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Abstract

Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also
exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure
ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could
provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are
useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE)
models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a
hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer
formation. The relationship between pressure and the course of ulcer formation, as well as several other important
characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was
calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to
data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with
SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation.
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Introduction

In the United States, it is estimated that approximately 250,000

people live with spinal cord injury (SCI). Approximately 12,000

new cases occur each year [1], with total direct costs for treating all

cases of SCI exceeding $7 billion annually [2,3]. Pressure ulcers

are common, costly and life-threatening complications for people

with SCI. The prevalence of pressure ulcers in people with SCI is

estimated to range from 8% to as high as 33% [4]. Post-SCI

pressure ulcers are caused by a combination of impaired sensation,

reduced mobility, muscle atrophy, as well as reduced vascularity

and perfusion [5]. The current consensus is that pressure alone or

pressure in combination with shear force cause localized injury to

the skin and/or underlying tissue, usually over a bony prominence

[6]. Several pathways have been identified for pressure/shear-

induced ulceration, the major one being tissue ischemia.

Prolonged tissue ischemia may cause inflammation, necrosis, and

the eventual formation of a pressure ulcer [7,8]. Tissue inflamma-

tion is the common physiological reaction caused by tissue ischemia

before necrosis occurs. We have focused our attention on this

complex biological process. Inflammation is a central, modulating

process in many complex diseases (e.g. sepsis, infectious disease,

trauma, and wound healing), and is a central driver of the

physiology of people with SCI [9–12]. However, inflammation is

not an inherently detrimental process: properly regulated inflam-

mation is required for successful immune response and wound

healing [9,13,14]. Inflammation is a prototypical complex, nonlin-

ear biological process that has defied reductionist, linear approaches

[15–18]. Dynamic computational simulations, including ordinary

differential equation (ODE)- and agent-based models (ABM), have

been employed to gain insights into inflammation. These simula-

tions have been useful in integrating mechanistic information and

predicting qualitative and quantitative aspects of the inflammatory/

wound healing response [19–22]. The purpose of the present study

was to integrate blood flow data and the process of skin injury,

inflammation, and healing using a hybrid model that combines

ABM and ODE into a single computational model.

Agent-based modeling is an object-oriented, rule-based, dis-

crete-event method of constructing computational models, and

this technique can be used to model complex biological systems in

which the behavior of individual components/agents, as well as

pattern formation and spatial considerations are important [23].

Systems of ODE are well-suited for describing processes (or

physiological responses) that can be approximated as well-mixed
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systems [22–26]. Modeling with differential equations (ordinary or

partial) is the most widely used method of mathematical modeling.

The main advantage of this approach is that there is a well-

developed mathematical theory of differential equations which

helps to analyze such equations and in some cases completely solve

them [23,25,26]. To model a complex biological system as an

ABM, the system is divided into small computational units

(‘‘agents’’), with each agent obeying a set of rules that define the

behavior of this agent. These simple rules, performed stochastically

by agents in the model, lead to a complex, often emergent

behavior of the system as a whole. In many cases, agents need only

local information on the state of the system, rather than being

affected by the global system state. As such, ABM’s are particularly

well suited to representing the transition between mechanisms at

one scale of organization to behavior observed at another. The

object-rule emphasis of an ABM greatly simplifies the process of

model construction without loss of important features in the

system, and also allows for modeling biological processes that are

known to have both local and global features [23].

Our primary goal in this study was to gain translationally-useful

insights into post-SCI pressure ulcer formation using dynamic,

mechanistic computational modeling. However, several issues exist

with the use of either ABM’s or ODE’s alone in modeling the pressure

ulcer formation. It is difficult to analyze the output of ABM’s in order

to derive insights into qualitative regimes or primary drivers of

outcome. In addition, simulating ABM’s is more computationally

intensive than simulating ODE-based models. On the other hand,

real-life systems are often too complex to be modeled using only ODE,

and the corresponding equation-based models may become too

complicated to carry out practically useful results. Hybrid modeling is

an emerging technique that involves combining diverse types of

computational models into a single simulation [27–29]. In this

approach, ODE can be used to define certain agent rules (low-level

details), and ABM to describe the behavior of the high-level

components of our system. In the present study, we utilized ODE to

model properties tissue ischemia, and an ABM to model the

stochastic, pressure-driven ulcer formation behavior in people with

and without SCI. Using this approach, we find that a model calibrated

with blood flow data predicted a higher propensity to form ulcers in

response to pressure in SCI patients vs. non-injured control subjects.

