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Inhibitory control, the ability to voluntarily suppress responses to task-irrelevant stimuli, enables 

goal-directed behaviors and continues to develop through adolescence. Neuroimaging studies 

indicate that developmental improvements in inhibitory performance are supported by the 

maturation of brain systems, but these studies have not used longitudinal designs and continuous 

metrics of age to characterize the process of growth or individual differences in trajectories.  This 

study used longitudinal fMRI data from over 312 visits from 129 participants aged 8 to 28 years 

to characterize growth curves of brain function.  Mean growth curves revealed developmental 

increases in activity within an error monitoring region, the dorsal anterior cingulate cortex 

(dACC).  DACC activity was uniquely associated with task performance, suggesting that late-

maturing dACC activity may be a primary process underlying the maturation of inhibitory 

control.  Activity in the right dorsolateral prefrontal cortex (dlPFC) declined from childhood to 
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adolescence, and may function as a scaffold to support immature networks.  Growth curves 

across remaining areas of the inhibitory control circuitry did not show developmental changes, 

suggesting that the foundational inhibitory control system is available early in development.  

Investigating individual differences in trajectories revealed patterns of variability segregated 

according to function.  Error monitoring evidenced the least variability, and executive control 

regions showed parallel trajectories, indicating a preservation of rank-order stability over 

development.  Some motor response control regions showed a decline in variability with age, 

indicating individuals follow different paths to the same end point of maturity.  Sex predicted 

slope variability in a set of motor response control regions and an executive control region, with 

females but not males showing developmental declines in reactivity.  Taken together, these 

findings extend prior cross-sectional studies to indicate that primary to the development of 

inhibitory control is enhanced error monitoring and less reliance on supportive dlPFC control.  

Further, results highlight important variability in developmental pathways, including notable sex 

differences. 
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1.0  INTRODUCTION 

Inhibitory control is defined as the ability to inhibit a task-irrelevant prepotent response in favor 

of a voluntary, goal-directed response, and it enables internally-represented goals to guide 

behavior rather than suboptimal or reflexive tendencies that may be less adaptive (Dempster, 

1992). Studies of inhibitory control utilize paradigms requiring participants to suppress a 

reflexive or prepotent response (e.g., to look at a stimulus that appears) and to instead make a 

voluntary, goal-directed response (e.g., to look in the opposite direction of a stimulus that 

appears).  Behavioral studies indicate that the capacity for inhibitory control is present in infants 

(Amso & Johnson, 2005; Diamond & Goldman-Rakic, 1989), but the ability to engage inhibitory 

control in a consistent manner continues to improve over the course of childhood and 

adolescence (Davidson, Amso, Anderson, & Diamond, 2006; Dempster, 1992; Evdokimidis et 

al., 2002; Fuster, 2002; Klein & Foerster, 2001; Luna, Velanova, & Geier, 2008; Ordaz, Davis, 

& Luna, 2010).  Thus, the extended developmental maturation of inhibitory control in 

adolescence is relevant to understanding immaturities in adolescents’ higher-level control of 

behavior (Spear, 2007).  As limitations in inhibitory control characterize psychopathologies that 

emerge at high rates in adolescence, including schizophrenia (Everling & Fischer, 1998; 

Sweeney, Takarae, Macmillan, Luna, & Minshew, 2004), depression (Joormann, 2010; 

Joormann & Gotlib, 2010), and substance use disorders (Ivanov, Schulz, London, & Newcorn, 
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2008; Pardini, Lochman, & Wells, 2004), understanding individual differences in development 

can also clarify patterns and periods of risk for the emergence of psychopathology.   

Studies characterizing trajectories of the brain basis of inhibitory control are particularly 

valuable because the development of inhibitory control is thought to be driven by structural brain 

maturation of white matter and cortical association areas supporting performance, both of which 

continue to mature through adolescence (Giedd et al., 1999; Gogtay et al., 2004; Sowell, 

Thompson, Holmes, Jernigan, & Toga, 1999; Sowell et al., 2004) (Asato, Terwilliger, Woo, & 

Luna, 2010; Huttenlocher, 1990; Klingberg, Vaidya, Gabrieli, Moseley, & Hedehus, 1999; 

Liston et al., 2006; Yakovlev & Lecours, 1967).  Specifically, structural maturation is thought to 

affect brain function supporting inhibitory control by enhancing the capacity to recruit widely-

distributed brain circuitries (Luna, et al., 2008).  Indeed, increased structural connectivity with 

age is associated with improvements in inhibitory control (Liston, et al., 2006), and prefrontally-

guided functional connectivity during inhibitory control is strengthened across development 

(Hwang, Velanova, & Luna, 2010; Stevens, Kiehl, Pearlson, & Calhoun, 2007).  A focus on 

brain function is an approach that probes an underlying mechanism that supports cognitive 

performance (Luna, 2009; Spelke, 2002) and can provide a rich data set to enhance 

interpretations of behavior, particularly when examining brain activity supporting different 

behavioral outcomes (Best & Miller, 2010; Spelke, 2002).  

Existing developmental functional neuroimaging studies of inhibitory control reveal 

developmental changes that persist into adolescence.  Prior to elaborating on these findings, adult 

studies will be briefly reviewed to provide a context for interpreting development, because these 

studies rely on a framework whereby the circuitry recruited by adults is held as the standard of 

mature performance (Luna, 2009).  Interpretations of the meaning of brain activity in certain 
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regions are guided by an empirical understanding acquired from functional neuroimaging studies 

of adults and single-unit recordings in primates.  Various inhibitory control tasks engage a set of 

core regions (Swick, Ashley, & Turken, 2011), and these can be segregated into three main 

circuitries, sets of regions that support similar functions and work together to support IC.  These 

include motor response control, executive control, and error processing circuitries.  The motor 

response control circuitry prepares and guides an appropriately-timed, goal-directed response, 

and includes the supplementary motor area (SMA), and pre-supplementary motor areas (pre-

SMA), posterior parietal cortex (pPC), and the putamen (Everling, Dorris, Klein, & Munoz, 

1999; Rubia, Smith, Brammer, & Taylor, 2003).  The executive control circuitry coordinates 

adaptive goal-directed behavior and includes the dorsolateral prefrontal cortex (dlPFC) and 

ventrolateral prefrontal cortex (vlPFC)(Aron, Robbins, & Poldrack, 2004; Badre & Wagner, 

2004; Miller & Cohen, 2001).  The error processing circuitry monitors performance and signals 

the executive control circuitry to adjust activity to improve performance on subsequent trials 

when errors are made (Carter, Botvinick, & Cohen, 1999; Carter et al., 1998; Kerns, 2006; 

Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004).  Error processing during inhibitory 

control is supported by activity in the dorsal anterior cingulate cortex (dACC) following errors 

(Menon, Adleman, White, Glover, & Reiss, 2001; Polli et al., 2005).   

Existing developmental functional neuroimaging studies of inhibitory control, which 

have been almost exclusively cross-sectional, reveal that regions within these three functional 

circuitries are all recruited consistently across development (Rubia et al., 2006; Swick, et al., 

2011; Velanova, Wheeler, & Luna, 2008), but the degree to which they are recruited varies 

across development.  Through the use of cross-sectional, age group-based analyses, studies have 

provided an initial understanding of how magnitudes of brain activity change with development 
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(Adleman et al., 2002; Booth et al., 2003; Luna et al., 2001; R. Marsh et al., 2006; Rubia et al., 

2000; Tamm, Menon, & Reiss, 2002).  Further, event-related fMRI study designs enable 

characterization of developmental differences in brain function supporting equivalent 

performance, such as differences in activity supporting only correct trials.  Such studies 

comparing two age groups have revealed that brain activity changes from childhood to adulthood 

and between adolescence and adulthood in both executive control and error monitoring regions 

(Bunge, Dudukovic, Thomason, Vaidya, & Gabrieli, 2002; Durston, Thomas, Worden, Yang, & 

Casey, 2002; Rubia, Smith, Taylor, & Brammer, 2007; Rubia, et al., 2006).  Further, a set of 

cross-sectional studies examining differences across three age groups have had the added 

capacity to reveal that brain regions supporting different functions mature at different rates.  First 

to mature are motor response control regions, which show no differences in magnitudes of 

activity across children, adolescents, and adults (Velanova, et al., 2008; Velanova, Wheeler, & 

Luna, 2009).  Second to mature are the executive control regions, as magnitudes of dlPFC and 

vlPFC activity change from childhood to adolescence, but remain stable from adolescence into 

adulthood (Velanova, et al., 2008, 2009).  Last to mature is activity in an area associated with 

error processing, which changes from adolescence to adulthood (Velanova, et al., 2008).  

Supporting this is evidence for continued change from adolescence to adulthood in a cross-

sectional study examining error processing in only these two age groups (Rubia, et al., 2007).  

Though generally there is homogeneity of developmental timetables among regions supporting 

similar functions, some evidence for heterogeneity exists in the motor response control regions, 

as the pPC exhibits more delayed maturation from childhood to adolescence (Velanova, et al., 

2008).  
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1.1 TRAJECTORIES FOR THE BRAIN BASIS OF INHIBITORY CONTROL NEED 

TO BE CHARACTERIZED 

While research has revealed general patterns of development in the motor response control, 

executive control, and error-monitoring regions supporting inhibitory control, developmental 

trajectories (growth curves) have not yet been fully characterized, owing to a reliance on cross-

sectional designs and comparisons of age groups rather than treating age as a continuous 

variable.   This limits the capacity to explore (1) the nature (shape and rate) of developmental 

change and (2) individual differences in growth curves.  In the following section, we will expand 

upon these goals and how they can advance understanding of the development of the brain basis 

of inhibitory control. 

1.2 WHAT IS THE NATURE OF DEVELOPMENTAL CHANGE? 

The process of growth reflects both the shape of the trajectory of activity and the slope of 

change.  Understanding whether the shape of growth curves are linear (this term is used to refer 

to rectilinear change), asymptotic, or curvilinear can clarify how rates of maturation may vary 

over development.  Linear and asymptotic growth curves reveal a gradual, unidirectional 

progression towards maturity, but while linear patterns indicate constant growth rates over 

development, asymptotic patterns reveal changing rates of growth.  Periods of accelerated 

growth reflect sensitive periods during which certain mechanisms have a greater impact.  In 

curvilinear growth there are also periods of decelerated growth followed by accelerated growth 

that are separated by a change in directionality of change midway through the developmental 
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process.  In the context of equivalent performance, this may indicate a qualitative shift - for 

example, such patterns in trajectories of gray matter are thought to reflect synaptogenesis 

followed by synaptic pruning (Huttenlocher, 1990). Second, trajectories that follow the same 

shape may still differ in slopes, indicating that some brain regions mature at faster rates than 

others.  Overall, characterizing the shape and slope of growth curves can suggest periods where 

change is particularly marked, reveal similarities and differences among brain regions, and can 

suggest possible mechanisms supporting such change.   

1.3 ARE THERE INDIVIDUAL DIFFERENCES IN DEVELOPMENTAL 

TRAJECTORIES? 

While the end point of mature, optimal inhibitory control is the target for all individuals, the 

pathway to maturity may differ.  A cross-sectional fMRI study of attention allocation indicated 

that individual differences exist in youth (Rubia, Hyde, Halari, Giampietro, & Smith, 2010), and 

a longitudinal fMRI study of working memory activity showed different slopes of linear change 

across two time points in individuals with different genotypes (Dumontheil et al., 2011).  

Importantly, trajectories have been shown to be a particularly sensitive approach for examining 

individual differences, as developmental trajectories of cortical thinning (brain structure) differ 

between individuals (Raznahan, Shaw, et al., 2011; Shaw et al., 2006), who vary in  rates and 

time to peak (Lenroot et al., 2007; Raznahan, Greenstein, et al., 2011; A. Raznahan et al., 2010; 

Armin Raznahan et al., 2010; Raznahan, Shaw, et al., 2011; Shaw, et al., 2006).  The existence 

of individual differences in growth curves of brain function supporting inhibitory control could 

suggest that individuals follow different routes to converge at the same end point, or they may 
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follow the same path but with different slopes, with some individuals experiencing wider 

sensitive periods during which brain function supporting inhibitory control can be shaped by 

various factors including experience and gene expression. 

