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AN ADVANCE DISTRIBUTED CONTROL DESIGN FOR WIDE-AREA

POWER SYSTEM STABILITY

Ibrahem E. Atawi, PhD

University of Pittsburgh, 2013

The development of control of a power system that supply electricity is a major concern in

the world. Some trends have led to power systems becoming overstated including the rapid

growth in the demand for electrical power, the increasing penetration of the system from

renewable energy, and uncertainties in power schedules and transfers. To deal with these

challenges, power control has to overcome several structural hurdles, a major one of which

is dealing with the high dimensionality of the system.

Dimensionality reduction of the controller structure produces effective control signals

with reduced computational load. In most of the existing studies, the topology of the control

and communication structure is known prior to synthesis, and the design of distributed

control is performed subject to this particular structure. However, in this thesis we present

an advanced model of design for distributed control in which the control systems and their

communication structure are designed simultaneously. In such cases, a structure optimization

problem is solved involving the incorporation of communication constraints that will punish

any communication complexity in the interconnection and thus will be topology dependent.

This structure optimization problem can be formulated in the context of Linear Matrix

Inequalities and `1-minimization.

Interconnected power systems typically show multiple dominant inter-area low-frequency

oscillations which lead to widespread blackouts. In this thesis, the specific goal of stability

control is to suppress these inter-area oscillations. Simulation results on large-scale power

system are presented to show how an optimal structure of distributed control would be
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designed. Then, this structure is compared with fixed control structures, a completely de-

centralized control structure and a centralized control structure.

Keywords: power system, control, distributed, inter-area oscillations.
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1.0 INTRODUCTION

A power system is a small or large scale network that is used to supply and deliver electrical

power to residential and commercial consumers. The development of control of a power

system that supply electricity is a major concern in many countries such as the United

States and countries in Europe. Over the last five decades power systems have continued to

serve the growing needs of individuals and industry, but some trends in the filed of energy

supply have led to the current power system network becoming overstressed [65].

The first of these trends is the rapid, ongoing increase in the demand for electrical

power, as detailed in Figure 1a. In the U.S., from 2010 to 2035 the demand for electricity is

expected to grow by 22 percent from 3,877 billion kilowatt-hours to 4,716 billion kilowatt-

hours. Over the same period residential demand is expected to grow by 18 percent to

1,718 billion kilowatt-hours, and continued population shifts to climatically warmer regions

that will require power systems to accommodate greater cooling requirements . In 2035,

commercial demand is expected to increase by 28 percent to 1,699 billion kilowatt-hours.

From 2010 to 2035 transportation demand is expected to increase from 7 billion kilowatt-

hours to 22 billion kilowatt-hours. [3, 4]

The second trend that has led to the current power system network becoming overstressed

is the increasing penetration of energy from renewable sources such as wind and solar energy.

Wind energy constitutes the largest share of renewable energy, with expected increases from

99.7 billion kilowatts in 2005 to 1628.4 billion kilowatts in 2035 globally, as shown in 1b.

Also, both solar energy and biomass energy, while starting off slower than wind energy, are

expected to grow even more quickly. Overall, then, total renewable energy is expected to

grow quite rapidly in the short term. [3, 4]
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Finally, electrical power is transferred considerable distances through high voltage trans-

mission systems, and these lines have flow limitations. Thus, there are large number of

sources of uncertainty in the operation of a power system, in terms of schedules and trans-

fers.
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Figure 1: (a) U.S. energy consumption by sector (data from [4]). (b) World renewable

electricity generation by source (data from [3])

To address these challenges, the power system network not only need to be upgraded

with advanced hardware and equipment, but also must be reconfigured to make it smarter –

capable of optimizing the use of the existing infrastructure while securing electrical service

that is reliable, economical, efficient, safe, and environmentally responsible [46]. In order to
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achieve the aforementioned benefits that the smart grid provides, power control has to over-

come several structural hurdles, a major one of which is dealing with the high dimensionality

of the control system.
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2.0 LITERATURE REVIEW

Dimensionality Reduction Techniques 
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Figure 2: Research contribution

2.1 DIMENSIONALITY REDUCTION IN CONTROL OF A

LARGE-SCALE SYSTEM

In the United States the power grid is a huge interconnected network, as shown in Figure 3.

The North American network has between 10,000 and 100,000 nodes or branches and about

100 control centers [43]. The mathematical description of this network involves differential

and algebraic equations with extraordinarily high dimensional variable space [76]. The net-

work also requires the coordination of a large number of local actions on the part of the

energy generation and transmission controllers [29]. Furthermore, this network exhibits a

large range of characteristics, some which are highly nonlinear, such as bifurcation and chaos
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[89]. These nonlinearities are generally hard to handle in control, even after simplification in

modeling [61]. Moreover, a large-scale power system needs to be controlled under condition

of distributed disturbances caused by noise and transmission delays scattered throughout

the network.

Figure 3: United Sates power network (figure adapted from [2]).

In control of a complex network, such as a large-scale power system, dimensionality

reduction become essential to the computation of control signals in real time. The purpose

of dimensionality reduction is to promote the efficiency and robustness of the power system by

reducing the computational and communicational complexity of the control. Dimensionality

reduction can be implemented for (i) the sensory data, (ii) the system model, and (iii)

controller structure, respectively.

Dimensionality reduction of the sensory data aims to transform date of high dimen-

sionality into a meaningful representation exhibiting reduced dimensionality, as shown in

Figure 4. Techniques commonly used to achieve this goal include linear methods such as

principle component analysis (PCA) [49] and multidimensional scaling (MSD) [28]. Exam-

ples of nonlinear methods are isomap [88], kernel (PCA) [83], diffusion maps [59], locally

liner embedding [80], locally linear coordination [87], Laplacian eigenmaps[12], and manifold

charting [19]. Sensory-data dimensionality reduction can also be achieved by directly reduc-

5



Figure 4: Examples of dimensionality deduction methods for the sensory data.

ing the number of sensory channels or sampling rates. For example, in power system design,

many research efforts have been made to determine optimal minimum sensor placements in

the network [13, 21, 40, 75]. To reduce the sampling rate, a novel sampling, paradigmcom-

pressive sensing, has been proposed, given that it can recover certain signals from far fewer

samples than traditional methods can [22, 23, 33]. For data collection in networked control

systems, compressive sensing can be realized in a decentralized manner [41, 10].

Dimensionality reduction of the system model aims to replace the original model with

one of a much smaller dimension. The reduced model should be a sufficiently accurate

approximation of the original model. One category of model-reduction methods is based

on identifying and preserving certain modes of interest [24], e.g. modal model reduction

[5, 16, 63]. Another category of these methods focuses on the observability and control-

lability properties of the system and is based on singular value decomposition (SVD) [7],

e.g., balanced truncation [66] and Hankel norm approximation [47]. In addition, moment

matching methods based on Krylov subspaces have been used for model reduction [6, 11, 24].
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This thesis will focus only on the dimensionality reduction of the controller structure.

This reduction technique aims to produce effective control signals with reduced computa-

tional load. In comparison with entirely centralized control, completely decentralized control

has been a more popular choice of control architecture because of its ability to effectively

solve the problems of dimensionality, uncertainty, and information structure constraints in

large-scale systems [45]. Completely decentralized control most likely requires the weak inter-

connection assumption used in a large-scale network. A large body of existing literature has

contributed to the development of distributed control for large-scale systems [48, 84, 91, 93].

In particular, the optimal design of distributed control has been widely studied since at least

the 1970s [42, 81, 82]. In recent years, a trend has been to converge control, communication,

and computation in the design of a distributed structure for networked control systems [8].

However, in most of the existing research, the topology of the control and communication

structure are known prior to synthesis, and the optimal design for distributed control is

performed subject to this particular structure. To the best of our knowledge, only Langbort

and Gupta [55] have designed the controller and the topology the controller structure at the

same time.

min

∫ ∞
0

XTQX + UTRU

subject to (2.1)

ẋi(t) = Aixi(t) +Biui(t) ∀t > 0, ∀i = 1, . . . , N

xi(0) = x0i

These researchers formulated the controller design as a linear quadratic regulation (LQR)

problem, in which communication was indirectly reflected in their problem formulation by a

topology dependent matrix in the LQR cost function, as shown in Equation (2.1). However,

the effect of these communication constraints in control cannot be objectively and quantita-

tively evaluated. In this thesis, we will study the synthesis problem in the control structure

and explicitly model the communication channels, considering time delay and uncertainties,

and directly defining, in the cost function, a term that punishes communication complexity

7



within the controller structure. We will transform the structural optimization problem into

a problem which seeks sparse solutions that can be solved using `1-minimization [32].

2.2 DAMPING CONTROL FOR INTER-AREA OSCILLATIONS

Power systems have a large number of generators and controllers, as well as many types

of loads. The entry of more controllers and loads increase the complexity and nonlinearity

of a power system. As a result, power systems are viewed as complex nonlinear systems

that are vulnerable to a number of instability problems. In power systems, we can classify

instability problems into three main types: voltage, phase, and frequency related problems

[27, 31, 54, 56, 57, 58, 62, 71, 77, 79]. These instability problems may be studied separately

for large-scale power systems. In this thesis, we will only focus on subclass of phase angle

related instability problems.

The ability of synchronous machines in an interconnected power system to remain syn-

chronize after being subjected to small disturbances is known as small signal stability, a type

of phase angle instability problem. The performance of an interconnected power system de-

pends on machine capability in order to maintain equilibrium between the electromagnetic

torque and mechanical torque of synchronous machines. The unbalanced between electro-

magnetic torque and mechanical torque can be maintained into two mechanisms:

• A synchronizing torque component in phase with rotor angle deviation. The lack of

sufficient synchronizing torque results in non-oscillatory instability.