Methods

Experiment of reactive hyperemia
The skin blood flow data used for computing the parameters of

the differential equation model were collected from 12 adults (six

with SCI and six without). This study was approved by the

University of Pittsburgh Institutional Review Board (IRB#
PRO08060015), and was carried out after obtaining informed

consent from the participants. The age range of the subjects

recruited for this study was 20–50 years old. The actual age in

each group was: subjects with spinal cord injury (26, 27, 35, 35, 43,

48 years old); subjects without any neurological deficits (21, 25, 29,

35, 36, 44 years old). There was no statistically significant

difference in age between the two cohorts of subjects (data not

shown). For people with SCI, only those with ASIA [30], a scale

for classification of spinal injury, grade A and B, one-year post-

injury and non-ambulatory are recruited. The reactive hyperemic

response was induced with 60 mmHg of pressure for 20 min on

the sacral skin, with the participants lying on their stomach on a

mat table. A laser Doppler probe was located at the center of the

indenter to collect the skin blood flow. Instrumentation details are

published previously [31]. A sample blood flow data collected in

the experiment is demonstrated in Figure S1. The raw blood flow

data of all tested subjects are provided in Dataset S1 and the plots

of these data are shown in Dataset S2.

The hybrid model utilized in our study is comprised of an ABM

of skin/muscle injury, inflammation, and ulcer formation along

with an ODE model of blood flow and reactive hyperemia. The

ABM portion of the model comprises interactions among oxygen,

pro-inflammatory elements, anti-inflammatory elements, and skin

damage, with realistic predictions of the pattern, size, and

progression of pressure ulcers. All rules of this ABM were

generated based on literature reviews and previously-described

ABM’s of diabetic foot ulcer formation [21] and simplified

pressure ulcer formation [32]. The ODE portion of the model

simulates the ischemia-induced reactive hyperemic response, and

is derived from a previous circuit model [33]. Figure 1 shows the

model representation of the pressure ulcer formation.

Figures 2A&B depict the model components and their interactions

within the hybrid model, with the solid rectangles, ellipses and

arrows representing the components of the ABM portion and the

dashed ellipse and arrows representing the components of the

ODE portion of the model.

Agent-based model of pressure ulcer formation
The ABM portion of the model is based on our previously-

developed models [21,32]. This ABM is a simplified model that

simulates inflammation and reactive hyperemic response (as the

result of applied pressure) in a small segment of tissue (epithelial

cells in the model). We implemented this ABM in SPARK (Simple

Platform for Agent-based Representation of Knowledge; freely

downloadable at http://www.pitt.edu/,cirm/spark) [34], follow-

ing an extensive process of literature search and creation of

graphical diagrams that incorporate known biological influences

[20,35,36]. From such diagrams and based on our prior work on

modeling of the formation of diabetic foot ulcers [21], we

constructed rules by which individual agents (e.g. cells or

cytokines) interact with each other and bring about biological

effects. The ABM portion of the model consists of key cells and

diffusible inflammatory signals assumed to be involved in the

process of formation of a pressure ulcer. A similarly parsimonious

approach was used to construct the rules and relationship among

agents, with the goal of generating a high-level view of the process

of pressure ulcer formation. The components and inter-relation-

ships among the agents and variables of the pressure ulcer ABM

are presented in Figure 2. Importantly, our model adheres to our

prior work on the importance of the positive feedback loop of

tissue damage/dysfunctionRinflammationRtissue damage/dys-

function [22,25].

