mixture extensions of all models provide much better results
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with desirable coverage rates. Again, it can be seen that the WFG and PMFG models

perform slightly better than the respective multi-state and Scheike et al. models, when the

underlying models for treatment sequences satisfy the Fine and Gray model. Also, generally

speaking, it can be seen that the pattern-mixture extensions provide slightly better estimates.

4.5.2 Simulations under the Scheike et al. Model

We also evaluated the performance of the proposed estimators in Sections 4.2-4.4 under the

setting where the CIFs of treatment combinations followed Scheike et al. models. To simulate

the data, we assumed two covariates X = (X1, X2) had significant effects on the cause 1 CIF

with X1’s effect varying with time. The CIFs of the treatment combinations that made up

the regimes A1B1B
′
1 and A1B1B

′
2, namely, A1B1, A1B

′
1, A1B2 and A1B

′
2, were assumed to

follow the models below:

F1,A1B1(t; X) = 1− [1− p{1− exp(−t)}]exp[I(t≤t0)β11X1+I(t>t0)β21X1+β31X2],

F1,A1B
′
1
(t; X) = 1− [1− p{1− exp(−t)}]exp[I(t≤t0)β12X1+I(t>t0)β22X1+β32X2],

F1,A1B2(t; X) = 1− [1− p{1− exp(−t)}]exp[I(t≤t0)β13X1+I(t>t0)β23X1+β33X2],

F1,A1B
′
2
(t; X) = 1− [1− p{1− exp(−t)}]exp[I(t≤t0)β14X1+I(t>t0)β24X1+β34X2].

To simulate data following these models, first the covariates and response status and random-

ization indicators were generated. Then, for example for a subject who received treatment

combination A1B1, two Uniform variables U and V were generated for the two causes. The

inverse of the above model for A1B1 can be written as:

F−1
1,A1B1

(u; X) =

− log
[
1− 1−(1−u)exp(β11X1+β31X2)

p

]
, if u ≤ tmp1,

− log
[
1− 1−(1−u)exp(β21X1+β31X2)

p

]
, if u > tmp1,

where tmp1 = 1− [1− p{1− exp(−t0)}]exp(β11X1+β31X2). For each subject the two variables,

tmp2 = 1 − (1 − U)exp(β11X1+β31X2) and tmp3 = 1 − (1 − U)exp(β21X1+β31X2) were calculated.

Then if U ≤ tmp1 and p > tmp2, the event time was calculated as T = F−1
1,A1B1

(U ; X) and
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Table 6: Simulations under Fine and Gray- Scenario-2 with n=400: specific time point (t), prob-
ability of response (pr), true cumulative incidence (True), mean of estimates (Mean), empirical
standard deviation (σ̃), mean of estimated standard deviations (σ̂), coverage rate of 95% confi-
dence intervals (Cov)