• A damping torque component in phase with speed deviation. The lack of damping torque

results in low frequency oscillations.

make space
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The main reason for oscillations in the power system is the unbalance between power

demand and available power, which in turn causes an unbalance between electromagnetic

torque and mechanical torque. Increasing and decreasing phase angle with a low frequency

will be reflected in the goal of maximum power transfer and optimal power system secu-

rity. Low frequency oscillations are generator rotor angle oscillations that have a frequency

between 0.1 -2.0 Hz and are classified based on the source of the oscillation [54, 72] as follows:

• Local oscillation: This occurs because of the swinging of generators at power station

against the rest of the power system, and happens to a small part of the power system.

Normally, the range of the frequency is 1-2 Hz.

• Inter-area oscillation: This occurs because of the swinging of many generators in one part

of power system against other generators in different parts of power system. Normally,

the range of the frequency is 0.1-1 Hz.

In addition to these types of oscillation, there can be other types associated with the

controllers, and are the result of poor design controllers [72]. Since the 1960s and 1970s,

the conventional controllers for oscillation damping control include the automatic voltage

regulator (AVR) [14], the power system stabilizer (PSS) [15], the speed governor [74], and

the field excitation control [52]. These controllers are single-input single-output (SISO)

controllers and work in a completely decentralized control structure. In a large-scale power

system, the inter-area frequencies may fall well below 0.2 Hz while local oscillations may

exceed 4 Hz [50]. Conventional SISO controllers cannot handle such a wide frequency range;

consequently, many incidents related to low frequency oscillations have been reported [70].

For example, as a result of an incidence of LFO on August 14, 2003, a massive power outage

occurred throughout eight northeastern and midwestern U.S. states, as well as Ontario,

Canada, as shown in Figure 5.

In recent years, wide-area measurement systems (WAMS) using synchronized phase mea-

surement units as shown in Figure 6 have been introduced into the design for damping control

[25, 30, 34, 35, 51, 64, 68, 69, 95, 96]. Wide-area measurement systems with PMU have made

it possible to implement centralized [92] and hierarchical control [34, 44, 51, 69] for oscil-

lation damping. However, in all of the studies mentioned above, the structure of damping

9



Figure 5: Northeast and midwestern U.S. states blackout of 2003. (Left satellite image)

shows light activity on August 14 at 9:29 p.m. EDT about 20 hours before blackout. (Right

satellite image) shows light activity on August 15 at 9:14 p.m. EDT about 7 hours after

blackout (figure adapted from [1]).

control is fixed, and the controller design is subjected to a fixed structure. In this thesis, we

present and demonstrate a hierarchical control system and control-communication co-design

for hundling inter-area oscillations in the damping control. Our controller structure has the

advantages of being synthesizeable and optimizable, taking into consideration of the cost

due to communication delays and data losses.
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data samples, positive-sequence voltages

and currents are calculated [1] and time-

stamped so that the exact microsecond

when the phasor measurement is taken

is permanently attached to it. The device

assembles a message from the time

stamp and the phasor data in a format

defined in IEEE standard 1344 [2], which

can then be transmitted to a remote 

site over any available communication

link. Positive-sequence phasor data from

all substations equipped with such

devices are collected at an appropriate

central site using a data concentrator 

or exchanged between local units for

protection/control applications.

Collecting and collating these measure-

ments provides a basis for new, very

powerful techniques for monitoring,

protecting and controlling power

networks.

Communication issues

Different technologies

Communication of the time-stamped

measurements to the data concentrator 

is critical to the implementation. While

time is distributed to the PMUs through

an intricate network of satellites, present

devices utilize telephone, digital serial

and ethernet communications

technologies to provide the connection

to the data concentrator. The different

technologies involved in the communi-

cations infrastructure include direct

wiring, licensed and unlicensed radio

networks, microwave, public telephone,

cellular telephone, digital wireless, plus

combinations of these technologies. 

Synchrophasor format

IEEE Standard 1344 [2] defines the

formats for output files provided by the

Phasor Measurement Units. Two files

(Header and Configuration) are defined

for setting up and assisting in

interpreting the phasor data, as well as

the format for the real-time binary output

file consisting of phasors and the time

stamp, which comprise the principal

output of the PMUs. The standard has

been of great help in ensuring that all

future applications of the synchronized

phasor measurements are able to access

the phasor data provided by PMUs from

different manufacturers.

Power system applications

The synchronized phasor measurement

technology is relatively new, and

consequently several research groups

around the world are actively developing

applications of this technology. It seems

clear that many of these applications can

be conveniently grouped as follows:

■ Power system monitoring

■ Advanced network protection

■ Advanced control schemes

2

Analog
inputs

Anti-aliasing
filters

Phasor
micro-

processor

GPS
receiver

Phase-locked
oscillator

A/D
converter

Modems

Block diagram of the Phasor Measurement Unit1

System
Control, protection
functions
Archival database

Advanced
application
software

PMU

PMU

PMU

PMU

Data
Concentrator
and collator

PMU utilization in a power system2

Figure 6: Block diagram of the Phasor Measurement Unit (figure adapted from [30]).
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3.0 OBJECTIVE

3.1 INTRODUCTION

Figure 7: (a) Centralized control structure in a large-scale power system. (b) Completely

decentralized control structure in a large-scale power system.

The control structure for a complex network such as a large scale power system can be

classified as one of three main structures: a centralized structure, a completely decentralized

structure, or a distributed structure. Centralized control, as shown in Figure 7a, would entail

having a single controller measure all outputs of the power system, compute all the optimal

12



control input, and apply this control to all areas in one optimization problem. For a large-

scale system such as a power system, it would be decidedly unreasonable to implement a

centralized controller. A completely decentralized control system employs a single controller

for each area with no communication between individual controllers as shown in Figure 7b.

In this type of system, controllers ignore the interaction between the different subsystems.

This type of structure may contribute to insufficient performance in power system control,

especially if those subsystems are required to cooperate significantly in an interconnected

power system. The third structure, distributed control, also involves a single controller for

each subsystem, but, unlike the completely decentralized system, allows these subsystems to

communicate with each other by sharing information.

Significantly in terms of, a large scale network such as a power system requires reducing

the dimensionality inherent in the centralized configuration while avoiding the poor perfor-

mance that can result from utilizing a completely decentralized configuration. This fact,

along with the previously mentioned continuing increase in demand for electricity and the

growing incorporation of renewable energy into the power system, has led many researchers

to focus on distributed control in their search for a faster performing, more efficient control

structure for large-scale power systems.

3.2 DESIGN OF A HIERARCHICAL ARCHITECTURE OF CONTROL

WITH OPTIMAL TOPOLOGY

The main innovation of this section consists of reducing the dimensionality of control via

minimizing the topology of the control and communication network needed to achieve a

particular control goal. In most existing studies of hierarchical control, the interconnection

topology is fixed. In our thesis, the distributed controllers and their connection topology

are designed at the same time. Our structure optimization problem integrates control and

communication in the design. Our hierarchical control architecture has two layers, as shown

in Figure 8. The first layer is the decentralized layer, consisting of a distributed local

controller similar to that which is presented in Figure 7b. However within the layer the

13



Figure 8: Illustration of our design of distributed control structure in a large-scale power

system.

local controllers are allowed to connect and cooperate with one another. The connection

structure of these controllers is a part of the design and needs to be determined by solving

a structure optimization problem that involves incorporating a communication constraint,

which will punish any communication complexity in the interconnection and thus will be

topology dependent. This structure optimization problem can be formulated in the context

of Linear Matrix Inequalities [18] and `1-minimization [32].

The second layer of our design is a single central controller, similar to the one presented

in Figure 7a. However, the central controller in our method does not control the actuators

directly. Rather, it supervises and coordinates the operation of the local controllers in the
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first layer, adaptively optimizing the control and communication structure in real time. As

a result, this central controller has greatly reduced responsibilities for control of the entire

system.

3.3 DEMONSTRATION OF THE HIERARCHICAL CONTROL SYSTEM

In terms of the stabilization problem of the power system, the specific goal of stabilization is

to suppress inter-area low frequency oscillations. Conventional controllers for power system

stabilization include an automatic voltage regulator (AVR) [14], a power system stabilizer

(PSS) [15], a speed governor [74], and a field excitation control [52]. These controllers are

single-input single-output (SISO) linear controllers and work in a completely decentralized,

non-cooperative manner; as a result, they cannot always guarantee stability when severe

disturbances occur in the power system. Our solution utilization is a hierarchical control

system that implements wide-area monitoring and control. Communication constraints will

be considered to determine optimal connections among the local controllers. We compare

the performance of our design with those having conventional designs and centralized control

under communication constraints.
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4.0 BACKGROUND

4.1 INTER-AREA OSCILLATIONS

4.1.1 Power System Modeling

In designing, an optimal topology of distributed control to suppress inter-area low frequency

oscillation, we performed the steps presented here to obtain a dynamic model of a large scale

power system. The notation is borrowed from [53]. When there is an unbalance between the

mechanical torque (Tm) and electromagnetic torque (Te), the net torque causing acceleration

(or deceleration) is

Ta = Tm − Te (4.1)

where

Ta: acceleration motion torque N ·m.

Tm: mechanical torque N ·m.

Te: electromagnetic torque N ·m.

In the above equation, Tm and Te are positive for a generator and negative for a motor.