Author Summary

Pressure ulcers are costly and life-threatening complica-
tions for people with spinal cord injury (SCI). To gain
insight into the pathogenesis and effective treatment of
post-SCI pressure ulcers, we constructed a computer
simulation in a hybrid modeling platform which combines
both equation- and agent-based models. The model was
calibrated using skin blood flow data and reactive
hyperemia in response to pressure and predicted a higher
propensity to form ulcers in response to pressure in people
with SCI vs. non-injured control subjects. The methodol-
ogy we present in the paper may eventually be used as a
novel platform to study post-SCI ulcer formation, as well as
serving as a framework for other biological contexts in
which agent-based models and mathematical equations
can be integrated.

Modeling Hyperemia and Pressure Ulcer Formation

PLOS Computational Biology | www.ploscompbiol.org 2 May 2013 | Volume 9 | Issue 5 | e1003070



The main components of the ABM portion of the model are:

structural/functional skin cell (nominally epithelial cells); inflam-

matory cells (nominally macrophages); blood vessels; an aggregate

pro-inflammatory cytokine agent (nominally TNF-a); an aggregate

anti-inflammatory/pro-healing cytokine (nominally TGF-b1); and

oxygen.

These agents interact according to the following rules. Epithelial

cells are damaged by applied pressure. A damaged epithelial cell

produces TNF-a. Epithelial cells also are damaged by excessive

amount of TNF-a. A severely damaged epithelial cell dies. An

epithelial cell can be healed by TGF-b1, and the healing rate is

proportional to the amount of oxygen at the position of the

epithelial cell.

Macrophages are attracted by TNF-a, and they also produce

TNF-a and TGF-b1. Each macrophage has a fixed lifespan

(measured in simulation steps) and a macrophage dies after several

simulation steps.

Blood vessels create new macrophages and release oxygen. The

rate of macrophage production and oxygen release depends on the

amount of blood flowing through a blood vessel. The ODE

portion of the model (see below) is incorporated into blood vessel

rules, which specify how the oxygen is produced. Blood flow

depends on the pressure applied on a blood vessel. A blood vessel

dies if the surrounding epithelial cells die.

There are also global model rules which specify how oxygen,

TNF-a, and TGF-b1 diffuse and evaporate.

Physical pressure in ABM portion of the model is applied

periodically. More specifically, the pressure is applied for a fixed

period of time. The pressure is then released for the same amount

of time, and the process repeats. A specific model parameter

(called Pressure Interval) specifies the pressure time interval.

A detailed description of ABM rules and parameters is given in

Text S1.

Ordinary differential equation model of ischemia-
induced hyperemia

Ischemia-induced hyperemia (the reactive hyperemic response)

is a sudden increase in skin blood flow following tissue ischemia

[37]. Hyperemia is a normal physiological response that can be

easily induced with non-damaging ischemic events, and it has been

used in numerous fields to examine endothelial function [38] and

vascular activity [39]. We incorporated an ODE model of reactive

hyperemia into the pre-existing ABM of ulceration in order to link

measurable parameters of reactive hyperemia to the process of

ulceration induced by repeated cycles of pressure and ischemia/

reperfusion. To do so, we adopted the ODE-based circuit model of

de Mul et al [40]. These authors suggested that the reactive

hyperemic response could be modeled as the circuit shown at

Figure 3, with R (resistance) representing vascular resistance, C

(capacitance) representing vessel compliance, V(t) representing the

input blood flow pressure, and I (current) representing blood flow.

I2(t) represents the skin blood flow (specifically, reactive hyperemia)

as measured using a laser Doppler flowmetry system.

The ODE system derived from the circuit model has the

following form

dI1(t)

dt
~

1

R1

� �
dV(t)

dt
{

I5(t)

C1

� �
,

dI2(t)

dt
~

1

R2

� �
I5(t)

C1
{

I6(t)

C2

� �
,

I3(t)~
1

R3

� �
V(t){R1I1(t){R2I2(t)ð Þ,

I4(t)~
1

R4

� �
V(t){R1I1(t)ð Þ,

I5(t)~I1(t){I2(t){I4(t),

I6(t)~I2(t){I3(t):

Note that here we have only two differential equations for I1(t)

and I2(t). I3(t), I4(t), I5(t), and I6(t) can be algebraically eliminated.