The variability in trajectories may reflect a range of individual characteristics.  Promising 

factors for initial investigation include sex and IQ because they have been shown to modulate 

executive function, brain function, and brain structure.  Boys and girls  show different slopes of 

frontal and parietal activity supporting attention allocation,     (Rubia, et al., 2010), slopes of 

white matter growth (Asato, et al., 2010; Bava et al., 2011), and trajectories of cortical 

maturation (Lenroot, et al., 2007; Armin Raznahan, et al., 2010).  Depending on the timing of 

divergences in trajectories, the existence of sex-modulated trajectories may point to the role of 

gonadal hormones in shaping how brain activation changes with development.  In addition, IQ 

has been shown to modulate trajectories of brain maturation - high IQ individuals demonstrate a 

slower, more gradual cortical maturation compared to lower IQ individuals, although both 

eventually reach similar levels in adulthood (Shaw, et al., 2006). IQ has also been shown to 

modulate behavioral indices of inhibitory control  in one (Evdokimidis, et al., 2002) study of 

adults, but not another (Michel & Anderson, 2009).  Thus, it remains unclear whether inhibitory 

control-related brain function in higher IQ- individuals may exhibit a more protracted 

development similar to structural maturation.  Understanding trajectories may highlight 

mechanistic relationships – for example, that a longer sensitive period may allow higher IQ 

individuals to eventually demonstrate better inhibitory control or that higher-IQ individuals may 

demonstrate better IC throughout development, irrespective of the time to peak. The maturation 

of inhibitory control may be affected differently by these factors as they may make different 

resources and brain processing approaches more readily available.  
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1.4 LONGITUDINAL STUDIES USING CONTINUOUS METRICS OF AGE CAN 

CHARACTERIZE GROWTH CURVES 

Though initial event-related fMRI studies have begun to map out patterns of developmental 

change, this characterization is coarse because of a reliance on cross-sectional and age group-

based samples.  The only prior longitudinal study of brain function supporting inhibitory control 

utilized a longitudinal design (Durston & Casey, 2006), but relied on an age group comparison, 

meaning that no studies to date have mapped growth curved for the brain basis of inhibitory 

control.  Age has often been treated as a categorical variable (children, adolescents, adults) to 

investigate qualitative differences across various stages of development.  This approach provides 

important information regarding broad differences in well-defined developmental stages but 

limits sensitive characterization of trajectories and ages at which maturity is attained.  Most 

studies attempt to model developmental change over a wide age range from childhood to 

adulthood (with age ranges spanning one and a half to two decades), but small sample sizes 

demand that participants be categorized into two or three developmental groups.  As a result, age 

groups are either narrow (e.g., ages 10-12 years) so as to inadequately represent a period of 

developmental change, or wide (e.g., 13-17 years) so as to represent a heterogeneous period of as 

if it were homogeneous.  Studies that only include two or three age groups are limited in the 

types of developmental change that they can detect, as they can only describe linear or V-shaped 

patterns of change, respectively.   

Predetermined age ranges also undermine the ability to characterize interregional 

variability in maturation.  For example, if adult-like behavior is reached at ages 15, 17, and 19 

for three different regions, then in an age group analysis where 18 is the cutoff for the adult 

group, the first two regions to mature would be noted to follow the same developmental 
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timetable (adult-like in adolescence) that is qualitatively distinct from last region to mature, even 

though all three regions reach maturity in succession.  Rather, the need to examine gradual 

change using age as a continuous variable and spanning a wide age range is informed by large 

developmental studies of brain structure (Giedd, et al., 1999; Gogtay, et al., 2004; Sowell, et al., 

1999; Sowell, et al., 2004) and behavioral studies of inhibitory control (Evdokimidis, et al., 

2002; C. Klein, 2001; C. Klein & Foerster, 2001) that consistently reveal gradual neurocognitive 

maturation characterized by varied rates of change and/or points of inflection over the course of 

late childhood, adolescence, and early adulthood.  Taken together, this underscores the need to 

extend research investigating the brain basis of inhibitory control using a continuous metric of 

age and large sample sizes, which allows developmental change to be described more sensitively 

across the wide age span over which it occurs.   

 Further, cross-sectional study designs are limited in their ability to distinguish 

measurement error from true developmental change, and have less power for a comparable 

number of observations – problems that can be addressed with particular types of longitudinal 

analyses.  First, whereas longitudinal studies can demonstrate true developmental change, cross-

sectional studies can only describe differences among individuals differing in age because age-

related differences are inseparable from cohort effects or systematic age-related measurement 

errors (e.g., developmental declines in motion while in the scanner, which can lead to false 

positive developmental findings (Church, Petersen, & Schlaggar, 2010; Poldrack, Pare-Blagoev, 

& Grant, 2002)).  Longitudinal analyses can address these issues by explicitly modeling 

between- and within-subject variation separately so as to more sensitively describe true growth 

processes.  Second, longitudinal studies have greater power to detect true developmental 

differences as compared to cross-sectional studies with the same number of observations because 
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estimates of age-related change are more reliable (Singer & Willett, 2003).  Indeed, using a 

design in which the brain activity supporting inhibitory control in a small (n = 7) group of nine 

year-olds was compared to their own activity two years later or to a separate group of eleven-

year olds, Durston et al. (2006) showed that longitudinal but not comparable cross-sectional 

analyses are capable of detecting developmental changes in frontal and cingulate cortices.   

Not all longitudinal study designs are equivalent.  The Durston et al. (2006) study – the 

sole longitudinal fMRI of inhibitory control - followed only seven individuals over only two time 

points and conducted a repeated-measures analysis of the data (Durston et al., 2006).  Reliance 

on only two time points may produce exaggerated or minimized descriptions of change because 

of susceptibility to measurement error at either or both time points or due to learning effects 

(Brown, Petersen, & Schlaggar, 2006; Singer & Willett, 2003).  For an accurate and thorough 

description of the shape and slope of developmental trajectories, data sets must include 

individuals with three or more waves of data, treat age continuously, and model curvilinear 

functions as well as linear and asymptotic functions.  Hybrid cross-sectional/longitudinal 

designs, in which subjects who span a wide age range at time one and are followed 

longitudinally, provide results that are less biased by cohort effects and can extend models of 

developmental change over a wider age range.  Growth curves can also be modeled for each 

participant, permitting comparisons of trajectories across individuals.   
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1.5 APPROACH, SPECIFIC AIMS, AND HYPOTHESES 

The overarching aims of this study are twofold: (1) to describe developmental trajectories of 

brain systems supporting inhibitory control and (2) to examine individual differences in these 

trajectories.  These aims were investigated by assessing: behavioral performance that provides a 

context for understanding the developmental changes in the brain, and activity in brain regions 

implicated in motor response control, executive control, and error monitoring.   

This study utilized functional neuroimaging data of antisaccade task performance from a 

hybrid cross-sectional/longitudinal study of participants who were sampled at ages ranging from 

childhood to early adulthood in order to investigate the nature of developmental change in brain 

activity supporting inhibitory control.  Regions of interest were selected a priori to encompass 

regions that are activated across a number of inhibitory control tasks rather than the antisaccade 

task alone to facilitate generalizability of results.  Published results from the first wave of data 

collection guided hypotheses regarding mean patterns of developmental change (Hwang, et al., 

2010; Velanova, et al., 2008, 2009).  

An oculomotor inhibitory control task, the antisaccade task, was selected for its capacity 

to probe brain-behavior relationships over development, attributable to the following 

characteristics: first, it has a well-delineated neural system stemming from a combination of 

single-unit recordings in primates (Amador, Schlag-Rey, & Schlag, 2004; Everling, et al., 1999; 

Everling & Fischer, 1998; Everling & Munoz, 2000; Funahashi, Chafee, & Goldman-Rakic, 

1993; Schlag-Rey, Amador, Sanchez, & Schlag, 1997) and fMRI studies in humans (Connolly, 

Goodale, Menon, & Munoz, 2002; Curtis & Connolly, 2008; Curtis & D'Esposito, 2003; 

DeSouza, Menon, & Everling, 2003); second, the simplicity of the task and the reflexive nature 

of the response to be suppressed obviates strategy use (Luna, et al., 2008); third, stimulus input 
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and response output are in the same domain so information does not need to be translated across 

modalities –  an ability that may have a distinct maturational timeline that could confound 

developmental results; fourth, this task is sensitive to aspects of protracted development and it 

has been shown to be sensitive to adolescent development at both the behavioral and brain levels 

of analyses (Fischer, Biscaldi, & Gezeck, 1997; Fukushima, Hatta, & Fukushima, 2000; Klein, 

2001; Klein & Foerster, 2001; Klein, Foerster, Hartnegg, & Fischer, 2005; Luna & Sweeney, 

2004; Luna, et al., 2001; Munoz, Broughton, Goldring, & Armstrong, 1998; Nieuwenhuis, 

Ridderinkhof, van der Molen, & Kok, 1999; Ordaz, et al., 2010; Romine & Reynolds, 2005; 

Velanova, et al., 2008, 2009).   

Statistical analyses of longitudinal data will rely on growth modeling, which allows 

extension of multiple regression for use with repeated-measures data (Singer & Willett, 2003).  

Hierarchical linear modeling (HLM), an approach that uses multi-level fixed effects and random 

effects analyses to account for nesting of data within individuals or groups were used because it 

uniquely enables flexible modeling of time, so that data collected at uneven intervals and from 

individuals with only a single time point can also be included in the model (Bryk & Raudenbush, 

1987, 2002).  In this framework, model-building approaches can be used to first model general 

patterns of developmental change, and then test for significant individual differences in 

intercepts and slopes of individual growth models, and finally to test predictors of the intercept 

and the slope that may explain individual differences.   

Our first aim was to describe the nature of developmental trajectories, including shape of 

growth curves and their slopes.  Based on prior cross-sectional studies using the antisaccade 

paradigm (reviewed in Luna, 2009), we hypothesized that behavioral performance will follow an 

inverse function, stabilizing to adult levels in adolescence.  Based on cross-sectional studies 
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using a similar design with children and adolescents (Rubia, et al., 2007; Velanova, et al., 2008, 

2009), we hypothesized that shapes of and slopes of growth curves for brain regions supporting 

similar functions (e.g., all motor response control regions) will be most similar to each other and 

differ from those supporting other functions.  Specifically, motor response control regions will 

reach maturity prior to executive control regions, which in turn will mature prior to error 

processing regions.  

Our second aim was to explore significant individual differences in slopes of growth 

curves and ages at which maturity is reached.  Given evidence from longitudinal and cross-

sectional studies of structural brain maturation and cross-sectional studies of inhibitory control 

performance, we predicted that significant individual differences will exist for growth curves for 

behavioral performance and brain activity in motor response control, executive control, and error 

processing circuitries.  Further, on the basis of longitudinal and cross-sectional studies of 

structural brain maturation, cross-sectional studies of inhibitory control performance, and cross-

sectional imaging studies of other executive functions showing that trajectories vary according to 

IQ or sex, we predict that these variables will also explain individual variability in growth curves 

of behavioral performance and brain activity in motor response control, executive control, and 

error processing circuitries.  Specifically, females will show an earlier rapid growth spurt and 

earlier age of maturation while individuals with higher IQs will show a slower trajectory towards 

maturation.   
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2.0  METHODS 

A hybrid cross-sectional/longitudinal study design was utilized to maximize the age range at 

each time point; therefore participants ranged from childhood to adulthood at across each study 

wave. Cross-sectional data from the first time point examining developmental changes in brain 

activity supporting antisaccade performance have previously been published (Hwang, et al., 

2010; Velanova, et al., 2008, 2009).   

2.1 PARTICIPANTS 

Individuals were recruited through advertisements placed in newspapers, throughout the 

community and flyers sent to students enrolled in local public schools for participation in a 

longitudinal study of cognitive and brain development.  Volunteers were native English speakers 

screened by phone for head injuries, eye movement problems (lazy eye, color blindness, altered 

vision), medications known to affect brain function and/or eye movements, major medical 

problems, history of neurological or psychiatric problems in themselves or a first degree relative.  

In addition, they were ruled out for nonremovable metal on the body, claustrophobia, weight 

greater than 300 lbs to ensure scanner eligibility.  Studies were performed in accordance with 

University of Pittsburgh Institutional Review Board guidelines.   
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2.2 VISIT PROCEDURE 

Data were collected each year during a set of two visits: a visit to the behavioral laboratory 

followed by a magnetic resonance imaging (MRI) scanning session within at least three months.  

During behavioral visits, participants completed an IQ test and questionnaires about their 

demographics.  For the purposes of other studies, participants also completed various 

computerized and paper-and-pencil cognitive tasks and oculomotor tasks similar to those 

administered at the subsequent MRI visit.  Oculomotor data were used for an analysis separate 

from those reported here, but this visit provided subjects with an opportunity to be acquainted 

with the paradigms used in the subsequent fMRI study and to ensure participants understood task 

instructions.   Scan visits consisted of an hour and 15 minute-long scanning sequence and 

included the acquisition of behavioral data that will be reported here.  Immediately prior to 

scanning, naïve participants spent approximately 10 minutes in a simulation scanner to acclimate 

to the size constraints and noise of the MR scanner environment (Rosenberg et al., 1997).  Vision 

was normal or corrected to normal using magnet compatible glasses or contact lenses. 
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Figure 1: Age distribution according to number of study visits.  

The hybrid cross-sectional/longitudinal nature of the study design is evident in this graph 
depicting age distribution of individuals with a given number of study visits.  Visits are spaced 
one year apart, but not all individuals have the same number of study visits.   Data reflect 
participant visits prior to exclusions related to data quality.   
 