A1B1B
′
1 A1B1B

′
2

t pr Model True Mean σ̃ σ̂ Cov True Mean σ̃ σ̂ Cov

0.5 0.4 MS 0.47 0.47 0.09 0.09 0.91 0.62 0.70 0.07 0.06 0.68
WMS 0.47 0.09 0.09 0.91 0.61 0.08 0.06 0.84

PMMS 0.48 0.09 0.08 0.89 0.61 0.06 0.06 0.90

FG 0.45 0.09 0.09 0.92 0.70 0.08 0.07 0.77
WFG 0.45 0.09 0.09 0.92 0.59 0.09 0.09 0.91

PMFG 0.46 0.09 0.09 0.93 0.62 0.06 0.06 0.94

SC 0.45 0.10 0.10 0.92 0.71 0.08 0.07 0.72
WSC 0.45 0.10 – – 0.61 0.09 – –

PMSC 0.47 0.10 0.09 0.91 0.62 0.07 0.06 0.92

0.7 MS 0.37 0.39 0.09 0.08 0.92 0.45 0.55 0.08 0.07 0.70
WMS 0.39 0.09 0.08 0.92 0.45 0.09 0.07 0.88

PMMS 0.39 0.09 0.08 0.91 0.46 0.07 0.07 0.92

FG 0.36 0.09 0.09 0.92 0.53 0.09 0.09 0.85
WFG 0.36 0.09 0.09 0.93 0.42 0.09 0.09 0.90

PMFG 0.37 0.08 0.08 0.93 0.45 0.07 0.07 0.93

SC 0.36 0.09 0.09 0.92 0.55 0.09 0.09 0.81
WSC 0.36 0.09 – – 0.43 0.09 – –

PMSC 0.38 0.09 0.08 0.91 0.45 0.08 0.07 0.93

1 0.4 MS 0.64 0.63 0.09 0.08 0.90 0.75 0.82 0.05 0.04 0.52
WMS 0.63 0.09 0.08 0.90 0.75 0.07 0.05 0.82

PMMS 0.63 0.08 0.07 0.90 0.72 0.06 0.05 0.83

FG 0.63 0.10 0.10 0.92 0.86 0.06 0.05 0.45
WFG 0.63 0.10 0.10 0.92 0.77 0.08 0.08 0.87

PMFG 0.63 0.09 0.09 0.94 0.75 0.06 0.06 0.91

SC 0.64 0.11 0.10 0.92 0.87 0.06 0.05 0.37
WSC 0.64 0.10 – – 0.78 0.08 – –

PMSC 0.64 0.10 0.09 0.92 0.75 0.07 0.06 0.89

0.7 MS 0.53 0.55 0.09 0.08 0.89 0.59 0.70 0.07 0.06 0.53
WMS 0.55 0.09 0.08 0.89 0.60 0.08 0.07 0.85

PMMS 0.54 0.09 0.08 0.90 0.58 0.08 0.07 0.89

FG 0.53 0.10 0.10 0.93 0.70 0.08 0.08 0.67
WFG 0.53 0.10 0.10 0.93 0.59 0.09 0.09 0.93

PMFG 0.53 0.09 0.09 0.93 0.58 0.08 0.08 0.92

SC 0.53 0.11 0.10 0.92 0.72 0.09 0.08 0.62
WSC 0.53 0.11 – – 0.60 0.10 – –

PMSC 0.54 0.10 0.09 0.92 0.59 0.09 0.08 0.91
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Table 7: Simulations under Fine and Gray- Scenario-3 with n=400: specific time point (t), prob-
ability of response (pr), true cumulative incidence (True), mean of estimates (Mean), empirical
standard deviation (σ̃), mean of estimated standard deviations (σ̂), coverage rate of 95% confi-
dence intervals (Cov)