We are interested in modeling a situation when an occlusion

occurs in the input blood flow due to application of an external

pressure. De Mul et al [40] model such a situation by considering

the following stepwise input blood flow function

V(t)~
V0, when t§0,

0, when tv0:

�

Here V0 is the aortic pressure. Based on this expression of V(t), an

explicit solution for I2(t) can be derived with initial conditions

I1(0) = I2(0) = 0. This solution has the following form

I2(t)~I2,rest 1za exp({p1t)zb exp({p2t)ð Þ:

Here I2,rest, a, b, p1, and p2 are constants expressed in terms of R1,

R2, R3, R4, C1, C2, V0.

We used this explicit solution for I2(t) for finding parameter

values of the circuit model (the ODE portion of the model) based

on available blood flow experimental data. In our agent-based

simulations, the input blood pressure was a periodic function. In

order to obtain the blood flow in these simulations, we used the

ODE explicitly in our ABM.

Model implementation in SPARK
The main components of SPARK models are Space, Data Layers,

Agents, and the Observer [34]. Space is analogous to the physical

space, and provides a context within which the model evolves.

Data Layers provide a convenient way of tracking variables in space.

Data layers update in time simultaneously at all positions. This is a

computationally efficient way of handling processes such as

Figure 1. Hybrid model of pressure ulcer formation. The model
representation of the pressure ulcer formation process is shown.
doi:10.1371/journal.pcbi.1003070.g001

Modeling Hyperemia and Pressure Ulcer Formation
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Figure 2. Components of the hybrid model of pressure ulcer formation. Panel (A) shows interactions between main components of the
model. Panel (B) demonstrates the connection between ODE and ABM portions of the model. Geometric shapes represent model components.
Arrows show interactions between components. ‘‘Mac’’ in the figure represents inflammatory cells (nominally macrophages).
doi:10.1371/journal.pcbi.1003070.g002
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diffusion and evaporation without employing an agent at each

position to carry out the calculation. Agents can move, perform

functions, interact with each other, and also interact with the space

they occupy. Each agent has a set of behaviors and rules of action.

The Observer contains information about space and all agents in the

model. We extended SPARK with a feature for simple incorpo-

ration of ODE into an ABM. Epithelial cells, blood vessels, and

macrophages were implemented as agents in SPARK. Oxygen,

TNF-a, and TGF-b1 were implemented as data layers in SPARK.

Pressure was implemented as a global model variable that

periodically changes during the model simulation process.

The ODE portion of the model is integrated into the code of

blood vessel agents. The following example shows how ODE’s

were added into SPARK-PL code:

equations

[

I4=(V - R1 * I1)/R4

I3=(V - R1 * I1 - R2 * I2)/R3

I5=I1 - I2 - I4

I6=I2 - I3

Dt I1=(dV - I5/C1)/R1

Dt I2=(I5/C1 - I6/C2)/R2

]

All variables in the example above are local variables of a blood

vessel agent. Equations describe the evaluation of these variables

in time. Each time step, the equation is integrated on the interval

[t1, t1+dt], where t1 is the current simulation time and dt is the

global parameter which specifies the time step. The output values

of the equations are used in other rules defined for a blood vessel

agent.

V represents the input blood pressure which is a periodic

function in our simulations which depends on three parameters:

V(t)~
Vmin, when 2kTpƒtƒ(2kz1)Tp,

Vmax, when (2kz1)Tpvtv(2kz2)Tp:

�

Here, Vmax and Vmin represent maximal and minimal blood

pressures respectively; Tp is the pressure interval parameter of the

model; k = 0,1,2, etc; t is the number of simulation ticks. In other

words, we set V = Vmin when the external pressure is applied and

V = Vmax when the external pressure is released. The SPARK

source codes of this hybrid model are provided in Dataset S3.