Study visits occurred at approximately twelve month intervals, and participants provided 

data ranging from one to six time points.  Figure 1 illustrates the hybrid cross-

sectional/longitudinal study design characterized by a wide age span of participants at each wave 

of the study.  Over the course of the study, 24 individuals (14 F) did not return for follow-up due 

to obtaining braces, difficulty rescheduling or contacting, excessive movement in the scanner, 

loss of interest, and change of residence (listed in order of frequency).  A total of 139 

participants (75 F) completed a total of 356 visits (177 F).  Of these, 21 visits (8 F) were not 
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included in subsequent data analyses because three scans of eye data and neuroimaging data 

could not be acquired for one of the following reasons: technical or administrative errors (11 

visits), participants falling asleep (4 visits), participants asking to be removed from the scanner 

(5 visits), or the discovery of a brain abnormality (1 individual’s first visit).   

Therefore data from a total of 341 visits (173 F) representing 135 participants (72 F) were 

preprocessed.  This reflected two individuals who completed six visits, twelve who completed 

five, 22 who completed four, 31 who completed three, 20 who completed two, and 48 who 

completed one visit. This study design including single visits has been found to be effective for 

characterizing longitudinal trajectories (Bryk & Raudenbush, 1987, 2002).  Following 

preprocessing, additional visits were excluded due to lack of integrity in structural MRI images 

(four visits), excessive movement during functional MRI runs (20 visits), lack of at least three 

runs inclusive of usable functional and eye scoring data after accounting for movement (three 

visits), poor quality of eye tracking (one visit), and scanner inhomogeneities (one visit).  As a 

result, a total of 312 visits from 129 individuals were included in initial statistical analyses (see 

Table 1).  Participants ranged in age from 8.1 to 28.9 years of age.  Final statistical models were 

limited to visits from participants between 9.0 and 26.0 years of age in order to ensure that data 

throughout the age range estimated was based on a similar number of estimates.  The final 

reported regressions are based on a sample composed of 302 visits from 123 individuals (64 F).   
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Table 1: Number of individuals per frequency of study visit after accounting for excluded visits 

# Visits # Individuals (# F) 
1 47 (28) 
2 23 (10) 
3 30 (14) 
4 17 (8) 
5 11 (7) 
6 1 (1) 

Total 129 (68) 
 

 

2.3 IQ SCORES 

The four-subtest Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999) was administered 

to estimate an IQ score.  Full-Scale IQ scores are conceptualized to be stable with age but were 

administered at years one, three, and five.  The score obtained at the oldest age of testing was 

selected for use a priori, since scores are more reliable with increasing age (Wechsler, 1999).  

IQ, a level-2 variable, was missing from one female with a single time point.  Mean IQ was 

113.48 (SD = 11.648, range: 85 – 142), did not differ significantly between the sexes, t(120) = 

0.918, p = 0.361.   

2.4 FMRI DATA ACQUISITION 

Data were acquired using a Siemens 3-Tesla MAGNETOM Allegra (Erlangen, Germany) fitted 

with a standard circularity-polarized head coil.  Pillows and tape minimized head movement. 
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Earplugs dampened scanner noise.  A PC (Dell Dimension 8200, Pentium 4, 2 GHz, Windows 

XP) running E-Prime (Psychology Software Tools, Pittsburgh, PA, USA) controlled stimulus 

display.  Stimuli were projected onto a screen at the head of the scanner bore viewable via a 

mirror attached to the head coil. 

Structural images were acquired first using a sagittal magnetization-prepared rapid 

gradient-echo (MP-RAGE) T1-weighted sequence (TR = 1570 msec, echo time [TE] = 3.04 ms, 

flip angle [a] = 8 degrees, inversion time [TI] = 800 ms, voxel size = .78125 x .78125 x 1 mm) 

and used for alignment of functional images. Functional images were acquired using an echo-

planar sequence sensitive to blood oxygen level dependent (BOLD) contrast [T2*] (TR =1.5 s, 

TE = 25 ms, a = 70 deg, voxel size = 3.125 x 3.125 mm in-plane resolution), with 29 contiguous 

4-mm thick axial images acquired parallel to the anterior-posterior commissure plane during 

each TR.  Participants performed four functional runs (each, 6 min 15 s), followed by up to three 

runs of an unrelated experiment.  The first six images in each run were discarded to allow 

stabilization of longitudinal magnetization. 

2.5 ANTISACCADE PARADIGM 

Run and task trial structures are depicted in Figure 2, which is reproduced from Velanova et al. 

(2008).  Each run consisted of a two blocked periods of oculomotor task performance 

interspersed with three blocked periods of fixation.  Oculomotor tasks were administered in a 

counterbalanced order and included the antisaccade (AS) task and the visually-guided saccade 

task (VGS), a reflexive task that served to enhance the inhibitory demands during AS trials.  

Each run began with 36 s of fixation (control), followed by a 114 s task block, a second block of 
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fixation (45 s), a second task block (114 s), and a final block of fixation (36 s).  Participants 

performed the AS task during one task block, and the VGS task during the other.   

 

Figure 2: Experimental task design  

Depiction of experimental (A) run structures and (B) task trial structures. From Velanova et al. 
(2008). 
 
 
Task order was counterbalanced across runs (within participant) and across participants.  

Participants were explicitly told the task order prior to the start of each run. 

Each task block was preceded by a 3 s cue informing participants about the nature of the 

upcoming trials (either “Start LOOK-AWAY game” for AS blocks, or “Start LOOK-TOWARD 

game” for VGS blocks).  Twelve AS trials or twelve VGS trials were presented in each task 

block, such that, across four runs, participants performed 48 of each trial type.  Intervals between 

trials during which a white fixation cross-hair was presented varied between 3 to 9 s, with a 

greater number of shorter intervals.  This temporal jitter allowed separation of trial-related signal 

components and differed from trial to trial for each participant (Dale, 1999).  Trial presentation 

was time-locked to the onset of successive whole-brain image acquisitions.  Each task block 

ended with a 3 s “task end” cue, alerting participants that a long period of fixation would follow.  

Three additional MR frames (4.5 s) of fixation served to jitter the onset of the task block proper 
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(following cue presentation) and were arranged such that if three additional frames (4.5 s) of 

fixation followed the task onset cue, no additional fixation frames preceded the “task end” cue, 

else if two additional frames (3 s) of fixation followed the task onset cue, one frame (1.5 s) 

preceded the “task end” cue and so forth.  Inclusion of these additional frames of fixation 

reduced noise in estimating responses associated with task start and end cues, and also modestly 

improved estimates of transient and sustained effects. 

Each AS and VGS task trials began with a 3 s colored fixation cross-hair (subtending 

~0.7 degrees of visual angle) instructing participants to make a visually-guided saccade (green) 

or an antisaccade (red).  Participants were instructed to fixate on this instruction cue.  

Immediately following this, the saccade target stimulus, a yellow circle, appeared for 1.5 s.  For 

VGS trials, participants’ task was to look toward the saccade stimulus.  For AS trials, 

participants were instructed to inhibit saccades toward the saccade stimulus and to look instead 

toward the empty location in its horizontal mirror location.  The target stimulus subtended ~0.5 

degrees an appeared at one of six horizontal eccentricities (at +/- 6, 3, or 0 degrees).  Target 

location order was randomized within each task block.  No “gap” was interposed between the 

instruction cue and saccade target stimulus to increase the probability of accurate performance in 

younger participants (Fischer, et al., 1997).    

2.6 EYE TRACKING 

Eye movement measurements were obtained during scanning using a long-range optics (LRO) 

eye-tracking system (Model R-LRO6, Applied Science Laboratories, Bedford, MA, USA) with a 

sampling rate of 60 Hz.  Nine-point calibrations were performed at the beginning of the session 
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and between runs as necessary.  Real-time monitoring also permitted immediate identification of 

head movement or gross inattention to the task, and experimenters redirected subjects 

immediately following the run.   

2.7 FMRI DATA PREPROCESSING 

Neuroimaging data were preprocessed to remove noise and motion artifacts and functional 

images will be aligned to structural images.  Functional data were slice-time corrected and 

motion was corrected within and across runs using a rigid-body rotation and translation 

algorithm.  Functional files were registered to a standardized atlas using a series of affine 

transforms to align each subject’s T1-weighted image to a 3 mm MNI template brain.  Data were 

then smoothed using a weighted 5 mm full width half-maximum Gaussian kernel, a 0.03 Hz 

high-pass temporal filter was applied, and the voxel time series was normalized and scaled to 

have a mean intensity of 100 so that regression coefficients can be interpreted as percent signal 

change. Structural images were visually inspected to ensure data integrity (e.g., ghosting, 

magnetic field inhomogeneities, wraparound); data from four visits were excluded as a result.   

As a result of visual inspection, data from one functional visit was excluded due to scanner 

inhomogeneities. 
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2.8 MOVEMENT ANALYSES 

Measures of head movement during functional sequences were obtained using a rigid-body 

rotation and translation algorithm. Translations and rotations in the x, y, and z dimensions were 

averaged across frames and total root mean square linear and angular precision measures were 

calculated for each run.  Runs in which total root mean square movement exceeded 1 mm 

(translations) or 1 degree (rotations) were excluded from further analysis, encompassing a total 

of 79 runs. As a result, 20 visits (9 F) were excluded because they no longer included at least 

three runs of functional neuroimaging data.  Excluded visits encompassed individuals ranging in 

age from 8.5 to 18.4 years (mean = 13.2 yrs, s.d.= 2.9 yrs).  Mean ages for excluded visits did 

not differ for males and females (t(18) = -0.98, p = 0.923).   

After accounting for motion and eye data that was not acquired due to technical or 

administrative errors, three visits (but no individuals) were excluded because they did not have at 

least three runs with both functional MRI data and scoreable eye data.   

2.9 EYE TRACKING DATA 

Eye-movement data were analyzed and scored offline using ILAB (Gitelman et al., 1999) in 

conjunction with an in-house scoring suite written in MATLAB (MathWorks, Inc., Natick, MA) 

by trained raters.  Saccades were identified using a velocity algorithm employing a 20 deg/s 

criterion and were presented graphically and numerically for inspection of measurements for 

each saccade.  Raters reviewed the results generated by the algorithms to identify blink artifacts 

and occasional failures of the software to identify primary saccades, and to make modifications, 
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if necessary, using the editing features available in ILAB.  Each eye movement trial was scored 

for performance accuracy (correct, corrected error, uncorrected error, or dropped because trial 

was unscorable due to blinks or signal loss).  Errors were typically followed by a saccade to the 

correct location indicating that participants understood the instruction but were unable to inhibit 

the automatic response towards the cue.  Express saccades, characterized by an initial saccadic 

latency of less than 67 ms reflecting anticipatory errors were also included as dropped trials 

(Fischer & Ramsperger, 1984).  For these analyses, we compiled error rates as a metric of 

antisaccade performance; this was calculated as the number of corrected error trials divided by 

the total number trials excluding dropped trials. One visit had to be excluded because of the poor 

quality of eye tracking data resulted in the dropping of more than 75% of trials.     

2.10 FMRI DATA ANALYSES 

For each voxel, a general linear model that estimates the average hemodynamic response was 

generated using Analysis of Functional Neuro-Images (AFNI) (Cox, 1996).  Correct, corrected 

error, and uncorrected error/dropped trials were modeled using the SPM gamma function, with 

baseline signal drift plus six motion parameters entered as covariates.  For each region of interest 

(ROI) except the dACC, hemodynamic responses during correct trials were compared to the 

fixation baseline.  This contrast was chosen because the imaging data from the antisaccade 

versus fixation contrast has higher test-retest reliability than the antisaccade versus VGS 

comparison (Raemaekers et al., 2007) and to maintain consistency with previous cross-sectional 

analyses of these data (Velanova, et al., 2008, 2009) that informed choice of ROIs and study 
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hypotheses.  Given the dACC’s role in error processing, activity in dACC was examined through 

the comparison of corrected error trials versus baseline.   