A1B1B
′
1 A1B1B

′
2

t pr Model True Mean σ̃ σ̂ Cov True Mean σ̃ σ̂ Cov

0.5 0.4 MS 0.47 0.42 0.06 0.05 0.85 0.62 0.51 0.06 0.06 0.51
WMS 0.47 0.06 0.06 0.91 0.60 0.06 0.06 0.90

PMMS 0.48 0.06 0.06 0.91 0.61 0.05 0.05 0.92

FG 0.40 0.06 0.06 0.75 0.49 0.07 0.07 0.48
WFG 0.45 0.06 0.06 0.92 0.59 0.07 0.07 0.92

PMFG 0.47 0.06 0.06 0.92 0.62 0.05 0.05 0.93

SC 0.40 0.06 0.06 0.77 0.50 0.07 0.07 0.57
WSC 0.45 0.07 – – 0.60 0.07 – –

PMSC 0.46 0.07 0.07 0.93 0.62 0.06 0.05 0.92

0.7 MS 0.37 0.35 0.05 0.05 0.90 0.45 0.39 0.05 0.05 0.70
WMS 0.38 0.05 0.05 0.92 0.45 0.06 0.05 0.91

PMMS 0.39 0.05 0.05 0.90 0.46 0.05 0.04 0.92

FG 0.33 0.05 0.05 0.79 0.36 0.05 0.05 0.55
WFG 0.36 0.05 0.05 0.92 0.42 0.06 0.06 0.90

PMFG 0.37 0.06 0.05 0.92 0.45 0.05 0.05 0.94

SC 0.32 0.05 0.05 0.79 0.36 0.06 0.05 0.60
WSC 0.36 0.06 – – 0.43 0.07 – –

PMSC 0.37 0.06 0.06 0.91 0.45 0.05 0.05 0.93

1 0.4 MS 0.64 0.59 0.06 0.05 0.80 0.75 0.67 0.06 0.05 0.62
WMS 0.64 0.06 0.05 0.90 0.74 0.05 0.04 0.90

PMMS 0.63 0.05 0.05 0.92 0.72 0.04 0.04 0.84

FG 0.58 0.07 0.06 0.82 0.67 0.07 0.07 0.77
WFG 0.64 0.07 0.06 0.93 0.76 0.06 0.06 0.92

PMFG 0.64 0.06 0.06 0.93 0.74 0.04 0.04 0.94

SC 0.58 0.07 0.07 0.83 0.68 0.07 0.07 0.83
WSC 0.64 0.07 – – 0.78 0.06 – –

PMSC 0.64 0.06 0.06 0.93 0.74 0.04 0.04 0.94

0.7 MS 0.53 0.51 0.05 0.05 0.88 0.59 0.54 0.06 0.05 0.81
WMS 0.54 0.06 0.05 0.90 0.60 0.06 0.05 0.89

PMMS 0.54 0.05 0.05 0.90 0.58 0.05 0.04 0.92

FG 0.49 0.06 0.06 0.84 0.52 0.06 0.06 0.79
WFG 0.53 0.06 0.06 0.93 0.59 0.06 0.06 0.93

PMFG 0.53 0.06 0.05 0.94 0.58 0.05 0.05 0.93

SC 0.49 0.06 0.06 0.84 0.53 0.06 0.06 0.80
WSC 0.53 0.07 – – 0.60 0.07 – –

PMSC 0.53 0.06 0.06 0.93 0.58 0.05 0.05 0.94
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event type was set equal to 1. Similarly, if U > tmp1 and p > tmp3, the event time was

calculated as T = F−1
1,A1B1

(U ; X) and event type was set equal to 1.

For the case where U ≤ tmp1 but p ≤ tmp2, the CIF was modeled as:

P (T ≤ t|ε = 2,X) = 1− exp{−t exp(β11X1 + β31X2)},

and to obtain the event time it was inverted as T = − log
{

(1− V )exp(−β11X1−β31X2)
}

and the

event type was set equal to 2. Similarly, for the case where U > tmp1 but p ≤ tmp3 the CIF

was modeled as:

P (T ≤ t|ε = 2,X) = 1− exp{−t exp(β21X1 + β31X2)},

and to obtain the event time it was inverted as T = − log
{

(1− V )exp(−β21X1−β31X2)
}

and the

event type was again set equal to 2. For the other three treatment combinations similar data

generation procedures were followed. The regression coefficients associated with X1 were

chosen as (β11, β12, β13, β14) = (0.3, 0.7, 0.5, 1.0), (β21, β22, β23, β24) = (0.5, 0.9, 0.7, 1.2) and

the ones associated with X2 were set as (β31, β32, β33, β34) = (0.2, 0.6, 0.4, 0.9) where p = 0.4.

The time point where the effect of X1 was assumed to change, t0, was set equal to 0.75.

Independent censoring was introduced to the data set by generating the censoring time C

from a Uniform(2, 4) distribution and letting V = min(T,C) and ∆ = I(T < C)ε resulted

in ∼ 10% censoring for P (R = 1) = 0.4 and ∼ 9% censoring for P (R = 1) = 0.7. The

data generation process was repeated for cases P (R = 1) = 0.4 and P (R = 1) = 0.7 and for

scenarios 2 and 3 in Section 2.5. In the following tables we list the average estimated CIF

values evaluated at times 0.5 and 1 for (X1, X2) = (1.5, 1).