Results

Fitting reactive hyperemia parameters
The ODE-based portion of the model was fit to data on blood

flow for two different groups of subjects: a control group (CTRL)

and an SCI group, as follows. We initially fixed parameters of the

agent-based portion of the model. We chose these parameters

based on a literature search. Only the approximate scale of

parameters could be selected in this fashion, since our ABM is a

simple, lumped-parameter model. With this set of parameter

values, the ABM produces qualitative behavior commensurate

with normal inflammation and wound healing [21].

Raw blood flow data was filtered with low pass filters. The

filtered data were averaged over all six subjects in each group.

Figures 4A and 4B depict the averaged reactive hyperemia blood

flow data in people with and without SCI, respectively. We note

that Figure 4A tend to oscillate more than Figure 4B. Depending

on the level, and severity of injury, the reactive hyperemic

response as measured with skin blood flow varied in people with

SCI as compared to people without any neurological deficits. One

main difference was the rate of increase and decrease in the skin

blood flow of the reactive hyperemic response [41], in other words,

one subject’s peak blood flow may occur at 0.5 minute, and the

other one may occur at 2.0 minute. With this variation, the blood

flow oscillates more in Figures 4A as compared to Figures 4B.

Another possible explanation is that, the skin blood flow as

measured with the laser Doppler flowmetry system does oscillate

naturally. When the skin blood flow signal was computed with

Fourier transform, previous studies have identified that different

frequency bands represent different physiological control mecha-

nism of the blood flow [42]. Therefore the oscillation of skin blood

flow is inevitable. We also note that the data in our simulation

focused on the first 4 minutes. The interesting portion of the

Figure 3. Circuit model of the blood flow. R (resistance) represents vascular resistance, C (capacitance) represents vessel compliance, V(t)
represents the input blood flow pressure, and I (current) represents blood flow. I2(t) represents the skin blood flow.
doi:10.1371/journal.pcbi.1003070.g003
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experimental data is the time when the peak blood flow occurs.

We obtained approximately 10 minutes of raw data after releasing

the pressure. The important information includes the time of the

peak and the rate of decrease after the peak; both these values can

be extracted from first 4 minutes after the pressure is released for

all recorded data. We believe that it is simpler and more reliable to

fit the ODE parameters based on the most important part of the

experimental data (i.e. the first 4 minutes), since the rest of the

data do not contain any important information for model fitting.

We then calibrated the ODE portion of the model based on the

averaged data. Calibration was done using the following error

function which measures the distance between actual (averaged)

data and simulated results:

Ei(p)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k

y(p,k){Mi(k)ð Þ2
r

Here i is the group index, i.e., i is either CTRL or SCI. Ei (p) is the

error for the i-th group; y(p,k) is the value of the model function

evaluated at the point k with the parameter vector p. Mi (k) is the

averaged i-th data at the point k.

Calibration was performed using Matlab R2011 (The Math-

works, Inc., Natick, MA, USA). We used the explicit expression of

I2(t) for finding best-fit parameters. The values of Vmax were

assumed to be 85 mmHg for the control group and 75 mmHg for

the SCI group, the same pressure values as in the experiments. For

all other parameters, we defined possible lower and upper bounds.

For the control group, we set 200 as the upper bound of all

parameters, and 0.01 as the lower bound for all parameters except

R4, for which we chose 190 as the lower bound since it is assumed

that R4..R1, R2, R3 [40]. Then we randomly selected

1000 points in the space of parameters and ran the standard

Matlab minimization function fminsearch for all these initial

points, and picked the best fit results. The search of best-fit

parameters for the SCI group was carried out in a similar way.

The only differences were that the value of Vmax = 75, and in

addition we changed the upper bounds of C1 and C2 and set them

equal to the best-fit values of C1 and C2 for the control group. This

change was made to reflect the fact that C1,2
SCI,C1,2

CTRL [43].

Figures 5A and 5B show the best-fit simulation results, which

minimize the error function Ei (p) in data from people with and

without SCI, respectively. Table 1 lists the values of the best-fit

parameters for both group with the ratios calculated in the Figure 6

to show the significant change of parameters for people with and

without SCI. The results show that vascular resistance (R1) is

significantly increased and that blood vessel compliance (C1, C2) is

decreased in the SCI group by comparing with the control group.