The combined inertia of the generator and prime mover is accelerated by the unbalance of

the applied torques. Hence, the equation of motion is

J
dωm

dt
= Ta = Tm − Te (4.2)

where

J : the combined moment of inertia of the generator and turbine, kg ·m2.

ωm: the angular velocity of the rotor, rad/s.
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The above equation can be normalized in terms of per unit inertia, using the constant H,

defined as the kinetic energy in watt-seconds at the rated speed divided by the VA base.

Using ωom to denote the rated angular velocity in mechanical radians per second, the moment

of inertia J in terms of H is

J =
2H

ω2
0m

V Abase. (4.3)

Substituting the above in Equation (4.2) gives

2H

ω2
0m

V Abase
dωm

dt
= Tm − Te. (4.4)

If Tbase = V Abase

ω0m
, rewriting the above equation yields the following:

2H
d(ωm/ω0m)

dt
=
Tm − Te
Tbase

= Tm − T e (4.5)

where Tm and T e are mechanical and electrical torque per unit (p.u.), respectively.

In the above equation
ωm

ω0m

=
ω/pf
ω0/pf

=
ω

ω0

= ω (4.6)

where ω is the angular velocity of the rotor in electrical rad/s, ωo is its rated value, and pf

is the number of filed poles.

Now we can rewrite Equation (4.5) as follows:

2H
dω

dt
= Tm − T e. (4.7)

If δ is the angular position of the rotor in electrical radians with respect to a synchronously

rotating reference and δ0 is its value at t = 0,

δ = ωt− ω0t+ δ0. (4.8)
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Taking the time derivative of the above equation, we have

dδ

dt
= ω − ω0 = ∆ω. (4.9)

Based on Equation (4.6), we can write the above equation as

1

ω0

dδ

dt
= ∆ω. (4.10)

Subsequently, the per unit equations of motion of a synchronous machine can be written as:

dω

dt
=

1

2H
(Tm − T e) (4.11)

dδ

dt
= ω0∆ω (4.12)

where the mechanical torque (Tm), electrical torque (T e), angular velocity (speed rotor)

(ω) and angular position (frequency)(δ) are in per unit (p.u.).

The block diagram form representation of Equations (4.11 and 4.12) is shown in Figure 9:

 

eT  

 mT  

    

1

2Hs
 0

s


 

Figure 9: The frequency and torque relation.

In this thesis, we represent the frequency in terms of mechanical and electrical power.

The relationship between the power and the torque is presented in [53, p.583]. Figure 10

expresses the frequency deviation output in terms of mechanical power and electrical power.

18



 

 

1

s
 

eP  

 mP

    

1

2Hs
 

Figure 10: The frequency and power relation.

For some loads, such as motor loads, electrical power changes with the change in speed

rotor. This type of load is dependent on speed rotor. However, the electrical power is

independent of the speed rotor for resistive loads, such as lighting. Therefore, the electrical

power can be express as follows:

∆P e = ∆PL +Dω (4.13)

where

∆PL: independent frequency load

Dω: frequency load

D: load damping constant.

The effect of load damping is showing in Figure 11.

 

 

1

s
 

LP  

 mP

    

1

2Hs D
 

Figure 11: The frequency and load power relation.
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A turbine is used to convert natural energy, such as water or steam, into mechanical

power. In general, there are three common types of turbines used in power systems: reheat,

non-reheat, and hydraulic. In all three types, the governor is the control unit of the power

system. When the load on the system changes, the governor senses the frequency bias and

cancels the change by adjusting the input of the turbines, which in turn changes the rotor

speed. The turbine and governor can be represented in the transfer function as follows:

1. Turbine: (4.14)

(a) Non-reheat turbine: T (s) =
1

Tchs+ 1

Tch : time delay.

(b) Reheat turbine: T (s) =
FhpTrhs+ 1

(Tchs+ 1)(Trhs+ 1)

Trh : low pressure reheat time. Fhp : high pressure stage rating.

(c) Hydraulic turbine: T (s) =

(
TRs+ 1

TR(RT/R)s+ 1

)(
−TW s+ 1

(TW/2)s+ 1

)
TW : water starting time. TR : reset time.

RT : temporary droop. T : permanent droop.

2. Governor: T (s) =
1

Tgs+ 1
(4.15)

Tg : time constant of the governor.

make space
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For simplicity, a non-reheat turbine is chosen here to generate mechanical power. As

such, the block diagram form including a turbine and governor is shown in Figure 12.

 

 

1

s
 

LP  

    mP  

    
vPu  

    

1

1gT s 
 

1

1chT s 
 

1

2Hs D
 

1/ R
 

Figure 12: Block diagram of a power system.

where u is the input control signal.

Interconnected power system

Figure 13: (a) Two-area system. (b) Electrical equivalent.

To form the basis for supplementary control of interconnected power systems, let us

consider area i to be connected with area j by a tie-line of reactance Xtie as shown in Figure

13a. Figure 13b shows the electrical equivalent of the system. The power flow on the tie-line

from area i to area j is

P ij =
EiEj

XT

sin(δi − δj) (4.16)
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where XT is the equivalent of reactance.

Linearizing about an initial operation point, we have

∆P ij = Tij∆δij (4.17)

where ∆δij = ∆δi −∆δj, and Tij is the synchronizing torque coefficient given as

Tij =
EiEj

XT

cos(δi − δj). (4.18)

The block diagram for i power system connected to j power system by the tie-line power

can be modeled as shown in Figure 14.

 

1

2 i iH s D

 

1

s
 

iLP

i  
i  

imP

     

1

1
ichT s 

 
1

1
igT s 

 
ivP  

1/ iR  

ijP  

ijT  
  


 

iu

   
 

  

j

Figure 14: Block diagram of one area of an interconnected power system.

To simplify notation, we replace the stated variable symbols ω, P ij, Pm and P v with

ω, Pij, Pm and Pv throughout the thesis, but all stated variables still per unit. Considering

area i to be connected to more than one area j; the dynamic model of area i in state-space

form can be is given as follows:
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
∆ω̇

i
(t)

∆Ṗij(t)

∆Ṗmi
(t)

∆Ṗvi(t)

 =


− Di

2Hi
− 1

2Hi

1
2Hi

0∑
i 6=j Tij 0 0 0

0 − 1
Tchi

0 1
Tchi

− 1
TgiRi

0 0 − 1
Tgi




∆ωi(t)

∆Pij(t)

∆Pmi
(t)

∆Pvi(t)

+


0

0

0

1
Tgi

ui(t)

+
∑
i 6=j


0 0 0 0

−Tij 0 0 0

0 0 0 0

0 0 0 0




∆ωj(t)

∆Pji(t)

∆Pmj
(t)

∆Pvj(t)

 (4.19)

or

ẋi(t) = Aiixi(t) +Biui(t) +
∑
i 6=j

Aijxj(t) (4.20)

where xi = [∆ωi,∆Pij,∆Pmi
,∆Pvi ]

T is the local state variables, ui is local control input,

and xj =
[
∆ωj,∆Pji,∆Pmj

,∆Pvj

]T
is the neighbor state variables.

Generally, we can write the dynamic model of a power system under a centralized struc-

ture as follows:


ẋ1(t)

ẋ2(t)
...

ẋN(t)

 =


A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN




x1(t)

x2(t)
...

xN(t)

+


B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . BN




u1(t)

u2(t)
...

uN(t)


(4.21)

where x is the state vector, u is the control input vector, and N is the total number

subsystems. Aii, Aij, and Bi (i = 1, · · · , N , j = 1, · · · , N , and i 6= j) can be constructed as

in Equation (4.19).

23



4.1.2 Eigenvalues Stability Analysis

The special interest of this thesis is inter-area low-frequency oscillation. As previously men-

tioned, the unbalanced between power demands and available power can create low frequency

oscillations in the power system. Low frequency oscillations are normally analyzed in a power

system in steady state as creating small disturbances. By looking to the eigenvalues of the

A matrix in Equation (4.21), we can analyze the steady state stability of the system. The

eigenvalues of A are given as follows:

(A− λI)ν = 0 (4.22)

where λ is the eigenvalues and ν is the eigenvectors. The number of eigenvalues depends on

the dimensions of matrix A or the number of state variables considered in the system. All

the eigenvalues should be located in the open left half plane, in order to suppress oscillations

in the power system. The system will be unstable if any of the real part of the eigenvalues

are positive. Moreover, the damping ratio should be positive and in excess of critical value.

The eigenvalues are given in the complex form (λ = −a ± b); the damping ratio is defined

as follows:

ζ =
−a√
a2 + b2

(4.23)

How to accurately define the critical value for the damping ratio is not clearly known, but

according to how utilities operate in practice, damping ratio should be at least 5 percent.

Therefore, in order to suppress oscillations in the power system the real part of the eigenvalues

should be negative and the damping ratio should be positive critical value grater than 5

percent.

4.2 OPTIMIZATION TECHNIQUES

4.2.1 Linear Matrix Inequality

Linear Matrix Inequality (LMI) is a form of convex optimization used to solve problems in

system and control theory. LMI helps to convert very large control problems to standard
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convex optimization problems, which can then be solved efficiently and capably. The history

of LMI began when Lyapunov demonstrated that the differential equation

d

dt
x = Ax(t) (4.24)

is stable if and only if there exits P such that

P > 0 and ATP + PA < 0. (4.25)

Equation (4.25) is a special form of an LMI which can be analytically solved. Thus,

the oldest form of LMI problem was to analyze the stability of a system by using Lyapunov

theory. Subsequently, LMI has been developed and implemented in solving control problems

with extreme efficiency. More recently, Nesterov and Nemirovskii [67] developed a interior-

point method that applied Linear Matrix inequalities to convex problems.