Again, we let MS, WMS and PMMS represent the näıve multi-state, inverse weighted

multi-state and pattern-mixture multi-state models; FG, WFG and PMFG represent the

näıve Fine and Gray, inverse weighted Fine and Gray and pattern-mixture Fine and Gray

models; and SC, WSC and PMSC represent the Scheike et al., inverse weighted Scheike et

al. and pattern-mixture Scheike et al. models.

Table 8 is a summary of the results obtained under scenario 2. For the first regime it can

be seen that the pattern-mixture and inverse weighted methods perform similar to the näıve
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method for both event times and both response rates as expected. However for the second

regime, the näıve models fail to generate unbiased estimates for the CIF and fail to achieve

desirable coverage rates. The proposed extensions on FG and SC models all perform much

better for both event times and both response rates. Overall it can be seen that extensions of

SC models produce estimates that are slightly closer to the true values, when the underlying

CIFs for treatment combinations follow the Scheike et al. model.

Table 9 is a summary of the results obtained under scenario 3. Under this scenario the

comparison of the methods for the two specific time points are different. For t = 0.5 it can

be seen that the näıve MS model is performing slightly better compared to the extensions,

the FG model performs similar to the extensions, and WSC and PMSC models perform

much better compared to the näıve SC model. However, as we look at the second time point

t = 1 and as a result we include more data points in the analysis, it can be seen that for all

models the extensions work much better for both regimes under all conditions compared to

the original models.

Looking at the results from both scenarios, we can say that when the data is suspected

to involve a covariate with a time-varying effect like under the Scheike et al. model, it is

much safer to fit the WSC and PMSC models with a slight preference towards PMSC if

there are adequate data in each stratum. Even if one is not aware of the time-varying effect,

the proposed extensions of MS and FG models are still much safer alternatives compared to

the näıve approaches.

4.6 SUMMARY

In this chapter we proposed two extensions, inverse weighting and pattern-mixture, on three

existing regression models on the CIF which can be used when dynamic treatment regimes

are of interest and a two-stage randomization is carried out. The inferences for the proposed

extension models are simple and the analysis can be carried out by slightly manipulating

existing R packages. We showed that the proposed extension models produce more reliable
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Table 8: Simulations under Scheike et al.- Scenario-2 with n=400: specific time point (t), probability
of response (pr), true cumulative incidence (True), mean of estimates (Mean), empirical standard
deviation (σ̃), mean of estimated standard deviations (σ̂), coverage rate of 95% confidence intervals
(Cov)