Hybrid model simulations suggest a greater propensity
to ulcerate in SCI patients vs. controls

We next sought to determine the behavior of our simulation

under a more clinically realistic setting, in which pressure to tissues

alternates with periods of pressure relief. We also sought to

determine if, once partially calibrated with blood flow data from

control vs. SCI subjects, our model would predict differential

propensity to ulcerate between these two groups of patients. We

simulated the application of medium-scale pressure on the skin

with different frequencies, first applying a pressure on the skin for

a given period of time (pressure interval), releasing the pressure for

the same amount of time, and then repeating the process. Using

the parameters obtained as described above, we ran the model

simulations for both groups and compared the outcome. We ran

the model for 2000 steps with various values of the pressure

interval parameter. All other ABM parameters were fixed. We

assumed Vmax = V0 (i.e., Vmax = 85 for the control group and

Vmax = 75 for the SCI group) and Vmin = 40 for both groups.

We initially examined the minimal value of the pressure interval

that would be predicted to result in substantial tissue damage

(death of some epithelial cell agents). Figures 7A and 7B show the

SPARK simulation results for control and SCI subjects. Green

squares represent healthy epithelial cells, red squares represent

damaged epithelial cells, red circles represent blood vessels, and

blue circles represent macrophage. For the control group, the

minimal value of the pressure interval was 205–210 simulation

ticks (Figure 7A); in contrast, for the SCI group, the minimal value

was 105–110 simulation ticks (Figure 7B). We also performed

subject-specific fitting of the ODE parameters and measured the

minimal value of the pressure interval resulting in substantial tissue

damage for each subject. The results are given in Table 2. The

average subject-specific value of the minimal pressure interval was

207 for control subjects and 168 for SCI subjects. These results

agree qualitatively with our findings for the averaged data

Figure 4. Average reactive hyperemia blood flow data. Raw blood flow data was filtered with low pass filters. The filtered data was averaged
over all six subjects in each group. Panel (A) shows the averaged data for people with SCI. Panel (B) shows the averaged data for people without SCI.
doi:10.1371/journal.pcbi.1003070.g004

Modeling Hyperemia and Pressure Ulcer Formation
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presented above: the minimal pressure interval is larger for the

control group.

We next examined the predicted effect of turning frequency on

control and SCI subjects. Figures 8A and 8B show how the

predicted health of epithelial cells progresses over time for

simulations of the control and SCI groups, respectively, over

varying pressure on/off cycles. Increasing the frequency (or

applying pressure for a short period of time and then subsequently

relieving this pressure), we obtained an outcome in which a

pressure ulcer did not form: when the simulated pressure is

applied, the tissue is damaged somewhat, but when the pressure is

relieved tissue health is restored. Also, simulated damage/

dysfunction was predicted to increase more rapidly in the SCI

group vs. the control group when the pressure interval was

increased.

Discussion

The components of the inflammatory response are time-driven,

highly interconnected, and interact in a nonlinear fashion [15–

18,44]. The systems biology community has integrated mathe-

matical and simulation technologies to understand complex

biological processes [45]. More recently, we have suggested

translational systems biology as a framework in which computational

simulations are designed to facilitate in silico clinical trials,

simulations are appropriate for in vivo and specifically clinical

validation, and mechanistic simulations of whole-organism

responses could guide rational therapeutic approaches [25].

Agent-based models have emerged as a useful complement to

ODE-based models for elucidating complex biological systems,

including inflammation, wound healing, angiogenesis, and cancer

[19,21,23,36,46–49]. In the present study, we utilized a hybrid

modeling approach that combines the both features of ODE and

agent-based models. Using this approach, we integrate data

regarding blood flow properties in SCI patients and compare them

to data from control subjects. Our analysis suggests that, based on

an abstraction of these blood flow properties and a stochastic

model of tissue inflammation and ulcer formation, and in

agreement with the literature [50], SCI patients are predicted to

be more prone to ulceration. Our study, along with prior work

[28,51,52], suggests that such hybrid modeling methodology could

have a wide application in modeling complex, multiscale biological

systems.