A linear matrix inequality (LMI) has the form

F (x) ≡ F0 +
m∑
i=1

xiFi (4.26)

where x ∈ Rm is the variable and the symmetric matrices Fi = F T
i ∈ Rnxn,i = 0, ....,m,

are given. The LMI in Equation (4.26) is a convex constraint on x, i.e., the set {x|F (x) > 0}

is convex. In their book, Linear Matrix Inequalities (LMI) in System and Control Theory

[17], Boyd et al. have shown some problems of system and control theory, demonstrating

how to decrease the size of convex optimization problems that involve inequality matrices.

In this thesis, we apply efficient tools such as Linear Matrix Inequalities (LMI) to power

system control problems which have a great variety of control design requirements, such as

the size and structure of the feedback gain matrix, communication and time delay constraints,

and the degree of exponential stability. LMI has provided a great flexibility in dealing with

these types of control problems. Furthermore, a guide on how to implement LMI in MATLAB

can be found in LMI Control Toolbox [36].
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4.2.2 `1-Minimization

Most control engineers prefer to represent data in the most parsimonious terms possible.

In stability control problems specifically, they consider designing the feedback gain matrix

as sparsely as feasible in certain controller structures, such as in distributed control. For

example, solving stability problems under different controller structures is accomplished by

finding the feedback gain matrix K such as in the following:

P > 0 and (A+BK)TP + P (A+BK) < 0. (4.27)

Under different controller structures, the `0 norm ‖K‖0 is simply the number of nonzero in

K. The optimal solution involves finding sparsest feedback gain by solving the optimization

problem:

min ‖K‖0 subject to P > 0 and (A+BK)TP + P (A+BK) < 0 (4.28)

The difficulty of solving above optimization problem is that it requires enumeration subsets

of the library A. The computational complexity of such a subset search grows exponentially

with increasing dimension of K. In order to deal with this difficulty, consider replacing `0-

minimization in above optimal problem with `1-minimization, by replacing ‖K‖0 with ‖K‖1.

After doing so, we can rewrite the stabilization optimization problem as

min ‖K‖1 subject to P > 0 and (A+BK)TP + P (A+BK) < 0 (4.29)

where ‖K‖1 =
∑

i

∑
j |Kij|, the sum of the absolute values of all elements of K.

The `1-minimization ‖K‖1 in the above optimization problem can be considered a kind

of convexitaion of the problem of minimizing ‖K‖0. The added benefit of `1-minimization is

that this can be cast of as linear programming problem and can be solved by modern interior

point methods.
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5.0 DESIGN METHODS

This thesis aims to find an optimal topology of distributed control, which is required in

order to achieve a particular control goal. We propose to use two layers of hierarchical con-

trol architecture, shown in Figure 8. The first layer is a distributed control layer consisting

of local controllers that can cooperate with each other. The advantage of these controllers

and their interconnected topology is that they are designed at the same time by solving a

structure optimization problem. This structural optimization problem aims to integrate the

communication perspective in control system design. The cost function of the optimization

problem includes a term that punishes the communication complexity of controller inter-

connection topology. The second layer of the hierarchical control architecture is a single

central controller that coordinates the operations of the local controllers in the first layer

and adaptively optimizes and updates the control and communication topology in real time.

This thesis involves the completion of three tasks. The first two tasks serve as preparation

for the third, i.e., the main task, which aims to formulate and solve the structure optimization

problem for controller structure synthesis.

5.1 TASK I: FORMULATING AND SOLVING THE SYSTEM

STABILIZATION PROBLEM FOR VARIOUS CONTROL

STRUCTURES

We start with this task in order to evaluate and develop intuitions about the performance

and computational loads of various controller structures in stabilizing a power system. This

task also provides us with opportunities to practice the system modeling and design, through
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which we can gain insights that will be valuable when dealing with more complex and difficult

design problems.

5.1.1 System Model.

As described in Section (4.1.1), under a centralized structure, the dynamic of a power system

can be modeled as follows:

ẋ(t) = Ax(t) +Bu(t) (5.1)

or
ẋ1(t)

ẋ2(t)
...

ẋN(t)

 =


A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN




x1(t)

x2(t)
...

xN(t)

+


B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . BN




u1(t)

u2(t)
...

uN(t)


(5.2)

where x is the state vector, u is the control input vector, and N is the total number of

subsystems. Aii, Aij, and Bi (i = 1, · · · , N , j = 1, · · · , N , and i 6= j) can be constructed as

in Equation (4.19).

5.1.2 Controller Structure.

Under the centralized architecture of the control, shown in Figure 7a, we consider the most

commonly used control law-constant gain, full state feedback control [26]:

u(t) = Kx(t) (5.3)

where K =


K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

 . make space

The system under control can now be described by the equation:

ẋ(t) = (A+BK)x(t) (5.4)
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In cases of completely decentralized or distributed control architecture as in Figure 7b

or 8, the control law has the form

u(t) = KDx(t) (5.5)

where KD is a sparse matrix with many zero elements. Note that different controller struc-

tures can be indicated by different nonzero patterns of the control gain matrices. Under

centralized control, the state feedback gain matrix as, in Equation (5.3), is not sparse. This

can be seen in Figure 15a. In contrast, with a completely decentralized structure as in Figure

15b, the gain matrix shown in Equation (5.5) is a block diagonal matrix. For a distributed

structure, it forms an overlapping structure where each local controller shares information

with its respective neighboring subsystem but not with the overall subsystem, as in the ex-

ample shown in Figure 15c.
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Figure 15: Gain matrix structures of a (a) centralized (b) completely decentralized (c)

distributed control structure.
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5.1.3 Stabilization

In this study, the specific control problem in which we are interested is the stabilization

problem. Let us first consider the centralized control. To ensure the global asymptotic

stability of the closed loop system (Equation (5.4)), we search for a control gain K and

Lyapunov function

V (x) = xTPx (5.6)

with matrix P being symmetric so that

P > 0 and (A+BK)TP + P (A+BK) < 0. (5.7)

Note that in Equation (5.7), P and K are not linear, so it is generally difficult to solve this

matrix inequality. To avoid such difficulty, we follow a procedure proposed in [38, 93] and

introduce new matrices:

Y = τP−1 (τ > 0) and L = KY (5.8)

with which we can rewrite Equation (5.7) as

Y > 0 and Y AT + AY + LTBT +BL < 0. (5.9)

Any feasible Y and L which is subject to the above inequalities can produce a control gain

matrix

K = LY −1 (5.10)

which ensures global asymptotically in the stability of the system (5.4). In order to prevent

‖K‖2 from becoming unacceptably large, we need to add conditions to bound the norm of K

. We therefore introduce the following inequality about L and Y to bound ‖K‖2 implicitly:

 −κLI LT

L −I

 < 0 and

 Y I

I κY I

 > 0 (5.11)

where κL and κY represent scalar variables.

make space

30



Use of the Schur complement formula [18] reveals that matrix (5.11) is equivalent to the

constraints ‖L‖2 <
√
κL and ‖Y −1‖2 < κY , which imply that ‖K‖2 < ‖L‖2‖Y −1‖2 <

√
κLκY .

Therefore, the stabilization problem under centralized control can be converted to the fol-

lowing optimization problem:

min c1κL + c2κY

subject to

Y > 0

Y AT + AY + LTBT +BL < 0 (5.12) −κLI LT

L −I

 < 0

 Y I

I κY I

 > 0

where the coefficients c1 and c2 represent positive weight, reflecting the relative importance

of the optimization variables κL and κY .

Now let us consider the system stabilization problem under completely decentralized or

distributed control. Recall that the problem in (5.12) produces a gain matrix K = LY −1.

When KD is a matrix with a nonzero pattern such as block diagonal or an overlapping gain

matrix, as shown in Figures 15b and 15c, the problem of finding a distributed control gain

can be transformed into the task of searching for matrices L and Y , which are both block

diagonal in the case of a completely decentralized structure. Moreover, L has an identical

nonzero pattern as that of matrix KD and Y has a diagonal form in the case of a distributed

control structure [73]. When such matrices are denoted as LD and YD, the distributed con-

trol design problem takes the following form:
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min c1κL + c2κY

subject to

YD > 0

YDA
T + AYD + LT

DB
T +BLD < 0 (5.13) −κLI LT

D

LD −I

 < 0

 YD I

I κY I

 > 0.

Alternatively, we can follow the procedure proposed in [94] to construct LD and YD in

order to achieve distributed control gain with an arbitrary nonzero pattern, where KD =

LDY
−1
D .

5.2 TASK II: FORMULATING AND SOLVING THE SYSTEM

STABILIZATION PROBLEM UNDER COMMUNICATION

CONSTRAINTS.

For this task, we model the dynamics of communication channels considering both time

delays and uncertainties and seek to derive the optimal gain matrix for control under the

communication constraints. The aim of this task is to evaluate the performance of various

controller structures in stabilizing the power system under communication limitations. By

performing this task, we expect to gain insights, valuable in formulating and solving the

control structure optimization problem in Task III.

5.2.1 Model Communication Channels

Consider the communication between the two local controllers shown in Figure 16. Without

losing generality, consider the channel that delivers the state information of subsystem j,
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Figure 16: Block diagram of communication channel between subsystems.

i.e., xj, from the controller of j to that of i. First, the transmission delay in the channel

can be modeled by employing a strictly proper rational transfer function, using the Padé

approximation [11, 34].The state space equation for the transfer function of the delay is given

as

ẋdji = Ad
jix

d
ji +Bd

jixj

xdj = Cd
jix

d
ji (5.14)

where xdji is the delay state vector, xj is the controller j state vector and the input vector to

the channel, and xdj is the channel’s output vector to be received at controller i.