A1B1B
′
1 A1B1B

′
2

t pr Model True Mean σ̃ σ̂ Cov True Mean σ̃ σ̂ Cov

0.5 0.4 MS 0.47 0.52 0.09 0.09 0.89 0.62 0.73 0.06 0.06 0.51
WMS 0.52 0.09 0.09 0.89 0.64 0.08 0.06 0.83

PMMS 0.52 0.09 0.08 0.85 0.64 0.06 0.06 0.91

FG 0.50 0.10 0.09 0.91 0.74 0.07 0.07 0.58
WFG 0.50 0.10 0.09 0.91 0.64 0.09 0.08 0.90

PMFG 0.52 0.09 0.09 0.89 0.65 0.06 0.06 0.91

SC 0.47 0.12 0.11 0.91 0.72 0.09 0.08 0.71
WSC 0.47 0.12 – – 0.62 0.10 – –

PMSC 0.49 0.12 0.11 0.88 0.63 0.09 0.07 0.89

0.7 MS 0.37 0.44 0.09 0.08 0.88 0.45 0.59 0.08 0.07 0.52
WMS 0.44 0.09 0.08 0.88 0.50 0.08 0.07 0.86

PMMS 0.44 0.08 0.08 0.85 0.50 0.07 0.07 0.90

FG 0.42 0.09 0.09 0.93 0.58 0.08 0.08 0.67
WFG 0.42 0.09 0.09 0.93 0.48 0.09 0.09 0.93

PMFG 0.43 0.08 0.08 0.92 0.49 0.07 0.07 0.91

SC 0.38 0.11 0.10 0.91 0.56 0.10 0.10 0.79
WSC 0.38 0.11 – – 0.45 0.10 – –

PMSC 0.39 0.11 0.11 0.90 0.46 0.09 0.09 0.91

1 0.4 MS 0.73 0.70 0.08 0.07 0.90 0.80 0.85 0.04 0.04 0.68
WMS 0.70 0.08 0.07 0.90 0.79 0.06 0.04 0.85

PMMS 0.69 0.08 0.07 0.86 0.75 0.06 0.05 0.80

FG 0.72 0.09 0.09 0.92 0.90 0.05 0.04 0.42
WFG 0.72 0.09 0.09 0.91 0.82 0.07 0.07 0.85

PMFG 0.71 0.08 0.08 0.93 0.79 0.06 0.06 0.89

SC 0.74 0.11 0.10 0.90 0.93 0.05 0.04 0.29
WSC 0.74 0.11 – – 0.85 0.08 – –

PMSC 0.74 0.10 0.09 0.90 0.80 0.08 0.07 0.85

0.7 MS 0.63 0.62 0.08 0.08 0.92 0.67 0.75 0.06 0.05 0.63
WMS 0.62 0.08 0.08 0.92 0.67 0.08 0.06 0.86

PMMS 0.61 0.08 0.08 0.90 0.65 0.08 0.07 0.90

FG 0.62 0.10 0.09 0.92 0.77 0.07 0.07 0.64
WFG 0.62 0.10 0.09 0.92 0.68 0.09 0.09 0.90

PMFG 0.61 0.09 0.09 0.92 0.65 0.08 0.08 0.91

SC 0.64 0.11 0.11 0.91 0.80 0.09 0.08 0.57
WSC 0.64 0.11 – – 0.69 0.10 – –

PMSC 0.64 0.11 0.10 0.90 0.67 0.10 0.09 0.90
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Table 9: Simulations under Scheike et al.- Scenario-3 with n=400: specific time point (t), probability
of response (pr), true cumulative incidence (True), mean of estimates (Mean), empirical standard
deviation (σ̃), mean of estimated standard deviations (σ̂), coverage rate of 95% confidence intervals
(Cov)