Our analyses focused on a priori ROIs associated with inhibitory control not specific to 

the antisaccade task including regions associated with motor response control (SEF, preSMA, 

pPC (bilateral), putamen (bilateral), FEF (bilateral)), executive control (dlPFC (bilateral), vlPFC 

(bilateral)), and error monitoring (dACC) (Kenner et al., 2010; Munoz & Everling, 2004; Swick, 

et al., 2011).  Central coordinates of these ROIs were identified using Neurosynth platform and 

database (www.Neurosynth.org, accessed March, 2010), an automated brain-mapping 

framework that combines meta-analysis, machine-learning, and text-mining approaches to 

generate statistical z-maps for a given search term or topic (Yarkoni, Poldrack, Nichols, Van 

Essen, & Wager, 2011).  As topic maps are factor maps that summarize results from a larger set 

of studies associated with a related set of terms, topic maps were used when possible.  Terms and 

topics were selected based on their having been implicated in inhibitory control and being 

inclusive of developmental studies.  For term maps, we used the reverse inference maps 

associated with each term (rather than forward inference maps).  These depict the voxelwise 

probability of each term given activation observed at each voxel coordinate assuming uniform 

priors (i.e., 50% probabilities of “term” and “no term”), and provide a statistical measure of the 

specificity of activation (to each relevant term) at each coordinate point across the hundreds of 

studies in the Neurosynth database associated with each term.   Small corrections to central 

coordinates were made to ensure that final spheres overlapped with canonical eye movement 

regions.  ROIs were defined as voxels within a given radius of each identified peak; a 10 mm 

radius was used for most cortical ROIs. However, a 7 mm radius was used for the SEF and 

preSMA to ensure that they did not overlap and a similarly-sized radius was used for the 

http://www.neurosynth.org/
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putamen due to its smaller anatomical sixe, and 12 mm radius was used for the dlPFC to ensure 

full coverage.  Table 2 summarizes the central coordinates and size of each ROI, which are 

depicted visually in Figure 3.  Beta values reflecting response magnitudes for all voxels within 

each ROI were averaged for each subject visit to produce a mean percent signal change metric 

for each ROI per visit.   
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Table 2: Mean coordinates and cluster size for all regions of interest 

  Center voxel coordinates     
  x y z Radius (mm) n voxels 
SEF 0.0 -4.6 62.0 7 37 
preSMA 0.0 5.0 52.1 7 37 
FEF - L -25.5 -1.5 56.0 10 107 
FEF - R 26.5 -1.5 58.0 10 107 
putamen - L -26.0 4.0 6.0 7 37 
putamen - R 26.0 2.0 4.0 7 37 
pPC - L -32.0 -48.0 50.0 10 107 
pPC - R 32.0 -54.0 48.0 10 107 
dlPFC - L -41.0 19.0 41.0 12 185 
dlPFC - R 42.0 18.0 42.0 12 183 
vlPFC - L -46.5 10.5 24.0 10 107 
vlPFC - R 49.5 12.0 22.0 10 107 
dACC 0.0 19.5 40.5 10 107 
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Figure 3: A priori regions of interest 
 
A priori regions of interest  for a priori executive control, motor response control, and error monitoring circuitries, as 
shown in (from left to right) axial, coronal, and sagittal slices.  Images are shown in radiological view, as indicated 
by the letters denoting the right and left sides of the brain. 
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2.11 RELIABILITY OF FMRI DATA 

First, test-retest reliability of fMRI measurements across sessions was established by examining 

change within subjects who provided two scans after the age of 20 (n=14), as change over time 

in this subsample should be reflective of data reliability and minimally related to developmental 

factors.  Correlations between percent signal change estimates at the first and second scan were 

calculated for each subject on a voxelwise basis.  As these adult participants demonstrated few 

error trials (see Figure 4), only reliabilities for correct trials are reported.  Second, to index a 

sufficient amount of within-subject variability as a proportion of total variability, intra-class 

correlations (ICCs) were calculated using  (REML estimates) to determine the degree 

of within-subject clustering, ensuring the validity of nesting observations within individuals.  

Third, unequal sampling across the age range can produce variable data reliability across 

development, so we visually inspected the data to determine (a) whether spline models were 

superior to combining all individuals into a single model and (b) whether limiting the age range 

may minimize unequal sampling across the age range.   
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Figure 4: Raw behavioral data 

Antisaccade (AS) error rates (in % errors) and latencies on correct trials (in ms). Raw data with superimposed loess 
lines (left) corroborate the model-fitting procedures suggesting an inverse function fits both models best (right).  In 
all graphs, red lines denote females, and blue lines indicate males.  For AS error rates, variance in intercepts but not 
slopes was significant, which is indicated by graphing a portion of each individual’s estimated regression line.  For 
latencies on correct trials, each regression line is plotted to underscore significant variability in both intercept and 
slope.   
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2.12 STATISTICAL ANALYSES 

Hierarchical linear modeling (HLM) analyses (equivalent to random effects, mixed effects, or 

multilevel modeling) were used to model group-level trajectories and to test for significant 

individual variability in trajectories. This modeling approach allows nesting of multiple 

observations within an individual, and it is unique among other types of nested analyses in 

allowing for modeling individual regressions for each participant, and for flexible treatment of 

time (Raudenbush & Bryk, 2002).  Analyses were conducted using the program HLM version 6 

(Scientific Software International, Inc.). 

The following analytic procedure was followed for each outcome variable, which include 

antisaccade corrected error rates and % signal change for each ROI.  First, linear, quadratic, and 

inverse unconditional growth models were modeled.  The optimally fitting model was selected 

for use as the unconditional growth model for subsequent model-building on the basis of the 

Akaike Information Criterion (AIC) model fit index, consistent with other developmental studies 

comparing shapes of developmental curves (Kail & Ferrer, 2007).  AIC was selected for use 

because (1) it allows comparison of models that cannot be compared via model comparison tests 

(i.e., the linear and inverse age models) because they are not nested (i.e., do not have a different 

number of parameters), and (2) it is unique among other model fit indices in that it is a 

standardized value allowing comparison across models that have differing numbers of 

parameters (i.e. linear and quadratic age models).  Lower (more negative) AIC values reflect 

better model fit to the data.  To ensure validity of the AIC-informed selection of model shape, 

note that the final model (age, inverse age or quadratic age) was only selected if the relevant age 

term was also significant (e.g., if AIC indicates quadratic model is best-fitting, this model is only 

selected if the quadratic term is also significant).   
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The unconditional growth model is a base model from which to begin model-building 

procedures.  In all cases, the age term was centered to facilitate meaningful interpretation of the 

intercept (for nonlinear transformations, inverse age values were centered around the inverse of 

the mean age of the sample).  For example, an unconditional model using the inverse of age 

(“InvAgeC”, centered) to predict antisaccade error rates (“ASerr”) would be as follows: 

 

Level 1: 
    

 
Level 2:   

          
      

 
  ~ N  

 

In such a model, β00 reflects the grand mean antisaccade error rate at the mean age of the 

sample, and β10 reflects the grand mean slope of the trajectory.  The random effect term for the 

intercept and slope are r0i and r1i, respectively; a significant r0i term indicates individual 

differences in antisaccade error rates at the mean age of the sample, and a significant r1i term 

indicates individual differences in trajectories of antisaccade error rates.   

Second, model-building procedures were utilized to determine whether the random terms 

are indeed significant and, if so, to determine whether time-invariant predictors, sex and IQ (both 

terms centered to facilitate interpretation of coefficients in the model), at level two can explain 

the individual variability in the intercept and/or slope.  Specifically, chi-square tests were used to 

test significant improvement in model fit between the unconditional growth model and nested 

models with random intercept and slope terms removed.  If level two random intercept and/or 

slope terms were significant, indicating variability exists, then sex and IQ were added as level 
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two predictors to determine whether they were significant and whether significant intercept 

and/or slope variability remained.  Finally, we removed any nonsignificant terms.  Models were 

fit using (a) FIML estimates for the purposes of calculating deviance, degrees of freedom, and 

model comparison tests (AIC) and (b) REML estimates for reporting of fixed effect and variance 

component estimates as well as their significance tests.   

To explore significant sex moderation of trajectories, follow-up analyses using a dummy 

coded variable with either females or males coded as the reference group were used to test the 

significance of intercepts and slopes for trajectories for each sex.  To test sex differences in 

percent signal change values at other points along the estimated trajectories besides the mean age 

of the sample, regressions centered at ages 11 and 23 were tested for significant differences in 

intercepts.  These ages were chosen because they reflect ages at the relative extremes of the ages 

sampled, but still have a high number of sample points to ensure reliability of estimates.  
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3.0  RESULTS 

3.1 BEHAVIORAL PERFORMANCE 

Table 3 lists AIC values used to guide the selection of unconditional models characterizing the 

shape of growth and the proportion of variance explained by the age term in this model.  Table 4 

lists estimates of fixed effects (intercept, slope), random effects (variance in intercepts, slopes, 

and level one variance), model fit indices (deviance, AIC), and the significance of all these terms 

(level one variance excepted) for all final behavioral models.  AIC fit indices indicated that 

inverse models fit all variables best, indicating that rates of change decline over the adolescent 

years.  Raw behavioral data with superimposed loess lines are depicted in Figure 4, which 

underscores the inverse trend in the data and highlight a lack of sex differences described below.  

The antisaccade error rate at the mean age of the sample (16.7 years) was 0.283,and the a 

positive mean inverse age growth rate indicating a significant decline in error rates that levels off 

with age in late adolescence.  At the mean age of the sample, latencies for correct antisaccade 

trials were slower (485.2 ms) than error trial latencies (353.8 ms).   Both latencies significantly 

declined with age.  
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Table 3: Test-retest reliabilities, ICCs, and model fitting indices 

  

  
Test-retest 
reliability ICC ‡ 

AIC value from unconditional growth 
model  

Age model 
selected § 

Pseudo-R², age term in 
unconditional model  

  Mean (SD)^   inverse age linear age quadratic age     
Region of interest 

       SEF 0.488 (0.239) 0.359 -1004.27 -1004.96 -1008.18 age 0.019 
preSMA 0.282 (0.295) 0.382 -1000.41 -998.49 -1000.77 inverse 0.072 
FEF (L) 0.662 (0.209) 0.383 -1254.19 -1250.68 -1264.20 quadratic 0.182 
FEF (R) 0.472 (0.205) 0.273 -1123.06 -1119.10 -1128.13 inverse 0.104 
putamen (L) 0.138 (0.187) 0.209 -1214.23 -1214.85 -1217.84 age 0.000 
putamen (R) 0.143 (0.189) 0.228 -1258.72 -1258.91 -1260.88 age 0.039 
pPC (L) 0.565 (0.237) 0.406 -1222.03 -1222.46 -1230.78 age 0.043 
pPC (R) 0.600 (0.230) 0.355 -1142.69 -1137.84 -1146.84 inverse 0.103 
dlPFC (L) 0.214 (0.300) 0.169 -1277.61 -1276.11 -1272.42 inverse 0.029 
dlPFC (R) 0.280 (0.253) 0.428 -1236.27 -1234.63 -1231.18 inverse 0.031 
vlPFC (L) 0.437 (0.263) 0.170 -1222.83 -1219.95 -1231.04 inverse 0.034 
vlPFC (R) 0.440 (0.289) 0.291 -1185.97 -1185.16 -1189.69 inverse 0.033 
dACC (error trials) - 0.151 -860.43 -859.24 -860.21 inverse 0.070 

        Behavioral variable 
       AS percent errors 0.763 0.650 -249.79 -236.37 -245.52 inverse 0.202 

AS latency (correct) 0.533 0.606 3198.73 3204.29 3201.75 inverse 0.140 
AS latency (error) - 0.472 2989.56 2990.59 2990.42 inverse 0.000 
VGS latency (correct) 0.716 0.564 3018.84 3020.59 3013.37 inverse 0.768 
‡ All ICC values were statistically significant (2 SD CI did not overlap with zero) 
§ Lower (more negative) AIC values are indicative of improved model fit.  Note that in cases where AIC suggested selection of the quadratic 
model, this model was only chosen if the quadratic term was also significant.  AIC values are bolded in the adjacent columns 
^ Means and standard deviations are listed for brain regions to summarize r values calculated at the voxel level 
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Table 4: HLM model fitting outcomes for behavioral data 

  AS percent errors AS latency (correct) AS latency (errors) VGS latency (correct) 
Fixed Effects (Robust SE) 

    
 Model for Intercept, π0i 

    
    INTRCPT, β00    0.283*** (0.016) 485.237 (4.795) ***  353.814 (3.348) ***  364.870 (3.389) *** 

    SEX‡ , β01 
  

-14.549 (6.688) 
 

    IQ‡ , β02  
  

1.188 (0.308) *** 0.718 (0.288) * 

 Model for Age term slope, π1i inverse age inverse age inverse age inverse age 

    INTRCPT, β10    7.437*** (0.752) 1206.411 (271.808) *** 519.086 (200.997) * 613.915 (186.109) ** 

    SEX‡ , β11   
    

    IQ‡ , β12 
    Random Effects (Variance Components) 
    

  Var. in individual means,  var(r0) =  0.02 **** 1792.79 *** 738.88 ** 852.692 *** 

  Var. in slopes, var(r1) =  1.148 + 1765740.456 § 55336.595 634858.519 ** 

  Var. in Age² slopes, var(r2) =  
    

  Var. within individuals, var(et) =  0.013 1215.272 1144.160 712.995 

     No. of parameters 6 6 8 6 
Deviance (FIML) -261.792 3186.729 2956.481 3006.839 
AIC -249.792 3198.729 2972.481 3018.839 
No. Fixed effect 2 2 4 2 
No. Random effects 4 4 4 4 
*** Significant at p < 0.001, ** Significant at p < 0.01, * Significant at p < 0.05, + Trend, significant at p < 0.10 
‡ Predictor centered so that 0 reflects the grand mean; in the case of sex, a weight was created for each sex so that the sum of sex codes across all 
participants was zero  
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For antisaccade error rates, the variance in the intercept random effect term was significant, and 

there was a trend for the slope to be significant.  Sex and IQ were added to the model to predict 

the significant intercept variability, but neither term was significant.  For correct antisaccade trial 

latency, slope and intercept varied significantly across the sample, indicating slopes differed 

across individuals.  Sex and IQ did not predict variability.  For error trial latency, only intercepts 

varied, indicating parallel trajectories and this was predicted by both sex and IQ, with males and 

lower IQ individuals demonstrating the shortest error latencies.   