Despite the lack of sensation and motor function after SCI,

several physiological changes at the chronic stage of SCI (more

than 12 months since injury) increase a person’s susceptibility to

develop pressure ulcers, including changes in body composition

Figure 5. Fitted results for average reactive hyperemia. The explicit expression of I2(t) was used for finding best-fit results. Calibration was
performed using Matlab R2011. Panel (A) shows the best-fit result in people with SCI. Panel (B) shows the best-fit result in people without SCI.
doi:10.1371/journal.pcbi.1003070.g005

Table 1. Values of the best-fit parameters for control and SCI
groups.

Group R1 R2 R3 R4 C1 C2 V0

Control 0.10 7.49 13.83 191.10 69.28 14.45 85

SCI 1.19 0.80 8.28 210 50 10 75

The value of Vmax was assumed to be 85 mmHg for the control group and
75 mmHg for the SCI group (these values are based on averaged experimental
data). Then a standard Matlab minimization function was used to find the best
fit results for all other parameters based on the explicit expression of I2(t).
doi:10.1371/journal.pcbi.1003070.t001

Figure 6. Best-fit parameter ratios for the differential equation
part of the model. The x-axis shows the parameter names, and y-axis
shows the ratios of parameters for people with and without SCI. The
explicit expression of I2(t) was used for finding best-fit parameters.
doi:10.1371/journal.pcbi.1003070.g006
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(increased proportion of fatty tissue) and vascularity [5]. The

linkage between changes in vascularity, epithelial function and

pressure ulcer formation in people with SCI is not fully explored.

Therefore, this pilot hybrid model was aimed at simulating

pressure ulcer development by including a key vascular response

(reactive hyperemia) observed in human subjects.

The goal of our previous research was to find the optimal

turning frequency for patients with SCI [32]. The goal of the

present model is the improvement of our previous model by

coupling an ODE model of the reactive hyperemic response

observed experimentally to an ABM based on rules derived from

the literature. This model was capable of simulating the intensity

in epithelial cell damage as a function of changes of amount and

duration of localized pressure on the skin of people with and

without SCI.

Results from the best-fit parameters of the circuit model set

showed differences in vascular resistance (R1) and blood vessel

compliance (C1, C2) between the two groups. The arterial

resistance was bigger while the capillary resistance was smaller,

respectively, in subjects with SCI as compared to controls.

Changes in vascularity in people with SCI may be caused by

denervation of sympathetic nervous system [53] as well as physical

inactivity [54]. Our finding of increased vascular resistance in the

arterial system was consistent with previous studies. With the loss

of supraspinal control of the vascular system after high level of

injury, people with SCI were reported to have increased vascular

resistance in order to maintain the vascular tone by compensating

for the loss of supraspinal sympathetic control [55]. Additionally,

the increased vascular resistance may result from preservation of

a-adrenergic tone. The increased vascular resistance could also

result from vascular adaptation to deconditioning with the loss of

motor function [56]. One prior study found that there was an

increased activation of the receptor of the endothelin-1, which

increases the vascular tone [56]. The results of decreased vascular

resistance in the capillary system were not consistent with

observations regarding vascular resistance in the arterial system.

The capillary resistance was not investigated in previous studies;

thus, our findings regarding vascular resistance in the arterial

system may not be generalized to the capillary resistance, since the

vascular resistance was measured with venous occlusion plethys-

mography in previous studies and the measurement was not

directly on capillary blood flow. In addition, the measurement of

reactive hyperemia in our study was at the lower back using an

indenter, whereas the aforementioned previous studies measured

this response at lower limbs with cuff. Future study on structural

changes in capillary system and vascularity of the microcirculation

might be beneficial in understanding the linkage to ulceration.

Results from the analysis of the best-fit parameters of the circuit

model set also showed that the vessel compliance is smaller in

people with SCI as compared to the controls. De Groot et al.