A1B1B
′
1 A1B1B

′
2

t pr Model True Mean σ̃ σ̂ Cov True Mean σ̃ σ̂ Cov

0.5 0.4 MS 0.47 0.47 0.06 0.06 0.95 0.62 0.56 0.06 0.06 0.76
WMS 0.51 0.06 0.06 0.85 0.64 0.06 0.05 0.89

PMMS 0.52 0.06 0.06 0.82 0.64 0.05 0.04 0.88

FG 0.45 0.06 0.06 0.94 0.54 0.07 0.06 0.76
WFG 0.50 0.06 0.06 0.91 0.64 0.07 0.06 0.93

PMFG 0.52 0.06 0.06 0.85 0.65 0.05 0.05 0.84

SC 0.41 0.07 0.07 0.84 0.52 0.08 0.07 0.69
WSC 0.46 0.08 – – 0.62 0.08 – –

PMSC 0.46 0.08 0.07 0.93 0.62 0.06 0.06 0.90

0.7 MS 0.37 0.40 0.05 0.05 0.93 0.45 0.44 0.05 0.05 0.92
WMS 0.43 0.05 0.05 0.77 0.49 0.06 0.05 0.84

PMMS 0.44 0.05 0.05 0.73 0.50 0.05 0.04 0.75

FG 0.38 0.05 0.05 0.95 0.42 0.05 0.05 0.87
WFG 0.42 0.05 0.05 0.88 0.48 0.05 0.06 0.93

PMFG 0.43 0.05 0.05 0.82 0.49 0.05 0.05 0.81

SC 0.33 0.06 0.06 0.86 0.37 0.06 0.06 0.72
WSC 0.37 0.07 – – 0.44 0.07 – –

PMSC 0.38 0.07 0.06 0.92 0.45 0.06 0.05 0.94

1 0.4 MS 0.73 0.65 0.05 0.05 0.64 0.80 0.72 0.05 0.04 0.55
WMS 0.70 0.05 0.05 0.90 0.79 0.04 0.04 0.89

PMMS 0.69 0.05 0.04 0.86 0.76 0.04 0.03 0.74

FG 0.66 0.06 0.06 0.79 0.74 0.06 0.06 0.84
WFG 0.72 0.06 0.06 0.95 0.82 0.05 0.05 0.89

PMFG 0.72 0.05 0.05 0.95 0.79 0.04 0.04 0.92

SC 0.67 0.07 0.07 0.87 0.76 0.07 0.07 0.90
WSC 0.73 0.07 – – 0.85 0.06 – –

PMSC 0.73 0.06 0.06 0.94 0.80 0.04 0.04 0.93

0.7 MS 0.63 0.58 0.05 0.05 0.82 0.67 0.61 0.05 0.05 0.78
WMS 0.62 0.05 0.05 0.92 0.67 0.05 0.04 0.90

PMMS 0.61 0.05 0.05 0.92 0.65 0.04 0.04 0.90

FG 0.58 0.06 0.06 0.84 0.61 0.06 0.06 0.84
WFG 0.62 0.06 0.06 0.94 0.67 0.06 0.06 0.93

PMFG 0.62 0.05 0.05 0.94 0.65 0.05 0.05 0.93

SC 0.58 0.07 0.06 0.88 0.62 0.07 0.06 0.87
WSC 0.63 0.07 – – 0.69 0.07 – –

PMSC 0.63 0.06 0.06 0.94 0.66 0.05 0.05 0.92
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estimates for the CIF under a two-stage randomization setting for various conditions using

simulation. In general the pattern-mixture extensions of all three models perform slightly

better so they should be preferred over the inverse weighted extensions when there are

adequate data in each subgroup. We conclude that when there are time-varying effects on

the CIF it is safer to fit the extensions of the Scheike et al. model. Overall, regardless of

the nature of data, the proposed extensions provide a more reliable way to analyze covariate

effects on the CIF of a dynamic treatment regime and should be preferred over the existing

näıve models.
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5.0 REMARKS AND FUTURE WORK

In this dissertation, we focused on two-stage dynamic treatment regimes under the presence

of competing risks. The methods provide unbiased estimation of the CIF which facilitates

the comparison of dynamic treatment regimes and, as a result, helps choose the best regime

that results in minimal chance of experiencing the failure of interest. Both inverse proba-

bility weighting and pattern-mixture estimators work well, and we provide explicit variance

estimators which make inference straightforward. There is not much difference between the

two approaches except when there are inadequate number of subjects receiving a specific

treatment combination which may make the pattern-mixture estimator unreliable if it is

calculable. Other than that, the choice simply depends on researchers’ familiarity with the

two approaches.

We also provide methods to extend existing regression models on the CIF to dynamic

treatment regimes. They will be useful in directly evaluating covariate effects on the CIF for

a specific regime. The extended models can easily be applied to any data set using existing

packages. Both extensions work much better than näıvely fitting a model on all the subjects

who are consistent with a specific regime with pattern-mixture extensions working slightly

better. This is expected. The models considered in Chapter 4 are more likely to hold on the

treatment sequence level than on the regime level which is more heterogeneous regarding the

mixture of responders and non-responders.

In this dissertation, we have focused on survival outcomes subject to competing-risk cen-

soring. The methods provided in this dissertation will also be useful even when there are no

competing risks. The same approaches can be taken on extending regression models for typ-

ical survival outcomes and more general continuous outcomes. Developing such models will
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be very useful for comparison of dynamic treatment regimes and evaluating covariate effects

on a specific regime with respect to different types of outcomes. It may also be desirable

to develop model selection procedures that would work under a two-stage randomization to

help choose the most effective covariates on these outcomes. These may be future research

topics.
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