Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

SCREENING INTERACTIONS BETWEEN PROTEINS AND DISORDERED PEPTIDES BY A NOVEL COMPUTATIONAL METHOD

Zhang, Weiyi (2013) SCREENING INTERACTIONS BETWEEN PROTEINS AND DISORDERED PEPTIDES BY A NOVEL COMPUTATIONAL METHOD. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

[img]
Preview
PDF (Weiyi Zhang EDT)
Primary Text

Download (3MB) | Preview

Abstract

Concerted interactions between proteins in cells form the basis of most biological processes. Biophysicists study protein–protein association by measuring thermodynamic and kinetic properties. Naively, strong binding affinity should be preferred in protein–protein binding to conduct certain biological functions. However, evidence shows that regulatory interactions, such as those between adapter proteins and intrinsically disordered proteins, communicate via low affinity but high complementarity interactions. PDZ domains are one class of adapters that bind linear disordered peptides, which play key roles in signaling pathways. The misregulation of these signals has been implicated in the progression of human cancers. To understand the underlying mechanism of protein-peptide binding interactions and to predict new interactions, in this thesis I have developed: (a) a unique biophysical-derived model to estimate their binding free energy; (b) a novel semi-flexible structure-based method to dock disordered peptides to PDZ domains; (c) predictions of the peptide binding landscape; and, (d) an automated algorithm and web-interface to predict the likelihood that a given linear sequence of amino acids binds to a specific PDZ domain. The docking method, PepDock, takes a peptide sequence and a PDZ protein structure as input, and outputs docked conformations and their corresponding binding affinity estimation, including their optimal free energy pathway. We have applied PepDock to screen several PDZ protein domains. The results not only validated the capabilities of PepDock to accurately discriminate interactions, but also explored the underlying binding mechanism. Specifically, I showed that interactions followed downhill free energy pathways, reconciling a relatively fast association mechanism of intrinsically disordered peptides. The pathways are such that initially the peptide’s C-terminal motif binds non-specifically, forming a weak intermediate, whereas specific binding is achieved only by a subsequent network of contacts (7–9 residues in total). This mechanism allows peptides to quickly probe PDZ domains, rapidly releasing those that do not attain sufficient affinity during binding. Further kinetic analysis indicates that disorder enhanced the specificity of promiscuous interactions between proteins and peptides, while achieving association rates comparable to interactions between ordered proteins.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: University of Pittsburgh ETD
Status: Unpublished
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Zhang, Weiyiwez21@pitt.eduWEZ21
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairCamacho, Carlosccamacho@pitt.eduCCAMACHO
Committee CoChairWu, Xiao-Lunxlwu@pitt.eduXLWU
Committee MemberRoskies, Ralphroskies@psc.edu
Committee MemberZuckerman, Danielddmmzz@pitt.eduDDMMZZ
Committee MemberSnoke, Davidsnoke@pitt.eduSNOKE
Committee MemberSavinov, Vladimirvladimirsavinov@gmail.com
Date: 18 October 2013
Date Type: Publication
Defense Date: 24 April 2013
Approval Date: 18 October 2013
Submission Date: 30 May 2013
Access Restriction: No restriction; Release the ETD for access worldwide immediately.
Number of Pages: 128
Institution: University of Pittsburgh
Schools and Programs: Dietrich School of Arts and Sciences > Physics
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: Scaffold Protein, Disordered Protein, Signal Transduction, Free energy, PDZ Domain, Computational Method
Date Deposited: 18 Oct 2013 15:01
Last Modified: 15 Nov 2016 14:12
URI: http://d-scholarship.pitt.edu/id/eprint/18823

Metrics

Monthly Views for the past 3 years

Plum Analytics


Actions (login required)

View Item View Item