Figure 7. Simulation snapshots after 2000 steps. Green squares represent healthy epithelial cells, red squares represent damaged epithelial
cells, red circles represent blood vessels, blue circles represent macrophage, and white squares represent the dead cells. Panel (A) shows the
simulation result for the control group with the pressure interval = 210. Panel (B) shows the simulation result for the SCI group with the pressure
interval = 107.
doi:10.1371/journal.pcbi.1003070.g007

Table 2. Subject-specific minimal value of the pressure
interval that would be predicted to result in substantial tissue
damage.

Group Subject ID Pressure interval

Control C1 170

Control C6 240

Control C11 140

Control C13 170

Control C14 250

Control C16 270

SCI A7 240

SCI A10 140

SCI A14 140

SCI A15 170

SCI B3 180

SCI B5 140

doi:10.1371/journal.pcbi.1003070.t002
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found that the femoral artery compliance is smaller in individuals

with SCI [43], and they suggested that this physiological change

may be due to inactivity of the muscle since arterial compliance

could be enhanced with functional electrical stimulation.

Our model validation studies suggest that the minimal amount

of repeated pressure required to cause endothelial cell damage

would be smaller in subjects with SCI. People with SCI are

susceptible to ulcer formation, and there are several physiological

changes that may contribute to the susceptibility of pressure ulcer

development in this population. For example, people with

complete SCI had decreased cross-sectional area of muscle fibers

[57] and increased fat mass in lower limbs [58]. A recent study

from Linder-Ganz et al. directly pointed out the relationship

between physiological changes after injury and the pressure ulcer

formation by using finite element model. They found that with the

use of the same seat cushion, people with SCI had greater deep

muscle stress as compared to controls [59]. To date, there is no

study that investigated the direct linkage between changes in

vascularity and ulcer formation in people with SCI. We were not

aware of the underlying mechanism of changes in vascularity and

the ulcer formation. However, from the rules and results of our

model, it is indicated that changes in vascularity may play a role in

decreased tolerance of pressure and endothelial function that leads

to more severe damage with the same amount and duration of

pressure.

There are several limitations of this study. This study only

recruited limited numbers of subjects (six CTRL and six SCI), and

people with SCI and controls were not matched for comparison. If

additional subjects were used for the model calibration, the

conclusion could be reached at a higher level degree of confidence.

Though the ages of the subjects in the cohorts were not identical,

there was no statistically significant difference with regard to age

between the two groups of patients. In addition, previous studies

[60,61] found that the reactive hyperemic response was not different

between healthy elderly population and healthy adults; these

authors only found an impaired reactive hyperemic response

among individuals in a hospitalized elderly population. Since there

was no statistically significant difference in age between non-injured

and SCI-injured subjects in our studies, and since all subjects

recruited in our studies were healthy and not hospitalized during the

time of the study, age is unlikely to be a significant factor in our data

analysis. This is a pilot study developing this hybrid model of ulcer

formation with different input of people with and without SCI. For a

more realistic simulation, the ABM portion of the model could be

expanded by incorporating additional physical and biological

components, such as shear force and reperfusion injury, which

may contribute to the formation of the pressure ulcer. Nevertheless,

in this work, we present a first attempt to construct a biological

model in a single computational platform where mathematical and

agent-based models work in a seamless manner, and the result of the

model reveals useful insight into the ulceration in people with and

without SCI.

In conclusion, we used a hybrid approach combining ordinary

differential equations related to blood flow along with an agent-

based model of skin injury and subsequent inflammation in a

single modeling platform, in order to investigate pathogenesis

difference between people with SCI and without SCI in the

process of ulcer formation. Our current finding suggests that

people with SCI have higher propensity to form ulcers in response

to pressure than non-injured control subjects.

Figure 8. Simulation of different pressure scales on the health of epithelial cells. Graphs with different values of the pressure interval show
how the predicted health of epithelial cells progresses over time for simulations of the control and SCI groups, respectively. Panel (A) shows the
outcome of simulations for the control group. Panel (B) shows the outcome of simulations for the SCI group.
doi:10.1371/journal.pcbi.1003070.g008
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