Second, the uncertainty, distance, and nonlinearity in the channel can be modeled by a

nonlinear function of the state: hdji(x
d
ji). Therefore, we rewrite (5.14) as the following:

ẋdji = Ad
jix

d
ji + hdji(x

d
ji) +Bd

jixj

xdj = Cd
jix

d
ji. (5.15)
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Through the communication channels, controller i can collect the state information from

the other nodes j and use this information to calculate the control signal according to the

following:

ui = Kiixi +
∑
i 6=j

Kijx
d
j ≡ Kix̄i (5.16)

where Kii and xi are the gain matrix and the state vector for local controller i, respectively.

Kij is the gain matrix assigned to the state information (xdj ) which is sent from node j. Ki

and x̄i are symbols introduced to simplify the expressions:

x̄i =

(xd1)
T , · · · , (xdj )T , · · · , (xdi−1)T︸ ︷︷ ︸

1≤j<i

, (xi)
T , (xdi+1)

T , · · · , (xdj )T , · · · , (xdN)T︸ ︷︷ ︸
i<j≤N


T

(5.17)

Ki =

Ki,1, · · · , Ki,j, · · · , Ki,i−1︸ ︷︷ ︸
1≤j<i

, Ki, Ki,i+1, · · · , Ki,j, · · · , Ki,N︸ ︷︷ ︸
i<j≤N

 (5.18)

5.2.2 Model of Augmented System

We now combine the dynamics of the power system and those of the communication channels

to form an augmented system:

˙̄x = (Ā+ B̄K̄D)x̄+ h(x̄). (5.19)

In the above equation, x̄ is the augmented state vector, defining x̄ = [x̄T1 , x̄
T
2 , · · · , x̄TN ], where

each x̄i is defined by (5.17) and (5.15); Ā, B̄, and K̄D can be derived from (5.2), along

with (5.14)-(5.18). K̄D depends linearly on the elements of KD, which characterize the in-

terconnection topology of the controllers; h(x̄) summarizes the unmolded nonlinearities or

uncertainties of the power system and communication channels.
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5.2.3 Stabilization Problem

Consider the system stabilization problem under the communication constraints and the

controller interconnection topology characterized by the nonzero patterns of matrix K̄D .

Equation (5.19) contains the nonlinear term h(x̄). In order to simplify the analysis, we

consider a specific, yet sufficiently general class of functions which satisfies the inequality

hT (x̄)h(x̄) ≤ α2x̄THTHx̄ (5.20)

where H is a constant square matrix of dimension, and α is a scalar parameter. Here α can

be viewed as a measure of robustness with respect to uncertainties. One objective in this

procedure is to maximize such robustness, or α, by choosing the appropriate control gain K̄D.

With respect to h(x̄) and inequality (5.20), system (5.19) is globally asymptotically sta-

ble if we can find a control gain K̄D, symmetric matrix P > 0, and scalar τ > 0 such that

 (Ā+ B̄K̄D)TP + P (Ā+ B̄K̄D) + τα2HTH P

P −τI

 < 0. (5.21)

Introducing matrices YD, LD, and positive scalar γ defined by the equations

YD = τP−1, LD = K̄DYD, and γ = 1/α2. (5.22)

We can use the Schur complement formulation [39] to express (5.21) as


YDĀ

T + ĀYD + LT
DB̄

T + B̄LD I YDH
T

I −I 0

HYD 0 −γI

 < 0 (5.23)
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Moreover, by following the same procedure as used in (5.11) to bound K̄D, in (5.23) the

stabilization optimization problem becomes

min c1κL + c2κY + c3γ

YD > 0
YDĀ

T + ĀYD + LT
DB̄

T + B̄LD I YDH
T

I −I 0

HYD 0 −γI

 < 0

 −κLI LT
D

LD −I

 < 0 (5.24)

 YD I

I κY I

 > 0

where the coefficients c1, c2, and c3 represent positive weights reflecting the relative impor-

tance of the optimization variables κL , κL , and γ . If the LMI optimization is feasible, the

resulting gain matrix stabilizes the close loop system for all nonlinearities or uncertainties

which satisfy (5.20).

5.3 TASK III: FORMULATING AND SOLVING THE STRUCTURAL

OPTIMIZATION PROBLEM FOR CONTROL STRUCTURE

SYNTHESIS

Having completed the preparation, consisting of Tasks I and II, we can formulate the con-

troller structure synthesis problem, the goal of which is to find the optimal topology of the

distributed controller in Figure 8. This structure minimization or optimization problem

integrates concerns with communication complexity in the design of the control system.
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5.3.1 Structural Optimization Problem

The main design innovation in this thesis is to include in the cost function a term that

punishes communication complexity in controller interconnection topology. Note that com-

munication complexity can be reflected in the number of channels established to exchange

information between controllers. In other words, the complexity of communication is closely

related to the sparsity or nonzero pattern of the control gain matrix K̄D . A sparser matrix

K̄D corresponds to a network control topology with fewer demands on its communication

capacity. Therefore, we can use the number of nonzero elements in K̄D to quantify commu-

nication complexity. Whenever the system performance permits, we prefer to use a sparser

K̄D to reduce the dimensionality in control and communication.

It should be noted that K̄D does not appear explicitly in the system stabilization problem

(5.24), but is computed through LD and YD (where K̄D = LDY
−1
D ). Matrix LD has a nonzero

pattern identical to that of matrix K̄D [73]. Therefore, the problem becomes one of finding

a sparser LD to reduce the communication complexity and dimensionality in the control, in

order to find the optimal topology.

Formally, we want to add to the cost function of (5.24) a punishment term c4‖LD‖0,

where ‖LD‖0 denotes the number of nonzero elements in LD, while c4 is a positive weight re-

flecting how desirable it is to reduce the communication complexity. In general, the resulting

optimization problem is difficult to solve, because it requires enumerating the nonzero pat-

terns of LD. The computational complexity of this procedure grows exponentially with the

dimensions of LD [32]. Instead of minimizing c4‖LD‖0 directly, we can consider an approxi-

mation of it using `1-minimization. In order to do this, we replace ‖LD‖0 with
∑

i

∑
j |Lij|,

the sum of the absolute values of all elements of LD, where Lij denotes the element on the

i’th row and the j’th column of matrix. Use of the `1- minimization problem to minimize∑
i

∑
j |Lij| can be considered to be a type of convexification of the problem of minimizing

‖LD‖0: the former is the closest convex optimization problem to the latter LD [32]. An

added benefit of using `1-minimization is that it can produce a sparse solution [78].
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Base on the above arguments, we formulate the structure optimization problem as

min c1κL + c2κY + c3γ + c4
∑
i

∑
j

|Lij|

YD > 0
YDĀ

T + ĀYD + LT
DB̄

T + B̄LD I YDH
T

I −I 0

HYD 0 −γI

 < 0

 −κLI LT
D

LD −I

 < 0 (5.25)

 YD I

I κY I

 > 0

where the coefficients c1, c2, c3, and c4 represent positive weights reflecting the relative

importance of the terms in the cost function. The above problem can be solved efficiently

using standard optimization techniques for LMI optimization and `1- minimization.

5.3.2 Role of the Central Controller in the Hierarchy

The central controller is located in the top layer of the hierarchical control architecture

as shown in Figure 8. Its role is to coordinate the operations of the local controllers in

the decentralized control layer: to accomplish this, it adaptively optimizes and updates the

control and communication topology in real time.
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5.4 DESIGN OF OPTIMAL STRUCTURE

Step 1 : Design decision matrix YD as a block diagonal matrix and decision matrix LD as a

full dimension matrix.

Step 2 : Insert YD and LD decision matrices into the structure optimization problem (5.25).

min c1κL + c2κY + c3γ + c4
∑
i

∑
j

|Lij|

YD > 0
YDĀ

T + ĀYD + LT
DB̄

T + B̄LD I YDH
T

I −I 0

HYD 0 −γI

 < 0

 −κLI LT
D

LD −I

 < 0

 YD I

I κY I

 > 0

Step 3 : Compute KD = LDY
−1
D .

Step 4 :

(a) for i = 1 : . . . : M , where M is the total number of feedback gain with sharing state

variables.

(b) obtain the KD(i) structure.

(c) redesign decision matrix LD(i) to have the same matrix structure as as KD(i), redesign

decision matrix YD(i) as a block diagonal matrix.
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(d) insert decision matrices YD(i) and LD(i) into the fixed structure optimization problem

(5.24).

min c1κL + c2κY + c3γ

YD > 0
YDĀ

T + ĀYD + LT
DB̄

T + B̄LD I YDH
T

I −I 0

HYD 0 −γI

 < 0

 −κLI LT
D

LD −I

 < 0

 YD I

I κY I

 > 0

(e) compute KD(i) = LD(i)Y −1D (i).

(f) calculate the energy cost, then go to Step 4(a).

Step 5 : The optimal topology of distributed control is the KD(i) structure with minimum

energy cost J(i).

5.5 DEMONSTRATION OF CONTROL DESIGN METHODS

In this task, we demonstrate on a test-bed the hierarchical control architecture and controller-

structure design methods developed in three tasks. The goal of the control system is to

suppress of the inter-area low-frequency oscillations. Communication constraints are used to

compare the performance of our design with those of the conventional designs and centralized

control design under communication constraints. For this thesis, we demonstrate our control

design methods on an IEEE 39-bus power system.