 

3.2 RELIABILITY OF FMRI DATA 

Visual inspection suggested that data points could be fit by continuous statistical functions and 

would not benefit from being modeled as a spline or discontinuous function.  However, visual 

inspection of the data revealed only a few individuals at the youngest and oldest ages sampled.  

Since loess lines indicated that these visits may disproportionately skew regression results, and 

sex differences existed in the individuals samples (all eight- to nine-year old participants were 

male), only participants between the ages of 9 and 26 were included in subsequent analyses, 

resulting in a total of 302 visits contributed by 123 people.   

Mean test-retest correlations for brain imaging data for each region of interest are listed 

in Table 3, and indicate moderate test-retest reliabilities, consistent with reliabilities reported for 

functional neuroimaging data during performance on the antisaccade task in adults (Raemaekers, 

et al., 2007).   
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Intra-class coefficients (ICCs, ) for each ROI are reported in Table 2.  ICCs greater than 

0.10 suggest proper within-subject dependency needed for subsequent HLM analyses.  

Additionally the significance of the ICC value was statistically tested using a   Wald test of 

.  Results indicated significant clustering effects, validating the need to use 

hierarchical linear modeling to model dependency within individuals.  In all regions of interest 

for correct trial performance, ICCs was significantly different than zero.  The ICC estimate for 

the single region of interest (dACC) for error trials was not significantly different from zero (Z = 

1.804, p = 0.071).  After removing points outside of 3 s.d. of the mean percent signal change 

(n=4) (visual inspection of the raw data indicated these were marked outliers), the ICC for the 

dACC was significant (Z = 2.102, p = 0.036).  These visits were excluded from subsequent 

analyses of activity on error trials.  As three of these data points were from individuals with at 

least three visits, removal of these data points were likely to minimize any findings of variability 

in individual means.     

Due to developmental changes in the total number of correct (B = 1.363, t(122) = 7.080, 

p = 0.000) and error trials (B = -1.070, t (122) = -7.759, p = 0.000), the reliability of signal 

estimates from single-subject general linear models changed over development.  Therefore, 

instead of calculating an average of all beta values, a weighted average beta estimates was 

calculated for each ROI that incorporated the standard errors of each voxel estimate as a weight.  

However, this minimally changed ICCs (mean = 0.244, SD = 0.086, range: [0.112, 0.335]), so 

HLM analyses proceeded with unweighted average betas.   
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3.3 MEAN GROWTH CURVES FOR BRAIN FUNCTION 

Table 3 lists AIC values used to guide the selection of unconditional models characterizing the 

shape of growth and the proportion of variance explained by the age term in this model.  Table 5 

lists estimates of fixed effects (intercept, slope), random effects (variance in intercepts, slopes, 

and level one variance), model fit indices (deviance, AIC), and the significance of all these terms 

(level one variance excepted) for all final brain activation models.  Mean growth curves for 

percent signal change in error monitoring regions, one executive control region, and motor 

response control regions are shown in Figure 5.  A schematic summarizing patterns of significant 

growth curve findings (both mean growth curves and variability) is depicted in Figure 6.  
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Table 5: HLM model fitting outcomes for a priori regions of interest 

(Table continued on the next 2 pgs) 

  dlPFC (L) dlPFC (R)  vlPFC (L) vlPFC (R)  dACC (errors) 

      Fixed Effects (Robust SE) 
 

 
 

     Model for Intercept, π0i 
 

 
 

        INTRCPT, β00    
 

-0.0083 
 (0.0018) *** 

0.0048  
(0.0027) + 

0.0048  
(0.0024)* 

0.0285  
(0.0024) *** 

0.0517  
(0.0041) *** 

    SEX‡ , β01 
 

   

0.0030   
(0.0048) 

     IQ‡ , β02  
 

-0.0004  
(0.0002) * 

   

0.0005  
(0.0003) + 

    SEX*IQ‡ , β03  
 

 
 

     Model for Age term slope, π1i 
 

 
inverse age inverse age inverse age inverse age inverse age 

    INTRCPT, β10    
 

0.0502  
(0.1395) 

0.3154  
(0.1495) * 

0.0980  
(0.1220) 

0.1935  
(0.1557) 

-0.7274  
(0.1883) *** 

    SEX‡ , β11   
 

   

-0.8186  
(0.3113) * 

     IQ‡ , β12 
 

 
 

        SEX*IQ‡ , β13  
 

 
 

     Model for Age² slope, π2i 
 

 
 

        INTRCPT, β20    
 

 
 

    Random Effects (Variance Components) 
 

      Var. in individual means,  var(r0) =  
 

0.00008 + 0.00044 *** 0.00023 *** 0.00027 ** 0.00059 + 

  Var. in slopes, var(r1) =  
 

0.26576 0.46675 0.22957 + 0.13754 * 0.44370 

  Var. in Age² slopes, var(r2) =  
 

 
 

    

  Var. within individuals, var(et) =  
 

0.00068 0.00062 0.00085 0.00090 0.00251 

      No. of parameters 
 

7 6 6 8 7 

Deviance (FIML) 
 

-1294.426 -1248.269 -1222.828 -1190.973 -862.987 

AIC 
 

-1280.426 -1236.269 -1210.828 -1174.973 -848.987 

No. Fixed effect 
 

3 2 2 4 3 

No. Random effects 
 

4 4 4 4 4 

  
*** Significant at p < 0.001, ** Significant at p < 0.01, * Significant at p < 0.05, + Trend, significant at p < 0.10  
‡ Predictor centered so that 0 reflects the grand mean; in the cae of sex, a weight was created for each sex so that the sum of all codes 
across all participants was zero  
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Table 5: (ctd) HLM model fitting outcomes for a priori regions of interest 

  SEF preSMA FEF (L) FEF (R)  

     Fixed Effects (Robust SE) 
 

     Model for Intercept, π0i 
 

        INTRCPT, β00    
 

0.0501  
(0.0034)*** 

0.0636  
(0.0035) *** 

0.0467  
(0.0032) *** 

0.0642  
(0.0027) *** 

    SEX‡ , β01 
 

-0.0052  
(0.0068) 

0.0078  
(0.0071) 

 

0.0001  
(0.0055) 

    IQ‡ , β02  
 

     Model for Age term slope, π1i 
 

age 
 

inverse age 
 

age 
 

inverse age 
 

    INTRCPT, β10    
 

0.0001  
(0.0008) 

0.1034  
(0.2456) 

-0.0002  
(0.0006) 

0.2389  
(0.1937) 

    SEX‡ , β11   
 

0.0043 
 (0.0015) ** 

-1.0896  
(0.4913) * 

 

-1.011 
 (0.3875) * 

    IQ‡ , β12 
 

     Model for Age² slope, π2i 
 

        INTRCPT, β20    
 

  

0.0003  
(0.0001) * 

 Random Effects (Variance Components) 
 

      Var. in individual means,  var(r0) =  
 

0.00074 *** 
 

0.00064 *** 
 

0.00055 *** 
 

0.00030 ** 
 

  Var. in slopes, var(r1) =  
 

0.00000 * 
 

1.57311 ** 
 

0.00001 
 

0.94294 * 
 

  Var. in Age² slopes, var(r2) =  
 

  

0.00000 
 

   Var. within individuals, var(et) =  
 

0.00152 
 

0.00143 
 

0.00054 
 

0.00103 
 

     No. of parameters 
 

8 
 

8 
 

10 
 

8 
 

Deviance (FIML) 
 

-1013.671 
 

-1007.677 
 

-1264.205 
 

-1132.213 
 

AIC 
 

-997.671 
 

-991.677 
 

-1244.205 
 

-1116.213 
 

No. Fixed effects 
 

4 
 

4 
 

3 
 

4 
 

No. Random effects 
 

4 
 

4 
 

7 
 

4 
 

*** Significant at p < 0.001, ** Significant at p < 0.01, * Significant at p < 0.05, + Trend, significant at p < 0.10 
‡ Predictor centered so that 0 reflects the grand mean; in the cae of sex, a weight was created for each sex so that 
the sum of all codes across all participants was zero  
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Table 5: (ctd) HLM model fitting outcomes for a priori regions of interest 

 

  putamen (L) putamen (R)  pPC (L) pPC (R)  

     Fixed Effects (Robust SE) 
 

     Model for Intercept, π0i 
 

        INTRCPT, β00    
 

0.0417  
(0.0022) *** 

0.0321  
(0.0021) *** 

0.0516 
 (0.0027) *** 

0.0533  
(0.0031) *** 

    SEX‡ , β01 
 

        IQ‡ , β02  
 

  

-0.0003  
(0.0002) 

-0.0006  
(0.0002) * 

 Model for Age term slope, π1i 
 

age 
 

age 
 

age 
 

inverse age 
 

    INTRCPT, β10    
 

0.0004  
(0.0005) 

-0.0001  
(0.0005) 

-0.0003  
(0.0007) 

0.1137 
 (0.1889) 

    SEX‡ , β11   
 

        IQ‡ , β12 
 

  

0.0001  
(0.00005) + 

  Model for Age² slope, π2i 
 

        INTRCPT, β20    
 

    Random Effects (Variance Components) 
 

      Var. in individual means,  var(r0) =  
 

0.00023 * 
 

0.00020 * 
 

0.00044 *** 
 

0.00057 *** 
 

  Var. in slopes, var(r1) =  
 

0.00000 * 
 

0.00000 + 
 

0.00001 ** 
 

0.89928 *** 
 

  Var. in Age² slopes, var(r2) =  
 

      Var. within individuals, var(et) =  
 

0.00086 
 

0.00074 
 

0.00068 
 

0.00086 
 

     No. of parameters 
 

6 
 

6 
 

8 
 

7 
 

Deviance (FIML) 
 

-1214.854 
 

-1258.914 
 

-1226.630 
 

-1147.884 
 

AIC 
 

-1202.854 
 

-1246.914 
 

-1210.630 
 

-1133.884 
 

No. Fixed effect 
 

2 
 

2 
 

4 
 

3 
 

No. Random effects 
 

4 
 

4 
 

4 
 

4 
 

*** Significant at p < 0.001, ** Significant at p < 0.01, * Significant at p < 0.05, + Trend, significant at p < 0.10 

‡ Predictor centered so that 0 reflects the grand mean; in the cae of sex, a weight was created for each sex so that 
the sum of all codes across all participants was zero  
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Figure 5: Mean growth curves depicting percent signal change in regions of interest 

(A) Percent signal change increases significantly with age in a region associated with error monitoring –the dorsal 
anterior cingulate cortex (dACC) during error trials.  (B) Among executive control regions during correct trials, only 
the right dorsolateral prefrontal cortex (dlPFC) demonstrates significant changes in activity with age.  (C) Mean 
growth curve for all motor response control regions during correct trials.  With one exception, these regions are 
engaged consistently throughout development.    
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Figure 6: Schematic summariing patterns among growth curve findings across all regions of interest 

Blue highlighting codes the error monitoring region, orange highlighting the executive control regions, and pink the 
motor response control regions.  Each stylized graph conveys the best fitting model of developmental change 
(inverse age, age, or quadratic age), whether growth curve means are significantly different from the zero at the 
mean age of the sample (16.7 years), significance of the growth curve mean slope, significance of variability in 
intercepts, and significance of variability in slopes.  Red and blue lines indicate models for females and males 
respectively in the cases where sex predicts variability in slopes.   
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Brain function in the dACC was best fit by an inverse function.  A significant negative 

slope and a significant positive intercept (i.e., activity at the mean age of the sample, 16.7 years 

as well as in a regression coded at age 11) indicate activity in this region became more positive 

with age.   