The IEEE 39-bus power system includes 10 generators, 29 loads, and 40 transmission

lines, as shown in Figure 17. The power system is modeled as shown in Section 4.1.1.

The performance of the control system synthesized by our method will be evaluated by the
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eigenvalues and the damping ratio of the open-loop and closed-loop systems and through

nonlinear simulations. For comparison purposes, we have run both a completely decentralized

and an entirely centralized design in our system modeling, including in our design both time

delays and communication uncertainties.

Figure 17: IEEE 39-bus power system (figure adapted from [1]).
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6.0 SIMULATION RESULTS AND DISCUSSION

6.1 SIMULATION RESULTS

In this section, we have applied our hierarchical control architecture and controller structure

design methods developed in Tasks I, II, and III on an IEEE 39-bus power system as shown in

Figure 17, with the goal to design a control system that suppresses inter-area low-frequency

oscillations. In our design, we consider communication constraints.

6.1.1 Power System Description

The IEEE 39-bus power system includes 10 generators, 29 loads, and 40 transmission lines.

For purpose of this study, this system was partitioned into ten control areas, with one

generator in each area, as shown in Figure 18. The structure of decomposition and the

connected tie-lines for the ten areas are shown in Table 1. The tie-line topology between

areas was selected arbitrarily. The generator, turbine, and governor parameters are shown

in Table 2. The line parameters are given in Table 3. The load flow solution [97] for the

voltages and angles of the buses are shown in Table 4. Table 5 provides the synchronizing

torques of the tie-lines, which were calculated based on a power flow analysis of the IEEE

39-bus power system using Equation 4.18.
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Figure 18: IEEE 39-bus power system decomposed into ten control areas.
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Table 1: Decomposition of the IEEE 39-bus power system.

Area Generator Buses Connected to Area Connected tie-line

1 G1 1, 3, 4, 5, 2 7-8

8, 9, 39 3 4-14

10 1-2, 2-3, 3-18

2 G2 6, 7, 31 1 7-8

3 6-11

3 G3 10, 11, 12, 13, 1 4-14

14, 15 2 6-11

4 15-16

4 G4 16, 19, 33 3 15-16

5 19-20

6 16-21

7 16-24

8 16-17

5 G5 20, 34 4 19-20

6 G6 21, 22 4 15-16

7 22-23

7 G7 23, 24, 36 4 16-24

6 22-23

8 G8 17, 25, 27, 37 4 16-17

9 26-27

10 17-18, 2-25

9 G9 26, 28, 29, 38 8 26-27

10 G10 2, 18, 30 1 1-2, 2-3, 3-18

8 17-18, 2-25
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Table 2: Generator, turbine, and governor parameters for the IEEE 39-bus system (per unit).

Generator M D Tch Tg R

1 6.0 5.0 0.20 0.25 0.05

2 3.0 4.0 0.20 0.25 0.05

3 2.5 4.0 0.20 0.25 0.05

4 4.0 6.0 0.20 0.25 0.05

5 2.0 3.5 0.20 0.25 0.05

6 3.5 3.0 0.20 0.25 0.05

7 3.0 7.5 0.20 0.25 0.05

8 2.5 4.0 0.20 0.25 0.05

9 2.0 6.5 0.20 0.25 0.05

10 4.0 5.0 0.20 0.25 0.05
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Table 3: Line parameters for the IEEE 39-bus power system (per unit).

Line 1-2 1-39 2-3 2-25 2-30 3-4 3-18 4-5

r 0.0035 0.0020 0.0013 0.0070 0.0000 0.0013 0.0011 0.0008

x 0.0411 0.0500 0.0151 0.0086 0.0181 0.0213 0.0133 0.0128

Line 4-14 5-6 5-8 6-7 6-11 6-31 7-8 8-9

r 0.0008 0.0002 0.0008 0.0006 0.0007 0.0000 0.0004 0.0023

x 0.0129 0.0026 0.0112 0.0092 0.0082 0.0500 0.0046 0.0363

Line 9-39 10-11 10-13 10-32 12-11 12-13 13-14 14-15

r 0.0010 0.0004 0.0004 0.0000 0.0016 0.0016 0.0009 0.0018

x 0.0250 0.0043 0.0043 0.0200 0.0435 0.0435 0.0101 0.0217

Line 15-16 16-17 16-19 16-21 16-24 17-18 17-27 19-20

r 0.0009 0.0007 0.0016 0.0008 0.0003 0.0007 0.0013 0.0007

x 0.0094 0.0089 0.0195 0.0135 0.0059 0.0082 0.0173 0.0138

Line 19-33 20-34 21-22 22-23 22-35 23-24 23-36 25-26

r 0.0007 0.0009 0.0008 0.0006 0.0000 0.0022 0.0005 0.0032

x 0.0142 0.0180 0.0140 0.0096 0.0143 0.0350 0.0272 0.0323

Line 25-37 26-27 26-28 26-29 28-29 29-38

r 0.0006 0.0014 0.0043 0.0057 0.0014 0.0008

x 0.0232 0.0147 0.0474 0.0625 0.0151 0.0156
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Table 4: Voltage and angle parameters for the IEEE 39-bus power system (per unit).

Bus 1 2 3 4 5 6 7 8

V 1.0163 0.9979 0.9616 0.9267 0.9299 0.9327 0.9223 0.9223

δ -0.1779 -0.1269 -0.1811 -0.1959 -0.1709 -0.1565 -0.2015 -0.2119

Bus 9 10 11 12 13 14 15 16

V 0.9861 0.9421 0.9372 0.9165 0.9377 0.9334 0.9393 0.9606

δ -0.2097 -0.1083 -0.1247 -0.1251 -0.1229 -0.1572 -0.1668 -0.1390

Bus 17 18 19 20 21 22 23 24

V 0.9584 0.9572 0.9795 0.9808 0.9721 1.0075 1.0052 0.9697

δ -0.1590 -0.1760 -0.0461 -0.0713 -0.0921 -0.0073 -0.0114 -0.1368

Bus 25 26 27 28 29 30 31 32

V 1.0059 0.9725 0.9571 0.9817 0.9940 1.0475 0.9820 0.9831

δ -0.0997 -0.1213 -0.1620 -0.0517 0.0015 -0.0836 0 0.0325

Bus 33 34 35 36 37 38 39

V 0.9972 1.0123 1.0493 1.0635 1.0278 1.0265 1.0300

δ 0.0451 0.0194 0.0807 0.1304 0.0211 0.1270 -0.2074
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Table 5: Synchronizing torque coefficient between the buses (per unit).

Line 1-2 1-39 2-3 2-25 2-30 3-4 3-18

Tij 24.6435 20.9267 63.4551 116.6763 57.6973 41.8318 69.2054

Line 4-5 4-14 5-6 5-8 6-7 6-11 6-31

Tij 67.3023 67.0026 333.5492 76.5113 93.4085 106.5469 18.0944

Line 7-8 8-9 9-39 10-11 10-13 10-32 12-11

Tij 184.9111 25.0545 40.6272 205.3064 205.4216 45.8507 19.7458

Line 12-13 13-14 14-15 15-16 16-17 16-19 16-21

Tij 19.7563 86.6074 40.4010 95.9514 103.4219 48.0436 69.0943

Line 16-24 17-18 17-27 19-20 19-33 20-34 21-22

Tij 157.9292 111.8595 53.0220 69.5934 68.4999 54.9324 69.7051

Line 22-23 22-35 23-24 23-36 25-26 25-37 26-27

Tij 105.4928 73.6419 27.6311 38.9081 30.2789 44.2384 63.2659

Line 26-28 26-29 28-29 29-38

Tij 20.0927 15.3502 64.5317 64.8921

6.1.2 Open-loop System Analysis

Before designing the distributed control of the power system, we have shown the eigenvalues

of the open-loop system. Examining the eigenvalues of the open-loop system (5.1) under a

centralized structure, we note that there are some poles in the open right half plane. The

poles with positive values are shown in Figure 19. Therefore, the system is unstable.

In such an unstable system, once any area of the power system faces a small disturbance,

inter-area oscillations may result. Assuming that the power system is operating at a steady

state condition, we create non-zero initial frequency state conditions in Area 4 and Area

8, which may be caused by the changing load in these areas. Figure 20 shows the system

response of the open-loop system to a non-zero initial frequency occurring in Areas 4 and
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8. Should this occur, every generator increases or decreases power in order to meet the

increasing or decreasing demand of the load. It is clear that small disturbances in two areas

cause a change in frequency in all areas; moreover, the frequencies cannot return to a steady

state. This leads to a swing of the generator in each area against generators in other areas.

Such a small signal disturbance in an uncontrolled system could cause the system to

experience inter-area low-frequency oscillations. This may cause serious problems that can

lead to wide spread blackouts in the power system. Therefore, the goal of our control method

is to design a topology of distributed control for the power system to ensure global asymptotic

stability.
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Figure 19: Eigenvalues of the open-loop system.
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Figure 20: Open-loop system response to a non-zero initial condition in Areas 4 and 8.

6.1.3 Designing Distributed Control

In this section, we show the steps we have taken to find the optimal topology of distributed

control for the ten areas chosen for the simulation. All the simulations in this thesis were

completed using the MATLAB toolbox from [60] and [86].