In the right dlPFC, a significant positive slope of inverse age indicated magnitudes of 

activity became less positive with age.  While the intercept term for a model centered at age 11 

was significantly different from zero (B = 0.015, t(122) = 3.346, p = 0.001), the intercept at the 

mean age of the sample was only a trend (B = 0.005, t(122)= 1.800, p = 0.072), and the intercept 

at age 23 was not significant (B = -0.000, t(122) = -0.074, p = 0.942), indicating magnitudes of 

activity in this ROI approach zero in adulthood.  Given evidence from other studies indicating 

that error monitoring may signal dlPFC activity, we investigated whether error-related indices 

were related to dlPFC signal estimates on correct trials.  The number of error trials did not 

predict right dlPFPC activity after accounting for the age term (inverse age), t(122) = -1.635, p = 

0.104.  However, dACC activity during error trials was positively associated with right dlPFC 

activity during correct trials, B = 0.1175, t(120) = 3.123, p = 0.003.   

Age effects in the left dlPFC, left vlPFC, and right vlPFC were not significant, but 

different patterns of intercept and slope findings distinguish developmental patterns in these 

three regions.  In the left dlPFC, a positive intercept indicated that activation in this region was 

positive throughout the sampled age range.  In the left vlPFC, age effects were not significant, 

and a non-significant intercept indicated that activation in this region was minimal throughout 

development. 

In the motor response control regions investigated (bilateral putamen, bilateral pPC, 

bilateral FEF, SEF, preSMA), all but one (left FEF), failed to show group mean developmental 
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change in magnitudes of brain activity.  Intercepts in the first seven regions were significant and 

positive, indicating group mean activation in these regions was positive throughout.  An inverse 

function best fit the data in the right pPC, right FEF, and pre-SMA, while a linear function best 

fit data in the putamen bilaterally, left pPC, and SEF.  In the left FEF, AIC indices indicated the 

quadratic model best fit the data and the age squared term was significant.  Intercept at mean age 

of the sample was significant, and a positive quadratic slope term indicated that magnitudes were 

lowest, but still significantly positive in this region during adolescence.   

3.4 VARIABILITY IN GROWTH CURVES FOR BRAIN FUNCTION 

For dACC activity during error trials, there was a trend for significant variability in intercepts of 

individual regressions, and even though IQ explained some of this variability at a trend level, 

there was still remaining trend level variability in intercepts.  There was no significant variability 

in slopes.   

In both bilateral dlPFC and vlPFC, variance at the intercept but not the slope was 

significant, indicating variability across individuals is manifested as parallel slopes.   In the left 

dlPFC, variability in intercepts was significantly predicted by IQ, as higher-IQ individuals 

evidenced lower magnitudes of activity throughout development. The effect size for this 

predictor was 0.111 (pseudo-R² for τ00), and variability in the intercept was only a trend after 

accounting for IQ.  In the left vlPFC, intercepts but not slopes varied significantly, indicating that 

some individuals use this region to a small degree throughout the sampled age range, some do 

not, and others show small deactivations in this region.  Figure 7 depicts the variability in 

intercepts in these three executive control regions. 
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Figure 7: Parallel trajectories in executive control regions 

In the right dlPFC, left dlPFC, left vlPFC, model-fitting indicates significant variability in intercepts but not slopes. 
This pattern is illustrated in the following figure, where the each dashed line depicts a small component of each 
individual’s estimated trajectory in order to convey the range of parallel trajectories.  Red lines denote female 
participants and blue lines denote male participants.  The black line depicts the mean estimated growth curve across 
all individuals.      
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Lastly, despite the lack of main effects of age in the right vlPFC, findings revealed sex 

differences in trajectories.  Trajectories varied in both intercepts and slopes, and findings 

revealed that females showed significant age-related declines (B = 0.568, t(120) = 2.801, p = 

0.006), while males did not (B = -0.211, t(120) = -0.890, p = 0.375).  After accounting for sex, 

significant variability in intercepts and slopes remained indicating that processes other than sex 

are also contributing to variability.    

In all but one motor response control region, both intercepts and slopes varied 

significantly.  A number of regions showed the same developmental pattern of declining 

variability with age, including the left and right putamen, left pPC, and SEF.  This constituted the 

majority of motor response control regions whose variability in slopes was not explained by sex 

(with the exception of right pPC).  This pattern is clear when estimated individual regression 

lines are plotted, as shown in Figure 8.  This is further supported by data indicating τ00 values 

(intercept variance) in all these regions declined from ages 11, 16.7, and 23, and that correlations 

between intercept and slope are highly negative for regions where the age term was modeled and 

highly positive for regions where the inverse age term was modeled (left putamen: r = -0.937, 

right putamen: r = -0.982, left pPC: r = -0.295, SEF: r = 0.913).   In the left FEF, intercepts but 

not slopes varied significantly between groups, indicating that all individuals follow the same U-

shaped pathway. 
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Figure 8: Equifinality in motor response control regions 

Variability declines with age in a subset of motor response control regions, including the bilateral putamen, left pPC, 
and SEF.  Red lines denote individual estimated growth curves for female participants and blue lines for male 
participants.  The black line depicts the mean estimated growth curves across all individuals.       

Males

Females

Mean growth curve
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In both right and left putamen and pPC, neither IQ nor sex predicted variability in either 

intercept or slope.  In the right FEF, SEF, and preSMA, sex but not IQ predicted variability in 

slopes, though significant variability remained after accounting for sex; neither sex nor IQ 

predicted variability in intercepts for these three regions.  Planned follow-up simple effects 

analyses revealed females but not males showed significant developmental declines in all three 

regions, though trends were present for males in some regions  (females: right FEF, B = 0.725, t 

= 3.139, p = 0.003; SEF, B = -0.002, t = -1.922, p = 0.057; preSMA,  B = 0.602, t = 1.883, p = 

0.062; males: right FEF, B = -0.270, t = -0.876, p = 0.383; SEF, B = 0.002, t = 1.880, p = 0.062; 

preSMA, B = -0.415, t = -1.094, p = 0.277).  While there were no sex differences in intercepts at 

the mean age of the sample, analyses with predictors centered at age 11 indicated that females 

showed higher levels of activity in childhood in the SEF (B = -0.030, t = -2.520, p = 0.013) and 

right FEF (B = -0.031, t = -2.556, p = 0.012) and a trend for higher activity in the pre-SMA (B = 

-0.026, t = -1.666, p = 0.098).  Regressions centered at age 23 indicated females showed trend 

levels of lower activity in the SEF (B = 0.022, t = 1.978, p = 0.050) and right FEF (B = 0.017, t = 

1.824, p = 0.070), and significantly lower activity in the preSMA (B = 0.026, t = 2.207, p = 

0.029). Taken together, these three regions are characterized by a pattern in which a negatively 

sloping female trajectory intersects with a stable male trajectory in adolescence and then 

continues to decline in the late adolescent/early adult years.  Sex differences in trajectories for 

this region and the right vlPFC described earlier are depicted in Figure 9. 
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Figure 9: Sex effects 

Significant sex effects are present in a set of regions, mostly those involved in motor response control (indicated by 
pink in the upper left corner; orange denotes executive control regions). Growth curves for each sex and symbols 
indicating significance are in red for females and blue for males.  Black symbols indicate significance of sex 
differences at ages 11 and 23 years, arbitrarily chosen time points that were used probe simple effects of sex in 
childhood and adulthood (*** significant at p < 0.001, ** significant at p < 0.01, * significant at p < 0.05, + trend, 
significant at p < 0.10).   
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3.5 BRAIN-BEHAVIOR RELATIONSHIPS 

To explore whether brain activity was associated with behavioral performance, antisaccade 

performance was regressed on magnitudes of brain activity for each region that showed 

developmental change in brain function: dACC during error trials and right dlPFC, left FEF, and 

bilateral visual cortical activity during correct trials.  Two regressions were run for each region to 

account for the two metrics of behavioral performance: antisaccade error rates and latencies on 

correct trials.  Each regression included a centered inverse age term as a covariate.  Results 

indicated a significant negative association between dACC activity and antisaccade error rates (B 

= -0.674, t =  -4.735, p = 0.000), with increased activity associated with a decline in error rates, 

as depicted in Figure 10.  No significant relationships were found in right dlPFC (B = -0.354, t = 

-1.276, p = 0.205) or left FEF (B = -0.014, t = -0.041, p = 0.967).  In addition, there was no 

significant relationship between any variable and antisaccade latencies on correct trials (dACC: 

t(120) = -0.999, p = 0.320; right dlPFC: t(122) = -0.396, p =  0.692; left FEF: t(122) = 0.376, p = 

0.707; visual cortex: t(122) = -1.301, p = 0.196).  
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Figure 10: Relationship between brain activity and performance in an error monitoring region 

Increased activity in the dACC during error trials is associated with better overall task performance, as indicated by 
lower antisaccade error rates. 
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Both behavior (error rates) and brain function in the dlPFC (left and right), left  vlPFC, 

and left FEF showed significant inter-individual variability in intercepts but not slopes (parallel 

trajectories), so we investigated whether the individuals who performed best on the task 

throughout development were also the individuals that showed the least (or most) brain activity 

in these regions.  This was achieved by using the centered intercept term (the Empirical Bayes 

coefficient) for each individual’s regression of antisaccade error rates on the inverse of age; this 

value was then used as a level-2 predictor of intercept for each of the aforementioned regions of 

interest to investigate whether it significantly predicted intercept variability.  Results indicated 

this variable indicative of relative behavioral performance did not predict brain function (right 

dlPFC: t(121) = -0.729, p = 0.467; left dlPFC: t(121) = -0.727, p = 0.468; left vlPFC: t(121) = -

0.191, p = 0.849; left FEF: t(121) = -0.251, p = 0.803) suggesting that trait-like intrasubject 

variability in task performance is not associated with variability in brain function supporting 

correct responses.   
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4.0  DISCUSSION 

The ability to voluntarily suppress a reflexive response in favor of a planned goal-directed 

response, is central to cognitive control of behavior and has been shown to improve through 

adolescence in tandem with changes in associated brain function.  The aim of this study was to 

extend prior cross-sectional and two time-point studies functional neuroimaging studies of 

inhibitory control, with the goal to characterize normative growth curves of brain activity more 

sensitively, to explore variability in these trajectories, and to examine the role of sex and IQ in 

predicting such variability.  By examining development in a priori regions of interest and 

organizing them into categories according to functional subcomponents of function needed for 

inhibitory control (error monitoring, executive control, and motor response control), we sought 

to highlight patterns within and between functional circuitries that can yield insights into patterns 

of maturation.   

Behavioral results dovetail with cross-sectional findings indicating protracted, nonlinear, 

asymptotic patterns of development that varied across individuals, but were not explained by sex 

or IQ.  Mean growth curves for brain activity revealed no developmental change in motor 

response control regions but developmental changes in dlPFC (executive control) and dACC 

(error monitoring).  An examination of variability revealed that in most brain regions, individuals 

differed in the degree to which they recruited each brain region, and these patterns tended to be 

consistent within regions supporting similar functions. Motor response control regions showed 
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varied slopes across individuals, with most regions showing declines in variability with age.  

Executive control regions showed parallel trajectories over development reflective of preserved 

rank-order stability. Variability was least in the error monitoring region, with only a trend for 

parallel slopes.  Importantly, key motor response control regions and an executive control region 

specific for inhibition showed sex differences in trajectories.  Though on average (across the full 

sample) there was no developmental change in these regions, females but not males showed 

developmental declines in activity, resulting in greater female activity in late childhood.   

4.1 DEVELOPMENTAL IMPROVEMENTS IN COGNITIVE CONTROL 

This is also the only study, to our knowledge, to investigate the development of antisaccade 

performance with a longitudinal design, and our findings converge with existing cross-sectional 

behavioral studies showing age-related improvements in performance that continue through 

adolescence (Fischer, et al., 1997; Fukushima, et al., 2000; C. Klein, 2001; C. Klein & Foerster, 

2001; Luna, Garver, Urban, Lazar, & Sweeney, 2004; Munoz, et al., 1998; Nieuwenhuis, et al., 

1999; Ordaz, et al., 2010; Romine & Reynolds, 2005).  Consistent with these studies, we found 

that the inverse function was the most optimal fit, indicating a rapid improvement from 

childhood through adolescence that subsequently stabilizes into adulthood.  

Behavioral growth curves for error rates varied significantly across individuals, with 

variability in intercepts but not slopes indicating that individual differences are manifested as 

parallel trajectories.  Such a pattern indicates that inhibitory control performance is a stable 

aptitude.  That is, participants who demonstrate highest error rates in childhood will continue to 

demonstrate the worst inhibitory control throughout adolescence and early adulthood.  Further, 
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this variability was not explained by sex or IQ.   The lack of sex differences in performance fits 

with existing cross-sectional studies that consistently indicate no sex differences in antisaccade 

performance in samples of youth (Luna, et al., 2004; Ross, Radant, Young, & Hommer, 1994). 

Similarly, most studies using other metrics of inhibitory control such as the Simon task and 

Stroop task similarly do not find sex differences (Christakou et al., 2009; Daniel, Pelotte, & 

Lewis, 2000; R. Marsh, et al., 2006; Peterson et al., 2002), though exceptions exist (V. 

Anderson, 2001; V. A. Anderson, Anderson, Northam, Jacobs, & Catroppa, 2001).  This study 

had the potential to reveal more difficult to detect age by sex interactions, but our findings 

suggest that these do not exist for antisaccade performance.   That IQ does not modulate 

trajectories provides additional evidence in a conflicted literature where one study  indicates a 

relationship exists between IQ scores and antisaccade performance over development 

(Evdokimidis, et al., 2002), but another does not  (Michel & Anderson, 2009).  This suggests that 

individual differences in processing speed or general cognitive processes do not influence the 

capacity to inhibit during development, nor does enhanced IQ seem to facilitate rapid 

development of inhibitory function, at least starting in late childhood.   

4.2 MEAN GROWTH CURVES 

4.2.1 Enhanced error monitoring supports developmental improvements in performance 

Age related improvements in inhibitory control showing decelerating nonlinear growth could 

either be supported by (1) a gradual increase in the number of brain regions recruited to perform 

the task within key circuitries or (2) changes in a key brain region with co-occuring, similarly 
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nonlinear patterns of maturation (Kail & Ferrer, 2007).  The first explanation is unlikely, as a 

comparable number (if not fewer due to minimized dlPFC use with age) of regions of interest 

were recruited over the course of development – though voxelwise analyses are necessary to 

draw a definitive conclusion.  Rather, results support the latter explanation.  This is based on 

evidence that dACC activity is uniquely correlated with performance, shows a nonlinear pattern 

of developmental change that parallels the decelerating rate of improvement in behavioral 

performance, and continues to mature throughout adolescence.  These characteristics are unique 

to the dACC, distinguishing it from the other two regions of interest to demonstrate 

developmental change (right dlPFC and left FEF).   Importantly, the finding that dACC activity 

increases with age in parallel with age-related declines in error rates fits with the direction of the 

brain-behavior association showing that higher levels of dACC activity during error trials are 

associated with decreased error rates (after accounting for variance explained by age).  The 

dACC functions to monitor performance and its activity results in higher rates of correct 

performance (Carter, et al., 1999), making it a plausible candidate for supporting behavioral 

improvements in performance.    

fMRI studies indicate that the dACC is consistently recruited during error trials preceding 

corrected performance (Menon, et al., 2001; Polli, et al., 2005) and electrophysiological studies 

suggest that it is the primary source of an error-related response occurring 80-180 ms following 

errors (Gehring, Goss, Coles, Meyer, & Donchin, 1993).  While it has been debated whether the 

dACC is specifically involved in error monitoring per se (Garavan, Ross, Kaufman, & Stein, 

2003; Garavan, Ross, Murphy, Roche, & Stein, 2002; Taylor, Stern, & Gehring, 2007) or 

monitoring of conflicting/incompatible responses (Botvinick, Nystrom, Fissell, Carter, & Cohen, 

1999; Braver, Barch, Gray, Molfese, & Snyder, 2001; Carter, et al., 1999; Carter, et al., 1998), 
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the dACC is undoubtedly crucial for adjusting behavior following an unexpected response.  In 

this mixed block/event-related task, antisaccade trials were presented in blocks, meaning that 

variability in task demands (e.g. set switching) did not require participants to regularly alter 

expectations to successfully complete the task.  Rather, the only expected response was an 

antisaccade, and therefore the only unplanned response to be detected by the dACC was an 

erroneous reflexive saccade response.  Because we examined brain activity during only the trials 

where errors were immediately corrected, we know that brain activity reflected an awareness of 

the error (hereafter we will refer to this as error monitoring).  There is also some debate as to 

how the dACC monitors for unexpected responses - whether this is facilitated by general 

processes of arousal, by reactive detection of errors, or proactive evaluative cognitive functions 

(e.g., detecting situations where errors are likely to occur)(Carter, et al., 1998), or some 

combination of these processes (Paus, 2001).  What is important is that dACC activity serves to 

facilitate improved performance on subsequent trials.  Indeed, studies have shown that increase 

dACC activity predicts increases in dlPFC activity and associated response adjustments on the 

subsequent trial (Carter, et al., 1999; Kerns, 2006; Ladouceur, Dahl, & Carter, 2007).   

Previous cross-sectional developmental fMRI studies that have also examined activity in 

the dACC during error trials have similarly reported increases with age (Rubia, et al., 2007; 

Velanova, et al., 2008).  A study by Rubia et al. (2007) showed that adults showed greater dACC 

activity on error trials than a combined child/adolescent group and demonstrated a positive 

correlation between age and magnitudes of activity (Rubia, et al., 2007).  Velanova et al. (2008), 

using the cross-sectional data from the first wave of this study, probed potentially more complex 

patterns of growth by dividing participants into three age groups to reveal that children and 

adolescents did not differ in activity levels, and both showed less activity than adults.  The Rubia 



 60 

et al. (2007) study was only able to identify rectilinear patterns of growth and Velanova et al. 

(2008) findings suggested either a shift from adolescence to adulthood or an accelerating pattern 

of change.  With its substantially increased power and longitudinal design, this study was able to 

significantly detect nonlinear patterns of development, but results indicated decelerated growth 

rather than an accelerated pattern implied by Velanova et al. (2008).  These findings are 

therefore novel because they indicate that the most rapid developmental changes in the dACC 

occur during the late childhood/early adolescent years rather than later in life as had previously 

been suggested.  Early acceleration could be related to the stage of development when multiple 

distributed cortical regions are being connected (via a prefrontally-guided network) while late 

accelerations would imply processes of refinements that occur after prefrontally guided networks 

have been established (Hwang, et al., 2010; Luna, Padmanabhan, & O'Hearn, 2010). Our results 

suggest that the greatest growth is occurring during this period of the establishment of executive 

prefrontal connectivity. Importantly, our findings converge with a large developmental ERP 

study (n = 124) of error-related negativities during a different inhibitory control to indicate a 

nonlinear pattern of growth (Davies, Segalowitz, & Gavin, 2004) as well as a smaller group-

based study indicating marked developmental change in the early adolescent years (Ladouceur, 

et al., 2007).  These results depicting a relatively protracted development of the dACC suggest 

that even though the capacity to monitor performance and use this to inform subsequent behavior 

is available by early adolescence, this capacity continues to mature through early adulthood.   

4.2.2 Right dlPFC may scaffold developmental change 

One remarkable finding from our examination of activity supporting performance on correct 

trials is the constancy of activity across all the regions of interest examined.    The motor 
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response control and most executive control brain regions used by the oldest participants in our 

sample were also used to the same degree by the youngest participants in our sample, implying a 

foundational network that supports access to the ability to generate an executive act of 

voluntarily inhibiting a response.  The right dlPFC, however, showed changes with age as 

magnitudes declined at a decelerating rate from childhood to adolescence, at which point activity 

levels began to level off at adult levels, in which the dlPFC is minimally recruited, if at all. This 

parallels findings that functional networks are in place by adolescence, but are subsequently 

refined into adulthood (Boorman, O'Shea, Sebastian, Rushworth, & Johansen-Berg, 2007; Fair et 

al., 2009; Fair et al., 2007; Hwang, et al., 2010; Olesen, Nagy, Westerberg, & Klingberg, 2003).  

The dlPFC shows increased recruitment with increasing cognitive loads (Kirschen, Chen, 

Schraedley-Desmond, & Desmond, 2005), so less reliance on this region may reflect greater ease 

in engaging effective inhibitory control as the rest of the brain works in a collaborative fashion to 

support cognitive function.  Instead, the role of the dlPFC may be to scaffold change when tasks 

are perceived as difficult and when first learning a new task.  Function may subsequently be 

delegated to more specialized regions or networks as more experience with the task is acquired.  

This is supported by evidence that the dlPFC seems to be involved in general executive control 

processes rather than specific ones (e.g., inhibition, working memory)(Chaddock et al., 2012; 

Chein & Schneider, 2005; Jansma, Ramsey, Slagter, & Kahn, 2001).  Further, experimental 

manipulations via training studies have shown that training in general skills that support 

successful completion of complex tasks (i.e., attend to important task features, manage task 

priorities) produce decreases in right dlPFC activation (Jolles & Crone, 2012; Kerns, 2006; Lee 

et al., 2012; Prakash et al., 2012).  The development of inhibitory control may therefore progress 
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from a reliance upon prefrontal systems to scaffold challenging tasks to a more optimized 

network-wide processing that relieves reliance on more executive regions.    

In light of evidence that error trials elicit the dACC to signal the right dlPFC to increase 

activity on the next trial decreasing overall error rates (Cavanagh, Cohen, & Allen, 2009; Kerns, 

2006; Kerns et al., 2004), it stands to reason that developmental declines in dlPFC activity on 

correct trials may simply reflect developmental declines in the number of corrected error trials.  

Fewer errors may be associated with a fewer “requests” to the dlPFC for assistance.  However, 

the number of error trials was not associated with levels of dlPFC performance.  Intriguingly, 

dACC activity on error trials was positively associated with right dlPFC activity across all 

correct trials, providing preliminary evidence that in childhood and adolescence, the dlPFC may 

enhance its activity as a result of error detected by the dACC.   This fits with the contention that 

dlPFC is generally recruited when faltering or immature function needs to be buttressed.   

4.3 PATTERNS OF VARIABILITY ARE CONSISTENT WITHIN BRAIN 

CIRCUITRIES 

Studies examining variability in developmental trajectories of brain function are exploratory as 

this has not yet been studied with regard to inhibitory control.  Overall, our data indicate that 

patterns of variability are consistent within functional circuitries, with error monitoring regions 

showing minimal variability, most executive control regions showing parallel trajectories across 

individuals, and motor response control regions evidencing declining variability with age.  That 

patterns of developmental change are similar within known functional circuitries may indicate 
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that regions within the same functional circuitries may mature according to similar 

developmental mechanisms.   

4.3.1 Least variability in error monitoring function 

The error monitoring region is the most developmentally invariant, the only region not to 

demonstrate statistically significant variability in either intercepts or slopes.  In light of evidence 

for mean patterns of developmental increases in brain activity and the crucial role of brain 

activity in this region for performance, successful task performance may only occur if error-

monitoring activity is modulated to fall within a narrow, developmentally specific range.  That 

is, the lack of variability in the dACC during errors may reflect its central role in supporting 

developmental improvements in inhibitory control.   

4.3.2 Parallel trajectories in most executive control regions 

In most executive control regions of interest (bilateral dlPFC and left vlPFC), trajectories varied 

significantly in their intercepts but not slopes, suggesting interindividual variability is manifested 

as parallel trajectories.  The implication of this finding is that rank order in percent signal change 

is preserved across individuals – the participants who show the greatest activation during correct 

trials in executive control regions (relative to other participants) during childhood also evidence 

the highest levels of activation in adolescence and adulthood.  This pattern suggests that the 

underlying factors supporting this variability are traits, produce their effects by late childhood, 

and/or are variables that change on similar developmental timetables across all participants.  

When considering what might explain this variability, we considered behavioral performance 
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(error rates), because it also demonstrated this trait-like variability.  That is, we explored whether 

the individuals who perform best on the task are also the ones who show the least (or potentially, 

most) activity on this task?  Results indicating no correspondence between measures indicate that 

individual variability in executive control-related brain activity and behavior are not related.  

Thus, even though evidence suggests that dlPFC is used less in situations where performance is 

better across development,  traits associated with strength of performance is not associated with 

more or less dlPFC usage.  That is, the dlPFC may be “tuned” to the individual.  Importantly, the 

better performers are not necessarily more “efficient” (use less brain activity) or use this network 

to a lesser or greater extent when they can successfully demonstrate inhibitory control.   

Thus the question remains – what contributes to this interindividual variability in brain 

activity, and what are its implications?  IQ and sex did not predict variability in intercepts for 

these executive control regions.  Genetic variability may be a contributing factor. A two-time 

point longitudinal study of brain activity supporting working memory has shown that 

polymorphisms of the gene coding for the catechol-O-methyltransferase enzyme (COMT) was 

associated with different levels of lateral prefrontal cortex signal at different points in 

development (Dumontheil, et al., 2011), but was unable to probe whether this modulated the 

intercepts or slopes of individual differences.  This suggests that dopamine levels that are known 

to affect cognitive processes could modulate overall levels of activity in brain regions during this 

period of development.  Further, individual differences in environmental factors that tend to 

remain stable over the lifetime, such as levels of cognitive stimulation and socioeconomic status, 

are indices of the resources available to a developing brain.  Variation in socioeconomic status 

has been shown to differentiate patterns of activation in frontostriatal regions in adults (Gianaros 

et al., 2011) and may similarly predict variability in brain activity among children.  
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4.3.3 Developmental changes in motor response control regions converge over 

development 

Interestingly, a number of motor response control regions showed a consistent pattern of 

decreasing variability in activation levels with age.  Such a pattern indicates that maturation 

reflects a stabilizing process of convergence.  Early in development individuals begin at different 

levels but they all arrive at the same level of processing in adulthood.  Interestingly our results 

show that even though all individuals show positive levels of activity with development, some 

individuals follow trajectories with negative slopes while other follow positively sloped ones.  