Step 1 : As mentioned earlier, KD does not appear explicitly in the system stabilization

problem (5.25), but it is computed through LD and YD. Therefore, the first step was to

design the decision matrix YD as a block diagonal matrix and a decision matrix LD as a

full dimension matrix, both of which are shown in Figure 21. Each small square represents

a subsystem (one area). In the LD matrix, each small colored square signifies that each

subsystem (area) is allowed to communicate with other subsystems (areas) only through

their shared state variables. Making LD a full dimension matrix that each controller has the

opportunity to establish communication with all other controllers. make space
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Figure 21: (a) The structure of the diagonal decision matrix YD. (b) The structure of the

full dimension decision matrix LD.

Step 2 : We inserted decision matrices YD and LD into the structure optimization prob-

lem (5.25), and then exported the solution matrices YD and LD as shown in Figure 22.

min c1κL + c2κY + c3γ + c4
∑
i

∑
j

|Lij|

YD > 0
YDĀ

T + ĀYD + LT
DB̄

T + B̄LD I YDH
T

I −I 0

HYD 0 −γI

 < 0

 −κLI LT
D

LD −I

 < 0

 YD I

I κY I

 > 0

make space
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Figure 22: (a) YD solution matrix. (b) LD solution matrix.

Step 3 : We computed the KD matrix such that KD = LDY
−1
D . Because the LD matrix

was designed as a full dimension matrix, the KD matrix was also expected to be a full di-

mension matrix as shown in Figure 23. This KD matrix, as a locally centralized structure,

allows each controller communicate with all other controllers. However, because of the `1-

minimization of LD in the cost function of the optimization problem, this KD matrix provides

valuable information about the weaknesses and strengths of the feedback gain values. These

weaknesses and strengths can in turn be represented as the weaknesses and strengths of the

communication between controllers. Figure 24 shows these feedback gain values for each of

four state variables. Approximately two thirds of the feedback gain values are near to zero,

which may be considered non-communication.
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Figure 23: KD solution matrix resulting from step 2.
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Figure 24: Feedback gain values in the KD matrix.
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Step 4 : We identified the communication channels necessary to stabilize the global sys-

tem at the minimum energy cost, by applying following loop.

(a) for i = 1, . . . ,M , where M is the total number of feedback gain values with each state

variable.

(b) obtain the KD(i) structure, as shown in Figure 25. 

 

 
 

          
          
          
          
          
          
          
          
          
          

 
                       
 

 

 

 

 

 

 

Figure 25: Example of a fixed KD(i) matrix structure.

(c) redesign the decision matrix LD(i) to be identical to the KD(i) matrix structure; redesign

the decision matrix YD(i) as a block diagonal matrix. make space
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Figure 26: (a) Example of the structure of the diagonal decision matrix YD(i). (b) Example

of the fixed structure of decision matrix LD(i).

54



(d) now that the YD(i) and LD(i) matrices have a fixed structure, insert decision matri-

ces YD(i) and LD(i) into the fixed structure optimization problem (5.24).

min c1κL + c2κY + c3γ

YD > 0
YDĀ

T + ĀYD + LT
DB̄

T + B̄LD I YDH
T

I −I 0

HYD 0 −γI

 < 0

 −κLI LT
D

LD −I

 < 0

 YD I

I κY I

 > 0

make space

(e) compute the KD matrix such that KD = LDY
−1
D , as shown in Figure 27. make space

 

 

 
 

          
          
          
          
          
          
          
          
          
          

 
                       
 

 

 

 

 

Figure 27: KD(i) matrix structure with actual feedback gain values.

(f) calculate energy cost, then go Step 4(a).

make space
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Step 5 : We identify the optimal structure as the KD(i) structure with the minimum en-

ergy cost. Figure 28 shows the increment of dimension for each controller. Faster increment

dimensions indicate that these controllers are essential to establishing communication with

some of the correlated controllers. For instance, Controllers 1, 2 and 7 are the controllers

most needed to begin communication with other controllers. On the other hand, Controllers

3 and 4 are less necessary for establishing communication with other controllers.

Figure 29 illustrates the relationship between the total control dimension, the damping
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Figure 28: The variation in the dimensions of each of the ten controllers.

ratio, and the energy cost from Step 4. After considering these relationships, we assert that

increasing the number of communication channels clearly does not translate into better en-

ergy cost. On the other hand, including unnecessary communication channels or ignoring

essential channels in order to stabilize the system may result in a very high energy cost, as

shown in Figure 29. It further appears to be clear that improving the damping ratio can help

avoid putting the system at risk of inter-area oscillations. The optimal structure, then, is

based on manipulating the relationship between the dimension, the damping ratio, and the

energy cost. Consequently, in this simulation, J(i) at i = 20 has the minimum energy cost for
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the design of a feedback state control of this system. At the same time, the K(i) structure at

i = 20 is the optimal structure for distributed control with a high damping ratio, as shown in

Figure 30. The arrangement of the communication channels designed to connect controllers

is shown in Figure 31. Controller 1 receives state information from Controllers 3-5 and 7-10.

Controllers 1, 3, and 4 send their state variables to Controller 2. Controller 4 would receive

state information from Controllers 1 and 3 and so forth, for the other controllers.
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Figure 29: The relationship between total control dimension, damping ratio, and energy

cost.
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Figure 30: Optimal feedback gain structure of distributed control.
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Figure 31: Communication channels assigned among the ten controllers.
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6.1.4 Optimal Design Simulation

In Figure 32 we can see that all eigenvalues of the closed-loop (optimal structure) system are

on the left side of the imaginary axis of the complex plan. Therefore, the system is stable.

Furthermore, as shown in Table 6, all damping ratios corresponding to the eigenvalues are

above the critical ratio. In order to validate our design, we created non-zero initial frequency

state conditions in Areas 4 and 8, which was caused by changing of the load in these areas.

The optimal design successfully returned all states to a zero steady state after two seconds,

as shown in Figure 33. The other states in the other controller areas were not influenced by

the non-zero initial frequency state conditions. Based on the optimal structure solution, we

can write the control law for each controller, as shown in Table 7.
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Figure 32: Eigenvalues of open and closed (optimal structure) loop system.
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Figure 33: Control (optimal structure) system response to a non-zero initial condition in

Areas 4 and 8.
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Table 6: The eigenvalues, natural frequencies, and damping ratios for the optimal structure

Eigenvalue Frequency (Hz) Damping ratio

−0.72108 0.11476 1.00

−0.74444 0.11848 1.00

−0.8088 0.12872 1.00

−1.0575 0.16831 1.00

−4.3211 0.68773 1.00

−7.5767 1.2059 1.00

−7.847 1.2489 1.00

−22.519 3.584 1

−0.71833 ± j0.39834 0.13073 0.87453

−1.3373 ± j0.20232 0.21526 0.98875

−1.0763 ± j0.93613 0.22703 0.75454

−1.5512 ± j0.29733 0.25137 0.98212

−1.8488 ± j0.399 0.30102 0.97749

−1.9307 ± j0.70375 0.32706 0.93953

−5.2834 ± j5.3005 1.1911 0.70597

−4.5556 ± j8.1267 1.4828 0.48898

−4.9626 ± j8.9686 1.6313 0.48415

−7.0743 ± j7.4667 1.6370 0.68777

−7.0626 ± j8.0457 1.7039 0.6597

−7.8056 ± j8.0436 1.7839 0.69641

−7.1454 ± j8.8194 1.8065 0.62951

−7.5779 ± j8.7012 1.8364 0.65675

−8.3967 ± j11.02 2.2050 0.60608

−8.9823 ± j12.007 2.3865 0.59903
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Table 7: Control laws for the ten controllers.

Area Note

u1(t) = K1X1(t) K1 = [K11, K13, K14, K15, K17, K18, K19, K110] and

X1(t) =
[
x1(t);x

d
3(t);x

d
4(t);x

d
5(t);x

d
7(t);x

d
8(t);

xd9(t);x
d
10(t)

]
u2(t) = K2X2(t) K2 = [K21, K22, K23, K24] and

X2(t) =
[
xd1(t);x2(t);x

d
3(t), x

d
4(t)
]

u3(t) = K3X3(t) K3 = [K33] and X3 = [x3(t)]

u4(t) = K4X4(t) K4 = [K41, K43, K44] and

X4(t) =
[
xd1(t);x

d
3(t);x4(t)

]
u5(t) = K5X5(t) K5 = [K55] and X5(t) = [x5(t)]

u6(t) = K6X6(t) K6 = [K66] and X6(t) = [x6(t)]

u7(t) = K7X7(t) K7 = [K72, K73, K74, K77, K710] and

X7(t) =
[
xd2(t);x

d
3(t);x

d
4(t);x7(t);x

d
10(t)

]
u8(t) = K8X8(t) K8 = [K83, K88] and X8(t) =

[
xd3(t);x8(t)

]
u9(t) = K9X9(t) K9 = [K94, K99, K910] and

X9(t) =
[
xd4(t);x9(t);x

d
10(t)

]
u10(t) = K10X10(t) K10 = [K102, K103, K104, K1010] and

X10(t) =
[
xd2(t);x

d
3(t);x

d
4(t);x10(t)

]
where Kii and xi are the gain matrix and state vector for local controller i,

respectively. Kij is the gain matrix assigned to the state information (xdj )

which is sent from node j.
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6.2 DISCUSSION

The main purpose of this section is to compare the performance of our optimal structure

with those of random fixed structures, a completely decentralized structure, and a centralized

structure. For the purpose of this comparison, the fixed structures were randomly chosen,

as shown in Figure 34, with the exception the ”Y” structure, for which we allowed the

same areas to be connected through tie-lines, enabling additional communication, as shown

previously in Figure 18. Each small square represents a subsystem (area). For example in

the ”Y” structure, Subsystem 1 sends local state variables to Subsystems 2,3, and 4, and

receives their state variables. We applied the same paradigm to all other subsystems. Figure

35 shows the dimensions of each single controller in the control structure.
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Figure 34: Various control structures.
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Figure 35: Controllers dimensions for all control structures.

Figures 38, 39, 40, 41, and 42 illustrate that the feedback control designed for all struc-

tures were able to stabilize the system by returning the disturbance states to zero steady

state when non-zero initial frequency conditions were created in Areas 4 and 8. However,

there are significant differences between these control structures. Figure 36 clearly supports

the conclusion that the central controller represents significant additional damping of the

system. Figure 29 shows a comparison between the control dimension and energy cost. The

centralized structure has the lowest energy cost, but it has a full dimensional controller. On

the other hand, the completely decentralized structure has the lowest controller dimension

but entails high energy cost. When we moved from a completely decentralized structure

to the ”Z” structure by allowing some controllers to communicate, the energy cost is still

high. By allowing more controllers to communicate as in the ”Y” structure, we still were not
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successful at decreasing the energy cost. This finding would indicate that adding unneces-

sary communication between controllers does not improve performance. Moving to the ”X”

structure by assigning more than half of the available communication channels improved

the performance, but still did not guarantee getting the minimum energy cost. However,

our model was able to obtain the best structure between controllers in order to meet power

system stabilization requirements at minimum energy cost.
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Figure 36: Lowest five damping ratios.
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Figure 38: Control (completely decentralized structure) system response to a non-zero initial

condition in Areas 4 and 8.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

−0.1

0

Frequency state response

Time (sec)

F
re

qu
en

cy
 (

p.
u.

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

−5

0

Power flow state response

Time (sec)

P
ow

er
 (

p.
u.

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

−5

0

Mechanical power state response

Time (sec)

P
ow

er
 (

p.
u.

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

Governor power state response

Time (sec)

P
ow

er
 (

p.
u.

)

Figure 39: Control (”X” structure) system response to a non-zero initial condition in Areas

4 and 8.
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Figure 40: Control (”Y” structure) system response to a non-zero initial condition in Areas

4 and 8..
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Figure 41: Control (”Z” structure) system response to a non-zero initial condition in Areas

4 and 8.
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Figure 42: Control (centralized structure) system response to a non-zero initial condition in

Areas 4 and 8.
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7.0 CONCLUSION

Dimensionality reduction in a controller structure produces effective control signals with

reduced computational load. In the control design of large-scale power systems, the ma-

nipulation of effective control signals, diminutive control dimensions, and suitable damping

ratios presents a very challenging problem. The model we demonstrate in his thesis pro-

vides a solution to this challenge by integrating control and communication in the design of

advance control structures for large-scale power systems. In particular, the control system

present here avoids the potential ineffective performance of system based on fixed structures,

which either include unnecessary communication channels or exclude essential communica-

tion channels between controllers. In our simulation, we have shown that the relationship

between the control signal and the control dimension is based on system behavior. We were

able to reduce the communication complexity of the control design and design a communi-

cation structure in order to achieve robust control.

Unlike other studies, in which the communication was indirectly reflected by a topology

dependent matrix in the LQR cost function, our model considers the control structure and its

communication channels in the cost function which helps to punish communication complex-

ity of the controller structure. As a result our model was able to recognize communications

as either essential or unessential during the design of the controller structure and thereby

reduce the dimension of the controller. A design for distributed control, which is essential to

suppressing inter-area low frequency oscillations in large-scale power systems, was presented

in this thesis.

In the designing centralized or distributed control structures, communication constraints

and time delay should be taken into account, in order to satisfy the performance specifications

of a large-scale power system. Recent studies ignore the impact of time delay on the design
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of robust control. If communication constraints and time delay are not considered in the

design of such distributed control, system performance may be weak and may even cause

instability in the system.

The design presented in this thesis creates innovative schemes for the system control

design of a power system and is expected to contribute significantly to the national needs for

power system control. First, this study integrates control and communication in the design

of advanced control architectures for complex and large scale engineering systems, including

the power system in this country and internationally. The principles, methods, and tools

developed from this study enables the building of more complex systems and will ensure that

these systems are reliable, efficient, and robust. Second, this study offers more applications

in the field of power system control. The detailed implementation of the hierarchical control

in this study can serve as a guideline, which can be readily generalized to other optimization

and control problems in power systems, such as the optimal power flow problem [9] and the

dynamic unit commitment problem [85]. Third, this study of control in complex networks

will accelerate the progress of other research areas in complex networked systems, such as

understanding network structure, understanding network dynamics, and predictive modeling

and simulation for networks [20].
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APPENDIX

MORE SIMULATION RESULTS
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Figure 43: Eigenvalues of the closed-loop (decentralized structure) system.
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Figure 44: eigenvalues of the closed-loop (”X” structure) system.
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Figure 45: eigenvalues of the closed-loop (”Y” structure) system.
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Figure 46: Eigenvalues of the closed-loop (”Z” structure) system.
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Figure 47: Eigenvalues of the closed-loop (centralized structure) system.
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Table 8: The eigenvalues, natural frequencies, and damping ratios for the centralized struc-

ture.

Eigenvalue Frequency (Hz) Damping ratio

−0.69316 0.11032 1

−1.5874 0.25265 1

−2.5062 0.39887 1

−2.8874 0.45955 1

− 4.7005 0.74811 1

−8.1858 1.3028 1

−8.647 1.3762 1

− 12.264 1.9518 1

−3.2465 ± j1.4159 0.5637 0.9166

−1.6037 ± j0.36607 0.2618 0.9749

−2.2552 ± j0.3967 0.36444 0.9848

−1.8788 ± j 4.4925 0.77501 0.3858

−2.1211 ± j 4.9558 0.85794 0.3934

−2.324 ± j6.1393 1.0448 0.3540

−7.428 ± j0.16033 1.1825 0.9997

−3.4794 ± j 7.6899 1.3433 0.4122

−1.7802 ± j8.6778 1.4099 0.2009

−0.72728 ± j 9.9041 1.5805 0.0732

−2.3382 ± j 9.7529 1.5962 0.2331

−7.8041 ± j 8.1038 1.7906 0.6936

−3.1033 ± j 11.116 1.8368 0.2689

−5.9278 ± j 10.585 1.9308 0.4886

−12.658 ± j4.7356 2.1510 0.9366

− 5.8564 ± j 14.168 2.4400 0.3820
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Table 9: The eigenvalues, natural frequencies, and damping ratios for the completely decen-

tralized structure.

Eigenvalue Frequency (Hz) Damping ratio

−0.69428 0.1105 1

−0.72404 0.11523 1

−0.75599 0.12032 1

−1.0571 0.16824 1

−4.3295 0.68906 1

−5.9268 0.94327 1

−7.2437 1.1529 1

−7.6724 1.2211 1

−0.71666 ± j 0.40385 0.13092 0.8712

−0.95019 ± j0.62198 0.18075 0.8366

−0.93525 ± j0.82541 0.19853 0.7497

−1.4052 ± j0.36455 0.23104 0.9679

−1.6828 ± j0.45002 0.27725 0.9660

−1.6931 ± j 0.50219 0.28107 0.9587

−5.283 ± j5.3029 1.1913 0.7057

−4.3205 ± j7.9709 1.443 0.4765

−5.082 ± j8.4639 1.5712 0.5147

−7.1256 ± j 7.4649 1.6425 0.6904

−7.139 ± j8.0028 1.7068 0.6656

−7.8202 ± j8.0183 1.7826 0.6982

−7.1796 ± j8.6827 1.7931 0.6372

−7.8532 ± j 8.771 1.8737 0.6670

−8.4416 ± j 10.972 2.2033 0.6097

−8.9831 ± j12.007 2.3865 0.5990
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Table 10: The eigenvalues, natural frequencies, and damping ratios for open-loop system.

Eigenvalue Frequency (Hz) Damping ratio

−1.2391 0.1972 1

−1.5548 0.2476 1

−2.3351 0.37163 1

−2.5308 0.40279 1

−2.656 0.42272 1

−2.9548 0.47027 1

−3.0597 0.48696 1

−3.3167 0.52787 1

−5.5592 0.88477 1

−5.9535 0.94753 1

−6.0219 0.95842 1

−6.2948 1.0019 1

−6.344 1.0097 1

−6.6197 1.0536 1

−6.8357 1.0879 1

−7.0185 1.117 1

−7.6245 1.2135 1

−7.9511 1.2655 1

3.6457e-16 5.8023e-17 -1

0.81081 ± j 4.0553 0.65819 −0.19606

1.383 ± j 5.7033 0.93401 −0.23566

1.2899 ± j 7.0433 1.1396 −0.18015

1.6634 ± j 7.4759 1.2189 −0.21719

1.5923 ± j 9.4434 1.5242 −0.16627
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Table 11: The eigenvalues, natural frequencies, and damping ratios for open-loop system

(cont.).

Eigenvalue Frequency (Hz) Damping ratio

1.7368 ± j 10.225 1.6507 −0.16746

1.6581 ± j 11.522 1.8527 −0.14244

1.6974 ± j 13.516 2.1681 −0.12461

1.7646 ± j 15.728 2.5189 −0.1115

1.9111 ± j 17.801 2.8494 −0.10674
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Figure 48: Feedback gain matrix structures during optimization development (part 1/3).

81



Figure 49: Feedback gain matrix structures during optimization development (part 2/3).
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Figure 50: Feedback gain matrix structures during optimization development (part 3/3).
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