These findings underscore that what occurs over development is a convergence upon the mature 

“destination”, which requires some individuals to increase and others to decrease activity levels 

to get to this point.  This is distinct from a pattern where everyone needs to change activity in the 

same direction (e.g., reduce) but to varying degrees.  Our findings imply that the pathway to 

development differs across individuals, but maturity is characterized by minimal variability 

across individuals as optimal processes are accessed.  These results can help to guide future 

studies by highlighting that plausible developmental factors for explaining variability in motor 

response control regions should be expected to produce greater amounts of variability in 

childhood than in adulthood.  Such factors would be characterized by their capacity to minimize 

variability across individuals, but also to increase activity in some individuals over development 

while decreasing activity in others.  It warrants note that some of the motor response control 

regions did not show a unidirectional change in variability with development (preSMA, right 

FEF, right pPC), but much of this pattern was shaped by sex differences in trajectories that are 

described in the following section.   
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4.4 SEX DIFFERENCES IN GROWTH CURVES 

Despite comparable task performance at all ages, this study revealed sex-specific patterns of 

developmental change in brain function.  These were observed in the right vlPFC, an executive 

control region, and three motor response control regions, SEF, preSMA, and right FEF.  Males 

did not change in levels of activity within the age range studied (late childhood to early 

adulthood), but females showed a nonlinear (decelerating) decline in magnitudes of activity in 

these regions.  Trajectories crossed in late adolescence (between ages 15 and 18), with females 

showing greater magnitudes of activity in late childhood.  That is, females may rely on increased 

activity of inhibitory and eye movement control regions early in development while males more 

similar engagement of these regions through development.  In the context of evidence that both 

sexes show the same decreased recruitment of dACC, these findings may suggest that males and 

females may rely on  different compensatory approaches in other areas of the network.  

Sex differences are well-established for structural neurodevelopment and sex differences 

are similarly minimized during adolescence, but paradoxically, males exhibit steeper increases in 

white matter growth and steeper declines in gray matter than females (De Bellis et al., 2001; 

Giedd, 2004; Giedd, et al., 1999; Giedd, Castellanos, Rajapakse, Vaituzis, & Rapoport, 1997; 

Lenroot, et al., 2007; Perrin et al., 2008), who show earlier maturation of white matter 

microstructure (Asato, et al., 2010; Bava, et al., 2011).  Earlier access to speeded connections in 

females may support the ready access of control regions during development.  There is evidence 

that developmental changes in white matter microstructure are associated with magnitudes of 

brain function supporting executive function (Olesen, et al., 2003) via their effects on network 

integration (Stevens, Skudlarski, Pearlson, & Calhoun, 2009).  Future studies examining the 

relationship between trajectories of white matter maturity (using DTI) and functional activity 
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within each sex can begin to highlight whether structural maturational processes may indeed 

support sex differences in brain function.  

To our knowledge, only one other functional neuroimaging study of executive function 

has examined sex by age interactions in this age group.  This study did find sex differences in 

regions crucial for inhibitory control task performance, with females showing age-related 

increases in left prefrontal regions and males showing age-related increases in right parietal 

regions (Christakou, et al., 2009).  Though our findings also reveal prefrontal developmental 

changes among females, these changes are manifested as declines in prefrontal activity.  Both 

sexes seem to rely on comparable circuitries, but the sexes differ in the degree to which levels of 

activity are modulated over development in frontal regions.  While Christakou et al. (2010) also 

showed developmental modulation, their findings indicate that males and females rely on 

different circuitries, and activity in each circuitry is modulated over the course of development.  

As both studies relied on similar fMRI task designs (mixed block/event-related design), one 

possibility for these different findings is that Christakou’s findings reflect sex differences in 

strategy use.  The antisaccade task is less amenable to strategy use than the Simon and switch 

tasks used by Christakou et al. (2010), which has additional set-shifting demands.   Thus, the sex 

difference recruitment of different circuitries in their study may reflect males’ reliance on spatial 

strategies and females’ reliance on more verbal strategies.  As there were no main effects of sex 

or age in these regions, these findings underscore the importance of evaluating sex by age 

interactions in future studies, if power permits.  Developmental neuroscience studies examining 

sex differences in domains known to demonstrate robust sex differences (e.g., language, spatial 

functioning) at the behavioral level have similarly shown that sex differences are not readily 

apparent as main effects, but rather as different patterns of development (Plante, Schmithorst, 
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Holland, & Byars, 2006; Roberts & Bell, 2000; Schmithorst & Holland, 2006).  We have only 

sampled the late years of childhood and the early years of adulthood, but it would be valuable to 

explore when in childhood these sex differences emerge and whether they eventually converge in 

adulthood.  

4.5 FUTURE DIRECTIONS 

We examined brain activity controlling for performance (e.g., brain activity associated with only 

correct performance), but because performance changed with development, the reliability of our 

estimates of brain activity changed with development.  This was particularly true for estimates of 

error-related brain activity, as error rates approached 20% in adulthood.  While this did not seem 

to impact our results (as indicated by minimal change in ICCs for weighted and unweighted 

betas), this nonetheless may have resulted in a differing subjective experience (difficulty, 

frustration, reward) across development, as children’s correct trials occurred in the context of 

more error trials.  A follow-up study could extend our investigation of error performance by 

combining the event-related component of our fMRI paradigm with a task that titrates 

performance to be equivalent across all ages (Rubia, et al., 2003).  This could provide a firm 

basis of support to our finding that variability during dACC errors is different that all other 

regions during correct trials.  Our findings indicate that the most rapid period of developmental 

change occur during early adolescence, so this and other studies probing brain function 

associated with error monitoring may want to oversample participants in the early adolescent age 

range to most sensitively characterize the processes of change.  



 69 

It would also be valuable to expand upon these initial sex difference findings by 

extending the age range sampled.  Modeling developmental trajectories that begin at an earlier 

age could reveal whether males experience developmental changes at an earlier age than females, 

or whether they simply do not show developmental changes in these regions.  In addition, future 

studies examining changes at the voxelwise level would allow us to explore whether female 

developmental declines in brain activity may be associated with developmental increase in brain 

activity in other regions within the brain.  Understanding sex differences in inhibitory function 

has important implications for clarifying sex differences in rates of onset of psychopathology 

which emerges at this time (Hankin & Abramson, 2001). 

Despite finding evidence for variability in trajectories, sex and IQ only explained a small 

proportion of the individual differences found.  Future studies that investigate other predictors of 

brain function in this age group may investigate a range of genetic and environmental influence 

that can explain individual differences that are particularly strong in regions involved in 

executive control and motor response control circuits but not dorsal ACC.  Such predictors 

should also be able to explain developmental change in patterns of variability as have been 

described.  Twin research suggests both genetic and environmental factors contribute to variation 

in brain activity, as estimates of heritability supporting brain activity associated with executive 

function are around 40 – 65% in adults (Blokland et al., 2008).  Potential genetic moderators of 

brain system function may include genotypes influencing dopamine availability in executive 

control and motor response control regions, including COMT and DAT1 (Congdon, Constable, 

Lesch, & Canli, 2009; Green, Kraemer, DeYoung, Fossella, & Gray, 2012; Mier, Kirsch, & 

Meyer-Lindenberg, 2010).  Indeed, the aforementioned longitudinal study examining working 

memory – the only other known study examining moderators of brain function for any executive 
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function – found that COMT genotype interacted with age in the parietal and prefrontal cortices, 

and individuals with allele associated with poorer cognitive control showed developmental 

changes in activity (Dumontheil, et al., 2011).  Relevant environmental variables may include 

socioeconomic status, a metric of the extent of resources available to an individual and a proxy 

for cognitive stimulation (McLoyd, 1998).  Parenting style is another environmental variable that 

has known effects on inhibitory control abilities early in life (Moilanen, Shaw, Dishion, Gardner, 

& Wilson, 2009) and may affect trajectories of associated brain activity in more subtle ways.    

We found some trends for IQ to moderate trajectories of inhibitory control, which merits 

further investigation in light of a research literature that exists showing that higher-IQ 

individuals rely on task circuitries that are more specialized for task performance (Neubauer & 

Fink, 2009; Schmithorst & Holland, 2006, 2007; van den Heuvel, Stam, Kahn, & Hulshoff Pol, 

2009). Our results suggest that higher IQ individuals may show a greater reliance on regions that 

optimize performance (dACC) and less reliance on frontoparietal regions.  Further, these patterns 

tend to be present throughout development, consistent with evidence from the structural 

neuroimaging literature that different trajectories of brain structure are present in early 

childhood.  Future studies are needed to verify these results.    

In this study we have examined transient brain activity associated with trial-by-trial 

performance in individual brain regions.  To expand past these boundaries, functional 

connectivity approaches could be used to examine patterns of associations between individual 

brain regions.  Developmental research examining functional connectivity has revealed system-

wide patterns of network remodeling throughout the brain (Hwang, et al., 2010).  Specifically, 

this has revealed that from childhood to adolescence, there is an increase in connectivity with 

parietal regions and the subsequent transition from adolescence to adulthood is marked by a 
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decrease in parietal connectivity and an increase in prefrontal connectivity.  Longitudinal studies 

could highlight the most rapid periods of change in the network.  Such studies could also reveal 

when, if at all, sex of IQ differences in patterns of connectivity supporting inhibitory control 

emerge, as both factors have been shown to support developmental changes in language 

processing (Schmithorst & Holland, 2006, 2007) and reveal whether there are sex differences in 

patterns of connectivity revealed.  Future studies should also characterize trajectories of 

sustained activity supporting task performance.  A specific network exists that controls goal-

directed behavior by actively maintaining a configuration of cognitive processes for an extended 

period of time.  This enables the availability of a set of “rules” that can quickly guide transient 

operations that must occur upon the appearance of stimuli (Dosenbach et al., 2006).  A cross-

sectional developmental study has revealed that sustained activity in regions supporting an 

inhibitory task set continues to improve from childhood to adulthood (Velanova, et al., 2009), 

and a subsequent longitudinal study could uncover exact patterns of development and highlight 

whether variability exists.  As we found limited variability in the latest-maturing region, it would 

be valuable to explore whether a limited pattern of variability is also evident for another type of 

late-maturing activity.   

Lastly, the antisaccade task has been demonstrated to be a useful endophenotype that can 

indicate risk for psychopathology, as relatives of individuals with psychopathology (e.g., 

schizophrenia) show impaired behavioral performance (Calkins, Curtis, Iacono, & Grove, 2004; 

Ettinger et al., 2006; Lennertz et al., 2012; Malone & Iacono, 2002; Mazhari et al., 2011; Radant 

et al., 2010; Radant et al., 2007) and performance on this task is heritable (Malone & Iacono, 

2002; Radant, et al., 2010).  Further, longitudinal studies of behavior and brains structure 

following healthy, at-risk, and disordered patients through childhood and adolescence have 
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demonstrated that such designs can reveal how trajectories of endophenotypes may go awry 

(Rachel Marsh, Gerber, & Peterson, 2008; Shaw et al., 2007; Shaw et al., 2009).  By 

characterizing whether pathways are parallel throughout development (i.e., an early deficit that 

persists) or whether there is a sensitive period during which trajectories diverge, longitudinal 

studies of endophenotypes can reveal the process by which psychopathologies emerge.  This 

study indicates that brain activity supporting error monitoring of inhibitory control performance 

may be a particularly sensitive endophenotype for characterizing risk for psychopathology 

during childhood and early adolescence.  Thus, it would be valuable to prospectively follow 

healthy controls and individuals at high risk for developing schizophrenia (or other 

psychopathologies where inhibitory control is impaired) to explore when exactly and how 

trajectories of brain function supporting error monitoring diverge in adolescence.    

4.6 IMPLICATIONS AND GENERALIZABILITY 

One important perspective when considering the implications of these results is to consider their 

generalizability.  We selected the antisaccade task because of its unique qualities that minimize 

its susceptibility to developmental confounds and its capacity to probe brain behavior 

relationships.  While we recognize that this task is only a proxy for complex real-life situations, 

it is valuable for probing the integrity of the brain systems that are necessary to demonstrate 

inhibitory control in these real-life situations.  In addition, these results are relevant for inhibitory 

control in general because we selected to analyze a priori regions of interest that previous meta-

analyses and other developmental inhibitory studies have shown to be active across inhibitory 

control tasks (Swick, et al., 2011).  Thus, while different inhibitory control tasks also elicit 
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distinct patterns of brain activation, the existence of a core set of inhibitory control brain regions 

supports our contention that these results can speak to general developmental changes in 

inhibitory control that are relevant to understanding behavior in complex, real-life situations.   
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